xref: /openbmc/linux/fs/ntfs3/frecord.c (revision 5e18b9737004ef6f34862f6fb39d3c9027a4044a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fiemap.h>
11 #include <linux/fs.h>
12 #include <linux/nls.h>
13 #include <linux/vmalloc.h>
14 
15 #include "debug.h"
16 #include "ntfs.h"
17 #include "ntfs_fs.h"
18 #ifdef CONFIG_NTFS3_LZX_XPRESS
19 #include "lib/lib.h"
20 #endif
21 
22 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
23 				   CLST ino, struct rb_node *ins)
24 {
25 	struct rb_node **p = &tree->rb_node;
26 	struct rb_node *pr = NULL;
27 
28 	while (*p) {
29 		struct mft_inode *mi;
30 
31 		pr = *p;
32 		mi = rb_entry(pr, struct mft_inode, node);
33 		if (mi->rno > ino)
34 			p = &pr->rb_left;
35 		else if (mi->rno < ino)
36 			p = &pr->rb_right;
37 		else
38 			return mi;
39 	}
40 
41 	if (!ins)
42 		return NULL;
43 
44 	rb_link_node(ins, pr, p);
45 	rb_insert_color(ins, tree);
46 	return rb_entry(ins, struct mft_inode, node);
47 }
48 
49 /*
50  * ni_find_mi - Find mft_inode by record number.
51  */
52 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
53 {
54 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
55 }
56 
57 /*
58  * ni_add_mi - Add new mft_inode into ntfs_inode.
59  */
60 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
61 {
62 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
63 }
64 
65 /*
66  * ni_remove_mi - Remove mft_inode from ntfs_inode.
67  */
68 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
69 {
70 	rb_erase(&mi->node, &ni->mi_tree);
71 }
72 
73 /*
74  * ni_std - Return: Pointer into std_info from primary record.
75  */
76 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
77 {
78 	const struct ATTRIB *attr;
79 
80 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
81 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
82 		    : NULL;
83 }
84 
85 /*
86  * ni_std5
87  *
88  * Return: Pointer into std_info from primary record.
89  */
90 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
91 {
92 	const struct ATTRIB *attr;
93 
94 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
95 
96 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
97 		    : NULL;
98 }
99 
100 /*
101  * ni_clear - Clear resources allocated by ntfs_inode.
102  */
103 void ni_clear(struct ntfs_inode *ni)
104 {
105 	struct rb_node *node;
106 
107 	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
108 		ni_delete_all(ni);
109 
110 	al_destroy(ni);
111 
112 	for (node = rb_first(&ni->mi_tree); node;) {
113 		struct rb_node *next = rb_next(node);
114 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115 
116 		rb_erase(node, &ni->mi_tree);
117 		mi_put(mi);
118 		node = next;
119 	}
120 
121 	/* Bad inode always has mode == S_IFREG. */
122 	if (ni->ni_flags & NI_FLAG_DIR)
123 		indx_clear(&ni->dir);
124 	else {
125 		run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 		if (ni->file.offs_page) {
128 			/* On-demand allocated page for offsets. */
129 			put_page(ni->file.offs_page);
130 			ni->file.offs_page = NULL;
131 		}
132 #endif
133 	}
134 
135 	mi_clear(&ni->mi);
136 }
137 
138 /*
139  * ni_load_mi_ex - Find mft_inode by record number.
140  */
141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 	int err;
144 	struct mft_inode *r;
145 
146 	r = ni_find_mi(ni, rno);
147 	if (r)
148 		goto out;
149 
150 	err = mi_get(ni->mi.sbi, rno, &r);
151 	if (err)
152 		return err;
153 
154 	ni_add_mi(ni, r);
155 
156 out:
157 	if (mi)
158 		*mi = r;
159 	return 0;
160 }
161 
162 /*
163  * ni_load_mi - Load mft_inode corresponded list_entry.
164  */
165 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
166 	       struct mft_inode **mi)
167 {
168 	CLST rno;
169 
170 	if (!le) {
171 		*mi = &ni->mi;
172 		return 0;
173 	}
174 
175 	rno = ino_get(&le->ref);
176 	if (rno == ni->mi.rno) {
177 		*mi = &ni->mi;
178 		return 0;
179 	}
180 	return ni_load_mi_ex(ni, rno, mi);
181 }
182 
183 /*
184  * ni_find_attr
185  *
186  * Return: Attribute and record this attribute belongs to.
187  */
188 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
189 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
190 			    const __le16 *name, u8 name_len, const CLST *vcn,
191 			    struct mft_inode **mi)
192 {
193 	struct ATTR_LIST_ENTRY *le;
194 	struct mft_inode *m;
195 
196 	if (!ni->attr_list.size ||
197 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
198 		if (le_o)
199 			*le_o = NULL;
200 		if (mi)
201 			*mi = &ni->mi;
202 
203 		/* Look for required attribute in primary record. */
204 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
205 	}
206 
207 	/* First look for list entry of required type. */
208 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
209 	if (!le)
210 		return NULL;
211 
212 	if (le_o)
213 		*le_o = le;
214 
215 	/* Load record that contains this attribute. */
216 	if (ni_load_mi(ni, le, &m))
217 		return NULL;
218 
219 	/* Look for required attribute. */
220 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
221 
222 	if (!attr)
223 		goto out;
224 
225 	if (!attr->non_res) {
226 		if (vcn && *vcn)
227 			goto out;
228 	} else if (!vcn) {
229 		if (attr->nres.svcn)
230 			goto out;
231 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
232 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
233 		goto out;
234 	}
235 
236 	if (mi)
237 		*mi = m;
238 	return attr;
239 
240 out:
241 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
242 	return NULL;
243 }
244 
245 /*
246  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
247  */
248 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
249 			       struct ATTR_LIST_ENTRY **le,
250 			       struct mft_inode **mi)
251 {
252 	struct mft_inode *mi2;
253 	struct ATTR_LIST_ENTRY *le2;
254 
255 	/* Do we have an attribute list? */
256 	if (!ni->attr_list.size) {
257 		*le = NULL;
258 		if (mi)
259 			*mi = &ni->mi;
260 		/* Enum attributes in primary record. */
261 		return mi_enum_attr(&ni->mi, attr);
262 	}
263 
264 	/* Get next list entry. */
265 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
266 	if (!le2)
267 		return NULL;
268 
269 	/* Load record that contains the required attribute. */
270 	if (ni_load_mi(ni, le2, &mi2))
271 		return NULL;
272 
273 	if (mi)
274 		*mi = mi2;
275 
276 	/* Find attribute in loaded record. */
277 	return rec_find_attr_le(mi2, le2);
278 }
279 
280 /*
281  * ni_load_attr - Load attribute that contains given VCN.
282  */
283 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
284 			    const __le16 *name, u8 name_len, CLST vcn,
285 			    struct mft_inode **pmi)
286 {
287 	struct ATTR_LIST_ENTRY *le;
288 	struct ATTRIB *attr;
289 	struct mft_inode *mi;
290 	struct ATTR_LIST_ENTRY *next;
291 
292 	if (!ni->attr_list.size) {
293 		if (pmi)
294 			*pmi = &ni->mi;
295 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
296 	}
297 
298 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
299 	if (!le)
300 		return NULL;
301 
302 	/*
303 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
304 	 * So to find the ATTRIB segment that contains 'vcn' we should
305 	 * enumerate some entries.
306 	 */
307 	if (vcn) {
308 		for (;; le = next) {
309 			next = al_find_ex(ni, le, type, name, name_len, NULL);
310 			if (!next || le64_to_cpu(next->vcn) > vcn)
311 				break;
312 		}
313 	}
314 
315 	if (ni_load_mi(ni, le, &mi))
316 		return NULL;
317 
318 	if (pmi)
319 		*pmi = mi;
320 
321 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
322 	if (!attr)
323 		return NULL;
324 
325 	if (!attr->non_res)
326 		return attr;
327 
328 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
329 	    vcn <= le64_to_cpu(attr->nres.evcn))
330 		return attr;
331 
332 	return NULL;
333 }
334 
335 /*
336  * ni_load_all_mi - Load all subrecords.
337  */
338 int ni_load_all_mi(struct ntfs_inode *ni)
339 {
340 	int err;
341 	struct ATTR_LIST_ENTRY *le;
342 
343 	if (!ni->attr_list.size)
344 		return 0;
345 
346 	le = NULL;
347 
348 	while ((le = al_enumerate(ni, le))) {
349 		CLST rno = ino_get(&le->ref);
350 
351 		if (rno == ni->mi.rno)
352 			continue;
353 
354 		err = ni_load_mi_ex(ni, rno, NULL);
355 		if (err)
356 			return err;
357 	}
358 
359 	return 0;
360 }
361 
362 /*
363  * ni_add_subrecord - Allocate + format + attach a new subrecord.
364  */
365 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
366 {
367 	struct mft_inode *m;
368 
369 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
370 	if (!m)
371 		return false;
372 
373 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
374 		mi_put(m);
375 		return false;
376 	}
377 
378 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
379 
380 	ni_add_mi(ni, m);
381 	*mi = m;
382 	return true;
383 }
384 
385 /*
386  * ni_remove_attr - Remove all attributes for the given type/name/id.
387  */
388 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
389 		   const __le16 *name, size_t name_len, bool base_only,
390 		   const __le16 *id)
391 {
392 	int err;
393 	struct ATTRIB *attr;
394 	struct ATTR_LIST_ENTRY *le;
395 	struct mft_inode *mi;
396 	u32 type_in;
397 	int diff;
398 
399 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
400 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
401 		if (!attr)
402 			return -ENOENT;
403 
404 		mi_remove_attr(ni, &ni->mi, attr);
405 		return 0;
406 	}
407 
408 	type_in = le32_to_cpu(type);
409 	le = NULL;
410 
411 	for (;;) {
412 		le = al_enumerate(ni, le);
413 		if (!le)
414 			return 0;
415 
416 next_le2:
417 		diff = le32_to_cpu(le->type) - type_in;
418 		if (diff < 0)
419 			continue;
420 
421 		if (diff > 0)
422 			return 0;
423 
424 		if (le->name_len != name_len)
425 			continue;
426 
427 		if (name_len &&
428 		    memcmp(le_name(le), name, name_len * sizeof(short)))
429 			continue;
430 
431 		if (id && le->id != *id)
432 			continue;
433 		err = ni_load_mi(ni, le, &mi);
434 		if (err)
435 			return err;
436 
437 		al_remove_le(ni, le);
438 
439 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
440 		if (!attr)
441 			return -ENOENT;
442 
443 		mi_remove_attr(ni, mi, attr);
444 
445 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
446 			return 0;
447 		goto next_le2;
448 	}
449 }
450 
451 /*
452  * ni_ins_new_attr - Insert the attribute into record.
453  *
454  * Return: Not full constructed attribute or NULL if not possible to create.
455  */
456 static struct ATTRIB *
457 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
458 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
459 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
460 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
461 {
462 	int err;
463 	struct ATTRIB *attr;
464 	bool le_added = false;
465 	struct MFT_REF ref;
466 
467 	mi_get_ref(mi, &ref);
468 
469 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
470 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
471 				&ref, &le);
472 		if (err) {
473 			/* No memory or no space. */
474 			return NULL;
475 		}
476 		le_added = true;
477 
478 		/*
479 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
480 		 * which moves some attributes out of primary record
481 		 * this means that name may point into moved memory
482 		 * reinit 'name' from le.
