1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : 80 NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : 95 NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec)) 106 ni_delete_all(ni); 107 108 al_destroy(ni); 109 110 for (node = rb_first(&ni->mi_tree); node;) { 111 struct rb_node *next = rb_next(node); 112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 113 114 rb_erase(node, &ni->mi_tree); 115 mi_put(mi); 116 node = next; 117 } 118 119 /* Bad inode always has mode == S_IFREG. */ 120 if (ni->ni_flags & NI_FLAG_DIR) 121 indx_clear(&ni->dir); 122 else { 123 run_close(&ni->file.run); 124 #ifdef CONFIG_NTFS3_LZX_XPRESS 125 if (ni->file.offs_page) { 126 /* On-demand allocated page for offsets. */ 127 put_page(ni->file.offs_page); 128 ni->file.offs_page = NULL; 129 } 130 #endif 131 } 132 133 mi_clear(&ni->mi); 134 } 135 136 /* 137 * ni_load_mi_ex - Find mft_inode by record number. 138 */ 139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 140 { 141 int err; 142 struct mft_inode *r; 143 144 r = ni_find_mi(ni, rno); 145 if (r) 146 goto out; 147 148 err = mi_get(ni->mi.sbi, rno, &r); 149 if (err) 150 return err; 151 152 ni_add_mi(ni, r); 153 154 out: 155 if (mi) 156 *mi = r; 157 return 0; 158 } 159 160 /* 161 * ni_load_mi - Load mft_inode corresponded list_entry. 162 */ 163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 164 struct mft_inode **mi) 165 { 166 CLST rno; 167 168 if (!le) { 169 *mi = &ni->mi; 170 return 0; 171 } 172 173 rno = ino_get(&le->ref); 174 if (rno == ni->mi.rno) { 175 *mi = &ni->mi; 176 return 0; 177 } 178 return ni_load_mi_ex(ni, rno, mi); 179 } 180 181 /* 182 * ni_find_attr 183 * 184 * Return: Attribute and record this attribute belongs to. 185 */ 186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 188 const __le16 *name, u8 name_len, const CLST *vcn, 189 struct mft_inode **mi) 190 { 191 struct ATTR_LIST_ENTRY *le; 192 struct mft_inode *m; 193 194 if (!ni->attr_list.size || 195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 196 if (le_o) 197 *le_o = NULL; 198 if (mi) 199 *mi = &ni->mi; 200 201 /* Look for required attribute in primary record. */ 202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 203 } 204 205 /* First look for list entry of required type. */ 206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 207 if (!le) 208 return NULL; 209 210 if (le_o) 211 *le_o = le; 212 213 /* Load record that contains this attribute. */ 214 if (ni_load_mi(ni, le, &m)) 215 return NULL; 216 217 /* Look for required attribute. */ 218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 219 220 if (!attr) 221 goto out; 222 223 if (!attr->non_res) { 224 if (vcn && *vcn) 225 goto out; 226 } else if (!vcn) { 227 if (attr->nres.svcn) 228 goto out; 229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 230 *vcn > le64_to_cpu(attr->nres.evcn)) { 231 goto out; 232 } 233 234 if (mi) 235 *mi = m; 236 return attr; 237 238 out: 239 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record"); 240 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 241 return NULL; 242 } 243 244 /* 245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 246 */ 247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 248 struct ATTR_LIST_ENTRY **le, 249 struct mft_inode **mi) 250 { 251 struct mft_inode *mi2; 252 struct ATTR_LIST_ENTRY *le2; 253 254 /* Do we have an attribute list? */ 255 if (!ni->attr_list.size) { 256 *le = NULL; 257 if (mi) 258 *mi = &ni->mi; 259 /* Enum attributes in primary record. */ 260 return mi_enum_attr(&ni->mi, attr); 261 } 262 263 /* Get next list entry. */ 264 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 265 if (!le2) 266 return NULL; 267 268 /* Load record that contains the required attribute. */ 269 if (ni_load_mi(ni, le2, &mi2)) 270 return NULL; 271 272 if (mi) 273 *mi = mi2; 274 275 /* Find attribute in loaded record. */ 276 return rec_find_attr_le(mi2, le2); 277 } 278 279 /* 280 * ni_load_attr - Load attribute that contains given VCN. 281 */ 282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 283 const __le16 *name, u8 name_len, CLST vcn, 284 struct mft_inode **pmi) 285 { 286 struct ATTR_LIST_ENTRY *le; 287 struct ATTRIB *attr; 288 struct mft_inode *mi; 289 struct ATTR_LIST_ENTRY *next; 290 291 if (!ni->attr_list.size) { 292 if (pmi) 293 *pmi = &ni->mi; 294 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 295 } 296 297 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 298 if (!le) 299 return NULL; 300 301 /* 302 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 303 * So to find the ATTRIB segment that contains 'vcn' we should 304 * enumerate some entries. 305 */ 306 if (vcn) { 307 for (;; le = next) { 308 next = al_find_ex(ni, le, type, name, name_len, NULL); 309 if (!next || le64_to_cpu(next->vcn) > vcn) 310 break; 311 } 312 } 313 314 if (ni_load_mi(ni, le, &mi)) 315 return NULL; 316 317 if (pmi) 318 *pmi = mi; 319 320 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 321 if (!attr) 322 return NULL; 323 324 if (!attr->non_res) 325 return attr; 326 327 if (le64_to_cpu(attr->nres.svcn) <= vcn && 328 vcn <= le64_to_cpu(attr->nres.evcn)) 329 return attr; 330 331 return NULL; 332 } 333 334 /* 335 * ni_load_all_mi - Load all subrecords. 336 */ 337 int ni_load_all_mi(struct ntfs_inode *ni) 338 { 339 int err; 340 struct ATTR_LIST_ENTRY *le; 341 342 if (!ni->attr_list.size) 343 return 0; 344 345 le = NULL; 346 347 while ((le = al_enumerate(ni, le))) { 348 CLST rno = ino_get(&le->ref); 349 350 if (rno == ni->mi.rno) 351 continue; 352 353 err = ni_load_mi_ex(ni, rno, NULL); 354 if (err) 355 return err; 356 } 357 358 return 0; 359 } 360 361 /* 362 * ni_add_subrecord - Allocate + format + attach a new subrecord. 363 */ 364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 365 { 366 struct mft_inode *m; 367 368 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 369 if (!m) 370 return false; 371 372 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 373 mi_put(m); 374 return false; 375 } 376 377 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 378 379 ni_add_mi(ni, m); 380 *mi = m; 381 return true; 382 } 383 384 /* 385 * ni_remove_attr - Remove all attributes for the given type/name/id. 386 */ 387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 388 const __le16 *name, u8 name_len, bool base_only, 389 const __le16 *id) 390 { 391 int err; 392 struct ATTRIB *attr; 393 struct ATTR_LIST_ENTRY *le; 394 struct mft_inode *mi; 395 u32 type_in; 396 int diff; 397 398 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 399 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 400 if (!attr) 401 return -ENOENT; 402 403 mi_remove_attr(ni, &ni->mi, attr); 404 return 0; 405 } 406 407 type_in = le32_to_cpu(type); 408 le = NULL; 409 410 for (;;) { 411 le = al_enumerate(ni, le); 412 if (!le) 413 return 0; 414 415 next_le2: 416 diff = le32_to_cpu(le->type) - type_in; 417 if (diff < 0) 418 continue; 419 420 if (diff > 0) 421 return 0; 422 423 if (le->name_len != name_len) 424 continue; 425 426 if (name_len && 427 memcmp(le_name(le), name, name_len * sizeof(short))) 428 continue; 429 430 if (id && le->id != *id) 431 continue; 432 err = ni_load_mi(ni, le, &mi); 433 if (err) 434 return err; 435 436 al_remove_le(ni, le); 437 438 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 439 if (!attr) 440 return -ENOENT; 441 442 mi_remove_attr(ni, mi, attr); 443 444 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 445 return 0; 446 goto next_le2; 447 } 448 } 449 450 /* 451 * ni_ins_new_attr - Insert the attribute into record. 452 * 453 * Return: Not full constructed attribute or NULL if not possible to create. 454 */ 455 static struct ATTRIB * 456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 457 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 458 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 459 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 460 { 461 int err; 462 struct ATTRIB *attr; 463 bool le_added = false; 464 struct MFT_REF ref; 465 466 mi_get_ref(mi, &ref); 467 468 if (type != ATTR_LIST && !le && ni->attr_list.size) { 469 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 470 &ref, &le); 471 if (err) { 472 /* No memory or no space. */ 473 return ERR_PTR(err); 474 } 475 le_added = true; 476 477 /* 478 * al_add_le -> attr_set_size (list) -> ni_expand_list 479 * which moves some attributes out of primary record 480 * this means that name may point into moved memory 481 * reinit 'name' from le. 482 */ 483 name = le->name; 484 } 485 486 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 487 if (!attr) { 488 if (le_added) 489 al_remove_le(ni, le); 490 return NULL; 491 } 492 493 if (type == ATTR_LIST) { 494 /* Attr list is not in list entry array. */ 495 goto out; 496 } 497 498 if (!le) 499 goto out; 500 501 /* Update ATTRIB Id and record reference. */ 502 le->id = attr->id; 503 ni->attr_list.dirty = true; 504 le->ref = ref; 505 506 out: 507 if (ins_le) 508 *ins_le = le; 509 return attr; 510 } 511 512 /* 513 * ni_repack 514 * 515 * Random write access to sparsed or compressed file may result to 516 * not optimized packed runs. 517 * Here is the place to optimize it. 518 */ 519 static int ni_repack(struct ntfs_inode *ni) 520 { 521 #if 1 522 return 0; 523 #else 524 int err = 0; 525 struct ntfs_sb_info *sbi = ni->mi.sbi; 526 struct mft_inode *mi, *mi_p = NULL; 527 struct ATTRIB *attr = NULL, *attr_p; 528 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 529 CLST alloc = 0; 530 u8 cluster_bits = sbi->cluster_bits; 531 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 532 u32 roff, rs = sbi->record_size; 533 struct runs_tree run; 534 535 run_init(&run); 536 537 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 538 if (!attr->non_res) 539 continue; 540 541 svcn = le64_to_cpu(attr->nres.svcn); 542 if (svcn != le64_to_cpu(le->vcn)) { 543 err = -EINVAL; 544 break; 545 } 546 547 if (!svcn) { 548 alloc = le64_to_cpu(attr->nres.alloc_size) >> 549 cluster_bits; 550 mi_p = NULL; 551 } else if (svcn != evcn + 1) { 552 err = -EINVAL; 553 break; 554 } 555 556 evcn = le64_to_cpu(attr->nres.evcn); 557 558 if (svcn > evcn + 1) { 559 err = -EINVAL; 560 break; 561 } 562 563 if (!mi_p) { 564 /* Do not try if not enough free space. */ 565 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 566 continue; 567 568 /* Do not try if last attribute segment. */ 569 if (evcn + 1 == alloc) 570 continue; 571 run_close(&run); 572 } 573 574 