xref: /openbmc/linux/fs/ntfs/super.c (revision e23feb16)
1 /*
2  * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5  * Copyright (c) 2001,2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/bitmap.h>
34 
35 #include "sysctl.h"
36 #include "logfile.h"
37 #include "quota.h"
38 #include "usnjrnl.h"
39 #include "dir.h"
40 #include "debug.h"
41 #include "index.h"
42 #include "inode.h"
43 #include "aops.h"
44 #include "layout.h"
45 #include "malloc.h"
46 #include "ntfs.h"
47 
48 /* Number of mounted filesystems which have compression enabled. */
49 static unsigned long ntfs_nr_compression_users;
50 
51 /* A global default upcase table and a corresponding reference count. */
52 static ntfschar *default_upcase = NULL;
53 static unsigned long ntfs_nr_upcase_users = 0;
54 
55 /* Error constants/strings used in inode.c::ntfs_show_options(). */
56 typedef enum {
57 	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
58 	ON_ERRORS_PANIC			= 0x01,
59 	ON_ERRORS_REMOUNT_RO		= 0x02,
60 	ON_ERRORS_CONTINUE		= 0x04,
61 	/* Optional, can be combined with any of the above. */
62 	ON_ERRORS_RECOVER		= 0x10,
63 } ON_ERRORS_ACTIONS;
64 
65 const option_t on_errors_arr[] = {
66 	{ ON_ERRORS_PANIC,	"panic" },
67 	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
68 	{ ON_ERRORS_CONTINUE,	"continue", },
69 	{ ON_ERRORS_RECOVER,	"recover" },
70 	{ 0,			NULL }
71 };
72 
73 /**
74  * simple_getbool -
75  *
76  * Copied from old ntfs driver (which copied from vfat driver).
77  */
78 static int simple_getbool(char *s, bool *setval)
79 {
80 	if (s) {
81 		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
82 			*setval = true;
83 		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
84 							!strcmp(s, "false"))
85 			*setval = false;
86 		else
87 			return 0;
88 	} else
89 		*setval = true;
90 	return 1;
91 }
92 
93 /**
94  * parse_options - parse the (re)mount options
95  * @vol:	ntfs volume
96  * @opt:	string containing the (re)mount options
97  *
98  * Parse the recognized options in @opt for the ntfs volume described by @vol.
99  */
100 static bool parse_options(ntfs_volume *vol, char *opt)
101 {
102 	char *p, *v, *ov;
103 	static char *utf8 = "utf8";
104 	int errors = 0, sloppy = 0;
105 	kuid_t uid = INVALID_UID;
106 	kgid_t gid = INVALID_GID;
107 	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
108 	int mft_zone_multiplier = -1, on_errors = -1;
109 	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
110 	struct nls_table *nls_map = NULL, *old_nls;
111 
112 	/* I am lazy... (-8 */
113 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
114 	if (!strcmp(p, option)) {					\
115 		if (!v || !*v)						\
116 			variable = default_value;			\
117 		else {							\
118 			variable = simple_strtoul(ov = v, &v, 0);	\
119 			if (*v)						\
120 				goto needs_val;				\
121 		}							\
122 	}
123 #define NTFS_GETOPT(option, variable)					\
124 	if (!strcmp(p, option)) {					\
125 		if (!v || !*v)						\
126 			goto needs_arg;					\
127 		variable = simple_strtoul(ov = v, &v, 0);		\
128 		if (*v)							\
129 			goto needs_val;					\
130 	}
131 #define NTFS_GETOPT_UID(option, variable)				\
132 	if (!strcmp(p, option)) {					\
133 		uid_t uid_value;					\
134 		if (!v || !*v)						\
135 			goto needs_arg;					\
136 		uid_value = simple_strtoul(ov = v, &v, 0);		\
137 		if (*v)							\
138 			goto needs_val;					\
139 		variable = make_kuid(current_user_ns(), uid_value);	\
140 		if (!uid_valid(variable))				\
141 			goto needs_val;					\
142 	}
143 #define NTFS_GETOPT_GID(option, variable)				\
144 	if (!strcmp(p, option)) {					\
145 		gid_t gid_value;					\
146 		if (!v || !*v)						\
147 			goto needs_arg;					\
148 		gid_value = simple_strtoul(ov = v, &v, 0);		\
149 		if (*v)							\
150 			goto needs_val;					\
151 		variable = make_kgid(current_user_ns(), gid_value);	\
152 		if (!gid_valid(variable))				\
153 			goto needs_val;					\
154 	}
155 #define NTFS_GETOPT_OCTAL(option, variable)				\
156 	if (!strcmp(p, option)) {					\
157 		if (!v || !*v)						\
158 			goto needs_arg;					\
159 		variable = simple_strtoul(ov = v, &v, 8);		\
160 		if (*v)							\
161 			goto needs_val;					\
162 	}
163 #define NTFS_GETOPT_BOOL(option, variable)				\
164 	if (!strcmp(p, option)) {					\
165 		bool val;						\
166 		if (!simple_getbool(v, &val))				\
167 			goto needs_bool;				\
168 		variable = val;						\
169 	}
170 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
171 	if (!strcmp(p, option)) {					\
172 		int _i;							\
173 		if (!v || !*v)						\
174 			goto needs_arg;					\
175 		ov = v;							\
176 		if (variable == -1)					\
177 			variable = 0;					\
178 		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
179 			if (!strcmp(opt_array[_i].str, v)) {		\
180 				variable |= opt_array[_i].val;		\
181 				break;					\
182 			}						\
183 		if (!opt_array[_i].str || !*opt_array[_i].str)		\
184 			goto needs_val;					\
185 	}
186 	if (!opt || !*opt)
187 		goto no_mount_options;
188 	ntfs_debug("Entering with mount options string: %s", opt);
189 	while ((p = strsep(&opt, ","))) {
190 		if ((v = strchr(p, '=')))
191 			*v++ = 0;
192 		NTFS_GETOPT_UID("uid", uid)
193 		else NTFS_GETOPT_GID("gid", gid)
194 		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
195 		else NTFS_GETOPT_OCTAL("fmask", fmask)
196 		else NTFS_GETOPT_OCTAL("dmask", dmask)
197 		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
198 		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
199 		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
200 		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
201 		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
202 		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
203 				on_errors_arr)
204 		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
205 			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
206 					p);
207 		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
208 			if (!strcmp(p, "iocharset"))
209 				ntfs_warning(vol->sb, "Option iocharset is "
210 						"deprecated. Please use "
211 						"option nls=<charsetname> in "
212 						"the future.");
213 			if (!v || !*v)
214 				goto needs_arg;
215 use_utf8:
216 			old_nls = nls_map;
217 			nls_map = load_nls(v);
218 			if (!nls_map) {
219 				if (!old_nls) {
220 					ntfs_error(vol->sb, "NLS character set "
221 							"%s not found.", v);
222 					return false;
223 				}
224 				ntfs_error(vol->sb, "NLS character set %s not "
225 						"found. Using previous one %s.",
226 						v, old_nls->charset);
227 				nls_map = old_nls;
228 			} else /* nls_map */ {
229 				unload_nls(old_nls);
230 			}
231 		} else if (!strcmp(p, "utf8")) {
232 			bool val = false;
233 			ntfs_warning(vol->sb, "Option utf8 is no longer "
234 				   "supported, using option nls=utf8. Please "
235 				   "use option nls=utf8 in the future and "
236 				   "make sure utf8 is compiled either as a "
237 				   "module or into the kernel.");
238 			if (!v || !*v)
239 				val = true;
240 			else if (!simple_getbool(v, &val))
241 				goto needs_bool;
242 			if (val) {
243 				v = utf8;
244 				goto use_utf8;
245 			}
246 		} else {
247 			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
248 			if (errors < INT_MAX)
249 				errors++;
250 		}
251 #undef NTFS_GETOPT_OPTIONS_ARRAY
252 #undef NTFS_GETOPT_BOOL
253 #undef NTFS_GETOPT
254 #undef NTFS_GETOPT_WITH_DEFAULT
255 	}
256 no_mount_options:
257 	if (errors && !sloppy)
258 		return false;
259 	if (sloppy)
260 		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
261 				"unrecognized mount option(s) and continuing.");
262 	/* Keep this first! */
263 	if (on_errors != -1) {
264 		if (!on_errors) {
265 			ntfs_error(vol->sb, "Invalid errors option argument "
266 					"or bug in options parser.");
267 			return false;
268 		}
269 	}
270 	if (nls_map) {
271 		if (vol->nls_map && vol->nls_map != nls_map) {
272 			ntfs_error(vol->sb, "Cannot change NLS character set "
273 					"on remount.");
274 			return false;
275 		} /* else (!vol->nls_map) */
276 		ntfs_debug("Using NLS character set %s.", nls_map->charset);
277 		vol->nls_map = nls_map;
278 	} else /* (!nls_map) */ {
279 		if (!vol->nls_map) {
280 			vol->nls_map = load_nls_default();
281 			if (!vol->nls_map) {
282 				ntfs_error(vol->sb, "Failed to load default "
283 						"NLS character set.");
284 				return false;
285 			}
286 			ntfs_debug("Using default NLS character set (%s).",
287 					vol->nls_map->charset);
288 		}
289 	}
290 	if (mft_zone_multiplier != -1) {
291 		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
292 				mft_zone_multiplier) {
293 			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
294 					"on remount.");
295 			return false;
296 		}
297 		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
298 			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
299 					"Using default value, i.e. 1.");
300 			mft_zone_multiplier = 1;
301 		}
302 		vol->mft_zone_multiplier = mft_zone_multiplier;
303 	}
304 	if (!vol->mft_zone_multiplier)
305 		vol->mft_zone_multiplier = 1;
306 	if (on_errors != -1)
307 		vol->on_errors = on_errors;
308 	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
309 		vol->on_errors |= ON_ERRORS_CONTINUE;
310 	if (uid_valid(uid))
311 		vol->uid = uid;
312 	if (gid_valid(gid))
313 		vol->gid = gid;
314 	if (fmask != (umode_t)-1)
315 		vol->fmask = fmask;
316 	if (dmask != (umode_t)-1)
317 		vol->dmask = dmask;
318 	if (show_sys_files != -1) {
319 		if (show_sys_files)
320 			NVolSetShowSystemFiles(vol);
321 		else
322 			NVolClearShowSystemFiles(vol);
323 	}
324 	if (case_sensitive != -1) {
325 		if (case_sensitive)
326 			NVolSetCaseSensitive(vol);
327 		else
328 			NVolClearCaseSensitive(vol);
329 	}
330 	if (disable_sparse != -1) {
331 		if (disable_sparse)
332 			NVolClearSparseEnabled(vol);
333 		else {
334 			if (!NVolSparseEnabled(vol) &&
335 					vol->major_ver && vol->major_ver < 3)
336 				ntfs_warning(vol->sb, "Not enabling sparse "
337 						"support due to NTFS volume "
338 						"version %i.%i (need at least "
339 						"version 3.0).", vol->major_ver,
340 						vol->minor_ver);
341 			else
342 				NVolSetSparseEnabled(vol);
343 		}
344 	}
345 	return true;
346 needs_arg:
347 	ntfs_error(vol->sb, "The %s option requires an argument.", p);
348 	return false;
349 needs_bool:
350 	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
351 	return false;
352 needs_val:
353 	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
354 	return false;
355 }
356 
357 #ifdef NTFS_RW
358 
359 /**
360  * ntfs_write_volume_flags - write new flags to the volume information flags
361  * @vol:	ntfs volume on which to modify the flags
362  * @flags:	new flags value for the volume information flags
363  *
364  * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
365  * instead (see below).
366  *
367  * Replace the volume information flags on the volume @vol with the value
368  * supplied in @flags.  Note, this overwrites the volume information flags, so
369  * make sure to combine the flags you want to modify with the old flags and use
370  * the result when calling ntfs_write_volume_flags().
371  *
372  * Return 0 on success and -errno on error.
373  */
374 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
375 {
376 	ntfs_inode *ni = NTFS_I(vol->vol_ino);
377 	MFT_RECORD *m;
378 	VOLUME_INFORMATION *vi;
379 	ntfs_attr_search_ctx *ctx;
380 	int err;
381 
382 	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
383 			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
384 	if (vol->vol_flags == flags)
385 		goto done;
386 	BUG_ON(!ni);
387 	m = map_mft_record(ni);
388 	if (IS_ERR(m)) {
389 		err = PTR_ERR(m);
390 		goto err_out;
391 	}
392 	ctx = ntfs_attr_get_search_ctx(ni, m);
393 	if (!ctx) {
394 		err = -ENOMEM;
395 		goto put_unm_err_out;
396 	}
397 	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
398 			ctx);
399 	if (err)
400 		goto put_unm_err_out;
401 	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
402 			le16_to_cpu(ctx->attr->data.resident.value_offset));
403 	vol->vol_flags = vi->flags = flags;
404 	flush_dcache_mft_record_page(ctx->ntfs_ino);
405 	mark_mft_record_dirty(ctx->ntfs_ino);
406 	ntfs_attr_put_search_ctx(ctx);
407 	unmap_mft_record(ni);
408 done:
409 	ntfs_debug("Done.");
410 	return 0;
411 put_unm_err_out:
412 	if (ctx)
413 		ntfs_attr_put_search_ctx(ctx);
414 	unmap_mft_record(ni);
415 err_out:
416 	ntfs_error(vol->sb, "Failed with error code %i.", -err);
417 	return err;
418 }
419 
420 /**
421  * ntfs_set_volume_flags - set bits in the volume information flags
422  * @vol:	ntfs volume on which to modify the flags
423  * @flags:	flags to set on the volume
424  *
425  * Set the bits in @flags in the volume information flags on the volume @vol.