483 		 */
484 		name = le->name;
485 	}
486 
487 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
488 	if (!attr) {
489 		if (le_added)
490 			al_remove_le(ni, le);
491 		return NULL;
492 	}
493 
494 	if (type == ATTR_LIST) {
495 		/* Attr list is not in list entry array. */
496 		goto out;
497 	}
498 
499 	if (!le)
500 		goto out;
501 
502 	/* Update ATTRIB Id and record reference. */
503 	le->id = attr->id;
504 	ni->attr_list.dirty = true;
505 	le->ref = ref;
506 
507 out:
508 	if (ins_le)
509 		*ins_le = le;
510 	return attr;
511 }
512 
513 /*
514  * ni_repack
515  *
516  * Random write access to sparsed or compressed file may result to
517  * not optimized packed runs.
518  * Here is the place to optimize it.
519  */
520 static int ni_repack(struct ntfs_inode *ni)
521 {
522 	int err = 0;
523 	struct ntfs_sb_info *sbi = ni->mi.sbi;
524 	struct mft_inode *mi, *mi_p = NULL;
525 	struct ATTRIB *attr = NULL, *attr_p;
526 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
527 	CLST alloc = 0;
528 	u8 cluster_bits = sbi->cluster_bits;
529 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
530 	u32 roff, rs = sbi->record_size;
531 	struct runs_tree run;
532 
533 	run_init(&run);
534 
535 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
536 		if (!attr->non_res)
537 			continue;
538 
539 		svcn = le64_to_cpu(attr->nres.svcn);
540 		if (svcn != le64_to_cpu(le->vcn)) {
541 			err = -EINVAL;
542 			break;
543 		}
544 
545 		if (!svcn) {
546 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
547 				cluster_bits;
548 			mi_p = NULL;
549 		} else if (svcn != evcn + 1) {
550 			err = -EINVAL;
551 			break;
552 		}
553 
554 		evcn = le64_to_cpu(attr->nres.evcn);
555 
556 		if (svcn > evcn + 1) {
557 			err = -EINVAL;
558 			break;
559 		}
560 
561 		if (!mi_p) {
562 			/* Do not try if not enogh free space. */
563 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
564 				continue;
565 
566 			/* Do not try if last attribute segment. */
567 			if (evcn + 1 == alloc)
568 				continue;
569 			run_close(&run);
570 		}
571 
572 		roff = le16_to_cpu(attr->nres.run_off);
573 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
574 				 Add2Ptr(attr, roff),
575 				 le32_to_cpu(attr->size) - roff);
576 		if (err < 0)
577 			break;
578 
579 		if (!mi_p) {
580 			mi_p = mi;
581 			attr_p = attr;
582 			svcn_p = svcn;
583 			evcn_p = evcn;
584 			le_p = le;
585 			err = 0;
586 			continue;
587 		}
588 
589 		/*
590 		 * Run contains data from two records: mi_p and mi
591 		 * Try to pack in one.
592 		 */
593 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
594 		if (err)
595 			break;
596 
597 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
598 
599 		if (next_svcn >= evcn + 1) {
600 			/* We can remove this attribute segment. */
601 			al_remove_le(ni, le);
602 			mi_remove_attr(NULL, mi, attr);
603 			le = le_p;
604 			continue;
605 		}
606 
607 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
608 		mi->dirty = true;
609 		ni->attr_list.dirty = true;
610 
611 		if (evcn + 1 == alloc) {
612 			err = mi_pack_runs(mi, attr, &run,
613 					   evcn + 1 - next_svcn);
614 			if (err)
615 				break;
616 			mi_p = NULL;
617 		} else {
618 			mi_p = mi;
619 			attr_p = attr;
620 			svcn_p = next_svcn;
621 			evcn_p = evcn;
622 			le_p = le;
623 			run_truncate_head(&run, next_svcn);
624 		}
625 	}
626 
627 	if (err) {
628 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
629 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
630 
631 		/* Pack loaded but not packed runs. */
632 		if (mi_p)
633 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
634 	}
635 
636 	run_close(&run);
637 	return err;
638 }
639 
640 /*
641  * ni_try_remove_attr_list
642  *
643  * Can we remove attribute list?
644  * Check the case when primary record contains enough space for all attributes.
645  */
646 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
647 {
648 	int err = 0;
649 	struct ntfs_sb_info *sbi = ni->mi.sbi;
650 	struct ATTRIB *attr, *attr_list, *attr_ins;
651 	struct ATTR_LIST_ENTRY *le;
652 	struct mft_inode *mi;
653 	u32 asize, free;
654 	struct MFT_REF ref;
655 	__le16 id;
656 
657 	if (!ni->attr_list.dirty)
658 		return 0;
659 
660 	err = ni_repack(ni);
661 	if (err)
662 		return err;
663 
664 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
665 	if (!attr_list)
666 		return 0;
667 
668 	asize = le32_to_cpu(attr_list->size);
669 
670 	/* Free space in primary record without attribute list. */
671 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
672 	mi_get_ref(&ni->mi, &ref);
673 
674 	le = NULL;
675 	while ((le = al_enumerate(ni, le))) {
676 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
677 			continue;
678 
679 		if (le->vcn)
680 			return 0;
681 
682 		mi = ni_find_mi(ni, ino_get(&le->ref));
683 		if (!mi)
684 			return 0;
685 
686 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
687 				    le->name_len, &le->id);
688 		if (!attr)
689 			return 0;
690 
691 		asize = le32_to_cpu(attr->size);
692 		if (asize > free)
693 			return 0;
694 
695 		free -= asize;
696 	}
697 
698 	/* It seems that attribute list can be removed from primary record. */
699 	mi_remove_attr(NULL, &ni->mi, attr_list);
700 
701 	/*
702 	 * Repeat the cycle above and move all attributes to primary record.
703 	 * It should be success!
704 	 */
705 	le = NULL;
706 	while ((le = al_enumerate(ni, le))) {
707 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
708 			continue;
709 
710 		mi = ni_find_mi(ni, ino_get(&le->ref));
711 
712 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
713 				    le->name_len, &le->id);
714 		asize = le32_to_cpu(attr->size);
715 
716 		/* Insert into primary record. */
717 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
718 					  le->name_len, asize,
719 					  le16_to_cpu(attr->name_off));
720 		id = attr_ins->id;
721 
722 		/* Copy all except id. */
723 		memcpy(attr_ins, attr, asize);
724 		attr_ins->id = id;
725 
726 		/* Remove from original record. */
727 		mi_remove_attr(NULL, mi, attr);
728 	}
729 
730 	run_deallocate(sbi, &ni->attr_list.run, true);
731 	run_close(&ni->attr_list.run);
732 	ni->attr_list.size = 0;
733 	kfree(ni->attr_list.le);
734 	ni->attr_list.le = NULL;
735 	ni->attr_list.dirty = false;
736 
737 	return 0;
738 }
739 
740 /*
741  * ni_create_attr_list - Generates an attribute list for this primary record.
742  */
743 int ni_create_attr_list(struct ntfs_inode *ni)
744 {
745 	struct ntfs_sb_info *sbi = ni->mi.sbi;
746 	int err;
747 	u32 lsize;
748 	struct ATTRIB *attr;
749 	struct ATTRIB *arr_move[7];
750 	struct ATTR_LIST_ENTRY *le, *le_b[7];
751 	struct MFT_REC *rec;
752 	bool is_mft;
753 	CLST rno = 0;
754 	struct mft_inode *mi;
755 	u32 free_b, nb, to_free, rs;
756 	u16 sz;
757 
758 	is_mft = ni->mi.rno == MFT_REC_MFT;
759 	rec = ni->mi.mrec;
760 	rs = sbi->record_size;
761 
762 	/*
763 	 * Skip estimating exact memory requirement.
764 	 * Looks like one record_size is always enough.
765 	 */
766 	le = kmalloc(al_aligned(rs), GFP_NOFS);
767 	if (!le) {
768 		err = -ENOMEM;
769 		goto out;
770 	}
771 
772 	mi_get_ref(&ni->mi, &le->ref);
773 	ni->attr_list.le = le;
774 
775 	attr = NULL;
776 	nb = 0;
777 	free_b = 0;
778 	attr = NULL;
779 
780 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
781 		sz = le_size(attr->name_len);
782 		le->type = attr->type;
783 		le->size = cpu_to_le16(sz);
784 		le->name_len = attr->name_len;
785 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
786 		le->vcn = 0;
787 		if (le != ni->attr_list.le)
788 			le->ref = ni->attr_list.le->ref;
789 		le->id = attr->id;
790 
791 		if (attr->name_len)
792 			memcpy(le->name, attr_name(attr),
793 			       sizeof(short) * attr->name_len);
794 		else if (attr->type == ATTR_STD)
795 			continue;
796 		else if (attr->type == ATTR_LIST)
797 			continue;
798 		else if (is_mft && attr->type == ATTR_DATA)
799 			continue;
800 
801 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
802 			le_b[nb] = le;
803 			arr_move[nb++] = attr;
804 			free_b += le32_to_cpu(attr->size);
805 		}
806 	}
807 
808 	lsize = PtrOffset(ni->attr_list.le, le);
809 	ni->attr_list.size = lsize;
810 
811 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
812 	if (to_free <= rs) {
813 		to_free = 0;
814 	} else {
815 		to_free -= rs;
816 
817 		if (to_free > free_b) {
818 			err = -EINVAL;
819 			goto out1;
820 		}
821 	}
822 
823 	/* Allocate child MFT. */
824 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
825 	if (err)
826 		goto out1;
827 
828 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
829 	while (to_free > 0) {
830 		struct ATTRIB *b = arr_move[--nb];
831 		u32 asize = le32_to_cpu(b->size);
832 		u16 name_off = le16_to_cpu(b->name_off);
833 
834 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
835 				      b->name_len, asize, name_off);
836 		WARN_ON(!attr);
837 
838 		mi_get_ref(mi, &le_b[nb]->ref);
839 		le_b[nb]->id = attr->id;
840 
841 		/* Copy all except id. */
842 		memcpy(attr, b, asize);
843 		attr->id = le_b[nb]->id;
844 
845 		/* Remove from primary record. */
846 		WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
847 
848 		if (to_free <= asize)
849 			break;
850 		to_free -= asize;
851 		WARN_ON(!nb);
852 	}
853 
854 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
855 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
856 	WARN_ON(!attr);
857 
858 	attr->non_res = 0;
859 	attr->flags = 0;
860 	attr->res.data_size = cpu_to_le32(lsize);
861 	attr->res.data_off = SIZEOF_RESIDENT_LE;
862 	attr->res.flags = 0;
863 	attr->res.res = 0;
864 
865 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
866 
867 	ni->attr_list.dirty = false;
868 
869 	mark_inode_dirty(&ni->vfs_inode);
870 	goto out;
871 
872 out1:
873 	kfree(ni->attr_list.le);
874 	ni->attr_list.le = NULL;
875 	ni->attr_list.size = 0;
876 
877 out:
878 	return err;
879 }
880 
881 /*
882  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
883  */
884 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
885 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
886 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
887 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
888 			   struct ATTR_LIST_ENTRY **ins_le)
889 {
890 	struct ATTRIB *attr;
891 	struct mft_inode *mi;
892 	CLST rno;
893 	u64 vbo;
894 	struct rb_node *node;
895 	int err;
896 	bool is_mft, is_mft_data;
897 	struct ntfs_sb_info *sbi = ni->mi.sbi;
898 
899 	is_mft = ni->mi.rno == MFT_REC_MFT;
900 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
901 
902 	if (asize > sbi->max_bytes_per_attr) {
903 		err = -EINVAL;
904 		goto out;
905 	}
906 
907 	/*
908 	 * Standard information and attr_list cannot be made external.