roff = le16_to_cpu(attr->nres.run_off); 575 576 if (roff > le32_to_cpu(attr->size)) { 577 err = -EINVAL; 578 break; 579 } 580 581 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 582 Add2Ptr(attr, roff), 583 le32_to_cpu(attr->size) - roff); 584 if (err < 0) 585 break; 586 587 if (!mi_p) { 588 mi_p = mi; 589 attr_p = attr; 590 svcn_p = svcn; 591 evcn_p = evcn; 592 le_p = le; 593 err = 0; 594 continue; 595 } 596 597 /* 598 * Run contains data from two records: mi_p and mi 599 * Try to pack in one. 600 */ 601 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 602 if (err) 603 break; 604 605 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 606 607 if (next_svcn >= evcn + 1) { 608 /* We can remove this attribute segment. */ 609 al_remove_le(ni, le); 610 mi_remove_attr(NULL, mi, attr); 611 le = le_p; 612 continue; 613 } 614 615 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 616 mi->dirty = true; 617 ni->attr_list.dirty = true; 618 619 if (evcn + 1 == alloc) { 620 err = mi_pack_runs(mi, attr, &run, 621 evcn + 1 - next_svcn); 622 if (err) 623 break; 624 mi_p = NULL; 625 } else { 626 mi_p = mi; 627 attr_p = attr; 628 svcn_p = next_svcn; 629 evcn_p = evcn; 630 le_p = le; 631 run_truncate_head(&run, next_svcn); 632 } 633 } 634 635 if (err) { 636 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 637 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 638 639 /* Pack loaded but not packed runs. */ 640 if (mi_p) 641 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 642 } 643 644 run_close(&run); 645 return err; 646 #endif 647 } 648 649 /* 650 * ni_try_remove_attr_list 651 * 652 * Can we remove attribute list? 653 * Check the case when primary record contains enough space for all attributes. 654 */ 655 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 656 { 657 int err = 0; 658 struct ntfs_sb_info *sbi = ni->mi.sbi; 659 struct ATTRIB *attr, *attr_list, *attr_ins; 660 struct ATTR_LIST_ENTRY *le; 661 struct mft_inode *mi; 662 u32 asize, free; 663 struct MFT_REF ref; 664 struct MFT_REC *mrec; 665 __le16 id; 666 667 if (!ni->attr_list.dirty) 668 return 0; 669 670 err = ni_repack(ni); 671 if (err) 672 return err; 673 674 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 675 if (!attr_list) 676 return 0; 677 678 asize = le32_to_cpu(attr_list->size); 679 680 /* Free space in primary record without attribute list. */ 681 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 682 mi_get_ref(&ni->mi, &ref); 683 684 le = NULL; 685 while ((le = al_enumerate(ni, le))) { 686 if (!memcmp(&le->ref, &ref, sizeof(ref))) 687 continue; 688 689 if (le->vcn) 690 return 0; 691 692 mi = ni_find_mi(ni, ino_get(&le->ref)); 693 if (!mi) 694 return 0; 695 696 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 697 le->name_len, &le->id); 698 if (!attr) 699 return 0; 700 701 asize = le32_to_cpu(attr->size); 702 if (asize > free) 703 return 0; 704 705 free -= asize; 706 } 707 708 /* Make a copy of primary record to restore if error. */ 709 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 710 if (!mrec) 711 return 0; /* Not critical. */ 712 713 /* It seems that attribute list can be removed from primary record. */ 714 mi_remove_attr(NULL, &ni->mi, attr_list); 715 716 /* 717 * Repeat the cycle above and copy all attributes to primary record. 718 * Do not remove original attributes from subrecords! 719 * It should be success! 720 */ 721 le = NULL; 722 while ((le = al_enumerate(ni, le))) { 723 if (!memcmp(&le->ref, &ref, sizeof(ref))) 724 continue; 725 726 mi = ni_find_mi(ni, ino_get(&le->ref)); 727 if (!mi) { 728 /* Should never happened, 'cause already checked. */ 729 goto out; 730 } 731 732 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 733 le->name_len, &le->id); 734 if (!attr) { 735 /* Should never happened, 'cause already checked. */ 736 goto out; 737 } 738 asize = le32_to_cpu(attr->size); 739 740 /* Insert into primary record. */ 741 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 742 le->name_len, asize, 743 le16_to_cpu(attr->name_off)); 744 if (!attr_ins) { 745 /* 746 * No space in primary record (already checked). 747 */ 748 goto out; 749 } 750 751 /* Copy all except id. */ 752 id = attr_ins->id; 753 memcpy(attr_ins, attr, asize); 754 attr_ins->id = id; 755 } 756 757 /* 758 * Repeat the cycle above and remove all attributes from subrecords. 759 */ 760 le = NULL; 761 while ((le = al_enumerate(ni, le))) { 762 if (!memcmp(&le->ref, &ref, sizeof(ref))) 763 continue; 764 765 mi = ni_find_mi(ni, ino_get(&le->ref)); 766 if (!mi) 767 continue; 768 769 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 770 le->name_len, &le->id); 771 if (!attr) 772 continue; 773 774 /* Remove from original record. */ 775 mi_remove_attr(NULL, mi, attr); 776 } 777 778 run_deallocate(sbi, &ni->attr_list.run, true); 779 run_close(&ni->attr_list.run); 780 ni->attr_list.size = 0; 781 kvfree(ni->attr_list.le); 782 ni->attr_list.le = NULL; 783 ni->attr_list.dirty = false; 784 785 kfree(mrec); 786 return 0; 787 out: 788 /* Restore primary record. */ 789 swap(mrec, ni->mi.mrec); 790 kfree(mrec); 791 return 0; 792 } 793 794 /* 795 * ni_create_attr_list - Generates an attribute list for this primary record. 796 */ 797 int ni_create_attr_list(struct ntfs_inode *ni) 798 { 799 struct ntfs_sb_info *sbi = ni->mi.sbi; 800 int err; 801 u32 lsize; 802 struct ATTRIB *attr; 803 struct ATTRIB *arr_move[7]; 804 struct ATTR_LIST_ENTRY *le, *le_b[7]; 805 struct MFT_REC *rec; 806 bool is_mft; 807 CLST rno = 0; 808 struct mft_inode *mi; 809 u32 free_b, nb, to_free, rs; 810 u16 sz; 811 812 is_mft = ni->mi.rno == MFT_REC_MFT; 813 rec = ni->mi.mrec; 814 rs = sbi->record_size; 815 816 /* 817 * Skip estimating exact memory requirement. 818 * Looks like one record_size is always enough. 819 */ 820 le = kmalloc(al_aligned(rs), GFP_NOFS); 821 if (!le) 822 return -ENOMEM; 823 824 mi_get_ref(&ni->mi, &le->ref); 825 ni->attr_list.le = le; 826 827 attr = NULL; 828 nb = 0; 829 free_b = 0; 830 attr = NULL; 831 832 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 833 sz = le_size(attr->name_len); 834 le->type = attr->type; 835 le->size = cpu_to_le16(sz); 836 le->name_len = attr->name_len; 837 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 838 le->vcn = 0; 839 if (le != ni->attr_list.le) 840 le->ref = ni->attr_list.le->ref; 841 le->id = attr->id; 842 843 if (attr->name_len) 844 memcpy(le->name, attr_name(attr), 845 sizeof(short) * attr->name_len); 846 else if (attr->type == ATTR_STD) 847 continue; 848 else if (attr->type == ATTR_LIST) 849 continue; 850 else if (is_mft && attr->type == ATTR_DATA) 851 continue; 852 853 if (!nb || nb < ARRAY_SIZE(arr_move)) { 854 le_b[nb] = le; 855 arr_move[nb++] = attr; 856 free_b += le32_to_cpu(attr->size); 857 } 858 } 859 860 lsize = PtrOffset(ni->attr_list.le, le); 861 ni->attr_list.size = lsize; 862 863 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 864 if (to_free <= rs) { 865 to_free = 0; 866 } else { 867 to_free -= rs; 868 869 if (to_free > free_b) { 870 err = -EINVAL; 871 goto out; 872 } 873 } 874 875 /* Allocate child MFT. */ 876 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 877 if (err) 878 goto out; 879 880 err = -EINVAL; 881 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 882 while (to_free > 0) { 883 struct ATTRIB *b = arr_move[--nb]; 884 u32 asize = le32_to_cpu(b->size); 885 u16 name_off = le16_to_cpu(b->name_off); 886 887 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 888 b->name_len, asize, name_off); 889 if (!attr) 890 goto out; 891 892 mi_get_ref(mi, &le_b[nb]->ref); 893 le_b[nb]->id = attr->id; 894 895 /* Copy all except id. */ 896 memcpy(attr, b, asize); 897 attr->id = le_b[nb]->id; 898 899 /* Remove from primary record. */ 900 if (!mi_remove_attr(NULL, &ni->mi, b)) 901 goto out; 902 903 if (to_free <= asize) 904 break; 905 to_free -= asize; 906 if (!nb) 907 goto out; 908 } 909 910 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 911 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 912 if (!attr) 913 goto out; 914 915 attr->non_res = 0; 916 attr->flags = 0; 917 attr->res.data_size = cpu_to_le32(lsize); 918 attr->res.data_off = SIZEOF_RESIDENT_LE; 919 attr->res.flags = 0; 920 attr->res.res = 0; 921 922 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 923 924 ni->attr_list.dirty = false; 925 926 mark_inode_dirty(&ni->vfs_inode); 927 return 0; 928 929 out: 930 kvfree(ni->attr_list.le); 931 ni->attr_list.le = NULL; 932 ni->attr_list.size = 0; 933 return err; 934 } 935 936 /* 937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 938 */ 939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 940 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 941 u32 asize, CLST svcn, u16 name_off, bool force_ext, 942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 943 struct ATTR_LIST_ENTRY **ins_le) 944 { 945 struct ATTRIB *attr; 946 struct mft_inode *mi; 947 CLST rno; 948 u64 vbo; 949 struct rb_node *node; 950 int err; 951 bool is_mft, is_mft_data; 952 struct ntfs_sb_info *sbi = ni->mi.sbi; 953 954 is_mft = ni->mi.rno == MFT_REC_MFT; 955 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 956 957 if (asize > sbi->max_bytes_per_attr) { 958 err = -EINVAL; 959 goto out; 960 } 961 962 /* 963 * Standard information and attr_list cannot be made external. 964 * The Log File cannot have any external attributes. 965 */ 966 if (type == ATTR_STD || type == ATTR_LIST || 967 ni->mi.rno == MFT_REC_LOG) { 968 err = -EINVAL; 969 goto out; 970 } 971 972 /* Create attribute list if it is not already existed. */ 973 if (!ni->attr_list.size) { 974 err = ni_create_attr_list(ni); 975 if (err) 976 goto out; 977 } 978 979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 980 981 if (force_ext) 982 goto insert_ext; 983 984 /* Load all subrecords into memory. */ 985 err = ni_load_all_mi(ni); 986 if (err) 987 goto out; 988 989 /* Check each of loaded subrecord. */ 990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 991 mi = rb_entry(node, struct mft_inode, node); 992 993 if (is_mft_data && 994 (mi_enum_attr(mi, NULL) || 995 vbo <= ((u64)mi->rno << sbi->record_bits))) { 996 /* We can't accept this record 'cause MFT's bootstrapping. */ 997 continue; 998 } 999 if (is_mft && 1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 1001 /* 1002 * This child record already has a ATTR_DATA. 1003 * So it can't accept any other records. 