1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : 80 NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : 95 NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec)) 106 ni_delete_all(ni); 107 108 al_destroy(ni); 109 110 for (node = rb_first(&ni->mi_tree); node;) { 111 struct rb_node *next = rb_next(node); 112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 113 114 rb_erase(node, &ni->mi_tree); 115 mi_put(mi); 116 node = next; 117 } 118 119 /* Bad inode always has mode == S_IFREG. */ 120 if (ni->ni_flags & NI_FLAG_DIR) 121 indx_clear(&ni->dir); 122 else { 123 run_close(&ni->file.run); 124 #ifdef CONFIG_NTFS3_LZX_XPRESS 125 if (ni->file.offs_page) { 126 /* On-demand allocated page for offsets. */ 127 put_page(ni->file.offs_page); 128 ni->file.offs_page = NULL; 129 } 130 #endif 131 } 132 133 mi_clear(&ni->mi); 134 } 135 136 /* 137 * ni_load_mi_ex - Find mft_inode by record number. 138 */ 139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 140 { 141 int err; 142 struct mft_inode *r; 143 144 r = ni_find_mi(ni, rno); 145 if (r) 146 goto out; 147 148 err = mi_get(ni->mi.sbi, rno, &r); 149 if (err) 150 return err; 151 152 ni_add_mi(ni, r); 153 154 out: 155 if (mi) 156 *mi = r; 157 return 0; 158 } 159 160 /* 161 * ni_load_mi - Load mft_inode corresponded list_entry. 162 */ 163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 164 struct mft_inode **mi) 165 { 166 CLST rno; 167 168 if (!le) { 169 *mi = &ni->mi; 170 return 0; 171 } 172 173 rno = ino_get(&le->ref); 174 if (rno == ni->mi.rno) { 175 *mi = &ni->mi; 176 return 0; 177 } 178 return ni_load_mi_ex(ni, rno, mi); 179 } 180 181 /* 182 * ni_find_attr 183 * 184 * Return: Attribute and record this attribute belongs to. 185 */ 186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 188 const __le16 *name, u8 name_len, const CLST *vcn, 189 struct mft_inode **mi) 190 { 191 struct ATTR_LIST_ENTRY *le; 192 struct mft_inode *m; 193 194 if (!ni->attr_list.size || 195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 196 if (le_o) 197 *le_o = NULL; 198 if (mi) 199 *mi = &ni->mi; 200 201 /* Look for required attribute in primary record. */ 202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 203 } 204 205 /* First look for list entry of required type. */ 206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 207 if (!le) 208 return NULL; 209 210 if (le_o) 211 *le_o = le; 212 213 /* Load record that contains this attribute. */ 214 if (ni_load_mi(ni, le, &m)) 215 return NULL; 216 217 /* Look for required attribute. */ 218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 219 220 if (!attr) 221 goto out; 222 223 if (!attr->non_res) { 224 if (vcn && *vcn) 225 goto out; 226 } else if (!vcn) { 227 if (attr->nres.svcn) 228 goto out; 229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 230 *vcn > le64_to_cpu(attr->nres.evcn)) { 231 goto out; 232 } 233 234 if (mi) 235 *mi = m; 236 return attr; 237 238 out: 239 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 240 return NULL; 241 } 242 243 /* 244 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 245 */ 246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 247 struct ATTR_LIST_ENTRY **le, 248 struct mft_inode **mi) 249 { 250 struct mft_inode *mi2; 251 struct ATTR_LIST_ENTRY *le2; 252 253 /* Do we have an attribute list? */ 254 if (!ni->attr_list.size) { 255 *le = NULL; 256 if (mi) 257 *mi = &ni->mi; 258 /* Enum attributes in primary record. */ 259 return mi_enum_attr(&ni->mi, attr); 260 } 261 262 /* Get next list entry. */ 263 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 264 if (!le2) 265 return NULL; 266 267 /* Load record that contains the required attribute. */ 268 if (ni_load_mi(ni, le2, &mi2)) 269 return NULL; 270 271 if (mi) 272 *mi = mi2; 273 274 /* Find attribute in loaded record. */ 275 return rec_find_attr_le(mi2, le2); 276 } 277 278 /* 279 * ni_load_attr - Load attribute that contains given VCN. 280 */ 281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 282 const __le16 *name, u8 name_len, CLST vcn, 283 struct mft_inode **pmi) 284 { 285 struct ATTR_LIST_ENTRY *le; 286 struct ATTRIB *attr; 287 struct mft_inode *mi; 288 struct ATTR_LIST_ENTRY *next; 289 290 if (!ni->attr_list.size) { 291 if (pmi) 292 *pmi = &ni->mi; 293 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 294 } 295 296 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 297 if (!le) 298 return NULL; 299 300 /* 301 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 302 * So to find the ATTRIB segment that contains 'vcn' we should 303 * enumerate some entries. 304 */ 305 if (vcn) { 306 for (;; le = next) { 307 next = al_find_ex(ni, le, type, name, name_len, NULL); 308 if (!next || le64_to_cpu(next->vcn) > vcn) 309 break; 310 } 311 } 312 313 if (ni_load_mi(ni, le, &mi)) 314 return NULL; 315 316 if (pmi) 317 *pmi = mi; 318 319 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 320 if (!attr) 321 return NULL; 322 323 if (!attr->non_res) 324 return attr; 325 326 if (le64_to_cpu(attr->nres.svcn) <= vcn && 327 vcn <= le64_to_cpu(attr->nres.evcn)) 328 return attr; 329 330 return NULL; 331 } 332 333 /* 334 * ni_load_all_mi - Load all subrecords. 335 */ 336 int ni_load_all_mi(struct ntfs_inode *ni) 337 { 338 int err; 339 struct ATTR_LIST_ENTRY *le; 340 341 if (!ni->attr_list.size) 342 return 0; 343 344 le = NULL; 345 346 while ((le = al_enumerate(ni, le))) { 347 CLST rno = ino_get(&le->ref); 348 349 if (rno == ni->mi.rno) 350 continue; 351 352 err = ni_load_mi_ex(ni, rno, NULL); 353 if (err) 354 return err; 355 } 356 357 return 0; 358 } 359 360 /* 361 * ni_add_subrecord - Allocate + format + attach a new subrecord. 362 */ 363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 364 { 365 struct mft_inode *m; 366 367 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 368 if (!m) 369 return false; 370 371 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 372 mi_put(m); 373 return false; 374 } 375 376 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 377 378 ni_add_mi(ni, m); 379 *mi = m; 380 return true; 381 } 382 383 /* 384 * ni_remove_attr - Remove all attributes for the given type/name/id. 385 */ 386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 387 const __le16 *name, size_t name_len, bool base_only, 388 const __le16 *id) 389 { 390 int err; 391 struct ATTRIB *attr; 392 struct ATTR_LIST_ENTRY *le; 393 struct mft_inode *mi; 394 u32 type_in; 395 int diff; 396 397 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 398 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 399 if (!attr) 400 return -ENOENT; 401 402 mi_remove_attr(ni, &ni->mi, attr); 403 return 0; 404 } 405 406 type_in = le32_to_cpu(type); 407 le = NULL; 408 409 for (;;) { 410 le = al_enumerate(ni, le); 411 if (!le) 412 return 0; 413 414 next_le2: 415 diff = le32_to_cpu(le->type) - type_in; 416 if (diff < 0) 417 continue; 418 419 if (diff > 0) 420 return 0; 421 422 if (le->name_len != name_len) 423 continue; 424 425 if (name_len && 426 memcmp(le_name(le), name, name_len * sizeof(short))) 427 continue; 428 429 if (id && le->id != *id) 430 continue; 431 err = ni_load_mi(ni, le, &mi); 432 if (err) 433 return err; 434 435 al_remove_le(ni, le); 436 437 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 438 if (!attr) 439 return -ENOENT; 440 441 mi_remove_attr(ni, mi, attr); 442 443 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 444 return 0; 445 goto next_le2; 446 } 447 } 448 449 /* 450 * ni_ins_new_attr - Insert the attribute into record. 451 * 452 * Return: Not full constructed attribute or NULL if not possible to create. 453 */ 454 static struct ATTRIB * 455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 456 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 457 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 458 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 459 { 460 int err; 461 struct ATTRIB *attr; 462 bool le_added = false; 463 struct MFT_REF ref; 464 465 mi_get_ref(mi, &ref); 466 467 if (type != ATTR_LIST && !le && ni->attr_list.size) { 468 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 469 &ref, &le); 470 if (err) { 471 /* No memory or no space. */ 472 return ERR_PTR(err); 473 } 474 le_added = true; 475 476 /* 477 * al_add_le -> attr_set_size (list) -> ni_expand_list 478 * which moves some attributes out of primary record 479 * this means that name may point into moved memory 480 * reinit 'name' from le. 481 */ 482 name = le->name; 483 } 484 485 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 486 if (!attr) { 487 if (le_added) 488 al_remove_le(ni, le); 489 return NULL; 490 } 491 492 if (type == ATTR_LIST) { 493 /* Attr list is not in list entry array. */ 494 goto out; 495 } 496 497 if (!le) 498 goto out; 499 500 /* Update ATTRIB Id and record reference. */ 501 le->id = attr->id; 502 ni->attr_list.dirty = true; 503 le->ref = ref; 504 505 out: 506 if (ins_le) 507 *ins_le = le; 508 return attr; 509 } 510 511 /* 512 * ni_repack 513 * 514 * Random write access to sparsed or compressed file may result to 515 * not optimized packed runs. 516 * Here is the place to optimize it. 517 */ 518 static int ni_repack(struct ntfs_inode *ni) 519 { 520 int err = 0; 521 struct ntfs_sb_info *sbi = ni->mi.sbi; 522 struct mft_inode *mi, *mi_p = NULL; 523 struct ATTRIB *attr = NULL, *attr_p; 524 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 525 CLST alloc = 0; 526 u8 cluster_bits = sbi->cluster_bits; 527 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 528 u32 roff, rs = sbi->record_size; 529 struct runs_tree run; 530 531 run_init(&run); 532 533 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 534 if (!attr->non_res) 535 continue; 536 537 svcn = le64_to_cpu(attr->nres.svcn); 538 if (svcn != le64_to_cpu(le->vcn)) { 539 err = -EINVAL; 540 break; 541 } 542 543 if (!svcn) { 544 alloc = le64_to_cpu(attr->nres.alloc_size) >> 545 cluster_bits; 546 mi_p = NULL; 547 } else if (svcn != evcn + 1) { 548 err = -EINVAL; 549 break; 550 } 551 552 evcn = le64_to_cpu(attr->nres.evcn); 553 554 if (svcn > evcn + 1) { 555 err = -EINVAL; 556 break; 557 } 558 559 if (!mi_p) { 560 /* Do not try if not enough free space. */ 561 