909 	 * The Log File cannot have any external attributes.
910 	 */
911 	if (type == ATTR_STD || type == ATTR_LIST ||
912 	    ni->mi.rno == MFT_REC_LOG) {
913 		err = -EINVAL;
914 		goto out;
915 	}
916 
917 	/* Create attribute list if it is not already existed. */
918 	if (!ni->attr_list.size) {
919 		err = ni_create_attr_list(ni);
920 		if (err)
921 			goto out;
922 	}
923 
924 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
925 
926 	if (force_ext)
927 		goto insert_ext;
928 
929 	/* Load all subrecords into memory. */
930 	err = ni_load_all_mi(ni);
931 	if (err)
932 		goto out;
933 
934 	/* Check each of loaded subrecord. */
935 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
936 		mi = rb_entry(node, struct mft_inode, node);
937 
938 		if (is_mft_data &&
939 		    (mi_enum_attr(mi, NULL) ||
940 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
941 			/* We can't accept this record 'cause MFT's bootstrapping. */
942 			continue;
943 		}
944 		if (is_mft &&
945 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
946 			/*
947 			 * This child record already has a ATTR_DATA.
948 			 * So it can't accept any other records.
949 			 */
950 			continue;
951 		}
952 
953 		if ((type != ATTR_NAME || name_len) &&
954 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
955 			/* Only indexed attributes can share same record. */
956 			continue;
957 		}
958 
959 		/* Try to insert attribute into this subrecord. */
960 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
961 				       name_off, svcn, ins_le);
962 		if (!attr)
963 			continue;
964 
965 		if (ins_attr)
966 			*ins_attr = attr;
967 		if (ins_mi)
968 			*ins_mi = mi;
969 		return 0;
970 	}
971 
972 insert_ext:
973 	/* We have to allocate a new child subrecord. */
974 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
975 	if (err)
976 		goto out;
977 
978 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
979 		err = -EINVAL;
980 		goto out1;
981 	}
982 
983 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
984 			       name_off, svcn, ins_le);
985 	if (!attr)
986 		goto out2;
987 
988 	if (ins_attr)
989 		*ins_attr = attr;
990 	if (ins_mi)
991 		*ins_mi = mi;
992 
993 	return 0;
994 
995 out2:
996 	ni_remove_mi(ni, mi);
997 	mi_put(mi);
998 	err = -EINVAL;
999 
1000 out1:
1001 	ntfs_mark_rec_free(sbi, rno);
1002 
1003 out:
1004 	return err;
1005 }
1006 
1007 /*
1008  * ni_insert_attr - Insert an attribute into the file.
1009  *
1010  * If the primary record has room, it will just insert the attribute.
1011  * If not, it may make the attribute external.
1012  * For $MFT::Data it may make room for the attribute by
1013  * making other attributes external.
1014  *
1015  * NOTE:
1016  * The ATTR_LIST and ATTR_STD cannot be made external.
1017  * This function does not fill new attribute full.
1018  * It only fills 'size'/'type'/'id'/'name_len' fields.
1019  */
1020 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1021 			  const __le16 *name, u8 name_len, u32 asize,
1022 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1023 			  struct mft_inode **ins_mi,
1024 			  struct ATTR_LIST_ENTRY **ins_le)
1025 {
1026 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1027 	int err;
1028 	struct ATTRIB *attr, *eattr;
1029 	struct MFT_REC *rec;
1030 	bool is_mft;
1031 	struct ATTR_LIST_ENTRY *le;
1032 	u32 list_reserve, max_free, free, used, t32;
1033 	__le16 id;
1034 	u16 t16;
1035 
1036 	is_mft = ni->mi.rno == MFT_REC_MFT;
1037 	rec = ni->mi.mrec;
1038 
1039 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1040 	used = le32_to_cpu(rec->used);
1041 	free = sbi->record_size - used;
1042 
1043 	if (is_mft && type != ATTR_LIST) {
1044 		/* Reserve space for the ATTRIB list. */
1045 		if (free < list_reserve)
1046 			free = 0;
1047 		else
1048 			free -= list_reserve;
1049 	}
1050 
1051 	if (asize <= free) {
1052 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1053 				       asize, name_off, svcn, ins_le);
1054 		if (attr) {
1055 			if (ins_attr)
1056 				*ins_attr = attr;
1057 			if (ins_mi)
1058 				*ins_mi = &ni->mi;
1059 			err = 0;
1060 			goto out;
1061 		}
1062 	}
1063 
1064 	if (!is_mft || type != ATTR_DATA || svcn) {
1065 		/* This ATTRIB will be external. */
1066 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1067 				      svcn, name_off, false, ins_attr, ins_mi,
1068 				      ins_le);
1069 		goto out;
1070 	}
1071 
1072 	/*
1073 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1074 	 *
1075 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1076 	 * Evict as many other attributes as possible.
1077 	 */
1078 	max_free = free;
1079 
1080 	/* Estimate the result of moving all possible attributes away. */
1081 	attr = NULL;
1082 
1083 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1084 		if (attr->type == ATTR_STD)
1085 			continue;
1086 		if (attr->type == ATTR_LIST)
1087 			continue;
1088 		max_free += le32_to_cpu(attr->size);
1089 	}
1090 
1091 	if (max_free < asize + list_reserve) {
1092 		/* Impossible to insert this attribute into primary record. */
1093 		err = -EINVAL;
1094 		goto out;
1095 	}
1096 
1097 	/* Start real attribute moving. */
1098 	attr = NULL;
1099 
1100 	for (;;) {
1101 		attr = mi_enum_attr(&ni->mi, attr);
1102 		if (!attr) {
1103 			/* We should never be here 'cause we have already check this case. */
1104 			err = -EINVAL;
1105 			goto out;
1106 		}
1107 
1108 		/* Skip attributes that MUST be primary record. */
1109 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1110 			continue;
1111 
1112 		le = NULL;
1113 		if (ni->attr_list.size) {
1114 			le = al_find_le(ni, NULL, attr);
1115 			if (!le) {
1116 				/* Really this is a serious bug. */
1117 				err = -EINVAL;
1118 				goto out;
1119 			}
1120 		}
1121 
1122 		t32 = le32_to_cpu(attr->size);
1123 		t16 = le16_to_cpu(attr->name_off);
1124 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1125 				      attr->name_len, t32, attr_svcn(attr), t16,
1126 				      false, &eattr, NULL, NULL);
1127 		if (err)
1128 			return err;
1129 
1130 		id = eattr->id;
1131 		memcpy(eattr, attr, t32);
1132 		eattr->id = id;
1133 
1134 		/* Remove from primary record. */
1135 		mi_remove_attr(NULL, &ni->mi, attr);
1136 
1137 		/* attr now points to next attribute. */
1138 		if (attr->type == ATTR_END)
1139 			goto out;
1140 	}
1141 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1142 		;
1143 
1144 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1145 			       name_off, svcn, ins_le);
1146 	if (!attr) {
1147 		err = -EINVAL;
1148 		goto out;
1149 	}
1150 
1151 	if (ins_attr)
1152 		*ins_attr = attr;
1153 	if (ins_mi)
1154 		*ins_mi = &ni->mi;
1155 
1156 out:
1157 	return err;
1158 }
1159 
1160 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1161 static int ni_expand_mft_list(struct ntfs_inode *ni)
1162 {
1163 	int err = 0;
1164 	struct runs_tree *run = &ni->file.run;
1165 	u32 asize, run_size, done = 0;
1166 	struct ATTRIB *attr;
1167 	struct rb_node *node;
1168 	CLST mft_min, mft_new, svcn, evcn, plen;
1169 	struct mft_inode *mi, *mi_min, *mi_new;
1170 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1171 
1172 	/* Find the nearest MFT. */
1173 	mft_min = 0;
1174 	mft_new = 0;
1175 	mi_min = NULL;
1176 
1177 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1178 		mi = rb_entry(node, struct mft_inode, node);
1179 
1180 		attr = mi_enum_attr(mi, NULL);
1181 
1182 		if (!attr) {
1183 			mft_min = mi->rno;
1184 			mi_min = mi;
1185 			break;
1186 		}
1187 	}
1188 
1189 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1190 		mft_new = 0;
1191 		/* Really this is not critical. */
1192 	} else if (mft_min > mft_new) {
1193 		mft_min = mft_new;
1194 		mi_min = mi_new;
1195 	} else {
1196 		ntfs_mark_rec_free(sbi, mft_new);
1197 		mft_new = 0;
1198 		ni_remove_mi(ni, mi_new);
1199 	}
1200 
1201 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1202 	if (!attr) {
1203 		err = -EINVAL;
1204 		goto out;
1205 	}
1206 
1207 	asize = le32_to_cpu(attr->size);
1208 
1209 	evcn = le64_to_cpu(attr->nres.evcn);
1210 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1211 	if (evcn + 1 >= svcn) {
1212 		err = -EINVAL;
1213 		goto out;
1214 	}
1215 
1216 	/*
1217 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1218 	 *
1219 	 * Update first part of ATTR_DATA in 'primary MFT.
1220 	 */
1221 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1222 		       asize - SIZEOF_NONRESIDENT, &plen);
1223 	if (err < 0)
1224 		goto out;
1225 
1226 	run_size = ALIGN(err, 8);
1227 	err = 0;
1228 
1229 	if (plen < svcn) {
1230 		err = -EINVAL;
1231 		goto out;
1232 	}
1233 
1234 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1235 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1236 	/* 'done' - How many bytes of primary MFT becomes free. */
1237 	done = asize - run_size - SIZEOF_NONRESIDENT;
1238 	le32_sub_cpu(&ni->mi.mrec->used, done);
1239 
1240 	/* Estimate the size of second part: run_buf=NULL. */
1241 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1242 		       &plen);
1243 	if (err < 0)
1244 		goto out;
1245 
1246 	run_size = ALIGN(err, 8);
1247 	err = 0;
1248 
1249 	if (plen < evcn + 1 - svcn) {
1250 		err = -EINVAL;
1251 		goto out;
1252 	}
1253 
1254 	/*
1255 	 * This function may implicitly call expand attr_list.
1256 	 * Insert second part of ATTR_DATA in 'mi_min'.
1257 	 */
1258 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1259 			       SIZEOF_NONRESIDENT + run_size,
1260 			       SIZEOF_NONRESIDENT, svcn, NULL);
1261 	if (!attr) {
1262 		err = -EINVAL;
1263 		goto out;
1264 	}
1265 
1266 	attr->non_res = 1;
1267 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1268 	attr->flags = 0;
1269 
1270 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1271 		 run_size, &plen);
1272 
1273 	attr->nres.svcn = cpu_to_le64(svcn);
1274 	attr->nres.evcn = cpu_to_le64(evcn);
1275 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1276 
1277 out:
1278 	if (mft_new) {
1279 		ntfs_mark_rec_free(sbi, mft_new);
1280 		ni_remove_mi(ni, mi_new);
1281 	}
1282 
1283 	return !err && !done ? -EOPNOTSUPP : err;
1284 }
1285 
1286 /*
1287  * ni_expand_list - Move all possible attributes out of primary record.