1004 */ 1005 continue; 1006 } 1007 1008 if ((type != ATTR_NAME || name_len) && 1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 1010 /* Only indexed attributes can share same record. */ 1011 continue; 1012 } 1013 1014 /* 1015 * Do not try to insert this attribute 1016 * if there is no room in record. 1017 */ 1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 1019 continue; 1020 1021 /* Try to insert attribute into this subrecord. */ 1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1023 name_off, svcn, ins_le); 1024 if (!attr) 1025 continue; 1026 if (IS_ERR(attr)) 1027 return PTR_ERR(attr); 1028 1029 if (ins_attr) 1030 *ins_attr = attr; 1031 if (ins_mi) 1032 *ins_mi = mi; 1033 return 0; 1034 } 1035 1036 insert_ext: 1037 /* We have to allocate a new child subrecord. */ 1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1039 if (err) 1040 goto out; 1041 1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1043 err = -EINVAL; 1044 goto out1; 1045 } 1046 1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1048 name_off, svcn, ins_le); 1049 if (!attr) { 1050 err = -EINVAL; 1051 goto out2; 1052 } 1053 1054 if (IS_ERR(attr)) { 1055 err = PTR_ERR(attr); 1056 goto out2; 1057 } 1058 1059 if (ins_attr) 1060 *ins_attr = attr; 1061 if (ins_mi) 1062 *ins_mi = mi; 1063 1064 return 0; 1065 1066 out2: 1067 ni_remove_mi(ni, mi); 1068 mi_put(mi); 1069 1070 out1: 1071 ntfs_mark_rec_free(sbi, rno, is_mft); 1072 1073 out: 1074 return err; 1075 } 1076 1077 /* 1078 * ni_insert_attr - Insert an attribute into the file. 1079 * 1080 * If the primary record has room, it will just insert the attribute. 1081 * If not, it may make the attribute external. 1082 * For $MFT::Data it may make room for the attribute by 1083 * making other attributes external. 1084 * 1085 * NOTE: 1086 * The ATTR_LIST and ATTR_STD cannot be made external. 1087 * This function does not fill new attribute full. 1088 * It only fills 'size'/'type'/'id'/'name_len' fields. 1089 */ 1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1091 const __le16 *name, u8 name_len, u32 asize, 1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1093 struct mft_inode **ins_mi, 1094 struct ATTR_LIST_ENTRY **ins_le) 1095 { 1096 struct ntfs_sb_info *sbi = ni->mi.sbi; 1097 int err; 1098 struct ATTRIB *attr, *eattr; 1099 struct MFT_REC *rec; 1100 bool is_mft; 1101 struct ATTR_LIST_ENTRY *le; 1102 u32 list_reserve, max_free, free, used, t32; 1103 __le16 id; 1104 u16 t16; 1105 1106 is_mft = ni->mi.rno == MFT_REC_MFT; 1107 rec = ni->mi.mrec; 1108 1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1110 used = le32_to_cpu(rec->used); 1111 free = sbi->record_size - used; 1112 1113 if (is_mft && type != ATTR_LIST) { 1114 /* Reserve space for the ATTRIB list. */ 1115 if (free < list_reserve) 1116 free = 0; 1117 else 1118 free -= list_reserve; 1119 } 1120 1121 if (asize <= free) { 1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1123 asize, name_off, svcn, ins_le); 1124 if (IS_ERR(attr)) { 1125 err = PTR_ERR(attr); 1126 goto out; 1127 } 1128 1129 if (attr) { 1130 if (ins_attr) 1131 *ins_attr = attr; 1132 if (ins_mi) 1133 *ins_mi = &ni->mi; 1134 err = 0; 1135 goto out; 1136 } 1137 } 1138 1139 if (!is_mft || type != ATTR_DATA || svcn) { 1140 /* This ATTRIB will be external. */ 1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1142 svcn, name_off, false, ins_attr, ins_mi, 1143 ins_le); 1144 goto out; 1145 } 1146 1147 /* 1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1149 * 1150 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1151 * Evict as many other attributes as possible. 1152 */ 1153 max_free = free; 1154 1155 /* Estimate the result of moving all possible attributes away. */ 1156 attr = NULL; 1157 1158 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1159 if (attr->type == ATTR_STD) 1160 continue; 1161 if (attr->type == ATTR_LIST) 1162 continue; 1163 max_free += le32_to_cpu(attr->size); 1164 } 1165 1166 if (max_free < asize + list_reserve) { 1167 /* Impossible to insert this attribute into primary record. */ 1168 err = -EINVAL; 1169 goto out; 1170 } 1171 1172 /* Start real attribute moving. */ 1173 attr = NULL; 1174 1175 for (;;) { 1176 attr = mi_enum_attr(&ni->mi, attr); 1177 if (!attr) { 1178 /* We should never be here 'cause we have already check this case. */ 1179 err = -EINVAL; 1180 goto out; 1181 } 1182 1183 /* Skip attributes that MUST be primary record. */ 1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1185 continue; 1186 1187 le = NULL; 1188 if (ni->attr_list.size) { 1189 le = al_find_le(ni, NULL, attr); 1190 if (!le) { 1191 /* Really this is a serious bug. */ 1192 err = -EINVAL; 1193 goto out; 1194 } 1195 } 1196 1197 t32 = le32_to_cpu(attr->size); 1198 t16 = le16_to_cpu(attr->name_off); 1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1200 attr->name_len, t32, attr_svcn(attr), t16, 1201 false, &eattr, NULL, NULL); 1202 if (err) 1203 return err; 1204 1205 id = eattr->id; 1206 memcpy(eattr, attr, t32); 1207 eattr->id = id; 1208 1209 /* Remove from primary record. */ 1210 mi_remove_attr(NULL, &ni->mi, attr); 1211 1212 /* attr now points to next attribute. */ 1213 if (attr->type == ATTR_END) 1214 goto out; 1215 } 1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1217 ; 1218 1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1220 name_off, svcn, ins_le); 1221 if (!attr) { 1222 err = -EINVAL; 1223 goto out; 1224 } 1225 1226 if (IS_ERR(attr)) { 1227 err = PTR_ERR(attr); 1228 goto out; 1229 } 1230 1231 if (ins_attr) 1232 *ins_attr = attr; 1233 if (ins_mi) 1234 *ins_mi = &ni->mi; 1235 1236 out: 1237 return err; 1238 } 1239 1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1241 static int ni_expand_mft_list(struct ntfs_inode *ni) 1242 { 1243 int err = 0; 1244 struct runs_tree *run = &ni->file.run; 1245 u32 asize, run_size, done = 0; 1246 struct ATTRIB *attr; 1247 struct rb_node *node; 1248 CLST mft_min, mft_new, svcn, evcn, plen; 1249 struct mft_inode *mi, *mi_min, *mi_new; 1250 struct ntfs_sb_info *sbi = ni->mi.sbi; 1251 1252 /* Find the nearest MFT. */ 1253 mft_min = 0; 1254 mft_new = 0; 1255 mi_min = NULL; 1256 1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1258 mi = rb_entry(node, struct mft_inode, node); 1259 1260 attr = mi_enum_attr(mi, NULL); 1261 1262 if (!attr) { 1263 mft_min = mi->rno; 1264 mi_min = mi; 1265 break; 1266 } 1267 } 1268 1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1270 mft_new = 0; 1271 /* Really this is not critical. */ 1272 } else if (mft_min > mft_new) { 1273 mft_min = mft_new; 1274 mi_min = mi_new; 1275 } else { 1276 ntfs_mark_rec_free(sbi, mft_new, true); 1277 mft_new = 0; 1278 ni_remove_mi(ni, mi_new); 1279 } 1280 1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1282 if (!attr) { 1283 err = -EINVAL; 1284 goto out; 1285 } 1286 1287 asize = le32_to_cpu(attr->size); 1288 1289 evcn = le64_to_cpu(attr->nres.evcn); 1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1291 if (evcn + 1 >= svcn) { 1292 err = -EINVAL; 1293 goto out; 1294 } 1295 1296 /* 1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1298 * 1299 * Update first part of ATTR_DATA in 'primary MFT. 1300 */ 1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1302 asize - SIZEOF_NONRESIDENT, &plen); 1303 if (err < 0) 1304 goto out; 1305 1306 run_size = ALIGN(err, 8); 1307 err = 0; 1308 1309 if (plen < svcn) { 1310 err = -EINVAL; 1311 goto out; 1312 } 1313 1314 attr->nres.evcn = cpu_to_le64(svcn - 1); 1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1316 /* 'done' - How many bytes of primary MFT becomes free. */ 1317 done = asize - run_size - SIZEOF_NONRESIDENT; 1318 le32_sub_cpu(&ni->mi.mrec->used, done); 1319 1320 /* Estimate packed size (run_buf=NULL). */ 1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1322 &plen); 1323 if (err < 0) 1324 goto out; 1325 1326 run_size = ALIGN(err, 8); 1327 err = 0; 1328 1329 if (plen < evcn + 1 - svcn) { 1330 err = -EINVAL; 1331 goto out; 1332 } 1333 1334 /* 1335 * This function may implicitly call expand attr_list. 1336 * Insert second part of ATTR_DATA in 'mi_min'. 1337 */ 1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1339 SIZEOF_NONRESIDENT + run_size, 1340 SIZEOF_NONRESIDENT, svcn, NULL); 1341 if (!attr) { 1342 err = -EINVAL; 1343 goto out; 1344 } 1345 1346 if (IS_ERR(attr)) { 1347 err = PTR_ERR(attr); 1348 goto out; 1349 } 1350 1351 attr->non_res = 1; 1352 attr->name_off = SIZEOF_NONRESIDENT_LE; 1353 attr->flags = 0; 1354 1355 /* This function can't fail - cause already checked above. */ 1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1357 run_size, &plen); 1358 1359 attr->nres.svcn = cpu_to_le64(svcn); 1360 attr->nres.evcn = cpu_to_le64(evcn); 1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1362 1363 out: 1364 if (mft_new) { 1365 ntfs_mark_rec_free(sbi, mft_new, true); 1366 ni_remove_mi(ni, mi_new); 1367 } 1368 1369 return !err && !done ? -EOPNOTSUPP : err; 1370 } 1371 1372 /* 1373 * ni_expand_list - Move all possible attributes out of primary record. 1374 */ 1375 int ni_expand_list(struct ntfs_inode *ni) 1376 { 1377 int err = 0; 1378 u32 asize, done = 0; 1379 struct ATTRIB *attr, *ins_attr; 1380 struct ATTR_LIST_ENTRY *le; 1381 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1382 struct MFT_REF ref; 1383 1384 mi_get_ref(&ni->mi, &ref); 1385 le = NULL; 1386 1387 while ((le = al_enumerate(ni, le))) { 1388 if (le->type == ATTR_STD) 1389 continue; 1390 1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1392 continue; 1393 1394 if (is_mft && le->type == ATTR_DATA) 1395 continue; 1396 1397 /* Find attribute in primary record. */ 1398 attr = rec_find_attr_le(&ni->mi, le); 1399 if (!attr) { 1400 err = -EINVAL; 1401 goto out; 1402 } 1403 1404 asize = le32_to_cpu(attr->size); 1405 1406 /* Always insert into new record to avoid collisions (deep recursive). */ 1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1408 attr->name_len, asize, attr_svcn(attr), 1409 le16_to_cpu(attr->name_off), true, 1410 &ins_attr, NULL, NULL); 1411 1412 if (err) 1413 goto out; 1414 1415 memcpy(ins_attr, attr, asize); 1416 ins_attr->id = le->id; 1417 /* Remove from primary record. */ 1418 mi_remove_attr(NULL, &ni->mi, attr); 1419 1420 done += asize; 1421 goto out; 1422 } 1423 1424 if (!is_mft) { 1425 err = -EFBIG; /* Attr list is too big(?) */ 1426 goto out; 1427 } 1428 1429 /* Split MFT data as much as possible. */ 1430 err = ni_expand_mft_list(ni); 1431 1432 out: 1433 return !err && !done ? -EOPNOTSUPP : err; 1434 } 1435 1436 /* 1437 * ni_insert_nonresident - Insert new nonresident attribute. 