426  *
427  * Return 0 on success and -errno on error.
428  */
429 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
430 {
431 	flags &= VOLUME_FLAGS_MASK;
432 	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
433 }
434 
435 /**
436  * ntfs_clear_volume_flags - clear bits in the volume information flags
437  * @vol:	ntfs volume on which to modify the flags
438  * @flags:	flags to clear on the volume
439  *
440  * Clear the bits in @flags in the volume information flags on the volume @vol.
441  *
442  * Return 0 on success and -errno on error.
443  */
444 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
445 {
446 	flags &= VOLUME_FLAGS_MASK;
447 	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
448 	return ntfs_write_volume_flags(vol, flags);
449 }
450 
451 #endif /* NTFS_RW */
452 
453 /**
454  * ntfs_remount - change the mount options of a mounted ntfs filesystem
455  * @sb:		superblock of mounted ntfs filesystem
456  * @flags:	remount flags
457  * @opt:	remount options string
458  *
459  * Change the mount options of an already mounted ntfs filesystem.
460  *
461  * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
462  * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
463  * @sb->s_flags are not changed.
464  */
465 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
466 {
467 	ntfs_volume *vol = NTFS_SB(sb);
468 
469 	ntfs_debug("Entering with remount options string: %s", opt);
470 
471 #ifndef NTFS_RW
472 	/* For read-only compiled driver, enforce read-only flag. */
473 	*flags |= MS_RDONLY;
474 #else /* NTFS_RW */
475 	/*
476 	 * For the read-write compiled driver, if we are remounting read-write,
477 	 * make sure there are no volume errors and that no unsupported volume
478 	 * flags are set.  Also, empty the logfile journal as it would become
479 	 * stale as soon as something is written to the volume and mark the
480 	 * volume dirty so that chkdsk is run if the volume is not umounted
481 	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
482 	 * the volume on boot and updates them.
483 	 *
484 	 * When remounting read-only, mark the volume clean if no volume errors
485 	 * have occurred.
486 	 */
487 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
488 		static const char *es = ".  Cannot remount read-write.";
489 
490 		/* Remounting read-write. */
491 		if (NVolErrors(vol)) {
492 			ntfs_error(sb, "Volume has errors and is read-only%s",
493 					es);
494 			return -EROFS;
495 		}
496 		if (vol->vol_flags & VOLUME_IS_DIRTY) {
497 			ntfs_error(sb, "Volume is dirty and read-only%s", es);
498 			return -EROFS;
499 		}
500 		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
501 			ntfs_error(sb, "Volume has been modified by chkdsk "
502 					"and is read-only%s", es);
503 			return -EROFS;
504 		}
505 		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
506 			ntfs_error(sb, "Volume has unsupported flags set "
507 					"(0x%x) and is read-only%s",
508 					(unsigned)le16_to_cpu(vol->vol_flags),
509 					es);
510 			return -EROFS;
511 		}
512 		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
513 			ntfs_error(sb, "Failed to set dirty bit in volume "
514 					"information flags%s", es);
515 			return -EROFS;
516 		}
517 #if 0
518 		// TODO: Enable this code once we start modifying anything that
519 		//	 is different between NTFS 1.2 and 3.x...
520 		/* Set NT4 compatibility flag on newer NTFS version volumes. */
521 		if ((vol->major_ver > 1)) {
522 			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
523 				ntfs_error(sb, "Failed to set NT4 "
524 						"compatibility flag%s", es);
525 				NVolSetErrors(vol);
526 				return -EROFS;
527 			}
528 		}
529 #endif
530 		if (!ntfs_empty_logfile(vol->logfile_ino)) {
531 			ntfs_error(sb, "Failed to empty journal $LogFile%s",
532 					es);
533 			NVolSetErrors(vol);
534 			return -EROFS;
535 		}
536 		if (!ntfs_mark_quotas_out_of_date(vol)) {
537 			ntfs_error(sb, "Failed to mark quotas out of date%s",
538 					es);
539 			NVolSetErrors(vol);
540 			return -EROFS;
541 		}
542 		if (!ntfs_stamp_usnjrnl(vol)) {
543 			ntfs_error(sb, "Failed to stamp transation log "
544 					"($UsnJrnl)%s", es);
545 			NVolSetErrors(vol);
546 			return -EROFS;
547 		}
548 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
549 		/* Remounting read-only. */
550 		if (!NVolErrors(vol)) {
551 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
552 				ntfs_warning(sb, "Failed to clear dirty bit "
553 						"in volume information "
554 						"flags.  Run chkdsk.");
555 		}
556 	}
557 #endif /* NTFS_RW */
558 
559 	// TODO: Deal with *flags.
560 
561 	if (!parse_options(vol, opt))
562 		return -EINVAL;
563 
564 	ntfs_debug("Done.");
565 	return 0;
566 }
567 
568 /**
569  * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
570  * @sb:		Super block of the device to which @b belongs.
571  * @b:		Boot sector of device @sb to check.
572  * @silent:	If 'true', all output will be silenced.
573  *
574  * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
575  * sector. Returns 'true' if it is valid and 'false' if not.
576  *
577  * @sb is only needed for warning/error output, i.e. it can be NULL when silent
578  * is 'true'.
579  */
580 static bool is_boot_sector_ntfs(const struct super_block *sb,
581 		const NTFS_BOOT_SECTOR *b, const bool silent)
582 {
583 	/*
584 	 * Check that checksum == sum of u32 values from b to the checksum
585 	 * field.  If checksum is zero, no checking is done.  We will work when
586 	 * the checksum test fails, since some utilities update the boot sector
587 	 * ignoring the checksum which leaves the checksum out-of-date.  We
588 	 * report a warning if this is the case.
589 	 */
590 	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
591 		le32 *u;
592 		u32 i;
593 
594 		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
595 			i += le32_to_cpup(u);
596 		if (le32_to_cpu(b->checksum) != i)
597 			ntfs_warning(sb, "Invalid boot sector checksum.");
598 	}
599 	/* Check OEMidentifier is "NTFS    " */
600 	if (b->oem_id != magicNTFS)
601 		goto not_ntfs;
602 	/* Check bytes per sector value is between 256 and 4096. */
603 	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
604 			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
605 		goto not_ntfs;
606 	/* Check sectors per cluster value is valid. */
607 	switch (b->bpb.sectors_per_cluster) {
608 	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
609 		break;
610 	default:
611 		goto not_ntfs;
612 	}
613 	/* Check the cluster size is not above the maximum (64kiB). */
614 	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
615 			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
616 		goto not_ntfs;
617 	/* Check reserved/unused fields are really zero. */
618 	if (le16_to_cpu(b->bpb.reserved_sectors) ||
619 			le16_to_cpu(b->bpb.root_entries) ||
620 			le16_to_cpu(b->bpb.sectors) ||
621 			le16_to_cpu(b->bpb.sectors_per_fat) ||
622 			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
623 		goto not_ntfs;
624 	/* Check clusters per file mft record value is valid. */
625 	if ((u8)b->clusters_per_mft_record < 0xe1 ||
626 			(u8)b->clusters_per_mft_record > 0xf7)
627 		switch (b->clusters_per_mft_record) {
628 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
629 			break;
630 		default:
631 			goto not_ntfs;
632 		}
633 	/* Check clusters per index block value is valid. */
634 	if ((u8)b->clusters_per_index_record < 0xe1 ||
635 			(u8)b->clusters_per_index_record > 0xf7)
636 		switch (b->clusters_per_index_record) {
637 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
638 			break;
639 		default:
640 			goto not_ntfs;
641 		}
642 	/*
643 	 * Check for valid end of sector marker. We will work without it, but
644 	 * many BIOSes will refuse to boot from a bootsector if the magic is
645 	 * incorrect, so we emit a warning.
646 	 */
647 	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
648 		ntfs_warning(sb, "Invalid end of sector marker.");
649 	return true;
650 not_ntfs:
651 	return false;
652 }
653 
654 /**
655  * read_ntfs_boot_sector - read the NTFS boot sector of a device
656  * @sb:		super block of device to read the boot sector from
657  * @silent:	if true, suppress all output
658  *
659  * Reads the boot sector from the device and validates it. If that fails, tries
660  * to read the backup boot sector, first from the end of the device a-la NT4 and
661  * later and then from the middle of the device a-la NT3.51 and before.
662  *
663  * If a valid boot sector is found but it is not the primary boot sector, we
664  * repair the primary boot sector silently (unless the device is read-only or
665  * the primary boot sector is not accessible).
666  *
667  * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
668  * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
669  * to their respective values.
670  *
671  * Return the unlocked buffer head containing the boot sector or NULL on error.
672  */
673 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
674 		const int silent)
675 {
676 	const char *read_err_str = "Unable to read %s boot sector.";
677 	struct buffer_head *bh_primary, *bh_backup;
678 	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
679 
680 	/* Try to read primary boot sector. */
681 	if ((bh_primary = sb_bread(sb, 0))) {
682 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
683 				bh_primary->b_data, silent))
684 			return bh_primary;
685 		if (!silent)
686 			ntfs_error(sb, "Primary boot sector is invalid.");
687 	} else if (!silent)
688 		ntfs_error(sb, read_err_str, "primary");
689 	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
690 		if (bh_primary)
691 			brelse(bh_primary);
692 		if (!silent)
693 			ntfs_error(sb, "Mount option errors=recover not used. "
694 					"Aborting without trying to recover.");
695 		return NULL;
696 	}
697 	/* Try to read NT4+ backup boot sector. */
698 	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
699 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
700 				bh_backup->b_data, silent))
701 			goto hotfix_primary_boot_sector;
702 		brelse(bh_backup);
703 	} else if (!silent)
704 		ntfs_error(sb, read_err_str, "backup");
705 	/* Try to read NT3.51- backup boot sector. */
706 	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
707 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
708 				bh_backup->b_data, silent))
709 			goto hotfix_primary_boot_sector;
710 		if (!silent)
711 			ntfs_error(sb, "Could not find a valid backup boot "
712 					"sector.");
713 		brelse(bh_backup);
714 	} else if (!silent)
715 		ntfs_error(sb, read_err_str, "backup");
716 	/* We failed. Cleanup and return. */
717 	if (bh_primary)
718 		brelse(bh_primary);
719 	return NULL;
720 hotfix_primary_boot_sector:
721 	if (bh_primary) {
722 		/*
723 		 * If we managed to read sector zero and the volume is not
724 		 * read-only, copy the found, valid backup boot sector to the
725 		 * primary boot sector.  Note we only copy the actual boot
726 		 * sector structure, not the actual whole device sector as that
727 		 * may be bigger and would potentially damage the $Boot system
728 		 * file (FIXME: Would be nice to know if the backup boot sector
729 		 * on a large sector device contains the whole boot loader or
730 		 * just the first 512 bytes).
731 		 */
732 		if (!(sb->s_flags & MS_RDONLY)) {
733 			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
734 					"boot sector from backup copy.");
735 			memcpy(bh_primary->b_data, bh_backup->b_data,
736 					NTFS_BLOCK_SIZE);
737 			mark_buffer_dirty(bh_primary);
738 			sync_dirty_buffer(bh_primary);
739 			if (buffer_uptodate(bh_primary)) {
740 				brelse(bh_backup);
741 				return bh_primary;
742 			}
743 			ntfs_error(sb, "Hot-fix: Device write error while "
744 					"recovering primary boot sector.");
745 		} else {
746 			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
747 					"sector failed: Read-only mount.");
748 		}
749 		brelse(bh_primary);
750 	}
751 	ntfs_warning(sb, "Using backup boot sector.");
752 	return bh_backup;
753 }
754 
755 /**
756  * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
757  * @vol:	volume structure to initialise with data from boot sector
758  * @b:		boot sector to parse
759  *
760  * Parse the ntfs boot sector @b and store all imporant information therein in
761  * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
762  */
763 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
764 {
765 	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
766 	int clusters_per_mft_record, clusters_per_index_record;
767 	s64 ll;
768 
769 	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
770 	vol->sector_size_bits = ffs(vol->sector_size) - 1;
771 	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
772 			vol->sector_size);
773 	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
774 			vol->sector_size_bits);
775 	if (vol->sector_size < vol->sb->s_blocksize) {
776 		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
777 				"device block size (%lu).  This is not "
778 				"supported.  Sorry.", vol->sector_size,
779 				vol->sb->s_blocksize);
780 		return false;
781 	}
782 	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
783 	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
784 	ntfs_debug("sectors_per_cluster_bits = 0x%x",
785 			sectors_per_cluster_bits);
786 	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
787 	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
788 	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
789 	vol->cluster_size_mask = vol->cluster_size - 1;
790 	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
791 	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
792 			vol->cluster_size);
793 	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
794 	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
795 	if (vol->cluster_size < vol->sector_size) {
796 		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
797 				"sector size (%i).  This is not supported.  "
798 				"Sorry.", vol->cluster_size, vol->sector_size);
799 		return false;
800 	}
801 	clusters_per_mft_record = b->clusters_per_mft_record;
802 	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
803 			clusters_per_mft_record, clusters_per_mft_record);
804 	if (clusters_per_mft_record > 0)
805 		vol->mft_record_size = vol->cluster_size <<
806 				(ffs(clusters_per_mft_record) - 1);
807 	else
808 		/*
809 		 * When mft_record_size < cluster_size, clusters_per_mft_record
810 		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
811 		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
812 		 */
813 		vol->mft_record_size = 1 << -clusters_per_mft_record;
814 	vol->mft_record_size_mask = vol->mft_record_size - 1;
815 	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
816 	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
817 			vol->mft_record_size);
818 	ntfs_debug("vol->mft_record_size_mask = 0x%x",
819 			vol->mft_record_size_mask);
820 	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
821 			vol->mft_record_size_bits, vol->mft_record_size_bits);
822 	/*
823 	 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
824 	 * we store $MFT/$DATA, the table of mft records in the page cache.