1288  */
1289 int ni_expand_list(struct ntfs_inode *ni)
1290 {
1291 	int err = 0;
1292 	u32 asize, done = 0;
1293 	struct ATTRIB *attr, *ins_attr;
1294 	struct ATTR_LIST_ENTRY *le;
1295 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1296 	struct MFT_REF ref;
1297 
1298 	mi_get_ref(&ni->mi, &ref);
1299 	le = NULL;
1300 
1301 	while ((le = al_enumerate(ni, le))) {
1302 		if (le->type == ATTR_STD)
1303 			continue;
1304 
1305 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1306 			continue;
1307 
1308 		if (is_mft && le->type == ATTR_DATA)
1309 			continue;
1310 
1311 		/* Find attribute in primary record. */
1312 		attr = rec_find_attr_le(&ni->mi, le);
1313 		if (!attr) {
1314 			err = -EINVAL;
1315 			goto out;
1316 		}
1317 
1318 		asize = le32_to_cpu(attr->size);
1319 
1320 		/* Always insert into new record to avoid collisions (deep recursive). */
1321 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1322 				      attr->name_len, asize, attr_svcn(attr),
1323 				      le16_to_cpu(attr->name_off), true,
1324 				      &ins_attr, NULL, NULL);
1325 
1326 		if (err)
1327 			goto out;
1328 
1329 		memcpy(ins_attr, attr, asize);
1330 		ins_attr->id = le->id;
1331 		/* Remove from primary record. */
1332 		mi_remove_attr(NULL, &ni->mi, attr);
1333 
1334 		done += asize;
1335 		goto out;
1336 	}
1337 
1338 	if (!is_mft) {
1339 		err = -EFBIG; /* Attr list is too big(?) */
1340 		goto out;
1341 	}
1342 
1343 	/* Split MFT data as much as possible. */
1344 	err = ni_expand_mft_list(ni);
1345 	if (err)
1346 		goto out;
1347 
1348 out:
1349 	return !err && !done ? -EOPNOTSUPP : err;
1350 }
1351 
1352 /*
1353  * ni_insert_nonresident - Insert new nonresident attribute.
1354  */
1355 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1356 			  const __le16 *name, u8 name_len,
1357 			  const struct runs_tree *run, CLST svcn, CLST len,
1358 			  __le16 flags, struct ATTRIB **new_attr,
1359 			  struct mft_inode **mi)
1360 {
1361 	int err;
1362 	CLST plen;
1363 	struct ATTRIB *attr;
1364 	bool is_ext =
1365 		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1366 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1367 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1368 	u32 run_off = name_off + name_size;
1369 	u32 run_size, asize;
1370 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1371 
1372 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1373 		       &plen);
1374 	if (err < 0)
1375 		goto out;
1376 
1377 	run_size = ALIGN(err, 8);
1378 
1379 	if (plen < len) {
1380 		err = -EINVAL;
1381 		goto out;
1382 	}
1383 
1384 	asize = run_off + run_size;
1385 
1386 	if (asize > sbi->max_bytes_per_attr) {
1387 		err = -EINVAL;
1388 		goto out;
1389 	}
1390 
1391 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1392 			     &attr, mi, NULL);
1393 
1394 	if (err)
1395 		goto out;
1396 
1397 	attr->non_res = 1;
1398 	attr->name_off = cpu_to_le16(name_off);
1399 	attr->flags = flags;
1400 
1401 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1402 
1403 	attr->nres.svcn = cpu_to_le64(svcn);
1404 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1405 
1406 	err = 0;
1407 	if (new_attr)
1408 		*new_attr = attr;
1409 
1410 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1411 
1412 	attr->nres.alloc_size =
1413 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1414 	attr->nres.data_size = attr->nres.alloc_size;
1415 	attr->nres.valid_size = attr->nres.alloc_size;
1416 
1417 	if (is_ext) {
1418 		if (flags & ATTR_FLAG_COMPRESSED)
1419 			attr->nres.c_unit = COMPRESSION_UNIT;
1420 		attr->nres.total_size = attr->nres.alloc_size;
1421 	}
1422 
1423 out:
1424 	return err;
1425 }
1426 
1427 /*
1428  * ni_insert_resident - Inserts new resident attribute.
1429  */
1430 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1431 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1432 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1433 		       struct ATTR_LIST_ENTRY **le)
1434 {
1435 	int err;
1436 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1437 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1438 	struct ATTRIB *attr;
1439 
1440 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1441 			     0, &attr, mi, le);
1442 	if (err)
1443 		return err;
1444 
1445 	attr->non_res = 0;
1446 	attr->flags = 0;
1447 
1448 	attr->res.data_size = cpu_to_le32(data_size);
1449 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1450 	if (type == ATTR_NAME) {
1451 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1452 
1453 		/* is_attr_indexed(attr)) == true */
1454 		le16_add_cpu(&ni->mi.mrec->hard_links, +1);
1455 		ni->mi.dirty = true;
1456 	}
1457 	attr->res.res = 0;
1458 
1459 	if (new_attr)
1460 		*new_attr = attr;
1461 
1462 	return 0;
1463 }
1464 
1465 /*
1466  * ni_remove_attr_le - Remove attribute from record.
1467  */
1468 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1469 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1470 {
1471 	mi_remove_attr(ni, mi, attr);
1472 
1473 	if (le)
1474 		al_remove_le(ni, le);
1475 }
1476 
1477 /*
1478  * ni_delete_all - Remove all attributes and frees allocates space.
1479  *
1480  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1481  */
1482 int ni_delete_all(struct ntfs_inode *ni)
1483 {
1484 	int err;
1485 	struct ATTR_LIST_ENTRY *le = NULL;
1486 	struct ATTRIB *attr = NULL;
1487 	struct rb_node *node;
1488 	u16 roff;
1489 	u32 asize;
1490 	CLST svcn, evcn;
1491 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1492 	bool nt3 = is_ntfs3(sbi);
1493 	struct MFT_REF ref;
1494 
1495 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1496 		if (!nt3 || attr->name_len) {
1497 			;
1498 		} else if (attr->type == ATTR_REPARSE) {
1499 			mi_get_ref(&ni->mi, &ref);
1500 			ntfs_remove_reparse(sbi, 0, &ref);
1501 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1502 			   le32_to_cpu(attr->res.data_size) >=
1503 				   sizeof(struct GUID)) {
1504 			ntfs_objid_remove(sbi, resident_data(attr));
1505 		}
1506 
1507 		if (!attr->non_res)
1508 			continue;
1509 
1510 		svcn = le64_to_cpu(attr->nres.svcn);
1511 		evcn = le64_to_cpu(attr->nres.evcn);
1512 
1513 		if (evcn + 1 <= svcn)
1514 			continue;
1515 
1516 		asize = le32_to_cpu(attr->size);
1517 		roff = le16_to_cpu(attr->nres.run_off);
1518 
1519 		/* run==1 means unpack and deallocate. */
1520 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1521 			      Add2Ptr(attr, roff), asize - roff);
1522 	}
1523 
1524 	if (ni->attr_list.size) {
1525 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1526 		al_destroy(ni);
1527 	}
1528 
1529 	/* Free all subrecords. */
1530 	for (node = rb_first(&ni->mi_tree); node;) {
1531 		struct rb_node *next = rb_next(node);
1532 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1533 
1534 		clear_rec_inuse(mi->mrec);
1535 		mi->dirty = true;
1536 		mi_write(mi, 0);
1537 
1538 		ntfs_mark_rec_free(sbi, mi->rno);
1539 		ni_remove_mi(ni, mi);
1540 		mi_put(mi);
1541 		node = next;
1542 	}
1543 
1544 	/* Free base record. */
1545 	clear_rec_inuse(ni->mi.mrec);
1546 	ni->mi.dirty = true;
1547 	err = mi_write(&ni->mi, 0);
1548 
1549 	ntfs_mark_rec_free(sbi, ni->mi.rno);
1550 
1551 	return err;
1552 }
1553 
1554 /* ni_fname_name
1555  *
1556  * Return: File name attribute by its value.
1557  */
1558 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1559 				     const struct cpu_str *uni,
1560 				     const struct MFT_REF *home_dir,
1561 				     struct mft_inode **mi,
1562 				     struct ATTR_LIST_ENTRY **le)
1563 {
1564 	struct ATTRIB *attr = NULL;
1565 	struct ATTR_FILE_NAME *fname;
1566 
1567 	*le = NULL;
1568 
1569 	/* Enumerate all names. */
1570 next:
1571 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1572 	if (!attr)
1573 		return NULL;
1574 
1575 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1576 	if (!fname)
1577 		goto next;
1578 
1579 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1580 		goto next;
1581 
1582 	if (!uni)
1583 		goto next;
1584 
1585 	if (uni->len != fname->name_len)
1586 		goto next;
1587 
1588 	if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1589 			       false))
1590 		goto next;
1591 
1592 	return fname;
1593 }
1594 
1595 /*
1596  * ni_fname_type
1597  *
1598  * Return: File name attribute with given type.
1599  */
1600 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1601 				     struct mft_inode **mi,
1602 				     struct ATTR_LIST_ENTRY **le)
1603 {
1604 	struct ATTRIB *attr = NULL;
1605 	struct ATTR_FILE_NAME *fname;
1606 
1607 	*le = NULL;
1608 
1609 	if (FILE_NAME_POSIX == name_type)
1610 		return NULL;
1611 
1612 	/* Enumerate all names. */
1613 	for (;;) {
1614 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1615 		if (!attr)
1616 			return NULL;
1617 
1618 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1619 		if (fname && name_type == fname->type)
1620 			return fname;
1621 	}
1622 }
1623 
1624 /*
1625  * ni_new_attr_flags
1626  *
1627  * Process compressed/sparsed in special way.
1628  * NOTE: You need to set ni->std_fa = new_fa
1629  * after this function to keep internal structures in consistency.
1630  */
1631 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1632 {
1633 	struct ATTRIB *attr;
1634 	struct mft_inode *mi;
1635 	__le16 new_aflags;
1636 	u32 new_asize;
1637 
1638 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1639 	if (!attr)
1640 		return -EINVAL;
1641 
1642 	new_aflags = attr->flags;
1643 
1644 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1645 		new_aflags |= ATTR_FLAG_SPARSED;
1646 	else
1647 		new_aflags &= ~ATTR_FLAG_SPARSED;
1648 
1649 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1650 		new_aflags |= ATTR_FLAG_COMPRESSED;
1651 	else
1652 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1653 
1654 	if (new_aflags == attr->flags)
1655 		return 0;
1656 
1657 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1658 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1659 		ntfs_inode_warn(&ni->vfs_inode,
1660 				"file can't be sparsed and compressed");
1661 		return -EOPNOTSUPP;
1662 	}
1663 
1664 	if (!attr->non_res)
1665 		goto out;
1666 
1667 	if (attr->nres.data_size) {
1668 		ntfs_inode_warn(
1669 			&ni->vfs_inode,
1670 			"one can change sparsed/compressed only for empty files");
1671 		return -EOPNOTSUPP;
1672 	}
1673 
1674 	/* Resize nonresident empty attribute in-place only. */
1675 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1676 			    ? (SIZEOF_NONRESIDENT_EX + 8)
1677 			    : (SIZEOF_NONRESIDENT + 8);
1678 
1679 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1680 		return -EOPNOTSUPP;
1681 
1682 	if (new_aflags & ATTR_FLAG_SPARSED) {
1683 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1684 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1685 		attr->nres.c_unit = 0;
1686 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1687 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1688 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1689 		/* The only allowed: 16 clusters per frame. */
1690 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1691 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1692 	} else {
1693 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1694 		/* Normal files. */
1695 		attr->nres.c_unit = 0;
1696 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1697 	}
1698 	attr->nres.run_off = attr->name_off;
1699 out:
1700 	attr->flags = new_aflags;
1701 	mi->dirty = true;
1702 
1703 	return 0;
1704 }
1705 
1706 /*
1707  * ni_parse_reparse
1708  *
1709  * Buffer is at least 24 bytes.
