xref: /openbmc/linux/fs/ntfs3/frecord.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
80 		    : NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
95 		    : NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
106 		ni_delete_all(ni);
107 
108 	al_destroy(ni);
109 
110 	for (node = rb_first(&ni->mi_tree); node;) {
111 		struct rb_node *next = rb_next(node);
112 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113 
114 		rb_erase(node, &ni->mi_tree);
115 		mi_put(mi);
116 		node = next;
117 	}
118 
119 	/* Bad inode always has mode == S_IFREG. */
120 	if (ni->ni_flags & NI_FLAG_DIR)
121 		indx_clear(&ni->dir);
122 	else {
123 		run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 		if (ni->file.offs_page) {
126 			/* On-demand allocated page for offsets. */
127 			put_page(ni->file.offs_page);
128 			ni->file.offs_page = NULL;
129 		}
130 #endif
131 	}
132 
133 	mi_clear(&ni->mi);
134 }
135 
136 /*
137  * ni_load_mi_ex - Find mft_inode by record number.
138  */
139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 	int err;
142 	struct mft_inode *r;
143 
144 	r = ni_find_mi(ni, rno);
145 	if (r)
146 		goto out;
147 
148 	err = mi_get(ni->mi.sbi, rno, &r);
149 	if (err)
150 		return err;
151 
152 	ni_add_mi(ni, r);
153 
154 out:
155 	if (mi)
156 		*mi = r;
157 	return 0;
158 }
159 
160 /*
161  * ni_load_mi - Load mft_inode corresponded list_entry.
162  */
163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 	       struct mft_inode **mi)
165 {
166 	CLST rno;
167 
168 	if (!le) {
169 		*mi = &ni->mi;
170 		return 0;
171 	}
172 
173 	rno = ino_get(&le->ref);
174 	if (rno == ni->mi.rno) {
175 		*mi = &ni->mi;
176 		return 0;
177 	}
178 	return ni_load_mi_ex(ni, rno, mi);
179 }
180 
181 /*
182  * ni_find_attr
183  *
184  * Return: Attribute and record this attribute belongs to.
185  */
186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 			    const __le16 *name, u8 name_len, const CLST *vcn,
189 			    struct mft_inode **mi)
190 {
191 	struct ATTR_LIST_ENTRY *le;
192 	struct mft_inode *m;
193 
194 	if (!ni->attr_list.size ||
195 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 		if (le_o)
197 			*le_o = NULL;
198 		if (mi)
199 			*mi = &ni->mi;
200 
201 		/* Look for required attribute in primary record. */
202 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 	}
204 
205 	/* First look for list entry of required type. */
206 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 	if (!le)
208 		return NULL;
209 
210 	if (le_o)
211 		*le_o = le;
212 
213 	/* Load record that contains this attribute. */
214 	if (ni_load_mi(ni, le, &m))
215 		return NULL;
216 
217 	/* Look for required attribute. */
218 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219 
220 	if (!attr)
221 		goto out;
222 
223 	if (!attr->non_res) {
224 		if (vcn && *vcn)
225 			goto out;
226 	} else if (!vcn) {
227 		if (attr->nres.svcn)
228 			goto out;
229 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
231 		goto out;
232 	}
233 
234 	if (mi)
235 		*mi = m;
236 	return attr;
237 
238 out:
239 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
240 	return NULL;
241 }
242 
243 /*
244  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
245  */
246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
247 			       struct ATTR_LIST_ENTRY **le,
248 			       struct mft_inode **mi)
249 {
250 	struct mft_inode *mi2;
251 	struct ATTR_LIST_ENTRY *le2;
252 
253 	/* Do we have an attribute list? */
254 	if (!ni->attr_list.size) {
255 		*le = NULL;
256 		if (mi)
257 			*mi = &ni->mi;
258 		/* Enum attributes in primary record. */
259 		return mi_enum_attr(&ni->mi, attr);
260 	}
261 
262 	/* Get next list entry. */
263 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
264 	if (!le2)
265 		return NULL;
266 
267 	/* Load record that contains the required attribute. */
268 	if (ni_load_mi(ni, le2, &mi2))
269 		return NULL;
270 
271 	if (mi)
272 		*mi = mi2;
273 
274 	/* Find attribute in loaded record. */
275 	return rec_find_attr_le(mi2, le2);
276 }
277 
278 /*
279  * ni_load_attr - Load attribute that contains given VCN.
280  */
281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
282 			    const __le16 *name, u8 name_len, CLST vcn,
283 			    struct mft_inode **pmi)
284 {
285 	struct ATTR_LIST_ENTRY *le;
286 	struct ATTRIB *attr;
287 	struct mft_inode *mi;
288 	struct ATTR_LIST_ENTRY *next;
289 
290 	if (!ni->attr_list.size) {
291 		if (pmi)
292 			*pmi = &ni->mi;
293 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
294 	}
295 
296 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
297 	if (!le)
298 		return NULL;
299 
300 	/*
301 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
302 	 * So to find the ATTRIB segment that contains 'vcn' we should
303 	 * enumerate some entries.
304 	 */
305 	if (vcn) {
306 		for (;; le = next) {
307 			next = al_find_ex(ni, le, type, name, name_len, NULL);
308 			if (!next || le64_to_cpu(next->vcn) > vcn)
309 				break;
310 		}
311 	}
312 
313 	if (ni_load_mi(ni, le, &mi))
314 		return NULL;
315 
316 	if (pmi)
317 		*pmi = mi;
318 
319 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
320 	if (!attr)
321 		return NULL;
322 
323 	if (!attr->non_res)
324 		return attr;
325 
326 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
327 	    vcn <= le64_to_cpu(attr->nres.evcn))
328 		return attr;
329 
330 	return NULL;
331 }
332 
333 /*
334  * ni_load_all_mi - Load all subrecords.
335  */
336 int ni_load_all_mi(struct ntfs_inode *ni)
337 {
338 	int err;
339 	struct ATTR_LIST_ENTRY *le;
340 
341 	if (!ni->attr_list.size)
342 		return 0;
343 
344 	le = NULL;
345 
346 	while ((le = al_enumerate(ni, le))) {
347 		CLST rno = ino_get(&le->ref);
348 
349 		if (rno == ni->mi.rno)
350 			continue;
351 
352 		err = ni_load_mi_ex(ni, rno, NULL);
353 		if (err)
354 			return err;
355 	}
356 
357 	return 0;
358 }
359 
360 /*
361  * ni_add_subrecord - Allocate + format + attach a new subrecord.
362  */
363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
364 {
365 	struct mft_inode *m;
366 
367 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
368 	if (!m)
369 		return false;
370 
371 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
372 		mi_put(m);
373 		return false;
374 	}
375 
376 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
377 
378 	ni_add_mi(ni, m);
379 	*mi = m;
380 	return true;
381 }
382 
383 /*
384  * ni_remove_attr - Remove all attributes for the given type/name/id.
385  */
386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
387 		   const __le16 *name, size_t name_len, bool base_only,
388 		   const __le16 *id)
389 {
390 	int err;
391 	struct ATTRIB *attr;
392 	struct ATTR_LIST_ENTRY *le;
393 	struct mft_inode *mi;
394 	u32 type_in;
395 	int diff;
396 
397 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
398 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
399 		if (!attr)
400 			return -ENOENT;
401 
402 		mi_remove_attr(ni, &ni->mi, attr);
403 		return 0;
404 	}
405 
406 	type_in = le32_to_cpu(type);
407 	le = NULL;
408 
409 	for (;;) {
410 		le = al_enumerate(ni, le);
411 		if (!le)
412 			return 0;
413 
414 next_le2:
415 		diff = le32_to_cpu(le->type) - type_in;
416 		if (diff < 0)
417 			continue;
418 
419 		if (diff > 0)
420 			return 0;
421 
422 		if (le->name_len != name_len)
423 			continue;
424 
425 		if (name_len &&
426 		    memcmp(le_name(le), name, name_len * sizeof(short)))
427 			continue;
428 
429 		if (id && le->id != *id)
430 			continue;
431 		err = ni_load_mi(ni, le, &mi);
432 		if (err)
433 			return err;
434 
435 		al_remove_le(ni, le);
436 
437 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
438 		if (!attr)
439 			return -ENOENT;
440 
441 		mi_remove_attr(ni, mi, attr);
442 
443 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
444 			return 0;
445 		goto next_le2;
446 	}
447 }
448 
449 /*
450  * ni_ins_new_attr - Insert the attribute into record.
451  *
452  * Return: Not full constructed attribute or NULL if not possible to create.
453  */
454 static struct ATTRIB *
455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
456 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
457 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
458 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
459 {
460 	int err;
461 	struct ATTRIB *attr;
462 	bool le_added = false;
463 	struct MFT_REF ref;
464 
465 	mi_get_ref(mi, &ref);
466 
467 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
468 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
469 				&ref, &le);
470 		if (err) {
471 			/* No memory or no space. */
472 			return ERR_PTR(err);
473 		}
474 		le_added = true;
475 
476 		/*
477 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
478 		 * which moves some attributes out of primary record
479 		 * this means that name may point into moved memory
480 		 * reinit 'name' from le.
481 		 */
482 		name = le->name;
483 	}
484 
485 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
486 	if (!attr) {
487 		if (le_added)
488 			al_remove_le(ni, le);
489 		return NULL;
490 	}
491 
492 	if (type == ATTR_LIST) {
493 		/* Attr list is not in list entry array. */
494 		goto out;
495 	}
496 
497 	if (!le)
498 		goto out;
499 
500 	/* Update ATTRIB Id and record reference. */
501 	le->id = attr->id;
502 	ni->attr_list.dirty = true;
503 	le->ref = ref;
504 
505 out:
506 	if (ins_le)
507 		*ins_le = le;
508 	return attr;
509 }
510 
511 /*
512  * ni_repack
513  *
514  * Random write access to sparsed or compressed file may result to
515  * not optimized packed runs.
516  * Here is the place to optimize it.
517  */
518 static int ni_repack(struct ntfs_inode *ni)
519 {
520 	int err = 0;
521 	struct ntfs_sb_info *sbi = ni->mi.sbi;
522 	struct mft_inode *mi, *mi_p = NULL;
523 	struct ATTRIB *attr = NULL, *attr_p;
524 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
525 	CLST alloc = 0;
526 	u8 cluster_bits = sbi->cluster_bits;
527 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
528 	u32 roff, rs = sbi->record_size;
529 	struct runs_tree run;
530 
531 	run_init(&run);
532 
533 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
534 		if (!attr->non_res)
535 			continue;
536 
537 		svcn = le64_to_cpu(attr->nres.svcn);
538 		if (svcn != le64_to_cpu(le->vcn)) {
539 			err = -EINVAL;
540 			break;
541 		}
542 
543 		if (!svcn) {
544 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
545 				cluster_bits;
546 			mi_p = NULL;
547 		} else if (svcn != evcn + 1) {
548 			err = -EINVAL;
549 			break;
550 		}
551 
552 		evcn = le64_to_cpu(attr->nres.evcn);
553 
554 		if (svcn > evcn + 1) {
555 			err = -EINVAL;
556 			break;
557 		}
558 
559 		if (!mi_p) {
560 			/* Do not try if not enough free space. */
561 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
562 				continue;
563 
564 			/* Do not try if last attribute segment. */
565 			if (evcn + 1 == alloc)
566 				continue;
567 			run_close(&run);
568 		}
569 
570 		roff = le16_to_cpu(attr->nres.run_off);
571 
572 		if (roff > le32_to_cpu(attr->size)) {
573 			err = -EINVAL;
574 			break;
575 		}
576 
577 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
578 				 Add2Ptr(attr, roff),
579 				 le32_to_cpu(attr->size) - roff);
580 		if (err < 0)
581 			break;
582 
583 		if (!mi_p) {
584 			mi_p = mi;
585 			attr_p = attr;
586 			svcn_p = svcn;
587 			evcn_p = evcn;
588 			le_p = le;
589 			err = 0;
590 			continue;
591 		}
592 
593 		/*
594 		 * Run contains data from two records: mi_p and mi
595 		 * Try to pack in one.