825 	 */
826 	if (vol->mft_record_size > PAGE_CACHE_SIZE) {
827 		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
828 				"PAGE_CACHE_SIZE on your system (%lu).  "
829 				"This is not supported.  Sorry.",
830 				vol->mft_record_size, PAGE_CACHE_SIZE);
831 		return false;
832 	}
833 	/* We cannot support mft record sizes below the sector size. */
834 	if (vol->mft_record_size < vol->sector_size) {
835 		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
836 				"sector size (%i).  This is not supported.  "
837 				"Sorry.", vol->mft_record_size,
838 				vol->sector_size);
839 		return false;
840 	}
841 	clusters_per_index_record = b->clusters_per_index_record;
842 	ntfs_debug("clusters_per_index_record = %i (0x%x)",
843 			clusters_per_index_record, clusters_per_index_record);
844 	if (clusters_per_index_record > 0)
845 		vol->index_record_size = vol->cluster_size <<
846 				(ffs(clusters_per_index_record) - 1);
847 	else
848 		/*
849 		 * When index_record_size < cluster_size,
850 		 * clusters_per_index_record = -log2(index_record_size) bytes.
851 		 * index_record_size normaly equals 4096 bytes, which is
852 		 * encoded as 0xF4 (-12 in decimal).
853 		 */
854 		vol->index_record_size = 1 << -clusters_per_index_record;
855 	vol->index_record_size_mask = vol->index_record_size - 1;
856 	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
857 	ntfs_debug("vol->index_record_size = %i (0x%x)",
858 			vol->index_record_size, vol->index_record_size);
859 	ntfs_debug("vol->index_record_size_mask = 0x%x",
860 			vol->index_record_size_mask);
861 	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
862 			vol->index_record_size_bits,
863 			vol->index_record_size_bits);
864 	/* We cannot support index record sizes below the sector size. */
865 	if (vol->index_record_size < vol->sector_size) {
866 		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
867 				"the sector size (%i).  This is not "
868 				"supported.  Sorry.", vol->index_record_size,
869 				vol->sector_size);
870 		return false;
871 	}
872 	/*
873 	 * Get the size of the volume in clusters and check for 64-bit-ness.
874 	 * Windows currently only uses 32 bits to save the clusters so we do
875 	 * the same as it is much faster on 32-bit CPUs.
876 	 */
877 	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
878 	if ((u64)ll >= 1ULL << 32) {
879 		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
880 		return false;
881 	}
882 	vol->nr_clusters = ll;
883 	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
884 	/*
885 	 * On an architecture where unsigned long is 32-bits, we restrict the
886 	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
887 	 * will hopefully optimize the whole check away.
888 	 */
889 	if (sizeof(unsigned long) < 8) {
890 		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
891 			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
892 					"large for this architecture.  "
893 					"Maximum supported is 2TiB.  Sorry.",
894 					(unsigned long long)ll >> (40 -
895 					vol->cluster_size_bits));
896 			return false;
897 		}
898 	}
899 	ll = sle64_to_cpu(b->mft_lcn);
900 	if (ll >= vol->nr_clusters) {
901 		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
902 				"volume.  Weird.", (unsigned long long)ll,
903 				(unsigned long long)ll);
904 		return false;
905 	}
906 	vol->mft_lcn = ll;
907 	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
908 	ll = sle64_to_cpu(b->mftmirr_lcn);
909 	if (ll >= vol->nr_clusters) {
910 		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
911 				"of volume.  Weird.", (unsigned long long)ll,
912 				(unsigned long long)ll);
913 		return false;
914 	}
915 	vol->mftmirr_lcn = ll;
916 	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
917 #ifdef NTFS_RW
918 	/*
919 	 * Work out the size of the mft mirror in number of mft records. If the
920 	 * cluster size is less than or equal to the size taken by four mft
921 	 * records, the mft mirror stores the first four mft records. If the
922 	 * cluster size is bigger than the size taken by four mft records, the
923 	 * mft mirror contains as many mft records as will fit into one
924 	 * cluster.
925 	 */
926 	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
927 		vol->mftmirr_size = 4;
928 	else
929 		vol->mftmirr_size = vol->cluster_size >>
930 				vol->mft_record_size_bits;
931 	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
932 #endif /* NTFS_RW */
933 	vol->serial_no = le64_to_cpu(b->volume_serial_number);
934 	ntfs_debug("vol->serial_no = 0x%llx",
935 			(unsigned long long)vol->serial_no);
936 	return true;
937 }
938 
939 /**
940  * ntfs_setup_allocators - initialize the cluster and mft allocators
941  * @vol:	volume structure for which to setup the allocators
942  *
943  * Setup the cluster (lcn) and mft allocators to the starting values.
944  */
945 static void ntfs_setup_allocators(ntfs_volume *vol)
946 {
947 #ifdef NTFS_RW
948 	LCN mft_zone_size, mft_lcn;
949 #endif /* NTFS_RW */
950 
951 	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
952 			vol->mft_zone_multiplier);
953 #ifdef NTFS_RW
954 	/* Determine the size of the MFT zone. */
955 	mft_zone_size = vol->nr_clusters;
956 	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
957 	case 4:
958 		mft_zone_size >>= 1;			/* 50%   */
959 		break;
960 	case 3:
961 		mft_zone_size = (mft_zone_size +
962 				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
963 		break;
964 	case 2:
965 		mft_zone_size >>= 2;			/* 25%   */
966 		break;
967 	/* case 1: */
968 	default:
969 		mft_zone_size >>= 3;			/* 12.5% */
970 		break;
971 	}
972 	/* Setup the mft zone. */
973 	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
974 	ntfs_debug("vol->mft_zone_pos = 0x%llx",
975 			(unsigned long long)vol->mft_zone_pos);
976 	/*
977 	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
978 	 * source) and if the actual mft_lcn is in the expected place or even
979 	 * further to the front of the volume, extend the mft_zone to cover the
980 	 * beginning of the volume as well.  This is in order to protect the
981 	 * area reserved for the mft bitmap as well within the mft_zone itself.
982 	 * On non-standard volumes we do not protect it as the overhead would
983 	 * be higher than the speed increase we would get by doing it.
984 	 */
985 	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
986 	if (mft_lcn * vol->cluster_size < 16 * 1024)
987 		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
988 				vol->cluster_size;
989 	if (vol->mft_zone_start <= mft_lcn)
990 		vol->mft_zone_start = 0;
991 	ntfs_debug("vol->mft_zone_start = 0x%llx",
992 			(unsigned long long)vol->mft_zone_start);
993 	/*
994 	 * Need to cap the mft zone on non-standard volumes so that it does
995 	 * not point outside the boundaries of the volume.  We do this by
996 	 * halving the zone size until we are inside the volume.
997 	 */
998 	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
999 	while (vol->mft_zone_end >= vol->nr_clusters) {
1000 		mft_zone_size >>= 1;
1001 		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1002 	}
1003 	ntfs_debug("vol->mft_zone_end = 0x%llx",
1004 			(unsigned long long)vol->mft_zone_end);
1005 	/*
1006 	 * Set the current position within each data zone to the start of the
1007 	 * respective zone.
1008 	 */
1009 	vol->data1_zone_pos = vol->mft_zone_end;
1010 	ntfs_debug("vol->data1_zone_pos = 0x%llx",
1011 			(unsigned long long)vol->data1_zone_pos);
1012 	vol->data2_zone_pos = 0;
1013 	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1014 			(unsigned long long)vol->data2_zone_pos);
1015 
1016 	/* Set the mft data allocation position to mft record 24. */
1017 	vol->mft_data_pos = 24;
1018 	ntfs_debug("vol->mft_data_pos = 0x%llx",
1019 			(unsigned long long)vol->mft_data_pos);
1020 #endif /* NTFS_RW */
1021 }
1022 
1023 #ifdef NTFS_RW
1024 
1025 /**
1026  * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1027  * @vol:	ntfs super block describing device whose mft mirror to load
1028  *
1029  * Return 'true' on success or 'false' on error.
1030  */
1031 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1032 {
1033 	struct inode *tmp_ino;
1034 	ntfs_inode *tmp_ni;
1035 
1036 	ntfs_debug("Entering.");
1037 	/* Get mft mirror inode. */
1038 	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1039 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1040 		if (!IS_ERR(tmp_ino))
1041 			iput(tmp_ino);
1042 		/* Caller will display error message. */
1043 		return false;
1044 	}
1045 	/*
1046 	 * Re-initialize some specifics about $MFTMirr's inode as
1047 	 * ntfs_read_inode() will have set up the default ones.
1048 	 */
1049 	/* Set uid and gid to root. */
1050 	tmp_ino->i_uid = GLOBAL_ROOT_UID;
1051 	tmp_ino->i_gid = GLOBAL_ROOT_GID;
1052 	/* Regular file.  No access for anyone. */
1053 	tmp_ino->i_mode = S_IFREG;
1054 	/* No VFS initiated operations allowed for $MFTMirr. */
1055 	tmp_ino->i_op = &ntfs_empty_inode_ops;
1056 	tmp_ino->i_fop = &ntfs_empty_file_ops;
1057 	/* Put in our special address space operations. */
1058 	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1059 	tmp_ni = NTFS_I(tmp_ino);
1060 	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1061 	NInoSetMstProtected(tmp_ni);
1062 	NInoSetSparseDisabled(tmp_ni);
1063 	/*
1064 	 * Set up our little cheat allowing us to reuse the async read io
1065 	 * completion handler for directories.
1066 	 */
1067 	tmp_ni->itype.index.block_size = vol->mft_record_size;
1068 	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1069 	vol->mftmirr_ino = tmp_ino;
1070 	ntfs_debug("Done.");
1071 	return true;
1072 }
1073 
1074 /**
1075  * check_mft_mirror - compare contents of the mft mirror with the mft
1076  * @vol:	ntfs super block describing device whose mft mirror to check
1077  *
1078  * Return 'true' on success or 'false' on error.
1079  *
1080  * Note, this function also results in the mft mirror runlist being completely
1081  * mapped into memory.  The mft mirror write code requires this and will BUG()
1082  * should it find an unmapped runlist element.
1083  */
1084 static bool check_mft_mirror(ntfs_volume *vol)
1085 {
1086 	struct super_block *sb = vol->sb;
1087 	ntfs_inode *mirr_ni;
1088 	struct page *mft_page, *mirr_page;
1089 	u8 *kmft, *kmirr;
1090 	runlist_element *rl, rl2[2];
1091 	pgoff_t index;
1092 	int mrecs_per_page, i;
1093 
1094 	ntfs_debug("Entering.");
1095 	/* Compare contents of $MFT and $MFTMirr. */
1096 	mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1097 	BUG_ON(!mrecs_per_page);
1098 	BUG_ON(!vol->mftmirr_size);
1099 	mft_page = mirr_page = NULL;
1100 	kmft = kmirr = NULL;
1101 	index = i = 0;
1102 	do {
1103 		u32 bytes;
1104 
1105 		/* Switch pages if necessary. */
1106 		if (!(i % mrecs_per_page)) {
1107 			if (index) {
1108 				ntfs_unmap_page(mft_page);
1109 				ntfs_unmap_page(mirr_page);
1110 			}
1111 			/* Get the $MFT page. */
1112 			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1113 					index);
1114 			if (IS_ERR(mft_page)) {
1115 				ntfs_error(sb, "Failed to read $MFT.");
1116 				return false;
1117 			}
1118 			kmft = page_address(mft_page);
1119 			/* Get the $MFTMirr page. */
1120 			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1121 					index);
1122 			if (IS_ERR(mirr_page)) {
1123 				ntfs_error(sb, "Failed to read $MFTMirr.");
1124 				goto mft_unmap_out;
1125 			}
1126 			kmirr = page_address(mirr_page);
1127 			++index;
1128 		}
1129 		/* Do not check the record if it is not in use. */
1130 		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1131 			/* Make sure the record is ok. */
1132 			if (ntfs_is_baad_recordp((le32*)kmft)) {
1133 				ntfs_error(sb, "Incomplete multi sector "
1134 						"transfer detected in mft "
1135 						"record %i.", i);
1136 mm_unmap_out:
1137 				ntfs_unmap_page(mirr_page);
1138 mft_unmap_out:
1139 				ntfs_unmap_page(mft_page);
1140 				return false;
1141 			}
1142 		}
1143 		/* Do not check the mirror record if it is not in use. */
1144 		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1145 			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1146 				ntfs_error(sb, "Incomplete multi sector "
1147 						"transfer detected in mft "
1148 						"mirror record %i.", i);
1149 				goto mm_unmap_out;
1150 			}
1151 		}
1152 		/* Get the amount of data in the current record. */
1153 		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1154 		if (bytes < sizeof(MFT_RECORD_OLD) ||
1155 				bytes > vol->mft_record_size ||
1156 				ntfs_is_baad_recordp((le32*)kmft)) {
1157 			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1158 			if (bytes < sizeof(MFT_RECORD_OLD) ||
1159 					bytes > vol->mft_record_size ||
1160 					ntfs_is_baad_recordp((le32*)kmirr))
1161 				bytes = vol->mft_record_size;
1162 		}
1163 		/* Compare the two records. */
1164 		if (memcmp(kmft, kmirr, bytes)) {
1165 			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1166 					"match.  Run ntfsfix or chkdsk.", i);
1167 			goto mm_unmap_out;
1168 		}
1169 		kmft += vol->mft_record_size;
1170 		kmirr += vol->mft_record_size;
1171 	} while (++i < vol->mftmirr_size);
1172 	/* Release the last pages. */
1173 	ntfs_unmap_page(mft_page);
1174 	ntfs_unmap_page(mirr_page);
1175 
1176 	/* Construct the mft mirror runlist by hand. */
1177 	rl2[0].vcn = 0;
1178 	rl2[0].lcn = vol->mftmirr_lcn;
1179 	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1180 			vol->cluster_size - 1) / vol->cluster_size;
1181 	rl2[1].vcn = rl2[0].length;
1182 	rl2[1].lcn = LCN_ENOENT;
1183 	rl2[1].length = 0;
1184 	/*
1185 	 * Because we have just read all of the mft mirror, we know we have
1186 	 * mapped the full runlist for it.