1438 */ 1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1440 const __le16 *name, u8 name_len, 1441 const struct runs_tree *run, CLST svcn, CLST len, 1442 __le16 flags, struct ATTRIB **new_attr, 1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1444 { 1445 int err; 1446 CLST plen; 1447 struct ATTRIB *attr; 1448 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && 1449 !svcn; 1450 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1452 u32 run_off = name_off + name_size; 1453 u32 run_size, asize; 1454 struct ntfs_sb_info *sbi = ni->mi.sbi; 1455 1456 /* Estimate packed size (run_buf=NULL). */ 1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1458 &plen); 1459 if (err < 0) 1460 goto out; 1461 1462 run_size = ALIGN(err, 8); 1463 1464 if (plen < len) { 1465 err = -EINVAL; 1466 goto out; 1467 } 1468 1469 asize = run_off + run_size; 1470 1471 if (asize > sbi->max_bytes_per_attr) { 1472 err = -EINVAL; 1473 goto out; 1474 } 1475 1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1477 &attr, mi, le); 1478 1479 if (err) 1480 goto out; 1481 1482 attr->non_res = 1; 1483 attr->name_off = cpu_to_le16(name_off); 1484 attr->flags = flags; 1485 1486 /* This function can't fail - cause already checked above. */ 1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1488 1489 attr->nres.svcn = cpu_to_le64(svcn); 1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1491 1492 if (new_attr) 1493 *new_attr = attr; 1494 1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1496 1497 attr->nres.alloc_size = 1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1499 attr->nres.data_size = attr->nres.alloc_size; 1500 attr->nres.valid_size = attr->nres.alloc_size; 1501 1502 if (is_ext) { 1503 if (flags & ATTR_FLAG_COMPRESSED) 1504 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1505 attr->nres.total_size = attr->nres.alloc_size; 1506 } 1507 1508 out: 1509 return err; 1510 } 1511 1512 /* 1513 * ni_insert_resident - Inserts new resident attribute. 1514 */ 1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1517 struct ATTRIB **new_attr, struct mft_inode **mi, 1518 struct ATTR_LIST_ENTRY **le) 1519 { 1520 int err; 1521 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1523 struct ATTRIB *attr; 1524 1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1526 0, &attr, mi, le); 1527 if (err) 1528 return err; 1529 1530 attr->non_res = 0; 1531 attr->flags = 0; 1532 1533 attr->res.data_size = cpu_to_le32(data_size); 1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1535 if (type == ATTR_NAME) { 1536 attr->res.flags = RESIDENT_FLAG_INDEXED; 1537 1538 /* is_attr_indexed(attr)) == true */ 1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1540 ni->mi.dirty = true; 1541 } 1542 attr->res.res = 0; 1543 1544 if (new_attr) 1545 *new_attr = attr; 1546 1547 return 0; 1548 } 1549 1550 /* 1551 * ni_remove_attr_le - Remove attribute from record. 1552 */ 1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1555 { 1556 mi_remove_attr(ni, mi, attr); 1557 1558 if (le) 1559 al_remove_le(ni, le); 1560 } 1561 1562 /* 1563 * ni_delete_all - Remove all attributes and frees allocates space. 1564 * 1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1566 */ 1567 int ni_delete_all(struct ntfs_inode *ni) 1568 { 1569 int err; 1570 struct ATTR_LIST_ENTRY *le = NULL; 1571 struct ATTRIB *attr = NULL; 1572 struct rb_node *node; 1573 u16 roff; 1574 u32 asize; 1575 CLST svcn, evcn; 1576 struct ntfs_sb_info *sbi = ni->mi.sbi; 1577 bool nt3 = is_ntfs3(sbi); 1578 struct MFT_REF ref; 1579 1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1581 if (!nt3 || attr->name_len) { 1582 ; 1583 } else if (attr->type == ATTR_REPARSE) { 1584 mi_get_ref(&ni->mi, &ref); 1585 ntfs_remove_reparse(sbi, 0, &ref); 1586 } else if (attr->type == ATTR_ID && !attr->non_res && 1587 le32_to_cpu(attr->res.data_size) >= 1588 sizeof(struct GUID)) { 1589 ntfs_objid_remove(sbi, resident_data(attr)); 1590 } 1591 1592 if (!attr->non_res) 1593 continue; 1594 1595 svcn = le64_to_cpu(attr->nres.svcn); 1596 evcn = le64_to_cpu(attr->nres.evcn); 1597 1598 if (evcn + 1 <= svcn) 1599 continue; 1600 1601 asize = le32_to_cpu(attr->size); 1602 roff = le16_to_cpu(attr->nres.run_off); 1603 1604 if (roff > asize) { 1605 _ntfs_bad_inode(&ni->vfs_inode); 1606 return -EINVAL; 1607 } 1608 1609 /* run==1 means unpack and deallocate. */ 1610 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1611 Add2Ptr(attr, roff), asize - roff); 1612 } 1613 1614 if (ni->attr_list.size) { 1615 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1616 al_destroy(ni); 1617 } 1618 1619 /* Free all subrecords. */ 1620 for (node = rb_first(&ni->mi_tree); node;) { 1621 struct rb_node *next = rb_next(node); 1622 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1623 1624 clear_rec_inuse(mi->mrec); 1625 mi->dirty = true; 1626 mi_write(mi, 0); 1627 1628 ntfs_mark_rec_free(sbi, mi->rno, false); 1629 ni_remove_mi(ni, mi); 1630 mi_put(mi); 1631 node = next; 1632 } 1633 1634 /* Free base record. */ 1635 clear_rec_inuse(ni->mi.mrec); 1636 ni->mi.dirty = true; 1637 err = mi_write(&ni->mi, 0); 1638 1639 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1640 1641 return err; 1642 } 1643 1644 /* ni_fname_name 1645 * 1646 * Return: File name attribute by its value. 1647 */ 1648 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1649 const struct le_str *uni, 1650 const struct MFT_REF *home_dir, 1651 struct mft_inode **mi, 1652 struct ATTR_LIST_ENTRY **le) 1653 { 1654 struct ATTRIB *attr = NULL; 1655 struct ATTR_FILE_NAME *fname; 1656 1657 if (le) 1658 *le = NULL; 1659 1660 /* Enumerate all names. */ 1661 next: 1662 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1663 if (!attr) 1664 return NULL; 1665 1666 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1667 if (!fname) 1668 goto next; 1669 1670 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1671 goto next; 1672 1673 if (!uni) 1674 return fname; 1675 1676 if (uni->len != fname->name_len) 1677 goto next; 1678 1679 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL, 1680 false)) 1681 goto next; 1682 return fname; 1683 } 1684 1685 /* 1686 * ni_fname_type 1687 * 1688 * Return: File name attribute with given type. 1689 */ 1690 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1691 struct mft_inode **mi, 1692 struct ATTR_LIST_ENTRY **le) 1693 { 1694 struct ATTRIB *attr = NULL; 1695 struct ATTR_FILE_NAME *fname; 1696 1697 *le = NULL; 1698 1699 if (name_type == FILE_NAME_POSIX) 1700 return NULL; 1701 1702 /* Enumerate all names. */ 1703 for (;;) { 1704 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1705 if (!attr) 1706 return NULL; 1707 1708 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1709 if (fname && name_type == fname->type) 1710 return fname; 1711 } 1712 } 1713 1714 /* 1715 * ni_new_attr_flags 1716 * 1717 * Process compressed/sparsed in special way. 1718 * NOTE: You need to set ni->std_fa = new_fa 1719 * after this function to keep internal structures in consistency. 1720 */ 1721 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1722 { 1723 struct ATTRIB *attr; 1724 struct mft_inode *mi; 1725 __le16 new_aflags; 1726 u32 new_asize; 1727 1728 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1729 if (!attr) 1730 return -EINVAL; 1731 1732 new_aflags = attr->flags; 1733 1734 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1735 new_aflags |= ATTR_FLAG_SPARSED; 1736 else 1737 new_aflags &= ~ATTR_FLAG_SPARSED; 1738 1739 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1740 new_aflags |= ATTR_FLAG_COMPRESSED; 1741 else 1742 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1743 1744 if (new_aflags == attr->flags) 1745 return 0; 1746 1747 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1748 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1749 ntfs_inode_warn(&ni->vfs_inode, 1750 "file can't be sparsed and compressed"); 1751 return -EOPNOTSUPP; 1752 } 1753 1754 if (!attr->non_res) 1755 goto out; 1756 1757 if (attr->nres.data_size) { 1758 ntfs_inode_warn( 1759 &ni->vfs_inode, 1760 "one can change sparsed/compressed only for empty files"); 1761 return -EOPNOTSUPP; 1762 } 1763 1764 /* Resize nonresident empty attribute in-place only. */ 1765 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 1766 (SIZEOF_NONRESIDENT_EX + 8) : 1767 (SIZEOF_NONRESIDENT + 8); 1768 1769 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1770 return -EOPNOTSUPP; 1771 1772 if (new_aflags & ATTR_FLAG_SPARSED) { 1773 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1774 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1775 attr->nres.c_unit = 0; 1776 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1777 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1778 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1779 /* The only allowed: 16 clusters per frame. */ 1780 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1781 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1782 } else { 1783 attr->name_off = SIZEOF_NONRESIDENT_LE; 1784 /* Normal files. */ 1785 attr->nres.c_unit = 0; 1786 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1787 } 1788 attr->nres.run_off = attr->name_off; 1789 out: 1790 attr->flags = new_aflags; 1791 mi->dirty = true; 1792 1793 return 0; 1794 } 1795 1796 /* 1797 * ni_parse_reparse 1798 * 1799 * buffer - memory for reparse buffer header 1800 */ 1801 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1802 struct REPARSE_DATA_BUFFER *buffer) 1803 { 1804 const struct REPARSE_DATA_BUFFER *rp = NULL; 1805 u8 bits; 1806 u16 len; 1807 typeof(rp->CompressReparseBuffer) *cmpr; 1808 1809 /* Try to estimate reparse point. */ 1810 if (!attr->non_res) { 1811 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1812 } else if (le64_to_cpu(attr->nres.data_size) >= 1813 sizeof(struct REPARSE_DATA_BUFFER)) { 1814 struct runs_tree run; 1815 1816 run_init(&run); 1817 1818 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1819 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1820 sizeof(struct REPARSE_DATA_BUFFER), 1821 NULL)) { 1822 rp = buffer; 1823 } 1824 1825 run_close(&run); 1826 } 1827 1828 if (!rp) 1829 return REPARSE_NONE; 1830 1831 len = le16_to_cpu(rp->ReparseDataLength); 1832 switch (rp->ReparseTag) { 1833 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1834 break; /* Symbolic link. */ 1835 case IO_REPARSE_TAG_MOUNT_POINT: 1836 break; /* Mount points and junctions. */ 1837 case IO_REPARSE_TAG_SYMLINK: 1838 break; 1839 case IO_REPARSE_TAG_COMPRESS: 1840 /* 1841 * WOF - Windows Overlay Filter - Used to compress files with 1842 * LZX/Xpress. 