1710  */
1711 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1712 				   void *buffer)
1713 {
1714 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1715 	u8 bits;
1716 	u16 len;
1717 	typeof(rp->CompressReparseBuffer) *cmpr;
1718 
1719 	static_assert(sizeof(struct REPARSE_DATA_BUFFER) <= 24);
1720 
1721 	/* Try to estimate reparse point. */
1722 	if (!attr->non_res) {
1723 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1724 	} else if (le64_to_cpu(attr->nres.data_size) >=
1725 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1726 		struct runs_tree run;
1727 
1728 		run_init(&run);
1729 
1730 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1731 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1732 				      sizeof(struct REPARSE_DATA_BUFFER),
1733 				      NULL)) {
1734 			rp = buffer;
1735 		}
1736 
1737 		run_close(&run);
1738 	}
1739 
1740 	if (!rp)
1741 		return REPARSE_NONE;
1742 
1743 	len = le16_to_cpu(rp->ReparseDataLength);
1744 	switch (rp->ReparseTag) {
1745 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1746 		break; /* Symbolic link. */
1747 	case IO_REPARSE_TAG_MOUNT_POINT:
1748 		break; /* Mount points and junctions. */
1749 	case IO_REPARSE_TAG_SYMLINK:
1750 		break;
1751 	case IO_REPARSE_TAG_COMPRESS:
1752 		/*
1753 		 * WOF - Windows Overlay Filter - Used to compress files with
1754 		 * LZX/Xpress.
1755 		 *
1756 		 * Unlike native NTFS file compression, the Windows
1757 		 * Overlay Filter supports only read operations. This means
1758 		 * that it doesn't need to sector-align each compressed chunk,
1759 		 * so the compressed data can be packed more tightly together.
1760 		 * If you open the file for writing, the WOF just decompresses
1761 		 * the entire file, turning it back into a plain file.
1762 		 *
1763 		 * Ntfs3 driver decompresses the entire file only on write or
1764 		 * change size requests.
1765 		 */
1766 
1767 		cmpr = &rp->CompressReparseBuffer;
1768 		if (len < sizeof(*cmpr) ||
1769 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1770 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1771 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1772 			return REPARSE_NONE;
1773 		}
1774 
1775 		switch (cmpr->CompressionFormat) {
1776 		case WOF_COMPRESSION_XPRESS4K:
1777 			bits = 0xc; // 4k
1778 			break;
1779 		case WOF_COMPRESSION_XPRESS8K:
1780 			bits = 0xd; // 8k
1781 			break;
1782 		case WOF_COMPRESSION_XPRESS16K:
1783 			bits = 0xe; // 16k
1784 			break;
1785 		case WOF_COMPRESSION_LZX32K:
1786 			bits = 0xf; // 32k
1787 			break;
1788 		default:
1789 			bits = 0x10; // 64k
1790 			break;
1791 		}
1792 		ni_set_ext_compress_bits(ni, bits);
1793 		return REPARSE_COMPRESSED;
1794 
1795 	case IO_REPARSE_TAG_DEDUP:
1796 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1797 		return REPARSE_DEDUPLICATED;
1798 
1799 	default:
1800 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1801 			break;
1802 
1803 		return REPARSE_NONE;
1804 	}
1805 
1806 	/* Looks like normal symlink. */
1807 	return REPARSE_LINK;
1808 }
1809 
1810 /*
1811  * ni_fiemap - Helper for file_fiemap().
1812  *
1813  * Assumed ni_lock.
1814  * TODO: Less aggressive locks.
1815  */
1816 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1817 	      __u64 vbo, __u64 len)
1818 {
1819 	int err = 0;
1820 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1821 	u8 cluster_bits = sbi->cluster_bits;
1822 	struct runs_tree *run;
1823 	struct rw_semaphore *run_lock;
1824 	struct ATTRIB *attr;
1825 	CLST vcn = vbo >> cluster_bits;
1826 	CLST lcn, clen;
1827 	u64 valid = ni->i_valid;
1828 	u64 lbo, bytes;
1829 	u64 end, alloc_size;
1830 	size_t idx = -1;
1831 	u32 flags;
1832 	bool ok;
1833 
1834 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1835 		run = &ni->dir.alloc_run;
1836 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1837 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1838 		run_lock = &ni->dir.run_lock;
1839 	} else {
1840 		run = &ni->file.run;
1841 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1842 				    NULL);
1843 		if (!attr) {
1844 			err = -EINVAL;
1845 			goto out;
1846 		}
1847 		if (is_attr_compressed(attr)) {
1848 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1849 			err = -EOPNOTSUPP;
1850 			ntfs_inode_warn(
1851 				&ni->vfs_inode,
1852 				"fiemap is not supported for compressed file (cp -r)");
1853 			goto out;
1854 		}
1855 		run_lock = &ni->file.run_lock;
1856 	}
1857 
1858 	if (!attr || !attr->non_res) {
1859 		err = fiemap_fill_next_extent(
1860 			fieinfo, 0, 0,
1861 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1862 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1863 				FIEMAP_EXTENT_MERGED);
1864 		goto out;
1865 	}
1866 
1867 	end = vbo + len;
1868 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1869 	if (end > alloc_size)
1870 		end = alloc_size;
1871 
1872 	down_read(run_lock);
1873 
1874 	while (vbo < end) {
1875 		if (idx == -1) {
1876 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1877 		} else {
1878 			CLST vcn_next = vcn;
1879 
1880 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1881 			     vcn == vcn_next;
1882 			if (!ok)
1883 				vcn = vcn_next;
1884 		}
1885 
1886 		if (!ok) {
1887 			up_read(run_lock);
1888 			down_write(run_lock);
1889 
1890 			err = attr_load_runs_vcn(ni, attr->type,
1891 						 attr_name(attr),
1892 						 attr->name_len, run, vcn);
1893 
1894 			up_write(run_lock);
1895 			down_read(run_lock);
1896 
1897 			if (err)
1898 				break;
1899 
1900 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1901 
1902 			if (!ok) {
1903 				err = -EINVAL;
1904 				break;
1905 			}
1906 		}
1907 
1908 		if (!clen) {
1909 			err = -EINVAL; // ?
1910 			break;
1911 		}
1912 
1913 		if (lcn == SPARSE_LCN) {
1914 			vcn += clen;
1915 			vbo = (u64)vcn << cluster_bits;
1916 			continue;
1917 		}
1918 
1919 		flags = FIEMAP_EXTENT_MERGED;
1920 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
1921 			;
1922 		} else if (is_attr_compressed(attr)) {
1923 			CLST clst_data;
1924 
1925 			err = attr_is_frame_compressed(
1926 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
1927 			if (err)
1928 				break;
1929 			if (clst_data < NTFS_LZNT_CLUSTERS)
1930 				flags |= FIEMAP_EXTENT_ENCODED;
1931 		} else if (is_attr_encrypted(attr)) {
1932 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1933 		}
1934 
1935 		vbo = (u64)vcn << cluster_bits;
1936 		bytes = (u64)clen << cluster_bits;
1937 		lbo = (u64)lcn << cluster_bits;
1938 
1939 		vcn += clen;
1940 
1941 		if (vbo + bytes >= end) {
1942 			bytes = end - vbo;
1943 			flags |= FIEMAP_EXTENT_LAST;
1944 		}
1945 
1946 		if (vbo + bytes <= valid) {
1947 			;
1948 		} else if (vbo >= valid) {
1949 			flags |= FIEMAP_EXTENT_UNWRITTEN;
1950 		} else {
1951 			/* vbo < valid && valid < vbo + bytes */
1952 			u64 dlen = valid - vbo;
1953 
1954 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1955 						      flags);
1956 			if (err < 0)
1957 				break;
1958 			if (err == 1) {
1959 				err = 0;
1960 				break;
1961 			}
1962 
1963 			vbo = valid;
1964 			bytes -= dlen;
1965 			if (!bytes)
1966 				continue;
1967 
1968 			lbo += dlen;
1969 			flags |= FIEMAP_EXTENT_UNWRITTEN;
1970 		}
1971 
1972 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
1973 		if (err < 0)
1974 			break;
1975 		if (err == 1) {
1976 			err = 0;
1977 			break;
1978 		}
1979 
1980 		vbo += bytes;
1981 	}
1982 
1983 	up_read(run_lock);
1984 
1985 out:
1986 	return err;
1987 }
1988 
1989 /*
1990  * ni_readpage_cmpr
1991  *
1992  * When decompressing, we typically obtain more than one page per reference.
1993  * We inject the additional pages into the page cache.
1994  */
1995 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
1996 {
1997 	int err;
1998 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1999 	struct address_space *mapping = page->mapping;
2000 	pgoff_t index = page->index;
2001 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2002 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2003 	u8 frame_bits;
2004 	CLST frame;
2005 	u32 i, idx, frame_size, pages_per_frame;
2006 	gfp_t gfp_mask;
2007 	struct page *pg;
2008 
2009 	if (vbo >= ni->vfs_inode.i_size) {
2010 		SetPageUptodate(page);
2011 		err = 0;
2012 		goto out;
2013 	}
2014 
2015 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2016 		/* Xpress or LZX. */
2017 		frame_bits = ni_ext_compress_bits(ni);
2018 	} else {
2019 		/* LZNT compression. */
2020 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2021 	}
2022 	frame_size = 1u << frame_bits;
2023 	frame = vbo >> frame_bits;
2024 	frame_vbo = (u64)frame << frame_bits;
2025 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2026 
2027 	pages_per_frame = frame_size >> PAGE_SHIFT;
2028 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2029 	if (!pages) {
2030 		err = -ENOMEM;
2031 		goto out;
2032 	}
2033 
2034 	pages[idx] = page;
2035 	index = frame_vbo >> PAGE_SHIFT;
2036 	gfp_mask = mapping_gfp_mask(mapping);
2037 
2038 	for (i = 0; i < pages_per_frame; i++, index++) {
2039 		if (i == idx)
2040 			continue;
2041 
2042 		pg = find_or_create_page(mapping, index, gfp_mask);
2043 		if (!pg) {
2044 			err = -ENOMEM;
2045 			goto out1;
2046 		}
2047 		pages[i] = pg;
2048 	}
2049 
2050 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2051 
2052 out1:
2053 	if (err)
2054 		SetPageError(page);
2055 
2056 	for (i = 0; i < pages_per_frame; i++) {
2057 		pg = pages[i];
2058 		if (i == idx)
2059 			continue;
2060 		unlock_page(pg);
2061 		put_page(pg);
2062 	}
2063 
2064 out:
2065 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2066 	kfree(pages);
2067 	unlock_page(page);
2068 
2069 	return err;
2070 }
2071 
2072 #ifdef CONFIG_NTFS3_LZX_XPRESS
2073 /*
2074  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2075  *
2076  * Remove ATTR_DATA::WofCompressedData.
2077  * Remove ATTR_REPARSE.