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 562 continue; 563 564 /* Do not try if last attribute segment. */ 565 if (evcn + 1 == alloc) 566 continue; 567 run_close(&run); 568 } 569 570 roff = le16_to_cpu(attr->nres.run_off); 571 572 if (roff > le32_to_cpu(attr->size)) { 573 err = -EINVAL; 574 break; 575 } 576 577 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 578 Add2Ptr(attr, roff), 579 le32_to_cpu(attr->size) - roff); 580 if (err < 0) 581 break; 582 583 if (!mi_p) { 584 mi_p = mi; 585 attr_p = attr; 586 svcn_p = svcn; 587 evcn_p = evcn; 588 le_p = le; 589 err = 0; 590 continue; 591 } 592 593 /* 594 * Run contains data from two records: mi_p and mi 595 * Try to pack in one. 596 */ 597 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 598 if (err) 599 break; 600 601 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 602 603 if (next_svcn >= evcn + 1) { 604 /* We can remove this attribute segment. */ 605 al_remove_le(ni, le); 606 mi_remove_attr(NULL, mi, attr); 607 le = le_p; 608 continue; 609 } 610 611 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 612 mi->dirty = true; 613 ni->attr_list.dirty = true; 614 615 if (evcn + 1 == alloc) { 616 err = mi_pack_runs(mi, attr, &run, 617 evcn + 1 - next_svcn); 618 if (err) 619 break; 620 mi_p = NULL; 621 } else { 622 mi_p = mi; 623 attr_p = attr; 624 svcn_p = next_svcn; 625 evcn_p = evcn; 626 le_p = le; 627 run_truncate_head(&run, next_svcn); 628 } 629 } 630 631 if (err) { 632 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 633 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 634 635 /* Pack loaded but not packed runs. */ 636 if (mi_p) 637 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 638 } 639 640 run_close(&run); 641 return err; 642 } 643 644 /* 645 * ni_try_remove_attr_list 646 * 647 * Can we remove attribute list? 648 * Check the case when primary record contains enough space for all attributes. 649 */ 650 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 651 { 652 int err = 0; 653 struct ntfs_sb_info *sbi = ni->mi.sbi; 654 struct ATTRIB *attr, *attr_list, *attr_ins; 655 struct ATTR_LIST_ENTRY *le; 656 struct mft_inode *mi; 657 u32 asize, free; 658 struct MFT_REF ref; 659 struct MFT_REC *mrec; 660 __le16 id; 661 662 if (!ni->attr_list.dirty) 663 return 0; 664 665 err = ni_repack(ni); 666 if (err) 667 return err; 668 669 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 670 if (!attr_list) 671 return 0; 672 673 asize = le32_to_cpu(attr_list->size); 674 675 /* Free space in primary record without attribute list. */ 676 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 677 mi_get_ref(&ni->mi, &ref); 678 679 le = NULL; 680 while ((le = al_enumerate(ni, le))) { 681 if (!memcmp(&le->ref, &ref, sizeof(ref))) 682 continue; 683 684 if (le->vcn) 685 return 0; 686 687 mi = ni_find_mi(ni, ino_get(&le->ref)); 688 if (!mi) 689 return 0; 690 691 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 692 le->name_len, &le->id); 693 if (!attr) 694 return 0; 695 696 asize = le32_to_cpu(attr->size); 697 if (asize > free) 698 return 0; 699 700 free -= asize; 701 } 702 703 /* Make a copy of primary record to restore if error. */ 704 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 705 if (!mrec) 706 return 0; /* Not critical. */ 707 708 /* It seems that attribute list can be removed from primary record. */ 709 mi_remove_attr(NULL, &ni->mi, attr_list); 710 711 /* 712 * Repeat the cycle above and copy all attributes to primary record. 713 * Do not remove original attributes from subrecords! 714 * It should be success! 715 */ 716 le = NULL; 717 while ((le = al_enumerate(ni, le))) { 718 if (!memcmp(&le->ref, &ref, sizeof(ref))) 719 continue; 720 721 mi = ni_find_mi(ni, ino_get(&le->ref)); 722 if (!mi) { 723 /* Should never happened, 'cause already checked. */ 724 goto out; 725 } 726 727 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 728 le->name_len, &le->id); 729 if (!attr) { 730 /* Should never happened, 'cause already checked. */ 731 goto out; 732 } 733 asize = le32_to_cpu(attr->size); 734 735 /* Insert into primary record. */ 736 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 737 le->name_len, asize, 738 le16_to_cpu(attr->name_off)); 739 if (!attr_ins) { 740 /* 741 * No space in primary record (already checked). 742 */ 743 goto out; 744 } 745 746 /* Copy all except id. */ 747 id = attr_ins->id; 748 memcpy(attr_ins, attr, asize); 749 attr_ins->id = id; 750 } 751 752 /* 753 * Repeat the cycle above and remove all attributes from subrecords. 754 */ 755 le = NULL; 756 while ((le = al_enumerate(ni, le))) { 757 if (!memcmp(&le->ref, &ref, sizeof(ref))) 758 continue; 759 760 mi = ni_find_mi(ni, ino_get(&le->ref)); 761 if (!mi) 762 continue; 763 764 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 765 le->name_len, &le->id); 766 if (!attr) 767 continue; 768 769 /* Remove from original record. */ 770 mi_remove_attr(NULL, mi, attr); 771 } 772 773 run_deallocate(sbi, &ni->attr_list.run, true); 774 run_close(&ni->attr_list.run); 775 ni->attr_list.size = 0; 776 kfree(ni->attr_list.le); 777 ni->attr_list.le = NULL; 778 ni->attr_list.dirty = false; 779 780 kfree(mrec); 781 return 0; 782 out: 783 /* Restore primary record. */ 784 swap(mrec, ni->mi.mrec); 785 kfree(mrec); 786 return 0; 787 } 788 789 /* 790 * ni_create_attr_list - Generates an attribute list for this primary record. 791 */ 792 int ni_create_attr_list(struct ntfs_inode *ni) 793 { 794 struct ntfs_sb_info *sbi = ni->mi.sbi; 795 int err; 796 u32 lsize; 797 struct ATTRIB *attr; 798 struct ATTRIB *arr_move[7]; 799 struct ATTR_LIST_ENTRY *le, *le_b[7]; 800 struct MFT_REC *rec; 801 bool is_mft; 802 CLST rno = 0; 803 struct mft_inode *mi; 804 u32 free_b, nb, to_free, rs; 805 u16 sz; 806 807 is_mft = ni->mi.rno == MFT_REC_MFT; 808 rec = ni->mi.mrec; 809 rs = sbi->record_size; 810 811 /* 812 * Skip estimating exact memory requirement. 813 * Looks like one record_size is always enough. 814 */ 815 le = kmalloc(al_aligned(rs), GFP_NOFS); 816 if (!le) { 817 err = -ENOMEM; 818 goto out; 819 } 820 821 mi_get_ref(&ni->mi, &le->ref); 822 ni->attr_list.le = le; 823 824 attr = NULL; 825 nb = 0; 826 free_b = 0; 827 attr = NULL; 828 829 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 830 sz = le_size(attr->name_len); 831 le->type = attr->type; 832 le->size = cpu_to_le16(sz); 833 le->name_len = attr->name_len; 834 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 835 le->vcn = 0; 836 if (le != ni->attr_list.le) 837 le->ref = ni->attr_list.le->ref; 838 le->id = attr->id; 839 840 if (attr->name_len) 841 memcpy(le->name, attr_name(attr), 842 sizeof(short) * attr->name_len); 843 else if (attr->type == ATTR_STD) 844 continue; 845 else if (attr->type == ATTR_LIST) 846 continue; 847 else if (is_mft && attr->type == ATTR_DATA) 848 continue; 849 850 if (!nb || nb < ARRAY_SIZE(arr_move)) { 851 le_b[nb] = le; 852 arr_move[nb++] = attr; 853 free_b += le32_to_cpu(attr->size); 854 } 855 } 856 857 lsize = PtrOffset(ni->attr_list.le, le); 858 ni->attr_list.size = lsize; 859 860 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 861 if (to_free <= rs) { 862 to_free = 0; 863 } else { 864 to_free -= rs; 865 866 if (to_free > free_b) { 867 err = -EINVAL; 868 goto out1; 869 } 870 } 871 872 /* Allocate child MFT. */ 873 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 874 if (err) 875 goto out1; 876 877 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 878 while (to_free > 0) { 879 struct ATTRIB *b = arr_move[--nb]; 880 u32 asize = le32_to_cpu(b->size); 881 u16 name_off = le16_to_cpu(b->name_off); 882 883 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 884 b->name_len, asize, name_off); 885 WARN_ON(!attr); 886 887 mi_get_ref(mi, &le_b[nb]->ref); 888 le_b[nb]->id = attr->id; 889 890 /* Copy all except id. */ 891 memcpy(attr, b, asize); 892 attr->id = le_b[nb]->id; 893 894 /* Remove from primary record. */ 895 WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); 896 897 if (to_free <= asize) 898 break; 899 to_free -= asize; 900 WARN_ON(!nb); 901 } 902 903 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 904 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 905 WARN_ON(!attr); 906 907 attr->non_res = 0; 908 attr->flags = 0; 909 attr->res.data_size = cpu_to_le32(lsize); 910 attr->res.data_off = SIZEOF_RESIDENT_LE; 911 attr->res.flags = 0; 912 attr->res.res = 0; 913 914 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 915 916 ni->attr_list.dirty = false; 917 918 mark_inode_dirty(&ni->vfs_inode); 919 goto out; 920 921 out1: 922 kfree(ni->attr_list.le); 923 ni->attr_list.le = NULL; 924 ni->attr_list.size = 0; 925 926 out: 927 return err; 928 } 929 930 /* 931 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 932 */ 933 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 934 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 935 u32 asize, CLST svcn, u16 name_off, bool force_ext, 936 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 937 struct ATTR_LIST_ENTRY **ins_le) 938 { 939 struct ATTRIB *attr; 940 struct mft_inode *mi; 941 CLST rno; 942 u64 vbo; 943 struct rb_node *node; 944 int err; 945 bool is_mft, is_mft_data; 946 struct ntfs_sb_info *sbi = ni->mi.sbi; 947 948 is_mft = ni->mi.rno == MFT_REC_MFT; 949 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 950 951 if (asize > sbi->max_bytes_per_attr) { 952 err = -EINVAL; 953 goto out; 954 } 955 956 /* 957 * Standard information and attr_list cannot be made external. 958 * The Log File cannot have any external attributes. 959 */ 960 if (type == ATTR_STD || type == ATTR_LIST || 961 ni->mi.rno == MFT_REC_LOG) { 962 err = -EINVAL; 963 goto out; 964 } 965 966 /* Create attribute list if it is not already existed. */ 967 if (!ni->attr_list.size) { 968 err = ni_create_attr_list(ni); 969 if (err) 970 goto out; 971 } 972 973 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 974 975 if (force_ext) 976 goto insert_ext; 977 978 /* Load all subrecords into memory. */ 979 err = ni_load_all_mi(ni); 980 if (err) 981 goto out; 982 983 /* Check each of loaded subrecord. */ 984 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 985 mi = rb_entry(node, struct mft_inode, node); 986 987 if (is_mft_data && 988 (mi_enum_attr(mi, NULL) || 989 vbo <= ((u64)mi->rno << sbi->record_bits))) { 990 /* We can't accept this record 'cause MFT's bootstrapping. */ 991 continue; 992 } 993 if (is_mft && 994 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 995 /* 996 * This child record already has a ATTR_DATA. 997 * So it can't accept any other records. 