596 		 */
597 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
598 		if (err)
599 			break;
600 
601 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
602 
603 		if (next_svcn >= evcn + 1) {
604 			/* We can remove this attribute segment. */
605 			al_remove_le(ni, le);
606 			mi_remove_attr(NULL, mi, attr);
607 			le = le_p;
608 			continue;
609 		}
610 
611 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
612 		mi->dirty = true;
613 		ni->attr_list.dirty = true;
614 
615 		if (evcn + 1 == alloc) {
616 			err = mi_pack_runs(mi, attr, &run,
617 					   evcn + 1 - next_svcn);
618 			if (err)
619 				break;
620 			mi_p = NULL;
621 		} else {
622 			mi_p = mi;
623 			attr_p = attr;
624 			svcn_p = next_svcn;
625 			evcn_p = evcn;
626 			le_p = le;
627 			run_truncate_head(&run, next_svcn);
628 		}
629 	}
630 
631 	if (err) {
632 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
633 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
634 
635 		/* Pack loaded but not packed runs. */
636 		if (mi_p)
637 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
638 	}
639 
640 	run_close(&run);
641 	return err;
642 }
643 
644 /*
645  * ni_try_remove_attr_list
646  *
647  * Can we remove attribute list?
648  * Check the case when primary record contains enough space for all attributes.
649  */
650 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
651 {
652 	int err = 0;
653 	struct ntfs_sb_info *sbi = ni->mi.sbi;
654 	struct ATTRIB *attr, *attr_list, *attr_ins;
655 	struct ATTR_LIST_ENTRY *le;
656 	struct mft_inode *mi;
657 	u32 asize, free;
658 	struct MFT_REF ref;
659 	struct MFT_REC *mrec;
660 	__le16 id;
661 
662 	if (!ni->attr_list.dirty)
663 		return 0;
664 
665 	err = ni_repack(ni);
666 	if (err)
667 		return err;
668 
669 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
670 	if (!attr_list)
671 		return 0;
672 
673 	asize = le32_to_cpu(attr_list->size);
674 
675 	/* Free space in primary record without attribute list. */
676 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
677 	mi_get_ref(&ni->mi, &ref);
678 
679 	le = NULL;
680 	while ((le = al_enumerate(ni, le))) {
681 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
682 			continue;
683 
684 		if (le->vcn)
685 			return 0;
686 
687 		mi = ni_find_mi(ni, ino_get(&le->ref));
688 		if (!mi)
689 			return 0;
690 
691 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
692 				    le->name_len, &le->id);
693 		if (!attr)
694 			return 0;
695 
696 		asize = le32_to_cpu(attr->size);
697 		if (asize > free)
698 			return 0;
699 
700 		free -= asize;
701 	}
702 
703 	/* Make a copy of primary record to restore if error. */
704 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
705 	if (!mrec)
706 		return 0; /* Not critical. */
707 
708 	/* It seems that attribute list can be removed from primary record. */
709 	mi_remove_attr(NULL, &ni->mi, attr_list);
710 
711 	/*
712 	 * Repeat the cycle above and copy all attributes to primary record.
713 	 * Do not remove original attributes from subrecords!
714 	 * It should be success!
715 	 */
716 	le = NULL;
717 	while ((le = al_enumerate(ni, le))) {
718 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
719 			continue;
720 
721 		mi = ni_find_mi(ni, ino_get(&le->ref));
722 		if (!mi) {
723 			/* Should never happened, 'cause already checked. */
724 			goto out;
725 		}
726 
727 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
728 				    le->name_len, &le->id);
729 		if (!attr) {
730 			/* Should never happened, 'cause already checked. */
731 			goto out;
732 		}
733 		asize = le32_to_cpu(attr->size);
734 
735 		/* Insert into primary record. */
736 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
737 					  le->name_len, asize,
738 					  le16_to_cpu(attr->name_off));
739 		if (!attr_ins) {
740 			/*
741 			 * No space in primary record (already checked).
742 			 */
743 			goto out;
744 		}
745 
746 		/* Copy all except id. */
747 		id = attr_ins->id;
748 		memcpy(attr_ins, attr, asize);
749 		attr_ins->id = id;
750 	}
751 
752 	/*
753 	 * Repeat the cycle above and remove all attributes from subrecords.
754 	 */
755 	le = NULL;
756 	while ((le = al_enumerate(ni, le))) {
757 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
758 			continue;
759 
760 		mi = ni_find_mi(ni, ino_get(&le->ref));
761 		if (!mi)
762 			continue;
763 
764 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
765 				    le->name_len, &le->id);
766 		if (!attr)
767 			continue;
768 
769 		/* Remove from original record. */
770 		mi_remove_attr(NULL, mi, attr);
771 	}
772 
773 	run_deallocate(sbi, &ni->attr_list.run, true);
774 	run_close(&ni->attr_list.run);
775 	ni->attr_list.size = 0;
776 	kfree(ni->attr_list.le);
777 	ni->attr_list.le = NULL;
778 	ni->attr_list.dirty = false;
779 
780 	kfree(mrec);
781 	return 0;
782 out:
783 	/* Restore primary record. */
784 	swap(mrec, ni->mi.mrec);
785 	kfree(mrec);
786 	return 0;
787 }
788 
789 /*
790  * ni_create_attr_list - Generates an attribute list for this primary record.
791  */
792 int ni_create_attr_list(struct ntfs_inode *ni)
793 {
794 	struct ntfs_sb_info *sbi = ni->mi.sbi;
795 	int err;
796 	u32 lsize;
797 	struct ATTRIB *attr;
798 	struct ATTRIB *arr_move[7];
799 	struct ATTR_LIST_ENTRY *le, *le_b[7];
800 	struct MFT_REC *rec;
801 	bool is_mft;
802 	CLST rno = 0;
803 	struct mft_inode *mi;
804 	u32 free_b, nb, to_free, rs;
805 	u16 sz;
806 
807 	is_mft = ni->mi.rno == MFT_REC_MFT;
808 	rec = ni->mi.mrec;
809 	rs = sbi->record_size;
810 
811 	/*
812 	 * Skip estimating exact memory requirement.
813 	 * Looks like one record_size is always enough.
814 	 */
815 	le = kmalloc(al_aligned(rs), GFP_NOFS);
816 	if (!le) {
817 		err = -ENOMEM;
818 		goto out;
819 	}
820 
821 	mi_get_ref(&ni->mi, &le->ref);
822 	ni->attr_list.le = le;
823 
824 	attr = NULL;
825 	nb = 0;
826 	free_b = 0;
827 	attr = NULL;
828 
829 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
830 		sz = le_size(attr->name_len);
831 		le->type = attr->type;
832 		le->size = cpu_to_le16(sz);
833 		le->name_len = attr->name_len;
834 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
835 		le->vcn = 0;
836 		if (le != ni->attr_list.le)
837 			le->ref = ni->attr_list.le->ref;
838 		le->id = attr->id;
839 
840 		if (attr->name_len)
841 			memcpy(le->name, attr_name(attr),
842 			       sizeof(short) * attr->name_len);
843 		else if (attr->type == ATTR_STD)
844 			continue;
845 		else if (attr->type == ATTR_LIST)
846 			continue;
847 		else if (is_mft && attr->type == ATTR_DATA)
848 			continue;
849 
850 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
851 			le_b[nb] = le;
852 			arr_move[nb++] = attr;
853 			free_b += le32_to_cpu(attr->size);
854 		}
855 	}
856 
857 	lsize = PtrOffset(ni->attr_list.le, le);
858 	ni->attr_list.size = lsize;
859 
860 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
861 	if (to_free <= rs) {
862 		to_free = 0;
863 	} else {
864 		to_free -= rs;
865 
866 		if (to_free > free_b) {
867 			err = -EINVAL;
868 			goto out1;
869 		}
870 	}
871 
872 	/* Allocate child MFT. */
873 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
874 	if (err)
875 		goto out1;
876 
877 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
878 	while (to_free > 0) {
879 		struct ATTRIB *b = arr_move[--nb];
880 		u32 asize = le32_to_cpu(b->size);
881 		u16 name_off = le16_to_cpu(b->name_off);
882 
883 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
884 				      b->name_len, asize, name_off);
885 		WARN_ON(!attr);
886 
887 		mi_get_ref(mi, &le_b[nb]->ref);
888 		le_b[nb]->id = attr->id;
889 
890 		/* Copy all except id. */
891 		memcpy(attr, b, asize);
892 		attr->id = le_b[nb]->id;
893 
894 		/* Remove from primary record. */
895 		WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
896 
897 		if (to_free <= asize)
898 			break;
899 		to_free -= asize;
900 		WARN_ON(!nb);
901 	}
902 
903 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
904 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
905 	WARN_ON(!attr);
906 
907 	attr->non_res = 0;
908 	attr->flags = 0;
909 	attr->res.data_size = cpu_to_le32(lsize);
910 	attr->res.data_off = SIZEOF_RESIDENT_LE;
911 	attr->res.flags = 0;
912 	attr->res.res = 0;
913 
914 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
915 
916 	ni->attr_list.dirty = false;
917 
918 	mark_inode_dirty(&ni->vfs_inode);
919 	goto out;
920 
921 out1:
922 	kfree(ni->attr_list.le);
923 	ni->attr_list.le = NULL;
924 	ni->attr_list.size = 0;
925 
926 out:
927 	return err;
928 }
929 
930 /*
931  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
932  */
933 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
934 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
935 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
936 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
937 			   struct ATTR_LIST_ENTRY **ins_le)
938 {
939 	struct ATTRIB *attr;
940 	struct mft_inode *mi;
941 	CLST rno;
942 	u64 vbo;
943 	struct rb_node *node;
944 	int err;
945 	bool is_mft, is_mft_data;
946 	struct ntfs_sb_info *sbi = ni->mi.sbi;
947 
948 	is_mft = ni->mi.rno == MFT_REC_MFT;
949 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
950 
951 	if (asize > sbi->max_bytes_per_attr) {
952 		err = -EINVAL;
953 		goto out;
954 	}
955 
956 	/*
957 	 * Standard information and attr_list cannot be made external.
958 	 * The Log File cannot have any external attributes.
959 	 */
960 	if (type == ATTR_STD || type == ATTR_LIST ||
961 	    ni->mi.rno == MFT_REC_LOG) {
962 		err = -EINVAL;
963 		goto out;
964 	}
965 
966 	/* Create attribute list if it is not already existed. */
967 	if (!ni->attr_list.size) {
968 		err = ni_create_attr_list(ni);
969 		if (err)
970 			goto out;
971 	}
972 
973 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
974 
975 	if (force_ext)
976 		goto insert_ext;
977 
978 	/* Load all subrecords into memory. */
979 	err = ni_load_all_mi(ni);
980 	if (err)
981 		goto out;
982 
983 	/* Check each of loaded subrecord. */
984 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
985 		mi = rb_entry(node, struct mft_inode, node);
986 
987 		if (is_mft_data &&
988 		    (mi_enum_attr(mi, NULL) ||
989 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
990 			/* We can't accept this record 'cause MFT's bootstrapping. */
991 			continue;
992 		}
993 		if (is_mft &&
994 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
995 			/*
996 			 * This child record already has a ATTR_DATA.
