xref: /openbmc/linux/fs/ntfs3/frecord.c (revision 9853f130)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 		      NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 		      NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
106 		ni_delete_all(ni);
107 
108 	al_destroy(ni);
109 
110 	for (node = rb_first(&ni->mi_tree); node;) {
111 		struct rb_node *next = rb_next(node);
112 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113 
114 		rb_erase(node, &ni->mi_tree);
115 		mi_put(mi);
116 		node = next;
117 	}
118 
119 	/* Bad inode always has mode == S_IFREG. */
120 	if (ni->ni_flags & NI_FLAG_DIR)
121 		indx_clear(&ni->dir);
122 	else {
123 		run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 		if (ni->file.offs_page) {
126 			/* On-demand allocated page for offsets. */
127 			put_page(ni->file.offs_page);
128 			ni->file.offs_page = NULL;
129 		}
130 #endif
131 	}
132 
133 	mi_clear(&ni->mi);
134 }
135 
136 /*
137  * ni_load_mi_ex - Find mft_inode by record number.
138  */
139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 	int err;
142 	struct mft_inode *r;
143 
144 	r = ni_find_mi(ni, rno);
145 	if (r)
146 		goto out;
147 
148 	err = mi_get(ni->mi.sbi, rno, &r);
149 	if (err)
150 		return err;
151 
152 	ni_add_mi(ni, r);
153 
154 out:
155 	if (mi)
156 		*mi = r;
157 	return 0;
158 }
159 
160 /*
161  * ni_load_mi - Load mft_inode corresponded list_entry.
162  */
163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 	       struct mft_inode **mi)
165 {
166 	CLST rno;
167 
168 	if (!le) {
169 		*mi = &ni->mi;
170 		return 0;
171 	}
172 
173 	rno = ino_get(&le->ref);
174 	if (rno == ni->mi.rno) {
175 		*mi = &ni->mi;
176 		return 0;
177 	}
178 	return ni_load_mi_ex(ni, rno, mi);
179 }
180 
181 /*
182  * ni_find_attr
183  *
184  * Return: Attribute and record this attribute belongs to.
185  */
186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 			    const __le16 *name, u8 name_len, const CLST *vcn,
189 			    struct mft_inode **mi)
190 {
191 	struct ATTR_LIST_ENTRY *le;
192 	struct mft_inode *m;
193 
194 	if (!ni->attr_list.size ||
195 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 		if (le_o)
197 			*le_o = NULL;
198 		if (mi)
199 			*mi = &ni->mi;
200 
201 		/* Look for required attribute in primary record. */
202 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 	}
204 
205 	/* First look for list entry of required type. */
206 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 	if (!le)
208 		return NULL;
209 
210 	if (le_o)
211 		*le_o = le;
212 
213 	/* Load record that contains this attribute. */
214 	if (ni_load_mi(ni, le, &m))
215 		return NULL;
216 
217 	/* Look for required attribute. */
218 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219 
220 	if (!attr)
221 		goto out;
222 
223 	if (!attr->non_res) {
224 		if (vcn && *vcn)
225 			goto out;
226 	} else if (!vcn) {
227 		if (attr->nres.svcn)
228 			goto out;
229 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
231 		goto out;
232 	}
233 
234 	if (mi)
235 		*mi = m;
236 	return attr;
237 
238 out:
239 	ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
240 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
241 	return NULL;
242 }
243 
244 /*
245  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
246  */
247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
248 			       struct ATTR_LIST_ENTRY **le,
249 			       struct mft_inode **mi)
250 {
251 	struct mft_inode *mi2;
252 	struct ATTR_LIST_ENTRY *le2;
253 
254 	/* Do we have an attribute list? */
255 	if (!ni->attr_list.size) {
256 		*le = NULL;
257 		if (mi)
258 			*mi = &ni->mi;
259 		/* Enum attributes in primary record. */
260 		return mi_enum_attr(&ni->mi, attr);
261 	}
262 
263 	/* Get next list entry. */
264 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
265 	if (!le2)
266 		return NULL;
267 
268 	/* Load record that contains the required attribute. */
269 	if (ni_load_mi(ni, le2, &mi2))
270 		return NULL;
271 
272 	if (mi)
273 		*mi = mi2;
274 
275 	/* Find attribute in loaded record. */
276 	return rec_find_attr_le(mi2, le2);
277 }
278 
279 /*
280  * ni_load_attr - Load attribute that contains given VCN.
281  */
282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
283 			    const __le16 *name, u8 name_len, CLST vcn,
284 			    struct mft_inode **pmi)
285 {
286 	struct ATTR_LIST_ENTRY *le;
287 	struct ATTRIB *attr;
288 	struct mft_inode *mi;
289 	struct ATTR_LIST_ENTRY *next;
290 
291 	if (!ni->attr_list.size) {
292 		if (pmi)
293 			*pmi = &ni->mi;
294 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
295 	}
296 
297 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
298 	if (!le)
299 		return NULL;
300 
301 	/*
302 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
303 	 * So to find the ATTRIB segment that contains 'vcn' we should
304 	 * enumerate some entries.
305 	 */
306 	if (vcn) {
307 		for (;; le = next) {
308 			next = al_find_ex(ni, le, type, name, name_len, NULL);
309 			if (!next || le64_to_cpu(next->vcn) > vcn)
310 				break;
311 		}
312 	}
313 
314 	if (ni_load_mi(ni, le, &mi))
315 		return NULL;
316 
317 	if (pmi)
318 		*pmi = mi;
319 
320 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
321 	if (!attr)
322 		return NULL;
323 
324 	if (!attr->non_res)
325 		return attr;
326 
327 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
328 	    vcn <= le64_to_cpu(attr->nres.evcn))
329 		return attr;
330 
331 	return NULL;
332 }
333 
334 /*
335  * ni_load_all_mi - Load all subrecords.
336  */
337 int ni_load_all_mi(struct ntfs_inode *ni)
338 {
339 	int err;
340 	struct ATTR_LIST_ENTRY *le;
341 
342 	if (!ni->attr_list.size)
343 		return 0;
344 
345 	le = NULL;
346 
347 	while ((le = al_enumerate(ni, le))) {
348 		CLST rno = ino_get(&le->ref);
349 
350 		if (rno == ni->mi.rno)
351 			continue;
352 
353 		err = ni_load_mi_ex(ni, rno, NULL);
354 		if (err)
355 			return err;
356 	}
357 
358 	return 0;
359 }
360 
361 /*
362  * ni_add_subrecord - Allocate + format + attach a new subrecord.
363  */
364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
365 {
366 	struct mft_inode *m;
367 
368 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
369 	if (!m)
370 		return false;
371 
372 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
373 		mi_put(m);
374 		return false;
375 	}
376 
377 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
378 
379 	ni_add_mi(ni, m);
380 	*mi = m;
381 	return true;
382 }
383 
384 /*
385  * ni_remove_attr - Remove all attributes for the given type/name/id.
386  */
387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
388 		   const __le16 *name, u8 name_len, bool base_only,
389 		   const __le16 *id)
390 {
391 	int err;
392 	struct ATTRIB *attr;
393 	struct ATTR_LIST_ENTRY *le;
394 	struct mft_inode *mi;
395 	u32 type_in;
396 	int diff;
397 
398 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
399 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
400 		if (!attr)
401 			return -ENOENT;
402 
403 		mi_remove_attr(ni, &ni->mi, attr);
404 		return 0;
405 	}
406 
407 	type_in = le32_to_cpu(type);
408 	le = NULL;
409 
410 	for (;;) {
411 		le = al_enumerate(ni, le);
412 		if (!le)
413 			return 0;
414 
415 next_le2:
416 		diff = le32_to_cpu(le->type) - type_in;
417 		if (diff < 0)
418 			continue;
419 
420 		if (diff > 0)
421 			return 0;
422 
423 		if (le->name_len != name_len)
424 			continue;
425 
426 		if (name_len &&
427 		    memcmp(le_name(le), name, name_len * sizeof(short)))
428 			continue;
429 
430 		if (id && le->id != *id)
431 			continue;
432 		err = ni_load_mi(ni, le, &mi);
433 		if (err)
434 			return err;
435 
436 		al_remove_le(ni, le);
437 
438 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
439 		if (!attr)
440 			return -ENOENT;
441 
442 		mi_remove_attr(ni, mi, attr);
443 
444 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
445 			return 0;
446 		goto next_le2;
447 	}
448 }
449 
450 /*
451  * ni_ins_new_attr - Insert the attribute into record.
452  *
453  * Return: Not full constructed attribute or NULL if not possible to create.
454  */
455 static struct ATTRIB *
456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
457 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
458 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
459 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
460 {
461 	int err;
462 	struct ATTRIB *attr;
463 	bool le_added = false;
464 	struct MFT_REF ref;
465 
466 	mi_get_ref(mi, &ref);
467 
468 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
469 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
470 				&ref, &le);
471 		if (err) {
472 			/* No memory or no space. */
473 			return ERR_PTR(err);
474 		}
475 		le_added = true;
476 
477 		/*
478 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
479 		 * which moves some attributes out of primary record
480 		 * this means that name may point into moved memory
481 		 * reinit 'name' from le.
482 		 */
483 		name = le->name;
484 	}
485 
486 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
487 	if (!attr) {
488 		if (le_added)
489 			al_remove_le(ni, le);
490 		return NULL;
491 	}
492 
493 	if (type == ATTR_LIST) {
494 		/* Attr list is not in list entry array. */
495 		goto out;
496 	}
497 
498 	if (!le)
499 		goto out;
500 
501 	/* Update ATTRIB Id and record reference. */
502 	le->id = attr->id;
503 	ni->attr_list.dirty = true;
504 	le->ref = ref;
505 
506 out:
507 	if (ins_le)
508 		*ins_le = le;
509 	return attr;
510 }
511 
512 /*
513  * ni_repack
514  *
515  * Random write access to sparsed or compressed file may result to
516  * not optimized packed runs.
517  * Here is the place to optimize it.
518  */
519 static int ni_repack(struct ntfs_inode *ni)
520 {
521 #if 1
522 	return 0;
523 #else
524 	int err = 0;
525 	struct ntfs_sb_info *sbi = ni->mi.sbi;
526 	struct mft_inode *mi, *mi_p = NULL;
527 	struct ATTRIB *attr = NULL, *attr_p;
528 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
529 	CLST alloc = 0;
530 	u8 cluster_bits = sbi->cluster_bits;
531 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
532 	u32 roff, rs = sbi->record_size;
533 	struct runs_tree run;
534 
535 	run_init(&run);
536 
537 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
538 		if (!attr->non_res)
539 			continue;
540 
541 		svcn = le64_to_cpu(attr->nres.svcn);
542 		if (svcn != le64_to_cpu(le->vcn)) {
543 			err = -EINVAL;
544 			break;
545 		}
546 
547 		if (!svcn) {
548 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
549 				cluster_bits;
550 			mi_p = NULL;
551 		} else if (svcn != evcn + 1) {
552 			err = -EINVAL;
553 			break;
554 		}
555 
556 		evcn = le64_to_cpu(attr->nres.evcn);
557 
558 		if (svcn > evcn + 1) {
559 			err = -EINVAL;
560 			break;
561 		}
562 
563 		if (!mi_p) {
564 			/* Do not try if not enough free space. */
565 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
566 				continue;
567 
568 			/* Do not try if last attribute segment. */
569 			if (evcn + 1 == alloc)
570 				continue;
571 			run_close(&run);
572 		}
573 
574 		roff = le16_to_cpu(attr->nres.run_off);
575 
576 		if (roff > le32_to_cpu(attr->size)) {
577 			err = -EINVAL;
578 			break;
579 		}
580 
581 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
582 				 Add2Ptr(attr, roff),
583 				 le32_to_cpu(attr->size) - roff);
584 		if (err < 0)
585 			break;
586 
587 		if (!mi_p) {
588 			mi_p = mi;
589 			attr_p = attr;
590 			svcn_p = svcn;
591 			evcn_p = evcn;
592 			le_p = le;
593 			err = 0;
594 			continue;
595 		}
596 
597 		/*
598 		 * Run contains data from two records: mi_p and mi
599 		 * Try to pack in one.
