1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2001,2002 Richard Russon 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/spinlock.h> 15 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 16 #include <linux/backing-dev.h> 17 #include <linux/buffer_head.h> 18 #include <linux/vfs.h> 19 #include <linux/moduleparam.h> 20 #include <linux/bitmap.h> 21 22 #include "sysctl.h" 23 #include "logfile.h" 24 #include "quota.h" 25 #include "usnjrnl.h" 26 #include "dir.h" 27 #include "debug.h" 28 #include "index.h" 29 #include "inode.h" 30 #include "aops.h" 31 #include "layout.h" 32 #include "malloc.h" 33 #include "ntfs.h" 34 35 /* Number of mounted filesystems which have compression enabled. */ 36 static unsigned long ntfs_nr_compression_users; 37 38 /* A global default upcase table and a corresponding reference count. */ 39 static ntfschar *default_upcase; 40 static unsigned long ntfs_nr_upcase_users; 41 42 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 43 typedef enum { 44 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 45 ON_ERRORS_PANIC = 0x01, 46 ON_ERRORS_REMOUNT_RO = 0x02, 47 ON_ERRORS_CONTINUE = 0x04, 48 /* Optional, can be combined with any of the above. */ 49 ON_ERRORS_RECOVER = 0x10, 50 } ON_ERRORS_ACTIONS; 51 52 const option_t on_errors_arr[] = { 53 { ON_ERRORS_PANIC, "panic" }, 54 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 55 { ON_ERRORS_CONTINUE, "continue", }, 56 { ON_ERRORS_RECOVER, "recover" }, 57 { 0, NULL } 58 }; 59 60 /** 61 * simple_getbool - convert input string to a boolean value 62 * @s: input string to convert 63 * @setval: where to store the output boolean value 64 * 65 * Copied from old ntfs driver (which copied from vfat driver). 66 * 67 * "1", "yes", "true", or an empty string are converted to %true. 68 * "0", "no", and "false" are converted to %false. 69 * 70 * Return: %1 if the string is converted or was empty and *setval contains it; 71 * %0 if the string was not valid. 72 */ 73 static int simple_getbool(char *s, bool *setval) 74 { 75 if (s) { 76 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 77 *setval = true; 78 else if (!strcmp(s, "0") || !strcmp(s, "no") || 79 !strcmp(s, "false")) 80 *setval = false; 81 else 82 return 0; 83 } else 84 *setval = true; 85 return 1; 86 } 87 88 /** 89 * parse_options - parse the (re)mount options 90 * @vol: ntfs volume 91 * @opt: string containing the (re)mount options 92 * 93 * Parse the recognized options in @opt for the ntfs volume described by @vol. 94 */ 95 static bool parse_options(ntfs_volume *vol, char *opt) 96 { 97 char *p, *v, *ov; 98 static char *utf8 = "utf8"; 99 int errors = 0, sloppy = 0; 100 kuid_t uid = INVALID_UID; 101 kgid_t gid = INVALID_GID; 102 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1; 103 int mft_zone_multiplier = -1, on_errors = -1; 104 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 105 struct nls_table *nls_map = NULL, *old_nls; 106 107 /* I am lazy... (-8 */ 108 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 109 if (!strcmp(p, option)) { \ 110 if (!v || !*v) \ 111 variable = default_value; \ 112 else { \ 113 variable = simple_strtoul(ov = v, &v, 0); \ 114 if (*v) \ 115 goto needs_val; \ 116 } \ 117 } 118 #define NTFS_GETOPT(option, variable) \ 119 if (!strcmp(p, option)) { \ 120 if (!v || !*v) \ 121 goto needs_arg; \ 122 variable = simple_strtoul(ov = v, &v, 0); \ 123 if (*v) \ 124 goto needs_val; \ 125 } 126 #define NTFS_GETOPT_UID(option, variable) \ 127 if (!strcmp(p, option)) { \ 128 uid_t uid_value; \ 129 if (!v || !*v) \ 130 goto needs_arg; \ 131 uid_value = simple_strtoul(ov = v, &v, 0); \ 132 if (*v) \ 133 goto needs_val; \ 134 variable = make_kuid(current_user_ns(), uid_value); \ 135 if (!uid_valid(variable)) \ 136 goto needs_val; \ 137 } 138 #define NTFS_GETOPT_GID(option, variable) \ 139 if (!strcmp(p, option)) { \ 140 gid_t gid_value; \ 141 if (!v || !*v) \ 142 goto needs_arg; \ 143 gid_value = simple_strtoul(ov = v, &v, 0); \ 144 if (*v) \ 145 goto needs_val; \ 146 variable = make_kgid(current_user_ns(), gid_value); \ 147 if (!gid_valid(variable)) \ 148 goto needs_val; \ 149 } 150 #define NTFS_GETOPT_OCTAL(option, variable) \ 151 if (!strcmp(p, option)) { \ 152 if (!v || !*v) \ 153 goto needs_arg; \ 154 variable = simple_strtoul(ov = v, &v, 8); \ 155 if (*v) \ 156 goto needs_val; \ 157 } 158 #define NTFS_GETOPT_BOOL(option, variable) \ 159 if (!strcmp(p, option)) { \ 160 bool val; \ 161 if (!simple_getbool(v, &val)) \ 162 goto needs_bool; \ 163 variable = val; \ 164 } 165 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 166 if (!strcmp(p, option)) { \ 167 int _i; \ 168 if (!v || !*v) \ 169 goto needs_arg; \ 170 ov = v; \ 171 if (variable == -1) \ 172 variable = 0; \ 173 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 174 if (!strcmp(opt_array[_i].str, v)) { \ 175 variable |= opt_array[_i].val; \ 176 break; \ 177 } \ 178 if (!opt_array[_i].str || !*opt_array[_i].str) \ 179 goto needs_val; \ 180 } 181 if (!opt || !*opt) 182 goto no_mount_options; 183 ntfs_debug("Entering with mount options string: %s", opt); 184 while ((p = strsep(&opt, ","))) { 185 if ((v = strchr(p, '='))) 186 *v++ = 0; 187 NTFS_GETOPT_UID("uid", uid) 188 else NTFS_GETOPT_GID("gid", gid) 189 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 190 else NTFS_GETOPT_OCTAL("fmask", fmask) 191 else NTFS_GETOPT_OCTAL("dmask", dmask) 192 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 193 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 194 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 195 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 196 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 197 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 198 on_errors_arr) 199 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 200 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 201 p); 202 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 203 if (!strcmp(p, "iocharset")) 204 ntfs_warning(vol->sb, "Option iocharset is " 205 "deprecated. Please use " 206 "option nls=<charsetname> in " 207 "the future."); 208 if (!v || !*v) 209 goto needs_arg; 210 use_utf8: 211 old_nls = nls_map; 212 nls_map = load_nls(v); 213 if (!nls_map) { 214 if (!old_nls) { 215 ntfs_error(vol->sb, "NLS character set " 216 "%s not found.", v); 217 return false; 218 } 219 ntfs_error(vol->sb, "NLS character set %s not " 220 "found. Using previous one %s.", 221 v, old_nls->charset); 222 nls_map = old_nls; 223 } else /* nls_map */ { 224 unload_nls(old_nls); 225 } 226 } else if (!strcmp(p, "utf8")) { 227 bool val = false; 228 ntfs_warning(vol->sb, "Option utf8 is no longer " 229 "supported, using option nls=utf8. Please " 230 "use option nls=utf8 in the future and " 231 "make sure utf8 is compiled either as a " 232 "module or into the kernel."); 233 if (!v || !*v) 234 val = true; 235 else if (!simple_getbool(v, &val)) 236 goto needs_bool; 237 if (val) { 238 v = utf8; 239 goto use_utf8; 240 } 241 } else { 242 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 243 if (errors < INT_MAX) 244 errors++; 245 } 246 #undef NTFS_GETOPT_OPTIONS_ARRAY 247 #undef NTFS_GETOPT_BOOL 248 #undef NTFS_GETOPT 249 #undef NTFS_GETOPT_WITH_DEFAULT 250 } 251 no_mount_options: 252 if (errors && !sloppy) 253 return false; 254 if (sloppy) 255 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 256 "unrecognized mount option(s) and continuing."); 257 /* Keep this first! */ 258 if (on_errors != -1) { 259 if (!on_errors) { 260 ntfs_error(vol->sb, "Invalid errors option argument " 261 "or bug in options parser."); 262 return false; 263 } 264 } 265 if (nls_map) { 266 if (vol->nls_map && vol->nls_map != nls_map) { 267 ntfs_error(vol->sb, "Cannot change NLS character set " 268 "on remount."); 269 return false; 270 } /* else (!vol->nls_map) */ 271 ntfs_debug("Using NLS character set %s.", nls_map->charset); 272 vol->nls_map = nls_map; 273 } else /* (!nls_map) */ { 274 if (!vol->nls_map) { 275 vol->nls_map = load_nls_default(); 276 if (!vol->nls_map) { 277 ntfs_error(vol->sb, "Failed to load default " 278 "NLS character set."); 279 return false; 280 } 281 ntfs_debug("Using default NLS character set (%s).", 282 vol->nls_map->charset); 283 } 284 } 285 if (mft_zone_multiplier != -1) { 286 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 287 mft_zone_multiplier) { 288 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 289 "on remount."); 290 return false; 291 } 292 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 293 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 294 "Using default value, i.e. 1."); 295 mft_zone_multiplier = 1; 296 } 297 vol->mft_zone_multiplier = mft_zone_multiplier; 298 } 299 if (!vol->mft_zone_multiplier) 300 vol->mft_zone_multiplier = 1; 301 if (on_errors != -1) 302 vol->on_errors = on_errors; 303 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 304 vol->on_errors |= ON_ERRORS_CONTINUE; 305 if (uid_valid(uid)) 306 vol->uid = uid; 307 if (gid_valid(gid)) 308 vol->gid = gid; 309 if (fmask != (umode_t)-1) 310 vol->fmask = fmask; 311 if (dmask != (umode_t)-1) 312 vol->dmask = dmask; 313 if (show_sys_files != -1) { 314 if (show_sys_files) 315 NVolSetShowSystemFiles(vol); 316 else 317 NVolClearShowSystemFiles(vol); 318 } 319 if (case_sensitive != -1) { 320 if (case_sensitive) 321 NVolSetCaseSensitive(vol); 322 else 323 NVolClearCaseSensitive(vol); 324 } 325 if (disable_sparse != -1) { 326 if (disable_sparse) 327 NVolClearSparseEnabled(vol); 328 else { 329 if (!NVolSparseEnabled(vol) && 330 vol->major_ver && vol->major_ver < 3) 331 ntfs_warning(vol->sb, "Not enabling sparse " 332 "support due to NTFS volume " 333 "version %i.%i (need at least " 334 "version 3.0).", vol->major_ver, 335 vol->minor_ver); 336 else 337 NVolSetSparseEnabled(vol); 338 } 339 } 340 return true; 341 needs_arg: 342 ntfs_error(vol->sb, "The %s option requires an argument.", p); 343 return false; 344 needs_bool: 345 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 346 return false; 347 needs_val: 348 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 349 return false; 350 } 351 352 #ifdef NTFS_RW 353 354 /** 355 * ntfs_write_volume_flags - write new flags to the volume information flags 356 * @vol: ntfs volume on which to modify the flags 357 * @flags: new flags value for the volume information flags 358 * 359 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 360 * instead (see below). 361 * 362 * Replace the volume information flags on the volume @vol with the value 363 * supplied in @flags. Note, this overwrites the volume information flags, so 364 * make sure to combine the flags you want to modify with the old flags and use 365 * the result when calling ntfs_write_volume_flags(). 366 * 367 * Return 0 on success and -errno on error. 368 */ 369 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 370 { 371 ntfs_inode *ni = NTFS_I(vol->vol_ino); 372 MFT_RECORD *m; 373 VOLUME_INFORMATION *vi; 374 ntfs_attr_search_ctx *ctx; 375 int err; 376 377 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 378 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 379 if (vol->vol_flags == flags) 380 goto done; 381 BUG_ON(!ni); 382 m = map_mft_record(ni); 383 if (IS_ERR(m)) { 384 err = PTR_ERR(m); 385 goto err_out; 386 } 387 ctx = ntfs_attr_get_search_ctx(ni, m); 388 if (!ctx) { 389 err = -ENOMEM; 390 goto put_unm_err_out; 391 } 392 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 393 ctx); 394 if (err) 395 goto put_unm_err_out; 396 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 397 le16_to_cpu(ctx->attr->data.resident.value_offset)); 398 vol->vol_flags = vi->flags = flags; 399 flush_dcache_mft_record_page(ctx->ntfs_ino); 400 mark_mft_record_dirty(ctx->ntfs_ino); 401 ntfs_attr_put_search_ctx(ctx); 402 unmap_mft_record(ni); 403 done: 404 ntfs_debug("Done."); 405 return 0; 406 put_unm_err_out: 407 if (ctx) 408 ntfs_attr_put_search_ctx(ctx); 409 unmap_mft_record(ni); 410 err_out: 411 ntfs_error(vol->sb, "Failed with error code %i.", -err); 412 return err; 413 } 414 415 /** 416 * ntfs_set_volume_flags - set bits in the volume information flags 417 * @vol: ntfs volume on which to modify the flags 418 * @flags: flags to set on the volume 419 * 420 * Set the bits in @flags in the volume information flags on the volume @vol. 421 * 422 * Return 0 on success and -errno on error. 423 */ 424 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 425 { 426 flags &= VOLUME_FLAGS_MASK; 427 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 428 } 429 430 /** 431 * ntfs_clear_volume_flags - clear bits in the volume information flags 432 * @vol: ntfs volume on which to modify the flags 433 * @flags: flags to clear on the volume 434 * 435 * Clear the bits in @flags in the volume information flags on the volume @vol. 436 * 437 * Return 0 on success and -errno on error. 438 */ 439 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 440 { 441 flags &= VOLUME_FLAGS_MASK; 442 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 443 return ntfs_write_volume_flags(vol, flags); 444 } 445 446 #endif /* NTFS_RW */ 447 448 /** 449 * ntfs_remount - change the mount options of a mounted ntfs filesystem 450 * @sb: superblock of mounted ntfs filesystem 451 * @flags: remount flags 452 * @opt: remount options string 453 * 454 * Change the mount options of an already mounted ntfs filesystem. 455 * 456 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 457 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 458 * @sb->s_flags are not changed. 