997 			 * So it can't accept any other records.
998 			 */
999 			continue;
1000 		}
1001 
1002 		if ((type != ATTR_NAME || name_len) &&
1003 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1004 			/* Only indexed attributes can share same record. */
1005 			continue;
1006 		}
1007 
1008 		/*
1009 		 * Do not try to insert this attribute
1010 		 * if there is no room in record.
1011 		 */
1012 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1013 			continue;
1014 
1015 		/* Try to insert attribute into this subrecord. */
1016 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1017 				       name_off, svcn, ins_le);
1018 		if (!attr)
1019 			continue;
1020 		if (IS_ERR(attr))
1021 			return PTR_ERR(attr);
1022 
1023 		if (ins_attr)
1024 			*ins_attr = attr;
1025 		if (ins_mi)
1026 			*ins_mi = mi;
1027 		return 0;
1028 	}
1029 
1030 insert_ext:
1031 	/* We have to allocate a new child subrecord. */
1032 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1033 	if (err)
1034 		goto out;
1035 
1036 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1037 		err = -EINVAL;
1038 		goto out1;
1039 	}
1040 
1041 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1042 			       name_off, svcn, ins_le);
1043 	if (!attr) {
1044 		err = -EINVAL;
1045 		goto out2;
1046 	}
1047 
1048 	if (IS_ERR(attr)) {
1049 		err = PTR_ERR(attr);
1050 		goto out2;
1051 	}
1052 
1053 	if (ins_attr)
1054 		*ins_attr = attr;
1055 	if (ins_mi)
1056 		*ins_mi = mi;
1057 
1058 	return 0;
1059 
1060 out2:
1061 	ni_remove_mi(ni, mi);
1062 	mi_put(mi);
1063 
1064 out1:
1065 	ntfs_mark_rec_free(sbi, rno, is_mft);
1066 
1067 out:
1068 	return err;
1069 }
1070 
1071 /*
1072  * ni_insert_attr - Insert an attribute into the file.
1073  *
1074  * If the primary record has room, it will just insert the attribute.
1075  * If not, it may make the attribute external.
1076  * For $MFT::Data it may make room for the attribute by
1077  * making other attributes external.
1078  *
1079  * NOTE:
1080  * The ATTR_LIST and ATTR_STD cannot be made external.
1081  * This function does not fill new attribute full.
1082  * It only fills 'size'/'type'/'id'/'name_len' fields.
1083  */
1084 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1085 			  const __le16 *name, u8 name_len, u32 asize,
1086 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1087 			  struct mft_inode **ins_mi,
1088 			  struct ATTR_LIST_ENTRY **ins_le)
1089 {
1090 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1091 	int err;
1092 	struct ATTRIB *attr, *eattr;
1093 	struct MFT_REC *rec;
1094 	bool is_mft;
1095 	struct ATTR_LIST_ENTRY *le;
1096 	u32 list_reserve, max_free, free, used, t32;
1097 	__le16 id;
1098 	u16 t16;
1099 
1100 	is_mft = ni->mi.rno == MFT_REC_MFT;
1101 	rec = ni->mi.mrec;
1102 
1103 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1104 	used = le32_to_cpu(rec->used);
1105 	free = sbi->record_size - used;
1106 
1107 	if (is_mft && type != ATTR_LIST) {
1108 		/* Reserve space for the ATTRIB list. */
1109 		if (free < list_reserve)
1110 			free = 0;
1111 		else
1112 			free -= list_reserve;
1113 	}
1114 
1115 	if (asize <= free) {
1116 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1117 				       asize, name_off, svcn, ins_le);
1118 		if (IS_ERR(attr)) {
1119 			err = PTR_ERR(attr);
1120 			goto out;
1121 		}
1122 
1123 		if (attr) {
1124 			if (ins_attr)
1125 				*ins_attr = attr;
1126 			if (ins_mi)
1127 				*ins_mi = &ni->mi;
1128 			err = 0;
1129 			goto out;
1130 		}
1131 	}
1132 
1133 	if (!is_mft || type != ATTR_DATA || svcn) {
1134 		/* This ATTRIB will be external. */
1135 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1136 				      svcn, name_off, false, ins_attr, ins_mi,
1137 				      ins_le);
1138 		goto out;
1139 	}
1140 
1141 	/*
1142 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1143 	 *
1144 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1145 	 * Evict as many other attributes as possible.
1146 	 */
1147 	max_free = free;
1148 
1149 	/* Estimate the result of moving all possible attributes away. */
1150 	attr = NULL;
1151 
1152 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1153 		if (attr->type == ATTR_STD)
1154 			continue;
1155 		if (attr->type == ATTR_LIST)
1156 			continue;
1157 		max_free += le32_to_cpu(attr->size);
1158 	}
1159 
1160 	if (max_free < asize + list_reserve) {
1161 		/* Impossible to insert this attribute into primary record. */
1162 		err = -EINVAL;
1163 		goto out;
1164 	}
1165 
1166 	/* Start real attribute moving. */
1167 	attr = NULL;
1168 
1169 	for (;;) {
1170 		attr = mi_enum_attr(&ni->mi, attr);
1171 		if (!attr) {
1172 			/* We should never be here 'cause we have already check this case. */
1173 			err = -EINVAL;
1174 			goto out;
1175 		}
1176 
1177 		/* Skip attributes that MUST be primary record. */
1178 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1179 			continue;
1180 
1181 		le = NULL;
1182 		if (ni->attr_list.size) {
1183 			le = al_find_le(ni, NULL, attr);
1184 			if (!le) {
1185 				/* Really this is a serious bug. */
1186 				err = -EINVAL;
1187 				goto out;
1188 			}
1189 		}
1190 
1191 		t32 = le32_to_cpu(attr->size);
1192 		t16 = le16_to_cpu(attr->name_off);
1193 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1194 				      attr->name_len, t32, attr_svcn(attr), t16,
1195 				      false, &eattr, NULL, NULL);
1196 		if (err)
1197 			return err;
1198 
1199 		id = eattr->id;
1200 		memcpy(eattr, attr, t32);
1201 		eattr->id = id;
1202 
1203 		/* Remove from primary record. */
1204 		mi_remove_attr(NULL, &ni->mi, attr);
1205 
1206 		/* attr now points to next attribute. */
1207 		if (attr->type == ATTR_END)
1208 			goto out;
1209 	}
1210 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1211 		;
1212 
1213 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1214 			       name_off, svcn, ins_le);
1215 	if (!attr) {
1216 		err = -EINVAL;
1217 		goto out;
1218 	}
1219 
1220 	if (IS_ERR(attr)) {
1221 		err = PTR_ERR(attr);
1222 		goto out;
1223 	}
1224 
1225 	if (ins_attr)
1226 		*ins_attr = attr;
1227 	if (ins_mi)
1228 		*ins_mi = &ni->mi;
1229 
1230 out:
1231 	return err;
1232 }
1233 
1234 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1235 static int ni_expand_mft_list(struct ntfs_inode *ni)
1236 {
1237 	int err = 0;
1238 	struct runs_tree *run = &ni->file.run;
1239 	u32 asize, run_size, done = 0;
1240 	struct ATTRIB *attr;
1241 	struct rb_node *node;
1242 	CLST mft_min, mft_new, svcn, evcn, plen;
1243 	struct mft_inode *mi, *mi_min, *mi_new;
1244 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1245 
1246 	/* Find the nearest MFT. */
1247 	mft_min = 0;
1248 	mft_new = 0;
1249 	mi_min = NULL;
1250 
1251 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1252 		mi = rb_entry(node, struct mft_inode, node);
1253 
1254 		attr = mi_enum_attr(mi, NULL);
1255 
1256 		if (!attr) {
1257 			mft_min = mi->rno;
1258 			mi_min = mi;
1259 			break;
1260 		}
1261 	}
1262 
1263 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1264 		mft_new = 0;
1265 		/* Really this is not critical. */
1266 	} else if (mft_min > mft_new) {
1267 		mft_min = mft_new;
1268 		mi_min = mi_new;
1269 	} else {
1270 		ntfs_mark_rec_free(sbi, mft_new, true);
1271 		mft_new = 0;
1272 		ni_remove_mi(ni, mi_new);
1273 	}
1274 
1275 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1276 	if (!attr) {
1277 		err = -EINVAL;
1278 		goto out;
1279 	}
1280 
1281 	asize = le32_to_cpu(attr->size);
1282 
1283 	evcn = le64_to_cpu(attr->nres.evcn);
1284 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1285 	if (evcn + 1 >= svcn) {
1286 		err = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	/*
1291 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1292 	 *
1293 	 * Update first part of ATTR_DATA in 'primary MFT.
1294 	 */
1295 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1296 		       asize - SIZEOF_NONRESIDENT, &plen);
1297 	if (err < 0)
1298 		goto out;
1299 
1300 	run_size = ALIGN(err, 8);
1301 	err = 0;
1302 
1303 	if (plen < svcn) {
1304 		err = -EINVAL;
1305 		goto out;
1306 	}
1307 
1308 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1309 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1310 	/* 'done' - How many bytes of primary MFT becomes free. */
1311 	done = asize - run_size - SIZEOF_NONRESIDENT;
1312 	le32_sub_cpu(&ni->mi.mrec->used, done);
1313 
1314 	/* Estimate packed size (run_buf=NULL). */
1315 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1316 		       &plen);
1317 	if (err < 0)
1318 		goto out;
1319 
1320 	run_size = ALIGN(err, 8);
1321 	err = 0;
1322 
1323 	if (plen < evcn + 1 - svcn) {
1324 		err = -EINVAL;
1325 		goto out;
1326 	}
1327 
1328 	/*
1329 	 * This function may implicitly call expand attr_list.
1330 	 * Insert second part of ATTR_DATA in 'mi_min'.
1331 	 */
1332 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1333 			       SIZEOF_NONRESIDENT + run_size,
1334 			       SIZEOF_NONRESIDENT, svcn, NULL);
1335 	if (!attr) {
1336 		err = -EINVAL;
1337 		goto out;
1338 	}
1339 
1340 	if (IS_ERR(attr)) {
1341 		err = PTR_ERR(attr);
1342 		goto out;
1343 	}
1344 
1345 	attr->non_res = 1;
1346 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1347 	attr->flags = 0;
1348 
1349 	/* This function can't fail - cause already checked above. */
1350 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1351 		 run_size, &plen);
1352 
1353 	attr->nres.svcn = cpu_to_le64(svcn);
1354 	attr->nres.evcn = cpu_to_le64(evcn);
1355 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1356 
1357 out:
1358 	if (mft_new) {
1359 		ntfs_mark_rec_free(sbi, mft_new, true);
1360 		ni_remove_mi(ni, mi_new);
1361 	}
1362 
1363 	return !err && !done ? -EOPNOTSUPP : err;
1364 }
1365 
1366 /*
1367  * ni_expand_list - Move all possible attributes out of primary record.