600 		 */
601 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
602 		if (err)
603 			break;
604 
605 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
606 
607 		if (next_svcn >= evcn + 1) {
608 			/* We can remove this attribute segment. */
609 			al_remove_le(ni, le);
610 			mi_remove_attr(NULL, mi, attr);
611 			le = le_p;
612 			continue;
613 		}
614 
615 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
616 		mi->dirty = true;
617 		ni->attr_list.dirty = true;
618 
619 		if (evcn + 1 == alloc) {
620 			err = mi_pack_runs(mi, attr, &run,
621 					   evcn + 1 - next_svcn);
622 			if (err)
623 				break;
624 			mi_p = NULL;
625 		} else {
626 			mi_p = mi;
627 			attr_p = attr;
628 			svcn_p = next_svcn;
629 			evcn_p = evcn;
630 			le_p = le;
631 			run_truncate_head(&run, next_svcn);
632 		}
633 	}
634 
635 	if (err) {
636 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
637 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
638 
639 		/* Pack loaded but not packed runs. */
640 		if (mi_p)
641 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
642 	}
643 
644 	run_close(&run);
645 	return err;
646 #endif
647 }
648 
649 /*
650  * ni_try_remove_attr_list
651  *
652  * Can we remove attribute list?
653  * Check the case when primary record contains enough space for all attributes.
654  */
655 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
656 {
657 	int err = 0;
658 	struct ntfs_sb_info *sbi = ni->mi.sbi;
659 	struct ATTRIB *attr, *attr_list, *attr_ins;
660 	struct ATTR_LIST_ENTRY *le;
661 	struct mft_inode *mi;
662 	u32 asize, free;
663 	struct MFT_REF ref;
664 	struct MFT_REC *mrec;
665 	__le16 id;
666 
667 	if (!ni->attr_list.dirty)
668 		return 0;
669 
670 	err = ni_repack(ni);
671 	if (err)
672 		return err;
673 
674 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
675 	if (!attr_list)
676 		return 0;
677 
678 	asize = le32_to_cpu(attr_list->size);
679 
680 	/* Free space in primary record without attribute list. */
681 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
682 	mi_get_ref(&ni->mi, &ref);
683 
684 	le = NULL;
685 	while ((le = al_enumerate(ni, le))) {
686 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
687 			continue;
688 
689 		if (le->vcn)
690 			return 0;
691 
692 		mi = ni_find_mi(ni, ino_get(&le->ref));
693 		if (!mi)
694 			return 0;
695 
696 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
697 				    le->name_len, &le->id);
698 		if (!attr)
699 			return 0;
700 
701 		asize = le32_to_cpu(attr->size);
702 		if (asize > free)
703 			return 0;
704 
705 		free -= asize;
706 	}
707 
708 	/* Make a copy of primary record to restore if error. */
709 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
710 	if (!mrec)
711 		return 0; /* Not critical. */
712 
713 	/* It seems that attribute list can be removed from primary record. */
714 	mi_remove_attr(NULL, &ni->mi, attr_list);
715 
716 	/*
717 	 * Repeat the cycle above and copy all attributes to primary record.
718 	 * Do not remove original attributes from subrecords!
719 	 * It should be success!
720 	 */
721 	le = NULL;
722 	while ((le = al_enumerate(ni, le))) {
723 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
724 			continue;
725 
726 		mi = ni_find_mi(ni, ino_get(&le->ref));
727 		if (!mi) {
728 			/* Should never happened, 'cause already checked. */
729 			goto out;
730 		}
731 
732 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
733 				    le->name_len, &le->id);
734 		if (!attr) {
735 			/* Should never happened, 'cause already checked. */
736 			goto out;
737 		}
738 		asize = le32_to_cpu(attr->size);
739 
740 		/* Insert into primary record. */
741 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
742 					  le->name_len, asize,
743 					  le16_to_cpu(attr->name_off));
744 		if (!attr_ins) {
745 			/*
746 			 * No space in primary record (already checked).
747 			 */
748 			goto out;
749 		}
750 
751 		/* Copy all except id. */
752 		id = attr_ins->id;
753 		memcpy(attr_ins, attr, asize);
754 		attr_ins->id = id;
755 	}
756 
757 	/*
758 	 * Repeat the cycle above and remove all attributes from subrecords.
759 	 */
760 	le = NULL;
761 	while ((le = al_enumerate(ni, le))) {
762 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
763 			continue;
764 
765 		mi = ni_find_mi(ni, ino_get(&le->ref));
766 		if (!mi)
767 			continue;
768 
769 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
770 				    le->name_len, &le->id);
771 		if (!attr)
772 			continue;
773 
774 		/* Remove from original record. */
775 		mi_remove_attr(NULL, mi, attr);
776 	}
777 
778 	run_deallocate(sbi, &ni->attr_list.run, true);
779 	run_close(&ni->attr_list.run);
780 	ni->attr_list.size = 0;
781 	kfree(ni->attr_list.le);
782 	ni->attr_list.le = NULL;
783 	ni->attr_list.dirty = false;
784 
785 	kfree(mrec);
786 	return 0;
787 out:
788 	/* Restore primary record. */
789 	swap(mrec, ni->mi.mrec);
790 	kfree(mrec);
791 	return 0;
792 }
793 
794 /*
795  * ni_create_attr_list - Generates an attribute list for this primary record.
796  */
797 int ni_create_attr_list(struct ntfs_inode *ni)
798 {
799 	struct ntfs_sb_info *sbi = ni->mi.sbi;
800 	int err;
801 	u32 lsize;
802 	struct ATTRIB *attr;
803 	struct ATTRIB *arr_move[7];
804 	struct ATTR_LIST_ENTRY *le, *le_b[7];
805 	struct MFT_REC *rec;
806 	bool is_mft;
807 	CLST rno = 0;
808 	struct mft_inode *mi;
809 	u32 free_b, nb, to_free, rs;
810 	u16 sz;
811 
812 	is_mft = ni->mi.rno == MFT_REC_MFT;
813 	rec = ni->mi.mrec;
814 	rs = sbi->record_size;
815 
816 	/*
817 	 * Skip estimating exact memory requirement.
818 	 * Looks like one record_size is always enough.
819 	 */
820 	le = kmalloc(al_aligned(rs), GFP_NOFS);
821 	if (!le)
822 		return -ENOMEM;
823 
824 	mi_get_ref(&ni->mi, &le->ref);
825 	ni->attr_list.le = le;
826 
827 	attr = NULL;
828 	nb = 0;
829 	free_b = 0;
830 	attr = NULL;
831 
832 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
833 		sz = le_size(attr->name_len);
834 		le->type = attr->type;
835 		le->size = cpu_to_le16(sz);
836 		le->name_len = attr->name_len;
837 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
838 		le->vcn = 0;
839 		if (le != ni->attr_list.le)
840 			le->ref = ni->attr_list.le->ref;
841 		le->id = attr->id;
842 
843 		if (attr->name_len)
844 			memcpy(le->name, attr_name(attr),
845 			       sizeof(short) * attr->name_len);
846 		else if (attr->type == ATTR_STD)
847 			continue;
848 		else if (attr->type == ATTR_LIST)
849 			continue;
850 		else if (is_mft && attr->type == ATTR_DATA)
851 			continue;
852 
853 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
854 			le_b[nb] = le;
855 			arr_move[nb++] = attr;
856 			free_b += le32_to_cpu(attr->size);
857 		}
858 	}
859 
860 	lsize = PtrOffset(ni->attr_list.le, le);
861 	ni->attr_list.size = lsize;
862 
863 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
864 	if (to_free <= rs) {
865 		to_free = 0;
866 	} else {
867 		to_free -= rs;
868 
869 		if (to_free > free_b) {
870 			err = -EINVAL;
871 			goto out;
872 		}
873 	}
874 
875 	/* Allocate child MFT. */
876 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
877 	if (err)
878 		goto out;
879 
880 	err = -EINVAL;
881 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
882 	while (to_free > 0) {
883 		struct ATTRIB *b = arr_move[--nb];
884 		u32 asize = le32_to_cpu(b->size);
885 		u16 name_off = le16_to_cpu(b->name_off);
886 
887 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
888 				      b->name_len, asize, name_off);
889 		if (!attr)
890 			goto out;
891 
892 		mi_get_ref(mi, &le_b[nb]->ref);
893 		le_b[nb]->id = attr->id;
894 
895 		/* Copy all except id. */
896 		memcpy(attr, b, asize);
897 		attr->id = le_b[nb]->id;
898 
899 		/* Remove from primary record. */
900 		if (!mi_remove_attr(NULL, &ni->mi, b))
901 			goto out;
902 
903 		if (to_free <= asize)
904 			break;
905 		to_free -= asize;
906 		if (!nb)
907 			goto out;
908 	}
909 
910 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
911 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
912 	if (!attr)
913 		goto out;
914 
915 	attr->non_res = 0;
916 	attr->flags = 0;
917 	attr->res.data_size = cpu_to_le32(lsize);
918 	attr->res.data_off = SIZEOF_RESIDENT_LE;
919 	attr->res.flags = 0;
920 	attr->res.res = 0;
921 
922 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
923 
924 	ni->attr_list.dirty = false;
925 
926 	mark_inode_dirty(&ni->vfs_inode);
927 	return 0;
928 
929 out:
930 	kfree(ni->attr_list.le);
931 	ni->attr_list.le = NULL;
932 	ni->attr_list.size = 0;
933 	return err;
934 }
935 
936 /*
937  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938  */
939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 			   struct ATTR_LIST_ENTRY **ins_le)
944 {
945 	struct ATTRIB *attr;
946 	struct mft_inode *mi;
947 	CLST rno;
948 	u64 vbo;
949 	struct rb_node *node;
950 	int err;
951 	bool is_mft, is_mft_data;
952 	struct ntfs_sb_info *sbi = ni->mi.sbi;
953 
954 	is_mft = ni->mi.rno == MFT_REC_MFT;
955 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956 
957 	if (asize > sbi->max_bytes_per_attr) {
958 		err = -EINVAL;
959 		goto out;
960 	}
961 
962 	/*
963 	 * Standard information and attr_list cannot be made external.
964 	 * The Log File cannot have any external attributes.
965 	 */
966 	if (type == ATTR_STD || type == ATTR_LIST ||
967 	    ni->mi.rno == MFT_REC_LOG) {
968 		err = -EINVAL;
969 		goto out;
970 	}
971 
972 	/* Create attribute list if it is not already existed. */
973 	if (!ni->attr_list.size) {
974 		err = ni_create_attr_list(ni);
975 		if (err)
976 			goto out;
977 	}
978 
979 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980 
981 	if (force_ext)
982 		goto insert_ext;
983 
984 	/* Load all subrecords into memory. */
985 	err = ni_load_all_mi(ni);
986 	if (err)
987 		goto out;
988 
989 	/* Check each of loaded subrecord. */
990 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 		mi = rb_entry(node, struct mft_inode, node);
992 
993 		if (is_mft_data &&
994 		    (mi_enum_attr(mi, NULL) ||
995 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 			/* We can't accept this record 'cause MFT's bootstrapping. */
997 			continue;
998 		}
999 		if (is_mft &&
1000 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001 			/*
1002 			 * This child record already has a ATTR_DATA.