459 */ 460 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 461 { 462 ntfs_volume *vol = NTFS_SB(sb); 463 464 ntfs_debug("Entering with remount options string: %s", opt); 465 466 sync_filesystem(sb); 467 468 #ifndef NTFS_RW 469 /* For read-only compiled driver, enforce read-only flag. */ 470 *flags |= SB_RDONLY; 471 #else /* NTFS_RW */ 472 /* 473 * For the read-write compiled driver, if we are remounting read-write, 474 * make sure there are no volume errors and that no unsupported volume 475 * flags are set. Also, empty the logfile journal as it would become 476 * stale as soon as something is written to the volume and mark the 477 * volume dirty so that chkdsk is run if the volume is not umounted 478 * cleanly. Finally, mark the quotas out of date so Windows rescans 479 * the volume on boot and updates them. 480 * 481 * When remounting read-only, mark the volume clean if no volume errors 482 * have occurred. 483 */ 484 if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) { 485 static const char *es = ". Cannot remount read-write."; 486 487 /* Remounting read-write. */ 488 if (NVolErrors(vol)) { 489 ntfs_error(sb, "Volume has errors and is read-only%s", 490 es); 491 return -EROFS; 492 } 493 if (vol->vol_flags & VOLUME_IS_DIRTY) { 494 ntfs_error(sb, "Volume is dirty and read-only%s", es); 495 return -EROFS; 496 } 497 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 498 ntfs_error(sb, "Volume has been modified by chkdsk " 499 "and is read-only%s", es); 500 return -EROFS; 501 } 502 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 503 ntfs_error(sb, "Volume has unsupported flags set " 504 "(0x%x) and is read-only%s", 505 (unsigned)le16_to_cpu(vol->vol_flags), 506 es); 507 return -EROFS; 508 } 509 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 510 ntfs_error(sb, "Failed to set dirty bit in volume " 511 "information flags%s", es); 512 return -EROFS; 513 } 514 #if 0 515 // TODO: Enable this code once we start modifying anything that 516 // is different between NTFS 1.2 and 3.x... 517 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 518 if ((vol->major_ver > 1)) { 519 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 520 ntfs_error(sb, "Failed to set NT4 " 521 "compatibility flag%s", es); 522 NVolSetErrors(vol); 523 return -EROFS; 524 } 525 } 526 #endif 527 if (!ntfs_empty_logfile(vol->logfile_ino)) { 528 ntfs_error(sb, "Failed to empty journal $LogFile%s", 529 es); 530 NVolSetErrors(vol); 531 return -EROFS; 532 } 533 if (!ntfs_mark_quotas_out_of_date(vol)) { 534 ntfs_error(sb, "Failed to mark quotas out of date%s", 535 es); 536 NVolSetErrors(vol); 537 return -EROFS; 538 } 539 if (!ntfs_stamp_usnjrnl(vol)) { 540 ntfs_error(sb, "Failed to stamp transaction log " 541 "($UsnJrnl)%s", es); 542 NVolSetErrors(vol); 543 return -EROFS; 544 } 545 } else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) { 546 /* Remounting read-only. */ 547 if (!NVolErrors(vol)) { 548 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 549 ntfs_warning(sb, "Failed to clear dirty bit " 550 "in volume information " 551 "flags. Run chkdsk."); 552 } 553 } 554 #endif /* NTFS_RW */ 555 556 // TODO: Deal with *flags. 557 558 if (!parse_options(vol, opt)) 559 return -EINVAL; 560 561 ntfs_debug("Done."); 562 return 0; 563 } 564 565 /** 566 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 567 * @sb: Super block of the device to which @b belongs. 568 * @b: Boot sector of device @sb to check. 569 * @silent: If 'true', all output will be silenced. 570 * 571 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 572 * sector. Returns 'true' if it is valid and 'false' if not. 573 * 574 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 575 * is 'true'. 576 */ 577 static bool is_boot_sector_ntfs(const struct super_block *sb, 578 const NTFS_BOOT_SECTOR *b, const bool silent) 579 { 580 /* 581 * Check that checksum == sum of u32 values from b to the checksum 582 * field. If checksum is zero, no checking is done. We will work when 583 * the checksum test fails, since some utilities update the boot sector 584 * ignoring the checksum which leaves the checksum out-of-date. We 585 * report a warning if this is the case. 586 */ 587 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 588 le32 *u; 589 u32 i; 590 591 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 592 i += le32_to_cpup(u); 593 if (le32_to_cpu(b->checksum) != i) 594 ntfs_warning(sb, "Invalid boot sector checksum."); 595 } 596 /* Check OEMidentifier is "NTFS " */ 597 if (b->oem_id != magicNTFS) 598 goto not_ntfs; 599 /* Check bytes per sector value is between 256 and 4096. */ 600 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 601 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 602 goto not_ntfs; 603 /* Check sectors per cluster value is valid. */ 604 switch (b->bpb.sectors_per_cluster) { 605 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 606 break; 607 default: 608 goto not_ntfs; 609 } 610 /* Check the cluster size is not above the maximum (64kiB). */ 611 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 612 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 613 goto not_ntfs; 614 /* Check reserved/unused fields are really zero. */ 615 if (le16_to_cpu(b->bpb.reserved_sectors) || 616 le16_to_cpu(b->bpb.root_entries) || 617 le16_to_cpu(b->bpb.sectors) || 618 le16_to_cpu(b->bpb.sectors_per_fat) || 619 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 620 goto not_ntfs; 621 /* Check clusters per file mft record value is valid. */ 622 if ((u8)b->clusters_per_mft_record < 0xe1 || 623 (u8)b->clusters_per_mft_record > 0xf7) 624 switch (b->clusters_per_mft_record) { 625 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 626 break; 627 default: 628 goto not_ntfs; 629 } 630 /* Check clusters per index block value is valid. */ 631 if ((u8)b->clusters_per_index_record < 0xe1 || 632 (u8)b->clusters_per_index_record > 0xf7) 633 switch (b->clusters_per_index_record) { 634 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 635 break; 636 default: 637 goto not_ntfs; 638 } 639 /* 640 * Check for valid end of sector marker. We will work without it, but 641 * many BIOSes will refuse to boot from a bootsector if the magic is 642 * incorrect, so we emit a warning. 643 */ 644 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 645 ntfs_warning(sb, "Invalid end of sector marker."); 646 return true; 647 not_ntfs: 648 return false; 649 } 650 651 /** 652 * read_ntfs_boot_sector - read the NTFS boot sector of a device 653 * @sb: super block of device to read the boot sector from 654 * @silent: if true, suppress all output 655 * 656 * Reads the boot sector from the device and validates it. If that fails, tries 657 * to read the backup boot sector, first from the end of the device a-la NT4 and 658 * later and then from the middle of the device a-la NT3.51 and before. 659 * 660 * If a valid boot sector is found but it is not the primary boot sector, we 661 * repair the primary boot sector silently (unless the device is read-only or 662 * the primary boot sector is not accessible). 663 * 664 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 665 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 666 * to their respective values. 667 * 668 * Return the unlocked buffer head containing the boot sector or NULL on error. 669 */ 670 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 671 const int silent) 672 { 673 const char *read_err_str = "Unable to read %s boot sector."; 674 struct buffer_head *bh_primary, *bh_backup; 675 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 676 677 /* Try to read primary boot sector. */ 678 if ((bh_primary = sb_bread(sb, 0))) { 679 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 680 bh_primary->b_data, silent)) 681 return bh_primary; 682 if (!silent) 683 ntfs_error(sb, "Primary boot sector is invalid."); 684 } else if (!silent) 685 ntfs_error(sb, read_err_str, "primary"); 686 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 687 if (bh_primary) 688 brelse(bh_primary); 689 if (!silent) 690 ntfs_error(sb, "Mount option errors=recover not used. " 691 "Aborting without trying to recover."); 692 return NULL; 693 } 694 /* Try to read NT4+ backup boot sector. */ 695 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 696 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 697 bh_backup->b_data, silent)) 698 goto hotfix_primary_boot_sector; 699 brelse(bh_backup); 700 } else if (!silent) 701 ntfs_error(sb, read_err_str, "backup"); 702 /* Try to read NT3.51- backup boot sector. */ 703 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 704 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 705 bh_backup->b_data, silent)) 706 goto hotfix_primary_boot_sector; 707 if (!silent) 708 ntfs_error(sb, "Could not find a valid backup boot " 709 "sector."); 710 brelse(bh_backup); 711 } else if (!silent) 712 ntfs_error(sb, read_err_str, "backup"); 713 /* We failed. Cleanup and return. */ 714 if (bh_primary) 715 brelse(bh_primary); 716 return NULL; 717 hotfix_primary_boot_sector: 718 if (bh_primary) { 719 /* 720 * If we managed to read sector zero and the volume is not 721 * read-only, copy the found, valid backup boot sector to the 722 * primary boot sector. Note we only copy the actual boot 723 * sector structure, not the actual whole device sector as that 724 * may be bigger and would potentially damage the $Boot system 725 * file (FIXME: Would be nice to know if the backup boot sector 726 * on a large sector device contains the whole boot loader or 727 * just the first 512 bytes). 728 */ 729 if (!sb_rdonly(sb)) { 730 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 731 "boot sector from backup copy."); 732 memcpy(bh_primary->b_data, bh_backup->b_data, 733 NTFS_BLOCK_SIZE); 734 mark_buffer_dirty(bh_primary); 735 sync_dirty_buffer(bh_primary); 736 if (buffer_uptodate(bh_primary)) { 737 brelse(bh_backup); 738 return bh_primary; 739 } 740 ntfs_error(sb, "Hot-fix: Device write error while " 741 "recovering primary boot sector."); 742 } else { 743 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 744 "sector failed: Read-only mount."); 745 } 746 brelse(bh_primary); 747 } 748 ntfs_warning(sb, "Using backup boot sector."); 749 return bh_backup; 750 } 751 752 /** 753 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 754 * @vol: volume structure to initialise with data from boot sector 755 * @b: boot sector to parse 756 * 757 * Parse the ntfs boot sector @b and store all imporant information therein in 758 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 759 */ 760 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 761 { 762 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 763 int clusters_per_mft_record, clusters_per_index_record; 764 s64 ll; 765 766 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 767 vol->sector_size_bits = ffs(vol->sector_size) - 1; 768 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 769 vol->sector_size); 770 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 771 vol->sector_size_bits); 772 if (vol->sector_size < vol->sb->s_blocksize) { 773 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 774 "device block size (%lu). This is not " 775 "supported. Sorry.", vol->sector_size, 776 vol->sb->s_blocksize); 777 return false; 778 } 779 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 780 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 781 ntfs_debug("sectors_per_cluster_bits = 0x%x", 782 sectors_per_cluster_bits); 783 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 784 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 785 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 786 vol->cluster_size_mask = vol->cluster_size - 1; 787 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 788 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 789 vol->cluster_size); 790 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 791 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 792 if (vol->cluster_size < vol->sector_size) { 793 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 794 "sector size (%i). This is not supported. " 795 "Sorry.", vol->cluster_size, vol->sector_size); 796 return false; 797 } 798 clusters_per_mft_record = b->clusters_per_mft_record; 799 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 800 clusters_per_mft_record, clusters_per_mft_record); 801 if (clusters_per_mft_record > 0) 802 vol->mft_record_size = vol->cluster_size << 803 (ffs(clusters_per_mft_record) - 1); 804 else 805 /* 806 * When mft_record_size < cluster_size, clusters_per_mft_record 807 * = -log2(mft_record_size) bytes. mft_record_size normaly is 808 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 809 */ 810 vol->mft_record_size = 1 << -clusters_per_mft_record; 811 vol->mft_record_size_mask = vol->mft_record_size - 1; 812 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 813 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 814 vol->mft_record_size); 815 ntfs_debug("vol->mft_record_size_mask = 0x%x", 816 vol->mft_record_size_mask); 817 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 818 vol->mft_record_size_bits, vol->mft_record_size_bits); 819 /* 820 * We cannot support mft record sizes above the PAGE_SIZE since 821 * we store $MFT/$DATA, the table of mft records in the page cache. 