1187 	 */
1188 	mirr_ni = NTFS_I(vol->mftmirr_ino);
1189 	down_read(&mirr_ni->runlist.lock);
1190 	rl = mirr_ni->runlist.rl;
1191 	/* Compare the two runlists.  They must be identical. */
1192 	i = 0;
1193 	do {
1194 		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1195 				rl2[i].length != rl[i].length) {
1196 			ntfs_error(sb, "$MFTMirr location mismatch.  "
1197 					"Run chkdsk.");
1198 			up_read(&mirr_ni->runlist.lock);
1199 			return false;
1200 		}
1201 	} while (rl2[i++].length);
1202 	up_read(&mirr_ni->runlist.lock);
1203 	ntfs_debug("Done.");
1204 	return true;
1205 }
1206 
1207 /**
1208  * load_and_check_logfile - load and check the logfile inode for a volume
1209  * @vol:	ntfs super block describing device whose logfile to load
1210  *
1211  * Return 'true' on success or 'false' on error.
1212  */
1213 static bool load_and_check_logfile(ntfs_volume *vol,
1214 		RESTART_PAGE_HEADER **rp)
1215 {
1216 	struct inode *tmp_ino;
1217 
1218 	ntfs_debug("Entering.");
1219 	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1220 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1221 		if (!IS_ERR(tmp_ino))
1222 			iput(tmp_ino);
1223 		/* Caller will display error message. */
1224 		return false;
1225 	}
1226 	if (!ntfs_check_logfile(tmp_ino, rp)) {
1227 		iput(tmp_ino);
1228 		/* ntfs_check_logfile() will have displayed error output. */
1229 		return false;
1230 	}
1231 	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1232 	vol->logfile_ino = tmp_ino;
1233 	ntfs_debug("Done.");
1234 	return true;
1235 }
1236 
1237 #define NTFS_HIBERFIL_HEADER_SIZE	4096
1238 
1239 /**
1240  * check_windows_hibernation_status - check if Windows is suspended on a volume
1241  * @vol:	ntfs super block of device to check
1242  *
1243  * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1244  * looking for the file hiberfil.sys in the root directory of the volume.  If
1245  * the file is not present Windows is definitely not suspended.
1246  *
1247  * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1248  * definitely suspended (this volume is not the system volume).  Caveat:  on a
1249  * system with many volumes it is possible that the < 4kiB check is bogus but
1250  * for now this should do fine.
1251  *
1252  * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1253  * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1254  * Windows is definitely suspended.  If it is completely full of zeroes,
1255  * Windows is definitely not hibernated.  Any other case is treated as if
1256  * Windows is suspended.  This caters for the above mentioned caveat of a
1257  * system with many volumes where no "hibr" magic would be present and there is
1258  * no zero header.
1259  *
1260  * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1261  * hibernated on the volume, and -errno on error.
1262  */
1263 static int check_windows_hibernation_status(ntfs_volume *vol)
1264 {
1265 	MFT_REF mref;
1266 	struct inode *vi;
1267 	struct page *page;
1268 	u32 *kaddr, *kend;
1269 	ntfs_name *name = NULL;
1270 	int ret = 1;
1271 	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1272 			cpu_to_le16('i'), cpu_to_le16('b'),
1273 			cpu_to_le16('e'), cpu_to_le16('r'),
1274 			cpu_to_le16('f'), cpu_to_le16('i'),
1275 			cpu_to_le16('l'), cpu_to_le16('.'),
1276 			cpu_to_le16('s'), cpu_to_le16('y'),
1277 			cpu_to_le16('s'), 0 };
1278 
1279 	ntfs_debug("Entering.");
1280 	/*
1281 	 * Find the inode number for the hibernation file by looking up the
1282 	 * filename hiberfil.sys in the root directory.
1283 	 */
1284 	mutex_lock(&vol->root_ino->i_mutex);
1285 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1286 			&name);
1287 	mutex_unlock(&vol->root_ino->i_mutex);
1288 	if (IS_ERR_MREF(mref)) {
1289 		ret = MREF_ERR(mref);
1290 		/* If the file does not exist, Windows is not hibernated. */
1291 		if (ret == -ENOENT) {
1292 			ntfs_debug("hiberfil.sys not present.  Windows is not "
1293 					"hibernated on the volume.");
1294 			return 0;
1295 		}
1296 		/* A real error occurred. */
1297 		ntfs_error(vol->sb, "Failed to find inode number for "
1298 				"hiberfil.sys.");
1299 		return ret;
1300 	}
1301 	/* We do not care for the type of match that was found. */
1302 	kfree(name);
1303 	/* Get the inode. */
1304 	vi = ntfs_iget(vol->sb, MREF(mref));
1305 	if (IS_ERR(vi) || is_bad_inode(vi)) {
1306 		if (!IS_ERR(vi))
1307 			iput(vi);
1308 		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1309 		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1310 	}
1311 	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1312 		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1313 				"Windows is hibernated on the volume.  This "
1314 				"is not the system volume.", i_size_read(vi));
1315 		goto iput_out;
1316 	}
1317 	page = ntfs_map_page(vi->i_mapping, 0);
1318 	if (IS_ERR(page)) {
1319 		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1320 		ret = PTR_ERR(page);
1321 		goto iput_out;
1322 	}
1323 	kaddr = (u32*)page_address(page);
1324 	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1325 		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1326 				"hibernated on the volume.  This is the "
1327 				"system volume.");
1328 		goto unm_iput_out;
1329 	}
1330 	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1331 	do {
1332 		if (unlikely(*kaddr)) {
1333 			ntfs_debug("hiberfil.sys is larger than 4kiB "
1334 					"(0x%llx), does not contain the "
1335 					"\"hibr\" magic, and does not have a "
1336 					"zero header.  Windows is hibernated "
1337 					"on the volume.  This is not the "
1338 					"system volume.", i_size_read(vi));
1339 			goto unm_iput_out;
1340 		}
1341 	} while (++kaddr < kend);
1342 	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1343 			"hibernated on the volume.  This is the system "
1344 			"volume.");
1345 	ret = 0;
1346 unm_iput_out:
1347 	ntfs_unmap_page(page);
1348 iput_out:
1349 	iput(vi);
1350 	return ret;
1351 }
1352 
1353 /**
1354  * load_and_init_quota - load and setup the quota file for a volume if present
1355  * @vol:	ntfs super block describing device whose quota file to load
1356  *
1357  * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1358  * leave vol->quota_ino as NULL and return success.
1359  */
1360 static bool load_and_init_quota(ntfs_volume *vol)
1361 {
1362 	MFT_REF mref;
1363 	struct inode *tmp_ino;
1364 	ntfs_name *name = NULL;
1365 	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1366 			cpu_to_le16('Q'), cpu_to_le16('u'),
1367 			cpu_to_le16('o'), cpu_to_le16('t'),
1368 			cpu_to_le16('a'), 0 };
1369 	static ntfschar Q[3] = { cpu_to_le16('$'),
1370 			cpu_to_le16('Q'), 0 };
1371 
1372 	ntfs_debug("Entering.");
1373 	/*
1374 	 * Find the inode number for the quota file by looking up the filename
1375 	 * $Quota in the extended system files directory $Extend.
1376 	 */
1377 	mutex_lock(&vol->extend_ino->i_mutex);
1378 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1379 			&name);
1380 	mutex_unlock(&vol->extend_ino->i_mutex);
1381 	if (IS_ERR_MREF(mref)) {
1382 		/*
1383 		 * If the file does not exist, quotas are disabled and have
1384 		 * never been enabled on this volume, just return success.
1385 		 */
1386 		if (MREF_ERR(mref) == -ENOENT) {
1387 			ntfs_debug("$Quota not present.  Volume does not have "
1388 					"quotas enabled.");
1389 			/*
1390 			 * No need to try to set quotas out of date if they are
1391 			 * not enabled.
1392 			 */
1393 			NVolSetQuotaOutOfDate(vol);
1394 			return true;
1395 		}
1396 		/* A real error occurred. */
1397 		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1398 		return false;
1399 	}
1400 	/* We do not care for the type of match that was found. */
1401 	kfree(name);
1402 	/* Get the inode. */
1403 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1404 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1405 		if (!IS_ERR(tmp_ino))
1406 			iput(tmp_ino);
1407 		ntfs_error(vol->sb, "Failed to load $Quota.");
1408 		return false;
1409 	}
1410 	vol->quota_ino = tmp_ino;
1411 	/* Get the $Q index allocation attribute. */
1412 	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1413 	if (IS_ERR(tmp_ino)) {
1414 		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1415 		return false;
1416 	}
1417 	vol->quota_q_ino = tmp_ino;
1418 	ntfs_debug("Done.");
1419 	return true;
1420 }
1421 
1422 /**
1423  * load_and_init_usnjrnl - load and setup the transaction log if present
1424  * @vol:	ntfs super block describing device whose usnjrnl file to load
1425  *
1426  * Return 'true' on success or 'false' on error.
1427  *
1428  * If $UsnJrnl is not present or in the process of being disabled, we set
1429  * NVolUsnJrnlStamped() and return success.
1430  *
1431  * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1432  * i.e. transaction logging has only just been enabled or the journal has been
1433  * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1434  * and return success.
1435  */
1436 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1437 {
1438 	MFT_REF mref;
1439 	struct inode *tmp_ino;
1440 	ntfs_inode *tmp_ni;
1441 	struct page *page;
1442 	ntfs_name *name = NULL;
1443 	USN_HEADER *uh;
1444 	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1445 			cpu_to_le16('U'), cpu_to_le16('s'),
1446 			cpu_to_le16('n'), cpu_to_le16('J'),
1447 			cpu_to_le16('r'), cpu_to_le16('n'),
1448 			cpu_to_le16('l'), 0 };
1449 	static ntfschar Max[5] = { cpu_to_le16('$'),
1450 			cpu_to_le16('M'), cpu_to_le16('a'),
1451 			cpu_to_le16('x'), 0 };
1452 	static ntfschar J[3] = { cpu_to_le16('$'),
1453 			cpu_to_le16('J'), 0 };
1454 
1455 	ntfs_debug("Entering.");
1456 	/*
1457 	 * Find the inode number for the transaction log file by looking up the
1458 	 * filename $UsnJrnl in the extended system files directory $Extend.
1459 	 */
1460 	mutex_lock(&vol->extend_ino->i_mutex);
1461 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1462 			&name);
1463 	mutex_unlock(&vol->extend_ino->i_mutex);
1464 	if (IS_ERR_MREF(mref)) {
1465 		/*
1466 		 * If the file does not exist, transaction logging is disabled,
1467 		 * just return success.
1468 		 */
1469 		if (MREF_ERR(mref) == -ENOENT) {
1470 			ntfs_debug("$UsnJrnl not present.  Volume does not "
1471 					"have transaction logging enabled.");
1472 not_enabled:
1473 			/*
1474 			 * No need to try to stamp the transaction log if
1475 			 * transaction logging is not enabled.
1476 			 */
1477 			NVolSetUsnJrnlStamped(vol);
1478 			return true;
1479 		}
1480 		/* A real error occurred. */
1481 		ntfs_error(vol->sb, "Failed to find inode number for "
1482 				"$UsnJrnl.");
1483 		return false;
1484 	}
1485 	/* We do not care for the type of match that was found. */
1486 	kfree(name);
1487 	/* Get the inode. */
1488 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1489 	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1490 		if (!IS_ERR(tmp_ino))
1491 			iput(tmp_ino);
1492 		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1493 		return false;
1494 	}
1495 	vol->usnjrnl_ino = tmp_ino;
1496 	/*
1497 	 * If the transaction log is in the process of being deleted, we can
1498 	 * ignore it.