1003 			 * So it can't accept any other records.
1004 			 */
1005 			continue;
1006 		}
1007 
1008 		if ((type != ATTR_NAME || name_len) &&
1009 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 			/* Only indexed attributes can share same record. */
1011 			continue;
1012 		}
1013 
1014 		/*
1015 		 * Do not try to insert this attribute
1016 		 * if there is no room in record.
1017 		 */
1018 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019 			continue;
1020 
1021 		/* Try to insert attribute into this subrecord. */
1022 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 				       name_off, svcn, ins_le);
1024 		if (!attr)
1025 			continue;
1026 		if (IS_ERR(attr))
1027 			return PTR_ERR(attr);
1028 
1029 		if (ins_attr)
1030 			*ins_attr = attr;
1031 		if (ins_mi)
1032 			*ins_mi = mi;
1033 		return 0;
1034 	}
1035 
1036 insert_ext:
1037 	/* We have to allocate a new child subrecord. */
1038 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039 	if (err)
1040 		goto out;
1041 
1042 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043 		err = -EINVAL;
1044 		goto out1;
1045 	}
1046 
1047 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 			       name_off, svcn, ins_le);
1049 	if (!attr) {
1050 		err = -EINVAL;
1051 		goto out2;
1052 	}
1053 
1054 	if (IS_ERR(attr)) {
1055 		err = PTR_ERR(attr);
1056 		goto out2;
1057 	}
1058 
1059 	if (ins_attr)
1060 		*ins_attr = attr;
1061 	if (ins_mi)
1062 		*ins_mi = mi;
1063 
1064 	return 0;
1065 
1066 out2:
1067 	ni_remove_mi(ni, mi);
1068 	mi_put(mi);
1069 
1070 out1:
1071 	ntfs_mark_rec_free(sbi, rno, is_mft);
1072 
1073 out:
1074 	return err;
1075 }
1076 
1077 /*
1078  * ni_insert_attr - Insert an attribute into the file.
1079  *
1080  * If the primary record has room, it will just insert the attribute.
1081  * If not, it may make the attribute external.
1082  * For $MFT::Data it may make room for the attribute by
1083  * making other attributes external.
1084  *
1085  * NOTE:
1086  * The ATTR_LIST and ATTR_STD cannot be made external.
1087  * This function does not fill new attribute full.
1088  * It only fills 'size'/'type'/'id'/'name_len' fields.
1089  */
1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 			  const __le16 *name, u8 name_len, u32 asize,
1092 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 			  struct mft_inode **ins_mi,
1094 			  struct ATTR_LIST_ENTRY **ins_le)
1095 {
1096 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1097 	int err;
1098 	struct ATTRIB *attr, *eattr;
1099 	struct MFT_REC *rec;
1100 	bool is_mft;
1101 	struct ATTR_LIST_ENTRY *le;
1102 	u32 list_reserve, max_free, free, used, t32;
1103 	__le16 id;
1104 	u16 t16;
1105 
1106 	is_mft = ni->mi.rno == MFT_REC_MFT;
1107 	rec = ni->mi.mrec;
1108 
1109 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 	used = le32_to_cpu(rec->used);
1111 	free = sbi->record_size - used;
1112 
1113 	if (is_mft && type != ATTR_LIST) {
1114 		/* Reserve space for the ATTRIB list. */
1115 		if (free < list_reserve)
1116 			free = 0;
1117 		else
1118 			free -= list_reserve;
1119 	}
1120 
1121 	if (asize <= free) {
1122 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 				       asize, name_off, svcn, ins_le);
1124 		if (IS_ERR(attr)) {
1125 			err = PTR_ERR(attr);
1126 			goto out;
1127 		}
1128 
1129 		if (attr) {
1130 			if (ins_attr)
1131 				*ins_attr = attr;
1132 			if (ins_mi)
1133 				*ins_mi = &ni->mi;
1134 			err = 0;
1135 			goto out;
1136 		}
1137 	}
1138 
1139 	if (!is_mft || type != ATTR_DATA || svcn) {
1140 		/* This ATTRIB will be external. */
1141 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 				      svcn, name_off, false, ins_attr, ins_mi,
1143 				      ins_le);
1144 		goto out;
1145 	}
1146 
1147 	/*
1148 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149 	 *
1150 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 	 * Evict as many other attributes as possible.
1152 	 */
1153 	max_free = free;
1154 
1155 	/* Estimate the result of moving all possible attributes away. */
1156 	attr = NULL;
1157 
1158 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 		if (attr->type == ATTR_STD)
1160 			continue;
1161 		if (attr->type == ATTR_LIST)
1162 			continue;
1163 		max_free += le32_to_cpu(attr->size);
1164 	}
1165 
1166 	if (max_free < asize + list_reserve) {
1167 		/* Impossible to insert this attribute into primary record. */
1168 		err = -EINVAL;
1169 		goto out;
1170 	}
1171 
1172 	/* Start real attribute moving. */
1173 	attr = NULL;
1174 
1175 	for (;;) {
1176 		attr = mi_enum_attr(&ni->mi, attr);
1177 		if (!attr) {
1178 			/* We should never be here 'cause we have already check this case. */
1179 			err = -EINVAL;
1180 			goto out;
1181 		}
1182 
1183 		/* Skip attributes that MUST be primary record. */
1184 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185 			continue;
1186 
1187 		le = NULL;
1188 		if (ni->attr_list.size) {
1189 			le = al_find_le(ni, NULL, attr);
1190 			if (!le) {
1191 				/* Really this is a serious bug. */
1192 				err = -EINVAL;
1193 				goto out;
1194 			}
1195 		}
1196 
1197 		t32 = le32_to_cpu(attr->size);
1198 		t16 = le16_to_cpu(attr->name_off);
1199 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 				      attr->name_len, t32, attr_svcn(attr), t16,
1201 				      false, &eattr, NULL, NULL);
1202 		if (err)
1203 			return err;
1204 
1205 		id = eattr->id;
1206 		memcpy(eattr, attr, t32);
1207 		eattr->id = id;
1208 
1209 		/* Remove from primary record. */
1210 		mi_remove_attr(NULL, &ni->mi, attr);
1211 
1212 		/* attr now points to next attribute. */
1213 		if (attr->type == ATTR_END)
1214 			goto out;
1215 	}
1216 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217 		;
1218 
1219 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 			       name_off, svcn, ins_le);
1221 	if (!attr) {
1222 		err = -EINVAL;
1223 		goto out;
1224 	}
1225 
1226 	if (IS_ERR(attr)) {
1227 		err = PTR_ERR(attr);
1228 		goto out;
1229 	}
1230 
1231 	if (ins_attr)
1232 		*ins_attr = attr;
1233 	if (ins_mi)
1234 		*ins_mi = &ni->mi;
1235 
1236 out:
1237 	return err;
1238 }
1239 
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1242 {
1243 	int err = 0;
1244 	struct runs_tree *run = &ni->file.run;
1245 	u32 asize, run_size, done = 0;
1246 	struct ATTRIB *attr;
1247 	struct rb_node *node;
1248 	CLST mft_min, mft_new, svcn, evcn, plen;
1249 	struct mft_inode *mi, *mi_min, *mi_new;
1250 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1251 
1252 	/* Find the nearest MFT. */
1253 	mft_min = 0;
1254 	mft_new = 0;
1255 	mi_min = NULL;
1256 
1257 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 		mi = rb_entry(node, struct mft_inode, node);
1259 
1260 		attr = mi_enum_attr(mi, NULL);
1261 
1262 		if (!attr) {
1263 			mft_min = mi->rno;
1264 			mi_min = mi;
1265 			break;
1266 		}
1267 	}
1268 
1269 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270 		mft_new = 0;
1271 		/* Really this is not critical. */
1272 	} else if (mft_min > mft_new) {
1273 		mft_min = mft_new;
1274 		mi_min = mi_new;
1275 	} else {
1276 		ntfs_mark_rec_free(sbi, mft_new, true);
1277 		mft_new = 0;
1278 		ni_remove_mi(ni, mi_new);
1279 	}
1280 
1281 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282 	if (!attr) {
1283 		err = -EINVAL;
1284 		goto out;
1285 	}
1286 
1287 	asize = le32_to_cpu(attr->size);
1288 
1289 	evcn = le64_to_cpu(attr->nres.evcn);
1290 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 	if (evcn + 1 >= svcn) {
1292 		err = -EINVAL;
1293 		goto out;
1294 	}
1295 
1296 	/*
1297 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298 	 *
1299 	 * Update first part of ATTR_DATA in 'primary MFT.
1300 	 */
1301 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 		       asize - SIZEOF_NONRESIDENT, &plen);
1303 	if (err < 0)
1304 		goto out;
1305 
1306 	run_size = ALIGN(err, 8);
1307 	err = 0;
1308 
1309 	if (plen < svcn) {
1310 		err = -EINVAL;
1311 		goto out;
1312 	}
1313 
1314 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 	/* 'done' - How many bytes of primary MFT becomes free. */
1317 	done = asize - run_size - SIZEOF_NONRESIDENT;
1318 	le32_sub_cpu(&ni->mi.mrec->used, done);
1319 
1320 	/* Estimate packed size (run_buf=NULL). */
1321 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322 		       &plen);
1323 	if (err < 0)
1324 		goto out;
1325 
1326 	run_size = ALIGN(err, 8);
1327 	err = 0;
1328 
1329 	if (plen < evcn + 1 - svcn) {
1330 		err = -EINVAL;
1331 		goto out;
1332 	}
1333 
1334 	/*
1335 	 * This function may implicitly call expand attr_list.
1336 	 * Insert second part of ATTR_DATA in 'mi_min'.
1337 	 */
1338 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 			       SIZEOF_NONRESIDENT + run_size,
1340 			       SIZEOF_NONRESIDENT, svcn, NULL);
1341 	if (!attr) {
1342 		err = -EINVAL;
1343 		goto out;
1344 	}
1345 
1346 	if (IS_ERR(attr)) {
1347 		err = PTR_ERR(attr);
1348 		goto out;
1349 	}
1350 
1351 	attr->non_res = 1;
1352 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1353 	attr->flags = 0;
1354 
1355 	/* This function can't fail - cause already checked above. */
1356 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357 		 run_size, &plen);
1358 
1359 	attr->nres.svcn = cpu_to_le64(svcn);
1360 	attr->nres.evcn = cpu_to_le64(evcn);
1361 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362 
1363 out:
1364 	if (mft_new) {
1365 		ntfs_mark_rec_free(sbi, mft_new, true);
1366 		ni_remove_mi(ni, mi_new);
1367 	}
1368 
1369 	return !err && !done ? -EOPNOTSUPP : err;
1370 }
1371 
1372 /*
1373  * ni_expand_list - Move all possible attributes out of primary record.