822 */ 823 if (vol->mft_record_size > PAGE_SIZE) { 824 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 825 "PAGE_SIZE on your system (%lu). " 826 "This is not supported. Sorry.", 827 vol->mft_record_size, PAGE_SIZE); 828 return false; 829 } 830 /* We cannot support mft record sizes below the sector size. */ 831 if (vol->mft_record_size < vol->sector_size) { 832 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 833 "sector size (%i). This is not supported. " 834 "Sorry.", vol->mft_record_size, 835 vol->sector_size); 836 return false; 837 } 838 clusters_per_index_record = b->clusters_per_index_record; 839 ntfs_debug("clusters_per_index_record = %i (0x%x)", 840 clusters_per_index_record, clusters_per_index_record); 841 if (clusters_per_index_record > 0) 842 vol->index_record_size = vol->cluster_size << 843 (ffs(clusters_per_index_record) - 1); 844 else 845 /* 846 * When index_record_size < cluster_size, 847 * clusters_per_index_record = -log2(index_record_size) bytes. 848 * index_record_size normaly equals 4096 bytes, which is 849 * encoded as 0xF4 (-12 in decimal). 850 */ 851 vol->index_record_size = 1 << -clusters_per_index_record; 852 vol->index_record_size_mask = vol->index_record_size - 1; 853 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 854 ntfs_debug("vol->index_record_size = %i (0x%x)", 855 vol->index_record_size, vol->index_record_size); 856 ntfs_debug("vol->index_record_size_mask = 0x%x", 857 vol->index_record_size_mask); 858 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 859 vol->index_record_size_bits, 860 vol->index_record_size_bits); 861 /* We cannot support index record sizes below the sector size. */ 862 if (vol->index_record_size < vol->sector_size) { 863 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 864 "the sector size (%i). This is not " 865 "supported. Sorry.", vol->index_record_size, 866 vol->sector_size); 867 return false; 868 } 869 /* 870 * Get the size of the volume in clusters and check for 64-bit-ness. 871 * Windows currently only uses 32 bits to save the clusters so we do 872 * the same as it is much faster on 32-bit CPUs. 873 */ 874 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 875 if ((u64)ll >= 1ULL << 32) { 876 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 877 return false; 878 } 879 vol->nr_clusters = ll; 880 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 881 /* 882 * On an architecture where unsigned long is 32-bits, we restrict the 883 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 884 * will hopefully optimize the whole check away. 885 */ 886 if (sizeof(unsigned long) < 8) { 887 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 888 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 889 "large for this architecture. " 890 "Maximum supported is 2TiB. Sorry.", 891 (unsigned long long)ll >> (40 - 892 vol->cluster_size_bits)); 893 return false; 894 } 895 } 896 ll = sle64_to_cpu(b->mft_lcn); 897 if (ll >= vol->nr_clusters) { 898 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 899 "volume. Weird.", (unsigned long long)ll, 900 (unsigned long long)ll); 901 return false; 902 } 903 vol->mft_lcn = ll; 904 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 905 ll = sle64_to_cpu(b->mftmirr_lcn); 906 if (ll >= vol->nr_clusters) { 907 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 908 "of volume. Weird.", (unsigned long long)ll, 909 (unsigned long long)ll); 910 return false; 911 } 912 vol->mftmirr_lcn = ll; 913 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 914 #ifdef NTFS_RW 915 /* 916 * Work out the size of the mft mirror in number of mft records. If the 917 * cluster size is less than or equal to the size taken by four mft 918 * records, the mft mirror stores the first four mft records. If the 919 * cluster size is bigger than the size taken by four mft records, the 920 * mft mirror contains as many mft records as will fit into one 921 * cluster. 922 */ 923 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 924 vol->mftmirr_size = 4; 925 else 926 vol->mftmirr_size = vol->cluster_size >> 927 vol->mft_record_size_bits; 928 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 929 #endif /* NTFS_RW */ 930 vol->serial_no = le64_to_cpu(b->volume_serial_number); 931 ntfs_debug("vol->serial_no = 0x%llx", 932 (unsigned long long)vol->serial_no); 933 return true; 934 } 935 936 /** 937 * ntfs_setup_allocators - initialize the cluster and mft allocators 938 * @vol: volume structure for which to setup the allocators 939 * 940 * Setup the cluster (lcn) and mft allocators to the starting values. 941 */ 942 static void ntfs_setup_allocators(ntfs_volume *vol) 943 { 944 #ifdef NTFS_RW 945 LCN mft_zone_size, mft_lcn; 946 #endif /* NTFS_RW */ 947 948 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 949 vol->mft_zone_multiplier); 950 #ifdef NTFS_RW 951 /* Determine the size of the MFT zone. */ 952 mft_zone_size = vol->nr_clusters; 953 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 954 case 4: 955 mft_zone_size >>= 1; /* 50% */ 956 break; 957 case 3: 958 mft_zone_size = (mft_zone_size + 959 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 960 break; 961 case 2: 962 mft_zone_size >>= 2; /* 25% */ 963 break; 964 /* case 1: */ 965 default: 966 mft_zone_size >>= 3; /* 12.5% */ 967 break; 968 } 969 /* Setup the mft zone. */ 970 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 971 ntfs_debug("vol->mft_zone_pos = 0x%llx", 972 (unsigned long long)vol->mft_zone_pos); 973 /* 974 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 975 * source) and if the actual mft_lcn is in the expected place or even 976 * further to the front of the volume, extend the mft_zone to cover the 977 * beginning of the volume as well. This is in order to protect the 978 * area reserved for the mft bitmap as well within the mft_zone itself. 979 * On non-standard volumes we do not protect it as the overhead would 980 * be higher than the speed increase we would get by doing it. 981 */ 982 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 983 if (mft_lcn * vol->cluster_size < 16 * 1024) 984 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 985 vol->cluster_size; 986 if (vol->mft_zone_start <= mft_lcn) 987 vol->mft_zone_start = 0; 988 ntfs_debug("vol->mft_zone_start = 0x%llx", 989 (unsigned long long)vol->mft_zone_start); 990 /* 991 * Need to cap the mft zone on non-standard volumes so that it does 992 * not point outside the boundaries of the volume. We do this by 993 * halving the zone size until we are inside the volume. 994 */ 995 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 996 while (vol->mft_zone_end >= vol->nr_clusters) { 997 mft_zone_size >>= 1; 998 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 999 } 1000 ntfs_debug("vol->mft_zone_end = 0x%llx", 1001 (unsigned long long)vol->mft_zone_end); 1002 /* 1003 * Set the current position within each data zone to the start of the 1004 * respective zone. 1005 */ 1006 vol->data1_zone_pos = vol->mft_zone_end; 1007 ntfs_debug("vol->data1_zone_pos = 0x%llx", 1008 (unsigned long long)vol->data1_zone_pos); 1009 vol->data2_zone_pos = 0; 1010 ntfs_debug("vol->data2_zone_pos = 0x%llx", 1011 (unsigned long long)vol->data2_zone_pos); 1012 1013 /* Set the mft data allocation position to mft record 24. */ 1014 vol->mft_data_pos = 24; 1015 ntfs_debug("vol->mft_data_pos = 0x%llx", 1016 (unsigned long long)vol->mft_data_pos); 1017 #endif /* NTFS_RW */ 1018 } 1019 1020 #ifdef NTFS_RW 1021 1022 /** 1023 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1024 * @vol: ntfs super block describing device whose mft mirror to load 1025 * 1026 * Return 'true' on success or 'false' on error. 1027 */ 1028 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1029 { 1030 struct inode *tmp_ino; 1031 ntfs_inode *tmp_ni; 1032 1033 ntfs_debug("Entering."); 1034 /* Get mft mirror inode. */ 1035 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1036 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1037 if (!IS_ERR(tmp_ino)) 1038 iput(tmp_ino); 1039 /* Caller will display error message. */ 1040 return false; 1041 } 1042 /* 1043 * Re-initialize some specifics about $MFTMirr's inode as 1044 * ntfs_read_inode() will have set up the default ones. 1045 */ 1046 /* Set uid and gid to root. */ 1047 tmp_ino->i_uid = GLOBAL_ROOT_UID; 1048 tmp_ino->i_gid = GLOBAL_ROOT_GID; 1049 /* Regular file. No access for anyone. */ 1050 tmp_ino->i_mode = S_IFREG; 1051 /* No VFS initiated operations allowed for $MFTMirr. */ 1052 tmp_ino->i_op = &ntfs_empty_inode_ops; 1053 tmp_ino->i_fop = &ntfs_empty_file_ops; 1054 /* Put in our special address space operations. */ 1055 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1056 tmp_ni = NTFS_I(tmp_ino); 1057 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1058 NInoSetMstProtected(tmp_ni); 1059 NInoSetSparseDisabled(tmp_ni); 1060 /* 1061 * Set up our little cheat allowing us to reuse the async read io 1062 * completion handler for directories. 1063 */ 1064 tmp_ni->itype.index.block_size = vol->mft_record_size; 1065 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1066 vol->mftmirr_ino = tmp_ino; 1067 ntfs_debug("Done."); 1068 return true; 1069 } 1070 1071 /** 1072 * check_mft_mirror - compare contents of the mft mirror with the mft 1073 * @vol: ntfs super block describing device whose mft mirror to check 1074 * 1075 * Return 'true' on success or 'false' on error. 1076 * 1077 * Note, this function also results in the mft mirror runlist being completely 1078 * mapped into memory. The mft mirror write code requires this and will BUG() 1079 * should it find an unmapped runlist element. 1080 */ 1081 static bool check_mft_mirror(ntfs_volume *vol) 1082 { 1083 struct super_block *sb = vol->sb; 1084 ntfs_inode *mirr_ni; 1085 struct page *mft_page, *mirr_page; 1086 u8 *kmft, *kmirr; 1087 runlist_element *rl, rl2[2]; 1088 pgoff_t index; 1089 int mrecs_per_page, i; 1090 1091 ntfs_debug("Entering."); 1092 /* Compare contents of $MFT and $MFTMirr. */ 1093 mrecs_per_page = PAGE_SIZE / vol->mft_record_size; 1094 BUG_ON(!mrecs_per_page); 1095 BUG_ON(!vol->mftmirr_size); 1096 mft_page = mirr_page = NULL; 1097 kmft = kmirr = NULL; 1098 index = i = 0; 1099 do { 1100 u32 bytes; 1101 1102 /* Switch pages if necessary. */ 1103 if (!(i % mrecs_per_page)) { 1104 if (index) { 1105 ntfs_unmap_page(mft_page); 1106 ntfs_unmap_page(mirr_page); 1107 } 1108 /* Get the $MFT page. */ 1109 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1110 index); 1111 if (IS_ERR(mft_page)) { 1112 ntfs_error(sb, "Failed to read $MFT."); 1113 return false; 1114 } 1115 kmft = page_address(mft_page); 1116 /* Get the $MFTMirr page. */ 1117 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1118 index); 1119 if (IS_ERR(mirr_page)) { 1120 ntfs_error(sb, "Failed to read $MFTMirr."); 1121 goto mft_unmap_out; 1122 } 1123 kmirr = page_address(mirr_page); 1124 ++index; 1125 } 1126 /* Do not check the record if it is not in use. */ 1127 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1128 /* Make sure the record is ok. */ 1129 if (ntfs_is_baad_recordp((le32*)kmft)) { 1130 ntfs_error(sb, "Incomplete multi sector " 1131 "transfer detected in mft " 1132 "record %i.", i); 1133 mm_unmap_out: 1134 ntfs_unmap_page(mirr_page); 1135 mft_unmap_out: 1136 ntfs_unmap_page(mft_page); 1137 return false; 1138 } 1139 } 1140 /* Do not check the mirror record if it is not in use. */ 1141 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1142 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1143 ntfs_error(sb, "Incomplete multi sector " 1144 "transfer detected in mft " 1145 "mirror record %i.", i); 1146 goto mm_unmap_out; 1147 } 1148 } 1149 /* Get the amount of data in the current record. */ 1150 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1151 if (bytes < sizeof(MFT_RECORD_OLD) || 1152 bytes > vol->mft_record_size || 1153 ntfs_is_baad_recordp((le32*)kmft)) { 1154 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1155 if (bytes < sizeof(MFT_RECORD_OLD) || 1156 bytes > vol->mft_record_size || 1157 ntfs_is_baad_recordp((le32*)kmirr)) 1158 bytes = vol->mft_record_size; 1159 } 1160 /* Compare the two records. */ 1161 if (memcmp(kmft, kmirr, bytes)) { 1162 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1163 "match. Run ntfsfix or chkdsk.", i); 1164 goto mm_unmap_out; 1165 } 1166 kmft += vol->mft_record_size; 1167 kmirr += vol->mft_record_size; 1168 } while (++i < vol->mftmirr_size); 1169 /* Release the last pages. */ 1170 ntfs_unmap_page(mft_page); 1171 ntfs_unmap_page(mirr_page); 1172 1173 /* Construct the mft mirror runlist by hand. */ 1174 rl2[0].vcn = 0; 1175 rl2[0].lcn = vol->mftmirr_lcn; 1176 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1177 vol->cluster_size - 1) / vol->cluster_size; 1178 rl2[1].vcn = rl2[0].length; 1179 rl2[1].lcn = LCN_ENOENT; 1180 rl2[1].length = 0; 1181 /* 1182 * Because we have just read all of the mft mirror, we know we have 1183 * mapped the full runlist for it. 1184 */ 1185 mirr_ni = NTFS_I(vol->mftmirr_ino); 1186 down_read(&mirr_ni->runlist.lock); 1187 rl = mirr_ni->runlist.rl; 1188 /* Compare the two runlists. They must be identical. */ 1189 i = 0; 1190 do { 1191 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1192 rl2[i].length != rl[i].length) { 1193 ntfs_error(sb, "$MFTMirr location mismatch. " 1194 "Run chkdsk."); 1195 up_read(&mirr_ni->runlist.lock); 1196 return false; 1197 } 1198 } while (rl2[i++].length); 1199 up_read(&mirr_ni->runlist.lock); 1200 ntfs_debug("Done."); 1201 return true; 1202 } 1203 1204 /** 1205 * load_and_check_logfile - load and check the logfile inode for a volume 1206 * @vol: ntfs super block describing device whose logfile to load 1207 * 1208 * Return 'true' on success or 'false' on error. 