1368  */
1369 int ni_expand_list(struct ntfs_inode *ni)
1370 {
1371 	int err = 0;
1372 	u32 asize, done = 0;
1373 	struct ATTRIB *attr, *ins_attr;
1374 	struct ATTR_LIST_ENTRY *le;
1375 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1376 	struct MFT_REF ref;
1377 
1378 	mi_get_ref(&ni->mi, &ref);
1379 	le = NULL;
1380 
1381 	while ((le = al_enumerate(ni, le))) {
1382 		if (le->type == ATTR_STD)
1383 			continue;
1384 
1385 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1386 			continue;
1387 
1388 		if (is_mft && le->type == ATTR_DATA)
1389 			continue;
1390 
1391 		/* Find attribute in primary record. */
1392 		attr = rec_find_attr_le(&ni->mi, le);
1393 		if (!attr) {
1394 			err = -EINVAL;
1395 			goto out;
1396 		}
1397 
1398 		asize = le32_to_cpu(attr->size);
1399 
1400 		/* Always insert into new record to avoid collisions (deep recursive). */
1401 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1402 				      attr->name_len, asize, attr_svcn(attr),
1403 				      le16_to_cpu(attr->name_off), true,
1404 				      &ins_attr, NULL, NULL);
1405 
1406 		if (err)
1407 			goto out;
1408 
1409 		memcpy(ins_attr, attr, asize);
1410 		ins_attr->id = le->id;
1411 		/* Remove from primary record. */
1412 		mi_remove_attr(NULL, &ni->mi, attr);
1413 
1414 		done += asize;
1415 		goto out;
1416 	}
1417 
1418 	if (!is_mft) {
1419 		err = -EFBIG; /* Attr list is too big(?) */
1420 		goto out;
1421 	}
1422 
1423 	/* Split MFT data as much as possible. */
1424 	err = ni_expand_mft_list(ni);
1425 
1426 out:
1427 	return !err && !done ? -EOPNOTSUPP : err;
1428 }
1429 
1430 /*
1431  * ni_insert_nonresident - Insert new nonresident attribute.
1432  */
1433 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1434 			  const __le16 *name, u8 name_len,
1435 			  const struct runs_tree *run, CLST svcn, CLST len,
1436 			  __le16 flags, struct ATTRIB **new_attr,
1437 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1438 {
1439 	int err;
1440 	CLST plen;
1441 	struct ATTRIB *attr;
1442 	bool is_ext =
1443 		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1444 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1445 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1446 	u32 run_off = name_off + name_size;
1447 	u32 run_size, asize;
1448 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1449 
1450 	/* Estimate packed size (run_buf=NULL). */
1451 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1452 		       &plen);
1453 	if (err < 0)
1454 		goto out;
1455 
1456 	run_size = ALIGN(err, 8);
1457 
1458 	if (plen < len) {
1459 		err = -EINVAL;
1460 		goto out;
1461 	}
1462 
1463 	asize = run_off + run_size;
1464 
1465 	if (asize > sbi->max_bytes_per_attr) {
1466 		err = -EINVAL;
1467 		goto out;
1468 	}
1469 
1470 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1471 			     &attr, mi, le);
1472 
1473 	if (err)
1474 		goto out;
1475 
1476 	attr->non_res = 1;
1477 	attr->name_off = cpu_to_le16(name_off);
1478 	attr->flags = flags;
1479 
1480 	/* This function can't fail - cause already checked above. */
1481 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1482 
1483 	attr->nres.svcn = cpu_to_le64(svcn);
1484 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1485 
1486 	if (new_attr)
1487 		*new_attr = attr;
1488 
1489 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1490 
1491 	attr->nres.alloc_size =
1492 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1493 	attr->nres.data_size = attr->nres.alloc_size;
1494 	attr->nres.valid_size = attr->nres.alloc_size;
1495 
1496 	if (is_ext) {
1497 		if (flags & ATTR_FLAG_COMPRESSED)
1498 			attr->nres.c_unit = COMPRESSION_UNIT;
1499 		attr->nres.total_size = attr->nres.alloc_size;
1500 	}
1501 
1502 out:
1503 	return err;
1504 }
1505 
1506 /*
1507  * ni_insert_resident - Inserts new resident attribute.
1508  */
1509 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1510 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1511 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1512 		       struct ATTR_LIST_ENTRY **le)
1513 {
1514 	int err;
1515 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1516 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1517 	struct ATTRIB *attr;
1518 
1519 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1520 			     0, &attr, mi, le);
1521 	if (err)
1522 		return err;
1523 
1524 	attr->non_res = 0;
1525 	attr->flags = 0;
1526 
1527 	attr->res.data_size = cpu_to_le32(data_size);
1528 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1529 	if (type == ATTR_NAME) {
1530 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1531 
1532 		/* is_attr_indexed(attr)) == true */
1533 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1534 		ni->mi.dirty = true;
1535 	}
1536 	attr->res.res = 0;
1537 
1538 	if (new_attr)
1539 		*new_attr = attr;
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * ni_remove_attr_le - Remove attribute from record.
1546  */
1547 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1548 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1549 {
1550 	mi_remove_attr(ni, mi, attr);
1551 
1552 	if (le)
1553 		al_remove_le(ni, le);
1554 }
1555 
1556 /*
1557  * ni_delete_all - Remove all attributes and frees allocates space.
1558  *
1559  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1560  */
1561 int ni_delete_all(struct ntfs_inode *ni)
1562 {
1563 	int err;
1564 	struct ATTR_LIST_ENTRY *le = NULL;
1565 	struct ATTRIB *attr = NULL;
1566 	struct rb_node *node;
1567 	u16 roff;
1568 	u32 asize;
1569 	CLST svcn, evcn;
1570 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1571 	bool nt3 = is_ntfs3(sbi);
1572 	struct MFT_REF ref;
1573 
1574 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1575 		if (!nt3 || attr->name_len) {
1576 			;
1577 		} else if (attr->type == ATTR_REPARSE) {
1578 			mi_get_ref(&ni->mi, &ref);
1579 			ntfs_remove_reparse(sbi, 0, &ref);
1580 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1581 			   le32_to_cpu(attr->res.data_size) >=
1582 				   sizeof(struct GUID)) {
1583 			ntfs_objid_remove(sbi, resident_data(attr));
1584 		}
1585 
1586 		if (!attr->non_res)
1587 			continue;
1588 
1589 		svcn = le64_to_cpu(attr->nres.svcn);
1590 		evcn = le64_to_cpu(attr->nres.evcn);
1591 
1592 		if (evcn + 1 <= svcn)
1593 			continue;
1594 
1595 		asize = le32_to_cpu(attr->size);
1596 		roff = le16_to_cpu(attr->nres.run_off);
1597 
1598 		if (roff > asize)
1599 			return -EINVAL;
1600 
1601 		/* run==1 means unpack and deallocate. */
1602 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1603 			      Add2Ptr(attr, roff), asize - roff);
1604 	}
1605 
1606 	if (ni->attr_list.size) {
1607 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1608 		al_destroy(ni);
1609 	}
1610 
1611 	/* Free all subrecords. */
1612 	for (node = rb_first(&ni->mi_tree); node;) {
1613 		struct rb_node *next = rb_next(node);
1614 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1615 
1616 		clear_rec_inuse(mi->mrec);
1617 		mi->dirty = true;
1618 		mi_write(mi, 0);
1619 
1620 		ntfs_mark_rec_free(sbi, mi->rno, false);
1621 		ni_remove_mi(ni, mi);
1622 		mi_put(mi);
1623 		node = next;
1624 	}
1625 
1626 	/* Free base record. */
1627 	clear_rec_inuse(ni->mi.mrec);
1628 	ni->mi.dirty = true;
1629 	err = mi_write(&ni->mi, 0);
1630 
1631 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1632 
1633 	return err;
1634 }
1635 
1636 /* ni_fname_name
1637  *
1638  * Return: File name attribute by its value.
1639  */
1640 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1641 				     const struct cpu_str *uni,
1642 				     const struct MFT_REF *home_dir,
1643 				     struct mft_inode **mi,
1644 				     struct ATTR_LIST_ENTRY **le)
1645 {
1646 	struct ATTRIB *attr = NULL;
1647 	struct ATTR_FILE_NAME *fname;
1648        struct le_str *fns;
1649 
1650 	if (le)
1651 		*le = NULL;
1652 
1653 	/* Enumerate all names. */
1654 next:
1655 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1656 	if (!attr)
1657 		return NULL;
1658 
1659 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1660 	if (!fname)
1661 		goto next;
1662 
1663 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1664 		goto next;
1665 
1666 	if (!uni)
1667 		return fname;
1668 
1669 	if (uni->len != fname->name_len)
1670 		goto next;
1671 
1672 	fns = (struct le_str *)&fname->name_len;
1673 	if (ntfs_cmp_names_cpu(uni, fns, NULL, false))
1674 		goto next;
1675 
1676 	return fname;
1677 }
1678 
1679 /*
1680  * ni_fname_type
1681  *
1682  * Return: File name attribute with given type.
1683  */
1684 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1685 				     struct mft_inode **mi,
1686 				     struct ATTR_LIST_ENTRY **le)
1687 {
1688 	struct ATTRIB *attr = NULL;
1689 	struct ATTR_FILE_NAME *fname;
1690 
1691 	*le = NULL;
1692 
1693 	if (name_type == FILE_NAME_POSIX)
1694 		return NULL;
1695 
1696 	/* Enumerate all names. */
1697 	for (;;) {
1698 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1699 		if (!attr)
1700 			return NULL;
1701 
1702 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1703 		if (fname && name_type == fname->type)
1704 			return fname;
1705 	}
1706 }
1707 
1708 /*
1709  * ni_new_attr_flags
1710  *
1711  * Process compressed/sparsed in special way.
1712  * NOTE: You need to set ni->std_fa = new_fa
1713  * after this function to keep internal structures in consistency.
1714  */
1715 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1716 {
1717 	struct ATTRIB *attr;
1718 	struct mft_inode *mi;
1719 	__le16 new_aflags;
1720 	u32 new_asize;
1721 
1722 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1723 	if (!attr)
1724 		return -EINVAL;
1725 
1726 	new_aflags = attr->flags;
1727 
1728 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1729 		new_aflags |= ATTR_FLAG_SPARSED;
1730 	else
1731 		new_aflags &= ~ATTR_FLAG_SPARSED;
1732 
1733 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1734 		new_aflags |= ATTR_FLAG_COMPRESSED;
1735 	else
1736 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1737 
1738 	if (new_aflags == attr->flags)
1739 		return 0;
1740 
1741 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1742 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1743 		ntfs_inode_warn(&ni->vfs_inode,
1744 				"file can't be sparsed and compressed");
1745 		return -EOPNOTSUPP;
1746 	}
1747 
1748 	if (!attr->non_res)
1749 		goto out;
1750 
1751 	if (attr->nres.data_size) {
1752 		ntfs_inode_warn(
1753 			&ni->vfs_inode,
1754 			"one can change sparsed/compressed only for empty files");
1755 		return -EOPNOTSUPP;
1756 	}
1757 
1758 	/* Resize nonresident empty attribute in-place only. */
1759 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1760 			    ? (SIZEOF_NONRESIDENT_EX + 8)
1761 			    : (SIZEOF_NONRESIDENT + 8);
1762 
1763 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1764 		return -EOPNOTSUPP;
1765 
1766 	if (new_aflags & ATTR_FLAG_SPARSED) {
1767 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1768 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1769 		attr->nres.c_unit = 0;
1770 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1771 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1772 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1773 		/* The only allowed: 16 clusters per frame. */
1774 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1775 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1776 	} else {
1777 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1778 		/* Normal files. */
1779 		attr->nres.c_unit = 0;
1780 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1781 	}
1782 	attr->nres.run_off = attr->name_off;
1783 out:
1784 	attr->flags = new_aflags;
1785 	mi->dirty = true;
1786 
1787 	return 0;
1788 }
1789 
1790 /*
1791  * ni_parse_reparse
1792  *
1793  * buffer - memory for reparse buffer header
1794  */
1795 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1796 				   struct REPARSE_DATA_BUFFER *buffer)
1797 {
1798 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1799 	u8 bits;
1800 	u16 len;
1801 	typeof(rp->CompressReparseBuffer) *cmpr;
1802 
1803 	/* Try to estimate reparse point. */
1804 	if (!attr->non_res) {
1805 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1806 	} else if (le64_to_cpu(attr->nres.data_size) >=
1807 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1808 		struct runs_tree run;
1809 
1810 		run_init(&run);
1811 
1812 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1813 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1814 				      sizeof(struct REPARSE_DATA_BUFFER),
1815 				      NULL)) {
1816 			rp = buffer;
1817 		}
1818 
1819 		run_close(&run);
1820 	}
1821 
1822 	if (!rp)
1823 		return REPARSE_NONE;
1824 
1825 	len = le16_to_cpu(rp->ReparseDataLength);
1826 	switch (rp->ReparseTag) {
1827 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1828 		break; /* Symbolic link. */
1829 	case IO_REPARSE_TAG_MOUNT_POINT:
1830 		break; /* Mount points and junctions. */
1831 	case IO_REPARSE_TAG_SYMLINK:
1832 		break;
1833 	case IO_REPARSE_TAG_COMPRESS:
1834 		/*
1835 		 * WOF - Windows Overlay Filter - Used to compress files with
1836 		 * LZX/Xpress.