1374  */
1375 int ni_expand_list(struct ntfs_inode *ni)
1376 {
1377 	int err = 0;
1378 	u32 asize, done = 0;
1379 	struct ATTRIB *attr, *ins_attr;
1380 	struct ATTR_LIST_ENTRY *le;
1381 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382 	struct MFT_REF ref;
1383 
1384 	mi_get_ref(&ni->mi, &ref);
1385 	le = NULL;
1386 
1387 	while ((le = al_enumerate(ni, le))) {
1388 		if (le->type == ATTR_STD)
1389 			continue;
1390 
1391 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392 			continue;
1393 
1394 		if (is_mft && le->type == ATTR_DATA)
1395 			continue;
1396 
1397 		/* Find attribute in primary record. */
1398 		attr = rec_find_attr_le(&ni->mi, le);
1399 		if (!attr) {
1400 			err = -EINVAL;
1401 			goto out;
1402 		}
1403 
1404 		asize = le32_to_cpu(attr->size);
1405 
1406 		/* Always insert into new record to avoid collisions (deep recursive). */
1407 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 				      attr->name_len, asize, attr_svcn(attr),
1409 				      le16_to_cpu(attr->name_off), true,
1410 				      &ins_attr, NULL, NULL);
1411 
1412 		if (err)
1413 			goto out;
1414 
1415 		memcpy(ins_attr, attr, asize);
1416 		ins_attr->id = le->id;
1417 		/* Remove from primary record. */
1418 		mi_remove_attr(NULL, &ni->mi, attr);
1419 
1420 		done += asize;
1421 		goto out;
1422 	}
1423 
1424 	if (!is_mft) {
1425 		err = -EFBIG; /* Attr list is too big(?) */
1426 		goto out;
1427 	}
1428 
1429 	/* Split MFT data as much as possible. */
1430 	err = ni_expand_mft_list(ni);
1431 
1432 out:
1433 	return !err && !done ? -EOPNOTSUPP : err;
1434 }
1435 
1436 /*
1437  * ni_insert_nonresident - Insert new nonresident attribute.
1438  */
1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 			  const __le16 *name, u8 name_len,
1441 			  const struct runs_tree *run, CLST svcn, CLST len,
1442 			  __le16 flags, struct ATTRIB **new_attr,
1443 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444 {
1445 	int err;
1446 	CLST plen;
1447 	struct ATTRIB *attr;
1448 	bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1449 		      !svcn;
1450 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 	u32 run_off = name_off + name_size;
1453 	u32 run_size, asize;
1454 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1455 
1456 	/* Estimate packed size (run_buf=NULL). */
1457 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458 		       &plen);
1459 	if (err < 0)
1460 		goto out;
1461 
1462 	run_size = ALIGN(err, 8);
1463 
1464 	if (plen < len) {
1465 		err = -EINVAL;
1466 		goto out;
1467 	}
1468 
1469 	asize = run_off + run_size;
1470 
1471 	if (asize > sbi->max_bytes_per_attr) {
1472 		err = -EINVAL;
1473 		goto out;
1474 	}
1475 
1476 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477 			     &attr, mi, le);
1478 
1479 	if (err)
1480 		goto out;
1481 
1482 	attr->non_res = 1;
1483 	attr->name_off = cpu_to_le16(name_off);
1484 	attr->flags = flags;
1485 
1486 	/* This function can't fail - cause already checked above. */
1487 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488 
1489 	attr->nres.svcn = cpu_to_le64(svcn);
1490 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491 
1492 	if (new_attr)
1493 		*new_attr = attr;
1494 
1495 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496 
1497 	attr->nres.alloc_size =
1498 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 	attr->nres.data_size = attr->nres.alloc_size;
1500 	attr->nres.valid_size = attr->nres.alloc_size;
1501 
1502 	if (is_ext) {
1503 		if (flags & ATTR_FLAG_COMPRESSED)
1504 			attr->nres.c_unit = COMPRESSION_UNIT;
1505 		attr->nres.total_size = attr->nres.alloc_size;
1506 	}
1507 
1508 out:
1509 	return err;
1510 }
1511 
1512 /*
1513  * ni_insert_resident - Inserts new resident attribute.
1514  */
1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1518 		       struct ATTR_LIST_ENTRY **le)
1519 {
1520 	int err;
1521 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 	struct ATTRIB *attr;
1524 
1525 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526 			     0, &attr, mi, le);
1527 	if (err)
1528 		return err;
1529 
1530 	attr->non_res = 0;
1531 	attr->flags = 0;
1532 
1533 	attr->res.data_size = cpu_to_le32(data_size);
1534 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 	if (type == ATTR_NAME) {
1536 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1537 
1538 		/* is_attr_indexed(attr)) == true */
1539 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 		ni->mi.dirty = true;
1541 	}
1542 	attr->res.res = 0;
1543 
1544 	if (new_attr)
1545 		*new_attr = attr;
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * ni_remove_attr_le - Remove attribute from record.
1552  */
1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555 {
1556 	mi_remove_attr(ni, mi, attr);
1557 
1558 	if (le)
1559 		al_remove_le(ni, le);
1560 }
1561 
1562 /*
1563  * ni_delete_all - Remove all attributes and frees allocates space.
1564  *
1565  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566  */
1567 int ni_delete_all(struct ntfs_inode *ni)
1568 {
1569 	int err;
1570 	struct ATTR_LIST_ENTRY *le = NULL;
1571 	struct ATTRIB *attr = NULL;
1572 	struct rb_node *node;
1573 	u16 roff;
1574 	u32 asize;
1575 	CLST svcn, evcn;
1576 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 	bool nt3 = is_ntfs3(sbi);
1578 	struct MFT_REF ref;
1579 
1580 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 		if (!nt3 || attr->name_len) {
1582 			;
1583 		} else if (attr->type == ATTR_REPARSE) {
1584 			mi_get_ref(&ni->mi, &ref);
1585 			ntfs_remove_reparse(sbi, 0, &ref);
1586 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1587 			   le32_to_cpu(attr->res.data_size) >=
1588 				   sizeof(struct GUID)) {
1589 			ntfs_objid_remove(sbi, resident_data(attr));
1590 		}
1591 
1592 		if (!attr->non_res)
1593 			continue;
1594 
1595 		svcn = le64_to_cpu(attr->nres.svcn);
1596 		evcn = le64_to_cpu(attr->nres.evcn);
1597 
1598 		if (evcn + 1 <= svcn)
1599 			continue;
1600 
1601 		asize = le32_to_cpu(attr->size);
1602 		roff = le16_to_cpu(attr->nres.run_off);
1603 
1604 		if (roff > asize)
1605 			return -EINVAL;
1606 
1607 		/* run==1 means unpack and deallocate. */
1608 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609 			      Add2Ptr(attr, roff), asize - roff);
1610 	}
1611 
1612 	if (ni->attr_list.size) {
1613 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1614 		al_destroy(ni);
1615 	}
1616 
1617 	/* Free all subrecords. */
1618 	for (node = rb_first(&ni->mi_tree); node;) {
1619 		struct rb_node *next = rb_next(node);
1620 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1621 
1622 		clear_rec_inuse(mi->mrec);
1623 		mi->dirty = true;
1624 		mi_write(mi, 0);
1625 
1626 		ntfs_mark_rec_free(sbi, mi->rno, false);
1627 		ni_remove_mi(ni, mi);
1628 		mi_put(mi);
1629 		node = next;
1630 	}
1631 
1632 	/* Free base record. */
1633 	clear_rec_inuse(ni->mi.mrec);
1634 	ni->mi.dirty = true;
1635 	err = mi_write(&ni->mi, 0);
1636 
1637 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1638 
1639 	return err;
1640 }
1641 
1642 /* ni_fname_name
1643  *
1644  * Return: File name attribute by its value.
1645  */
1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647 				     const struct le_str *uni,
1648 				     const struct MFT_REF *home_dir,
1649 				     struct mft_inode **mi,
1650 				     struct ATTR_LIST_ENTRY **le)
1651 {
1652 	struct ATTRIB *attr = NULL;
1653 	struct ATTR_FILE_NAME *fname;
1654 
1655 	if (le)
1656 		*le = NULL;
1657 
1658 	/* Enumerate all names. */
1659 next:
1660 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1661 	if (!attr)
1662 		return NULL;
1663 
1664 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1665 	if (!fname)
1666 		goto next;
1667 
1668 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1669 		goto next;
1670 
1671 	if (!uni)
1672 		return fname;
1673 
1674 	if (uni->len != fname->name_len)
1675 		goto next;
1676 
1677 	if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1678 			   false))
1679 		goto next;
1680 	return fname;
1681 }
1682 
1683 /*
1684  * ni_fname_type
1685  *
1686  * Return: File name attribute with given type.
1687  */
1688 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1689 				     struct mft_inode **mi,
1690 				     struct ATTR_LIST_ENTRY **le)
1691 {
1692 	struct ATTRIB *attr = NULL;
1693 	struct ATTR_FILE_NAME *fname;
1694 
1695 	*le = NULL;
1696 
1697 	if (name_type == FILE_NAME_POSIX)
1698 		return NULL;
1699 
1700 	/* Enumerate all names. */
1701 	for (;;) {
1702 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1703 		if (!attr)
1704 			return NULL;
1705 
1706 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1707 		if (fname && name_type == fname->type)
1708 			return fname;
1709 	}
1710 }
1711 
1712 /*
1713  * ni_new_attr_flags
1714  *
1715  * Process compressed/sparsed in special way.
1716  * NOTE: You need to set ni->std_fa = new_fa
1717  * after this function to keep internal structures in consistency.
1718  */
1719 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1720 {
1721 	struct ATTRIB *attr;
1722 	struct mft_inode *mi;
1723 	__le16 new_aflags;
1724 	u32 new_asize;
1725 
1726 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1727 	if (!attr)
1728 		return -EINVAL;
1729 
1730 	new_aflags = attr->flags;
1731 
1732 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1733 		new_aflags |= ATTR_FLAG_SPARSED;
1734 	else
1735 		new_aflags &= ~ATTR_FLAG_SPARSED;
1736 
1737 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1738 		new_aflags |= ATTR_FLAG_COMPRESSED;
1739 	else
1740 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1741 
1742 	if (new_aflags == attr->flags)
1743 		return 0;
1744 
1745 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1746 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1747 		ntfs_inode_warn(&ni->vfs_inode,
1748 				"file can't be sparsed and compressed");
1749 		return -EOPNOTSUPP;
1750 	}
1751 
1752 	if (!attr->non_res)
1753 		goto out;
1754 
1755 	if (attr->nres.data_size) {
1756 		ntfs_inode_warn(
1757 			&ni->vfs_inode,
1758 			"one can change sparsed/compressed only for empty files");
1759 		return -EOPNOTSUPP;
1760 	}
1761 
1762 	/* Resize nonresident empty attribute in-place only. */
1763 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1764 			    (SIZEOF_NONRESIDENT_EX + 8) :
1765 			    (SIZEOF_NONRESIDENT + 8);
1766 
1767 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1768 		return -EOPNOTSUPP;
1769 
1770 	if (new_aflags & ATTR_FLAG_SPARSED) {
1771 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1772 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1773 		attr->nres.c_unit = 0;
1774 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1775 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1776 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1777 		/* The only allowed: 16 clusters per frame. */
1778 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1779 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1780 	} else {
1781 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1782 		/* Normal files. */
1783 		attr->nres.c_unit = 0;
1784 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1785 	}
1786 	attr->nres.run_off = attr->name_off;
1787 out:
1788 	attr->flags = new_aflags;
1789 	mi->dirty = true;
1790 
1791 	return 0;
1792 }
1793 
1794 /*
1795  * ni_parse_reparse
1796  *
1797  * buffer - memory for reparse buffer header
1798  */
1799 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1800 				   struct REPARSE_DATA_BUFFER *buffer)
1801 {
1802 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1803 	u8 bits;
1804 	u16 len;
1805 	typeof(rp->CompressReparseBuffer) *cmpr;
1806 
1807 	/* Try to estimate reparse point. */
1808 	if (!attr->non_res) {
1809 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1810 	} else if (le64_to_cpu(attr->nres.data_size) >=
1811 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1812 		struct runs_tree run;
1813 
1814 		run_init(&run);
1815 
1816 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1817 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1818 				      sizeof(struct REPARSE_DATA_BUFFER),
1819 				      NULL)) {
1820 			rp = buffer;
1821 		}
1822 
1823 		run_close(&run);
1824 	}
1825 
1826 	if (!rp)
1827 		return REPARSE_NONE;
1828 
1829 	len = le16_to_cpu(rp->ReparseDataLength);
1830 	switch (rp->ReparseTag) {
1831 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1832 		break; /* Symbolic link. */
1833 	case IO_REPARSE_TAG_MOUNT_POINT:
1834 		break; /* Mount points and junctions. */
1835 	case IO_REPARSE_TAG_SYMLINK:
1836 		break;
1837 	case IO_REPARSE_TAG_COMPRESS:
1838 		/*
1839 		 * WOF - Windows Overlay Filter - Used to compress files with
1840 		 * LZX/Xpress.