1209 */ 1210 static bool load_and_check_logfile(ntfs_volume *vol, 1211 RESTART_PAGE_HEADER **rp) 1212 { 1213 struct inode *tmp_ino; 1214 1215 ntfs_debug("Entering."); 1216 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1217 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1218 if (!IS_ERR(tmp_ino)) 1219 iput(tmp_ino); 1220 /* Caller will display error message. */ 1221 return false; 1222 } 1223 if (!ntfs_check_logfile(tmp_ino, rp)) { 1224 iput(tmp_ino); 1225 /* ntfs_check_logfile() will have displayed error output. */ 1226 return false; 1227 } 1228 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1229 vol->logfile_ino = tmp_ino; 1230 ntfs_debug("Done."); 1231 return true; 1232 } 1233 1234 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1235 1236 /** 1237 * check_windows_hibernation_status - check if Windows is suspended on a volume 1238 * @vol: ntfs super block of device to check 1239 * 1240 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1241 * looking for the file hiberfil.sys in the root directory of the volume. If 1242 * the file is not present Windows is definitely not suspended. 1243 * 1244 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1245 * definitely suspended (this volume is not the system volume). Caveat: on a 1246 * system with many volumes it is possible that the < 4kiB check is bogus but 1247 * for now this should do fine. 1248 * 1249 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1250 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1251 * Windows is definitely suspended. If it is completely full of zeroes, 1252 * Windows is definitely not hibernated. Any other case is treated as if 1253 * Windows is suspended. This caters for the above mentioned caveat of a 1254 * system with many volumes where no "hibr" magic would be present and there is 1255 * no zero header. 1256 * 1257 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1258 * hibernated on the volume, and -errno on error. 1259 */ 1260 static int check_windows_hibernation_status(ntfs_volume *vol) 1261 { 1262 MFT_REF mref; 1263 struct inode *vi; 1264 struct page *page; 1265 u32 *kaddr, *kend; 1266 ntfs_name *name = NULL; 1267 int ret = 1; 1268 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1269 cpu_to_le16('i'), cpu_to_le16('b'), 1270 cpu_to_le16('e'), cpu_to_le16('r'), 1271 cpu_to_le16('f'), cpu_to_le16('i'), 1272 cpu_to_le16('l'), cpu_to_le16('.'), 1273 cpu_to_le16('s'), cpu_to_le16('y'), 1274 cpu_to_le16('s'), 0 }; 1275 1276 ntfs_debug("Entering."); 1277 /* 1278 * Find the inode number for the hibernation file by looking up the 1279 * filename hiberfil.sys in the root directory. 1280 */ 1281 inode_lock(vol->root_ino); 1282 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1283 &name); 1284 inode_unlock(vol->root_ino); 1285 if (IS_ERR_MREF(mref)) { 1286 ret = MREF_ERR(mref); 1287 /* If the file does not exist, Windows is not hibernated. */ 1288 if (ret == -ENOENT) { 1289 ntfs_debug("hiberfil.sys not present. Windows is not " 1290 "hibernated on the volume."); 1291 return 0; 1292 } 1293 /* A real error occurred. */ 1294 ntfs_error(vol->sb, "Failed to find inode number for " 1295 "hiberfil.sys."); 1296 return ret; 1297 } 1298 /* We do not care for the type of match that was found. */ 1299 kfree(name); 1300 /* Get the inode. */ 1301 vi = ntfs_iget(vol->sb, MREF(mref)); 1302 if (IS_ERR(vi) || is_bad_inode(vi)) { 1303 if (!IS_ERR(vi)) 1304 iput(vi); 1305 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1306 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1307 } 1308 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1309 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1310 "Windows is hibernated on the volume. This " 1311 "is not the system volume.", i_size_read(vi)); 1312 goto iput_out; 1313 } 1314 page = ntfs_map_page(vi->i_mapping, 0); 1315 if (IS_ERR(page)) { 1316 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1317 ret = PTR_ERR(page); 1318 goto iput_out; 1319 } 1320 kaddr = (u32*)page_address(page); 1321 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1322 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1323 "hibernated on the volume. This is the " 1324 "system volume."); 1325 goto unm_iput_out; 1326 } 1327 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1328 do { 1329 if (unlikely(*kaddr)) { 1330 ntfs_debug("hiberfil.sys is larger than 4kiB " 1331 "(0x%llx), does not contain the " 1332 "\"hibr\" magic, and does not have a " 1333 "zero header. Windows is hibernated " 1334 "on the volume. This is not the " 1335 "system volume.", i_size_read(vi)); 1336 goto unm_iput_out; 1337 } 1338 } while (++kaddr < kend); 1339 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1340 "hibernated on the volume. This is the system " 1341 "volume."); 1342 ret = 0; 1343 unm_iput_out: 1344 ntfs_unmap_page(page); 1345 iput_out: 1346 iput(vi); 1347 return ret; 1348 } 1349 1350 /** 1351 * load_and_init_quota - load and setup the quota file for a volume if present 1352 * @vol: ntfs super block describing device whose quota file to load 1353 * 1354 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1355 * leave vol->quota_ino as NULL and return success. 1356 */ 1357 static bool load_and_init_quota(ntfs_volume *vol) 1358 { 1359 MFT_REF mref; 1360 struct inode *tmp_ino; 1361 ntfs_name *name = NULL; 1362 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1363 cpu_to_le16('Q'), cpu_to_le16('u'), 1364 cpu_to_le16('o'), cpu_to_le16('t'), 1365 cpu_to_le16('a'), 0 }; 1366 static ntfschar Q[3] = { cpu_to_le16('$'), 1367 cpu_to_le16('Q'), 0 }; 1368 1369 ntfs_debug("Entering."); 1370 /* 1371 * Find the inode number for the quota file by looking up the filename 1372 * $Quota in the extended system files directory $Extend. 1373 */ 1374 inode_lock(vol->extend_ino); 1375 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1376 &name); 1377 inode_unlock(vol->extend_ino); 1378 if (IS_ERR_MREF(mref)) { 1379 /* 1380 * If the file does not exist, quotas are disabled and have 1381 * never been enabled on this volume, just return success. 1382 */ 1383 if (MREF_ERR(mref) == -ENOENT) { 1384 ntfs_debug("$Quota not present. Volume does not have " 1385 "quotas enabled."); 1386 /* 1387 * No need to try to set quotas out of date if they are 1388 * not enabled. 1389 */ 1390 NVolSetQuotaOutOfDate(vol); 1391 return true; 1392 } 1393 /* A real error occurred. */ 1394 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1395 return false; 1396 } 1397 /* We do not care for the type of match that was found. */ 1398 kfree(name); 1399 /* Get the inode. */ 1400 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1401 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1402 if (!IS_ERR(tmp_ino)) 1403 iput(tmp_ino); 1404 ntfs_error(vol->sb, "Failed to load $Quota."); 1405 return false; 1406 } 1407 vol->quota_ino = tmp_ino; 1408 /* Get the $Q index allocation attribute. */ 1409 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1410 if (IS_ERR(tmp_ino)) { 1411 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1412 return false; 1413 } 1414 vol->quota_q_ino = tmp_ino; 1415 ntfs_debug("Done."); 1416 return true; 1417 } 1418 1419 /** 1420 * load_and_init_usnjrnl - load and setup the transaction log if present 1421 * @vol: ntfs super block describing device whose usnjrnl file to load 1422 * 1423 * Return 'true' on success or 'false' on error. 1424 * 1425 * If $UsnJrnl is not present or in the process of being disabled, we set 1426 * NVolUsnJrnlStamped() and return success. 1427 * 1428 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1429 * i.e. transaction logging has only just been enabled or the journal has been 1430 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1431 * and return success. 1432 */ 1433 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1434 { 1435 MFT_REF mref; 1436 struct inode *tmp_ino; 1437 ntfs_inode *tmp_ni; 1438 struct page *page; 1439 ntfs_name *name = NULL; 1440 USN_HEADER *uh; 1441 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1442 cpu_to_le16('U'), cpu_to_le16('s'), 1443 cpu_to_le16('n'), cpu_to_le16('J'), 1444 cpu_to_le16('r'), cpu_to_le16('n'), 1445 cpu_to_le16('l'), 0 }; 1446 static ntfschar Max[5] = { cpu_to_le16('$'), 1447 cpu_to_le16('M'), cpu_to_le16('a'), 1448 cpu_to_le16('x'), 0 }; 1449 static ntfschar J[3] = { cpu_to_le16('$'), 1450 cpu_to_le16('J'), 0 }; 1451 1452 ntfs_debug("Entering."); 1453 /* 1454 * Find the inode number for the transaction log file by looking up the 1455 * filename $UsnJrnl in the extended system files directory $Extend. 1456 */ 1457 inode_lock(vol->extend_ino); 1458 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1459 &name); 1460 inode_unlock(vol->extend_ino); 1461 if (IS_ERR_MREF(mref)) { 1462 /* 1463 * If the file does not exist, transaction logging is disabled, 1464 * just return success. 1465 */ 1466 if (MREF_ERR(mref) == -ENOENT) { 1467 ntfs_debug("$UsnJrnl not present. Volume does not " 1468 "have transaction logging enabled."); 1469 not_enabled: 1470 /* 1471 * No need to try to stamp the transaction log if 1472 * transaction logging is not enabled. 1473 */ 1474 NVolSetUsnJrnlStamped(vol); 1475 return true; 1476 } 1477 /* A real error occurred. */ 1478 ntfs_error(vol->sb, "Failed to find inode number for " 1479 "$UsnJrnl."); 1480 return false; 1481 } 1482 /* We do not care for the type of match that was found. */ 1483 kfree(name); 1484 /* Get the inode. */ 1485 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1486 if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) { 1487 if (!IS_ERR(tmp_ino)) 1488 iput(tmp_ino); 1489 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1490 return false; 1491 } 1492 vol->usnjrnl_ino = tmp_ino; 1493 /* 1494 * If the transaction log is in the process of being deleted, we can 1495 * ignore it. 1496 */ 1497 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1498 ntfs_debug("$UsnJrnl in the process of being disabled. " 1499 "Volume does not have transaction logging " 1500 "enabled."); 1501 goto not_enabled; 1502 } 1503 /* Get the $DATA/$Max attribute. */ 1504 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1505 if (IS_ERR(tmp_ino)) { 1506 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1507 "attribute."); 1508 return false; 1509 } 1510 vol->usnjrnl_max_ino = tmp_ino; 1511 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1512 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1513 "attribute (size is 0x%llx but should be at " 1514 "least 0x%zx bytes).", i_size_read(tmp_ino), 1515 sizeof(USN_HEADER)); 1516 return false; 1517 } 1518 /* Get the $DATA/$J attribute. */ 1519 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1520 if (IS_ERR(tmp_ino)) { 1521 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1522 "attribute."); 1523 return false; 1524 } 1525 vol->usnjrnl_j_ino = tmp_ino; 1526 /* Verify $J is non-resident and sparse. */ 1527 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1528 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1529 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1530 "and/or not sparse."); 1531 return false; 1532 } 1533 /* Read the USN_HEADER from $DATA/$Max. */ 1534 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1535 if (IS_ERR(page)) { 1536 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1537 "attribute."); 1538 return false; 1539 } 1540 uh = (USN_HEADER*)page_address(page); 1541 /* Sanity check the $Max. */ 1542 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1543 sle64_to_cpu(uh->maximum_size))) { 1544 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1545 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1546 (long long)sle64_to_cpu(uh->allocation_delta), 1547 (long long)sle64_to_cpu(uh->maximum_size)); 1548 ntfs_unmap_page(page); 1549 return false; 1550 } 1551 /* 1552 * If the transaction log has been stamped and nothing has been written 1553 * to it since, we do not need to stamp it. 1554 */ 1555 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1556 i_size_read(vol->usnjrnl_j_ino))) { 1557 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1558 i_size_read(vol->usnjrnl_j_ino))) { 1559 ntfs_unmap_page(page); 1560 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1561 "logged since it was last stamped. " 1562 "Treating this as if the volume does " 1563 "not have transaction logging " 1564 "enabled."); 1565 goto not_enabled; 1566 } 1567 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1568 "which is out of bounds (0x%llx). $UsnJrnl " 1569 "is corrupt.", 1570 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1571 i_size_read(vol->usnjrnl_j_ino)); 1572 ntfs_unmap_page(page); 1573 return false; 1574 } 1575 ntfs_unmap_page(page); 1576 ntfs_debug("Done."); 1577 return true; 1578 } 1579 1580 /** 1581 * load_and_init_attrdef - load the attribute definitions table for a volume 1582 * @vol: ntfs super block describing device whose attrdef to load 1583 * 1584 * Return 'true' on success or 'false' on error. 