998 */ 999 continue; 1000 } 1001 1002 if ((type != ATTR_NAME || name_len) && 1003 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 1004 /* Only indexed attributes can share same record. */ 1005 continue; 1006 } 1007 1008 /* 1009 * Do not try to insert this attribute 1010 * if there is no room in record. 1011 */ 1012 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 1013 continue; 1014 1015 /* Try to insert attribute into this subrecord. */ 1016 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1017 name_off, svcn, ins_le); 1018 if (!attr) 1019 continue; 1020 if (IS_ERR(attr)) 1021 return PTR_ERR(attr); 1022 1023 if (ins_attr) 1024 *ins_attr = attr; 1025 if (ins_mi) 1026 *ins_mi = mi; 1027 return 0; 1028 } 1029 1030 insert_ext: 1031 /* We have to allocate a new child subrecord. */ 1032 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1033 if (err) 1034 goto out; 1035 1036 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1037 err = -EINVAL; 1038 goto out1; 1039 } 1040 1041 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1042 name_off, svcn, ins_le); 1043 if (!attr) { 1044 err = -EINVAL; 1045 goto out2; 1046 } 1047 1048 if (IS_ERR(attr)) { 1049 err = PTR_ERR(attr); 1050 goto out2; 1051 } 1052 1053 if (ins_attr) 1054 *ins_attr = attr; 1055 if (ins_mi) 1056 *ins_mi = mi; 1057 1058 return 0; 1059 1060 out2: 1061 ni_remove_mi(ni, mi); 1062 mi_put(mi); 1063 1064 out1: 1065 ntfs_mark_rec_free(sbi, rno, is_mft); 1066 1067 out: 1068 return err; 1069 } 1070 1071 /* 1072 * ni_insert_attr - Insert an attribute into the file. 1073 * 1074 * If the primary record has room, it will just insert the attribute. 1075 * If not, it may make the attribute external. 1076 * For $MFT::Data it may make room for the attribute by 1077 * making other attributes external. 1078 * 1079 * NOTE: 1080 * The ATTR_LIST and ATTR_STD cannot be made external. 1081 * This function does not fill new attribute full. 1082 * It only fills 'size'/'type'/'id'/'name_len' fields. 1083 */ 1084 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1085 const __le16 *name, u8 name_len, u32 asize, 1086 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1087 struct mft_inode **ins_mi, 1088 struct ATTR_LIST_ENTRY **ins_le) 1089 { 1090 struct ntfs_sb_info *sbi = ni->mi.sbi; 1091 int err; 1092 struct ATTRIB *attr, *eattr; 1093 struct MFT_REC *rec; 1094 bool is_mft; 1095 struct ATTR_LIST_ENTRY *le; 1096 u32 list_reserve, max_free, free, used, t32; 1097 __le16 id; 1098 u16 t16; 1099 1100 is_mft = ni->mi.rno == MFT_REC_MFT; 1101 rec = ni->mi.mrec; 1102 1103 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1104 used = le32_to_cpu(rec->used); 1105 free = sbi->record_size - used; 1106 1107 if (is_mft && type != ATTR_LIST) { 1108 /* Reserve space for the ATTRIB list. */ 1109 if (free < list_reserve) 1110 free = 0; 1111 else 1112 free -= list_reserve; 1113 } 1114 1115 if (asize <= free) { 1116 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1117 asize, name_off, svcn, ins_le); 1118 if (IS_ERR(attr)) { 1119 err = PTR_ERR(attr); 1120 goto out; 1121 } 1122 1123 if (attr) { 1124 if (ins_attr) 1125 *ins_attr = attr; 1126 if (ins_mi) 1127 *ins_mi = &ni->mi; 1128 err = 0; 1129 goto out; 1130 } 1131 } 1132 1133 if (!is_mft || type != ATTR_DATA || svcn) { 1134 /* This ATTRIB will be external. */ 1135 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1136 svcn, name_off, false, ins_attr, ins_mi, 1137 ins_le); 1138 goto out; 1139 } 1140 1141 /* 1142 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1143 * 1144 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1145 * Evict as many other attributes as possible. 1146 */ 1147 max_free = free; 1148 1149 /* Estimate the result of moving all possible attributes away. */ 1150 attr = NULL; 1151 1152 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1153 if (attr->type == ATTR_STD) 1154 continue; 1155 if (attr->type == ATTR_LIST) 1156 continue; 1157 max_free += le32_to_cpu(attr->size); 1158 } 1159 1160 if (max_free < asize + list_reserve) { 1161 /* Impossible to insert this attribute into primary record. */ 1162 err = -EINVAL; 1163 goto out; 1164 } 1165 1166 /* Start real attribute moving. */ 1167 attr = NULL; 1168 1169 for (;;) { 1170 attr = mi_enum_attr(&ni->mi, attr); 1171 if (!attr) { 1172 /* We should never be here 'cause we have already check this case. */ 1173 err = -EINVAL; 1174 goto out; 1175 } 1176 1177 /* Skip attributes that MUST be primary record. */ 1178 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1179 continue; 1180 1181 le = NULL; 1182 if (ni->attr_list.size) { 1183 le = al_find_le(ni, NULL, attr); 1184 if (!le) { 1185 /* Really this is a serious bug. */ 1186 err = -EINVAL; 1187 goto out; 1188 } 1189 } 1190 1191 t32 = le32_to_cpu(attr->size); 1192 t16 = le16_to_cpu(attr->name_off); 1193 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1194 attr->name_len, t32, attr_svcn(attr), t16, 1195 false, &eattr, NULL, NULL); 1196 if (err) 1197 return err; 1198 1199 id = eattr->id; 1200 memcpy(eattr, attr, t32); 1201 eattr->id = id; 1202 1203 /* Remove from primary record. */ 1204 mi_remove_attr(NULL, &ni->mi, attr); 1205 1206 /* attr now points to next attribute. */ 1207 if (attr->type == ATTR_END) 1208 goto out; 1209 } 1210 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1211 ; 1212 1213 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1214 name_off, svcn, ins_le); 1215 if (!attr) { 1216 err = -EINVAL; 1217 goto out; 1218 } 1219 1220 if (IS_ERR(attr)) { 1221 err = PTR_ERR(attr); 1222 goto out; 1223 } 1224 1225 if (ins_attr) 1226 *ins_attr = attr; 1227 if (ins_mi) 1228 *ins_mi = &ni->mi; 1229 1230 out: 1231 return err; 1232 } 1233 1234 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1235 static int ni_expand_mft_list(struct ntfs_inode *ni) 1236 { 1237 int err = 0; 1238 struct runs_tree *run = &ni->file.run; 1239 u32 asize, run_size, done = 0; 1240 struct ATTRIB *attr; 1241 struct rb_node *node; 1242 CLST mft_min, mft_new, svcn, evcn, plen; 1243 struct mft_inode *mi, *mi_min, *mi_new; 1244 struct ntfs_sb_info *sbi = ni->mi.sbi; 1245 1246 /* Find the nearest MFT. */ 1247 mft_min = 0; 1248 mft_new = 0; 1249 mi_min = NULL; 1250 1251 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1252 mi = rb_entry(node, struct mft_inode, node); 1253 1254 attr = mi_enum_attr(mi, NULL); 1255 1256 if (!attr) { 1257 mft_min = mi->rno; 1258 mi_min = mi; 1259 break; 1260 } 1261 } 1262 1263 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1264 mft_new = 0; 1265 /* Really this is not critical. */ 1266 } else if (mft_min > mft_new) { 1267 mft_min = mft_new; 1268 mi_min = mi_new; 1269 } else { 1270 ntfs_mark_rec_free(sbi, mft_new, true); 1271 mft_new = 0; 1272 ni_remove_mi(ni, mi_new); 1273 } 1274 1275 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1276 if (!attr) { 1277 err = -EINVAL; 1278 goto out; 1279 } 1280 1281 asize = le32_to_cpu(attr->size); 1282 1283 evcn = le64_to_cpu(attr->nres.evcn); 1284 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1285 if (evcn + 1 >= svcn) { 1286 err = -EINVAL; 1287 goto out; 1288 } 1289 1290 /* 1291 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1292 * 1293 * Update first part of ATTR_DATA in 'primary MFT. 1294 */ 1295 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1296 asize - SIZEOF_NONRESIDENT, &plen); 1297 if (err < 0) 1298 goto out; 1299 1300 run_size = ALIGN(err, 8); 1301 err = 0; 1302 1303 if (plen < svcn) { 1304 err = -EINVAL; 1305 goto out; 1306 } 1307 1308 attr->nres.evcn = cpu_to_le64(svcn - 1); 1309 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1310 /* 'done' - How many bytes of primary MFT becomes free. */ 1311 done = asize - run_size - SIZEOF_NONRESIDENT; 1312 le32_sub_cpu(&ni->mi.mrec->used, done); 1313 1314 /* Estimate packed size (run_buf=NULL). */ 1315 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1316 &plen); 1317 if (err < 0) 1318 goto out; 1319 1320 run_size = ALIGN(err, 8); 1321 err = 0; 1322 1323 if (plen < evcn + 1 - svcn) { 1324 err = -EINVAL; 1325 goto out; 1326 } 1327 1328 /* 1329 * This function may implicitly call expand attr_list. 1330 * Insert second part of ATTR_DATA in 'mi_min'. 1331 */ 1332 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1333 SIZEOF_NONRESIDENT + run_size, 1334 SIZEOF_NONRESIDENT, svcn, NULL); 1335 if (!attr) { 1336 err = -EINVAL; 1337 goto out; 1338 } 1339 1340 if (IS_ERR(attr)) { 1341 err = PTR_ERR(attr); 1342 goto out; 1343 } 1344 1345 attr->non_res = 1; 1346 attr->name_off = SIZEOF_NONRESIDENT_LE; 1347 attr->flags = 0; 1348 1349 /* This function can't fail - cause already checked above. */ 1350 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1351 run_size, &plen); 1352 1353 attr->nres.svcn = cpu_to_le64(svcn); 1354 attr->nres.evcn = cpu_to_le64(evcn); 1355 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1356 1357 out: 1358 if (mft_new) { 1359 ntfs_mark_rec_free(sbi, mft_new, true); 1360 ni_remove_mi(ni, mi_new); 1361 } 1362 1363 return !err && !done ? -EOPNOTSUPP : err; 1364 } 1365 1366 /* 1367 * ni_expand_list - Move all possible attributes out of primary record. 