1841 		 *
1842 		 * Unlike native NTFS file compression, the Windows
1843 		 * Overlay Filter supports only read operations. This means
1844 		 * that it doesn't need to sector-align each compressed chunk,
1845 		 * so the compressed data can be packed more tightly together.
1846 		 * If you open the file for writing, the WOF just decompresses
1847 		 * the entire file, turning it back into a plain file.
1848 		 *
1849 		 * Ntfs3 driver decompresses the entire file only on write or
1850 		 * change size requests.
1851 		 */
1852 
1853 		cmpr = &rp->CompressReparseBuffer;
1854 		if (len < sizeof(*cmpr) ||
1855 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1856 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1857 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1858 			return REPARSE_NONE;
1859 		}
1860 
1861 		switch (cmpr->CompressionFormat) {
1862 		case WOF_COMPRESSION_XPRESS4K:
1863 			bits = 0xc; // 4k
1864 			break;
1865 		case WOF_COMPRESSION_XPRESS8K:
1866 			bits = 0xd; // 8k
1867 			break;
1868 		case WOF_COMPRESSION_XPRESS16K:
1869 			bits = 0xe; // 16k
1870 			break;
1871 		case WOF_COMPRESSION_LZX32K:
1872 			bits = 0xf; // 32k
1873 			break;
1874 		default:
1875 			bits = 0x10; // 64k
1876 			break;
1877 		}
1878 		ni_set_ext_compress_bits(ni, bits);
1879 		return REPARSE_COMPRESSED;
1880 
1881 	case IO_REPARSE_TAG_DEDUP:
1882 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1883 		return REPARSE_DEDUPLICATED;
1884 
1885 	default:
1886 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1887 			break;
1888 
1889 		return REPARSE_NONE;
1890 	}
1891 
1892 	if (buffer != rp)
1893 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1894 
1895 	/* Looks like normal symlink. */
1896 	return REPARSE_LINK;
1897 }
1898 
1899 /*
1900  * ni_fiemap - Helper for file_fiemap().
1901  *
1902  * Assumed ni_lock.
1903  * TODO: Less aggressive locks.
1904  */
1905 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1906 	      __u64 vbo, __u64 len)
1907 {
1908 	int err = 0;
1909 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1910 	u8 cluster_bits = sbi->cluster_bits;
1911 	struct runs_tree *run;
1912 	struct rw_semaphore *run_lock;
1913 	struct ATTRIB *attr;
1914 	CLST vcn = vbo >> cluster_bits;
1915 	CLST lcn, clen;
1916 	u64 valid = ni->i_valid;
1917 	u64 lbo, bytes;
1918 	u64 end, alloc_size;
1919 	size_t idx = -1;
1920 	u32 flags;
1921 	bool ok;
1922 
1923 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1924 		run = &ni->dir.alloc_run;
1925 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1926 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1927 		run_lock = &ni->dir.run_lock;
1928 	} else {
1929 		run = &ni->file.run;
1930 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1931 				    NULL);
1932 		if (!attr) {
1933 			err = -EINVAL;
1934 			goto out;
1935 		}
1936 		if (is_attr_compressed(attr)) {
1937 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1938 			err = -EOPNOTSUPP;
1939 			ntfs_inode_warn(
1940 				&ni->vfs_inode,
1941 				"fiemap is not supported for compressed file (cp -r)");
1942 			goto out;
1943 		}
1944 		run_lock = &ni->file.run_lock;
1945 	}
1946 
1947 	if (!attr || !attr->non_res) {
1948 		err = fiemap_fill_next_extent(
1949 			fieinfo, 0, 0,
1950 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1951 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1952 				FIEMAP_EXTENT_MERGED);
1953 		goto out;
1954 	}
1955 
1956 	end = vbo + len;
1957 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1958 	if (end > alloc_size)
1959 		end = alloc_size;
1960 
1961 	down_read(run_lock);
1962 
1963 	while (vbo < end) {
1964 		if (idx == -1) {
1965 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1966 		} else {
1967 			CLST vcn_next = vcn;
1968 
1969 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1970 			     vcn == vcn_next;
1971 			if (!ok)
1972 				vcn = vcn_next;
1973 		}
1974 
1975 		if (!ok) {
1976 			up_read(run_lock);
1977 			down_write(run_lock);
1978 
1979 			err = attr_load_runs_vcn(ni, attr->type,
1980 						 attr_name(attr),
1981 						 attr->name_len, run, vcn);
1982 
1983 			up_write(run_lock);
1984 			down_read(run_lock);
1985 
1986 			if (err)
1987 				break;
1988 
1989 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1990 
1991 			if (!ok) {
1992 				err = -EINVAL;
1993 				break;
1994 			}
1995 		}
1996 
1997 		if (!clen) {
1998 			err = -EINVAL; // ?
1999 			break;
2000 		}
2001 
2002 		if (lcn == SPARSE_LCN) {
2003 			vcn += clen;
2004 			vbo = (u64)vcn << cluster_bits;
2005 			continue;
2006 		}
2007 
2008 		flags = FIEMAP_EXTENT_MERGED;
2009 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2010 			;
2011 		} else if (is_attr_compressed(attr)) {
2012 			CLST clst_data;
2013 
2014 			err = attr_is_frame_compressed(
2015 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2016 			if (err)
2017 				break;
2018 			if (clst_data < NTFS_LZNT_CLUSTERS)
2019 				flags |= FIEMAP_EXTENT_ENCODED;
2020 		} else if (is_attr_encrypted(attr)) {
2021 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2022 		}
2023 
2024 		vbo = (u64)vcn << cluster_bits;
2025 		bytes = (u64)clen << cluster_bits;
2026 		lbo = (u64)lcn << cluster_bits;
2027 
2028 		vcn += clen;
2029 
2030 		if (vbo + bytes >= end)
2031 			bytes = end - vbo;
2032 
2033 		if (vbo + bytes <= valid) {
2034 			;
2035 		} else if (vbo >= valid) {
2036 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2037 		} else {
2038 			/* vbo < valid && valid < vbo + bytes */
2039 			u64 dlen = valid - vbo;
2040 
2041 			if (vbo + dlen >= end)
2042 				flags |= FIEMAP_EXTENT_LAST;
2043 
2044 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2045 						      flags);
2046 			if (err < 0)
2047 				break;
2048 			if (err == 1) {
2049 				err = 0;
2050 				break;
2051 			}
2052 
2053 			vbo = valid;
2054 			bytes -= dlen;
2055 			if (!bytes)
2056 				continue;
2057 
2058 			lbo += dlen;
2059 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2060 		}
2061 
2062 		if (vbo + bytes >= end)
2063 			flags |= FIEMAP_EXTENT_LAST;
2064 
2065 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2066 		if (err < 0)
2067 			break;
2068 		if (err == 1) {
2069 			err = 0;
2070 			break;
2071 		}
2072 
2073 		vbo += bytes;
2074 	}
2075 
2076 	up_read(run_lock);
2077 
2078 out:
2079 	return err;
2080 }
2081 
2082 /*
2083  * ni_readpage_cmpr
2084  *
2085  * When decompressing, we typically obtain more than one page per reference.
2086  * We inject the additional pages into the page cache.
2087  */
2088 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2089 {
2090 	int err;
2091 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2092 	struct address_space *mapping = page->mapping;
2093 	pgoff_t index = page->index;
2094 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2095 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2096 	u8 frame_bits;
2097 	CLST frame;
2098 	u32 i, idx, frame_size, pages_per_frame;
2099 	gfp_t gfp_mask;
2100 	struct page *pg;
2101 
2102 	if (vbo >= ni->vfs_inode.i_size) {
2103 		SetPageUptodate(page);
2104 		err = 0;
2105 		goto out;
2106 	}
2107 
2108 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2109 		/* Xpress or LZX. */
2110 		frame_bits = ni_ext_compress_bits(ni);
2111 	} else {
2112 		/* LZNT compression. */
2113 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2114 	}
2115 	frame_size = 1u << frame_bits;
2116 	frame = vbo >> frame_bits;
2117 	frame_vbo = (u64)frame << frame_bits;
2118 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2119 
2120 	pages_per_frame = frame_size >> PAGE_SHIFT;
2121 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2122 	if (!pages) {
2123 		err = -ENOMEM;
2124 		goto out;
2125 	}
2126 
2127 	pages[idx] = page;
2128 	index = frame_vbo >> PAGE_SHIFT;
2129 	gfp_mask = mapping_gfp_mask(mapping);
2130 
2131 	for (i = 0; i < pages_per_frame; i++, index++) {
2132 		if (i == idx)
2133 			continue;
2134 
2135 		pg = find_or_create_page(mapping, index, gfp_mask);
2136 		if (!pg) {
2137 			err = -ENOMEM;
2138 			goto out1;
2139 		}
2140 		pages[i] = pg;
2141 	}
2142 
2143 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2144 
2145 out1:
2146 	if (err)
2147 		SetPageError(page);
2148 
2149 	for (i = 0; i < pages_per_frame; i++) {
2150 		pg = pages[i];
2151 		if (i == idx || !pg)
2152 			continue;
2153 		unlock_page(pg);
2154 		put_page(pg);
2155 	}
2156 
2157 out:
2158 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2159 	kfree(pages);
2160 	unlock_page(page);
2161 
2162 	return err;
2163 }
2164 
2165 #ifdef CONFIG_NTFS3_LZX_XPRESS
2166 /*
2167  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2168  *
2169  * Remove ATTR_DATA::WofCompressedData.
2170  * Remove ATTR_REPARSE.
2171  */
2172 int ni_decompress_file(struct ntfs_inode *ni)
2173 {
2174 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2175 	struct inode *inode = &ni->vfs_inode;
2176 	loff_t i_size = inode->i_size;
2177 	struct address_space *mapping = inode->i_mapping;
2178 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2179 	struct page **pages = NULL;
2180 	struct ATTR_LIST_ENTRY *le;
2181 	struct ATTRIB *attr;
2182 	CLST vcn, cend, lcn, clen, end;
2183 	pgoff_t index;
2184 	u64 vbo;
2185 	u8 frame_bits;
2186 	u32 i, frame_size, pages_per_frame, bytes;
2187 	struct mft_inode *mi;
2188 	int err;
2189 
2190 	/* Clusters for decompressed data. */
2191 	cend = bytes_to_cluster(sbi, i_size);
2192 
2193 	if (!i_size)
2194 		goto remove_wof;
2195 
2196 	/* Check in advance. */
2197 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2198 		err = -ENOSPC;
2199 		goto out;
2200 	}
2201 
2202 	frame_bits = ni_ext_compress_bits(ni);
2203 	frame_size = 1u << frame_bits;
2204 	pages_per_frame = frame_size >> PAGE_SHIFT;
2205 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2206 	if (!pages) {
2207 		err = -ENOMEM;
2208 		goto out;
2209 	}
2210 
2211 	/*
2212 	 * Step 1: Decompress data and copy to new allocated clusters.