1585 */ 1586 static bool load_and_init_attrdef(ntfs_volume *vol) 1587 { 1588 loff_t i_size; 1589 struct super_block *sb = vol->sb; 1590 struct inode *ino; 1591 struct page *page; 1592 pgoff_t index, max_index; 1593 unsigned int size; 1594 1595 ntfs_debug("Entering."); 1596 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1597 ino = ntfs_iget(sb, FILE_AttrDef); 1598 if (IS_ERR(ino) || is_bad_inode(ino)) { 1599 if (!IS_ERR(ino)) 1600 iput(ino); 1601 goto failed; 1602 } 1603 NInoSetSparseDisabled(NTFS_I(ino)); 1604 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1605 i_size = i_size_read(ino); 1606 if (i_size <= 0 || i_size > 0x7fffffff) 1607 goto iput_failed; 1608 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1609 if (!vol->attrdef) 1610 goto iput_failed; 1611 index = 0; 1612 max_index = i_size >> PAGE_SHIFT; 1613 size = PAGE_SIZE; 1614 while (index < max_index) { 1615 /* Read the attrdef table and copy it into the linear buffer. */ 1616 read_partial_attrdef_page: 1617 page = ntfs_map_page(ino->i_mapping, index); 1618 if (IS_ERR(page)) 1619 goto free_iput_failed; 1620 memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT), 1621 page_address(page), size); 1622 ntfs_unmap_page(page); 1623 } 1624 if (size == PAGE_SIZE) { 1625 size = i_size & ~PAGE_MASK; 1626 if (size) 1627 goto read_partial_attrdef_page; 1628 } 1629 vol->attrdef_size = i_size; 1630 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1631 iput(ino); 1632 return true; 1633 free_iput_failed: 1634 ntfs_free(vol->attrdef); 1635 vol->attrdef = NULL; 1636 iput_failed: 1637 iput(ino); 1638 failed: 1639 ntfs_error(sb, "Failed to initialize attribute definition table."); 1640 return false; 1641 } 1642 1643 #endif /* NTFS_RW */ 1644 1645 /** 1646 * load_and_init_upcase - load the upcase table for an ntfs volume 1647 * @vol: ntfs super block describing device whose upcase to load 1648 * 1649 * Return 'true' on success or 'false' on error. 1650 */ 1651 static bool load_and_init_upcase(ntfs_volume *vol) 1652 { 1653 loff_t i_size; 1654 struct super_block *sb = vol->sb; 1655 struct inode *ino; 1656 struct page *page; 1657 pgoff_t index, max_index; 1658 unsigned int size; 1659 int i, max; 1660 1661 ntfs_debug("Entering."); 1662 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1663 ino = ntfs_iget(sb, FILE_UpCase); 1664 if (IS_ERR(ino) || is_bad_inode(ino)) { 1665 if (!IS_ERR(ino)) 1666 iput(ino); 1667 goto upcase_failed; 1668 } 1669 /* 1670 * The upcase size must not be above 64k Unicode characters, must not 1671 * be zero and must be a multiple of sizeof(ntfschar). 1672 */ 1673 i_size = i_size_read(ino); 1674 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1675 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1676 goto iput_upcase_failed; 1677 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1678 if (!vol->upcase) 1679 goto iput_upcase_failed; 1680 index = 0; 1681 max_index = i_size >> PAGE_SHIFT; 1682 size = PAGE_SIZE; 1683 while (index < max_index) { 1684 /* Read the upcase table and copy it into the linear buffer. */ 1685 read_partial_upcase_page: 1686 page = ntfs_map_page(ino->i_mapping, index); 1687 if (IS_ERR(page)) 1688 goto iput_upcase_failed; 1689 memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT), 1690 page_address(page), size); 1691 ntfs_unmap_page(page); 1692 } 1693 if (size == PAGE_SIZE) { 1694 size = i_size & ~PAGE_MASK; 1695 if (size) 1696 goto read_partial_upcase_page; 1697 } 1698 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1699 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1700 i_size, 64 * 1024 * sizeof(ntfschar)); 1701 iput(ino); 1702 mutex_lock(&ntfs_lock); 1703 if (!default_upcase) { 1704 ntfs_debug("Using volume specified $UpCase since default is " 1705 "not present."); 1706 mutex_unlock(&ntfs_lock); 1707 return true; 1708 } 1709 max = default_upcase_len; 1710 if (max > vol->upcase_len) 1711 max = vol->upcase_len; 1712 for (i = 0; i < max; i++) 1713 if (vol->upcase[i] != default_upcase[i]) 1714 break; 1715 if (i == max) { 1716 ntfs_free(vol->upcase); 1717 vol->upcase = default_upcase; 1718 vol->upcase_len = max; 1719 ntfs_nr_upcase_users++; 1720 mutex_unlock(&ntfs_lock); 1721 ntfs_debug("Volume specified $UpCase matches default. Using " 1722 "default."); 1723 return true; 1724 } 1725 mutex_unlock(&ntfs_lock); 1726 ntfs_debug("Using volume specified $UpCase since it does not match " 1727 "the default."); 1728 return true; 1729 iput_upcase_failed: 1730 iput(ino); 1731 ntfs_free(vol->upcase); 1732 vol->upcase = NULL; 1733 upcase_failed: 1734 mutex_lock(&ntfs_lock); 1735 if (default_upcase) { 1736 vol->upcase = default_upcase; 1737 vol->upcase_len = default_upcase_len; 1738 ntfs_nr_upcase_users++; 1739 mutex_unlock(&ntfs_lock); 1740 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1741 "default."); 1742 return true; 1743 } 1744 mutex_unlock(&ntfs_lock); 1745 ntfs_error(sb, "Failed to initialize upcase table."); 1746 return false; 1747 } 1748 1749 /* 1750 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1751 * their own special locking rules: 1752 */ 1753 static struct lock_class_key 1754 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1755 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1756 1757 /** 1758 * load_system_files - open the system files using normal functions 1759 * @vol: ntfs super block describing device whose system files to load 1760 * 1761 * Open the system files with normal access functions and complete setting up 1762 * the ntfs super block @vol. 1763 * 1764 * Return 'true' on success or 'false' on error. 1765 */ 1766 static bool load_system_files(ntfs_volume *vol) 1767 { 1768 struct super_block *sb = vol->sb; 1769 MFT_RECORD *m; 1770 VOLUME_INFORMATION *vi; 1771 ntfs_attr_search_ctx *ctx; 1772 #ifdef NTFS_RW 1773 RESTART_PAGE_HEADER *rp; 1774 int err; 1775 #endif /* NTFS_RW */ 1776 1777 ntfs_debug("Entering."); 1778 #ifdef NTFS_RW 1779 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1780 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1781 static const char *es1 = "Failed to load $MFTMirr"; 1782 static const char *es2 = "$MFTMirr does not match $MFT"; 1783 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1784 1785 /* If a read-write mount, convert it to a read-only mount. */ 1786 if (!sb_rdonly(sb)) { 1787 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1788 ON_ERRORS_CONTINUE))) { 1789 ntfs_error(sb, "%s and neither on_errors=" 1790 "continue nor on_errors=" 1791 "remount-ro was specified%s", 1792 !vol->mftmirr_ino ? es1 : es2, 1793 es3); 1794 goto iput_mirr_err_out; 1795 } 1796 sb->s_flags |= SB_RDONLY; 1797 ntfs_error(sb, "%s. Mounting read-only%s", 1798 !vol->mftmirr_ino ? es1 : es2, es3); 1799 } else 1800 ntfs_warning(sb, "%s. Will not be able to remount " 1801 "read-write%s", 1802 !vol->mftmirr_ino ? es1 : es2, es3); 1803 /* This will prevent a read-write remount. */ 1804 NVolSetErrors(vol); 1805 } 1806 #endif /* NTFS_RW */ 1807 /* Get mft bitmap attribute inode. */ 1808 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1809 if (IS_ERR(vol->mftbmp_ino)) { 1810 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1811 goto iput_mirr_err_out; 1812 } 1813 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1814 &mftbmp_runlist_lock_key); 1815 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1816 &mftbmp_mrec_lock_key); 1817 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1818 if (!load_and_init_upcase(vol)) 1819 goto iput_mftbmp_err_out; 1820 #ifdef NTFS_RW 1821 /* 1822 * Read attribute definitions table and setup @vol->attrdef and 1823 * @vol->attrdef_size. 1824 */ 1825 if (!load_and_init_attrdef(vol)) 1826 goto iput_upcase_err_out; 1827 #endif /* NTFS_RW */ 1828 /* 1829 * Get the cluster allocation bitmap inode and verify the size, no 1830 * need for any locking at this stage as we are already running 1831 * exclusively as we are mount in progress task. 1832 */ 1833 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1834 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1835 if (!IS_ERR(vol->lcnbmp_ino)) 1836 iput(vol->lcnbmp_ino); 1837 goto bitmap_failed; 1838 } 1839 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1840 &lcnbmp_runlist_lock_key); 1841 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1842 &lcnbmp_mrec_lock_key); 1843 1844 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1845 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1846 iput(vol->lcnbmp_ino); 1847 bitmap_failed: 1848 ntfs_error(sb, "Failed to load $Bitmap."); 1849 goto iput_attrdef_err_out; 1850 } 1851 /* 1852 * Get the volume inode and setup our cache of the volume flags and 1853 * version. 1854 */ 1855 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1856 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1857 if (!IS_ERR(vol->vol_ino)) 1858 iput(vol->vol_ino); 1859 volume_failed: 1860 ntfs_error(sb, "Failed to load $Volume."); 1861 goto iput_lcnbmp_err_out; 1862 } 1863 m = map_mft_record(NTFS_I(vol->vol_ino)); 1864 if (IS_ERR(m)) { 1865 iput_volume_failed: 1866 iput(vol->vol_ino); 1867 goto volume_failed; 1868 } 1869 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1870 ntfs_error(sb, "Failed to get attribute search context."); 1871 goto get_ctx_vol_failed; 1872 } 1873 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1874 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1875 err_put_vol: 1876 ntfs_attr_put_search_ctx(ctx); 1877 get_ctx_vol_failed: 1878 unmap_mft_record(NTFS_I(vol->vol_ino)); 1879 goto iput_volume_failed; 1880 } 1881 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1882 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1883 /* Some bounds checks. */ 1884 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1885 le32_to_cpu(ctx->attr->data.resident.value_length) > 1886 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1887 goto err_put_vol; 1888 /* Copy the volume flags and version to the ntfs_volume structure. */ 1889 vol->vol_flags = vi->flags; 1890 vol->major_ver = vi->major_ver; 1891 vol->minor_ver = vi->minor_ver; 1892 ntfs_attr_put_search_ctx(ctx); 1893 unmap_mft_record(NTFS_I(vol->vol_ino)); 1894 pr_info("volume version %i.%i.\n", vol->major_ver, 1895 vol->minor_ver); 1896 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1897 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1898 "volume version %i.%i (need at least version " 1899 "3.0).", vol->major_ver, vol->minor_ver); 1900 NVolClearSparseEnabled(vol); 1901 } 1902 #ifdef NTFS_RW 1903 /* Make sure that no unsupported volume flags are set. */ 1904 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1905 static const char *es1a = "Volume is dirty"; 1906 static const char *es1b = "Volume has been modified by chkdsk"; 1907 static const char *es1c = "Volume has unsupported flags set"; 1908 static const char *es2a = ". Run chkdsk and mount in Windows."; 1909 static const char *es2b = ". Mount in Windows."; 1910 const char *es1, *es2; 1911 1912 es2 = es2a; 1913 if (vol->vol_flags & VOLUME_IS_DIRTY) 1914 es1 = es1a; 1915 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1916 es1 = es1b; 1917 es2 = es2b; 1918 } else { 1919 es1 = es1c; 1920 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1921 "encountered.", 1922 (unsigned)le16_to_cpu(vol->vol_flags)); 1923 } 1924 /* If a read-write mount, convert it to a read-only mount. */ 1925 if (!sb_rdonly(sb)) { 1926 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1927 ON_ERRORS_CONTINUE))) { 1928 ntfs_error(sb, "%s and neither on_errors=" 1929 "continue nor on_errors=" 1930 "remount-ro was specified%s", 1931 es1, es2); 1932 goto iput_vol_err_out; 1933 } 1934 sb->s_flags |= SB_RDONLY; 1935 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1936 } else 1937 ntfs_warning(sb, "%s. Will not be able to remount " 1938 "read-write%s", es1, es2); 1939 /* 1940 * Do not set NVolErrors() because ntfs_remount() re-checks the 1941 * flags which we need to do in case any flags have changed. 1942 */ 1943 } 1944 /* 1945 * Get the inode for the logfile, check it and determine if the volume 1946 * was shutdown cleanly. 1947 */ 1948 rp = NULL; 1949 if (!load_and_check_logfile(vol, &rp) || 1950 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1951 static const char *es1a = "Failed to load $LogFile"; 1952 static const char *es1b = "$LogFile is not clean"; 1953 static const char *es2 = ". Mount in Windows."; 1954 const char *es1; 1955 1956 es1 = !vol->logfile_ino ? es1a : es1b; 1957 /* If a read-write mount, convert it to a read-only mount. */ 1958 if (!sb_rdonly(sb)) { 1959 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1960 ON_ERRORS_CONTINUE))) { 1961 ntfs_error(sb, "%s and neither on_errors=" 1962 "continue nor on_errors=" 1963 "remount-ro was specified%s", 1964 es1, es2); 1965 if (vol->logfile_ino) { 1966 BUG_ON(!rp); 1967 ntfs_free(rp); 1968 } 1969 goto iput_logfile_err_out; 1970 } 1971 sb->s_flags |= SB_RDONLY; 1972 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1973 } else 1974 ntfs_warning(sb, "%s. Will not be able to remount " 1975 "read-write%s", es1, es2); 1976 /* This will prevent a read-write remount. */ 1977 NVolSetErrors(vol); 1978 } 1979 ntfs_free(rp); 1980 #endif /* NTFS_RW */ 1981 /* Get the root directory inode so we can do path lookups. */ 1982 vol->root_ino = ntfs_iget(sb, FILE_root); 1983 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1984 if (!IS_ERR(vol->root_ino)) 1985 iput(vol->root_ino); 1986 ntfs_error(sb, "Failed to load root directory."); 1987 goto iput_logfile_err_out; 1988 } 1989 #ifdef NTFS_RW 1990 /* 1991 * Check if Windows is suspended to disk on the target volume. If it 1992 * is hibernated, we must not write *anything* to the disk so set 1993 * NVolErrors() without setting the dirty volume flag and mount 1994 * read-only. This will prevent read-write remounting and it will also 1995 * prevent all writes. 