1837 		 *
1838 		 * Unlike native NTFS file compression, the Windows
1839 		 * Overlay Filter supports only read operations. This means
1840 		 * that it doesn't need to sector-align each compressed chunk,
1841 		 * so the compressed data can be packed more tightly together.
1842 		 * If you open the file for writing, the WOF just decompresses
1843 		 * the entire file, turning it back into a plain file.
1844 		 *
1845 		 * Ntfs3 driver decompresses the entire file only on write or
1846 		 * change size requests.
1847 		 */
1848 
1849 		cmpr = &rp->CompressReparseBuffer;
1850 		if (len < sizeof(*cmpr) ||
1851 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1852 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1853 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1854 			return REPARSE_NONE;
1855 		}
1856 
1857 		switch (cmpr->CompressionFormat) {
1858 		case WOF_COMPRESSION_XPRESS4K:
1859 			bits = 0xc; // 4k
1860 			break;
1861 		case WOF_COMPRESSION_XPRESS8K:
1862 			bits = 0xd; // 8k
1863 			break;
1864 		case WOF_COMPRESSION_XPRESS16K:
1865 			bits = 0xe; // 16k
1866 			break;
1867 		case WOF_COMPRESSION_LZX32K:
1868 			bits = 0xf; // 32k
1869 			break;
1870 		default:
1871 			bits = 0x10; // 64k
1872 			break;
1873 		}
1874 		ni_set_ext_compress_bits(ni, bits);
1875 		return REPARSE_COMPRESSED;
1876 
1877 	case IO_REPARSE_TAG_DEDUP:
1878 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1879 		return REPARSE_DEDUPLICATED;
1880 
1881 	default:
1882 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1883 			break;
1884 
1885 		return REPARSE_NONE;
1886 	}
1887 
1888 	if (buffer != rp)
1889 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1890 
1891 	/* Looks like normal symlink. */
1892 	return REPARSE_LINK;
1893 }
1894 
1895 /*
1896  * ni_fiemap - Helper for file_fiemap().
1897  *
1898  * Assumed ni_lock.
1899  * TODO: Less aggressive locks.
1900  */
1901 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1902 	      __u64 vbo, __u64 len)
1903 {
1904 	int err = 0;
1905 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1906 	u8 cluster_bits = sbi->cluster_bits;
1907 	struct runs_tree *run;
1908 	struct rw_semaphore *run_lock;
1909 	struct ATTRIB *attr;
1910 	CLST vcn = vbo >> cluster_bits;
1911 	CLST lcn, clen;
1912 	u64 valid = ni->i_valid;
1913 	u64 lbo, bytes;
1914 	u64 end, alloc_size;
1915 	size_t idx = -1;
1916 	u32 flags;
1917 	bool ok;
1918 
1919 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1920 		run = &ni->dir.alloc_run;
1921 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1922 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1923 		run_lock = &ni->dir.run_lock;
1924 	} else {
1925 		run = &ni->file.run;
1926 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1927 				    NULL);
1928 		if (!attr) {
1929 			err = -EINVAL;
1930 			goto out;
1931 		}
1932 		if (is_attr_compressed(attr)) {
1933 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1934 			err = -EOPNOTSUPP;
1935 			ntfs_inode_warn(
1936 				&ni->vfs_inode,
1937 				"fiemap is not supported for compressed file (cp -r)");
1938 			goto out;
1939 		}
1940 		run_lock = &ni->file.run_lock;
1941 	}
1942 
1943 	if (!attr || !attr->non_res) {
1944 		err = fiemap_fill_next_extent(
1945 			fieinfo, 0, 0,
1946 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1947 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1948 				FIEMAP_EXTENT_MERGED);
1949 		goto out;
1950 	}
1951 
1952 	end = vbo + len;
1953 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1954 	if (end > alloc_size)
1955 		end = alloc_size;
1956 
1957 	down_read(run_lock);
1958 
1959 	while (vbo < end) {
1960 		if (idx == -1) {
1961 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1962 		} else {
1963 			CLST vcn_next = vcn;
1964 
1965 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1966 			     vcn == vcn_next;
1967 			if (!ok)
1968 				vcn = vcn_next;
1969 		}
1970 
1971 		if (!ok) {
1972 			up_read(run_lock);
1973 			down_write(run_lock);
1974 
1975 			err = attr_load_runs_vcn(ni, attr->type,
1976 						 attr_name(attr),
1977 						 attr->name_len, run, vcn);
1978 
1979 			up_write(run_lock);
1980 			down_read(run_lock);
1981 
1982 			if (err)
1983 				break;
1984 
1985 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1986 
1987 			if (!ok) {
1988 				err = -EINVAL;
1989 				break;
1990 			}
1991 		}
1992 
1993 		if (!clen) {
1994 			err = -EINVAL; // ?
1995 			break;
1996 		}
1997 
1998 		if (lcn == SPARSE_LCN) {
1999 			vcn += clen;
2000 			vbo = (u64)vcn << cluster_bits;
2001 			continue;
2002 		}
2003 
2004 		flags = FIEMAP_EXTENT_MERGED;
2005 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2006 			;
2007 		} else if (is_attr_compressed(attr)) {
2008 			CLST clst_data;
2009 
2010 			err = attr_is_frame_compressed(
2011 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2012 			if (err)
2013 				break;
2014 			if (clst_data < NTFS_LZNT_CLUSTERS)
2015 				flags |= FIEMAP_EXTENT_ENCODED;
2016 		} else if (is_attr_encrypted(attr)) {
2017 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2018 		}
2019 
2020 		vbo = (u64)vcn << cluster_bits;
2021 		bytes = (u64)clen << cluster_bits;
2022 		lbo = (u64)lcn << cluster_bits;
2023 
2024 		vcn += clen;
2025 
2026 		if (vbo + bytes >= end)
2027 			bytes = end - vbo;
2028 
2029 		if (vbo + bytes <= valid) {
2030 			;
2031 		} else if (vbo >= valid) {
2032 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2033 		} else {
2034 			/* vbo < valid && valid < vbo + bytes */
2035 			u64 dlen = valid - vbo;
2036 
2037 			if (vbo + dlen >= end)
2038 				flags |= FIEMAP_EXTENT_LAST;
2039 
2040 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2041 						      flags);
2042 			if (err < 0)
2043 				break;
2044 			if (err == 1) {
2045 				err = 0;
2046 				break;
2047 			}
2048 
2049 			vbo = valid;
2050 			bytes -= dlen;
2051 			if (!bytes)
2052 				continue;
2053 
2054 			lbo += dlen;
2055 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2056 		}
2057 
2058 		if (vbo + bytes >= end)
2059 			flags |= FIEMAP_EXTENT_LAST;
2060 
2061 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2062 		if (err < 0)
2063 			break;
2064 		if (err == 1) {
2065 			err = 0;
2066 			break;
2067 		}
2068 
2069 		vbo += bytes;
2070 	}
2071 
2072 	up_read(run_lock);
2073 
2074 out:
2075 	return err;
2076 }
2077 
2078 /*
2079  * ni_readpage_cmpr
2080  *
2081  * When decompressing, we typically obtain more than one page per reference.
2082  * We inject the additional pages into the page cache.
2083  */
2084 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2085 {
2086 	int err;
2087 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2088 	struct address_space *mapping = page->mapping;
2089 	pgoff_t index = page->index;
2090 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2091 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2092 	u8 frame_bits;
2093 	CLST frame;
2094 	u32 i, idx, frame_size, pages_per_frame;
2095 	gfp_t gfp_mask;
2096 	struct page *pg;
2097 
2098 	if (vbo >= ni->vfs_inode.i_size) {
2099 		SetPageUptodate(page);
2100 		err = 0;
2101 		goto out;
2102 	}
2103 
2104 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2105 		/* Xpress or LZX. */
2106 		frame_bits = ni_ext_compress_bits(ni);
2107 	} else {
2108 		/* LZNT compression. */
2109 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2110 	}
2111 	frame_size = 1u << frame_bits;
2112 	frame = vbo >> frame_bits;
2113 	frame_vbo = (u64)frame << frame_bits;
2114 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2115 
2116 	pages_per_frame = frame_size >> PAGE_SHIFT;
2117 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2118 	if (!pages) {
2119 		err = -ENOMEM;
2120 		goto out;
2121 	}
2122 
2123 	pages[idx] = page;
2124 	index = frame_vbo >> PAGE_SHIFT;
2125 	gfp_mask = mapping_gfp_mask(mapping);
2126 
2127 	for (i = 0; i < pages_per_frame; i++, index++) {
2128 		if (i == idx)
2129 			continue;
2130 
2131 		pg = find_or_create_page(mapping, index, gfp_mask);
2132 		if (!pg) {
2133 			err = -ENOMEM;
2134 			goto out1;
2135 		}
2136 		pages[i] = pg;
2137 	}
2138 
2139 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2140 
2141 out1:
2142 	if (err)
2143 		SetPageError(page);
2144 
2145 	for (i = 0; i < pages_per_frame; i++) {
2146 		pg = pages[i];
2147 		if (i == idx)
2148 			continue;
2149 		unlock_page(pg);
2150 		put_page(pg);
2151 	}
2152 
2153 out:
2154 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2155 	kfree(pages);
2156 	unlock_page(page);
2157 
2158 	return err;
2159 }
2160 
2161 #ifdef CONFIG_NTFS3_LZX_XPRESS
2162 /*
2163  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2164  *
2165  * Remove ATTR_DATA::WofCompressedData.
2166  * Remove ATTR_REPARSE.
2167  */
2168 int ni_decompress_file(struct ntfs_inode *ni)
2169 {
2170 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2171 	struct inode *inode = &ni->vfs_inode;
2172 	loff_t i_size = inode->i_size;
2173 	struct address_space *mapping = inode->i_mapping;
2174 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2175 	struct page **pages = NULL;
2176 	struct ATTR_LIST_ENTRY *le;
2177 	struct ATTRIB *attr;
2178 	CLST vcn, cend, lcn, clen, end;
2179 	pgoff_t index;
2180 	u64 vbo;
2181 	u8 frame_bits;
2182 	u32 i, frame_size, pages_per_frame, bytes;
2183 	struct mft_inode *mi;
2184 	int err;
2185 
2186 	/* Clusters for decompressed data. */
2187 	cend = bytes_to_cluster(sbi, i_size);
2188 
2189 	if (!i_size)
2190 		goto remove_wof;
2191 
2192 	/* Check in advance. */
2193 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2194 		err = -ENOSPC;
2195 		goto out;
2196 	}
2197 
2198 	frame_bits = ni_ext_compress_bits(ni);
2199 	frame_size = 1u << frame_bits;
2200 	pages_per_frame = frame_size >> PAGE_SHIFT;
2201 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2202 	if (!pages) {
2203 		err = -ENOMEM;
2204 		goto out;
2205 	}
2206 
2207 	/*
2208 	 * Step 1: Decompress data and copy to new allocated clusters.