2213 	 */
2214 	index = 0;
2215 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2216 		u32 nr_pages;
2217 		bool new;
2218 
2219 		if (vbo + frame_size > i_size) {
2220 			bytes = i_size - vbo;
2221 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2222 		} else {
2223 			nr_pages = pages_per_frame;
2224 			bytes = frame_size;
2225 		}
2226 
2227 		end = bytes_to_cluster(sbi, vbo + bytes);
2228 
2229 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2230 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2231 						  &clen, &new, false);
2232 			if (err)
2233 				goto out;
2234 		}
2235 
2236 		for (i = 0; i < pages_per_frame; i++, index++) {
2237 			struct page *pg;
2238 
2239 			pg = find_or_create_page(mapping, index, gfp_mask);
2240 			if (!pg) {
2241 				while (i--) {
2242 					unlock_page(pages[i]);
2243 					put_page(pages[i]);
2244 				}
2245 				err = -ENOMEM;
2246 				goto out;
2247 			}
2248 			pages[i] = pg;
2249 		}
2250 
2251 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2252 
2253 		if (!err) {
2254 			down_read(&ni->file.run_lock);
2255 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2256 					     nr_pages, vbo, bytes,
2257 					     REQ_OP_WRITE);
2258 			up_read(&ni->file.run_lock);
2259 		}
2260 
2261 		for (i = 0; i < pages_per_frame; i++) {
2262 			unlock_page(pages[i]);
2263 			put_page(pages[i]);
2264 		}
2265 
2266 		if (err)
2267 			goto out;
2268 
2269 		cond_resched();
2270 	}
2271 
2272 remove_wof:
2273 	/*
2274 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2275 	 * and ATTR_REPARSE.
2276 	 */
2277 	attr = NULL;
2278 	le = NULL;
2279 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2280 		CLST svcn, evcn;
2281 		u32 asize, roff;
2282 
2283 		if (attr->type == ATTR_REPARSE) {
2284 			struct MFT_REF ref;
2285 
2286 			mi_get_ref(&ni->mi, &ref);
2287 			ntfs_remove_reparse(sbi, 0, &ref);
2288 		}
2289 
2290 		if (!attr->non_res)
2291 			continue;
2292 
2293 		if (attr->type != ATTR_REPARSE &&
2294 		    (attr->type != ATTR_DATA ||
2295 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2296 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2297 			continue;
2298 
2299 		svcn = le64_to_cpu(attr->nres.svcn);
2300 		evcn = le64_to_cpu(attr->nres.evcn);
2301 
2302 		if (evcn + 1 <= svcn)
2303 			continue;
2304 
2305 		asize = le32_to_cpu(attr->size);
2306 		roff = le16_to_cpu(attr->nres.run_off);
2307 
2308 		if (roff > asize) {
2309 			err = -EINVAL;
2310 			goto out;
2311 		}
2312 
2313 		/*run==1  Means unpack and deallocate. */
2314 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2315 			      Add2Ptr(attr, roff), asize - roff);
2316 	}
2317 
2318 	/*
2319 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2320 	 */
2321 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2322 			     false, NULL);
2323 	if (err)
2324 		goto out;
2325 
2326 	/*
2327 	 * Step 4: Remove ATTR_REPARSE.
2328 	 */
2329 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2330 	if (err)
2331 		goto out;
2332 
2333 	/*
2334 	 * Step 5: Remove sparse flag from data attribute.
2335 	 */
2336 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2337 	if (!attr) {
2338 		err = -EINVAL;
2339 		goto out;
2340 	}
2341 
2342 	if (attr->non_res && is_attr_sparsed(attr)) {
2343 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2344 		struct MFT_REC *rec = mi->mrec;
2345 		u32 used = le32_to_cpu(rec->used);
2346 		u32 asize = le32_to_cpu(attr->size);
2347 		u16 roff = le16_to_cpu(attr->nres.run_off);
2348 		char *rbuf = Add2Ptr(attr, roff);
2349 
2350 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2351 		attr->size = cpu_to_le32(asize - 8);
2352 		attr->flags &= ~ATTR_FLAG_SPARSED;
2353 		attr->nres.run_off = cpu_to_le16(roff - 8);
2354 		attr->nres.c_unit = 0;
2355 		rec->used = cpu_to_le32(used - 8);
2356 		mi->dirty = true;
2357 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2358 				FILE_ATTRIBUTE_REPARSE_POINT);
2359 
2360 		mark_inode_dirty(inode);
2361 	}
2362 
2363 	/* Clear cached flag. */
2364 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2365 	if (ni->file.offs_page) {
2366 		put_page(ni->file.offs_page);
2367 		ni->file.offs_page = NULL;
2368 	}
2369 	mapping->a_ops = &ntfs_aops;
2370 
2371 out:
2372 	kfree(pages);
2373 	if (err)
2374 		_ntfs_bad_inode(inode);
2375 
2376 	return err;
2377 }
2378 
2379 /*
2380  * decompress_lzx_xpress - External compression LZX/Xpress.
2381  */
2382 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2383 				 size_t cmpr_size, void *unc, size_t unc_size,
2384 				 u32 frame_size)
2385 {
2386 	int err;
2387 	void *ctx;
2388 
2389 	if (cmpr_size == unc_size) {
2390 		/* Frame not compressed. */
2391 		memcpy(unc, cmpr, unc_size);
2392 		return 0;
2393 	}
2394 
2395 	err = 0;
2396 	if (frame_size == 0x8000) {
2397 		mutex_lock(&sbi->compress.mtx_lzx);
2398 		/* LZX: Frame compressed. */
2399 		ctx = sbi->compress.lzx;
2400 		if (!ctx) {
2401 			/* Lazy initialize LZX decompress context. */
2402 			ctx = lzx_allocate_decompressor();
2403 			if (!ctx) {
2404 				err = -ENOMEM;
2405 				goto out1;
2406 			}
2407 
2408 			sbi->compress.lzx = ctx;
2409 		}
2410 
2411 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2412 			/* Treat all errors as "invalid argument". */
2413 			err = -EINVAL;
2414 		}
2415 out1:
2416 		mutex_unlock(&sbi->compress.mtx_lzx);
2417 	} else {
2418 		/* XPRESS: Frame compressed. */
2419 		mutex_lock(&sbi->compress.mtx_xpress);
2420 		ctx = sbi->compress.xpress;
2421 		if (!ctx) {
2422 			/* Lazy initialize Xpress decompress context. */
2423 			ctx = xpress_allocate_decompressor();
2424 			if (!ctx) {
2425 				err = -ENOMEM;
2426 				goto out2;
2427 			}
2428 
2429 			sbi->compress.xpress = ctx;
2430 		}
2431 
2432 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2433 			/* Treat all errors as "invalid argument". */
2434 			err = -EINVAL;
2435 		}
2436 out2:
2437 		mutex_unlock(&sbi->compress.mtx_xpress);
2438 	}
2439 	return err;
2440 }
2441 #endif
2442 
2443 /*
2444  * ni_read_frame
2445  *
2446  * Pages - Array of locked pages.
2447  */
2448 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2449 		  u32 pages_per_frame)
2450 {
2451 	int err;
2452 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2453 	u8 cluster_bits = sbi->cluster_bits;
2454 	char *frame_ondisk = NULL;
2455 	char *frame_mem = NULL;
2456 	struct page **pages_disk = NULL;
2457 	struct ATTR_LIST_ENTRY *le = NULL;
2458 	struct runs_tree *run = &ni->file.run;
2459 	u64 valid_size = ni->i_valid;
2460 	u64 vbo_disk;
2461 	size_t unc_size;
2462 	u32 frame_size, i, npages_disk, ondisk_size;
2463 	struct page *pg;
2464 	struct ATTRIB *attr;
2465 	CLST frame, clst_data;
2466 
2467 	/*
2468 	 * To simplify decompress algorithm do vmap for source
2469 	 * and target pages.
2470 	 */
2471 	for (i = 0; i < pages_per_frame; i++)
2472 		kmap(pages[i]);
2473 
2474 	frame_size = pages_per_frame << PAGE_SHIFT;
2475 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2476 	if (!frame_mem) {
2477 		err = -ENOMEM;
2478 		goto out;
2479 	}
2480 
2481 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2482 	if (!attr) {
2483 		err = -ENOENT;
2484 		goto out1;
2485 	}
2486 
2487 	if (!attr->non_res) {
2488 		u32 data_size = le32_to_cpu(attr->res.data_size);
2489 
2490 		memset(frame_mem, 0, frame_size);
2491 		if (frame_vbo < data_size) {
2492 			ondisk_size = data_size - frame_vbo;
2493 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2494 			       min(ondisk_size, frame_size));
2495 		}
2496 		err = 0;
2497 		goto out1;
2498 	}
2499 
2500 	if (frame_vbo >= valid_size) {
2501 		memset(frame_mem, 0, frame_size);
2502 		err = 0;
2503 		goto out1;
2504 	}
2505 
2506 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2507 #ifndef CONFIG_NTFS3_LZX_XPRESS
2508 		err = -EOPNOTSUPP;
2509 		goto out1;
2510 #else
2511 		u32 frame_bits = ni_ext_compress_bits(ni);
2512 		u64 frame64 = frame_vbo >> frame_bits;
2513 		u64 frames, vbo_data;
2514 
2515 		if (frame_size != (1u << frame_bits)) {
2516 			err = -EINVAL;
2517 			goto out1;
2518 		}
2519 		switch (frame_size) {
2520 		case 0x1000:
2521 		case 0x2000:
2522 		case 0x4000:
2523 		case 0x8000:
2524 			break;
2525 		default:
2526 			/* Unknown compression. */
2527 			err = -EOPNOTSUPP;
2528 			goto out1;
2529 		}
2530 
2531 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2532 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2533 		if (!attr) {
2534 			ntfs_inode_err(
2535 				&ni->vfs_inode,
2536 				"external compressed file should contains data attribute \"WofCompressedData\"");
2537 			err = -EINVAL;
2538 			goto out1;
2539 		}
2540 
2541 		if (!attr->non_res) {
2542 			run = NULL;
2543 		} else {
2544 			run = run_alloc();
2545 			if (!run) {
2546 				err = -ENOMEM;
2547 				goto out1;
2548 			}
2549 		}
2550 
2551 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2552 
2553 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2554 					  frame_bits, &ondisk_size, &vbo_data);
2555 		if (err)
2556 			goto out2;
2557 
2558 		if (frame64 == frames) {
2559 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2560 					(frame_size - 1));
2561 			ondisk_size = attr_size(attr) - vbo_data;
2562 		} else {
2563 			unc_size = frame_size;
2564 		}
2565 
2566 		if (ondisk_size > frame_size) {
2567 			err = -EINVAL;
2568 			goto out2;
2569 		}
2570 
2571 		if (!attr->non_res) {
2572 			if (vbo_data + ondisk_size >
2573 			    le32_to_cpu(attr->res.data_size)) {
2574 				err = -EINVAL;
2575 				goto out1;
2576 			}
2577 
2578 			err = decompress_lzx_xpress(
2579 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2580 				ondisk_size, frame_mem, unc_size, frame_size);
2581 			goto out1;
2582 		}
2583 		vbo_disk = vbo_data;
2584 		/* Load all runs to read [vbo_disk-vbo_to). */
2585 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2586 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2587 					   vbo_data + ondisk_size);
2588 		if (err)
2589 			goto out2;
2590 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2591 			       PAGE_SIZE - 1) >>
2592 			      PAGE_SHIFT;
2593 #endif
2594 	} else if (is_attr_compressed(attr)) {
2595 		/* LZNT compression. */
2596 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2597 			err = -EOPNOTSUPP;
2598 			goto out1;
2599 		}
2600 
2601 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2602 			err = -EOPNOTSUPP;
2603 			goto out1;
2604 		}
2605 
2606 		down_write(&ni->file.run_lock);
2607 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2608 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2609 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2610 		up_write(&ni->file.run_lock);
2611 		if (err)
2612 			goto out1;
2613 
2614 		if (!clst_data) {
2615 			memset(frame_mem, 0, frame_size);
2616 			goto out1;
2617 		}
2618 
2619 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2620 		ondisk_size = clst_data << cluster_bits;
2621 
2622 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2623 			/* Frame is not compressed. */
2624 			down_read(&ni->file.run_lock);
2625 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2626 					     frame_vbo, ondisk_size,
2627 					     REQ_OP_READ);
2628 			up_read(&ni->file.run_lock);
2629 			goto out1;
2630 		}
2631 		vbo_disk = frame_vbo;
2632 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2633 	} else {
2634 		__builtin_unreachable();
2635 		err = -EINVAL;
2636 		goto out1;
2637 	}
2638 
2639 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2640 	if (!pages_disk) {
2641 		err = -ENOMEM;
2642 		goto out2;
2643 	}
2644 
2645 	for (i = 0; i < npages_disk; i++) {
2646 		pg = alloc_page(GFP_KERNEL);
2647 		if (!pg) {
2648 			err = -ENOMEM;
2649 			goto out3;
2650 		}
2651 		pages_disk[i] = pg;
2652 		lock_page(pg);
2653 		kmap(pg);
2654 	}
2655 
2656 	/* Read 'ondisk_size' bytes from disk. */
2657 	down_read(&ni->file.run_lock);
2658 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2659 			     ondisk_size, REQ_OP_READ);
2660 	up_read(&ni->file.run_lock);
2661 	if (err)
2662 		goto out3;
2663 
2664 	/*
2665 	 * To simplify decompress algorithm do vmap for source and target pages.