1368 */ 1369 int ni_expand_list(struct ntfs_inode *ni) 1370 { 1371 int err = 0; 1372 u32 asize, done = 0; 1373 struct ATTRIB *attr, *ins_attr; 1374 struct ATTR_LIST_ENTRY *le; 1375 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1376 struct MFT_REF ref; 1377 1378 mi_get_ref(&ni->mi, &ref); 1379 le = NULL; 1380 1381 while ((le = al_enumerate(ni, le))) { 1382 if (le->type == ATTR_STD) 1383 continue; 1384 1385 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1386 continue; 1387 1388 if (is_mft && le->type == ATTR_DATA) 1389 continue; 1390 1391 /* Find attribute in primary record. */ 1392 attr = rec_find_attr_le(&ni->mi, le); 1393 if (!attr) { 1394 err = -EINVAL; 1395 goto out; 1396 } 1397 1398 asize = le32_to_cpu(attr->size); 1399 1400 /* Always insert into new record to avoid collisions (deep recursive). */ 1401 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1402 attr->name_len, asize, attr_svcn(attr), 1403 le16_to_cpu(attr->name_off), true, 1404 &ins_attr, NULL, NULL); 1405 1406 if (err) 1407 goto out; 1408 1409 memcpy(ins_attr, attr, asize); 1410 ins_attr->id = le->id; 1411 /* Remove from primary record. */ 1412 mi_remove_attr(NULL, &ni->mi, attr); 1413 1414 done += asize; 1415 goto out; 1416 } 1417 1418 if (!is_mft) { 1419 err = -EFBIG; /* Attr list is too big(?) */ 1420 goto out; 1421 } 1422 1423 /* Split MFT data as much as possible. */ 1424 err = ni_expand_mft_list(ni); 1425 1426 out: 1427 return !err && !done ? -EOPNOTSUPP : err; 1428 } 1429 1430 /* 1431 * ni_insert_nonresident - Insert new nonresident attribute. 1432 */ 1433 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1434 const __le16 *name, u8 name_len, 1435 const struct runs_tree *run, CLST svcn, CLST len, 1436 __le16 flags, struct ATTRIB **new_attr, 1437 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1438 { 1439 int err; 1440 CLST plen; 1441 struct ATTRIB *attr; 1442 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && 1443 !svcn; 1444 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1445 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1446 u32 run_off = name_off + name_size; 1447 u32 run_size, asize; 1448 struct ntfs_sb_info *sbi = ni->mi.sbi; 1449 1450 /* Estimate packed size (run_buf=NULL). */ 1451 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1452 &plen); 1453 if (err < 0) 1454 goto out; 1455 1456 run_size = ALIGN(err, 8); 1457 1458 if (plen < len) { 1459 err = -EINVAL; 1460 goto out; 1461 } 1462 1463 asize = run_off + run_size; 1464 1465 if (asize > sbi->max_bytes_per_attr) { 1466 err = -EINVAL; 1467 goto out; 1468 } 1469 1470 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1471 &attr, mi, le); 1472 1473 if (err) 1474 goto out; 1475 1476 attr->non_res = 1; 1477 attr->name_off = cpu_to_le16(name_off); 1478 attr->flags = flags; 1479 1480 /* This function can't fail - cause already checked above. */ 1481 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1482 1483 attr->nres.svcn = cpu_to_le64(svcn); 1484 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1485 1486 if (new_attr) 1487 *new_attr = attr; 1488 1489 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1490 1491 attr->nres.alloc_size = 1492 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1493 attr->nres.data_size = attr->nres.alloc_size; 1494 attr->nres.valid_size = attr->nres.alloc_size; 1495 1496 if (is_ext) { 1497 if (flags & ATTR_FLAG_COMPRESSED) 1498 attr->nres.c_unit = COMPRESSION_UNIT; 1499 attr->nres.total_size = attr->nres.alloc_size; 1500 } 1501 1502 out: 1503 return err; 1504 } 1505 1506 /* 1507 * ni_insert_resident - Inserts new resident attribute. 1508 */ 1509 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1510 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1511 struct ATTRIB **new_attr, struct mft_inode **mi, 1512 struct ATTR_LIST_ENTRY **le) 1513 { 1514 int err; 1515 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1516 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1517 struct ATTRIB *attr; 1518 1519 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1520 0, &attr, mi, le); 1521 if (err) 1522 return err; 1523 1524 attr->non_res = 0; 1525 attr->flags = 0; 1526 1527 attr->res.data_size = cpu_to_le32(data_size); 1528 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1529 if (type == ATTR_NAME) { 1530 attr->res.flags = RESIDENT_FLAG_INDEXED; 1531 1532 /* is_attr_indexed(attr)) == true */ 1533 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1534 ni->mi.dirty = true; 1535 } 1536 attr->res.res = 0; 1537 1538 if (new_attr) 1539 *new_attr = attr; 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * ni_remove_attr_le - Remove attribute from record. 1546 */ 1547 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1548 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1549 { 1550 mi_remove_attr(ni, mi, attr); 1551 1552 if (le) 1553 al_remove_le(ni, le); 1554 } 1555 1556 /* 1557 * ni_delete_all - Remove all attributes and frees allocates space. 1558 * 1559 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1560 */ 1561 int ni_delete_all(struct ntfs_inode *ni) 1562 { 1563 int err; 1564 struct ATTR_LIST_ENTRY *le = NULL; 1565 struct ATTRIB *attr = NULL; 1566 struct rb_node *node; 1567 u16 roff; 1568 u32 asize; 1569 CLST svcn, evcn; 1570 struct ntfs_sb_info *sbi = ni->mi.sbi; 1571 bool nt3 = is_ntfs3(sbi); 1572 struct MFT_REF ref; 1573 1574 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1575 if (!nt3 || attr->name_len) { 1576 ; 1577 } else if (attr->type == ATTR_REPARSE) { 1578 mi_get_ref(&ni->mi, &ref); 1579 ntfs_remove_reparse(sbi, 0, &ref); 1580 } else if (attr->type == ATTR_ID && !attr->non_res && 1581 le32_to_cpu(attr->res.data_size) >= 1582 sizeof(struct GUID)) { 1583 ntfs_objid_remove(sbi, resident_data(attr)); 1584 } 1585 1586 if (!attr->non_res) 1587 continue; 1588 1589 svcn = le64_to_cpu(attr->nres.svcn); 1590 evcn = le64_to_cpu(attr->nres.evcn); 1591 1592 if (evcn + 1 <= svcn) 1593 continue; 1594 1595 asize = le32_to_cpu(attr->size); 1596 roff = le16_to_cpu(attr->nres.run_off); 1597 1598 if (roff > asize) 1599 return -EINVAL; 1600 1601 /* run==1 means unpack and deallocate. */ 1602 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1603 Add2Ptr(attr, roff), asize - roff); 1604 } 1605 1606 if (ni->attr_list.size) { 1607 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1608 al_destroy(ni); 1609 } 1610 1611 /* Free all subrecords. */ 1612 for (node = rb_first(&ni->mi_tree); node;) { 1613 struct rb_node *next = rb_next(node); 1614 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1615 1616 clear_rec_inuse(mi->mrec); 1617 mi->dirty = true; 1618 mi_write(mi, 0); 1619 1620 ntfs_mark_rec_free(sbi, mi->rno, false); 1621 ni_remove_mi(ni, mi); 1622 mi_put(mi); 1623 node = next; 1624 } 1625 1626 /* Free base record. */ 1627 clear_rec_inuse(ni->mi.mrec); 1628 ni->mi.dirty = true; 1629 err = mi_write(&ni->mi, 0); 1630 1631 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1632 1633 return err; 1634 } 1635 1636 /* ni_fname_name 1637 * 1638 * Return: File name attribute by its value. 1639 */ 1640 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1641 const struct cpu_str *uni, 1642 const struct MFT_REF *home_dir, 1643 struct mft_inode **mi, 1644 struct ATTR_LIST_ENTRY **le) 1645 { 1646 struct ATTRIB *attr = NULL; 1647 struct ATTR_FILE_NAME *fname; 1648 struct le_str *fns; 1649 1650 if (le) 1651 *le = NULL; 1652 1653 /* Enumerate all names. */ 1654 next: 1655 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1656 if (!attr) 1657 return NULL; 1658 1659 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1660 if (!fname) 1661 goto next; 1662 1663 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1664 goto next; 1665 1666 if (!uni) 1667 return fname; 1668 1669 if (uni->len != fname->name_len) 1670 goto next; 1671 1672 fns = (struct le_str *)&fname->name_len; 1673 if (ntfs_cmp_names_cpu(uni, fns, NULL, false)) 1674 goto next; 1675 1676 return fname; 1677 } 1678 1679 /* 1680 * ni_fname_type 1681 * 1682 * Return: File name attribute with given type. 1683 */ 1684 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1685 struct mft_inode **mi, 1686 struct ATTR_LIST_ENTRY **le) 1687 { 1688 struct ATTRIB *attr = NULL; 1689 struct ATTR_FILE_NAME *fname; 1690 1691 *le = NULL; 1692 1693 if (name_type == FILE_NAME_POSIX) 1694 return NULL; 1695 1696 /* Enumerate all names. */ 1697 for (;;) { 1698 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1699 if (!attr) 1700 return NULL; 1701 1702 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1703 if (fname && name_type == fname->type) 1704 return fname; 1705 } 1706 } 1707 1708 /* 1709 * ni_new_attr_flags 1710 * 1711 * Process compressed/sparsed in special way. 1712 * NOTE: You need to set ni->std_fa = new_fa 1713 * after this function to keep internal structures in consistency. 1714 */ 1715 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1716 { 1717 struct ATTRIB *attr; 1718 struct mft_inode *mi; 1719 __le16 new_aflags; 1720 u32 new_asize; 1721 1722 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1723 if (!attr) 1724 return -EINVAL; 1725 1726 new_aflags = attr->flags; 1727 1728 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1729 new_aflags |= ATTR_FLAG_SPARSED; 1730 else 1731 new_aflags &= ~ATTR_FLAG_SPARSED; 1732 1733 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1734 new_aflags |= ATTR_FLAG_COMPRESSED; 1735 else 1736 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1737 1738 if (new_aflags == attr->flags) 1739 return 0; 1740 1741 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1742 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1743 ntfs_inode_warn(&ni->vfs_inode, 1744 "file can't be sparsed and compressed"); 1745 return -EOPNOTSUPP; 1746 } 1747 1748 if (!attr->non_res) 1749 goto out; 1750 1751 if (attr->nres.data_size) { 1752 ntfs_inode_warn( 1753 &ni->vfs_inode, 1754 "one can change sparsed/compressed only for empty files"); 1755 return -EOPNOTSUPP; 1756 } 1757 1758 /* Resize nonresident empty attribute in-place only. */ 1759 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 1760 (SIZEOF_NONRESIDENT_EX + 8) : 1761 (SIZEOF_NONRESIDENT + 8); 1762 1763 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1764 return -EOPNOTSUPP; 1765 1766 if (new_aflags & ATTR_FLAG_SPARSED) { 1767 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1768 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1769 attr->nres.c_unit = 0; 1770 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1771 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1772 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1773 /* The only allowed: 16 clusters per frame. */ 1774 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1775 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1776 } else { 1777 attr->name_off = SIZEOF_NONRESIDENT_LE; 1778 /* Normal files. */ 1779 attr->nres.c_unit = 0; 1780 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1781 } 1782 attr->nres.run_off = attr->name_off; 1783 out: 1784 attr->flags = new_aflags; 1785 mi->dirty = true; 1786 1787 return 0; 1788 } 1789 1790 /* 1791 * ni_parse_reparse 1792 * 1793 * buffer - memory for reparse buffer header 1794 */ 1795 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1796 struct REPARSE_DATA_BUFFER *buffer) 1797 { 1798 const struct REPARSE_DATA_BUFFER *rp = NULL; 1799 u8 bits; 1800 u16 len; 1801 typeof(rp->CompressReparseBuffer) *cmpr; 1802 1803 /* Try to estimate reparse point. */ 1804 if (!attr->non_res) { 1805 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1806 } else if (le64_to_cpu(attr->nres.data_size) >= 1807 sizeof(struct REPARSE_DATA_BUFFER)) { 1808 struct runs_tree run; 1809 1810 run_init(&run); 1811 1812 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1813 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1814 sizeof(struct REPARSE_DATA_BUFFER), 1815 NULL)) { 1816 rp = buffer; 1817 } 1818 1819 run_close(&run); 1820 } 1821 1822 if (!rp) 1823 return REPARSE_NONE; 1824 1825 len = le16_to_cpu(rp->ReparseDataLength); 1826 switch (rp->ReparseTag) { 1827 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1828 break; /* Symbolic link. */ 1829 case IO_REPARSE_TAG_MOUNT_POINT: 1830 break; /* Mount points and junctions. */ 1831 case IO_REPARSE_TAG_SYMLINK: 1832 break; 1833 case IO_REPARSE_TAG_COMPRESS: 1834 /* 1835 * WOF - Windows Overlay Filter - Used to compress files with 1836 * LZX/Xpress. 1837 * 1838 * Unlike native NTFS file compression, the Windows 1839 * Overlay Filter supports only read operations. This means 1840 * that it doesn't need to sector-align each compressed chunk, 1841 * so the compressed data can be packed more tightly together. 1842 * If you open the file for writing, the WOF just decompresses 1843 * the entire file, turning it back into a plain file. 1844 * 1845 * Ntfs3 driver decompresses the entire file only on write or 1846 * change size requests. 1847 */ 1848 1849 cmpr = &rp->CompressReparseBuffer; 1850 if (len < sizeof(*cmpr) || 1851 cmpr->WofVersion != WOF_CURRENT_VERSION || 1852 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1853 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1854 return REPARSE_NONE; 1855 } 1856 1857 switch (cmpr->CompressionFormat) { 1858 case WOF_COMPRESSION_XPRESS4K: 1859 bits = 0xc; // 4k 1860 break; 1861 case WOF_COMPRESSION_XPRESS8K: 1862 bits = 0xd; // 8k 1863 break; 1864 case WOF_COMPRESSION_XPRESS16K: 1865 bits = 0xe; // 16k 1866 break; 1867 case WOF_COMPRESSION_LZX32K: 1868 bits = 0xf; // 32k 1869 break; 1870 default: 1871 bits = 0x10; // 64k 1872 break; 1873 } 1874 ni_set_ext_compress_bits(ni, bits); 1875 return REPARSE_COMPRESSED; 1876 1877 case IO_REPARSE_TAG_DEDUP: 1878 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1879 return REPARSE_DEDUPLICATED; 1880 1881 default: 1882 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1883 break; 1884 1885 return REPARSE_NONE; 1886 } 1887 1888 if (buffer != rp) 1889 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1890 1891 /* Looks like normal symlink. */ 1892 return REPARSE_LINK; 1893 } 1894 1895 /* 1896 * ni_fiemap - Helper for file_fiemap(). 1897 * 1898 * Assumed ni_lock. 1899 * TODO: Less aggressive locks. 1900 */ 1901 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1902 __u64 vbo, __u64 len) 1903 { 1904 int err = 0; 1905 struct ntfs_sb_info *sbi = ni->mi.sbi; 1906 u8 cluster_bits = sbi->cluster_bits; 1907 struct runs_tree *run; 1908 struct rw_semaphore *run_lock; 1909 struct ATTRIB *attr; 1910 CLST vcn = vbo >> cluster_bits; 1911 CLST lcn, clen; 1912 u64 valid = ni->i_valid; 1913 u64 lbo, bytes; 1914 u64 end, alloc_size; 1915 size_t idx = -1; 1916 u32 flags; 1917 bool ok; 1918 1919 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1920 run = &ni->dir.alloc_run; 1921 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1922 ARRAY_SIZE(I30_NAME), NULL, NULL); 1923 run_lock = &ni->dir.run_lock; 1924 } else { 1925 run = &ni->file.run; 1926 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1927 NULL); 1928 if (!attr) { 1929 err = -EINVAL; 1930 goto out; 1931 } 1932 if (is_attr_compressed(attr)) { 1933 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1934 err = -EOPNOTSUPP; 1935 ntfs_inode_warn( 1936 &ni->vfs_inode, 1937 "fiemap is not supported for compressed file (cp -r)"); 1938 goto out; 1939 } 1940 run_lock = &ni->file.run_lock; 1941 } 1942 1943 if (!attr || !attr->non_res) { 1944 err = fiemap_fill_next_extent( 1945 fieinfo, 0, 0, 1946 attr ? le32_to_cpu(attr->res.data_size) : 0, 1947 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1948 FIEMAP_EXTENT_MERGED); 1949 goto out; 1950 } 1951 1952 end = vbo + len; 1953 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1954 if (end > alloc_size) 1955 end = alloc_size; 1956 1957 down_read(run_lock); 1958 1959 while (vbo < end) { 1960 if (idx == -1) { 1961 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1962 } else { 1963 CLST vcn_next = vcn; 1964 1965 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 1966 vcn == vcn_next; 1967 if (!ok) 1968 vcn = vcn_next; 1969 } 1970 1971 if (!ok) { 1972 up_read(run_lock); 1973 down_write(run_lock); 1974 1975 err = attr_load_runs_vcn(ni, attr->type, 1976 attr_name(attr), 1977 attr->name_len, run, vcn); 1978 1979 up_write(run_lock); 1980 down_read(run_lock); 1981 1982 if (err) 1983 break; 1984 1985 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1986 1987 if (!ok) { 1988 err = -EINVAL; 1989 break; 1990 } 1991 } 1992 1993 if (!clen) { 1994 err = -EINVAL; // ? 1995 break; 1996 } 1997 1998 if (lcn == SPARSE_LCN) { 1999 vcn += clen; 2000 vbo = (u64)vcn << cluster_bits; 2001 continue; 2002 } 2003 2004 flags = FIEMAP_EXTENT_MERGED; 2005 if (S_ISDIR(ni->vfs_inode.i_mode)) { 2006 ; 2007 } else if (is_attr_compressed(attr)) { 2008 CLST clst_data; 2009 2010 err = attr_is_frame_compressed( 2011 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 2012 if (err) 2013 break; 2014 if (clst_data < NTFS_LZNT_CLUSTERS) 2015 flags |= FIEMAP_EXTENT_ENCODED; 2016 } else if (is_attr_encrypted(attr)) { 2017 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2018 } 2019 2020 vbo = (u64)vcn << cluster_bits; 2021 bytes = (u64)clen << cluster_bits; 2022 lbo = (u64)lcn << cluster_bits; 2023 2024 vcn += clen; 2025 2026 if (vbo + bytes >= end) 2027 bytes = end - vbo; 2028 2029 if (vbo + bytes <= valid) { 2030 ; 2031 } else if (vbo >= valid) { 2032 flags |= FIEMAP_EXTENT_UNWRITTEN; 2033 } else { 2034 /* vbo < valid && valid < vbo + bytes */ 2035 u64 dlen = valid - vbo; 2036 2037 if (vbo + dlen >= end) 2038 flags |= FIEMAP_EXTENT_LAST; 2039 2040 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 2041 flags); 2042 if (err < 0) 2043 break; 2044 if (err == 1) { 2045 err = 0; 2046 break; 2047 } 2048 2049 vbo = valid; 2050 bytes -= dlen; 2051 if (!bytes) 2052 continue; 2053 2054 lbo += dlen; 2055 flags |= FIEMAP_EXTENT_UNWRITTEN; 2056 } 2057 2058 if (vbo + bytes >= end) 2059 flags |= FIEMAP_EXTENT_LAST; 2060 2061 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 2062 if (err < 0) 2063 break; 2064 if (err == 1) { 2065 err = 0; 2066 break; 2067 } 2068 2069 vbo += bytes; 2070 } 2071 2072 up_read(run_lock); 2073 2074 out: 2075 return err; 2076 } 2077 2078 /* 2079 * ni_readpage_cmpr 2080 * 2081 * When decompressing, we typically obtain more than one page per reference. 2082 * We inject the additional pages into the page cache. 2083 */ 2084 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 2085 { 2086 int err; 2087 struct ntfs_sb_info *sbi = ni->mi.sbi; 2088 struct address_space *mapping = page->mapping; 2089 pgoff_t index = page->index; 2090 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2091 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2092 u8 frame_bits; 2093 CLST frame; 2094 u32 i, idx, frame_size, pages_per_frame; 2095 gfp_t gfp_mask; 2096 struct page *pg; 2097 2098 if (vbo >= ni->vfs_inode.i_size) { 2099 SetPageUptodate(page); 2100 err = 0; 2101 goto out; 2102 } 2103 2104 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2105 /* Xpress or LZX. */ 2106 frame_bits = ni_ext_compress_bits(ni); 2107 } else { 2108 /* LZNT compression. */ 2109 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2110 } 2111 frame_size = 1u << frame_bits; 2112 frame = vbo >> frame_bits; 2113 frame_vbo = (u64)frame << frame_bits; 2114 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2115 2116 pages_per_frame = frame_size >> PAGE_SHIFT; 2117 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2118 if (!pages) { 2119 err = -ENOMEM; 2120 goto out; 2121 } 2122 2123 pages[idx] = page; 2124 index = frame_vbo >> PAGE_SHIFT; 2125 gfp_mask = mapping_gfp_mask(mapping); 2126 2127 for (i = 0; i < pages_per_frame; i++, index++) { 2128 if (i == idx) 2129 continue; 2130 2131 pg = find_or_create_page(mapping, index, gfp_mask); 2132 if (!pg) { 2133 err = -ENOMEM; 2134 goto out1; 2135 } 2136 pages[i] = pg; 2137 } 2138 2139 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2140 2141 out1: 2142 if (err) 2143 SetPageError(page); 2144 2145 for (i = 0; i < pages_per_frame; i++) { 2146 pg = pages[i]; 2147 if (i == idx) 2148 continue; 2149 unlock_page(pg); 2150 put_page(pg); 2151 } 2152 2153 out: 2154 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2155 kfree(pages); 2156 unlock_page(page); 2157 2158 return err; 2159 } 2160 2161 #ifdef CONFIG_NTFS3_LZX_XPRESS 2162 /* 2163 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2164 * 2165 * Remove ATTR_DATA::WofCompressedData. 2166 * Remove ATTR_REPARSE. 