1843 * 1844 * Unlike native NTFS file compression, the Windows 1845 * Overlay Filter supports only read operations. This means 1846 * that it doesn't need to sector-align each compressed chunk, 1847 * so the compressed data can be packed more tightly together. 1848 * If you open the file for writing, the WOF just decompresses 1849 * the entire file, turning it back into a plain file. 1850 * 1851 * Ntfs3 driver decompresses the entire file only on write or 1852 * change size requests. 1853 */ 1854 1855 cmpr = &rp->CompressReparseBuffer; 1856 if (len < sizeof(*cmpr) || 1857 cmpr->WofVersion != WOF_CURRENT_VERSION || 1858 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1859 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1860 return REPARSE_NONE; 1861 } 1862 1863 switch (cmpr->CompressionFormat) { 1864 case WOF_COMPRESSION_XPRESS4K: 1865 bits = 0xc; // 4k 1866 break; 1867 case WOF_COMPRESSION_XPRESS8K: 1868 bits = 0xd; // 8k 1869 break; 1870 case WOF_COMPRESSION_XPRESS16K: 1871 bits = 0xe; // 16k 1872 break; 1873 case WOF_COMPRESSION_LZX32K: 1874 bits = 0xf; // 32k 1875 break; 1876 default: 1877 bits = 0x10; // 64k 1878 break; 1879 } 1880 ni_set_ext_compress_bits(ni, bits); 1881 return REPARSE_COMPRESSED; 1882 1883 case IO_REPARSE_TAG_DEDUP: 1884 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1885 return REPARSE_DEDUPLICATED; 1886 1887 default: 1888 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1889 break; 1890 1891 return REPARSE_NONE; 1892 } 1893 1894 if (buffer != rp) 1895 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1896 1897 /* Looks like normal symlink. */ 1898 return REPARSE_LINK; 1899 } 1900 1901 /* 1902 * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent 1903 * but it accepts kernel address for fi_extents_start 1904 */ 1905 static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo, 1906 u64 logical, u64 phys, u64 len, u32 flags) 1907 { 1908 struct fiemap_extent extent; 1909 struct fiemap_extent __user *dest = fieinfo->fi_extents_start; 1910 1911 /* only count the extents */ 1912 if (fieinfo->fi_extents_max == 0) { 1913 fieinfo->fi_extents_mapped++; 1914 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; 1915 } 1916 1917 if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max) 1918 return 1; 1919 1920 if (flags & FIEMAP_EXTENT_DELALLOC) 1921 flags |= FIEMAP_EXTENT_UNKNOWN; 1922 if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED) 1923 flags |= FIEMAP_EXTENT_ENCODED; 1924 if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE)) 1925 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 1926 1927 memset(&extent, 0, sizeof(extent)); 1928 extent.fe_logical = logical; 1929 extent.fe_physical = phys; 1930 extent.fe_length = len; 1931 extent.fe_flags = flags; 1932 1933 dest += fieinfo->fi_extents_mapped; 1934 memcpy(dest, &extent, sizeof(extent)); 1935 1936 fieinfo->fi_extents_mapped++; 1937 if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max) 1938 return 1; 1939 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; 1940 } 1941 1942 /* 1943 * ni_fiemap - Helper for file_fiemap(). 1944 * 1945 * Assumed ni_lock. 1946 * TODO: Less aggressive locks. 1947 */ 1948 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1949 __u64 vbo, __u64 len) 1950 { 1951 int err = 0; 1952 struct fiemap_extent __user *fe_u = fieinfo->fi_extents_start; 1953 struct fiemap_extent *fe_k = NULL; 1954 struct ntfs_sb_info *sbi = ni->mi.sbi; 1955 u8 cluster_bits = sbi->cluster_bits; 1956 struct runs_tree *run; 1957 struct rw_semaphore *run_lock; 1958 struct ATTRIB *attr; 1959 CLST vcn = vbo >> cluster_bits; 1960 CLST lcn, clen; 1961 u64 valid = ni->i_valid; 1962 u64 lbo, bytes; 1963 u64 end, alloc_size; 1964 size_t idx = -1; 1965 u32 flags; 1966 bool ok; 1967 1968 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1969 run = &ni->dir.alloc_run; 1970 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1971 ARRAY_SIZE(I30_NAME), NULL, NULL); 1972 run_lock = &ni->dir.run_lock; 1973 } else { 1974 run = &ni->file.run; 1975 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1976 NULL); 1977 if (!attr) { 1978 err = -EINVAL; 1979 goto out; 1980 } 1981 if (is_attr_compressed(attr)) { 1982 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1983 err = -EOPNOTSUPP; 1984 ntfs_inode_warn( 1985 &ni->vfs_inode, 1986 "fiemap is not supported for compressed file (cp -r)"); 1987 goto out; 1988 } 1989 run_lock = &ni->file.run_lock; 1990 } 1991 1992 if (!attr || !attr->non_res) { 1993 err = fiemap_fill_next_extent( 1994 fieinfo, 0, 0, 1995 attr ? le32_to_cpu(attr->res.data_size) : 0, 1996 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1997 FIEMAP_EXTENT_MERGED); 1998 goto out; 1999 } 2000 2001 /* 2002 * To avoid lock problems replace pointer to user memory by pointer to kernel memory. 2003 */ 2004 fe_k = kmalloc_array(fieinfo->fi_extents_max, 2005 sizeof(struct fiemap_extent), 2006 GFP_NOFS | __GFP_ZERO); 2007 if (!fe_k) { 2008 err = -ENOMEM; 2009 goto out; 2010 } 2011 fieinfo->fi_extents_start = fe_k; 2012 2013 end = vbo + len; 2014 alloc_size = le64_to_cpu(attr->nres.alloc_size); 2015 if (end > alloc_size) 2016 end = alloc_size; 2017 2018 down_read(run_lock); 2019 2020 while (vbo < end) { 2021 if (idx == -1) { 2022 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 2023 } else { 2024 CLST vcn_next = vcn; 2025 2026 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 2027 vcn == vcn_next; 2028 if (!ok) 2029 vcn = vcn_next; 2030 } 2031 2032 if (!ok) { 2033 up_read(run_lock); 2034 down_write(run_lock); 2035 2036 err = attr_load_runs_vcn(ni, attr->type, 2037 attr_name(attr), 2038 attr->name_len, run, vcn); 2039 2040 up_write(run_lock); 2041 down_read(run_lock); 2042 2043 if (err) 2044 break; 2045 2046 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 2047 2048 if (!ok) { 2049 err = -EINVAL; 2050 break; 2051 } 2052 } 2053 2054 if (!clen) { 2055 err = -EINVAL; // ? 2056 break; 2057 } 2058 2059 if (lcn == SPARSE_LCN) { 2060 vcn += clen; 2061 vbo = (u64)vcn << cluster_bits; 2062 continue; 2063 } 2064 2065 flags = FIEMAP_EXTENT_MERGED; 2066 if (S_ISDIR(ni->vfs_inode.i_mode)) { 2067 ; 2068 } else if (is_attr_compressed(attr)) { 2069 CLST clst_data; 2070 2071 err = attr_is_frame_compressed( 2072 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 2073 if (err) 2074 break; 2075 if (clst_data < NTFS_LZNT_CLUSTERS) 2076 flags |= FIEMAP_EXTENT_ENCODED; 2077 } else if (is_attr_encrypted(attr)) { 2078 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2079 } 2080 2081 vbo = (u64)vcn << cluster_bits; 2082 bytes = (u64)clen << cluster_bits; 2083 lbo = (u64)lcn << cluster_bits; 2084 2085 vcn += clen; 2086 2087 if (vbo + bytes >= end) 2088 bytes = end - vbo; 2089 2090 if (vbo + bytes <= valid) { 2091 ; 2092 } else if (vbo >= valid) { 2093 flags |= FIEMAP_EXTENT_UNWRITTEN; 2094 } else { 2095 /* vbo < valid && valid < vbo + bytes */ 2096 u64 dlen = valid - vbo; 2097 2098 if (vbo + dlen >= end) 2099 flags |= FIEMAP_EXTENT_LAST; 2100 2101 err = fiemap_fill_next_extent_k(fieinfo, vbo, lbo, dlen, 2102 flags); 2103 2104 if (err < 0) 2105 break; 2106 if (err == 1) { 2107 err = 0; 2108 break; 2109 } 2110 2111 vbo = valid; 2112 bytes -= dlen; 2113 if (!bytes) 2114 continue; 2115 2116 lbo += dlen; 2117 flags |= FIEMAP_EXTENT_UNWRITTEN; 2118 } 2119 2120 if (vbo + bytes >= end) 2121 flags |= FIEMAP_EXTENT_LAST; 2122 2123 err = fiemap_fill_next_extent_k(fieinfo, vbo, lbo, bytes, 2124 flags); 2125 if (err < 0) 2126 break; 2127 if (err == 1) { 2128 err = 0; 2129 break; 2130 } 2131 2132 vbo += bytes; 2133 } 2134 2135 up_read(run_lock); 2136 2137 /* 2138 * Copy to user memory out of lock 2139 */ 2140 if (copy_to_user(fe_u, fe_k, 2141 fieinfo->fi_extents_max * 2142 sizeof(struct fiemap_extent))) { 2143 err = -EFAULT; 2144 } 2145 2146 out: 2147 /* Restore original pointer. */ 2148 fieinfo->fi_extents_start = fe_u; 2149 kfree(fe_k); 2150 return err; 2151 } 2152 2153 /* 2154 * ni_readpage_cmpr 2155 * 2156 * When decompressing, we typically obtain more than one page per reference. 2157 * We inject the additional pages into the page cache. 2158 */ 2159 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 2160 { 2161 int err; 2162 struct ntfs_sb_info *sbi = ni->mi.sbi; 2163 struct address_space *mapping = page->mapping; 2164 pgoff_t index = page->index; 2165 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2166 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2167 u8 frame_bits; 2168 CLST frame; 2169 u32 i, idx, frame_size, pages_per_frame; 2170 gfp_t gfp_mask; 2171 struct page *pg; 2172 2173 if (vbo >= i_size_read(&ni->vfs_inode)) { 2174 SetPageUptodate(page); 2175 err = 0; 2176 goto out; 2177 } 2178 2179 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2180 /* Xpress or LZX. */ 2181 frame_bits = ni_ext_compress_bits(ni); 2182 } else { 2183 /* LZNT compression. */ 2184 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2185 } 2186 frame_size = 1u << frame_bits; 2187 frame = vbo >> frame_bits; 2188 frame_vbo = (u64)frame << frame_bits; 2189 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2190 2191 pages_per_frame = frame_size >> PAGE_SHIFT; 2192 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2193 if (!pages) { 2194 err = -ENOMEM; 2195 goto out; 2196 } 2197 2198 pages[idx] = page; 2199 index = frame_vbo >> PAGE_SHIFT; 2200 gfp_mask = mapping_gfp_mask(mapping); 2201 2202 for (i = 0; i < pages_per_frame; i++, index++) { 2203 if (i == idx) 2204 continue; 2205 2206 pg = find_or_create_page(mapping, index, gfp_mask); 2207 if (!pg) { 2208 err = -ENOMEM; 2209 goto out1; 2210 } 2211 pages[i] = pg; 2212 } 2213 2214 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2215 2216 out1: 2217 if (err) 2218 SetPageError(page); 2219 2220 for (i = 0; i < pages_per_frame; i++) { 2221 pg = pages[i]; 2222 if (i == idx || !pg) 2223 continue; 2224 unlock_page(pg); 2225 put_page(pg); 2226 } 2227 2228 out: 2229 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2230 kfree(pages); 2231 unlock_page(page); 2232 2233 return err; 2234 } 2235 2236 #ifdef CONFIG_NTFS3_LZX_XPRESS 2237 /* 2238 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2239 * 2240 * Remove ATTR_DATA::WofCompressedData. 2241 * Remove ATTR_REPARSE. 