2078  */
2079 int ni_decompress_file(struct ntfs_inode *ni)
2080 {
2081 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2082 	struct inode *inode = &ni->vfs_inode;
2083 	loff_t i_size = inode->i_size;
2084 	struct address_space *mapping = inode->i_mapping;
2085 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2086 	struct page **pages = NULL;
2087 	struct ATTR_LIST_ENTRY *le;
2088 	struct ATTRIB *attr;
2089 	CLST vcn, cend, lcn, clen, end;
2090 	pgoff_t index;
2091 	u64 vbo;
2092 	u8 frame_bits;
2093 	u32 i, frame_size, pages_per_frame, bytes;
2094 	struct mft_inode *mi;
2095 	int err;
2096 
2097 	/* Clusters for decompressed data. */
2098 	cend = bytes_to_cluster(sbi, i_size);
2099 
2100 	if (!i_size)
2101 		goto remove_wof;
2102 
2103 	/* Check in advance. */
2104 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2105 		err = -ENOSPC;
2106 		goto out;
2107 	}
2108 
2109 	frame_bits = ni_ext_compress_bits(ni);
2110 	frame_size = 1u << frame_bits;
2111 	pages_per_frame = frame_size >> PAGE_SHIFT;
2112 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2113 	if (!pages) {
2114 		err = -ENOMEM;
2115 		goto out;
2116 	}
2117 
2118 	/*
2119 	 * Step 1: Decompress data and copy to new allocated clusters.
2120 	 */
2121 	index = 0;
2122 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2123 		u32 nr_pages;
2124 		bool new;
2125 
2126 		if (vbo + frame_size > i_size) {
2127 			bytes = i_size - vbo;
2128 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2129 		} else {
2130 			nr_pages = pages_per_frame;
2131 			bytes = frame_size;
2132 		}
2133 
2134 		end = bytes_to_cluster(sbi, vbo + bytes);
2135 
2136 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2137 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2138 						  &clen, &new);
2139 			if (err)
2140 				goto out;
2141 		}
2142 
2143 		for (i = 0; i < pages_per_frame; i++, index++) {
2144 			struct page *pg;
2145 
2146 			pg = find_or_create_page(mapping, index, gfp_mask);
2147 			if (!pg) {
2148 				while (i--) {
2149 					unlock_page(pages[i]);
2150 					put_page(pages[i]);
2151 				}
2152 				err = -ENOMEM;
2153 				goto out;
2154 			}
2155 			pages[i] = pg;
2156 		}
2157 
2158 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2159 
2160 		if (!err) {
2161 			down_read(&ni->file.run_lock);
2162 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2163 					     nr_pages, vbo, bytes,
2164 					     REQ_OP_WRITE);
2165 			up_read(&ni->file.run_lock);
2166 		}
2167 
2168 		for (i = 0; i < pages_per_frame; i++) {
2169 			unlock_page(pages[i]);
2170 			put_page(pages[i]);
2171 		}
2172 
2173 		if (err)
2174 			goto out;
2175 
2176 		cond_resched();
2177 	}
2178 
2179 remove_wof:
2180 	/*
2181 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2182 	 * and ATTR_REPARSE.
2183 	 */
2184 	attr = NULL;
2185 	le = NULL;
2186 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2187 		CLST svcn, evcn;
2188 		u32 asize, roff;
2189 
2190 		if (attr->type == ATTR_REPARSE) {
2191 			struct MFT_REF ref;
2192 
2193 			mi_get_ref(&ni->mi, &ref);
2194 			ntfs_remove_reparse(sbi, 0, &ref);
2195 		}
2196 
2197 		if (!attr->non_res)
2198 			continue;
2199 
2200 		if (attr->type != ATTR_REPARSE &&
2201 		    (attr->type != ATTR_DATA ||
2202 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2203 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2204 			continue;
2205 
2206 		svcn = le64_to_cpu(attr->nres.svcn);
2207 		evcn = le64_to_cpu(attr->nres.evcn);
2208 
2209 		if (evcn + 1 <= svcn)
2210 			continue;
2211 
2212 		asize = le32_to_cpu(attr->size);
2213 		roff = le16_to_cpu(attr->nres.run_off);
2214 
2215 		/*run==1  Means unpack and deallocate. */
2216 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2217 			      Add2Ptr(attr, roff), asize - roff);
2218 	}
2219 
2220 	/*
2221 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2222 	 */
2223 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2224 			     false, NULL);
2225 	if (err)
2226 		goto out;
2227 
2228 	/*
2229 	 * Step 4: Remove ATTR_REPARSE.
2230 	 */
2231 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2232 	if (err)
2233 		goto out;
2234 
2235 	/*
2236 	 * Step 5: Remove sparse flag from data attribute.
2237 	 */
2238 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2239 	if (!attr) {
2240 		err = -EINVAL;
2241 		goto out;
2242 	}
2243 
2244 	if (attr->non_res && is_attr_sparsed(attr)) {
2245 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2246 		struct MFT_REC *rec = mi->mrec;
2247 		u32 used = le32_to_cpu(rec->used);
2248 		u32 asize = le32_to_cpu(attr->size);
2249 		u16 roff = le16_to_cpu(attr->nres.run_off);
2250 		char *rbuf = Add2Ptr(attr, roff);
2251 
2252 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2253 		attr->size = cpu_to_le32(asize - 8);
2254 		attr->flags &= ~ATTR_FLAG_SPARSED;
2255 		attr->nres.run_off = cpu_to_le16(roff - 8);
2256 		attr->nres.c_unit = 0;
2257 		rec->used = cpu_to_le32(used - 8);
2258 		mi->dirty = true;
2259 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2260 				FILE_ATTRIBUTE_REPARSE_POINT);
2261 
2262 		mark_inode_dirty(inode);
2263 	}
2264 
2265 	/* Clear cached flag. */
2266 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2267 	if (ni->file.offs_page) {
2268 		put_page(ni->file.offs_page);
2269 		ni->file.offs_page = NULL;
2270 	}
2271 	mapping->a_ops = &ntfs_aops;
2272 
2273 out:
2274 	kfree(pages);
2275 	if (err) {
2276 		make_bad_inode(inode);
2277 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
2278 	}
2279 
2280 	return err;
2281 }
2282 
2283 /*
2284  * decompress_lzx_xpress - External compression LZX/Xpress.
2285  */
2286 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2287 				 size_t cmpr_size, void *unc, size_t unc_size,
2288 				 u32 frame_size)
2289 {
2290 	int err;
2291 	void *ctx;
2292 
2293 	if (cmpr_size == unc_size) {
2294 		/* Frame not compressed. */
2295 		memcpy(unc, cmpr, unc_size);
2296 		return 0;
2297 	}
2298 
2299 	err = 0;
2300 	if (frame_size == 0x8000) {
2301 		mutex_lock(&sbi->compress.mtx_lzx);
2302 		/* LZX: Frame compressed. */
2303 		ctx = sbi->compress.lzx;
2304 		if (!ctx) {
2305 			/* Lazy initialize LZX decompress context. */
2306 			ctx = lzx_allocate_decompressor();
2307 			if (!ctx) {
2308 				err = -ENOMEM;
2309 				goto out1;
2310 			}
2311 
2312 			sbi->compress.lzx = ctx;
2313 		}
2314 
2315 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2316 			/* Treat all errors as "invalid argument". */
2317 			err = -EINVAL;
2318 		}
2319 out1:
2320 		mutex_unlock(&sbi->compress.mtx_lzx);
2321 	} else {
2322 		/* XPRESS: Frame compressed. */
2323 		mutex_lock(&sbi->compress.mtx_xpress);
2324 		ctx = sbi->compress.xpress;
2325 		if (!ctx) {
2326 			/* Lazy initialize Xpress decompress context. */
2327 			ctx = xpress_allocate_decompressor();
2328 			if (!ctx) {
2329 				err = -ENOMEM;
2330 				goto out2;
2331 			}
2332 
2333 			sbi->compress.xpress = ctx;
2334 		}
2335 
2336 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2337 			/* Treat all errors as "invalid argument". */
2338 			err = -EINVAL;
2339 		}
2340 out2:
2341 		mutex_unlock(&sbi->compress.mtx_xpress);
2342 	}
2343 	return err;
2344 }
2345 #endif
2346 
2347 /*
2348  * ni_read_frame
2349  *
2350  * Pages - Array of locked pages.
2351  */
2352 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2353 		  u32 pages_per_frame)
2354 {
2355 	int err;
2356 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2357 	u8 cluster_bits = sbi->cluster_bits;
2358 	char *frame_ondisk = NULL;
2359 	char *frame_mem = NULL;
2360 	struct page **pages_disk = NULL;
2361 	struct ATTR_LIST_ENTRY *le = NULL;
2362 	struct runs_tree *run = &ni->file.run;
2363 	u64 valid_size = ni->i_valid;
2364 	u64 vbo_disk;
2365 	size_t unc_size;
2366 	u32 frame_size, i, npages_disk, ondisk_size;
2367 	struct page *pg;
2368 	struct ATTRIB *attr;
2369 	CLST frame, clst_data;
2370 
2371 	/*
2372 	 * To simplify decompress algorithm do vmap for source
2373 	 * and target pages.