2209 	 */
2210 	index = 0;
2211 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2212 		u32 nr_pages;
2213 		bool new;
2214 
2215 		if (vbo + frame_size > i_size) {
2216 			bytes = i_size - vbo;
2217 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2218 		} else {
2219 			nr_pages = pages_per_frame;
2220 			bytes = frame_size;
2221 		}
2222 
2223 		end = bytes_to_cluster(sbi, vbo + bytes);
2224 
2225 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2226 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2227 						  &clen, &new, false);
2228 			if (err)
2229 				goto out;
2230 		}
2231 
2232 		for (i = 0; i < pages_per_frame; i++, index++) {
2233 			struct page *pg;
2234 
2235 			pg = find_or_create_page(mapping, index, gfp_mask);
2236 			if (!pg) {
2237 				while (i--) {
2238 					unlock_page(pages[i]);
2239 					put_page(pages[i]);
2240 				}
2241 				err = -ENOMEM;
2242 				goto out;
2243 			}
2244 			pages[i] = pg;
2245 		}
2246 
2247 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2248 
2249 		if (!err) {
2250 			down_read(&ni->file.run_lock);
2251 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2252 					     nr_pages, vbo, bytes,
2253 					     REQ_OP_WRITE);
2254 			up_read(&ni->file.run_lock);
2255 		}
2256 
2257 		for (i = 0; i < pages_per_frame; i++) {
2258 			unlock_page(pages[i]);
2259 			put_page(pages[i]);
2260 		}
2261 
2262 		if (err)
2263 			goto out;
2264 
2265 		cond_resched();
2266 	}
2267 
2268 remove_wof:
2269 	/*
2270 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2271 	 * and ATTR_REPARSE.
2272 	 */
2273 	attr = NULL;
2274 	le = NULL;
2275 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2276 		CLST svcn, evcn;
2277 		u32 asize, roff;
2278 
2279 		if (attr->type == ATTR_REPARSE) {
2280 			struct MFT_REF ref;
2281 
2282 			mi_get_ref(&ni->mi, &ref);
2283 			ntfs_remove_reparse(sbi, 0, &ref);
2284 		}
2285 
2286 		if (!attr->non_res)
2287 			continue;
2288 
2289 		if (attr->type != ATTR_REPARSE &&
2290 		    (attr->type != ATTR_DATA ||
2291 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2292 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2293 			continue;
2294 
2295 		svcn = le64_to_cpu(attr->nres.svcn);
2296 		evcn = le64_to_cpu(attr->nres.evcn);
2297 
2298 		if (evcn + 1 <= svcn)
2299 			continue;
2300 
2301 		asize = le32_to_cpu(attr->size);
2302 		roff = le16_to_cpu(attr->nres.run_off);
2303 
2304 		if (roff > asize) {
2305 			err = -EINVAL;
2306 			goto out;
2307 		}
2308 
2309 		/*run==1  Means unpack and deallocate. */
2310 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2311 			      Add2Ptr(attr, roff), asize - roff);
2312 	}
2313 
2314 	/*
2315 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2316 	 */
2317 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2318 			     false, NULL);
2319 	if (err)
2320 		goto out;
2321 
2322 	/*
2323 	 * Step 4: Remove ATTR_REPARSE.
2324 	 */
2325 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2326 	if (err)
2327 		goto out;
2328 
2329 	/*
2330 	 * Step 5: Remove sparse flag from data attribute.
2331 	 */
2332 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2333 	if (!attr) {
2334 		err = -EINVAL;
2335 		goto out;
2336 	}
2337 
2338 	if (attr->non_res && is_attr_sparsed(attr)) {
2339 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2340 		struct MFT_REC *rec = mi->mrec;
2341 		u32 used = le32_to_cpu(rec->used);
2342 		u32 asize = le32_to_cpu(attr->size);
2343 		u16 roff = le16_to_cpu(attr->nres.run_off);
2344 		char *rbuf = Add2Ptr(attr, roff);
2345 
2346 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2347 		attr->size = cpu_to_le32(asize - 8);
2348 		attr->flags &= ~ATTR_FLAG_SPARSED;
2349 		attr->nres.run_off = cpu_to_le16(roff - 8);
2350 		attr->nres.c_unit = 0;
2351 		rec->used = cpu_to_le32(used - 8);
2352 		mi->dirty = true;
2353 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2354 				FILE_ATTRIBUTE_REPARSE_POINT);
2355 
2356 		mark_inode_dirty(inode);
2357 	}
2358 
2359 	/* Clear cached flag. */
2360 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2361 	if (ni->file.offs_page) {
2362 		put_page(ni->file.offs_page);
2363 		ni->file.offs_page = NULL;
2364 	}
2365 	mapping->a_ops = &ntfs_aops;
2366 
2367 out:
2368 	kfree(pages);
2369 	if (err)
2370 		_ntfs_bad_inode(inode);
2371 
2372 	return err;
2373 }
2374 
2375 /*
2376  * decompress_lzx_xpress - External compression LZX/Xpress.
2377  */
2378 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2379 				 size_t cmpr_size, void *unc, size_t unc_size,
2380 				 u32 frame_size)
2381 {
2382 	int err;
2383 	void *ctx;
2384 
2385 	if (cmpr_size == unc_size) {
2386 		/* Frame not compressed. */
2387 		memcpy(unc, cmpr, unc_size);
2388 		return 0;
2389 	}
2390 
2391 	err = 0;
2392 	if (frame_size == 0x8000) {
2393 		mutex_lock(&sbi->compress.mtx_lzx);
2394 		/* LZX: Frame compressed. */
2395 		ctx = sbi->compress.lzx;
2396 		if (!ctx) {
2397 			/* Lazy initialize LZX decompress context. */
2398 			ctx = lzx_allocate_decompressor();
2399 			if (!ctx) {
2400 				err = -ENOMEM;
2401 				goto out1;
2402 			}
2403 
2404 			sbi->compress.lzx = ctx;
2405 		}
2406 
2407 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2408 			/* Treat all errors as "invalid argument". */
2409 			err = -EINVAL;
2410 		}
2411 out1:
2412 		mutex_unlock(&sbi->compress.mtx_lzx);
2413 	} else {
2414 		/* XPRESS: Frame compressed. */
2415 		mutex_lock(&sbi->compress.mtx_xpress);
2416 		ctx = sbi->compress.xpress;
2417 		if (!ctx) {
2418 			/* Lazy initialize Xpress decompress context. */
2419 			ctx = xpress_allocate_decompressor();
2420 			if (!ctx) {
2421 				err = -ENOMEM;
2422 				goto out2;
2423 			}
2424 
2425 			sbi->compress.xpress = ctx;
2426 		}
2427 
2428 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2429 			/* Treat all errors as "invalid argument". */
2430 			err = -EINVAL;
2431 		}
2432 out2:
2433 		mutex_unlock(&sbi->compress.mtx_xpress);
2434 	}
2435 	return err;
2436 }
2437 #endif
2438 
2439 /*
2440  * ni_read_frame
2441  *
2442  * Pages - Array of locked pages.
2443  */
2444 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2445 		  u32 pages_per_frame)
2446 {
2447 	int err;
2448 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2449 	u8 cluster_bits = sbi->cluster_bits;
2450 	char *frame_ondisk = NULL;
2451 	char *frame_mem = NULL;
2452 	struct page **pages_disk = NULL;
2453 	struct ATTR_LIST_ENTRY *le = NULL;
2454 	struct runs_tree *run = &ni->file.run;
2455 	u64 valid_size = ni->i_valid;
2456 	u64 vbo_disk;
2457 	size_t unc_size;
2458 	u32 frame_size, i, npages_disk, ondisk_size;
2459 	struct page *pg;
2460 	struct ATTRIB *attr;
2461 	CLST frame, clst_data;
2462 
2463 	/*
2464 	 * To simplify decompress algorithm do vmap for source
2465 	 * and target pages.
2466 	 */
2467 	for (i = 0; i < pages_per_frame; i++)
2468 		kmap(pages[i]);
2469 
2470 	frame_size = pages_per_frame << PAGE_SHIFT;
2471 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2472 	if (!frame_mem) {
2473 		err = -ENOMEM;
2474 		goto out;
2475 	}
2476 
2477 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2478 	if (!attr) {
2479 		err = -ENOENT;
2480 		goto out1;
2481 	}
2482 
2483 	if (!attr->non_res) {
2484 		u32 data_size = le32_to_cpu(attr->res.data_size);
2485 
2486 		memset(frame_mem, 0, frame_size);
2487 		if (frame_vbo < data_size) {
2488 			ondisk_size = data_size - frame_vbo;
2489 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2490 			       min(ondisk_size, frame_size));
2491 		}
2492 		err = 0;
2493 		goto out1;
2494 	}
2495 
2496 	if (frame_vbo >= valid_size) {
2497 		memset(frame_mem, 0, frame_size);
2498 		err = 0;
2499 		goto out1;
2500 	}
2501 
2502 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2503 #ifndef CONFIG_NTFS3_LZX_XPRESS
2504 		err = -EOPNOTSUPP;
2505 		goto out1;
2506 #else
2507 		u32 frame_bits = ni_ext_compress_bits(ni);
2508 		u64 frame64 = frame_vbo >> frame_bits;
2509 		u64 frames, vbo_data;
2510 
2511 		if (frame_size != (1u << frame_bits)) {
2512 			err = -EINVAL;
2513 			goto out1;
2514 		}
2515 		switch (frame_size) {
2516 		case 0x1000:
2517 		case 0x2000:
2518 		case 0x4000:
2519 		case 0x8000:
2520 			break;
2521 		default:
2522 			/* Unknown compression. */
2523 			err = -EOPNOTSUPP;
2524 			goto out1;
2525 		}
2526 
2527 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2528 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2529 		if (!attr) {
2530 			ntfs_inode_err(
2531 				&ni->vfs_inode,
2532 				"external compressed file should contains data attribute \"WofCompressedData\"");
2533 			err = -EINVAL;
2534 			goto out1;
2535 		}
2536 
2537 		if (!attr->non_res) {
2538 			run = NULL;
2539 		} else {
2540 			run = run_alloc();
2541 			if (!run) {
2542 				err = -ENOMEM;
2543 				goto out1;
2544 			}
2545 		}
2546 
2547 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2548 
2549 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2550 					  frame_bits, &ondisk_size, &vbo_data);
2551 		if (err)
2552 			goto out2;
2553 
2554 		if (frame64 == frames) {
2555 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2556 					(frame_size - 1));
2557 			ondisk_size = attr_size(attr) - vbo_data;
2558 		} else {
2559 			unc_size = frame_size;
2560 		}
2561 
2562 		if (ondisk_size > frame_size) {
2563 			err = -EINVAL;
2564 			goto out2;
2565 		}
2566 
2567 		if (!attr->non_res) {
2568 			if (vbo_data + ondisk_size >
2569 			    le32_to_cpu(attr->res.data_size)) {
2570 				err = -EINVAL;
2571 				goto out1;
2572 			}
2573 
2574 			err = decompress_lzx_xpress(
2575 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2576 				ondisk_size, frame_mem, unc_size, frame_size);
2577 			goto out1;
2578 		}
2579 		vbo_disk = vbo_data;
2580 		/* Load all runs to read [vbo_disk-vbo_to). */
2581 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2582 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2583 					   vbo_data + ondisk_size);
2584 		if (err)
2585 			goto out2;
2586 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2587 			       PAGE_SIZE - 1) >>
2588 			      PAGE_SHIFT;
2589 #endif
2590 	} else if (is_attr_compressed(attr)) {
2591 		/* LZNT compression. */
2592 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2593 			err = -EOPNOTSUPP;
2594 			goto out1;
2595 		}
2596 
2597 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2598 			err = -EOPNOTSUPP;
2599 			goto out1;
2600 		}
2601 
2602 		down_write(&ni->file.run_lock);
2603 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2604 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2605 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2606 		up_write(&ni->file.run_lock);
2607 		if (err)
2608 			goto out1;
2609 
2610 		if (!clst_data) {
2611 			memset(frame_mem, 0, frame_size);
2612 			goto out1;
2613 		}
2614 
2615 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2616 		ondisk_size = clst_data << cluster_bits;
2617 
2618 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2619 			/* Frame is not compressed. */
2620 			down_read(&ni->file.run_lock);
2621 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2622 					     frame_vbo, ondisk_size,
2623 					     REQ_OP_READ);
2624 			up_read(&ni->file.run_lock);
2625 			goto out1;
2626 		}
2627 		vbo_disk = frame_vbo;
2628 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2629 	} else {
2630 		__builtin_unreachable();
2631 		err = -EINVAL;
2632 		goto out1;
2633 	}
2634 
2635 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2636 	if (!pages_disk) {
2637 		err = -ENOMEM;
2638 		goto out2;
2639 	}
2640 
2641 	for (i = 0; i < npages_disk; i++) {
2642 		pg = alloc_page(GFP_KERNEL);
2643 		if (!pg) {
2644 			err = -ENOMEM;
2645 			goto out3;
2646 		}
2647 		pages_disk[i] = pg;
2648 		lock_page(pg);
2649 		kmap(pg);
2650 	}
2651 
2652 	/* Read 'ondisk_size' bytes from disk. */
2653 	down_read(&ni->file.run_lock);
2654 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2655 			     ondisk_size, REQ_OP_READ);
2656 	up_read(&ni->file.run_lock);
2657 	if (err)
2658 		goto out3;
2659 
2660 	/*
2661 	 * To simplify decompress algorithm do vmap for source and target pages.