2242 */ 2243 int ni_decompress_file(struct ntfs_inode *ni) 2244 { 2245 struct ntfs_sb_info *sbi = ni->mi.sbi; 2246 struct inode *inode = &ni->vfs_inode; 2247 loff_t i_size = i_size_read(inode); 2248 struct address_space *mapping = inode->i_mapping; 2249 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2250 struct page **pages = NULL; 2251 struct ATTR_LIST_ENTRY *le; 2252 struct ATTRIB *attr; 2253 CLST vcn, cend, lcn, clen, end; 2254 pgoff_t index; 2255 u64 vbo; 2256 u8 frame_bits; 2257 u32 i, frame_size, pages_per_frame, bytes; 2258 struct mft_inode *mi; 2259 int err; 2260 2261 /* Clusters for decompressed data. */ 2262 cend = bytes_to_cluster(sbi, i_size); 2263 2264 if (!i_size) 2265 goto remove_wof; 2266 2267 /* Check in advance. */ 2268 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2269 err = -ENOSPC; 2270 goto out; 2271 } 2272 2273 frame_bits = ni_ext_compress_bits(ni); 2274 frame_size = 1u << frame_bits; 2275 pages_per_frame = frame_size >> PAGE_SHIFT; 2276 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2277 if (!pages) { 2278 err = -ENOMEM; 2279 goto out; 2280 } 2281 2282 /* 2283 * Step 1: Decompress data and copy to new allocated clusters. 2284 */ 2285 index = 0; 2286 for (vbo = 0; vbo < i_size; vbo += bytes) { 2287 u32 nr_pages; 2288 bool new; 2289 2290 if (vbo + frame_size > i_size) { 2291 bytes = i_size - vbo; 2292 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2293 } else { 2294 nr_pages = pages_per_frame; 2295 bytes = frame_size; 2296 } 2297 2298 end = bytes_to_cluster(sbi, vbo + bytes); 2299 2300 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2301 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2302 &clen, &new, false); 2303 if (err) 2304 goto out; 2305 } 2306 2307 for (i = 0; i < pages_per_frame; i++, index++) { 2308 struct page *pg; 2309 2310 pg = find_or_create_page(mapping, index, gfp_mask); 2311 if (!pg) { 2312 while (i--) { 2313 unlock_page(pages[i]); 2314 put_page(pages[i]); 2315 } 2316 err = -ENOMEM; 2317 goto out; 2318 } 2319 pages[i] = pg; 2320 } 2321 2322 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2323 2324 if (!err) { 2325 down_read(&ni->file.run_lock); 2326 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2327 nr_pages, vbo, bytes, 2328 REQ_OP_WRITE); 2329 up_read(&ni->file.run_lock); 2330 } 2331 2332 for (i = 0; i < pages_per_frame; i++) { 2333 unlock_page(pages[i]); 2334 put_page(pages[i]); 2335 } 2336 2337 if (err) 2338 goto out; 2339 2340 cond_resched(); 2341 } 2342 2343 remove_wof: 2344 /* 2345 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2346 * and ATTR_REPARSE. 2347 */ 2348 attr = NULL; 2349 le = NULL; 2350 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2351 CLST svcn, evcn; 2352 u32 asize, roff; 2353 2354 if (attr->type == ATTR_REPARSE) { 2355 struct MFT_REF ref; 2356 2357 mi_get_ref(&ni->mi, &ref); 2358 ntfs_remove_reparse(sbi, 0, &ref); 2359 } 2360 2361 if (!attr->non_res) 2362 continue; 2363 2364 if (attr->type != ATTR_REPARSE && 2365 (attr->type != ATTR_DATA || 2366 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2367 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2368 continue; 2369 2370 svcn = le64_to_cpu(attr->nres.svcn); 2371 evcn = le64_to_cpu(attr->nres.evcn); 2372 2373 if (evcn + 1 <= svcn) 2374 continue; 2375 2376 asize = le32_to_cpu(attr->size); 2377 roff = le16_to_cpu(attr->nres.run_off); 2378 2379 if (roff > asize) { 2380 err = -EINVAL; 2381 goto out; 2382 } 2383 2384 /*run==1 Means unpack and deallocate. */ 2385 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2386 Add2Ptr(attr, roff), asize - roff); 2387 } 2388 2389 /* 2390 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2391 */ 2392 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2393 false, NULL); 2394 if (err) 2395 goto out; 2396 2397 /* 2398 * Step 4: Remove ATTR_REPARSE. 2399 */ 2400 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2401 if (err) 2402 goto out; 2403 2404 /* 2405 * Step 5: Remove sparse flag from data attribute. 2406 */ 2407 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2408 if (!attr) { 2409 err = -EINVAL; 2410 goto out; 2411 } 2412 2413 if (attr->non_res && is_attr_sparsed(attr)) { 2414 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2415 struct MFT_REC *rec = mi->mrec; 2416 u32 used = le32_to_cpu(rec->used); 2417 u32 asize = le32_to_cpu(attr->size); 2418 u16 roff = le16_to_cpu(attr->nres.run_off); 2419 char *rbuf = Add2Ptr(attr, roff); 2420 2421 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2422 attr->size = cpu_to_le32(asize - 8); 2423 attr->flags &= ~ATTR_FLAG_SPARSED; 2424 attr->nres.run_off = cpu_to_le16(roff - 8); 2425 attr->nres.c_unit = 0; 2426 rec->used = cpu_to_le32(used - 8); 2427 mi->dirty = true; 2428 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2429 FILE_ATTRIBUTE_REPARSE_POINT); 2430 2431 mark_inode_dirty(inode); 2432 } 2433 2434 /* Clear cached flag. */ 2435 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2436 if (ni->file.offs_page) { 2437 put_page(ni->file.offs_page); 2438 ni->file.offs_page = NULL; 2439 } 2440 mapping->a_ops = &ntfs_aops; 2441 2442 out: 2443 kfree(pages); 2444 if (err) 2445 _ntfs_bad_inode(inode); 2446 2447 return err; 2448 } 2449 2450 /* 2451 * decompress_lzx_xpress - External compression LZX/Xpress. 2452 */ 2453 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2454 size_t cmpr_size, void *unc, size_t unc_size, 2455 u32 frame_size) 2456 { 2457 int err; 2458 void *ctx; 2459 2460 if (cmpr_size == unc_size) { 2461 /* Frame not compressed. */ 2462 memcpy(unc, cmpr, unc_size); 2463 return 0; 2464 } 2465 2466 err = 0; 2467 if (frame_size == 0x8000) { 2468 mutex_lock(&sbi->compress.mtx_lzx); 2469 /* LZX: Frame compressed. */ 2470 ctx = sbi->compress.lzx; 2471 if (!ctx) { 2472 /* Lazy initialize LZX decompress context. */ 2473 ctx = lzx_allocate_decompressor(); 2474 if (!ctx) { 2475 err = -ENOMEM; 2476 goto out1; 2477 } 2478 2479 sbi->compress.lzx = ctx; 2480 } 2481 2482 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2483 /* Treat all errors as "invalid argument". */ 2484 err = -EINVAL; 2485 } 2486 out1: 2487 mutex_unlock(&sbi->compress.mtx_lzx); 2488 } else { 2489 /* XPRESS: Frame compressed. */ 2490 mutex_lock(&sbi->compress.mtx_xpress); 2491 ctx = sbi->compress.xpress; 2492 if (!ctx) { 2493 /* Lazy initialize Xpress decompress context. */ 2494 ctx = xpress_allocate_decompressor(); 2495 if (!ctx) { 2496 err = -ENOMEM; 2497 goto out2; 2498 } 2499 2500 sbi->compress.xpress = ctx; 2501 } 2502 2503 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2504 /* Treat all errors as "invalid argument". */ 2505 err = -EINVAL; 2506 } 2507 out2: 2508 mutex_unlock(&sbi->compress.mtx_xpress); 2509 } 2510 return err; 2511 } 2512 #endif 2513 2514 /* 2515 * ni_read_frame 2516 * 2517 * Pages - Array of locked pages. 2518 */ 2519 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2520 u32 pages_per_frame) 2521 { 2522 int err; 2523 struct ntfs_sb_info *sbi = ni->mi.sbi; 2524 u8 cluster_bits = sbi->cluster_bits; 2525 char *frame_ondisk = NULL; 2526 char *frame_mem = NULL; 2527 struct page **pages_disk = NULL; 2528 struct ATTR_LIST_ENTRY *le = NULL; 2529 struct runs_tree *run = &ni->file.run; 2530 u64 valid_size = ni->i_valid; 2531 u64 vbo_disk; 2532 size_t unc_size; 2533 u32 frame_size, i, npages_disk, ondisk_size; 2534 struct page *pg; 2535 struct ATTRIB *attr; 2536 CLST frame, clst_data; 2537 2538 /* 2539 * To simplify decompress algorithm do vmap for source 2540 * and target pages. 2541 */ 2542 for (i = 0; i < pages_per_frame; i++) 2543 kmap(pages[i]); 2544 2545 frame_size = pages_per_frame << PAGE_SHIFT; 2546 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2547 if (!frame_mem) { 2548 err = -ENOMEM; 2549 goto out; 2550 } 2551 2552 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2553 if (!attr) { 2554 err = -ENOENT; 2555 goto out1; 2556 } 2557 2558 if (!attr->non_res) { 2559 u32 data_size = le32_to_cpu(attr->res.data_size); 2560 2561 memset(frame_mem, 0, frame_size); 2562 if (frame_vbo < data_size) { 2563 ondisk_size = data_size - frame_vbo; 2564 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2565 min(ondisk_size, frame_size)); 2566 } 2567 err = 0; 2568 goto out1; 2569 } 2570 2571 if (frame_vbo >= valid_size) { 2572 memset(frame_mem, 0, frame_size); 2573 err = 0; 2574 goto out1; 2575 } 2576 2577 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2578 #ifndef CONFIG_NTFS3_LZX_XPRESS 2579 err = -EOPNOTSUPP; 2580 goto out1; 2581 #else 2582 loff_t i_size = i_size_read(&ni->vfs_inode); 2583 u32 frame_bits = ni_ext_compress_bits(ni); 2584 u64 frame64 = frame_vbo >> frame_bits; 2585 u64 frames, vbo_data; 2586 2587 if (frame_size != (1u << frame_bits)) { 2588 err = -EINVAL; 2589 goto out1; 2590 } 2591 switch (frame_size) { 2592 case 0x1000: 2593 case 0x2000: 2594 case 0x4000: 2595 case 0x8000: 2596 break; 2597 default: 2598 /* Unknown compression. */ 2599 err = -EOPNOTSUPP; 2600 goto out1; 2601 } 2602 2603 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2604 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2605 if (!attr) { 2606 ntfs_inode_err( 2607 &ni->vfs_inode, 2608 "external compressed file should contains data attribute \"WofCompressedData\""); 2609 err = -EINVAL; 2610 goto out1; 2611 } 2612 2613 if (!attr->non_res) { 2614 run = NULL; 2615 } else { 2616 run = run_alloc(); 2617 if (!run) { 2618 err = -ENOMEM; 2619 goto out1; 2620 } 2621 } 2622 2623 frames = (i_size - 1) >> frame_bits; 2624 2625 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2626 frame_bits, &ondisk_size, &vbo_data); 2627 if (err) 2628 goto out2; 2629 2630 if (frame64 == frames) { 2631 unc_size = 1 + ((i_size - 1) & (frame_size - 1)); 2632 ondisk_size = attr_size(attr) - vbo_data; 2633 } else { 2634 unc_size = frame_size; 2635 } 2636 2637 if (ondisk_size > frame_size) { 2638 err = -EINVAL; 2639 goto out2; 2640 } 2641 2642 if (!attr->non_res) { 2643 if (vbo_data + ondisk_size > 2644 le32_to_cpu(attr->res.data_size)) { 2645 err = -EINVAL; 2646 goto out1; 2647 } 2648 2649 err = decompress_lzx_xpress( 2650 sbi, Add2Ptr(resident_data(attr), vbo_data), 2651 ondisk_size, frame_mem, unc_size, frame_size); 2652 goto out1; 2653 } 2654 vbo_disk = vbo_data; 2655 /* Load all runs to read [vbo_disk-vbo_to). */ 2656 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2657 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2658 vbo_data + ondisk_size); 2659 if (err) 2660 goto out2; 2661 