1499 	 */
1500 	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1501 		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1502 				"Volume does not have transaction logging "
1503 				"enabled.");
1504 		goto not_enabled;
1505 	}
1506 	/* Get the $DATA/$Max attribute. */
1507 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1508 	if (IS_ERR(tmp_ino)) {
1509 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1510 				"attribute.");
1511 		return false;
1512 	}
1513 	vol->usnjrnl_max_ino = tmp_ino;
1514 	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1515 		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1516 				"attribute (size is 0x%llx but should be at "
1517 				"least 0x%zx bytes).", i_size_read(tmp_ino),
1518 				sizeof(USN_HEADER));
1519 		return false;
1520 	}
1521 	/* Get the $DATA/$J attribute. */
1522 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1523 	if (IS_ERR(tmp_ino)) {
1524 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1525 				"attribute.");
1526 		return false;
1527 	}
1528 	vol->usnjrnl_j_ino = tmp_ino;
1529 	/* Verify $J is non-resident and sparse. */
1530 	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1531 	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1532 		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1533 				"and/or not sparse.");
1534 		return false;
1535 	}
1536 	/* Read the USN_HEADER from $DATA/$Max. */
1537 	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1538 	if (IS_ERR(page)) {
1539 		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1540 				"attribute.");
1541 		return false;
1542 	}
1543 	uh = (USN_HEADER*)page_address(page);
1544 	/* Sanity check the $Max. */
1545 	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1546 			sle64_to_cpu(uh->maximum_size))) {
1547 		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1548 				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1549 				(long long)sle64_to_cpu(uh->allocation_delta),
1550 				(long long)sle64_to_cpu(uh->maximum_size));
1551 		ntfs_unmap_page(page);
1552 		return false;
1553 	}
1554 	/*
1555 	 * If the transaction log has been stamped and nothing has been written
1556 	 * to it since, we do not need to stamp it.
1557 	 */
1558 	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1559 			i_size_read(vol->usnjrnl_j_ino))) {
1560 		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1561 				i_size_read(vol->usnjrnl_j_ino))) {
1562 			ntfs_unmap_page(page);
1563 			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1564 					"logged since it was last stamped.  "
1565 					"Treating this as if the volume does "
1566 					"not have transaction logging "
1567 					"enabled.");
1568 			goto not_enabled;
1569 		}
1570 		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1571 				"which is out of bounds (0x%llx).  $UsnJrnl "
1572 				"is corrupt.",
1573 				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1574 				i_size_read(vol->usnjrnl_j_ino));
1575 		ntfs_unmap_page(page);
1576 		return false;
1577 	}
1578 	ntfs_unmap_page(page);
1579 	ntfs_debug("Done.");
1580 	return true;
1581 }
1582 
1583 /**
1584  * load_and_init_attrdef - load the attribute definitions table for a volume
1585  * @vol:	ntfs super block describing device whose attrdef to load
1586  *
1587  * Return 'true' on success or 'false' on error.
1588  */
1589 static bool load_and_init_attrdef(ntfs_volume *vol)
1590 {
1591 	loff_t i_size;
1592 	struct super_block *sb = vol->sb;
1593 	struct inode *ino;
1594 	struct page *page;
1595 	pgoff_t index, max_index;
1596 	unsigned int size;
1597 
1598 	ntfs_debug("Entering.");
1599 	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1600 	ino = ntfs_iget(sb, FILE_AttrDef);
1601 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1602 		if (!IS_ERR(ino))
1603 			iput(ino);
1604 		goto failed;
1605 	}
1606 	NInoSetSparseDisabled(NTFS_I(ino));
1607 	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1608 	i_size = i_size_read(ino);
1609 	if (i_size <= 0 || i_size > 0x7fffffff)
1610 		goto iput_failed;
1611 	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1612 	if (!vol->attrdef)
1613 		goto iput_failed;
1614 	index = 0;
1615 	max_index = i_size >> PAGE_CACHE_SHIFT;
1616 	size = PAGE_CACHE_SIZE;
1617 	while (index < max_index) {
1618 		/* Read the attrdef table and copy it into the linear buffer. */
1619 read_partial_attrdef_page:
1620 		page = ntfs_map_page(ino->i_mapping, index);
1621 		if (IS_ERR(page))
1622 			goto free_iput_failed;
1623 		memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1624 				page_address(page), size);
1625 		ntfs_unmap_page(page);
1626 	};
1627 	if (size == PAGE_CACHE_SIZE) {
1628 		size = i_size & ~PAGE_CACHE_MASK;
1629 		if (size)
1630 			goto read_partial_attrdef_page;
1631 	}
1632 	vol->attrdef_size = i_size;
1633 	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1634 	iput(ino);
1635 	return true;
1636 free_iput_failed:
1637 	ntfs_free(vol->attrdef);
1638 	vol->attrdef = NULL;
1639 iput_failed:
1640 	iput(ino);
1641 failed:
1642 	ntfs_error(sb, "Failed to initialize attribute definition table.");
1643 	return false;
1644 }
1645 
1646 #endif /* NTFS_RW */
1647 
1648 /**
1649  * load_and_init_upcase - load the upcase table for an ntfs volume
1650  * @vol:	ntfs super block describing device whose upcase to load
1651  *
1652  * Return 'true' on success or 'false' on error.
1653  */
1654 static bool load_and_init_upcase(ntfs_volume *vol)
1655 {
1656 	loff_t i_size;
1657 	struct super_block *sb = vol->sb;
1658 	struct inode *ino;
1659 	struct page *page;
1660 	pgoff_t index, max_index;
1661 	unsigned int size;
1662 	int i, max;
1663 
1664 	ntfs_debug("Entering.");
1665 	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1666 	ino = ntfs_iget(sb, FILE_UpCase);
1667 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1668 		if (!IS_ERR(ino))
1669 			iput(ino);
1670 		goto upcase_failed;
1671 	}
1672 	/*
1673 	 * The upcase size must not be above 64k Unicode characters, must not
1674 	 * be zero and must be a multiple of sizeof(ntfschar).
1675 	 */
1676 	i_size = i_size_read(ino);
1677 	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1678 			i_size > 64ULL * 1024 * sizeof(ntfschar))
1679 		goto iput_upcase_failed;
1680 	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1681 	if (!vol->upcase)
1682 		goto iput_upcase_failed;
1683 	index = 0;
1684 	max_index = i_size >> PAGE_CACHE_SHIFT;
1685 	size = PAGE_CACHE_SIZE;
1686 	while (index < max_index) {
1687 		/* Read the upcase table and copy it into the linear buffer. */
1688 read_partial_upcase_page:
1689 		page = ntfs_map_page(ino->i_mapping, index);
1690 		if (IS_ERR(page))
1691 			goto iput_upcase_failed;
1692 		memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1693 				page_address(page), size);
1694 		ntfs_unmap_page(page);
1695 	};
1696 	if (size == PAGE_CACHE_SIZE) {
1697 		size = i_size & ~PAGE_CACHE_MASK;
1698 		if (size)
1699 			goto read_partial_upcase_page;
1700 	}
1701 	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1702 	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1703 			i_size, 64 * 1024 * sizeof(ntfschar));
1704 	iput(ino);
1705 	mutex_lock(&ntfs_lock);
1706 	if (!default_upcase) {
1707 		ntfs_debug("Using volume specified $UpCase since default is "
1708 				"not present.");
1709 		mutex_unlock(&ntfs_lock);
1710 		return true;
1711 	}
1712 	max = default_upcase_len;
1713 	if (max > vol->upcase_len)
1714 		max = vol->upcase_len;
1715 	for (i = 0; i < max; i++)
1716 		if (vol->upcase[i] != default_upcase[i])
1717 			break;
1718 	if (i == max) {
1719 		ntfs_free(vol->upcase);
1720 		vol->upcase = default_upcase;
1721 		vol->upcase_len = max;
1722 		ntfs_nr_upcase_users++;
1723 		mutex_unlock(&ntfs_lock);
1724 		ntfs_debug("Volume specified $UpCase matches default. Using "
1725 				"default.");
1726 		return true;
1727 	}
1728 	mutex_unlock(&ntfs_lock);
1729 	ntfs_debug("Using volume specified $UpCase since it does not match "
1730 			"the default.");
1731 	return true;
1732 iput_upcase_failed:
1733 	iput(ino);
1734 	ntfs_free(vol->upcase);
1735 	vol->upcase = NULL;
1736 upcase_failed:
1737 	mutex_lock(&ntfs_lock);
1738 	if (default_upcase) {
1739 		vol->upcase = default_upcase;
1740 		vol->upcase_len = default_upcase_len;
1741 		ntfs_nr_upcase_users++;
1742 		mutex_unlock(&ntfs_lock);
1743 		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1744 				"default.");
1745 		return true;
1746 	}
1747 	mutex_unlock(&ntfs_lock);
1748 	ntfs_error(sb, "Failed to initialize upcase table.");
1749 	return false;
1750 }
1751 
1752 /*
1753  * The lcn and mft bitmap inodes are NTFS-internal inodes with
1754  * their own special locking rules:
1755  */
1756 static struct lock_class_key
1757 	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1758 	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1759 
1760 /**
1761  * load_system_files - open the system files using normal functions
1762  * @vol:	ntfs super block describing device whose system files to load
1763  *
1764  * Open the system files with normal access functions and complete setting up
1765  * the ntfs super block @vol.
1766  *
1767  * Return 'true' on success or 'false' on error.
1768  */
1769 static bool load_system_files(ntfs_volume *vol)
1770 {
1771 	struct super_block *sb = vol->sb;
1772 	MFT_RECORD *m;
1773 	VOLUME_INFORMATION *vi;
1774 	ntfs_attr_search_ctx *ctx;
1775 #ifdef NTFS_RW
1776 	RESTART_PAGE_HEADER *rp;
1777 	int err;
1778 #endif /* NTFS_RW */
1779 
1780 	ntfs_debug("Entering.");
1781 #ifdef NTFS_RW
1782 	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1783 	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1784 		static const char *es1 = "Failed to load $MFTMirr";
1785 		static const char *es2 = "$MFTMirr does not match $MFT";
1786 		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1787 
1788 		/* If a read-write mount, convert it to a read-only mount. */
1789 		if (!(sb->s_flags & MS_RDONLY)) {
1790 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1791 					ON_ERRORS_CONTINUE))) {
1792 				ntfs_error(sb, "%s and neither on_errors="
1793 						"continue nor on_errors="
1794 						"remount-ro was specified%s",
1795 						!vol->mftmirr_ino ? es1 : es2,
1796 						es3);
1797 				goto iput_mirr_err_out;
1798 			}
1799 			sb->s_flags |= MS_RDONLY;
1800 			ntfs_error(sb, "%s.  Mounting read-only%s",
1801 					!vol->mftmirr_ino ? es1 : es2, es3);
1802 		} else
1803 			ntfs_warning(sb, "%s.  Will not be able to remount "
1804 					"read-write%s",
1805 					!vol->mftmirr_ino ? es1 : es2, es3);
1806 		/* This will prevent a read-write remount. */
1807 		NVolSetErrors(vol);
1808 	}
1809 #endif /* NTFS_RW */
1810 	/* Get mft bitmap attribute inode. */
1811 	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1812 	if (IS_ERR(vol->mftbmp_ino)) {
1813 		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1814 		goto iput_mirr_err_out;
1815 	}
1816 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1817 			   &mftbmp_runlist_lock_key);
1818 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1819 			   &mftbmp_mrec_lock_key);
1820 	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1821 	if (!load_and_init_upcase(vol))
1822 		goto iput_mftbmp_err_out;
1823 #ifdef NTFS_RW
1824 	/*
1825 	 * Read attribute definitions table and setup @vol->attrdef and
1826 	 * @vol->attrdef_size.
1827 	 */
1828 	if (!load_and_init_attrdef(vol))
1829 		goto iput_upcase_err_out;
1830 #endif /* NTFS_RW */
1831 	/*
1832 	 * Get the cluster allocation bitmap inode and verify the size, no
1833 	 * need for any locking at this stage as we are already running
1834 	 * exclusively as we are mount in progress task.
1835 	 */
1836 	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1837 	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1838 		if (!IS_ERR(vol->lcnbmp_ino))
1839 			iput(vol->lcnbmp_ino);
1840 		goto bitmap_failed;
1841 	}
1842 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1843 			   &lcnbmp_runlist_lock_key);
1844 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1845 			   &lcnbmp_mrec_lock_key);
1846 
1847 	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1848 	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1849 		iput(vol->lcnbmp_ino);
1850 bitmap_failed:
1851 		ntfs_error(sb, "Failed to load $Bitmap.");
1852 		goto iput_attrdef_err_out;
1853 	}
1854 	/*
1855 	 * Get the volume inode and setup our cache of the volume flags and
1856 	 * version.