2374 	 */
2375 	for (i = 0; i < pages_per_frame; i++)
2376 		kmap(pages[i]);
2377 
2378 	frame_size = pages_per_frame << PAGE_SHIFT;
2379 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2380 	if (!frame_mem) {
2381 		err = -ENOMEM;
2382 		goto out;
2383 	}
2384 
2385 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2386 	if (!attr) {
2387 		err = -ENOENT;
2388 		goto out1;
2389 	}
2390 
2391 	if (!attr->non_res) {
2392 		u32 data_size = le32_to_cpu(attr->res.data_size);
2393 
2394 		memset(frame_mem, 0, frame_size);
2395 		if (frame_vbo < data_size) {
2396 			ondisk_size = data_size - frame_vbo;
2397 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2398 			       min(ondisk_size, frame_size));
2399 		}
2400 		err = 0;
2401 		goto out1;
2402 	}
2403 
2404 	if (frame_vbo >= valid_size) {
2405 		memset(frame_mem, 0, frame_size);
2406 		err = 0;
2407 		goto out1;
2408 	}
2409 
2410 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2411 #ifndef CONFIG_NTFS3_LZX_XPRESS
2412 		err = -EOPNOTSUPP;
2413 		goto out1;
2414 #else
2415 		u32 frame_bits = ni_ext_compress_bits(ni);
2416 		u64 frame64 = frame_vbo >> frame_bits;
2417 		u64 frames, vbo_data;
2418 
2419 		if (frame_size != (1u << frame_bits)) {
2420 			err = -EINVAL;
2421 			goto out1;
2422 		}
2423 		switch (frame_size) {
2424 		case 0x1000:
2425 		case 0x2000:
2426 		case 0x4000:
2427 		case 0x8000:
2428 			break;
2429 		default:
2430 			/* Unknown compression. */
2431 			err = -EOPNOTSUPP;
2432 			goto out1;
2433 		}
2434 
2435 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2436 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2437 		if (!attr) {
2438 			ntfs_inode_err(
2439 				&ni->vfs_inode,
2440 				"external compressed file should contains data attribute \"WofCompressedData\"");
2441 			err = -EINVAL;
2442 			goto out1;
2443 		}
2444 
2445 		if (!attr->non_res) {
2446 			run = NULL;
2447 		} else {
2448 			run = run_alloc();
2449 			if (!run) {
2450 				err = -ENOMEM;
2451 				goto out1;
2452 			}
2453 		}
2454 
2455 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2456 
2457 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2458 					  frame_bits, &ondisk_size, &vbo_data);
2459 		if (err)
2460 			goto out2;
2461 
2462 		if (frame64 == frames) {
2463 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2464 					(frame_size - 1));
2465 			ondisk_size = attr_size(attr) - vbo_data;
2466 		} else {
2467 			unc_size = frame_size;
2468 		}
2469 
2470 		if (ondisk_size > frame_size) {
2471 			err = -EINVAL;
2472 			goto out2;
2473 		}
2474 
2475 		if (!attr->non_res) {
2476 			if (vbo_data + ondisk_size >
2477 			    le32_to_cpu(attr->res.data_size)) {
2478 				err = -EINVAL;
2479 				goto out1;
2480 			}
2481 
2482 			err = decompress_lzx_xpress(
2483 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2484 				ondisk_size, frame_mem, unc_size, frame_size);
2485 			goto out1;
2486 		}
2487 		vbo_disk = vbo_data;
2488 		/* Load all runs to read [vbo_disk-vbo_to). */
2489 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2490 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2491 					   vbo_data + ondisk_size);
2492 		if (err)
2493 			goto out2;
2494 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2495 			       PAGE_SIZE - 1) >>
2496 			      PAGE_SHIFT;
2497 #endif
2498 	} else if (is_attr_compressed(attr)) {
2499 		/* LZNT compression. */
2500 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2501 			err = -EOPNOTSUPP;
2502 			goto out1;
2503 		}
2504 
2505 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2506 			err = -EOPNOTSUPP;
2507 			goto out1;
2508 		}
2509 
2510 		down_write(&ni->file.run_lock);
2511 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2512 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2513 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2514 		up_write(&ni->file.run_lock);
2515 		if (err)
2516 			goto out1;
2517 
2518 		if (!clst_data) {
2519 			memset(frame_mem, 0, frame_size);
2520 			goto out1;
2521 		}
2522 
2523 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2524 		ondisk_size = clst_data << cluster_bits;
2525 
2526 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2527 			/* Frame is not compressed. */
2528 			down_read(&ni->file.run_lock);
2529 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2530 					     frame_vbo, ondisk_size,
2531 					     REQ_OP_READ);
2532 			up_read(&ni->file.run_lock);
2533 			goto out1;
2534 		}
2535 		vbo_disk = frame_vbo;
2536 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2537 	} else {
2538 		__builtin_unreachable();
2539 		err = -EINVAL;
2540 		goto out1;
2541 	}
2542 
2543 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2544 	if (!pages_disk) {
2545 		err = -ENOMEM;
2546 		goto out2;
2547 	}
2548 
2549 	for (i = 0; i < npages_disk; i++) {
2550 		pg = alloc_page(GFP_KERNEL);
2551 		if (!pg) {
2552 			err = -ENOMEM;
2553 			goto out3;
2554 		}
2555 		pages_disk[i] = pg;
2556 		lock_page(pg);
2557 		kmap(pg);
2558 	}
2559 
2560 	/* Read 'ondisk_size' bytes from disk. */
2561 	down_read(&ni->file.run_lock);
2562 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2563 			     ondisk_size, REQ_OP_READ);
2564 	up_read(&ni->file.run_lock);
2565 	if (err)
2566 		goto out3;
2567 
2568 	/*
2569 	 * To simplify decompress algorithm do vmap for source and target pages.
2570 	 */
2571 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2572 	if (!frame_ondisk) {
2573 		err = -ENOMEM;
2574 		goto out3;
2575 	}
2576 
2577 	/* Decompress: Frame_ondisk -> frame_mem. */
2578 #ifdef CONFIG_NTFS3_LZX_XPRESS
2579 	if (run != &ni->file.run) {
2580 		/* LZX or XPRESS */
2581 		err = decompress_lzx_xpress(
2582 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2583 			ondisk_size, frame_mem, unc_size, frame_size);
2584 	} else
2585 #endif
2586 	{
2587 		/* LZNT - Native NTFS compression. */
2588 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2589 					   frame_size);
2590 		if ((ssize_t)unc_size < 0)
2591 			err = unc_size;
2592 		else if (!unc_size || unc_size > frame_size)
2593 			err = -EINVAL;
2594 	}
2595 	if (!err && valid_size < frame_vbo + frame_size) {
2596 		size_t ok = valid_size - frame_vbo;
2597 
2598 		memset(frame_mem + ok, 0, frame_size - ok);
2599 	}
2600 
2601 	vunmap(frame_ondisk);
2602 
2603 out3:
2604 	for (i = 0; i < npages_disk; i++) {
2605 		pg = pages_disk[i];
2606 		if (pg) {
2607 			kunmap(pg);
2608 			unlock_page(pg);
2609 			put_page(pg);
2610 		}
2611 	}
2612 	kfree(pages_disk);
2613 
2614 out2:
2615 #ifdef CONFIG_NTFS3_LZX_XPRESS
2616 	if (run != &ni->file.run)
2617 		run_free(run);
2618 #endif
2619 out1:
2620 	vunmap(frame_mem);
2621 out:
2622 	for (i = 0; i < pages_per_frame; i++) {
2623 		pg = pages[i];
2624 		kunmap(pg);
2625 		ClearPageError(pg);
2626 		SetPageUptodate(pg);
2627 	}
2628 
2629 	return err;
2630 }
2631 
2632 /*
2633  * ni_write_frame
2634  *
2635  * Pages - Array of locked pages.
2636  */
2637 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2638 		   u32 pages_per_frame)
2639 {
2640 	int err;
2641 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2642 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2643 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2644 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2645 	CLST frame = frame_vbo >> frame_bits;
2646 	char *frame_ondisk = NULL;
2647 	struct page **pages_disk = NULL;
2648 	struct ATTR_LIST_ENTRY *le = NULL;
2649 	char *frame_mem;
2650 	struct ATTRIB *attr;
2651 	struct mft_inode *mi;
2652 	u32 i;
2653 	struct page *pg;
2654 	size_t compr_size, ondisk_size;
2655 	struct lznt *lznt;
2656 
2657 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2658 	if (!attr) {
2659 		err = -ENOENT;
2660 		goto out;
2661 	}
2662 
2663 	if (WARN_ON(!is_attr_compressed(attr))) {
2664 		err = -EINVAL;
2665 		goto out;
2666 	}
2667 
2668 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2669 		err = -EOPNOTSUPP;
2670 		goto out;
2671 	}
2672 
2673 	if (!attr->non_res) {
2674 		down_write(&ni->file.run_lock);
2675 		err = attr_make_nonresident(ni, attr, le, mi,
2676 					    le32_to_cpu(attr->res.data_size),
2677 					    &ni->file.run, &attr, pages[0]);
2678 		up_write(&ni->file.run_lock);
2679 		if (err)
2680 			goto out;
2681 	}
2682 
2683 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2684 		err = -EOPNOTSUPP;
2685 		goto out;
2686 	}
2687 
2688 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2689 	if (!pages_disk) {
2690 		err = -ENOMEM;
2691 		goto out;
2692 	}
2693 
2694 	for (i = 0; i < pages_per_frame; i++) {
2695 		pg = alloc_page(GFP_KERNEL);
2696 		if (!pg) {
2697 			err = -ENOMEM;
2698 			goto out1;
2699 		}
2700 		pages_disk[i] = pg;
2701 		lock_page(pg);
2702 		kmap(pg);
2703 	}
2704 
2705 	/* To simplify compress algorithm do vmap for source and target pages. */
2706 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2707 	if (!frame_ondisk) {
2708 		err = -ENOMEM;
2709 		goto out1;
2710 	}
2711 
2712 	for (i = 0; i < pages_per_frame; i++)
2713 		kmap(pages[i]);
2714 
2715 	/* Map in-memory frame for read-only. */
2716 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2717 	if (!frame_mem) {
2718 		err = -ENOMEM;
2719 		goto out2;
2720 	}
2721 
2722 	mutex_lock(&sbi->compress.mtx_lznt);
2723 	lznt = NULL;
2724 	if (!sbi->compress.lznt) {
2725 		/*
2726 		 * LZNT implements two levels of compression:
2727 		 * 0 - Standard compression
2728 		 * 1 - Best compression, requires a lot of cpu
2729 		 * use mount option?
2730 		 */
2731 		lznt = get_lznt_ctx(0);
2732 		if (!lznt) {
2733 			mutex_unlock(&sbi->compress.mtx_lznt);
2734 			err = -ENOMEM;
2735 			goto out3;
2736 		}
2737 
2738 		sbi->compress.lznt = lznt;
2739 		lznt = NULL;
2740 	}
2741 
2742 	/* Compress: frame_mem -> frame_ondisk */
2743 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2744 				   frame_size, sbi->compress.lznt);
2745 	mutex_unlock(&sbi->compress.mtx_lznt);
2746 	kfree(lznt);
2747 
2748 	if (compr_size + sbi->cluster_size > frame_size) {
2749 		/* Frame is not compressed. */
2750 		compr_size = frame_size;
2751 		ondisk_size = frame_size;
2752 	} else if (compr_size) {
2753 		/* Frame is compressed. */
2754 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2755 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2756 	} else {
2757 		/* Frame is sparsed. */
2758 		ondisk_size = 0;
2759 	}
2760 
2761 	down_write(&ni->file.run_lock);
2762 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2763 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2764 	up_write(&ni->file.run_lock);
2765 	if (err)
2766 		goto out2;
2767 
2768 	if (!ondisk_size)
2769 		goto out2;
2770 
2771 	down_read(&ni->file.run_lock);
2772 	err = ntfs_bio_pages(sbi, &ni->file.run,
2773 			     ondisk_size < frame_size ? pages_disk : pages,
2774 			     pages_per_frame, frame_vbo, ondisk_size,
2775 			     REQ_OP_WRITE);
2776 	up_read(&ni->file.run_lock);
2777 
2778 out3:
2779 	vunmap(frame_mem);
2780 
2781 out2:
2782 	for (i = 0; i < pages_per_frame; i++)
2783 		kunmap(pages[i]);
2784 
2785 	vunmap(frame_ondisk);
2786 out1:
2787 	for (i = 0; i < pages_per_frame; i++) {
2788 		pg = pages_disk[i];
2789 		if (pg) {
2790 			kunmap(pg);
2791 			unlock_page(pg);
2792 			put_page(pg);
2793 		}
2794 	}
2795 	kfree(pages_disk);
2796 out:
2797 	return err;
2798 }
2799 
2800 /*
2801  * ni_remove_name - Removes name 'de' from MFT and from directory.
2802  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2803  */
2804 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2805 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2806 {
2807 	int err;
2808 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2809 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2810 	struct ATTR_FILE_NAME *fname;
2811 	struct ATTR_LIST_ENTRY *le;
2812 	struct mft_inode *mi;
2813 	u16 de_key_size = le16_to_cpu(de->key_size);
2814 	u8 name_type;
2815 
2816 	*undo_step = 0;
2817 
2818 	/* Find name in record. */
2819 	mi_get_ref(&dir_ni->mi, &de_name->home);
2820 
2821 	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2822 			      &de_name->home, &mi, &le);
2823 	if (!fname)
2824 		return -ENOENT;
2825 
2826 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2827 	name_type = paired_name(fname->type);
2828 
2829 	/* Mark ntfs as dirty. It will be cleared at umount. */
2830 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2831 
2832 	/* Step 1: Remove name from directory. */
2833 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2834 	if (err)
2835 		return err;
2836 
2837 	/* Step 2: Remove name from MFT. */
2838 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2839 
2840 	*undo_step = 2;
2841 
2842 	/* Get paired name. */
2843 	fname = ni_fname_type(ni, name_type, &mi, &le);
2844 	if (fname) {
2845 		u16 de2_key_size = fname_full_size(fname);
2846 
2847 		*de2 = Add2Ptr(de, 1024);
2848 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2849 
2850 		memcpy(*de2 + 1, fname, de2_key_size);
2851 
2852 		/* Step 3: Remove paired name from directory. */
2853 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2854 					de2_key_size, sbi);
2855 		if (err)
2856 			return err;
2857 
2858 		/* Step 4: Remove paired name from MFT. */
2859 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2860 
2861 		*undo_step = 4;
2862 	}
2863 	return 0;
2864 }
2865 
2866 /*
2867  * ni_remove_name_undo - Paired function for ni_remove_name.