1996 */ 1997 err = check_windows_hibernation_status(vol); 1998 if (unlikely(err)) { 1999 static const char *es1a = "Failed to determine if Windows is " 2000 "hibernated"; 2001 static const char *es1b = "Windows is hibernated"; 2002 static const char *es2 = ". Run chkdsk."; 2003 const char *es1; 2004 2005 es1 = err < 0 ? es1a : es1b; 2006 /* If a read-write mount, convert it to a read-only mount. */ 2007 if (!sb_rdonly(sb)) { 2008 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2009 ON_ERRORS_CONTINUE))) { 2010 ntfs_error(sb, "%s and neither on_errors=" 2011 "continue nor on_errors=" 2012 "remount-ro was specified%s", 2013 es1, es2); 2014 goto iput_root_err_out; 2015 } 2016 sb->s_flags |= SB_RDONLY; 2017 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2018 } else 2019 ntfs_warning(sb, "%s. Will not be able to remount " 2020 "read-write%s", es1, es2); 2021 /* This will prevent a read-write remount. */ 2022 NVolSetErrors(vol); 2023 } 2024 /* If (still) a read-write mount, mark the volume dirty. */ 2025 if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2026 static const char *es1 = "Failed to set dirty bit in volume " 2027 "information flags"; 2028 static const char *es2 = ". Run chkdsk."; 2029 2030 /* Convert to a read-only mount. */ 2031 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2032 ON_ERRORS_CONTINUE))) { 2033 ntfs_error(sb, "%s and neither on_errors=continue nor " 2034 "on_errors=remount-ro was specified%s", 2035 es1, es2); 2036 goto iput_root_err_out; 2037 } 2038 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2039 sb->s_flags |= SB_RDONLY; 2040 /* 2041 * Do not set NVolErrors() because ntfs_remount() might manage 2042 * to set the dirty flag in which case all would be well. 2043 */ 2044 } 2045 #if 0 2046 // TODO: Enable this code once we start modifying anything that is 2047 // different between NTFS 1.2 and 3.x... 2048 /* 2049 * If (still) a read-write mount, set the NT4 compatibility flag on 2050 * newer NTFS version volumes. 2051 */ 2052 if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) && 2053 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2054 static const char *es1 = "Failed to set NT4 compatibility flag"; 2055 static const char *es2 = ". Run chkdsk."; 2056 2057 /* Convert to a read-only mount. */ 2058 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2059 ON_ERRORS_CONTINUE))) { 2060 ntfs_error(sb, "%s and neither on_errors=continue nor " 2061 "on_errors=remount-ro was specified%s", 2062 es1, es2); 2063 goto iput_root_err_out; 2064 } 2065 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2066 sb->s_flags |= SB_RDONLY; 2067 NVolSetErrors(vol); 2068 } 2069 #endif 2070 /* If (still) a read-write mount, empty the logfile. */ 2071 if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) { 2072 static const char *es1 = "Failed to empty $LogFile"; 2073 static const char *es2 = ". Mount in Windows."; 2074 2075 /* Convert to a read-only mount. */ 2076 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2077 ON_ERRORS_CONTINUE))) { 2078 ntfs_error(sb, "%s and neither on_errors=continue nor " 2079 "on_errors=remount-ro was specified%s", 2080 es1, es2); 2081 goto iput_root_err_out; 2082 } 2083 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2084 sb->s_flags |= SB_RDONLY; 2085 NVolSetErrors(vol); 2086 } 2087 #endif /* NTFS_RW */ 2088 /* If on NTFS versions before 3.0, we are done. */ 2089 if (unlikely(vol->major_ver < 3)) 2090 return true; 2091 /* NTFS 3.0+ specific initialization. */ 2092 /* Get the security descriptors inode. */ 2093 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2094 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2095 if (!IS_ERR(vol->secure_ino)) 2096 iput(vol->secure_ino); 2097 ntfs_error(sb, "Failed to load $Secure."); 2098 goto iput_root_err_out; 2099 } 2100 // TODO: Initialize security. 2101 /* Get the extended system files' directory inode. */ 2102 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2103 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino) || 2104 !S_ISDIR(vol->extend_ino->i_mode)) { 2105 if (!IS_ERR(vol->extend_ino)) 2106 iput(vol->extend_ino); 2107 ntfs_error(sb, "Failed to load $Extend."); 2108 goto iput_sec_err_out; 2109 } 2110 #ifdef NTFS_RW 2111 /* Find the quota file, load it if present, and set it up. */ 2112 if (!load_and_init_quota(vol)) { 2113 static const char *es1 = "Failed to load $Quota"; 2114 static const char *es2 = ". Run chkdsk."; 2115 2116 /* If a read-write mount, convert it to a read-only mount. */ 2117 if (!sb_rdonly(sb)) { 2118 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2119 ON_ERRORS_CONTINUE))) { 2120 ntfs_error(sb, "%s and neither on_errors=" 2121 "continue nor on_errors=" 2122 "remount-ro was specified%s", 2123 es1, es2); 2124 goto iput_quota_err_out; 2125 } 2126 sb->s_flags |= SB_RDONLY; 2127 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2128 } else 2129 ntfs_warning(sb, "%s. Will not be able to remount " 2130 "read-write%s", es1, es2); 2131 /* This will prevent a read-write remount. */ 2132 NVolSetErrors(vol); 2133 } 2134 /* If (still) a read-write mount, mark the quotas out of date. */ 2135 if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) { 2136 static const char *es1 = "Failed to mark quotas out of date"; 2137 static const char *es2 = ". Run chkdsk."; 2138 2139 /* Convert to a read-only mount. */ 2140 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2141 ON_ERRORS_CONTINUE))) { 2142 ntfs_error(sb, "%s and neither on_errors=continue nor " 2143 "on_errors=remount-ro was specified%s", 2144 es1, es2); 2145 goto iput_quota_err_out; 2146 } 2147 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2148 sb->s_flags |= SB_RDONLY; 2149 NVolSetErrors(vol); 2150 } 2151 /* 2152 * Find the transaction log file ($UsnJrnl), load it if present, check 2153 * it, and set it up. 2154 */ 2155 if (!load_and_init_usnjrnl(vol)) { 2156 static const char *es1 = "Failed to load $UsnJrnl"; 2157 static const char *es2 = ". Run chkdsk."; 2158 2159 /* If a read-write mount, convert it to a read-only mount. */ 2160 if (!sb_rdonly(sb)) { 2161 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2162 ON_ERRORS_CONTINUE))) { 2163 ntfs_error(sb, "%s and neither on_errors=" 2164 "continue nor on_errors=" 2165 "remount-ro was specified%s", 2166 es1, es2); 2167 goto iput_usnjrnl_err_out; 2168 } 2169 sb->s_flags |= SB_RDONLY; 2170 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2171 } else 2172 ntfs_warning(sb, "%s. Will not be able to remount " 2173 "read-write%s", es1, es2); 2174 /* This will prevent a read-write remount. */ 2175 NVolSetErrors(vol); 2176 } 2177 /* If (still) a read-write mount, stamp the transaction log. */ 2178 if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) { 2179 static const char *es1 = "Failed to stamp transaction log " 2180 "($UsnJrnl)"; 2181 static const char *es2 = ". Run chkdsk."; 2182 2183 /* Convert to a read-only mount. */ 2184 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2185 ON_ERRORS_CONTINUE))) { 2186 ntfs_error(sb, "%s and neither on_errors=continue nor " 2187 "on_errors=remount-ro was specified%s", 2188 es1, es2); 2189 goto iput_usnjrnl_err_out; 2190 } 2191 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2192 sb->s_flags |= SB_RDONLY; 2193 NVolSetErrors(vol); 2194 } 2195 #endif /* NTFS_RW */ 2196 return true; 2197 #ifdef NTFS_RW 2198 iput_usnjrnl_err_out: 2199 iput(vol->usnjrnl_j_ino); 2200 iput(vol->usnjrnl_max_ino); 2201 iput(vol->usnjrnl_ino); 2202 iput_quota_err_out: 2203 iput(vol->quota_q_ino); 2204 iput(vol->quota_ino); 2205 iput(vol->extend_ino); 2206 #endif /* NTFS_RW */ 2207 iput_sec_err_out: 2208 iput(vol->secure_ino); 2209 iput_root_err_out: 2210 iput(vol->root_ino); 2211 iput_logfile_err_out: 2212 #ifdef NTFS_RW 2213 iput(vol->logfile_ino); 2214 iput_vol_err_out: 2215 #endif /* NTFS_RW */ 2216 iput(vol->vol_ino); 2217 iput_lcnbmp_err_out: 2218 iput(vol->lcnbmp_ino); 2219 iput_attrdef_err_out: 2220 vol->attrdef_size = 0; 2221 if (vol->attrdef) { 2222 ntfs_free(vol->attrdef); 2223 vol->attrdef = NULL; 2224 } 2225 #ifdef NTFS_RW 2226 iput_upcase_err_out: 2227 #endif /* NTFS_RW */ 2228 vol->upcase_len = 0; 2229 mutex_lock(&ntfs_lock); 2230 if (vol->upcase == default_upcase) { 2231 ntfs_nr_upcase_users--; 2232 vol->upcase = NULL; 2233 } 2234 mutex_unlock(&ntfs_lock); 2235 if (vol->upcase) { 2236 ntfs_free(vol->upcase); 2237 vol->upcase = NULL; 2238 } 2239 iput_mftbmp_err_out: 2240 iput(vol->mftbmp_ino); 2241 iput_mirr_err_out: 2242 #ifdef NTFS_RW 2243 iput(vol->mftmirr_ino); 2244 #endif /* NTFS_RW */ 2245 return false; 2246 } 2247 2248 /** 2249 * ntfs_put_super - called by the vfs to unmount a volume 2250 * @sb: vfs superblock of volume to unmount 2251 * 2252 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2253 * the volume is being unmounted (umount system call has been invoked) and it 2254 * releases all inodes and memory belonging to the NTFS specific part of the 2255 * super block. 2256 */ 2257 static void ntfs_put_super(struct super_block *sb) 2258 { 2259 ntfs_volume *vol = NTFS_SB(sb); 2260 2261 ntfs_debug("Entering."); 2262 2263 #ifdef NTFS_RW 2264 /* 2265 * Commit all inodes while they are still open in case some of them 2266 * cause others to be dirtied. 2267 */ 2268 ntfs_commit_inode(vol->vol_ino); 2269 2270 /* NTFS 3.0+ specific. */ 2271 if (vol->major_ver >= 3) { 2272 if (vol->usnjrnl_j_ino) 2273 ntfs_commit_inode(vol->usnjrnl_j_ino); 2274 if (vol->usnjrnl_max_ino) 2275 ntfs_commit_inode(vol->usnjrnl_max_ino); 2276 if (vol->usnjrnl_ino) 2277 ntfs_commit_inode(vol->usnjrnl_ino); 2278 if (vol->quota_q_ino) 2279 ntfs_commit_inode(vol->quota_q_ino); 2280 if (vol->quota_ino) 2281 ntfs_commit_inode(vol->quota_ino); 2282 if (vol->extend_ino) 2283 ntfs_commit_inode(vol->extend_ino); 2284 if (vol->secure_ino) 2285 ntfs_commit_inode(vol->secure_ino); 2286 } 2287 2288 ntfs_commit_inode(vol->root_ino); 2289 2290 down_write(&vol->lcnbmp_lock); 2291 ntfs_commit_inode(vol->lcnbmp_ino); 2292 up_write(&vol->lcnbmp_lock); 2293 2294 down_write(&vol->mftbmp_lock); 2295 ntfs_commit_inode(vol->mftbmp_ino); 2296 up_write(&vol->mftbmp_lock); 2297 2298 if (vol->logfile_ino) 2299 ntfs_commit_inode(vol->logfile_ino); 2300 2301 if (vol->mftmirr_ino) 2302 ntfs_commit_inode(vol->mftmirr_ino); 2303 ntfs_commit_inode(vol->mft_ino); 2304 2305 /* 2306 * If a read-write mount and no volume errors have occurred, mark the 2307 * volume clean. Also, re-commit all affected inodes. 2308 */ 2309 if (!sb_rdonly(sb)) { 2310 if (!NVolErrors(vol)) { 2311 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2312 ntfs_warning(sb, "Failed to clear dirty bit " 2313 "in volume information " 2314 "flags. Run chkdsk."); 2315 ntfs_commit_inode(vol->vol_ino); 2316 ntfs_commit_inode(vol->root_ino); 2317 if (vol->mftmirr_ino) 2318 ntfs_commit_inode(vol->mftmirr_ino); 2319 ntfs_commit_inode(vol->mft_ino); 2320 } else { 2321 ntfs_warning(sb, "Volume has errors. Leaving volume " 2322 "marked dirty. Run chkdsk."); 2323 } 2324 } 2325 #endif /* NTFS_RW */ 2326 2327 iput(vol->vol_ino); 2328 vol->vol_ino = NULL; 2329 2330 /* NTFS 3.0+ specific clean up. */ 2331 if (vol->major_ver >= 3) { 2332 #ifdef NTFS_RW 2333 if (vol->usnjrnl_j_ino) { 2334 iput(vol->usnjrnl_j_ino); 2335 vol->usnjrnl_j_ino = NULL; 2336 } 2337 if (vol->usnjrnl_max_ino) { 2338 iput(vol->usnjrnl_max_ino); 2339 vol->usnjrnl_max_ino = NULL; 2340 } 2341 if (vol->usnjrnl_ino) { 2342 iput(vol->usnjrnl_ino); 2343 vol->usnjrnl_ino = NULL; 2344 } 2345 if (vol->quota_q_ino) { 2346 iput(vol->quota_q_ino); 2347 vol->quota_q_ino = NULL; 2348 } 2349 if (vol->quota_ino) { 2350 iput(vol->quota_ino); 2351 vol->quota_ino = NULL; 2352 } 2353 #endif /* NTFS_RW */ 2354 if (vol->extend_ino) { 2355 iput(vol->extend_ino); 2356 vol->extend_ino = NULL; 2357 } 2358 if (vol->secure_ino) { 2359 iput(vol->secure_ino); 2360 vol->secure_ino = NULL; 2361 } 2362 } 2363 2364 iput(vol->root_ino); 2365 vol->root_ino = NULL; 2366 2367 down_write(&vol->lcnbmp_lock); 2368 iput(vol->lcnbmp_ino); 2369 vol->lcnbmp_ino = NULL; 2370 up_write(&vol->lcnbmp_lock); 2371 2372 down_write(&vol->mftbmp_lock); 2373 iput(vol->mftbmp_ino); 2374 vol->mftbmp_ino = NULL; 2375 up_write(&vol->mftbmp_lock); 2376 2377 #ifdef NTFS_RW 2378 if (vol->logfile_ino) { 2379 iput(vol->logfile_ino); 2380 vol->logfile_ino = NULL; 2381 } 2382 if (vol->mftmirr_ino) { 2383 /* Re-commit the mft mirror and mft just in case. */ 2384 ntfs_commit_inode(vol->mftmirr_ino); 2385 ntfs_commit_inode(vol->mft_ino); 2386 iput(vol->mftmirr_ino); 2387 vol->mftmirr_ino = NULL; 2388 } 2389 /* 2390 * We should have no dirty inodes left, due to 2391 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2392 * the underlying mft records are written out and cleaned. 2393 */ 2394 ntfs_commit_inode(vol->mft_ino); 2395 write_inode_now(vol->mft_ino, 1); 2396 #endif /* NTFS_RW */ 2397 2398 iput(vol->mft_ino); 2399 vol->mft_ino = NULL; 2400 2401 /* Throw away the table of attribute definitions. */ 2402 vol->attrdef_size = 0; 2403 if (vol->attrdef) { 2404 ntfs_free(vol->attrdef); 2405 vol->attrdef = NULL; 2406 } 2407 vol->upcase_len = 0; 2408 /* 2409 * Destroy the global default upcase table if necessary. Also decrease 2410 * the number of upcase users if we are a user. 2411 */ 2412 mutex_lock(&ntfs_lock); 2413 if (vol->upcase == default_upcase) { 2414 ntfs_nr_upcase_users--; 2415 vol->upcase = NULL; 2416 } 2417 if (!ntfs_nr_upcase_users && default_upcase) { 2418 ntfs_free(default_upcase); 2419 default_upcase = NULL; 2420 } 2421 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2422 free_compression_buffers(); 2423 mutex_unlock(&ntfs_lock); 2424 if (vol->upcase) { 2425 ntfs_free(vol->upcase); 2426 vol->upcase = NULL; 2427 } 2428 2429 unload_nls(vol->nls_map); 2430 2431 sb->s_fs_info = NULL; 2432 kfree(vol); 2433 } 2434 2435 /** 2436 * get_nr_free_clusters - return the number of free clusters on a volume 2437 * @vol: ntfs volume for which to obtain free cluster count 2438 * 2439 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2440 * actually calculate the number of clusters in use instead because this 2441 * allows us to not care about partial pages as these will be just zero filled 2442 * and hence not be counted as allocated clusters. 