1857 	 */
1858 	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1859 	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1860 		if (!IS_ERR(vol->vol_ino))
1861 			iput(vol->vol_ino);
1862 volume_failed:
1863 		ntfs_error(sb, "Failed to load $Volume.");
1864 		goto iput_lcnbmp_err_out;
1865 	}
1866 	m = map_mft_record(NTFS_I(vol->vol_ino));
1867 	if (IS_ERR(m)) {
1868 iput_volume_failed:
1869 		iput(vol->vol_ino);
1870 		goto volume_failed;
1871 	}
1872 	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1873 		ntfs_error(sb, "Failed to get attribute search context.");
1874 		goto get_ctx_vol_failed;
1875 	}
1876 	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1877 			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1878 err_put_vol:
1879 		ntfs_attr_put_search_ctx(ctx);
1880 get_ctx_vol_failed:
1881 		unmap_mft_record(NTFS_I(vol->vol_ino));
1882 		goto iput_volume_failed;
1883 	}
1884 	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1885 			le16_to_cpu(ctx->attr->data.resident.value_offset));
1886 	/* Some bounds checks. */
1887 	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1888 			le32_to_cpu(ctx->attr->data.resident.value_length) >
1889 			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1890 		goto err_put_vol;
1891 	/* Copy the volume flags and version to the ntfs_volume structure. */
1892 	vol->vol_flags = vi->flags;
1893 	vol->major_ver = vi->major_ver;
1894 	vol->minor_ver = vi->minor_ver;
1895 	ntfs_attr_put_search_ctx(ctx);
1896 	unmap_mft_record(NTFS_I(vol->vol_ino));
1897 	printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1898 			vol->minor_ver);
1899 	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1900 		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1901 				"volume version %i.%i (need at least version "
1902 				"3.0).", vol->major_ver, vol->minor_ver);
1903 		NVolClearSparseEnabled(vol);
1904 	}
1905 #ifdef NTFS_RW
1906 	/* Make sure that no unsupported volume flags are set. */
1907 	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1908 		static const char *es1a = "Volume is dirty";
1909 		static const char *es1b = "Volume has been modified by chkdsk";
1910 		static const char *es1c = "Volume has unsupported flags set";
1911 		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1912 		static const char *es2b = ".  Mount in Windows.";
1913 		const char *es1, *es2;
1914 
1915 		es2 = es2a;
1916 		if (vol->vol_flags & VOLUME_IS_DIRTY)
1917 			es1 = es1a;
1918 		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1919 			es1 = es1b;
1920 			es2 = es2b;
1921 		} else {
1922 			es1 = es1c;
1923 			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1924 					"encountered.",
1925 					(unsigned)le16_to_cpu(vol->vol_flags));
1926 		}
1927 		/* If a read-write mount, convert it to a read-only mount. */
1928 		if (!(sb->s_flags & MS_RDONLY)) {
1929 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1930 					ON_ERRORS_CONTINUE))) {
1931 				ntfs_error(sb, "%s and neither on_errors="
1932 						"continue nor on_errors="
1933 						"remount-ro was specified%s",
1934 						es1, es2);
1935 				goto iput_vol_err_out;
1936 			}
1937 			sb->s_flags |= MS_RDONLY;
1938 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1939 		} else
1940 			ntfs_warning(sb, "%s.  Will not be able to remount "
1941 					"read-write%s", es1, es2);
1942 		/*
1943 		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1944 		 * flags which we need to do in case any flags have changed.
1945 		 */
1946 	}
1947 	/*
1948 	 * Get the inode for the logfile, check it and determine if the volume
1949 	 * was shutdown cleanly.
1950 	 */
1951 	rp = NULL;
1952 	if (!load_and_check_logfile(vol, &rp) ||
1953 			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1954 		static const char *es1a = "Failed to load $LogFile";
1955 		static const char *es1b = "$LogFile is not clean";
1956 		static const char *es2 = ".  Mount in Windows.";
1957 		const char *es1;
1958 
1959 		es1 = !vol->logfile_ino ? es1a : es1b;
1960 		/* If a read-write mount, convert it to a read-only mount. */
1961 		if (!(sb->s_flags & MS_RDONLY)) {
1962 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1963 					ON_ERRORS_CONTINUE))) {
1964 				ntfs_error(sb, "%s and neither on_errors="
1965 						"continue nor on_errors="
1966 						"remount-ro was specified%s",
1967 						es1, es2);
1968 				if (vol->logfile_ino) {
1969 					BUG_ON(!rp);
1970 					ntfs_free(rp);
1971 				}
1972 				goto iput_logfile_err_out;
1973 			}
1974 			sb->s_flags |= MS_RDONLY;
1975 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1976 		} else
1977 			ntfs_warning(sb, "%s.  Will not be able to remount "
1978 					"read-write%s", es1, es2);
1979 		/* This will prevent a read-write remount. */
1980 		NVolSetErrors(vol);
1981 	}
1982 	ntfs_free(rp);
1983 #endif /* NTFS_RW */
1984 	/* Get the root directory inode so we can do path lookups. */
1985 	vol->root_ino = ntfs_iget(sb, FILE_root);
1986 	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1987 		if (!IS_ERR(vol->root_ino))
1988 			iput(vol->root_ino);
1989 		ntfs_error(sb, "Failed to load root directory.");
1990 		goto iput_logfile_err_out;
1991 	}
1992 #ifdef NTFS_RW
1993 	/*
1994 	 * Check if Windows is suspended to disk on the target volume.  If it
1995 	 * is hibernated, we must not write *anything* to the disk so set
1996 	 * NVolErrors() without setting the dirty volume flag and mount
1997 	 * read-only.  This will prevent read-write remounting and it will also
1998 	 * prevent all writes.
1999 	 */
2000 	err = check_windows_hibernation_status(vol);
2001 	if (unlikely(err)) {
2002 		static const char *es1a = "Failed to determine if Windows is "
2003 				"hibernated";
2004 		static const char *es1b = "Windows is hibernated";
2005 		static const char *es2 = ".  Run chkdsk.";
2006 		const char *es1;
2007 
2008 		es1 = err < 0 ? es1a : es1b;
2009 		/* If a read-write mount, convert it to a read-only mount. */
2010 		if (!(sb->s_flags & MS_RDONLY)) {
2011 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2012 					ON_ERRORS_CONTINUE))) {
2013 				ntfs_error(sb, "%s and neither on_errors="
2014 						"continue nor on_errors="
2015 						"remount-ro was specified%s",
2016 						es1, es2);
2017 				goto iput_root_err_out;
2018 			}
2019 			sb->s_flags |= MS_RDONLY;
2020 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2021 		} else
2022 			ntfs_warning(sb, "%s.  Will not be able to remount "
2023 					"read-write%s", es1, es2);
2024 		/* This will prevent a read-write remount. */
2025 		NVolSetErrors(vol);
2026 	}
2027 	/* If (still) a read-write mount, mark the volume dirty. */
2028 	if (!(sb->s_flags & MS_RDONLY) &&
2029 			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2030 		static const char *es1 = "Failed to set dirty bit in volume "
2031 				"information flags";
2032 		static const char *es2 = ".  Run chkdsk.";
2033 
2034 		/* Convert to a read-only mount. */
2035 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2036 				ON_ERRORS_CONTINUE))) {
2037 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2038 					"on_errors=remount-ro was specified%s",
2039 					es1, es2);
2040 			goto iput_root_err_out;
2041 		}
2042 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2043 		sb->s_flags |= MS_RDONLY;
2044 		/*
2045 		 * Do not set NVolErrors() because ntfs_remount() might manage
2046 		 * to set the dirty flag in which case all would be well.
2047 		 */
2048 	}
2049 #if 0
2050 	// TODO: Enable this code once we start modifying anything that is
2051 	//	 different between NTFS 1.2 and 3.x...
2052 	/*
2053 	 * If (still) a read-write mount, set the NT4 compatibility flag on
2054 	 * newer NTFS version volumes.
2055 	 */
2056 	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2057 			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2058 		static const char *es1 = "Failed to set NT4 compatibility flag";
2059 		static const char *es2 = ".  Run chkdsk.";
2060 
2061 		/* Convert to a read-only mount. */
2062 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2063 				ON_ERRORS_CONTINUE))) {
2064 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2065 					"on_errors=remount-ro was specified%s",
2066 					es1, es2);
2067 			goto iput_root_err_out;
2068 		}
2069 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2070 		sb->s_flags |= MS_RDONLY;
2071 		NVolSetErrors(vol);
2072 	}
2073 #endif
2074 	/* If (still) a read-write mount, empty the logfile. */
2075 	if (!(sb->s_flags & MS_RDONLY) &&
2076 			!ntfs_empty_logfile(vol->logfile_ino)) {
2077 		static const char *es1 = "Failed to empty $LogFile";
2078 		static const char *es2 = ".  Mount in Windows.";
2079 
2080 		/* Convert to a read-only mount. */
2081 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2082 				ON_ERRORS_CONTINUE))) {
2083 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2084 					"on_errors=remount-ro was specified%s",
2085 					es1, es2);
2086 			goto iput_root_err_out;
2087 		}
2088 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2089 		sb->s_flags |= MS_RDONLY;
2090 		NVolSetErrors(vol);
2091 	}
2092 #endif /* NTFS_RW */
2093 	/* If on NTFS versions before 3.0, we are done. */
2094 	if (unlikely(vol->major_ver < 3))
2095 		return true;
2096 	/* NTFS 3.0+ specific initialization. */
2097 	/* Get the security descriptors inode. */
2098 	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2099 	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2100 		if (!IS_ERR(vol->secure_ino))
2101 			iput(vol->secure_ino);
2102 		ntfs_error(sb, "Failed to load $Secure.");
2103 		goto iput_root_err_out;
2104 	}
2105 	// TODO: Initialize security.
2106 	/* Get the extended system files' directory inode. */
2107 	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2108 	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2109 		if (!IS_ERR(vol->extend_ino))
2110 			iput(vol->extend_ino);
2111 		ntfs_error(sb, "Failed to load $Extend.");
2112 		goto iput_sec_err_out;
2113 	}
2114 #ifdef NTFS_RW
2115 	/* Find the quota file, load it if present, and set it up. */
2116 	if (!load_and_init_quota(vol)) {
2117 		static const char *es1 = "Failed to load $Quota";
2118 		static const char *es2 = ".  Run chkdsk.";
2119 
2120 		/* If a read-write mount, convert it to a read-only mount. */
2121 		if (!(sb->s_flags & MS_RDONLY)) {
2122 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2123 					ON_ERRORS_CONTINUE))) {
2124 				ntfs_error(sb, "%s and neither on_errors="
2125 						"continue nor on_errors="
2126 						"remount-ro was specified%s",
2127 						es1, es2);
2128 				goto iput_quota_err_out;
2129 			}
2130 			sb->s_flags |= MS_RDONLY;
2131 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2132 		} else
2133 			ntfs_warning(sb, "%s.  Will not be able to remount "
2134 					"read-write%s", es1, es2);
2135 		/* This will prevent a read-write remount. */
2136 		NVolSetErrors(vol);
2137 	}
2138 	/* If (still) a read-write mount, mark the quotas out of date. */
2139 	if (!(sb->s_flags & MS_RDONLY) &&
2140 			!ntfs_mark_quotas_out_of_date(vol)) {
2141 		static const char *es1 = "Failed to mark quotas out of date";
2142 		static const char *es2 = ".  Run chkdsk.";
2143 
2144 		/* Convert to a read-only mount. */
2145 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2146 				ON_ERRORS_CONTINUE))) {
2147 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2148 					"on_errors=remount-ro was specified%s",
2149 					es1, es2);
2150 			goto iput_quota_err_out;
2151 		}
2152 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2153 		sb->s_flags |= MS_RDONLY;
2154 		NVolSetErrors(vol);
2155 	}
2156 	/*
2157 	 * Find the transaction log file ($UsnJrnl), load it if present, check
2158 	 * it, and set it up.
2159 	 */
2160 	if (!load_and_init_usnjrnl(vol)) {
2161 		static const char *es1 = "Failed to load $UsnJrnl";
2162 		static const char *es2 = ".  Run chkdsk.";
2163 
2164 		/* If a read-write mount, convert it to a read-only mount. */
2165 		if (!(sb->s_flags & MS_RDONLY)) {
2166 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2167 					ON_ERRORS_CONTINUE))) {
2168 				ntfs_error(sb, "%s and neither on_errors="
2169 						"continue nor on_errors="
2170 						"remount-ro was specified%s",
2171 						es1, es2);
2172 				goto iput_usnjrnl_err_out;
2173 			}
2174 			sb->s_flags |= MS_RDONLY;
2175 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2176 		} else
2177 			ntfs_warning(sb, "%s.  Will not be able to remount "
2178 					"read-write%s", es1, es2);
2179 		/* This will prevent a read-write remount. */
2180 		NVolSetErrors(vol);
2181 	}
2182 	/* If (still) a read-write mount, stamp the transaction log. */
2183 	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2184 		static const char *es1 = "Failed to stamp transaction log "
2185 				"($UsnJrnl)";
2186 		static const char *es2 = ".  Run chkdsk.";
2187 
2188 		/* Convert to a read-only mount. */
2189 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2190 				ON_ERRORS_CONTINUE))) {
2191 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2192 					"on_errors=remount-ro was specified%s",
2193 					es1, es2);
2194 			goto iput_usnjrnl_err_out;
2195 		}
2196 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2197 		sb->s_flags |= MS_RDONLY;
2198 		NVolSetErrors(vol);
2199 	}
2200 #endif /* NTFS_RW */
2201 	return true;
2202 #ifdef NTFS_RW
2203 iput_usnjrnl_err_out:
2204 	if (vol->usnjrnl_j_ino)
2205 		iput(vol->usnjrnl_j_ino);
2206 	if (vol->usnjrnl_max_ino)
2207 		iput(vol->usnjrnl_max_ino);
2208 	if (vol->usnjrnl_ino)
2209 		iput(vol->usnjrnl_ino);
2210 iput_quota_err_out:
2211 	if (vol->quota_q_ino)
2212 		iput(vol->quota_q_ino);
2213 	if (vol->quota_ino)
2214 		iput(vol->quota_ino);
2215 	iput(vol->extend_ino);
2216 #endif /* NTFS_RW */
2217 iput_sec_err_out:
2218 	iput(vol->secure_ino);
2219 iput_root_err_out:
2220 	iput(vol->root_ino);
2221 iput_logfile_err_out:
2222 #ifdef NTFS_RW
2223 	if (vol->logfile_ino)
2224 		iput(vol->logfile_ino);
2225 iput_vol_err_out:
2226 #endif /* NTFS_RW */
2227 	iput(vol->vol_ino);
2228 iput_lcnbmp_err_out:
2229 	iput(vol->lcnbmp_ino);
2230 iput_attrdef_err_out:
2231 	vol->attrdef_size = 0;
2232 	if (vol->attrdef) {
2233 		ntfs_free(vol->attrdef);
2234 		vol->attrdef = NULL;
2235 	}
2236 #ifdef NTFS_RW
2237 iput_upcase_err_out:
2238 #endif /* NTFS_RW */
2239 	vol->upcase_len = 0;
2240 	mutex_lock(&ntfs_lock);
2241 	if (vol->upcase == default_upcase) {
2242 		ntfs_nr_upcase_users--;
2243 		vol->upcase = NULL;
2244 	}
2245 	mutex_unlock(&ntfs_lock);
2246 	if (vol->upcase) {
2247 		ntfs_free(vol->upcase);
2248 		vol->upcase = NULL;
2249 	}
2250 iput_mftbmp_err_out:
2251 	iput(vol->mftbmp_ino);
2252 iput_mirr_err_out:
2253 #ifdef NTFS_RW
2254 	if (vol->mftmirr_ino)
2255 		iput(vol->mftmirr_ino);
2256 #endif /* NTFS_RW */
2257 	return false;
2258 }
2259 
2260 /**
2261  * ntfs_put_super - called by the vfs to unmount a volume
2262  * @sb:		vfs superblock of volume to unmount
2263  *
2264  * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2265  * the volume is being unmounted (umount system call has been invoked) and it
2266  * releases all inodes and memory belonging to the NTFS specific part of the
2267  * super block.