2662 	 */
2663 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2664 	if (!frame_ondisk) {
2665 		err = -ENOMEM;
2666 		goto out3;
2667 	}
2668 
2669 	/* Decompress: Frame_ondisk -> frame_mem. */
2670 #ifdef CONFIG_NTFS3_LZX_XPRESS
2671 	if (run != &ni->file.run) {
2672 		/* LZX or XPRESS */
2673 		err = decompress_lzx_xpress(
2674 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2675 			ondisk_size, frame_mem, unc_size, frame_size);
2676 	} else
2677 #endif
2678 	{
2679 		/* LZNT - Native NTFS compression. */
2680 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2681 					   frame_size);
2682 		if ((ssize_t)unc_size < 0)
2683 			err = unc_size;
2684 		else if (!unc_size || unc_size > frame_size)
2685 			err = -EINVAL;
2686 	}
2687 	if (!err && valid_size < frame_vbo + frame_size) {
2688 		size_t ok = valid_size - frame_vbo;
2689 
2690 		memset(frame_mem + ok, 0, frame_size - ok);
2691 	}
2692 
2693 	vunmap(frame_ondisk);
2694 
2695 out3:
2696 	for (i = 0; i < npages_disk; i++) {
2697 		pg = pages_disk[i];
2698 		if (pg) {
2699 			kunmap(pg);
2700 			unlock_page(pg);
2701 			put_page(pg);
2702 		}
2703 	}
2704 	kfree(pages_disk);
2705 
2706 out2:
2707 #ifdef CONFIG_NTFS3_LZX_XPRESS
2708 	if (run != &ni->file.run)
2709 		run_free(run);
2710 #endif
2711 out1:
2712 	vunmap(frame_mem);
2713 out:
2714 	for (i = 0; i < pages_per_frame; i++) {
2715 		pg = pages[i];
2716 		kunmap(pg);
2717 		ClearPageError(pg);
2718 		SetPageUptodate(pg);
2719 	}
2720 
2721 	return err;
2722 }
2723 
2724 /*
2725  * ni_write_frame
2726  *
2727  * Pages - Array of locked pages.
2728  */
2729 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2730 		   u32 pages_per_frame)
2731 {
2732 	int err;
2733 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2734 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2735 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2736 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2737 	CLST frame = frame_vbo >> frame_bits;
2738 	char *frame_ondisk = NULL;
2739 	struct page **pages_disk = NULL;
2740 	struct ATTR_LIST_ENTRY *le = NULL;
2741 	char *frame_mem;
2742 	struct ATTRIB *attr;
2743 	struct mft_inode *mi;
2744 	u32 i;
2745 	struct page *pg;
2746 	size_t compr_size, ondisk_size;
2747 	struct lznt *lznt;
2748 
2749 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2750 	if (!attr) {
2751 		err = -ENOENT;
2752 		goto out;
2753 	}
2754 
2755 	if (WARN_ON(!is_attr_compressed(attr))) {
2756 		err = -EINVAL;
2757 		goto out;
2758 	}
2759 
2760 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2761 		err = -EOPNOTSUPP;
2762 		goto out;
2763 	}
2764 
2765 	if (!attr->non_res) {
2766 		down_write(&ni->file.run_lock);
2767 		err = attr_make_nonresident(ni, attr, le, mi,
2768 					    le32_to_cpu(attr->res.data_size),
2769 					    &ni->file.run, &attr, pages[0]);
2770 		up_write(&ni->file.run_lock);
2771 		if (err)
2772 			goto out;
2773 	}
2774 
2775 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2776 		err = -EOPNOTSUPP;
2777 		goto out;
2778 	}
2779 
2780 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2781 	if (!pages_disk) {
2782 		err = -ENOMEM;
2783 		goto out;
2784 	}
2785 
2786 	for (i = 0; i < pages_per_frame; i++) {
2787 		pg = alloc_page(GFP_KERNEL);
2788 		if (!pg) {
2789 			err = -ENOMEM;
2790 			goto out1;
2791 		}
2792 		pages_disk[i] = pg;
2793 		lock_page(pg);
2794 		kmap(pg);
2795 	}
2796 
2797 	/* To simplify compress algorithm do vmap for source and target pages. */
2798 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2799 	if (!frame_ondisk) {
2800 		err = -ENOMEM;
2801 		goto out1;
2802 	}
2803 
2804 	for (i = 0; i < pages_per_frame; i++)
2805 		kmap(pages[i]);
2806 
2807 	/* Map in-memory frame for read-only. */
2808 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2809 	if (!frame_mem) {
2810 		err = -ENOMEM;
2811 		goto out2;
2812 	}
2813 
2814 	mutex_lock(&sbi->compress.mtx_lznt);
2815 	lznt = NULL;
2816 	if (!sbi->compress.lznt) {
2817 		/*
2818 		 * LZNT implements two levels of compression:
2819 		 * 0 - Standard compression
2820 		 * 1 - Best compression, requires a lot of cpu
2821 		 * use mount option?
2822 		 */
2823 		lznt = get_lznt_ctx(0);
2824 		if (!lznt) {
2825 			mutex_unlock(&sbi->compress.mtx_lznt);
2826 			err = -ENOMEM;
2827 			goto out3;
2828 		}
2829 
2830 		sbi->compress.lznt = lznt;
2831 		lznt = NULL;
2832 	}
2833 
2834 	/* Compress: frame_mem -> frame_ondisk */
2835 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2836 				   frame_size, sbi->compress.lznt);
2837 	mutex_unlock(&sbi->compress.mtx_lznt);
2838 	kfree(lznt);
2839 
2840 	if (compr_size + sbi->cluster_size > frame_size) {
2841 		/* Frame is not compressed. */
2842 		compr_size = frame_size;
2843 		ondisk_size = frame_size;
2844 	} else if (compr_size) {
2845 		/* Frame is compressed. */
2846 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2847 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2848 	} else {
2849 		/* Frame is sparsed. */
2850 		ondisk_size = 0;
2851 	}
2852 
2853 	down_write(&ni->file.run_lock);
2854 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2855 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2856 	up_write(&ni->file.run_lock);
2857 	if (err)
2858 		goto out2;
2859 
2860 	if (!ondisk_size)
2861 		goto out2;
2862 
2863 	down_read(&ni->file.run_lock);
2864 	err = ntfs_bio_pages(sbi, &ni->file.run,
2865 			     ondisk_size < frame_size ? pages_disk : pages,
2866 			     pages_per_frame, frame_vbo, ondisk_size,
2867 			     REQ_OP_WRITE);
2868 	up_read(&ni->file.run_lock);
2869 
2870 out3:
2871 	vunmap(frame_mem);
2872 
2873 out2:
2874 	for (i = 0; i < pages_per_frame; i++)
2875 		kunmap(pages[i]);
2876 
2877 	vunmap(frame_ondisk);
2878 out1:
2879 	for (i = 0; i < pages_per_frame; i++) {
2880 		pg = pages_disk[i];
2881 		if (pg) {
2882 			kunmap(pg);
2883 			unlock_page(pg);
2884 			put_page(pg);
2885 		}
2886 	}
2887 	kfree(pages_disk);
2888 out:
2889 	return err;
2890 }
2891 
2892 /*
2893  * ni_remove_name - Removes name 'de' from MFT and from directory.
2894  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2895  */
2896 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2897 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2898 {
2899 	int err;
2900 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2901 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2902 	struct ATTR_FILE_NAME *fname;
2903 	struct ATTR_LIST_ENTRY *le;
2904 	struct mft_inode *mi;
2905 	u16 de_key_size = le16_to_cpu(de->key_size);
2906 	u8 name_type;
2907 
2908 	*undo_step = 0;
2909 
2910 	/* Find name in record. */
2911 	mi_get_ref(&dir_ni->mi, &de_name->home);
2912 
2913 	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2914 			      &de_name->home, &mi, &le);
2915 	if (!fname)
2916 		return -ENOENT;
2917 
2918 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2919 	name_type = paired_name(fname->type);
2920 
2921 	/* Mark ntfs as dirty. It will be cleared at umount. */
2922 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2923 
2924 	/* Step 1: Remove name from directory. */
2925 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2926 	if (err)
2927 		return err;
2928 
2929 	/* Step 2: Remove name from MFT. */
2930 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2931 
2932 	*undo_step = 2;
2933 
2934 	/* Get paired name. */
2935 	fname = ni_fname_type(ni, name_type, &mi, &le);
2936 	if (fname) {
2937 		u16 de2_key_size = fname_full_size(fname);
2938 
2939 		*de2 = Add2Ptr(de, 1024);
2940 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2941 
2942 		memcpy(*de2 + 1, fname, de2_key_size);
2943 
2944 		/* Step 3: Remove paired name from directory. */
2945 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2946 					de2_key_size, sbi);
2947 		if (err)
2948 			return err;
2949 
2950 		/* Step 4: Remove paired name from MFT. */
2951 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2952 
2953 		*undo_step = 4;
2954 	}
2955 	return 0;
2956 }
2957 
2958 /*
2959  * ni_remove_name_undo - Paired function for ni_remove_name.