2443 * 2444 * The only particularity is that clusters beyond the end of the logical ntfs 2445 * volume will be marked as allocated to prevent errors which means we have to 2446 * discount those at the end. This is important as the cluster bitmap always 2447 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2448 * the logical volume and marked in use when they are not as they do not exist. 2449 * 2450 * If any pages cannot be read we assume all clusters in the erroring pages are 2451 * in use. This means we return an underestimate on errors which is better than 2452 * an overestimate. 2453 */ 2454 static s64 get_nr_free_clusters(ntfs_volume *vol) 2455 { 2456 s64 nr_free = vol->nr_clusters; 2457 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2458 struct page *page; 2459 pgoff_t index, max_index; 2460 2461 ntfs_debug("Entering."); 2462 /* Serialize accesses to the cluster bitmap. */ 2463 down_read(&vol->lcnbmp_lock); 2464 /* 2465 * Convert the number of bits into bytes rounded up, then convert into 2466 * multiples of PAGE_SIZE, rounding up so that if we have one 2467 * full and one partial page max_index = 2. 2468 */ 2469 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >> 2470 PAGE_SHIFT; 2471 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */ 2472 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2473 max_index, PAGE_SIZE / 4); 2474 for (index = 0; index < max_index; index++) { 2475 unsigned long *kaddr; 2476 2477 /* 2478 * Read the page from page cache, getting it from backing store 2479 * if necessary, and increment the use count. 2480 */ 2481 page = read_mapping_page(mapping, index, NULL); 2482 /* Ignore pages which errored synchronously. */ 2483 if (IS_ERR(page)) { 2484 ntfs_debug("read_mapping_page() error. Skipping " 2485 "page (index 0x%lx).", index); 2486 nr_free -= PAGE_SIZE * 8; 2487 continue; 2488 } 2489 kaddr = kmap_atomic(page); 2490 /* 2491 * Subtract the number of set bits. If this 2492 * is the last page and it is partial we don't really care as 2493 * it just means we do a little extra work but it won't affect 2494 * the result as all out of range bytes are set to zero by 2495 * ntfs_readpage(). 2496 */ 2497 nr_free -= bitmap_weight(kaddr, 2498 PAGE_SIZE * BITS_PER_BYTE); 2499 kunmap_atomic(kaddr); 2500 put_page(page); 2501 } 2502 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2503 /* 2504 * Fixup for eventual bits outside logical ntfs volume (see function 2505 * description above). 2506 */ 2507 if (vol->nr_clusters & 63) 2508 nr_free += 64 - (vol->nr_clusters & 63); 2509 up_read(&vol->lcnbmp_lock); 2510 /* If errors occurred we may well have gone below zero, fix this. */ 2511 if (nr_free < 0) 2512 nr_free = 0; 2513 ntfs_debug("Exiting."); 2514 return nr_free; 2515 } 2516 2517 /** 2518 * __get_nr_free_mft_records - return the number of free inodes on a volume 2519 * @vol: ntfs volume for which to obtain free inode count 2520 * @nr_free: number of mft records in filesystem 2521 * @max_index: maximum number of pages containing set bits 2522 * 2523 * Calculate the number of free mft records (inodes) on the mounted NTFS 2524 * volume @vol. We actually calculate the number of mft records in use instead 2525 * because this allows us to not care about partial pages as these will be just 2526 * zero filled and hence not be counted as allocated mft record. 2527 * 2528 * If any pages cannot be read we assume all mft records in the erroring pages 2529 * are in use. This means we return an underestimate on errors which is better 2530 * than an overestimate. 2531 * 2532 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2533 */ 2534 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2535 s64 nr_free, const pgoff_t max_index) 2536 { 2537 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2538 struct page *page; 2539 pgoff_t index; 2540 2541 ntfs_debug("Entering."); 2542 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */ 2543 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2544 "0x%lx.", max_index, PAGE_SIZE / 4); 2545 for (index = 0; index < max_index; index++) { 2546 unsigned long *kaddr; 2547 2548 /* 2549 * Read the page from page cache, getting it from backing store 2550 * if necessary, and increment the use count. 2551 */ 2552 page = read_mapping_page(mapping, index, NULL); 2553 /* Ignore pages which errored synchronously. */ 2554 if (IS_ERR(page)) { 2555 ntfs_debug("read_mapping_page() error. Skipping " 2556 "page (index 0x%lx).", index); 2557 nr_free -= PAGE_SIZE * 8; 2558 continue; 2559 } 2560 kaddr = kmap_atomic(page); 2561 /* 2562 * Subtract the number of set bits. If this 2563 * is the last page and it is partial we don't really care as 2564 * it just means we do a little extra work but it won't affect 2565 * the result as all out of range bytes are set to zero by 2566 * ntfs_readpage(). 2567 */ 2568 nr_free -= bitmap_weight(kaddr, 2569 PAGE_SIZE * BITS_PER_BYTE); 2570 kunmap_atomic(kaddr); 2571 put_page(page); 2572 } 2573 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2574 index - 1); 2575 /* If errors occurred we may well have gone below zero, fix this. */ 2576 if (nr_free < 0) 2577 nr_free = 0; 2578 ntfs_debug("Exiting."); 2579 return nr_free; 2580 } 2581 2582 /** 2583 * ntfs_statfs - return information about mounted NTFS volume 2584 * @dentry: dentry from mounted volume 2585 * @sfs: statfs structure in which to return the information 2586 * 2587 * Return information about the mounted NTFS volume @dentry in the statfs structure 2588 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2589 * called). We interpret the values to be correct of the moment in time at 2590 * which we are called. Most values are variable otherwise and this isn't just 2591 * the free values but the totals as well. For example we can increase the 2592 * total number of file nodes if we run out and we can keep doing this until 2593 * there is no more space on the volume left at all. 2594 * 2595 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2596 * ustat system calls. 2597 * 2598 * Return 0 on success or -errno on error. 2599 */ 2600 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2601 { 2602 struct super_block *sb = dentry->d_sb; 2603 s64 size; 2604 ntfs_volume *vol = NTFS_SB(sb); 2605 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2606 pgoff_t max_index; 2607 unsigned long flags; 2608 2609 ntfs_debug("Entering."); 2610 /* Type of filesystem. */ 2611 sfs->f_type = NTFS_SB_MAGIC; 2612 /* Optimal transfer block size. */ 2613 sfs->f_bsize = PAGE_SIZE; 2614 /* 2615 * Total data blocks in filesystem in units of f_bsize and since 2616 * inodes are also stored in data blocs ($MFT is a file) this is just 2617 * the total clusters. 2618 */ 2619 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2620 PAGE_SHIFT; 2621 /* Free data blocks in filesystem in units of f_bsize. */ 2622 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2623 PAGE_SHIFT; 2624 if (size < 0LL) 2625 size = 0LL; 2626 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2627 sfs->f_bavail = sfs->f_bfree = size; 2628 /* Serialize accesses to the inode bitmap. */ 2629 down_read(&vol->mftbmp_lock); 2630 read_lock_irqsave(&mft_ni->size_lock, flags); 2631 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2632 /* 2633 * Convert the maximum number of set bits into bytes rounded up, then 2634 * convert into multiples of PAGE_SIZE, rounding up so that if we 2635 * have one full and one partial page max_index = 2. 2636 */ 2637 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2638 + 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT; 2639 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2640 /* Number of inodes in filesystem (at this point in time). */ 2641 sfs->f_files = size; 2642 /* Free inodes in fs (based on current total count). */ 2643 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2644 up_read(&vol->mftbmp_lock); 2645 /* 2646 * File system id. This is extremely *nix flavour dependent and even 2647 * within Linux itself all fs do their own thing. I interpret this to 2648 * mean a unique id associated with the mounted fs and not the id 2649 * associated with the filesystem driver, the latter is already given 2650 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2651 * volume serial number splitting it into two 32-bit parts. We enter 2652 * the least significant 32-bits in f_fsid[0] and the most significant 2653 * 32-bits in f_fsid[1]. 2654 */ 2655 sfs->f_fsid = u64_to_fsid(vol->serial_no); 2656 /* Maximum length of filenames. */ 2657 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2658 return 0; 2659 } 2660 2661 #ifdef NTFS_RW 2662 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) 2663 { 2664 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); 2665 } 2666 #endif 2667 2668 /* 2669 * The complete super operations. 2670 */ 2671 static const struct super_operations ntfs_sops = { 2672 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2673 .free_inode = ntfs_free_big_inode, /* VFS: Deallocate inode. */ 2674 #ifdef NTFS_RW 2675 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2676 disk. */ 2677 #endif /* NTFS_RW */ 2678 .put_super = ntfs_put_super, /* Syscall: umount. */ 2679 .statfs = ntfs_statfs, /* Syscall: statfs */ 2680 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2681 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is 2682 removed from memory. */ 2683 .show_options = ntfs_show_options, /* Show mount options in 2684 proc. */ 2685 }; 2686 2687 /** 2688 * ntfs_fill_super - mount an ntfs filesystem 2689 * @sb: super block of ntfs filesystem to mount 2690 * @opt: string containing the mount options 2691 * @silent: silence error output 2692 * 2693 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2694 * with the mount otions in @data with the NTFS filesystem. 2695 * 2696 * If @silent is true, remain silent even if errors are detected. This is used 2697 * during bootup, when the kernel tries to mount the root filesystem with all 2698 * registered filesystems one after the other until one succeeds. This implies 2699 * that all filesystems except the correct one will quite correctly and 2700 * expectedly return an error, but nobody wants to see error messages when in 2701 * fact this is what is supposed to happen. 2702 * 2703 * NOTE: @sb->s_flags contains the mount options flags. 2704 */ 2705 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2706 { 2707 ntfs_volume *vol; 2708 struct buffer_head *bh; 2709 struct inode *tmp_ino; 2710 int blocksize, result; 2711 2712 /* 2713 * We do a pretty difficult piece of bootstrap by reading the 2714 * MFT (and other metadata) from disk into memory. We'll only 2715 * release this metadata during umount, so the locking patterns 2716 * observed during bootstrap do not count. So turn off the 2717 * observation of locking patterns (strictly for this context 2718 * only) while mounting NTFS. [The validator is still active 2719 * otherwise, even for this context: it will for example record 2720 * lock class registrations.] 2721 */ 2722 lockdep_off(); 2723 ntfs_debug("Entering."); 2724 #ifndef NTFS_RW 2725 sb->s_flags |= SB_RDONLY; 2726 #endif /* ! NTFS_RW */ 2727 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2728 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2729 vol = NTFS_SB(sb); 2730 if (!vol) { 2731 if (!silent) 2732 ntfs_error(sb, "Allocation of NTFS volume structure " 2733 "failed. Aborting mount..."); 2734 lockdep_on(); 2735 return -ENOMEM; 2736 } 2737 /* Initialize ntfs_volume structure. */ 2738 *vol = (ntfs_volume) { 2739 .sb = sb, 2740 /* 2741 * Default is group and other don't have any access to files or 2742 * directories while owner has full access. Further, files by 2743 * default are not executable but directories are of course 2744 * browseable. 2745 */ 2746 .fmask = 0177, 2747 .dmask = 0077, 2748 }; 2749 init_rwsem(&vol->mftbmp_lock); 2750 init_rwsem(&vol->lcnbmp_lock); 2751 2752 /* By default, enable sparse support. */ 2753 NVolSetSparseEnabled(vol); 2754 2755 /* Important to get the mount options dealt with now. */ 2756 if (!parse_options(vol, (char*)opt)) 2757 goto err_out_now; 2758 2759 /* We support sector sizes up to the PAGE_SIZE. */ 2760 if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) { 2761 if (!silent) 2762 ntfs_error(sb, "Device has unsupported sector size " 2763 "(%i). The maximum supported sector " 2764 "size on this architecture is %lu " 2765 "bytes.", 2766 bdev_logical_block_size(sb->s_bdev), 2767 PAGE_SIZE); 2768 goto err_out_now; 2769 } 2770 /* 2771 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2772 * sector size, whichever is bigger. 