2167 */ 2168 int ni_decompress_file(struct ntfs_inode *ni) 2169 { 2170 struct ntfs_sb_info *sbi = ni->mi.sbi; 2171 struct inode *inode = &ni->vfs_inode; 2172 loff_t i_size = inode->i_size; 2173 struct address_space *mapping = inode->i_mapping; 2174 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2175 struct page **pages = NULL; 2176 struct ATTR_LIST_ENTRY *le; 2177 struct ATTRIB *attr; 2178 CLST vcn, cend, lcn, clen, end; 2179 pgoff_t index; 2180 u64 vbo; 2181 u8 frame_bits; 2182 u32 i, frame_size, pages_per_frame, bytes; 2183 struct mft_inode *mi; 2184 int err; 2185 2186 /* Clusters for decompressed data. */ 2187 cend = bytes_to_cluster(sbi, i_size); 2188 2189 if (!i_size) 2190 goto remove_wof; 2191 2192 /* Check in advance. */ 2193 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2194 err = -ENOSPC; 2195 goto out; 2196 } 2197 2198 frame_bits = ni_ext_compress_bits(ni); 2199 frame_size = 1u << frame_bits; 2200 pages_per_frame = frame_size >> PAGE_SHIFT; 2201 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2202 if (!pages) { 2203 err = -ENOMEM; 2204 goto out; 2205 } 2206 2207 /* 2208 * Step 1: Decompress data and copy to new allocated clusters. 2209 */ 2210 index = 0; 2211 for (vbo = 0; vbo < i_size; vbo += bytes) { 2212 u32 nr_pages; 2213 bool new; 2214 2215 if (vbo + frame_size > i_size) { 2216 bytes = i_size - vbo; 2217 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2218 } else { 2219 nr_pages = pages_per_frame; 2220 bytes = frame_size; 2221 } 2222 2223 end = bytes_to_cluster(sbi, vbo + bytes); 2224 2225 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2226 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2227 &clen, &new, false); 2228 if (err) 2229 goto out; 2230 } 2231 2232 for (i = 0; i < pages_per_frame; i++, index++) { 2233 struct page *pg; 2234 2235 pg = find_or_create_page(mapping, index, gfp_mask); 2236 if (!pg) { 2237 while (i--) { 2238 unlock_page(pages[i]); 2239 put_page(pages[i]); 2240 } 2241 err = -ENOMEM; 2242 goto out; 2243 } 2244 pages[i] = pg; 2245 } 2246 2247 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2248 2249 if (!err) { 2250 down_read(&ni->file.run_lock); 2251 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2252 nr_pages, vbo, bytes, 2253 REQ_OP_WRITE); 2254 up_read(&ni->file.run_lock); 2255 } 2256 2257 for (i = 0; i < pages_per_frame; i++) { 2258 unlock_page(pages[i]); 2259 put_page(pages[i]); 2260 } 2261 2262 if (err) 2263 goto out; 2264 2265 cond_resched(); 2266 } 2267 2268 remove_wof: 2269 /* 2270 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2271 * and ATTR_REPARSE. 2272 */ 2273 attr = NULL; 2274 le = NULL; 2275 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2276 CLST svcn, evcn; 2277 u32 asize, roff; 2278 2279 if (attr->type == ATTR_REPARSE) { 2280 struct MFT_REF ref; 2281 2282 mi_get_ref(&ni->mi, &ref); 2283 ntfs_remove_reparse(sbi, 0, &ref); 2284 } 2285 2286 if (!attr->non_res) 2287 continue; 2288 2289 if (attr->type != ATTR_REPARSE && 2290 (attr->type != ATTR_DATA || 2291 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2292 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2293 continue; 2294 2295 svcn = le64_to_cpu(attr->nres.svcn); 2296 evcn = le64_to_cpu(attr->nres.evcn); 2297 2298 if (evcn + 1 <= svcn) 2299 continue; 2300 2301 asize = le32_to_cpu(attr->size); 2302 roff = le16_to_cpu(attr->nres.run_off); 2303 2304 if (roff > asize) { 2305 err = -EINVAL; 2306 goto out; 2307 } 2308 2309 /*run==1 Means unpack and deallocate. */ 2310 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2311 Add2Ptr(attr, roff), asize - roff); 2312 } 2313 2314 /* 2315 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2316 */ 2317 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2318 false, NULL); 2319 if (err) 2320 goto out; 2321 2322 /* 2323 * Step 4: Remove ATTR_REPARSE. 2324 */ 2325 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2326 if (err) 2327 goto out; 2328 2329 /* 2330 * Step 5: Remove sparse flag from data attribute. 2331 */ 2332 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2333 if (!attr) { 2334 err = -EINVAL; 2335 goto out; 2336 } 2337 2338 if (attr->non_res && is_attr_sparsed(attr)) { 2339 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2340 struct MFT_REC *rec = mi->mrec; 2341 u32 used = le32_to_cpu(rec->used); 2342 u32 asize = le32_to_cpu(attr->size); 2343 u16 roff = le16_to_cpu(attr->nres.run_off); 2344 char *rbuf = Add2Ptr(attr, roff); 2345 2346 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2347 attr->size = cpu_to_le32(asize - 8); 2348 attr->flags &= ~ATTR_FLAG_SPARSED; 2349 attr->nres.run_off = cpu_to_le16(roff - 8); 2350 attr->nres.c_unit = 0; 2351 rec->used = cpu_to_le32(used - 8); 2352 mi->dirty = true; 2353 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2354 FILE_ATTRIBUTE_REPARSE_POINT); 2355 2356 mark_inode_dirty(inode); 2357 } 2358 2359 /* Clear cached flag. */ 2360 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2361 if (ni->file.offs_page) { 2362 put_page(ni->file.offs_page); 2363 ni->file.offs_page = NULL; 2364 } 2365 mapping->a_ops = &ntfs_aops; 2366 2367 out: 2368 kfree(pages); 2369 if (err) 2370 _ntfs_bad_inode(inode); 2371 2372 return err; 2373 } 2374 2375 /* 2376 * decompress_lzx_xpress - External compression LZX/Xpress. 2377 */ 2378 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2379 size_t cmpr_size, void *unc, size_t unc_size, 2380 u32 frame_size) 2381 { 2382 int err; 2383 void *ctx; 2384 2385 if (cmpr_size == unc_size) { 2386 /* Frame not compressed. */ 2387 memcpy(unc, cmpr, unc_size); 2388 return 0; 2389 } 2390 2391 err = 0; 2392 if (frame_size == 0x8000) { 2393 mutex_lock(&sbi->compress.mtx_lzx); 2394 /* LZX: Frame compressed. */ 2395 ctx = sbi->compress.lzx; 2396 if (!ctx) { 2397 /* Lazy initialize LZX decompress context. */ 2398 ctx = lzx_allocate_decompressor(); 2399 if (!ctx) { 2400 err = -ENOMEM; 2401 goto out1; 2402 } 2403 2404 sbi->compress.lzx = ctx; 2405 } 2406 2407 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2408 /* Treat all errors as "invalid argument". */ 2409 err = -EINVAL; 2410 } 2411 out1: 2412 mutex_unlock(&sbi->compress.mtx_lzx); 2413 } else { 2414 /* XPRESS: Frame compressed. */ 2415 mutex_lock(&sbi->compress.mtx_xpress); 2416 ctx = sbi->compress.xpress; 2417 if (!ctx) { 2418 /* Lazy initialize Xpress decompress context. */ 2419 ctx = xpress_allocate_decompressor(); 2420 if (!ctx) { 2421 err = -ENOMEM; 2422 goto out2; 2423 } 2424 2425 sbi->compress.xpress = ctx; 2426 } 2427 2428 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2429 /* Treat all errors as "invalid argument". */ 2430 err = -EINVAL; 2431 } 2432 out2: 2433 mutex_unlock(&sbi->compress.mtx_xpress); 2434 } 2435 return err; 2436 } 2437 #endif 2438 2439 /* 2440 * ni_read_frame 2441 * 2442 * Pages - Array of locked pages. 2443 */ 2444 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2445 u32 pages_per_frame) 2446 { 2447 int err; 2448 struct ntfs_sb_info *sbi = ni->mi.sbi; 2449 u8 cluster_bits = sbi->cluster_bits; 2450 char *frame_ondisk = NULL; 2451 char *frame_mem = NULL; 2452 struct page **pages_disk = NULL; 2453 struct ATTR_LIST_ENTRY *le = NULL; 2454 struct runs_tree *run = &ni->file.run; 2455 u64 valid_size = ni->i_valid; 2456 u64 vbo_disk; 2457 size_t unc_size; 2458 u32 frame_size, i, npages_disk, ondisk_size; 2459 struct page *pg; 2460 struct ATTRIB *attr; 2461 CLST frame, clst_data; 2462 2463 /* 2464 * To simplify decompress algorithm do vmap for source 2465 * and target pages. 2466 */ 2467 for (i = 0; i < pages_per_frame; i++) 2468 kmap(pages[i]); 2469 2470 frame_size = pages_per_frame << PAGE_SHIFT; 2471 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2472 if (!frame_mem) { 2473 err = -ENOMEM; 2474 goto out; 2475 } 2476 2477 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2478 if (!attr) { 2479 err = -ENOENT; 2480 goto out1; 2481 } 2482 2483 if (!attr->non_res) { 2484 u32 data_size = le32_to_cpu(attr->res.data_size); 2485 2486 memset(frame_mem, 0, frame_size); 2487 if (frame_vbo < data_size) { 2488 ondisk_size = data_size - frame_vbo; 2489 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2490 min(ondisk_size, frame_size)); 2491 } 2492 err = 0; 2493 goto out1; 2494 } 2495 2496 if (frame_vbo >= valid_size) { 2497 memset(frame_mem, 0, frame_size); 2498 err = 0; 2499 goto out1; 2500 } 2501 2502 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2503 #ifndef CONFIG_NTFS3_LZX_XPRESS 2504 err = -EOPNOTSUPP; 2505 goto out1; 2506 #else 2507 u32 frame_bits = ni_ext_compress_bits(ni); 2508 u64 frame64 = frame_vbo >> frame_bits; 2509 u64 frames, vbo_data; 2510 2511 if (frame_size != (1u << frame_bits)) { 2512 err = -EINVAL; 2513 goto out1; 2514 } 2515 switch (frame_size) { 2516 case 0x1000: 2517 case 0x2000: 2518 case 0x4000: 2519 case 0x8000: 2520 break; 2521 default: 2522 /* Unknown compression. */ 2523 err = -EOPNOTSUPP; 2524 goto out1; 2525 } 2526 2527 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2528 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2529 if (!attr) { 2530 ntfs_inode_err( 2531 &ni->vfs_inode, 2532 "external compressed file should contains data attribute \"WofCompressedData\""); 2533 err = -EINVAL; 2534 goto out1; 2535 } 2536 2537 if (!attr->non_res) { 2538 run = NULL; 2539 } else { 2540 run = run_alloc(); 2541 if (!run) { 2542 err = -ENOMEM; 2543 goto out1; 2544 } 2545 } 2546 2547 frames = (ni->vfs_inode.i_size - 1) >> frame_bits; 2548 2549 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2550 frame_bits, &ondisk_size, &vbo_data); 2551 if (err) 2552 goto out2; 2553 2554 if (frame64 == frames) { 2555 unc_size = 1 + ((ni->vfs_inode.i_size - 1) & 2556 (frame_size - 1)); 2557 ondisk_size = attr_size(attr) - vbo_data; 2558 } else { 2559 unc_size = frame_size; 2560 } 2561 2562 if (ondisk_size > frame_size) { 2563 err = -EINVAL; 2564 goto out2; 2565 } 2566 2567 if (!attr->non_res) { 2568 if (vbo_data + ondisk_size > 2569 le32_to_cpu(attr->res.data_size)) { 2570 err = -EINVAL; 2571 goto out1; 2572 } 2573 2574 err = decompress_lzx_xpress( 2575 sbi, Add2Ptr(resident_data(attr), vbo_data), 2576 ondisk_size, frame_mem, unc_size, frame_size); 2577 goto out1; 2578 } 2579 vbo_disk = vbo_data; 2580 /* Load all runs to read [vbo_disk-vbo_to). */ 2581 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2582 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2583 vbo_data + ondisk_size); 2584 if (err) 2585 goto out2; 2586 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2587 PAGE_SIZE - 1) >> 2588 PAGE_SHIFT; 2589 #endif 2590 } else if (is_attr_compressed(attr)) { 2591 /* LZNT compression. */ 2592 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2593 