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2662 PAGE_SIZE - 1) >> 2663 PAGE_SHIFT; 2664 #endif 2665 } else if (is_attr_compressed(attr)) { 2666 /* LZNT compression. */ 2667 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2668 err = -EOPNOTSUPP; 2669 goto out1; 2670 } 2671 2672 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2673 err = -EOPNOTSUPP; 2674 goto out1; 2675 } 2676 2677 down_write(&ni->file.run_lock); 2678 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2679 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2680 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2681 up_write(&ni->file.run_lock); 2682 if (err) 2683 goto out1; 2684 2685 if (!clst_data) { 2686 memset(frame_mem, 0, frame_size); 2687 goto out1; 2688 } 2689 2690 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2691 ondisk_size = clst_data << cluster_bits; 2692 2693 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2694 /* Frame is not compressed. */ 2695 down_read(&ni->file.run_lock); 2696 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2697 frame_vbo, ondisk_size, 2698 REQ_OP_READ); 2699 up_read(&ni->file.run_lock); 2700 goto out1; 2701 } 2702 vbo_disk = frame_vbo; 2703 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2704 } else { 2705 __builtin_unreachable(); 2706 err = -EINVAL; 2707 goto out1; 2708 } 2709 2710 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2711 if (!pages_disk) { 2712 err = -ENOMEM; 2713 goto out2; 2714 } 2715 2716 for (i = 0; i < npages_disk; i++) { 2717 pg = alloc_page(GFP_KERNEL); 2718 if (!pg) { 2719 err = -ENOMEM; 2720 goto out3; 2721 } 2722 pages_disk[i] = pg; 2723 lock_page(pg); 2724 kmap(pg); 2725 } 2726 2727 /* Read 'ondisk_size' bytes from disk. */ 2728 down_read(&ni->file.run_lock); 2729 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2730 ondisk_size, REQ_OP_READ); 2731 up_read(&ni->file.run_lock); 2732 if (err) 2733 goto out3; 2734 2735 /* 2736 * To simplify decompress algorithm do vmap for source and target pages. 2737 */ 2738 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2739 if (!frame_ondisk) { 2740 err = -ENOMEM; 2741 goto out3; 2742 } 2743 2744 /* Decompress: Frame_ondisk -> frame_mem. */ 2745 #ifdef CONFIG_NTFS3_LZX_XPRESS 2746 if (run != &ni->file.run) { 2747 /* LZX or XPRESS */ 2748 err = decompress_lzx_xpress( 2749 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2750 ondisk_size, frame_mem, unc_size, frame_size); 2751 } else 2752 #endif 2753 { 2754 /* LZNT - Native NTFS compression. */ 2755 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2756 frame_size); 2757 if ((ssize_t)unc_size < 0) 2758 err = unc_size; 2759 else if (!unc_size || unc_size > frame_size) 2760 err = -EINVAL; 2761 } 2762 if (!err && valid_size < frame_vbo + frame_size) { 2763 size_t ok = valid_size - frame_vbo; 2764 2765 memset(frame_mem + ok, 0, frame_size - ok); 2766 } 2767 2768 vunmap(frame_ondisk); 2769 2770 out3: 2771 for (i = 0; i < npages_disk; i++) { 2772 pg = pages_disk[i]; 2773 if (pg) { 2774 kunmap(pg); 2775 unlock_page(pg); 2776 put_page(pg); 2777 } 2778 } 2779 kfree(pages_disk); 2780 2781 out2: 2782 #ifdef CONFIG_NTFS3_LZX_XPRESS 2783 if (run != &ni->file.run) 2784 run_free(run); 2785 #endif 2786 out1: 2787 vunmap(frame_mem); 2788 out: 2789 for (i = 0; i < pages_per_frame; i++) { 2790 pg = pages[i]; 2791 kunmap(pg); 2792 ClearPageError(pg); 2793 SetPageUptodate(pg); 2794 } 2795 2796 return err; 2797 } 2798 2799 /* 2800 * ni_write_frame 2801 * 2802 * Pages - Array of locked pages. 2803 */ 2804 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2805 u32 pages_per_frame) 2806 { 2807 int err; 2808 struct ntfs_sb_info *sbi = ni->mi.sbi; 2809 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2810 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2811 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2812 CLST frame = frame_vbo >> frame_bits; 2813 char *frame_ondisk = NULL; 2814 struct page **pages_disk = NULL; 2815 struct ATTR_LIST_ENTRY *le = NULL; 2816 char *frame_mem; 2817 struct ATTRIB *attr; 2818 struct mft_inode *mi; 2819 u32 i; 2820 struct page *pg; 2821 size_t compr_size, ondisk_size; 2822 struct lznt *lznt; 2823 2824 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2825 if (!attr) { 2826 err = -ENOENT; 2827 goto out; 2828 } 2829 2830 if (WARN_ON(!is_attr_compressed(attr))) { 2831 err = -EINVAL; 2832 goto out; 2833 } 2834 2835 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2836 err = -EOPNOTSUPP; 2837 goto out; 2838 } 2839 2840 if (!attr->non_res) { 2841 down_write(&ni->file.run_lock); 2842 err = attr_make_nonresident(ni, attr, le, mi, 2843 le32_to_cpu(attr->res.data_size), 2844 &ni->file.run, &attr, pages[0]); 2845 up_write(&ni->file.run_lock); 2846 if (err) 2847 goto out; 2848 } 2849 2850 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2851 err = -EOPNOTSUPP; 2852 goto out; 2853 } 2854 2855 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2856 if (!pages_disk) { 2857 err = -ENOMEM; 2858 goto out; 2859 } 2860 2861 for (i = 0; i < pages_per_frame; i++) { 2862 pg = alloc_page(GFP_KERNEL); 2863 if (!pg) { 2864 err = -ENOMEM; 2865 goto out1; 2866 } 2867 pages_disk[i] = pg; 2868 lock_page(pg); 2869 kmap(pg); 2870 } 2871 2872 /* To simplify compress algorithm do vmap for source and target pages. */ 2873 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2874 if (!frame_ondisk) { 2875 err = -ENOMEM; 2876 goto out1; 2877 } 2878 2879 for (i = 0; i < pages_per_frame; i++) 2880 kmap(pages[i]); 2881 2882 /* Map in-memory frame for read-only. */ 2883 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2884 if (!frame_mem) { 2885 err = -ENOMEM; 2886 goto out2; 2887 } 2888 2889 mutex_lock(&sbi->compress.mtx_lznt); 2890 lznt = NULL; 2891 if (!sbi->compress.lznt) { 2892 /* 2893 * LZNT implements two levels of compression: 2894 * 0 - Standard compression 2895 * 1 - Best compression, requires a lot of cpu 2896 * use mount option? 2897 */ 2898 lznt = get_lznt_ctx(0); 2899 if (!lznt) { 2900 mutex_unlock(&sbi->compress.mtx_lznt); 2901 err = -ENOMEM; 2902 goto out3; 2903 } 2904 2905 sbi->compress.lznt = lznt; 2906 lznt = NULL; 2907 } 2908 2909 /* Compress: frame_mem -> frame_ondisk */ 2910 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2911 frame_size, sbi->compress.lznt); 2912 mutex_unlock(&sbi->compress.mtx_lznt); 2913 kfree(lznt); 2914 2915 if (compr_size + sbi->cluster_size > frame_size) { 2916 /* Frame is not compressed. */ 2917 compr_size = frame_size; 2918 ondisk_size = frame_size; 2919 } else if (compr_size) { 2920 /* Frame is compressed. */ 2921 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2922 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2923 } else { 2924 /* Frame is sparsed. */ 2925 ondisk_size = 0; 2926 } 2927 2928 down_write(&ni->file.run_lock); 2929 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2930 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2931 up_write(&ni->file.run_lock); 2932 if (err) 2933 goto out2; 2934 2935 if (!ondisk_size) 2936 goto out2; 2937 2938 down_read(&ni->file.run_lock); 2939 err = ntfs_bio_pages(sbi, &ni->file.run, 2940 ondisk_size < frame_size ? pages_disk : pages, 2941 pages_per_frame, frame_vbo, ondisk_size, 2942 REQ_OP_WRITE); 2943 up_read(&ni->file.run_lock); 2944 2945 out3: 2946 vunmap(frame_mem); 2947 2948 out2: 2949 for (i = 0; i < pages_per_frame; i++) 2950 kunmap(pages[i]); 2951 2952 vunmap(frame_ondisk); 2953 out1: 2954 for (i = 0; i < pages_per_frame; i++) { 2955 pg = pages_disk[i]; 2956 if (pg) { 2957 kunmap(pg); 2958 unlock_page(pg); 2959 put_page(pg); 2960 } 2961 } 2962 kfree(pages_disk); 2963 out: 2964 return err; 2965 } 2966 2967 /* 2968 * ni_remove_name - Removes name 'de' from MFT and from directory. 2969 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2970 */ 2971 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2972 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2973 { 2974 int err; 2975 struct ntfs_sb_info *sbi = ni->mi.sbi; 2976 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2977 struct ATTR_FILE_NAME *fname; 2978 struct ATTR_LIST_ENTRY *le; 2979 struct mft_inode *mi; 2980 u16 de_key_size = le16_to_cpu(de->key_size); 2981 u8 name_type; 2982 2983 *undo_step = 0; 2984 2985 /* Find name in record. */ 2986 mi_get_ref(&dir_ni->mi, &de_name->home); 2987 2988 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len, 2989 &de_name->home, &mi, &le); 2990 if (!fname) 2991 return -ENOENT; 2992 2993 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2994 name_type = paired_name(fname->type); 2995 2996 /* Mark ntfs as dirty. It will be cleared at umount. */ 2997 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2998 2999 /* Step 1: Remove name from directory. */ 3000 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 3001 if (err) 3002 return err; 3003 3004 /* Step 2: Remove name from MFT. */ 3005 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 3006 3007 *undo_step = 2; 3008 3009 /* Get paired name. */ 3010 fname = ni_fname_type(ni, name_type, &mi, &le); 3011 if (fname) { 3012 u16 de2_key_size = fname_full_size(fname); 3013 3014 *de2 = Add2Ptr(de, 1024); 3015 (*de2)->key_size = cpu_to_le16(de2_key_size); 3016 3017 memcpy(*de2 + 1, fname, de2_key_size); 3018 3019 /* Step 3: Remove paired name from directory. */ 3020 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 3021 de2_key_size, sbi); 3022 if (err) 3023 return err; 3024 3025 /* Step 4: Remove paired name from MFT. */ 3026 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 3027 3028 *undo_step = 4; 3029 } 3030 return 0; 3031 } 3032 3033 /* 3034 * ni_remove_name_undo - Paired function for ni_remove_name. 3035 * 3036 * Return: True if ok 3037 */ 3038 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3039 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 3040 { 3041 struct ntfs_sb_info *sbi = ni->mi.sbi; 3042 struct ATTRIB *attr; 3043 u16 de_key_size; 3044 3045 switch (undo_step) { 3046 case 4: 3047 de_key_size = le16_to_cpu(de2->key_size); 3048 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 3049 &attr, NULL, NULL)) 3050 return false; 3051 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 3052 3053 mi_get_ref(&ni->mi, &de2->ref); 3054 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 3055 sizeof(struct NTFS_DE)); 3056 de2->flags = 0; 3057 de2->res = 0; 3058 3059 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) 3060 return false; 3061 fallthrough; 3062 3063 case 2: 3064 de_key_size = le16_to_cpu(de->key_size); 3065 3066 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 3067 &attr, NULL, NULL)) 3068 return false; 3069 3070 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 3071 mi_get_ref(&ni->mi, &de->ref); 3072 3073 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 3074 return false; 3075 } 3076 3077 return true; 3078 } 3079 3080 /* 3081 * ni_add_name - Add new name into MFT and into directory. 