2773 */ 2774 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2775 if (blocksize < NTFS_BLOCK_SIZE) { 2776 if (!silent) 2777 ntfs_error(sb, "Unable to set device block size."); 2778 goto err_out_now; 2779 } 2780 BUG_ON(blocksize != sb->s_blocksize); 2781 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2782 blocksize, sb->s_blocksize_bits); 2783 /* Determine the size of the device in units of block_size bytes. */ 2784 vol->nr_blocks = sb_bdev_nr_blocks(sb); 2785 if (!vol->nr_blocks) { 2786 if (!silent) 2787 ntfs_error(sb, "Unable to determine device size."); 2788 goto err_out_now; 2789 } 2790 /* Read the boot sector and return unlocked buffer head to it. */ 2791 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2792 if (!silent) 2793 ntfs_error(sb, "Not an NTFS volume."); 2794 goto err_out_now; 2795 } 2796 /* 2797 * Extract the data from the boot sector and setup the ntfs volume 2798 * using it. 2799 */ 2800 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2801 brelse(bh); 2802 if (!result) { 2803 if (!silent) 2804 ntfs_error(sb, "Unsupported NTFS filesystem."); 2805 goto err_out_now; 2806 } 2807 /* 2808 * If the boot sector indicates a sector size bigger than the current 2809 * device block size, switch the device block size to the sector size. 2810 * TODO: It may be possible to support this case even when the set 2811 * below fails, we would just be breaking up the i/o for each sector 2812 * into multiple blocks for i/o purposes but otherwise it should just 2813 * work. However it is safer to leave disabled until someone hits this 2814 * error message and then we can get them to try it without the setting 2815 * so we know for sure that it works. 2816 */ 2817 if (vol->sector_size > blocksize) { 2818 blocksize = sb_set_blocksize(sb, vol->sector_size); 2819 if (blocksize != vol->sector_size) { 2820 if (!silent) 2821 ntfs_error(sb, "Unable to set device block " 2822 "size to sector size (%i).", 2823 vol->sector_size); 2824 goto err_out_now; 2825 } 2826 BUG_ON(blocksize != sb->s_blocksize); 2827 vol->nr_blocks = sb_bdev_nr_blocks(sb); 2828 ntfs_debug("Changed device block size to %i bytes (block size " 2829 "bits %i) to match volume sector size.", 2830 blocksize, sb->s_blocksize_bits); 2831 } 2832 /* Initialize the cluster and mft allocators. */ 2833 ntfs_setup_allocators(vol); 2834 /* Setup remaining fields in the super block. */ 2835 sb->s_magic = NTFS_SB_MAGIC; 2836 /* 2837 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2838 * sb->s_maxbytes = ~0ULL >> 1; 2839 * But the kernel uses a long as the page cache page index which on 2840 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2841 * defined to the maximum the page cache page index can cope with 2842 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2843 */ 2844 sb->s_maxbytes = MAX_LFS_FILESIZE; 2845 /* Ntfs measures time in 100ns intervals. */ 2846 sb->s_time_gran = 100; 2847 /* 2848 * Now load the metadata required for the page cache and our address 2849 * space operations to function. We do this by setting up a specialised 2850 * read_inode method and then just calling the normal iget() to obtain 2851 * the inode for $MFT which is sufficient to allow our normal inode 2852 * operations and associated address space operations to function. 2853 */ 2854 sb->s_op = &ntfs_sops; 2855 tmp_ino = new_inode(sb); 2856 if (!tmp_ino) { 2857 if (!silent) 2858 ntfs_error(sb, "Failed to load essential metadata."); 2859 goto err_out_now; 2860 } 2861 tmp_ino->i_ino = FILE_MFT; 2862 insert_inode_hash(tmp_ino); 2863 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2864 if (!silent) 2865 ntfs_error(sb, "Failed to load essential metadata."); 2866 goto iput_tmp_ino_err_out_now; 2867 } 2868 mutex_lock(&ntfs_lock); 2869 /* 2870 * The current mount is a compression user if the cluster size is 2871 * less than or equal 4kiB. 2872 */ 2873 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2874 result = allocate_compression_buffers(); 2875 if (result) { 2876 ntfs_error(NULL, "Failed to allocate buffers " 2877 "for compression engine."); 2878 ntfs_nr_compression_users--; 2879 mutex_unlock(&ntfs_lock); 2880 goto iput_tmp_ino_err_out_now; 2881 } 2882 } 2883 /* 2884 * Generate the global default upcase table if necessary. Also 2885 * temporarily increment the number of upcase users to avoid race 2886 * conditions with concurrent (u)mounts. 2887 */ 2888 if (!default_upcase) 2889 default_upcase = generate_default_upcase(); 2890 ntfs_nr_upcase_users++; 2891 mutex_unlock(&ntfs_lock); 2892 /* 2893 * From now on, ignore @silent parameter. If we fail below this line, 2894 * it will be due to a corrupt fs or a system error, so we report it. 2895 */ 2896 /* 2897 * Open the system files with normal access functions and complete 2898 * setting up the ntfs super block. 2899 */ 2900 if (!load_system_files(vol)) { 2901 ntfs_error(sb, "Failed to load system files."); 2902 goto unl_upcase_iput_tmp_ino_err_out_now; 2903 } 2904 2905 /* We grab a reference, simulating an ntfs_iget(). */ 2906 ihold(vol->root_ino); 2907 if ((sb->s_root = d_make_root(vol->root_ino))) { 2908 ntfs_debug("Exiting, status successful."); 2909 /* Release the default upcase if it has no users. */ 2910 mutex_lock(&ntfs_lock); 2911 if (!--ntfs_nr_upcase_users && default_upcase) { 2912 ntfs_free(default_upcase); 2913 default_upcase = NULL; 2914 } 2915 mutex_unlock(&ntfs_lock); 2916 sb->s_export_op = &ntfs_export_ops; 2917 lockdep_on(); 2918 return 0; 2919 } 2920 ntfs_error(sb, "Failed to allocate root directory."); 2921 /* Clean up after the successful load_system_files() call from above. */ 2922 // TODO: Use ntfs_put_super() instead of repeating all this code... 2923 // FIXME: Should mark the volume clean as the error is most likely 2924 // -ENOMEM. 2925 iput(vol->vol_ino); 2926 vol->vol_ino = NULL; 2927 /* NTFS 3.0+ specific clean up. */ 2928 if (vol->major_ver >= 3) { 2929 #ifdef NTFS_RW 2930 if (vol->usnjrnl_j_ino) { 2931 iput(vol->usnjrnl_j_ino); 2932 vol->usnjrnl_j_ino = NULL; 2933 } 2934 if (vol->usnjrnl_max_ino) { 2935 iput(vol->usnjrnl_max_ino); 2936 vol->usnjrnl_max_ino = NULL; 2937 } 2938 if (vol->usnjrnl_ino) { 2939 iput(vol->usnjrnl_ino); 2940 vol->usnjrnl_ino = NULL; 2941 } 2942 if (vol->quota_q_ino) { 2943 iput(vol->quota_q_ino); 2944 vol->quota_q_ino = NULL; 2945 } 2946 if (vol->quota_ino) { 2947 iput(vol->quota_ino); 2948 vol->quota_ino = NULL; 2949 } 2950 #endif /* NTFS_RW */ 2951 if (vol->extend_ino) { 2952 iput(vol->extend_ino); 2953 vol->extend_ino = NULL; 2954 } 2955 if (vol->secure_ino) { 2956 iput(vol->secure_ino); 2957 vol->secure_ino = NULL; 2958 } 2959 } 2960 iput(vol->root_ino); 2961 vol->root_ino = NULL; 2962 iput(vol->lcnbmp_ino); 2963 vol->lcnbmp_ino = NULL; 2964 iput(vol->mftbmp_ino); 2965 vol->mftbmp_ino = NULL; 2966 #ifdef NTFS_RW 2967 if (vol->logfile_ino) { 2968 iput(vol->logfile_ino); 2969 vol->logfile_ino = NULL; 2970 } 2971 if (vol->mftmirr_ino) { 2972 iput(vol->mftmirr_ino); 2973 vol->mftmirr_ino = NULL; 2974 } 2975 #endif /* NTFS_RW */ 2976 /* Throw away the table of attribute definitions. */ 2977 vol->attrdef_size = 0; 2978 if (vol->attrdef) { 2979 ntfs_free(vol->attrdef); 2980 vol->attrdef = NULL; 2981 } 2982 vol->upcase_len = 0; 2983 mutex_lock(&ntfs_lock); 2984 if (vol->upcase == default_upcase) { 2985 ntfs_nr_upcase_users--; 2986 vol->upcase = NULL; 2987 } 2988 mutex_unlock(&ntfs_lock); 2989 if (vol->upcase) { 2990 ntfs_free(vol->upcase); 2991 vol->upcase = NULL; 2992 } 2993 if (vol->nls_map) { 2994 unload_nls(vol->nls_map); 2995 vol->nls_map = NULL; 2996 } 2997 /* Error exit code path. */ 2998 unl_upcase_iput_tmp_ino_err_out_now: 2999 /* 3000 * Decrease the number of upcase users and destroy the global default 3001 * upcase table if necessary. 3002 */ 3003 mutex_lock(&ntfs_lock); 3004 if (!--ntfs_nr_upcase_users && default_upcase) { 3005 ntfs_free(default_upcase); 3006 default_upcase = NULL; 3007 } 3008 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3009 free_compression_buffers(); 3010 mutex_unlock(&ntfs_lock); 3011 iput_tmp_ino_err_out_now: 3012 iput(tmp_ino); 3013 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3014 iput(vol->mft_ino); 3015 vol->mft_ino = NULL; 3016 /* Errors at this stage are irrelevant. */ 3017 err_out_now: 3018 sb->s_fs_info = NULL; 3019 kfree(vol); 3020 ntfs_debug("Failed, returning -EINVAL."); 3021 lockdep_on(); 3022 return -EINVAL; 3023 } 3024 3025 /* 3026 * This is a slab cache to optimize allocations and deallocations of Unicode 3027 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3028 * (255) Unicode characters + a terminating NULL Unicode character. 3029 */ 3030 struct kmem_cache *ntfs_name_cache; 3031 3032 /* Slab caches for efficient allocation/deallocation of inodes. */ 3033 struct kmem_cache *ntfs_inode_cache; 3034 struct kmem_cache *ntfs_big_inode_cache; 3035 3036 /* Init once constructor for the inode slab cache. */ 3037 static void ntfs_big_inode_init_once(void *foo) 3038 { 3039 ntfs_inode *ni = (ntfs_inode *)foo; 3040 3041 inode_init_once(VFS_I(ni)); 3042 } 3043 3044 /* 3045 * Slab caches to optimize allocations and deallocations of attribute search 3046 * contexts and index contexts, respectively. 3047 */ 3048 struct kmem_cache *ntfs_attr_ctx_cache; 3049 struct kmem_cache *ntfs_index_ctx_cache; 3050 3051 /* Driver wide mutex. */ 3052 DEFINE_MUTEX(ntfs_lock); 3053 3054 static struct dentry *ntfs_mount(struct file_system_type *fs_type, 3055 int flags, const char *dev_name, void *data) 3056 { 3057 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3058 } 3059 3060 static struct file_system_type ntfs_fs_type = { 3061 .owner = THIS_MODULE, 3062 .name = "ntfs", 3063 .mount = ntfs_mount, 3064 .kill_sb = kill_block_super, 3065 .fs_flags = FS_REQUIRES_DEV, 3066 }; 3067 MODULE_ALIAS_FS("ntfs"); 3068 3069 /* Stable names for the slab caches. */ 3070 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3071 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3072 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3073 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3074 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3075 3076 static int __init init_ntfs_fs(void) 3077 { 3078 int err = 0; 3079 3080 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3081 pr_info("driver " NTFS_VERSION " [Flags: R/" 3082 #ifdef NTFS_RW 3083 "W" 3084 #else 3085 "O" 3086 #endif 3087 #ifdef DEBUG 3088 " DEBUG" 3089 #endif 3090 #ifdef MODULE 3091 " MODULE" 3092 #endif 3093 "].\n"); 3094 3095 ntfs_debug("Debug messages are enabled."); 3096 3097 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3098 sizeof(ntfs_index_context), 0 /* offset */, 3099 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3100 if (!ntfs_index_ctx_cache) { 3101 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name); 3102 goto ictx_err_out; 3103 } 3104 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3105 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3106 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3107 if (!ntfs_attr_ctx_cache) { 3108 pr_crit("NTFS: Failed to create %s!\n", 3109 ntfs_attr_ctx_cache_name); 3110 goto actx_err_out; 3111 } 3112 3113 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3114 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3115 SLAB_HWCACHE_ALIGN, NULL); 3116 if (!ntfs_name_cache) { 3117 pr_crit("Failed to create %s!\n", ntfs_name_cache_name); 3118 goto name_err_out; 3119 } 3120 3121 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3122 sizeof(ntfs_inode), 0, 3123 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3124 if (!ntfs_inode_cache) { 3125 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name); 3126 goto inode_err_out; 3127 } 3128 3129 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3130 sizeof(big_ntfs_inode), 0, 3131 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 3132 SLAB_ACCOUNT, ntfs_big_inode_init_once); 3133 if (!ntfs_big_inode_cache) { 3134 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name); 3135 goto big_inode_err_out; 3136 } 3137 3138 /* Register the ntfs sysctls. */ 3139 err = ntfs_sysctl(1); 3140 if (err) { 3141 pr_crit("Failed to register NTFS sysctls!\n"); 3142 goto sysctl_err_out; 3143 } 3144 3145 err = register_filesystem(&ntfs_fs_type); 3146 if (!err) { 3147 ntfs_debug("NTFS driver registered successfully."); 3148 return 0; /* Success! */ 3149 } 3150 pr_crit("Failed to register NTFS filesystem driver!\n"); 3151 3152 /* Unregister the ntfs sysctls. */ 3153 ntfs_sysctl(0); 3154 sysctl_err_out: 3155 kmem_cache_destroy(ntfs_big_inode_cache); 3156 big_inode_err_out: 3157 kmem_cache_destroy(ntfs_inode_cache); 3158 inode_err_out: 3159 kmem_cache_destroy(ntfs_name_cache); 3160 name_err_out: 3161 kmem_cache_destroy(ntfs_attr_ctx_cache); 3162 actx_err_out: 3163 kmem_cache_destroy(ntfs_index_ctx_cache); 3164 ictx_err_out: 3165 if (!err) { 3166 pr_crit("Aborting NTFS filesystem driver registration...\n"); 3167 err = -ENOMEM; 3168 } 3169 return err; 3170 } 3171 3172 static void __exit exit_ntfs_fs(void) 3173 { 3174 ntfs_debug("Unregistering NTFS driver."); 3175 3176 unregister_filesystem(&ntfs_fs_type); 3177 3178 /* 3179 * Make sure all delayed rcu free inodes are flushed before we 3180 * destroy cache. 3181 */ 3182 rcu_barrier(); 3183 kmem_cache_destroy(ntfs_big_inode_cache); 3184 kmem_cache_destroy(ntfs_inode_cache); 3185 kmem_cache_destroy(ntfs_name_cache); 3186 kmem_cache_destroy(ntfs_attr_ctx_cache); 3187 kmem_cache_destroy(ntfs_index_ctx_cache); 3188 /* Unregister the ntfs sysctls. */ 3189 ntfs_sysctl(0); 3190 } 3191 3192 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); 3193 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc."); 3194 MODULE_VERSION(NTFS_VERSION); 3195 MODULE_LICENSE("GPL"); 3196 #ifdef DEBUG 3197 module_param(debug_msgs, bint, 0); 3198 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3199 #endif 3200 3201 module_init(init_ntfs_fs) 3202 module_exit(exit_ntfs_fs) 3203