2960  *
2961  * Return: True if ok
2962  */
2963 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2964 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2965 {
2966 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2967 	struct ATTRIB *attr;
2968 	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2969 
2970 	switch (undo_step) {
2971 	case 4:
2972 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2973 				       &attr, NULL, NULL)) {
2974 			return false;
2975 		}
2976 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2977 
2978 		mi_get_ref(&ni->mi, &de2->ref);
2979 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2980 					sizeof(struct NTFS_DE));
2981 		de2->flags = 0;
2982 		de2->res = 0;
2983 
2984 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2985 				      1)) {
2986 			return false;
2987 		}
2988 		fallthrough;
2989 
2990 	case 2:
2991 		de_key_size = le16_to_cpu(de->key_size);
2992 
2993 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2994 				       &attr, NULL, NULL)) {
2995 			return false;
2996 		}
2997 
2998 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2999 		mi_get_ref(&ni->mi, &de->ref);
3000 
3001 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3002 			return false;
3003 	}
3004 
3005 	return true;
3006 }
3007 
3008 /*
3009  * ni_add_name - Add new name into MFT and into directory.
3010  */
3011 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3012 		struct NTFS_DE *de)
3013 {
3014 	int err;
3015 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3016 	struct ATTRIB *attr;
3017 	struct ATTR_LIST_ENTRY *le;
3018 	struct mft_inode *mi;
3019 	struct ATTR_FILE_NAME *fname;
3020 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3021 	u16 de_key_size = le16_to_cpu(de->key_size);
3022 
3023 	if (sbi->options->windows_names &&
3024 	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3025 		return -EINVAL;
3026 
3027 	/* If option "hide_dot_files" then set hidden attribute for dot files. */
3028 	if (ni->mi.sbi->options->hide_dot_files) {
3029 		if (de_name->name_len > 0 &&
3030 		    le16_to_cpu(de_name->name[0]) == '.')
3031 			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3032 		else
3033 			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3034 	}
3035 
3036 	mi_get_ref(&ni->mi, &de->ref);
3037 	mi_get_ref(&dir_ni->mi, &de_name->home);
3038 
3039 	/* Fill duplicate from any ATTR_NAME. */
3040 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3041 	if (fname)
3042 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3043 	de_name->dup.fa = ni->std_fa;
3044 
3045 	/* Insert new name into MFT. */
3046 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3047 				 &mi, &le);
3048 	if (err)
3049 		return err;
3050 
3051 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3052 
3053 	/* Insert new name into directory. */
3054 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3055 	if (err)
3056 		ni_remove_attr_le(ni, attr, mi, le);
3057 
3058 	return err;
3059 }
3060 
3061 /*
3062  * ni_rename - Remove one name and insert new name.
3063  */
3064 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3065 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3066 	      bool *is_bad)
3067 {
3068 	int err;
3069 	struct NTFS_DE *de2 = NULL;
3070 	int undo = 0;
3071 
3072 	/*
3073 	 * There are two possible ways to rename:
3074 	 * 1) Add new name and remove old name.
3075 	 * 2) Remove old name and add new name.
3076 	 *
3077 	 * In most cases (not all!) adding new name into MFT and into directory can
3078 	 * allocate additional cluster(s).
3079 	 * Second way may result to bad inode if we can't add new name
3080 	 * and then can't restore (add) old name.
3081 	 */
3082 
3083 	/*
3084 	 * Way 1 - Add new + remove old.
3085 	 */
3086 	err = ni_add_name(new_dir_ni, ni, new_de);
3087 	if (!err) {
3088 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3089 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3090 			*is_bad = true;
3091 	}
3092 
3093 	/*
3094 	 * Way 2 - Remove old + add new.
3095 	 */
3096 	/*
3097 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3098 	 *	if (!err) {
3099 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3100 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3101 	 *			*is_bad = true;
3102 	 *	}
3103 	 */
3104 
3105 	return err;
3106 }
3107 
3108 /*
3109  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3110  */
3111 bool ni_is_dirty(struct inode *inode)
3112 {
3113 	struct ntfs_inode *ni = ntfs_i(inode);
3114 	struct rb_node *node;
3115 
3116 	if (ni->mi.dirty || ni->attr_list.dirty ||
3117 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3118 		return true;
3119 
3120 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3121 		if (rb_entry(node, struct mft_inode, node)->dirty)
3122 			return true;
3123 	}
3124 
3125 	return false;
3126 }
3127 
3128 /*
3129  * ni_update_parent
3130  *
3131  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3132  */
3133 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3134 			     int sync)
3135 {
3136 	struct ATTRIB *attr;
3137 	struct mft_inode *mi;
3138 	struct ATTR_LIST_ENTRY *le = NULL;
3139 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3140 	struct super_block *sb = sbi->sb;
3141 	bool re_dirty = false;
3142 
3143 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3144 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3145 		attr = NULL;
3146 		dup->alloc_size = 0;
3147 		dup->data_size = 0;
3148 	} else {
3149 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3150 
3151 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3152 				    &mi);
3153 		if (!attr) {
3154 			dup->alloc_size = dup->data_size = 0;
3155 		} else if (!attr->non_res) {
3156 			u32 data_size = le32_to_cpu(attr->res.data_size);
3157 
3158 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3159 			dup->data_size = cpu_to_le64(data_size);
3160 		} else {
3161 			u64 new_valid = ni->i_valid;
3162 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3163 			__le64 valid_le;
3164 
3165 			dup->alloc_size = is_attr_ext(attr)
3166 						  ? attr->nres.total_size
3167 						  : attr->nres.alloc_size;
3168 			dup->data_size = attr->nres.data_size;
3169 
3170 			if (new_valid > data_size)
3171 				new_valid = data_size;
3172 
3173 			valid_le = cpu_to_le64(new_valid);
3174 			if (valid_le != attr->nres.valid_size) {
3175 				attr->nres.valid_size = valid_le;
3176 				mi->dirty = true;
3177 			}
3178 		}
3179 	}
3180 
3181 	/* TODO: Fill reparse info. */
3182 	dup->reparse = 0;
3183 	dup->ea_size = 0;
3184 
3185 	if (ni->ni_flags & NI_FLAG_EA) {
3186 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3187 				    NULL);
3188 		if (attr) {
3189 			const struct EA_INFO *info;
3190 
3191 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3192 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3193 			if (info)
3194 				dup->ea_size = info->size_pack;
3195 		}
3196 	}
3197 
3198 	attr = NULL;
3199 	le = NULL;
3200 
3201 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3202 				    &mi))) {
3203 		struct inode *dir;
3204 		struct ATTR_FILE_NAME *fname;
3205 
3206 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3207 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3208 			continue;
3209 
3210 		/* ntfs_iget5 may sleep. */
3211 		dir = ntfs_iget5(sb, &fname->home, NULL);
3212 		if (IS_ERR(dir)) {
3213 			ntfs_inode_warn(
3214 				&ni->vfs_inode,
3215 				"failed to open parent directory r=%lx to update",
3216 				(long)ino_get(&fname->home));
3217 			continue;
3218 		}
3219 
3220 		if (!is_bad_inode(dir)) {
3221 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3222 
3223 			if (!ni_trylock(dir_ni)) {
3224 				re_dirty = true;
3225 			} else {
3226 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3227 				ni_unlock(dir_ni);
3228 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3229 				mi->dirty = true;
3230 			}
3231 		}
3232 		iput(dir);
3233 	}
3234 
3235 	return re_dirty;
3236 }
3237 
3238 /*
3239  * ni_write_inode - Write MFT base record and all subrecords to disk.
3240  */
3241 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3242 {
3243 	int err = 0, err2;
3244 	struct ntfs_inode *ni = ntfs_i(inode);
3245 	struct super_block *sb = inode->i_sb;
3246 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3247 	bool re_dirty = false;
3248 	struct ATTR_STD_INFO *std;
3249 	struct rb_node *node, *next;
3250 	struct NTFS_DUP_INFO dup;
3251 
3252 	if (is_bad_inode(inode) || sb_rdonly(sb))
3253 		return 0;
3254 
3255 	if (!ni_trylock(ni)) {
3256 		/* 'ni' is under modification, skip for now. */
3257 		mark_inode_dirty_sync(inode);
3258 		return 0;
3259 	}
3260 
3261 	if (is_rec_inuse(ni->mi.mrec) &&
3262 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3263 		bool modified = false;
3264 
3265 		/* Update times in standard attribute. */
3266 		std = ni_std(ni);
3267 		if (!std) {
3268 			err = -EINVAL;
3269 			goto out;
3270 		}
3271 
3272 		/* Update the access times if they have changed. */
3273 		dup.m_time = kernel2nt(&inode->i_mtime);
3274 		if (std->m_time != dup.m_time) {
3275 			std->m_time = dup.m_time;
3276 			modified = true;
3277 		}
3278 
3279 		dup.c_time = kernel2nt(&inode->i_ctime);
3280 		if (std->c_time != dup.c_time) {
3281 			std->c_time = dup.c_time;
3282 			modified = true;
3283 		}
3284 
3285 		dup.a_time = kernel2nt(&inode->i_atime);
3286 		if (std->a_time != dup.a_time) {
3287 			std->a_time = dup.a_time;
3288 			modified = true;
3289 		}
3290 
3291 		dup.fa = ni->std_fa;
3292 		if (std->fa != dup.fa) {
3293 			std->fa = dup.fa;
3294 			modified = true;
3295 		}
3296 
3297 		/* std attribute is always in primary MFT record. */
3298 		if (modified)
3299 			ni->mi.dirty = true;
3300 
3301 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3302 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3303 		    /* Avoid __wait_on_freeing_inode(inode). */
3304 		    && (sb->s_flags & SB_ACTIVE)) {
3305 			dup.cr_time = std->cr_time;
3306 			/* Not critical if this function fail. */
3307 			re_dirty = ni_update_parent(ni, &dup, sync);
3308 
3309 			if (re_dirty)
3310 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3311 			else
3312 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3313 		}
3314 
3315 		/* Update attribute list. */
3316 		if (ni->attr_list.size && ni->attr_list.dirty) {
3317 			if (inode->i_ino != MFT_REC_MFT || sync) {
3318 				err = ni_try_remove_attr_list(ni);
3319 				if (err)
3320 					goto out;
3321 			}
3322 
3323 			err = al_update(ni, sync);
3324 			if (err)
3325 				goto out;
3326 		}
3327 	}
3328 
3329 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3330 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3331 		bool is_empty;
3332 
3333 		next = rb_next(node);
3334 
3335 		if (!mi->dirty)
3336 			continue;
3337 
3338 		is_empty = !mi_enum_attr(mi, NULL);
3339 
3340 		if (is_empty)
3341 			clear_rec_inuse(mi->mrec);
3342 
3343 		err2 = mi_write(mi, sync);
3344 		if (!err && err2)
3345 			err = err2;
3346 
3347 		if (is_empty) {
3348 			ntfs_mark_rec_free(sbi, mi->rno, false);
3349 			rb_erase(node, &ni->mi_tree);
3350 			mi_put(mi);
3351 		}
3352 	}
3353 
3354 	if (ni->mi.dirty) {
3355 		err2 = mi_write(&ni->mi, sync);
3356 		if (!err && err2)
3357 			err = err2;
3358 	}
3359 out:
3360 	ni_unlock(ni);
3361 
3362 	if (err) {
3363 		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3364 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3365 		return err;
3366 	}
3367 
3368 	if (re_dirty)
3369 		mark_inode_dirty_sync(inode);
3370 
3371 	return 0;
3372 }
3373