err = -EOPNOTSUPP; 2594 goto out1; 2595 } 2596 2597 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2598 err = -EOPNOTSUPP; 2599 goto out1; 2600 } 2601 2602 down_write(&ni->file.run_lock); 2603 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2604 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2605 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2606 up_write(&ni->file.run_lock); 2607 if (err) 2608 goto out1; 2609 2610 if (!clst_data) { 2611 memset(frame_mem, 0, frame_size); 2612 goto out1; 2613 } 2614 2615 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2616 ondisk_size = clst_data << cluster_bits; 2617 2618 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2619 /* Frame is not compressed. */ 2620 down_read(&ni->file.run_lock); 2621 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2622 frame_vbo, ondisk_size, 2623 REQ_OP_READ); 2624 up_read(&ni->file.run_lock); 2625 goto out1; 2626 } 2627 vbo_disk = frame_vbo; 2628 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2629 } else { 2630 __builtin_unreachable(); 2631 err = -EINVAL; 2632 goto out1; 2633 } 2634 2635 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2636 if (!pages_disk) { 2637 err = -ENOMEM; 2638 goto out2; 2639 } 2640 2641 for (i = 0; i < npages_disk; i++) { 2642 pg = alloc_page(GFP_KERNEL); 2643 if (!pg) { 2644 err = -ENOMEM; 2645 goto out3; 2646 } 2647 pages_disk[i] = pg; 2648 lock_page(pg); 2649 kmap(pg); 2650 } 2651 2652 /* Read 'ondisk_size' bytes from disk. */ 2653 down_read(&ni->file.run_lock); 2654 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2655 ondisk_size, REQ_OP_READ); 2656 up_read(&ni->file.run_lock); 2657 if (err) 2658 goto out3; 2659 2660 /* 2661 * To simplify decompress algorithm do vmap for source and target pages. 2662 */ 2663 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2664 if (!frame_ondisk) { 2665 err = -ENOMEM; 2666 goto out3; 2667 } 2668 2669 /* Decompress: Frame_ondisk -> frame_mem. */ 2670 #ifdef CONFIG_NTFS3_LZX_XPRESS 2671 if (run != &ni->file.run) { 2672 /* LZX or XPRESS */ 2673 err = decompress_lzx_xpress( 2674 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2675 ondisk_size, frame_mem, unc_size, frame_size); 2676 } else 2677 #endif 2678 { 2679 /* LZNT - Native NTFS compression. */ 2680 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2681 frame_size); 2682 if ((ssize_t)unc_size < 0) 2683 err = unc_size; 2684 else if (!unc_size || unc_size > frame_size) 2685 err = -EINVAL; 2686 } 2687 if (!err && valid_size < frame_vbo + frame_size) { 2688 size_t ok = valid_size - frame_vbo; 2689 2690 memset(frame_mem + ok, 0, frame_size - ok); 2691 } 2692 2693 vunmap(frame_ondisk); 2694 2695 out3: 2696 for (i = 0; i < npages_disk; i++) { 2697 pg = pages_disk[i]; 2698 if (pg) { 2699 kunmap(pg); 2700 unlock_page(pg); 2701 put_page(pg); 2702 } 2703 } 2704 kfree(pages_disk); 2705 2706 out2: 2707 #ifdef CONFIG_NTFS3_LZX_XPRESS 2708 if (run != &ni->file.run) 2709 run_free(run); 2710 #endif 2711 out1: 2712 vunmap(frame_mem); 2713 out: 2714 for (i = 0; i < pages_per_frame; i++) { 2715 pg = pages[i]; 2716 kunmap(pg); 2717 ClearPageError(pg); 2718 SetPageUptodate(pg); 2719 } 2720 2721 return err; 2722 } 2723 2724 /* 2725 * ni_write_frame 2726 * 2727 * Pages - Array of locked pages. 2728 */ 2729 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2730 u32 pages_per_frame) 2731 { 2732 int err; 2733 struct ntfs_sb_info *sbi = ni->mi.sbi; 2734 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2735 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2736 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2737 CLST frame = frame_vbo >> frame_bits; 2738 char *frame_ondisk = NULL; 2739 struct page **pages_disk = NULL; 2740 struct ATTR_LIST_ENTRY *le = NULL; 2741 char *frame_mem; 2742 struct ATTRIB *attr; 2743 struct mft_inode *mi; 2744 u32 i; 2745 struct page *pg; 2746 size_t compr_size, ondisk_size; 2747 struct lznt *lznt; 2748 2749 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2750 if (!attr) { 2751 err = -ENOENT; 2752 goto out; 2753 } 2754 2755 if (WARN_ON(!is_attr_compressed(attr))) { 2756 err = -EINVAL; 2757 goto out; 2758 } 2759 2760 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2761 err = -EOPNOTSUPP; 2762 goto out; 2763 } 2764 2765 if (!attr->non_res) { 2766 down_write(&ni->file.run_lock); 2767 err = attr_make_nonresident(ni, attr, le, mi, 2768 le32_to_cpu(attr->res.data_size), 2769 &ni->file.run, &attr, pages[0]); 2770 up_write(&ni->file.run_lock); 2771 if (err) 2772 goto out; 2773 } 2774 2775 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2776 err = -EOPNOTSUPP; 2777 goto out; 2778 } 2779 2780 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2781 if (!pages_disk) { 2782 err = -ENOMEM; 2783 goto out; 2784 } 2785 2786 for (i = 0; i < pages_per_frame; i++) { 2787 pg = alloc_page(GFP_KERNEL); 2788 if (!pg) { 2789 err = -ENOMEM; 2790 goto out1; 2791 } 2792 pages_disk[i] = pg; 2793 lock_page(pg); 2794 kmap(pg); 2795 } 2796 2797 /* To simplify compress algorithm do vmap for source and target pages. */ 2798 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2799 if (!frame_ondisk) { 2800 err = -ENOMEM; 2801 goto out1; 2802 } 2803 2804 for (i = 0; i < pages_per_frame; i++) 2805 kmap(pages[i]); 2806 2807 /* Map in-memory frame for read-only. */ 2808 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2809 if (!frame_mem) { 2810 err = -ENOMEM; 2811 goto out2; 2812 } 2813 2814 mutex_lock(&sbi->compress.mtx_lznt); 2815 lznt = NULL; 2816 if (!sbi->compress.lznt) { 2817 /* 2818 * LZNT implements two levels of compression: 2819 * 0 - Standard compression 2820 * 1 - Best compression, requires a lot of cpu 2821 * use mount option? 2822 */ 2823 lznt = get_lznt_ctx(0); 2824 if (!lznt) { 2825 mutex_unlock(&sbi->compress.mtx_lznt); 2826 err = -ENOMEM; 2827 goto out3; 2828 } 2829 2830 sbi->compress.lznt = lznt; 2831 lznt = NULL; 2832 } 2833 2834 /* Compress: frame_mem -> frame_ondisk */ 2835 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2836 frame_size, sbi->compress.lznt); 2837 mutex_unlock(&sbi->compress.mtx_lznt); 2838 kfree(lznt); 2839 2840 if (compr_size + sbi->cluster_size > frame_size) { 2841 /* Frame is not compressed. */ 2842 compr_size = frame_size; 2843 ondisk_size = frame_size; 2844 } else if (compr_size) { 2845 /* Frame is compressed. */ 2846 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2847 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2848 } else { 2849 /* Frame is sparsed. */ 2850 ondisk_size = 0; 2851 } 2852 2853 down_write(&ni->file.run_lock); 2854 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2855 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2856 up_write(&ni->file.run_lock); 2857 if (err) 2858 goto out2; 2859 2860 if (!ondisk_size) 2861 goto out2; 2862 2863 down_read(&ni->file.run_lock); 2864 err = ntfs_bio_pages(sbi, &ni->file.run, 2865 ondisk_size < frame_size ? pages_disk : pages, 2866 pages_per_frame, frame_vbo, ondisk_size, 2867 REQ_OP_WRITE); 2868 up_read(&ni->file.run_lock); 2869 2870 out3: 2871 vunmap(frame_mem); 2872 2873 out2: 2874 for (i = 0; i < pages_per_frame; i++) 2875 kunmap(pages[i]); 2876 2877 vunmap(frame_ondisk); 2878 out1: 2879 for (i = 0; i < pages_per_frame; i++) { 2880 pg = pages_disk[i]; 2881 if (pg) { 2882 kunmap(pg); 2883 unlock_page(pg); 2884 put_page(pg); 2885 } 2886 } 2887 kfree(pages_disk); 2888 out: 2889 return err; 2890 } 2891 2892 /* 2893 * ni_remove_name - Removes name 'de' from MFT and from directory. 2894 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2895 */ 2896 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2897 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2898 { 2899 int err; 2900 struct ntfs_sb_info *sbi = ni->mi.sbi; 2901 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2902 struct ATTR_FILE_NAME *fname; 2903 struct ATTR_LIST_ENTRY *le; 2904 struct mft_inode *mi; 2905 u16 de_key_size = le16_to_cpu(de->key_size); 2906 u8 name_type; 2907 2908 *undo_step = 0; 2909 2910 /* Find name in record. */ 2911 mi_get_ref(&dir_ni->mi, &de_name->home); 2912 2913 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, 2914 &de_name->home, &mi, &le); 2915 if (!fname) 2916 return -ENOENT; 2917 2918 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2919 name_type = paired_name(fname->type); 2920 2921 /* Mark ntfs as dirty. It will be cleared at umount. */ 2922 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2923 2924 /* Step 1: Remove name from directory. */ 2925 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2926 if (err) 2927 return err; 2928 2929 /* Step 2: Remove name from MFT. */ 2930 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2931 2932 *undo_step = 2; 2933 2934 /* Get paired name. */ 2935 fname = ni_fname_type(ni, name_type, &mi, &le); 2936 if (fname) { 2937 u16 de2_key_size = fname_full_size(fname); 2938 2939 *de2 = Add2Ptr(de, 1024); 2940 (*de2)->key_size = cpu_to_le16(de2_key_size); 2941 2942 memcpy(*de2 + 1, fname, de2_key_size); 2943 2944 /* Step 3: Remove paired name from directory. */ 2945 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2946 de2_key_size, sbi); 2947 if (err) 2948 return err; 2949 2950 /* Step 4: Remove paired name from MFT. */ 2951 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2952 2953 *undo_step = 4; 2954 } 2955 return 0; 2956 } 2957 2958 /* 2959 * ni_remove_name_undo - Paired function for ni_remove_name. 2960 * 2961 * Return: True if ok 2962 */ 2963 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2964 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2965 { 2966 struct ntfs_sb_info *sbi = ni->mi.sbi; 2967 struct ATTRIB *attr; 2968 u16 de_key_size; 2969 2970 switch (undo_step) { 2971 case 4: 2972 de_key_size = le16_to_cpu(de2->key_size); 2973 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2974 &attr, NULL, NULL)) 2975 return false; 2976 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2977 2978 mi_get_ref(&ni->mi, &de2->ref); 2979 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2980 sizeof(struct NTFS_DE)); 2981 de2->flags = 0; 2982 de2->res = 0; 2983 2984 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) 2985 return false; 2986 fallthrough; 2987 2988 case 2: 2989 de_key_size = le16_to_cpu(de->key_size); 2990 2991 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2992 &attr, NULL, NULL)) 2993 return false; 2994 2995 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2996 mi_get_ref(&ni->mi, &de->ref); 2997 2998 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 2999 return false; 3000 } 3001 3002 return true; 3003 } 3004 3005 /* 3006 * ni_add_name - Add new name into MFT and into directory. 