2268  */
2269 static void ntfs_put_super(struct super_block *sb)
2270 {
2271 	ntfs_volume *vol = NTFS_SB(sb);
2272 
2273 	ntfs_debug("Entering.");
2274 
2275 #ifdef NTFS_RW
2276 	/*
2277 	 * Commit all inodes while they are still open in case some of them
2278 	 * cause others to be dirtied.
2279 	 */
2280 	ntfs_commit_inode(vol->vol_ino);
2281 
2282 	/* NTFS 3.0+ specific. */
2283 	if (vol->major_ver >= 3) {
2284 		if (vol->usnjrnl_j_ino)
2285 			ntfs_commit_inode(vol->usnjrnl_j_ino);
2286 		if (vol->usnjrnl_max_ino)
2287 			ntfs_commit_inode(vol->usnjrnl_max_ino);
2288 		if (vol->usnjrnl_ino)
2289 			ntfs_commit_inode(vol->usnjrnl_ino);
2290 		if (vol->quota_q_ino)
2291 			ntfs_commit_inode(vol->quota_q_ino);
2292 		if (vol->quota_ino)
2293 			ntfs_commit_inode(vol->quota_ino);
2294 		if (vol->extend_ino)
2295 			ntfs_commit_inode(vol->extend_ino);
2296 		if (vol->secure_ino)
2297 			ntfs_commit_inode(vol->secure_ino);
2298 	}
2299 
2300 	ntfs_commit_inode(vol->root_ino);
2301 
2302 	down_write(&vol->lcnbmp_lock);
2303 	ntfs_commit_inode(vol->lcnbmp_ino);
2304 	up_write(&vol->lcnbmp_lock);
2305 
2306 	down_write(&vol->mftbmp_lock);
2307 	ntfs_commit_inode(vol->mftbmp_ino);
2308 	up_write(&vol->mftbmp_lock);
2309 
2310 	if (vol->logfile_ino)
2311 		ntfs_commit_inode(vol->logfile_ino);
2312 
2313 	if (vol->mftmirr_ino)
2314 		ntfs_commit_inode(vol->mftmirr_ino);
2315 	ntfs_commit_inode(vol->mft_ino);
2316 
2317 	/*
2318 	 * If a read-write mount and no volume errors have occurred, mark the
2319 	 * volume clean.  Also, re-commit all affected inodes.
2320 	 */
2321 	if (!(sb->s_flags & MS_RDONLY)) {
2322 		if (!NVolErrors(vol)) {
2323 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2324 				ntfs_warning(sb, "Failed to clear dirty bit "
2325 						"in volume information "
2326 						"flags.  Run chkdsk.");
2327 			ntfs_commit_inode(vol->vol_ino);
2328 			ntfs_commit_inode(vol->root_ino);
2329 			if (vol->mftmirr_ino)
2330 				ntfs_commit_inode(vol->mftmirr_ino);
2331 			ntfs_commit_inode(vol->mft_ino);
2332 		} else {
2333 			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2334 					"marked dirty.  Run chkdsk.");
2335 		}
2336 	}
2337 #endif /* NTFS_RW */
2338 
2339 	iput(vol->vol_ino);
2340 	vol->vol_ino = NULL;
2341 
2342 	/* NTFS 3.0+ specific clean up. */
2343 	if (vol->major_ver >= 3) {
2344 #ifdef NTFS_RW
2345 		if (vol->usnjrnl_j_ino) {
2346 			iput(vol->usnjrnl_j_ino);
2347 			vol->usnjrnl_j_ino = NULL;
2348 		}
2349 		if (vol->usnjrnl_max_ino) {
2350 			iput(vol->usnjrnl_max_ino);
2351 			vol->usnjrnl_max_ino = NULL;
2352 		}
2353 		if (vol->usnjrnl_ino) {
2354 			iput(vol->usnjrnl_ino);
2355 			vol->usnjrnl_ino = NULL;
2356 		}
2357 		if (vol->quota_q_ino) {
2358 			iput(vol->quota_q_ino);
2359 			vol->quota_q_ino = NULL;
2360 		}
2361 		if (vol->quota_ino) {
2362 			iput(vol->quota_ino);
2363 			vol->quota_ino = NULL;
2364 		}
2365 #endif /* NTFS_RW */
2366 		if (vol->extend_ino) {
2367 			iput(vol->extend_ino);
2368 			vol->extend_ino = NULL;
2369 		}
2370 		if (vol->secure_ino) {
2371 			iput(vol->secure_ino);
2372 			vol->secure_ino = NULL;
2373 		}
2374 	}
2375 
2376 	iput(vol->root_ino);
2377 	vol->root_ino = NULL;
2378 
2379 	down_write(&vol->lcnbmp_lock);
2380 	iput(vol->lcnbmp_ino);
2381 	vol->lcnbmp_ino = NULL;
2382 	up_write(&vol->lcnbmp_lock);
2383 
2384 	down_write(&vol->mftbmp_lock);
2385 	iput(vol->mftbmp_ino);
2386 	vol->mftbmp_ino = NULL;
2387 	up_write(&vol->mftbmp_lock);
2388 
2389 #ifdef NTFS_RW
2390 	if (vol->logfile_ino) {
2391 		iput(vol->logfile_ino);
2392 		vol->logfile_ino = NULL;
2393 	}
2394 	if (vol->mftmirr_ino) {
2395 		/* Re-commit the mft mirror and mft just in case. */
2396 		ntfs_commit_inode(vol->mftmirr_ino);
2397 		ntfs_commit_inode(vol->mft_ino);
2398 		iput(vol->mftmirr_ino);
2399 		vol->mftmirr_ino = NULL;
2400 	}
2401 	/*
2402 	 * We should have no dirty inodes left, due to
2403 	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2404 	 * the underlying mft records are written out and cleaned.
2405 	 */
2406 	ntfs_commit_inode(vol->mft_ino);
2407 	write_inode_now(vol->mft_ino, 1);
2408 #endif /* NTFS_RW */
2409 
2410 	iput(vol->mft_ino);
2411 	vol->mft_ino = NULL;
2412 
2413 	/* Throw away the table of attribute definitions. */
2414 	vol->attrdef_size = 0;
2415 	if (vol->attrdef) {
2416 		ntfs_free(vol->attrdef);
2417 		vol->attrdef = NULL;
2418 	}
2419 	vol->upcase_len = 0;
2420 	/*
2421 	 * Destroy the global default upcase table if necessary.  Also decrease
2422 	 * the number of upcase users if we are a user.
2423 	 */
2424 	mutex_lock(&ntfs_lock);
2425 	if (vol->upcase == default_upcase) {
2426 		ntfs_nr_upcase_users--;
2427 		vol->upcase = NULL;
2428 	}
2429 	if (!ntfs_nr_upcase_users && default_upcase) {
2430 		ntfs_free(default_upcase);
2431 		default_upcase = NULL;
2432 	}
2433 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2434 		free_compression_buffers();
2435 	mutex_unlock(&ntfs_lock);
2436 	if (vol->upcase) {
2437 		ntfs_free(vol->upcase);
2438 		vol->upcase = NULL;
2439 	}
2440 
2441 	unload_nls(vol->nls_map);
2442 
2443 	sb->s_fs_info = NULL;
2444 	kfree(vol);
2445 }
2446 
2447 /**
2448  * get_nr_free_clusters - return the number of free clusters on a volume
2449  * @vol:	ntfs volume for which to obtain free cluster count
2450  *
2451  * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2452  * actually calculate the number of clusters in use instead because this
2453  * allows us to not care about partial pages as these will be just zero filled
2454  * and hence not be counted as allocated clusters.
2455  *
2456  * The only particularity is that clusters beyond the end of the logical ntfs
2457  * volume will be marked as allocated to prevent errors which means we have to
2458  * discount those at the end. This is important as the cluster bitmap always
2459  * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2460  * the logical volume and marked in use when they are not as they do not exist.
2461  *
2462  * If any pages cannot be read we assume all clusters in the erroring pages are
2463  * in use. This means we return an underestimate on errors which is better than
2464  * an overestimate.
2465  */
2466 static s64 get_nr_free_clusters(ntfs_volume *vol)
2467 {
2468 	s64 nr_free = vol->nr_clusters;
2469 	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2470 	struct page *page;
2471 	pgoff_t index, max_index;
2472 
2473 	ntfs_debug("Entering.");
2474 	/* Serialize accesses to the cluster bitmap. */
2475 	down_read(&vol->lcnbmp_lock);
2476 	/*
2477 	 * Convert the number of bits into bytes rounded up, then convert into
2478 	 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2479 	 * full and one partial page max_index = 2.
2480 	 */
2481 	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2482 			PAGE_CACHE_SHIFT;
2483 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2484 	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2485 			max_index, PAGE_CACHE_SIZE / 4);
2486 	for (index = 0; index < max_index; index++) {
2487 		unsigned long *kaddr;
2488 
2489 		/*
2490 		 * Read the page from page cache, getting it from backing store
2491 		 * if necessary, and increment the use count.
2492 		 */
2493 		page = read_mapping_page(mapping, index, NULL);
2494 		/* Ignore pages which errored synchronously. */
2495 		if (IS_ERR(page)) {
2496 			ntfs_debug("read_mapping_page() error. Skipping "
2497 					"page (index 0x%lx).", index);
2498 			nr_free -= PAGE_CACHE_SIZE * 8;
2499 			continue;
2500 		}
2501 		kaddr = kmap_atomic(page);
2502 		/*
2503 		 * Subtract the number of set bits. If this
2504 		 * is the last page and it is partial we don't really care as
2505 		 * it just means we do a little extra work but it won't affect
2506 		 * the result as all out of range bytes are set to zero by
2507 		 * ntfs_readpage().
2508 		 */
2509 		nr_free -= bitmap_weight(kaddr,
2510 					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2511 		kunmap_atomic(kaddr);
2512 		page_cache_release(page);
2513 	}
2514 	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2515 	/*
2516 	 * Fixup for eventual bits outside logical ntfs volume (see function
2517 	 * description above).
2518 	 */
2519 	if (vol->nr_clusters & 63)
2520 		nr_free += 64 - (vol->nr_clusters & 63);
2521 	up_read(&vol->lcnbmp_lock);
2522 	/* If errors occurred we may well have gone below zero, fix this. */
2523 	if (nr_free < 0)
2524 		nr_free = 0;
2525 	ntfs_debug("Exiting.");
2526 	return nr_free;
2527 }
2528 
2529 /**
2530  * __get_nr_free_mft_records - return the number of free inodes on a volume
2531  * @vol:	ntfs volume for which to obtain free inode count
2532  * @nr_free:	number of mft records in filesystem
2533  * @max_index:	maximum number of pages containing set bits
2534  *
2535  * Calculate the number of free mft records (inodes) on the mounted NTFS
2536  * volume @vol. We actually calculate the number of mft records in use instead
2537  * because this allows us to not care about partial pages as these will be just
2538  * zero filled and hence not be counted as allocated mft record.
2539  *
2540  * If any pages cannot be read we assume all mft records in the erroring pages
2541  * are in use. This means we return an underestimate on errors which is better
2542  * than an overestimate.
2543  *
2544  * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2545  */
2546 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2547 		s64 nr_free, const pgoff_t max_index)
2548 {
2549 	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2550 	struct page *page;
2551 	pgoff_t index;
2552 
2553 	ntfs_debug("Entering.");
2554 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2555 	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2556 			"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2557 	for (index = 0; index < max_index; index++) {
2558 		unsigned long *kaddr;
2559 
2560 		/*
2561 		 * Read the page from page cache, getting it from backing store
2562 		 * if necessary, and increment the use count.
2563 		 */
2564 		page = read_mapping_page(mapping, index, NULL);
2565 		/* Ignore pages which errored synchronously. */
2566 		if (IS_ERR(page)) {
2567 			ntfs_debug("read_mapping_page() error. Skipping "
2568 					"page (index 0x%lx).", index);
2569 			nr_free -= PAGE_CACHE_SIZE * 8;
2570 			continue;
2571 		}
2572 		kaddr = kmap_atomic(page);
2573 		/*
2574 		 * Subtract the number of set bits. If this
2575 		 * is the last page and it is partial we don't really care as
2576 		 * it just means we do a little extra work but it won't affect
2577 		 * the result as all out of range bytes are set to zero by
2578 		 * ntfs_readpage().