2868  *
2869  * Return: True if ok
2870  */
2871 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2872 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2873 {
2874 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2875 	struct ATTRIB *attr;
2876 	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2877 
2878 	switch (undo_step) {
2879 	case 4:
2880 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2881 				       &attr, NULL, NULL)) {
2882 			return false;
2883 		}
2884 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2885 
2886 		mi_get_ref(&ni->mi, &de2->ref);
2887 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2888 					sizeof(struct NTFS_DE));
2889 		de2->flags = 0;
2890 		de2->res = 0;
2891 
2892 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2893 				      1)) {
2894 			return false;
2895 		}
2896 		fallthrough;
2897 
2898 	case 2:
2899 		de_key_size = le16_to_cpu(de->key_size);
2900 
2901 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2902 				       &attr, NULL, NULL)) {
2903 			return false;
2904 		}
2905 
2906 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2907 		mi_get_ref(&ni->mi, &de->ref);
2908 
2909 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) {
2910 			return false;
2911 		}
2912 	}
2913 
2914 	return true;
2915 }
2916 
2917 /*
2918  * ni_add_name - Add new name in MFT and in directory.
2919  */
2920 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2921 		struct NTFS_DE *de)
2922 {
2923 	int err;
2924 	struct ATTRIB *attr;
2925 	struct ATTR_LIST_ENTRY *le;
2926 	struct mft_inode *mi;
2927 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2928 	u16 de_key_size = le16_to_cpu(de->key_size);
2929 
2930 	mi_get_ref(&ni->mi, &de->ref);
2931 	mi_get_ref(&dir_ni->mi, &de_name->home);
2932 
2933 	/* Insert new name in MFT. */
2934 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
2935 				 &mi, &le);
2936 	if (err)
2937 		return err;
2938 
2939 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
2940 
2941 	/* Insert new name in directory. */
2942 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
2943 	if (err)
2944 		ni_remove_attr_le(ni, attr, mi, le);
2945 
2946 	return err;
2947 }
2948 
2949 /*
2950  * ni_rename - Remove one name and insert new name.
2951  */
2952 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
2953 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
2954 	      bool *is_bad)
2955 {
2956 	int err;
2957 	struct NTFS_DE *de2 = NULL;
2958 	int undo = 0;
2959 
2960 	/*
2961 	 * There are two possible ways to rename:
2962 	 * 1) Add new name and remove old name.
2963 	 * 2) Remove old name and add new name.
2964 	 *
2965 	 * In most cases (not all!) adding new name in MFT and in directory can
2966 	 * allocate additional cluster(s).
2967 	 * Second way may result to bad inode if we can't add new name
2968 	 * and then can't restore (add) old name.
2969 	 */
2970 
2971 	/*
2972 	 * Way 1 - Add new + remove old.
2973 	 */
2974 	err = ni_add_name(new_dir_ni, ni, new_de);
2975 	if (!err) {
2976 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
2977 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
2978 			*is_bad = true;
2979 	}
2980 
2981 	/*
2982 	 * Way 2 - Remove old + add new.
2983 	 */
2984 	/*
2985 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
2986 	 *	if (!err) {
2987 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
2988 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
2989 	 *			*is_bad = true;
2990 	 *	}
2991 	 */
2992 
2993 	return err;
2994 }
2995 
2996 /*
2997  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
2998  */
2999 bool ni_is_dirty(struct inode *inode)
3000 {
3001 	struct ntfs_inode *ni = ntfs_i(inode);
3002 	struct rb_node *node;
3003 
3004 	if (ni->mi.dirty || ni->attr_list.dirty ||
3005 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3006 		return true;
3007 
3008 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3009 		if (rb_entry(node, struct mft_inode, node)->dirty)
3010 			return true;
3011 	}
3012 
3013 	return false;
3014 }
3015 
3016 /*
3017  * ni_update_parent
3018  *
3019  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3020  */
3021 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3022 			     int sync)
3023 {
3024 	struct ATTRIB *attr;
3025 	struct mft_inode *mi;
3026 	struct ATTR_LIST_ENTRY *le = NULL;
3027 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3028 	struct super_block *sb = sbi->sb;
3029 	bool re_dirty = false;
3030 
3031 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3032 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3033 		attr = NULL;
3034 		dup->alloc_size = 0;
3035 		dup->data_size = 0;
3036 	} else {
3037 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3038 
3039 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3040 				    &mi);
3041 		if (!attr) {
3042 			dup->alloc_size = dup->data_size = 0;
3043 		} else if (!attr->non_res) {
3044 			u32 data_size = le32_to_cpu(attr->res.data_size);
3045 
3046 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3047 			dup->data_size = cpu_to_le64(data_size);
3048 		} else {
3049 			u64 new_valid = ni->i_valid;
3050 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3051 			__le64 valid_le;
3052 
3053 			dup->alloc_size = is_attr_ext(attr)
3054 						  ? attr->nres.total_size
3055 						  : attr->nres.alloc_size;
3056 			dup->data_size = attr->nres.data_size;
3057 
3058 			if (new_valid > data_size)
3059 				new_valid = data_size;
3060 
3061 			valid_le = cpu_to_le64(new_valid);
3062 			if (valid_le != attr->nres.valid_size) {
3063 				attr->nres.valid_size = valid_le;
3064 				mi->dirty = true;
3065 			}
3066 		}
3067 	}
3068 
3069 	/* TODO: Fill reparse info. */
3070 	dup->reparse = 0;
3071 	dup->ea_size = 0;
3072 
3073 	if (ni->ni_flags & NI_FLAG_EA) {
3074 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3075 				    NULL);
3076 		if (attr) {
3077 			const struct EA_INFO *info;
3078 
3079 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3080 			dup->ea_size = info->size_pack;
3081 		}
3082 	}
3083 
3084 	attr = NULL;
3085 	le = NULL;
3086 
3087 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3088 				    &mi))) {
3089 		struct inode *dir;
3090 		struct ATTR_FILE_NAME *fname;
3091 
3092 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3093 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3094 			continue;
3095 
3096 		/* ntfs_iget5 may sleep. */
3097 		dir = ntfs_iget5(sb, &fname->home, NULL);
3098 		if (IS_ERR(dir)) {
3099 			ntfs_inode_warn(
3100 				&ni->vfs_inode,
3101 				"failed to open parent directory r=%lx to update",
3102 				(long)ino_get(&fname->home));
3103 			continue;
3104 		}
3105 
3106 		if (!is_bad_inode(dir)) {
3107 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3108 
3109 			if (!ni_trylock(dir_ni)) {
3110 				re_dirty = true;
3111 			} else {
3112 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3113 				ni_unlock(dir_ni);
3114 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3115 				mi->dirty = true;
3116 			}
3117 		}
3118 		iput(dir);
3119 	}
3120 
3121 	return re_dirty;
3122 }
3123 
3124 /*
3125  * ni_write_inode - Write MFT base record and all subrecords to disk.
3126  */
3127 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3128 {
3129 	int err = 0, err2;
3130 	struct ntfs_inode *ni = ntfs_i(inode);
3131 	struct super_block *sb = inode->i_sb;
3132 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3133 	bool re_dirty = false;
3134 	struct ATTR_STD_INFO *std;
3135 	struct rb_node *node, *next;
3136 	struct NTFS_DUP_INFO dup;
3137 
3138 	if (is_bad_inode(inode) || sb_rdonly(sb))
3139 		return 0;
3140 
3141 	if (!ni_trylock(ni)) {
3142 		/* 'ni' is under modification, skip for now. */
3143 		mark_inode_dirty_sync(inode);
3144 		return 0;
3145 	}
3146 
3147 	if (is_rec_inuse(ni->mi.mrec) &&
3148 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3149 		bool modified = false;
3150 
3151 		/* Update times in standard attribute. */
3152 		std = ni_std(ni);
3153 		if (!std) {
3154 			err = -EINVAL;
3155 			goto out;
3156 		}
3157 
3158 		/* Update the access times if they have changed. */
3159 		dup.m_time = kernel2nt(&inode->i_mtime);
3160 		if (std->m_time != dup.m_time) {
3161 			std->m_time = dup.m_time;
3162 			modified = true;
3163 		}
3164 
3165 		dup.c_time = kernel2nt(&inode->i_ctime);
3166 		if (std->c_time != dup.c_time) {
3167 			std->c_time = dup.c_time;
3168 			modified = true;
3169 		}
3170 
3171 		dup.a_time = kernel2nt(&inode->i_atime);
3172 		if (std->a_time != dup.a_time) {
3173 			std->a_time = dup.a_time;
3174 			modified = true;
3175 		}
3176 
3177 		dup.fa = ni->std_fa;
3178 		if (std->fa != dup.fa) {
3179 			std->fa = dup.fa;
3180 			modified = true;
3181 		}
3182 
3183 		if (modified)
3184 			ni->mi.dirty = true;
3185 
3186 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3187 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3188 		    /* Avoid __wait_on_freeing_inode(inode). */
3189 		    && (sb->s_flags & SB_ACTIVE)) {
3190 			dup.cr_time = std->cr_time;
3191 			/* Not critical if this function fail. */
3192 			re_dirty = ni_update_parent(ni, &dup, sync);
3193 
3194 			if (re_dirty)
3195 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3196 			else
3197 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3198 		}
3199 
3200 		/* Update attribute list. */
3201 		if (ni->attr_list.size && ni->attr_list.dirty) {
3202 			if (inode->i_ino != MFT_REC_MFT || sync) {
3203 				err = ni_try_remove_attr_list(ni);
3204 				if (err)
3205 					goto out;
3206 			}
3207 
3208 			err = al_update(ni);
3209 			if (err)
3210 				goto out;
3211 		}
3212 	}
3213 
3214 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3215 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3216 		bool is_empty;
3217 
3218 		next = rb_next(node);
3219 
3220 		if (!mi->dirty)
3221 			continue;
3222 
3223 		is_empty = !mi_enum_attr(mi, NULL);
3224 
3225 		if (is_empty)
3226 			clear_rec_inuse(mi->mrec);
3227 
3228 		err2 = mi_write(mi, sync);
3229 		if (!err && err2)
3230 			err = err2;
3231 
3232 		if (is_empty) {
3233 			ntfs_mark_rec_free(sbi, mi->rno);
3234 			rb_erase(node, &ni->mi_tree);
3235 			mi_put(mi);
3236 		}
3237 	}
3238 
3239 	if (ni->mi.dirty) {
3240 		err2 = mi_write(&ni->mi, sync);
3241 		if (!err && err2)
3242 			err = err2;
3243 	}
3244 out:
3245 	ni_unlock(ni);
3246 
3247 	if (err) {
3248 		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3249 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3250 		return err;
3251 	}
3252 
3253 	if (re_dirty)
3254 		mark_inode_dirty_sync(inode);
3255 
3256 	return 0;
3257 }
3258