2666 	 */
2667 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2668 	if (!frame_ondisk) {
2669 		err = -ENOMEM;
2670 		goto out3;
2671 	}
2672 
2673 	/* Decompress: Frame_ondisk -> frame_mem. */
2674 #ifdef CONFIG_NTFS3_LZX_XPRESS
2675 	if (run != &ni->file.run) {
2676 		/* LZX or XPRESS */
2677 		err = decompress_lzx_xpress(
2678 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2679 			ondisk_size, frame_mem, unc_size, frame_size);
2680 	} else
2681 #endif
2682 	{
2683 		/* LZNT - Native NTFS compression. */
2684 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2685 					   frame_size);
2686 		if ((ssize_t)unc_size < 0)
2687 			err = unc_size;
2688 		else if (!unc_size || unc_size > frame_size)
2689 			err = -EINVAL;
2690 	}
2691 	if (!err && valid_size < frame_vbo + frame_size) {
2692 		size_t ok = valid_size - frame_vbo;
2693 
2694 		memset(frame_mem + ok, 0, frame_size - ok);
2695 	}
2696 
2697 	vunmap(frame_ondisk);
2698 
2699 out3:
2700 	for (i = 0; i < npages_disk; i++) {
2701 		pg = pages_disk[i];
2702 		if (pg) {
2703 			kunmap(pg);
2704 			unlock_page(pg);
2705 			put_page(pg);
2706 		}
2707 	}
2708 	kfree(pages_disk);
2709 
2710 out2:
2711 #ifdef CONFIG_NTFS3_LZX_XPRESS
2712 	if (run != &ni->file.run)
2713 		run_free(run);
2714 #endif
2715 out1:
2716 	vunmap(frame_mem);
2717 out:
2718 	for (i = 0; i < pages_per_frame; i++) {
2719 		pg = pages[i];
2720 		kunmap(pg);
2721 		ClearPageError(pg);
2722 		SetPageUptodate(pg);
2723 	}
2724 
2725 	return err;
2726 }
2727 
2728 /*
2729  * ni_write_frame
2730  *
2731  * Pages - Array of locked pages.
2732  */
2733 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2734 		   u32 pages_per_frame)
2735 {
2736 	int err;
2737 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2738 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2739 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2740 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2741 	CLST frame = frame_vbo >> frame_bits;
2742 	char *frame_ondisk = NULL;
2743 	struct page **pages_disk = NULL;
2744 	struct ATTR_LIST_ENTRY *le = NULL;
2745 	char *frame_mem;
2746 	struct ATTRIB *attr;
2747 	struct mft_inode *mi;
2748 	u32 i;
2749 	struct page *pg;
2750 	size_t compr_size, ondisk_size;
2751 	struct lznt *lznt;
2752 
2753 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2754 	if (!attr) {
2755 		err = -ENOENT;
2756 		goto out;
2757 	}
2758 
2759 	if (WARN_ON(!is_attr_compressed(attr))) {
2760 		err = -EINVAL;
2761 		goto out;
2762 	}
2763 
2764 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2765 		err = -EOPNOTSUPP;
2766 		goto out;
2767 	}
2768 
2769 	if (!attr->non_res) {
2770 		down_write(&ni->file.run_lock);
2771 		err = attr_make_nonresident(ni, attr, le, mi,
2772 					    le32_to_cpu(attr->res.data_size),
2773 					    &ni->file.run, &attr, pages[0]);
2774 		up_write(&ni->file.run_lock);
2775 		if (err)
2776 			goto out;
2777 	}
2778 
2779 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2780 		err = -EOPNOTSUPP;
2781 		goto out;
2782 	}
2783 
2784 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2785 	if (!pages_disk) {
2786 		err = -ENOMEM;
2787 		goto out;
2788 	}
2789 
2790 	for (i = 0; i < pages_per_frame; i++) {
2791 		pg = alloc_page(GFP_KERNEL);
2792 		if (!pg) {
2793 			err = -ENOMEM;
2794 			goto out1;
2795 		}
2796 		pages_disk[i] = pg;
2797 		lock_page(pg);
2798 		kmap(pg);
2799 	}
2800 
2801 	/* To simplify compress algorithm do vmap for source and target pages. */
2802 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2803 	if (!frame_ondisk) {
2804 		err = -ENOMEM;
2805 		goto out1;
2806 	}
2807 
2808 	for (i = 0; i < pages_per_frame; i++)
2809 		kmap(pages[i]);
2810 
2811 	/* Map in-memory frame for read-only. */
2812 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2813 	if (!frame_mem) {
2814 		err = -ENOMEM;
2815 		goto out2;
2816 	}
2817 
2818 	mutex_lock(&sbi->compress.mtx_lznt);
2819 	lznt = NULL;
2820 	if (!sbi->compress.lznt) {
2821 		/*
2822 		 * LZNT implements two levels of compression:
2823 		 * 0 - Standard compression
2824 		 * 1 - Best compression, requires a lot of cpu
2825 		 * use mount option?
2826 		 */
2827 		lznt = get_lznt_ctx(0);
2828 		if (!lznt) {
2829 			mutex_unlock(&sbi->compress.mtx_lznt);
2830 			err = -ENOMEM;
2831 			goto out3;
2832 		}
2833 
2834 		sbi->compress.lznt = lznt;
2835 		lznt = NULL;
2836 	}
2837 
2838 	/* Compress: frame_mem -> frame_ondisk */
2839 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2840 				   frame_size, sbi->compress.lznt);
2841 	mutex_unlock(&sbi->compress.mtx_lznt);
2842 	kfree(lznt);
2843 
2844 	if (compr_size + sbi->cluster_size > frame_size) {
2845 		/* Frame is not compressed. */
2846 		compr_size = frame_size;
2847 		ondisk_size = frame_size;
2848 	} else if (compr_size) {
2849 		/* Frame is compressed. */
2850 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2851 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2852 	} else {
2853 		/* Frame is sparsed. */
2854 		ondisk_size = 0;
2855 	}
2856 
2857 	down_write(&ni->file.run_lock);
2858 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2859 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2860 	up_write(&ni->file.run_lock);
2861 	if (err)
2862 		goto out2;
2863 
2864 	if (!ondisk_size)
2865 		goto out2;
2866 
2867 	down_read(&ni->file.run_lock);
2868 	err = ntfs_bio_pages(sbi, &ni->file.run,
2869 			     ondisk_size < frame_size ? pages_disk : pages,
2870 			     pages_per_frame, frame_vbo, ondisk_size,
2871 			     REQ_OP_WRITE);
2872 	up_read(&ni->file.run_lock);
2873 
2874 out3:
2875 	vunmap(frame_mem);
2876 
2877 out2:
2878 	for (i = 0; i < pages_per_frame; i++)
2879 		kunmap(pages[i]);
2880 
2881 	vunmap(frame_ondisk);
2882 out1:
2883 	for (i = 0; i < pages_per_frame; i++) {
2884 		pg = pages_disk[i];
2885 		if (pg) {
2886 			kunmap(pg);
2887 			unlock_page(pg);
2888 			put_page(pg);
2889 		}
2890 	}
2891 	kfree(pages_disk);
2892 out:
2893 	return err;
2894 }
2895 
2896 /*
2897  * ni_remove_name - Removes name 'de' from MFT and from directory.
2898  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2899  */
2900 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2901 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2902 {
2903 	int err;
2904 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2905 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2906 	struct ATTR_FILE_NAME *fname;
2907 	struct ATTR_LIST_ENTRY *le;
2908 	struct mft_inode *mi;
2909 	u16 de_key_size = le16_to_cpu(de->key_size);
2910 	u8 name_type;
2911 
2912 	*undo_step = 0;
2913 
2914 	/* Find name in record. */
2915 	mi_get_ref(&dir_ni->mi, &de_name->home);
2916 
2917 	fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2918 			      &de_name->home, &mi, &le);
2919 	if (!fname)
2920 		return -ENOENT;
2921 
2922 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2923 	name_type = paired_name(fname->type);
2924 
2925 	/* Mark ntfs as dirty. It will be cleared at umount. */
2926 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2927 
2928 	/* Step 1: Remove name from directory. */
2929 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2930 	if (err)
2931 		return err;
2932 
2933 	/* Step 2: Remove name from MFT. */
2934 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2935 
2936 	*undo_step = 2;
2937 
2938 	/* Get paired name. */
2939 	fname = ni_fname_type(ni, name_type, &mi, &le);
2940 	if (fname) {
2941 		u16 de2_key_size = fname_full_size(fname);
2942 
2943 		*de2 = Add2Ptr(de, 1024);
2944 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2945 
2946 		memcpy(*de2 + 1, fname, de2_key_size);
2947 
2948 		/* Step 3: Remove paired name from directory. */
2949 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2950 					de2_key_size, sbi);
2951 		if (err)
2952 			return err;
2953 
2954 		/* Step 4: Remove paired name from MFT. */
2955 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2956 
2957 		*undo_step = 4;
2958 	}
2959 	return 0;
2960 }
2961 
2962 /*
2963  * ni_remove_name_undo - Paired function for ni_remove_name.