3007 */ 3008 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3009 struct NTFS_DE *de) 3010 { 3011 int err; 3012 struct ntfs_sb_info *sbi = ni->mi.sbi; 3013 struct ATTRIB *attr; 3014 struct ATTR_LIST_ENTRY *le; 3015 struct mft_inode *mi; 3016 struct ATTR_FILE_NAME *fname; 3017 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 3018 u16 de_key_size = le16_to_cpu(de->key_size); 3019 3020 if (sbi->options->windows_names && 3021 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) 3022 return -EINVAL; 3023 3024 /* If option "hide_dot_files" then set hidden attribute for dot files. */ 3025 if (ni->mi.sbi->options->hide_dot_files) { 3026 if (de_name->name_len > 0 && 3027 le16_to_cpu(de_name->name[0]) == '.') 3028 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; 3029 else 3030 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; 3031 } 3032 3033 mi_get_ref(&ni->mi, &de->ref); 3034 mi_get_ref(&dir_ni->mi, &de_name->home); 3035 3036 /* Fill duplicate from any ATTR_NAME. */ 3037 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 3038 if (fname) 3039 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 3040 de_name->dup.fa = ni->std_fa; 3041 3042 /* Insert new name into MFT. */ 3043 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 3044 &mi, &le); 3045 if (err) 3046 return err; 3047 3048 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 3049 3050 /* Insert new name into directory. */ 3051 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); 3052 if (err) 3053 ni_remove_attr_le(ni, attr, mi, le); 3054 3055 return err; 3056 } 3057 3058 /* 3059 * ni_rename - Remove one name and insert new name. 3060 */ 3061 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 3062 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 3063 bool *is_bad) 3064 { 3065 int err; 3066 struct NTFS_DE *de2 = NULL; 3067 int undo = 0; 3068 3069 /* 3070 * There are two possible ways to rename: 3071 * 1) Add new name and remove old name. 3072 * 2) Remove old name and add new name. 3073 * 3074 * In most cases (not all!) adding new name into MFT and into directory can 3075 * allocate additional cluster(s). 3076 * Second way may result to bad inode if we can't add new name 3077 * and then can't restore (add) old name. 3078 */ 3079 3080 /* 3081 * Way 1 - Add new + remove old. 3082 */ 3083 err = ni_add_name(new_dir_ni, ni, new_de); 3084 if (!err) { 3085 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3086 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3087 *is_bad = true; 3088 } 3089 3090 /* 3091 * Way 2 - Remove old + add new. 3092 */ 3093 /* 3094 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3095 * if (!err) { 3096 * err = ni_add_name(new_dir_ni, ni, new_de); 3097 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3098 * *is_bad = true; 3099 * } 3100 */ 3101 3102 return err; 3103 } 3104 3105 /* 3106 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3107 */ 3108 bool ni_is_dirty(struct inode *inode) 3109 { 3110 struct ntfs_inode *ni = ntfs_i(inode); 3111 struct rb_node *node; 3112 3113 if (ni->mi.dirty || ni->attr_list.dirty || 3114 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3115 return true; 3116 3117 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3118 if (rb_entry(node, struct mft_inode, node)->dirty) 3119 return true; 3120 } 3121 3122 return false; 3123 } 3124 3125 /* 3126 * ni_update_parent 3127 * 3128 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3129 */ 3130 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3131 int sync) 3132 { 3133 struct ATTRIB *attr; 3134 struct mft_inode *mi; 3135 struct ATTR_LIST_ENTRY *le = NULL; 3136 struct ntfs_sb_info *sbi = ni->mi.sbi; 3137 struct super_block *sb = sbi->sb; 3138 bool re_dirty = false; 3139 3140 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3141 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3142 attr = NULL; 3143 dup->alloc_size = 0; 3144 dup->data_size = 0; 3145 } else { 3146 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3147 3148 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3149 &mi); 3150 if (!attr) { 3151 dup->alloc_size = dup->data_size = 0; 3152 } else if (!attr->non_res) { 3153 u32 data_size = le32_to_cpu(attr->res.data_size); 3154 3155 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3156 dup->data_size = cpu_to_le64(data_size); 3157 } else { 3158 u64 new_valid = ni->i_valid; 3159 u64 data_size = le64_to_cpu(attr->nres.data_size); 3160 __le64 valid_le; 3161 3162 dup->alloc_size = is_attr_ext(attr) ? 3163 attr->nres.total_size : 3164 attr->nres.alloc_size; 3165 dup->data_size = attr->nres.data_size; 3166 3167 if (new_valid > data_size) 3168 new_valid = data_size; 3169 3170 valid_le = cpu_to_le64(new_valid); 3171 if (valid_le != attr->nres.valid_size) { 3172 attr->nres.valid_size = valid_le; 3173 mi->dirty = true; 3174 } 3175 } 3176 } 3177 3178 /* TODO: Fill reparse info. */ 3179 dup->reparse = 0; 3180 dup->ea_size = 0; 3181 3182 if (ni->ni_flags & NI_FLAG_EA) { 3183 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3184 NULL); 3185 if (attr) { 3186 const struct EA_INFO *info; 3187 3188 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3189 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3190 if (info) 3191 dup->ea_size = info->size_pack; 3192 } 3193 } 3194 3195 attr = NULL; 3196 le = NULL; 3197 3198 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3199 &mi))) { 3200 struct inode *dir; 3201 struct ATTR_FILE_NAME *fname; 3202 3203 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3204 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3205 continue; 3206 3207 /* ntfs_iget5 may sleep. */ 3208 dir = ntfs_iget5(sb, &fname->home, NULL); 3209 if (IS_ERR(dir)) { 3210 ntfs_inode_warn( 3211 &ni->vfs_inode, 3212 "failed to open parent directory r=%lx to update", 3213 (long)ino_get(&fname->home)); 3214 continue; 3215 } 3216 3217 if (!is_bad_inode(dir)) { 3218 struct ntfs_inode *dir_ni = ntfs_i(dir); 3219 3220 if (!ni_trylock(dir_ni)) { 3221 re_dirty = true; 3222 } else { 3223 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3224 ni_unlock(dir_ni); 3225 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3226 mi->dirty = true; 3227 } 3228 } 3229 iput(dir); 3230 } 3231 3232 return re_dirty; 3233 } 3234 3235 /* 3236 * ni_write_inode - Write MFT base record and all subrecords to disk. 3237 */ 3238 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3239 { 3240 int err = 0, err2; 3241 struct ntfs_inode *ni = ntfs_i(inode); 3242 struct super_block *sb = inode->i_sb; 3243 struct ntfs_sb_info *sbi = sb->s_fs_info; 3244 bool re_dirty = false; 3245 struct ATTR_STD_INFO *std; 3246 struct rb_node *node, *next; 3247 struct NTFS_DUP_INFO dup; 3248 3249 if (is_bad_inode(inode) || sb_rdonly(sb)) 3250 return 0; 3251 3252 if (!ni_trylock(ni)) { 3253 /* 'ni' is under modification, skip for now. */ 3254 mark_inode_dirty_sync(inode); 3255 return 0; 3256 } 3257 3258 if (!ni->mi.mrec) 3259 goto out; 3260 3261 if (is_rec_inuse(ni->mi.mrec) && 3262 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3263 bool modified = false; 3264 3265 /* Update times in standard attribute. */ 3266 std = ni_std(ni); 3267 if (!std) { 3268 err = -EINVAL; 3269 goto out; 3270 } 3271 3272 /* Update the access times if they have changed. */ 3273 dup.m_time = kernel2nt(&inode->i_mtime); 3274 if (std->m_time != dup.m_time) { 3275 std->m_time = dup.m_time; 3276 modified = true; 3277 } 3278 3279 dup.c_time = kernel2nt(&inode->i_ctime); 3280 if (std->c_time != dup.c_time) { 3281 std->c_time = dup.c_time; 3282 modified = true; 3283 } 3284 3285 dup.a_time = kernel2nt(&inode->i_atime); 3286 if (std->a_time != dup.a_time) { 3287 std->a_time = dup.a_time; 3288 modified = true; 3289 } 3290 3291 dup.fa = ni->std_fa; 3292 if (std->fa != dup.fa) { 3293 std->fa = dup.fa; 3294 modified = true; 3295 } 3296 3297 /* std attribute is always in primary MFT record. */ 3298 if (modified) 3299 ni->mi.dirty = true; 3300 3301 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3302 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3303 /* Avoid __wait_on_freeing_inode(inode). */ 3304 && (sb->s_flags & SB_ACTIVE)) { 3305 dup.cr_time = std->cr_time; 3306 /* Not critical if this function fail. */ 3307 re_dirty = ni_update_parent(ni, &dup, sync); 3308 3309 if (re_dirty) 3310 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3311 else 3312 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3313 } 3314 3315 /* Update attribute list. */ 3316 if (ni->attr_list.size && ni->attr_list.dirty) { 3317 if (inode->i_ino != MFT_REC_MFT || sync) { 3318 err = ni_try_remove_attr_list(ni); 3319 if (err) 3320 goto out; 3321 } 3322 3323 err = al_update(ni, sync); 3324 if (err) 3325 goto out; 3326 } 3327 } 3328 3329 for (node = rb_first(&ni->mi_tree); node; node = next) { 3330 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3331 bool is_empty; 3332 3333 next = rb_next(node); 3334 3335 if (!mi->dirty) 3336 continue; 3337 3338 is_empty = !mi_enum_attr(mi, NULL); 3339 3340 if (is_empty) 3341 clear_rec_inuse(mi->mrec); 3342 3343 err2 = mi_write(mi, sync); 3344 if (!err && err2) 3345 err = err2; 3346 3347 if (is_empty) { 3348 ntfs_mark_rec_free(sbi, mi->rno, false); 3349 rb_erase(node, &ni->mi_tree); 3350 mi_put(mi); 3351 } 3352 } 3353 3354 if (ni->mi.dirty) { 3355 err2 = mi_write(&ni->mi, sync); 3356 if (!err && err2) 3357 err = err2; 3358 } 3359 out: 3360 ni_unlock(ni); 3361 3362 if (err) { 3363 ntfs_inode_err(inode, "%s failed, %d.", hint, err); 3364 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3365 return err; 3366 } 3367 3368 if (re_dirty) 3369 mark_inode_dirty_sync(inode); 3370 3371 return 0; 3372 } 3373