3082 */ 3083 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3084 struct NTFS_DE *de) 3085 { 3086 int err; 3087 struct ntfs_sb_info *sbi = ni->mi.sbi; 3088 struct ATTRIB *attr; 3089 struct ATTR_LIST_ENTRY *le; 3090 struct mft_inode *mi; 3091 struct ATTR_FILE_NAME *fname; 3092 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 3093 u16 de_key_size = le16_to_cpu(de->key_size); 3094 3095 if (sbi->options->windows_names && 3096 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) 3097 return -EINVAL; 3098 3099 /* If option "hide_dot_files" then set hidden attribute for dot files. */ 3100 if (ni->mi.sbi->options->hide_dot_files) { 3101 if (de_name->name_len > 0 && 3102 le16_to_cpu(de_name->name[0]) == '.') 3103 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; 3104 else 3105 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; 3106 } 3107 3108 mi_get_ref(&ni->mi, &de->ref); 3109 mi_get_ref(&dir_ni->mi, &de_name->home); 3110 3111 /* Fill duplicate from any ATTR_NAME. */ 3112 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 3113 if (fname) 3114 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 3115 de_name->dup.fa = ni->std_fa; 3116 3117 /* Insert new name into MFT. */ 3118 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 3119 &mi, &le); 3120 if (err) 3121 return err; 3122 3123 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 3124 3125 /* Insert new name into directory. */ 3126 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); 3127 if (err) 3128 ni_remove_attr_le(ni, attr, mi, le); 3129 3130 return err; 3131 } 3132 3133 /* 3134 * ni_rename - Remove one name and insert new name. 3135 */ 3136 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 3137 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 3138 bool *is_bad) 3139 { 3140 int err; 3141 struct NTFS_DE *de2 = NULL; 3142 int undo = 0; 3143 3144 /* 3145 * There are two possible ways to rename: 3146 * 1) Add new name and remove old name. 3147 * 2) Remove old name and add new name. 3148 * 3149 * In most cases (not all!) adding new name into MFT and into directory can 3150 * allocate additional cluster(s). 3151 * Second way may result to bad inode if we can't add new name 3152 * and then can't restore (add) old name. 3153 */ 3154 3155 /* 3156 * Way 1 - Add new + remove old. 3157 */ 3158 err = ni_add_name(new_dir_ni, ni, new_de); 3159 if (!err) { 3160 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3161 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3162 *is_bad = true; 3163 } 3164 3165 /* 3166 * Way 2 - Remove old + add new. 3167 */ 3168 /* 3169 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3170 * if (!err) { 3171 * err = ni_add_name(new_dir_ni, ni, new_de); 3172 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3173 * *is_bad = true; 3174 * } 3175 */ 3176 3177 return err; 3178 } 3179 3180 /* 3181 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3182 */ 3183 bool ni_is_dirty(struct inode *inode) 3184 { 3185 struct ntfs_inode *ni = ntfs_i(inode); 3186 struct rb_node *node; 3187 3188 if (ni->mi.dirty || ni->attr_list.dirty || 3189 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3190 return true; 3191 3192 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3193 if (rb_entry(node, struct mft_inode, node)->dirty) 3194 return true; 3195 } 3196 3197 return false; 3198 } 3199 3200 /* 3201 * ni_update_parent 3202 * 3203 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3204 */ 3205 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3206 int sync) 3207 { 3208 struct ATTRIB *attr; 3209 struct mft_inode *mi; 3210 struct ATTR_LIST_ENTRY *le = NULL; 3211 struct ntfs_sb_info *sbi = ni->mi.sbi; 3212 struct super_block *sb = sbi->sb; 3213 bool re_dirty = false; 3214 3215 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3216 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3217 attr = NULL; 3218 dup->alloc_size = 0; 3219 dup->data_size = 0; 3220 } else { 3221 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3222 3223 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3224 &mi); 3225 if (!attr) { 3226 dup->alloc_size = dup->data_size = 0; 3227 } else if (!attr->non_res) { 3228 u32 data_size = le32_to_cpu(attr->res.data_size); 3229 3230 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3231 dup->data_size = cpu_to_le64(data_size); 3232 } else { 3233 u64 new_valid = ni->i_valid; 3234 u64 data_size = le64_to_cpu(attr->nres.data_size); 3235 __le64 valid_le; 3236 3237 dup->alloc_size = is_attr_ext(attr) ? 3238 attr->nres.total_size : 3239 attr->nres.alloc_size; 3240 dup->data_size = attr->nres.data_size; 3241 3242 if (new_valid > data_size) 3243 new_valid = data_size; 3244 3245 valid_le = cpu_to_le64(new_valid); 3246 if (valid_le != attr->nres.valid_size) { 3247 attr->nres.valid_size = valid_le; 3248 mi->dirty = true; 3249 } 3250 } 3251 } 3252 3253 /* TODO: Fill reparse info. */ 3254 dup->reparse = 0; 3255 dup->ea_size = 0; 3256 3257 if (ni->ni_flags & NI_FLAG_EA) { 3258 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3259 NULL); 3260 if (attr) { 3261 const struct EA_INFO *info; 3262 3263 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3264 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3265 if (info) 3266 dup->ea_size = info->size_pack; 3267 } 3268 } 3269 3270 attr = NULL; 3271 le = NULL; 3272 3273 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3274 &mi))) { 3275 struct inode *dir; 3276 struct ATTR_FILE_NAME *fname; 3277 3278 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3279 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3280 continue; 3281 3282 /* Check simple case when parent inode equals current inode. */ 3283 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) { 3284 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3285 continue; 3286 } 3287 3288 /* ntfs_iget5 may sleep. */ 3289 dir = ntfs_iget5(sb, &fname->home, NULL); 3290 if (IS_ERR(dir)) { 3291 ntfs_inode_warn( 3292 &ni->vfs_inode, 3293 "failed to open parent directory r=%lx to update", 3294 (long)ino_get(&fname->home)); 3295 continue; 3296 } 3297 3298 if (!is_bad_inode(dir)) { 3299 struct ntfs_inode *dir_ni = ntfs_i(dir); 3300 3301 if (!ni_trylock(dir_ni)) { 3302 re_dirty = true; 3303 } else { 3304 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3305 ni_unlock(dir_ni); 3306 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3307 mi->dirty = true; 3308 } 3309 } 3310 iput(dir); 3311 } 3312 3313 return re_dirty; 3314 } 3315 3316 /* 3317 * ni_write_inode - Write MFT base record and all subrecords to disk. 3318 */ 3319 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3320 { 3321 int err = 0, err2; 3322 struct ntfs_inode *ni = ntfs_i(inode); 3323 struct super_block *sb = inode->i_sb; 3324 struct ntfs_sb_info *sbi = sb->s_fs_info; 3325 bool re_dirty = false; 3326 struct ATTR_STD_INFO *std; 3327 struct rb_node *node, *next; 3328 struct NTFS_DUP_INFO dup; 3329 3330 if (is_bad_inode(inode) || sb_rdonly(sb)) 3331 return 0; 3332 3333 if (unlikely(ntfs3_forced_shutdown(sb))) 3334 return -EIO; 3335 3336 if (!ni_trylock(ni)) { 3337 /* 'ni' is under modification, skip for now. */ 3338 mark_inode_dirty_sync(inode); 3339 return 0; 3340 } 3341 3342 if (!ni->mi.mrec) 3343 goto out; 3344 3345 if (is_rec_inuse(ni->mi.mrec) && 3346 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3347 bool modified = false; 3348 struct timespec64 ctime = inode_get_ctime(inode); 3349 3350 /* Update times in standard attribute. */ 3351 std = ni_std(ni); 3352 if (!std) { 3353 err = -EINVAL; 3354 goto out; 3355 } 3356 3357 /* Update the access times if they have changed. */ 3358 dup.m_time = kernel2nt(&inode->i_mtime); 3359 if (std->m_time != dup.m_time) { 3360 std->m_time = dup.m_time; 3361 modified = true; 3362 } 3363 3364 dup.c_time = kernel2nt(&ctime); 3365 if (std->c_time != dup.c_time) { 3366 std->c_time = dup.c_time; 3367 modified = true; 3368 } 3369 3370 dup.a_time = kernel2nt(&inode->i_atime); 3371 if (std->a_time != dup.a_time) { 3372 std->a_time = dup.a_time; 3373 modified = true; 3374 } 3375 3376 dup.fa = ni->std_fa; 3377 if (std->fa != dup.fa) { 3378 std->fa = dup.fa; 3379 modified = true; 3380 } 3381 3382 /* std attribute is always in primary MFT record. */ 3383 if (modified) 3384 ni->mi.dirty = true; 3385 3386 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3387 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3388 /* Avoid __wait_on_freeing_inode(inode). */ 3389 && (sb->s_flags & SB_ACTIVE)) { 3390 dup.cr_time = std->cr_time; 3391 /* Not critical if this function fail. */ 3392 re_dirty = ni_update_parent(ni, &dup, sync); 3393 3394 if (re_dirty) 3395 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3396 else 3397 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3398 } 3399 3400 /* Update attribute list. */ 3401 if (ni->attr_list.size && ni->attr_list.dirty) { 3402 if (inode->i_ino != MFT_REC_MFT || sync) { 3403 err = ni_try_remove_attr_list(ni); 3404 if (err) 3405 goto out; 3406 } 3407 3408 err = al_update(ni, sync); 3409 if (err) 3410 goto out; 3411 } 3412 } 3413 3414 for (node = rb_first(&ni->mi_tree); node; node = next) { 3415 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3416 bool is_empty; 3417 3418 next = rb_next(node); 3419 3420 if (!mi->dirty) 3421 continue; 3422 3423 is_empty = !mi_enum_attr(mi, NULL); 3424 3425 if (is_empty) 3426 clear_rec_inuse(mi->mrec); 3427 3428 err2 = mi_write(mi, sync); 3429 if (!err && err2) 3430 err = err2; 3431 3432 if (is_empty) { 3433 ntfs_mark_rec_free(sbi, mi->rno, false); 3434 rb_erase(node, &ni->mi_tree); 3435 mi_put(mi); 3436 } 3437 } 3438 3439 if (ni->mi.dirty) { 3440 err2 = mi_write(&ni->mi, sync); 3441 if (!err && err2) 3442 err = err2; 3443 } 3444 out: 3445 ni_unlock(ni); 3446 3447 if (err) { 3448 ntfs_inode_err(inode, "%s failed, %d.", hint, err); 3449 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3450 return err; 3451 } 3452 3453 if (re_dirty) 3454 mark_inode_dirty_sync(inode); 3455 3456 return 0; 3457 } 3458