2964  *
2965  * Return: True if ok
2966  */
2967 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2968 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2969 {
2970 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2971 	struct ATTRIB *attr;
2972 	u16 de_key_size;
2973 
2974 	switch (undo_step) {
2975 	case 4:
2976 		de_key_size = le16_to_cpu(de2->key_size);
2977 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2978 				       &attr, NULL, NULL))
2979 			return false;
2980 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2981 
2982 		mi_get_ref(&ni->mi, &de2->ref);
2983 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2984 					sizeof(struct NTFS_DE));
2985 		de2->flags = 0;
2986 		de2->res = 0;
2987 
2988 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2989 			return false;
2990 		fallthrough;
2991 
2992 	case 2:
2993 		de_key_size = le16_to_cpu(de->key_size);
2994 
2995 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2996 				       &attr, NULL, NULL))
2997 			return false;
2998 
2999 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3000 		mi_get_ref(&ni->mi, &de->ref);
3001 
3002 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3003 			return false;
3004 	}
3005 
3006 	return true;
3007 }
3008 
3009 /*
3010  * ni_add_name - Add new name into MFT and into directory.
3011  */
3012 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3013 		struct NTFS_DE *de)
3014 {
3015 	int err;
3016 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3017 	struct ATTRIB *attr;
3018 	struct ATTR_LIST_ENTRY *le;
3019 	struct mft_inode *mi;
3020 	struct ATTR_FILE_NAME *fname;
3021 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3022 	u16 de_key_size = le16_to_cpu(de->key_size);
3023 
3024 	if (sbi->options->windows_names &&
3025 	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3026 		return -EINVAL;
3027 
3028 	/* If option "hide_dot_files" then set hidden attribute for dot files. */
3029 	if (ni->mi.sbi->options->hide_dot_files) {
3030 		if (de_name->name_len > 0 &&
3031 		    le16_to_cpu(de_name->name[0]) == '.')
3032 			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3033 		else
3034 			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3035 	}
3036 
3037 	mi_get_ref(&ni->mi, &de->ref);
3038 	mi_get_ref(&dir_ni->mi, &de_name->home);
3039 
3040 	/* Fill duplicate from any ATTR_NAME. */
3041 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3042 	if (fname)
3043 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3044 	de_name->dup.fa = ni->std_fa;
3045 
3046 	/* Insert new name into MFT. */
3047 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3048 				 &mi, &le);
3049 	if (err)
3050 		return err;
3051 
3052 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3053 
3054 	/* Insert new name into directory. */
3055 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3056 	if (err)
3057 		ni_remove_attr_le(ni, attr, mi, le);
3058 
3059 	return err;
3060 }
3061 
3062 /*
3063  * ni_rename - Remove one name and insert new name.
3064  */
3065 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3066 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3067 	      bool *is_bad)
3068 {
3069 	int err;
3070 	struct NTFS_DE *de2 = NULL;
3071 	int undo = 0;
3072 
3073 	/*
3074 	 * There are two possible ways to rename:
3075 	 * 1) Add new name and remove old name.
3076 	 * 2) Remove old name and add new name.
3077 	 *
3078 	 * In most cases (not all!) adding new name into MFT and into directory can
3079 	 * allocate additional cluster(s).
3080 	 * Second way may result to bad inode if we can't add new name
3081 	 * and then can't restore (add) old name.
3082 	 */
3083 
3084 	/*
3085 	 * Way 1 - Add new + remove old.
3086 	 */
3087 	err = ni_add_name(new_dir_ni, ni, new_de);
3088 	if (!err) {
3089 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3090 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3091 			*is_bad = true;
3092 	}
3093 
3094 	/*
3095 	 * Way 2 - Remove old + add new.
3096 	 */
3097 	/*
3098 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3099 	 *	if (!err) {
3100 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3101 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3102 	 *			*is_bad = true;
3103 	 *	}
3104 	 */
3105 
3106 	return err;
3107 }
3108 
3109 /*
3110  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3111  */
3112 bool ni_is_dirty(struct inode *inode)
3113 {
3114 	struct ntfs_inode *ni = ntfs_i(inode);
3115 	struct rb_node *node;
3116 
3117 	if (ni->mi.dirty || ni->attr_list.dirty ||
3118 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3119 		return true;
3120 
3121 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3122 		if (rb_entry(node, struct mft_inode, node)->dirty)
3123 			return true;
3124 	}
3125 
3126 	return false;
3127 }
3128 
3129 /*
3130  * ni_update_parent
3131  *
3132  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3133  */
3134 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3135 			     int sync)
3136 {
3137 	struct ATTRIB *attr;
3138 	struct mft_inode *mi;
3139 	struct ATTR_LIST_ENTRY *le = NULL;
3140 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3141 	struct super_block *sb = sbi->sb;
3142 	bool re_dirty = false;
3143 
3144 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3145 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3146 		attr = NULL;
3147 		dup->alloc_size = 0;
3148 		dup->data_size = 0;
3149 	} else {
3150 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3151 
3152 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3153 				    &mi);
3154 		if (!attr) {
3155 			dup->alloc_size = dup->data_size = 0;
3156 		} else if (!attr->non_res) {
3157 			u32 data_size = le32_to_cpu(attr->res.data_size);
3158 
3159 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3160 			dup->data_size = cpu_to_le64(data_size);
3161 		} else {
3162 			u64 new_valid = ni->i_valid;
3163 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3164 			__le64 valid_le;
3165 
3166 			dup->alloc_size = is_attr_ext(attr) ?
3167 						  attr->nres.total_size :
3168 						  attr->nres.alloc_size;
3169 			dup->data_size = attr->nres.data_size;
3170 
3171 			if (new_valid > data_size)
3172 				new_valid = data_size;
3173 
3174 			valid_le = cpu_to_le64(new_valid);
3175 			if (valid_le != attr->nres.valid_size) {
3176 				attr->nres.valid_size = valid_le;
3177 				mi->dirty = true;
3178 			}
3179 		}
3180 	}
3181 
3182 	/* TODO: Fill reparse info. */
3183 	dup->reparse = 0;
3184 	dup->ea_size = 0;
3185 
3186 	if (ni->ni_flags & NI_FLAG_EA) {
3187 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3188 				    NULL);
3189 		if (attr) {
3190 			const struct EA_INFO *info;
3191 
3192 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3193 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3194 			if (info)
3195 				dup->ea_size = info->size_pack;
3196 		}
3197 	}
3198 
3199 	attr = NULL;
3200 	le = NULL;
3201 
3202 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3203 				    &mi))) {
3204 		struct inode *dir;
3205 		struct ATTR_FILE_NAME *fname;
3206 
3207 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3208 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3209 			continue;
3210 
3211 		/* Check simple case when parent inode equals current inode. */
3212 		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3213 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3214 			continue;
3215 		}
3216 
3217 		/* ntfs_iget5 may sleep. */
3218 		dir = ntfs_iget5(sb, &fname->home, NULL);
3219 		if (IS_ERR(dir)) {
3220 			ntfs_inode_warn(
3221 				&ni->vfs_inode,
3222 				"failed to open parent directory r=%lx to update",
3223 				(long)ino_get(&fname->home));
3224 			continue;
3225 		}
3226 
3227 		if (!is_bad_inode(dir)) {
3228 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3229 
3230 			if (!ni_trylock(dir_ni)) {
3231 				re_dirty = true;
3232 			} else {
3233 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3234 				ni_unlock(dir_ni);
3235 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3236 				mi->dirty = true;
3237 			}
3238 		}
3239 		iput(dir);
3240 	}
3241 
3242 	return re_dirty;
3243 }
3244 
3245 /*
3246  * ni_write_inode - Write MFT base record and all subrecords to disk.
3247  */
3248 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3249 {
3250 	int err = 0, err2;
3251 	struct ntfs_inode *ni = ntfs_i(inode);
3252 	struct super_block *sb = inode->i_sb;
3253 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3254 	bool re_dirty = false;
3255 	struct ATTR_STD_INFO *std;
3256 	struct rb_node *node, *next;
3257 	struct NTFS_DUP_INFO dup;
3258 
3259 	if (is_bad_inode(inode) || sb_rdonly(sb))
3260 		return 0;
3261 
3262 	if (!ni_trylock(ni)) {
3263 		/* 'ni' is under modification, skip for now. */
3264 		mark_inode_dirty_sync(inode);
3265 		return 0;
3266 	}
3267 
3268 	if (!ni->mi.mrec)
3269 		goto out;
3270 
3271 	if (is_rec_inuse(ni->mi.mrec) &&
3272 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3273 		bool modified = false;
3274 		struct timespec64 ctime = inode_get_ctime(inode);
3275 
3276 		/* Update times in standard attribute. */
3277 		std = ni_std(ni);
3278 		if (!std) {
3279 			err = -EINVAL;
3280 			goto out;
3281 		}
3282 
3283 		/* Update the access times if they have changed. */
3284 		dup.m_time = kernel2nt(&inode->i_mtime);
3285 		if (std->m_time != dup.m_time) {
3286 			std->m_time = dup.m_time;
3287 			modified = true;
3288 		}
3289 
3290 		dup.c_time = kernel2nt(&ctime);
3291 		if (std->c_time != dup.c_time) {
3292 			std->c_time = dup.c_time;
3293 			modified = true;
3294 		}
3295 
3296 		dup.a_time = kernel2nt(&inode->i_atime);
3297 		if (std->a_time != dup.a_time) {
3298 			std->a_time = dup.a_time;
3299 			modified = true;
3300 		}
3301 
3302 		dup.fa = ni->std_fa;
3303 		if (std->fa != dup.fa) {
3304 			std->fa = dup.fa;
3305 			modified = true;
3306 		}
3307 
3308 		/* std attribute is always in primary MFT record. */
3309 		if (modified)
3310 			ni->mi.dirty = true;
3311 
3312 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3313 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3314 		    /* Avoid __wait_on_freeing_inode(inode). */
3315 		    && (sb->s_flags & SB_ACTIVE)) {
3316 			dup.cr_time = std->cr_time;
3317 			/* Not critical if this function fail. */
3318 			re_dirty = ni_update_parent(ni, &dup, sync);
3319 
3320 			if (re_dirty)
3321 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3322 			else
3323 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3324 		}
3325 
3326 		/* Update attribute list. */
3327 		if (ni->attr_list.size && ni->attr_list.dirty) {
3328 			if (inode->i_ino != MFT_REC_MFT || sync) {
3329 				err = ni_try_remove_attr_list(ni);
3330 				if (err)
3331 					goto out;
3332 			}
3333 
3334 			err = al_update(ni, sync);
3335 			if (err)
3336 				goto out;
3337 		}
3338 	}
3339 
3340 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3341 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3342 		bool is_empty;
3343 
3344 		next = rb_next(node);
3345 
3346 		if (!mi->dirty)
3347 			continue;
3348 
3349 		is_empty = !mi_enum_attr(mi, NULL);
3350 
3351 		if (is_empty)
3352 			clear_rec_inuse(mi->mrec);
3353 
3354 		err2 = mi_write(mi, sync);
3355 		if (!err && err2)
3356 			err = err2;
3357 
3358 		if (is_empty) {
3359 			ntfs_mark_rec_free(sbi, mi->rno, false);
3360 			rb_erase(node, &ni->mi_tree);
3361 			mi_put(mi);
3362 		}
3363 	}
3364 
3365 	if (ni->mi.dirty) {
3366 		err2 = mi_write(&ni->mi, sync);
3367 		if (!err && err2)
3368 			err = err2;
3369 	}
3370 out:
3371 	ni_unlock(ni);
3372 
3373 	if (err) {
3374 		ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3375 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3376 		return err;
3377 	}
3378 
3379 	if (re_dirty)
3380 		mark_inode_dirty_sync(inode);
3381 
3382 	return 0;
3383 }
3384