2579 		 */
2580 		nr_free -= bitmap_weight(kaddr,
2581 					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2582 		kunmap_atomic(kaddr);
2583 		page_cache_release(page);
2584 	}
2585 	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2586 			index - 1);
2587 	/* If errors occurred we may well have gone below zero, fix this. */
2588 	if (nr_free < 0)
2589 		nr_free = 0;
2590 	ntfs_debug("Exiting.");
2591 	return nr_free;
2592 }
2593 
2594 /**
2595  * ntfs_statfs - return information about mounted NTFS volume
2596  * @dentry:	dentry from mounted volume
2597  * @sfs:	statfs structure in which to return the information
2598  *
2599  * Return information about the mounted NTFS volume @dentry in the statfs structure
2600  * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2601  * called). We interpret the values to be correct of the moment in time at
2602  * which we are called. Most values are variable otherwise and this isn't just
2603  * the free values but the totals as well. For example we can increase the
2604  * total number of file nodes if we run out and we can keep doing this until
2605  * there is no more space on the volume left at all.
2606  *
2607  * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2608  * ustat system calls.
2609  *
2610  * Return 0 on success or -errno on error.
2611  */
2612 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2613 {
2614 	struct super_block *sb = dentry->d_sb;
2615 	s64 size;
2616 	ntfs_volume *vol = NTFS_SB(sb);
2617 	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2618 	pgoff_t max_index;
2619 	unsigned long flags;
2620 
2621 	ntfs_debug("Entering.");
2622 	/* Type of filesystem. */
2623 	sfs->f_type   = NTFS_SB_MAGIC;
2624 	/* Optimal transfer block size. */
2625 	sfs->f_bsize  = PAGE_CACHE_SIZE;
2626 	/*
2627 	 * Total data blocks in filesystem in units of f_bsize and since
2628 	 * inodes are also stored in data blocs ($MFT is a file) this is just
2629 	 * the total clusters.
2630 	 */
2631 	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2632 				PAGE_CACHE_SHIFT;
2633 	/* Free data blocks in filesystem in units of f_bsize. */
2634 	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2635 				PAGE_CACHE_SHIFT;
2636 	if (size < 0LL)
2637 		size = 0LL;
2638 	/* Free blocks avail to non-superuser, same as above on NTFS. */
2639 	sfs->f_bavail = sfs->f_bfree = size;
2640 	/* Serialize accesses to the inode bitmap. */
2641 	down_read(&vol->mftbmp_lock);
2642 	read_lock_irqsave(&mft_ni->size_lock, flags);
2643 	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2644 	/*
2645 	 * Convert the maximum number of set bits into bytes rounded up, then
2646 	 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2647 	 * have one full and one partial page max_index = 2.
2648 	 */
2649 	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2650 			+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2651 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2652 	/* Number of inodes in filesystem (at this point in time). */
2653 	sfs->f_files = size;
2654 	/* Free inodes in fs (based on current total count). */
2655 	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2656 	up_read(&vol->mftbmp_lock);
2657 	/*
2658 	 * File system id. This is extremely *nix flavour dependent and even
2659 	 * within Linux itself all fs do their own thing. I interpret this to
2660 	 * mean a unique id associated with the mounted fs and not the id
2661 	 * associated with the filesystem driver, the latter is already given
2662 	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2663 	 * volume serial number splitting it into two 32-bit parts. We enter
2664 	 * the least significant 32-bits in f_fsid[0] and the most significant
2665 	 * 32-bits in f_fsid[1].
2666 	 */
2667 	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2668 	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2669 	/* Maximum length of filenames. */
2670 	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2671 	return 0;
2672 }
2673 
2674 #ifdef NTFS_RW
2675 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2676 {
2677 	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2678 }
2679 #endif
2680 
2681 /**
2682  * The complete super operations.
2683  */
2684 static const struct super_operations ntfs_sops = {
2685 	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2686 	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2687 #ifdef NTFS_RW
2688 	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2689 						   disk. */
2690 #endif /* NTFS_RW */
2691 	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2692 	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2693 	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2694 	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2695 						   removed from memory. */
2696 	.show_options	= ntfs_show_options,	/* Show mount options in
2697 						   proc. */
2698 };
2699 
2700 /**
2701  * ntfs_fill_super - mount an ntfs filesystem
2702  * @sb:		super block of ntfs filesystem to mount
2703  * @opt:	string containing the mount options
2704  * @silent:	silence error output
2705  *
2706  * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2707  * with the mount otions in @data with the NTFS filesystem.
2708  *
2709  * If @silent is true, remain silent even if errors are detected. This is used
2710  * during bootup, when the kernel tries to mount the root filesystem with all
2711  * registered filesystems one after the other until one succeeds. This implies
2712  * that all filesystems except the correct one will quite correctly and
2713  * expectedly return an error, but nobody wants to see error messages when in
2714  * fact this is what is supposed to happen.
2715  *
2716  * NOTE: @sb->s_flags contains the mount options flags.
2717  */
2718 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2719 {
2720 	ntfs_volume *vol;
2721 	struct buffer_head *bh;
2722 	struct inode *tmp_ino;
2723 	int blocksize, result;
2724 
2725 	/*
2726 	 * We do a pretty difficult piece of bootstrap by reading the
2727 	 * MFT (and other metadata) from disk into memory. We'll only
2728 	 * release this metadata during umount, so the locking patterns
2729 	 * observed during bootstrap do not count. So turn off the
2730 	 * observation of locking patterns (strictly for this context
2731 	 * only) while mounting NTFS. [The validator is still active
2732 	 * otherwise, even for this context: it will for example record
2733 	 * lock class registrations.]
2734 	 */
2735 	lockdep_off();
2736 	ntfs_debug("Entering.");
2737 #ifndef NTFS_RW
2738 	sb->s_flags |= MS_RDONLY;
2739 #endif /* ! NTFS_RW */
2740 	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2741 	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2742 	vol = NTFS_SB(sb);
2743 	if (!vol) {
2744 		if (!silent)
2745 			ntfs_error(sb, "Allocation of NTFS volume structure "
2746 					"failed. Aborting mount...");
2747 		lockdep_on();
2748 		return -ENOMEM;
2749 	}
2750 	/* Initialize ntfs_volume structure. */
2751 	*vol = (ntfs_volume) {
2752 		.sb = sb,
2753 		/*
2754 		 * Default is group and other don't have any access to files or
2755 		 * directories while owner has full access. Further, files by
2756 		 * default are not executable but directories are of course
2757 		 * browseable.
2758 		 */
2759 		.fmask = 0177,
2760 		.dmask = 0077,
2761 	};
2762 	init_rwsem(&vol->mftbmp_lock);
2763 	init_rwsem(&vol->lcnbmp_lock);
2764 
2765 	/* By default, enable sparse support. */
2766 	NVolSetSparseEnabled(vol);
2767 
2768 	/* Important to get the mount options dealt with now. */
2769 	if (!parse_options(vol, (char*)opt))
2770 		goto err_out_now;
2771 
2772 	/* We support sector sizes up to the PAGE_CACHE_SIZE. */
2773 	if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2774 		if (!silent)
2775 			ntfs_error(sb, "Device has unsupported sector size "
2776 					"(%i).  The maximum supported sector "
2777 					"size on this architecture is %lu "
2778 					"bytes.",
2779 					bdev_logical_block_size(sb->s_bdev),
2780 					PAGE_CACHE_SIZE);
2781 		goto err_out_now;
2782 	}
2783 	/*
2784 	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2785 	 * sector size, whichever is bigger.
2786 	 */
2787 	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2788 	if (blocksize < NTFS_BLOCK_SIZE) {
2789 		if (!silent)
2790 			ntfs_error(sb, "Unable to set device block size.");
2791 		goto err_out_now;
2792 	}
2793 	BUG_ON(blocksize != sb->s_blocksize);
2794 	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2795 			blocksize, sb->s_blocksize_bits);
2796 	/* Determine the size of the device in units of block_size bytes. */
2797 	if (!i_size_read(sb->s_bdev->bd_inode)) {
2798 		if (!silent)
2799 			ntfs_error(sb, "Unable to determine device size.");
2800 		goto err_out_now;
2801 	}
2802 	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2803 			sb->s_blocksize_bits;
2804 	/* Read the boot sector and return unlocked buffer head to it. */
2805 	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2806 		if (!silent)
2807 			ntfs_error(sb, "Not an NTFS volume.");
2808 		goto err_out_now;
2809 	}
2810 	/*
2811 	 * Extract the data from the boot sector and setup the ntfs volume
2812 	 * using it.
2813 	 */
2814 	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2815 	brelse(bh);
2816 	if (!result) {
2817 		if (!silent)
2818 			ntfs_error(sb, "Unsupported NTFS filesystem.");
2819 		goto err_out_now;
2820 	}
2821 	/*
2822 	 * If the boot sector indicates a sector size bigger than the current
2823 	 * device block size, switch the device block size to the sector size.
2824 	 * TODO: It may be possible to support this case even when the set
2825 	 * below fails, we would just be breaking up the i/o for each sector
2826 	 * into multiple blocks for i/o purposes but otherwise it should just
2827 	 * work.  However it is safer to leave disabled until someone hits this
2828 	 * error message and then we can get them to try it without the setting
2829 	 * so we know for sure that it works.
2830 	 */
2831 	if (vol->sector_size > blocksize) {
2832 		blocksize = sb_set_blocksize(sb, vol->sector_size);
2833 		if (blocksize != vol->sector_size) {
2834 			if (!silent)
2835 				ntfs_error(sb, "Unable to set device block "
2836 						"size to sector size (%i).",
2837 						vol->sector_size);
2838 			goto err_out_now;
2839 		}
2840 		BUG_ON(blocksize != sb->s_blocksize);
2841 		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2842 				sb->s_blocksize_bits;
2843 		ntfs_debug("Changed device block size to %i bytes (block size "
2844 				"bits %i) to match volume sector size.",
2845 				blocksize, sb->s_blocksize_bits);
2846 	}
2847 	/* Initialize the cluster and mft allocators. */
2848 	ntfs_setup_allocators(vol);
2849 	/* Setup remaining fields in the super block. */
2850 	sb->s_magic = NTFS_SB_MAGIC;
2851 	/*
2852 	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2853 	 *	sb->s_maxbytes = ~0ULL >> 1;
2854 	 * But the kernel uses a long as the page cache page index which on
2855 	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2856 	 * defined to the maximum the page cache page index can cope with
2857 	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2858 	 */
2859 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2860 	/* Ntfs measures time in 100ns intervals. */
2861 	sb->s_time_gran = 100;
2862 	/*
2863 	 * Now load the metadata required for the page cache and our address
2864 	 * space operations to function. We do this by setting up a specialised
2865 	 * read_inode method and then just calling the normal iget() to obtain
2866 	 * the inode for $MFT which is sufficient to allow our normal inode
2867 	 * operations and associated address space operations to function.
2868 	 */
2869 	sb->s_op = &ntfs_sops;
2870 	tmp_ino = new_inode(sb);
2871 	if (!tmp_ino) {
2872 		if (!silent)
2873 			ntfs_error(sb, "Failed to load essential metadata.");
2874 		goto err_out_now;
2875 	}
2876 	tmp_ino->i_ino = FILE_MFT;
2877 	insert_inode_hash(tmp_ino);
2878 	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2879 		if (!silent)
2880 			ntfs_error(sb, "Failed to load essential metadata.");
2881 		goto iput_tmp_ino_err_out_now;
2882 	}
2883 	mutex_lock(&ntfs_lock);
2884 	/*
2885 	 * The current mount is a compression user if the cluster size is
2886 	 * less than or equal 4kiB.
2887 	 */
2888 	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2889 		result = allocate_compression_buffers();
2890 		if (result) {
2891 			ntfs_error(NULL, "Failed to allocate buffers "
2892 					"for compression engine.");
2893 			ntfs_nr_compression_users--;
2894 			mutex_unlock(&ntfs_lock);
2895 			goto iput_tmp_ino_err_out_now;
2896 		}
2897 	}
2898 	/*
2899 	 * Generate the global default upcase table if necessary.  Also
2900 	 * temporarily increment the number of upcase users to avoid race
2901 	 * conditions with concurrent (u)mounts.
2902 	 */
2903 	if (!default_upcase)
2904 		default_upcase = generate_default_upcase();
2905 	ntfs_nr_upcase_users++;
2906 	mutex_unlock(&ntfs_lock);
2907 	/*
2908 	 * From now on, ignore @silent parameter. If we fail below this line,
2909 	 * it will be due to a corrupt fs or a system error, so we report it.
2910 	 */
2911 	/*
2912 	 * Open the system files with normal access functions and complete
2913 	 * setting up the ntfs super block.
2914 	 */
2915 	if (!load_system_files(vol)) {
2916 		ntfs_error(sb, "Failed to load system files.");
2917 		goto unl_upcase_iput_tmp_ino_err_out_now;
2918 	}
2919 
2920 	/* We grab a reference, simulating an ntfs_iget(). */
2921 	ihold(vol->root_ino);
2922 	if ((sb->s_root = d_make_root(vol->root_ino))) {
2923 		ntfs_debug("Exiting, status successful.");
2924 		/* Release the default upcase if it has no users. */
2925 		mutex_lock(&ntfs_lock);
2926 		if (!--ntfs_nr_upcase_users && default_upcase) {
2927 			ntfs_free(default_upcase);
2928 			default_upcase = NULL;
2929 		}
2930 		mutex_unlock(&ntfs_lock);
2931 		sb->s_export_op = &ntfs_export_ops;
2932 		lockdep_on();
2933 		return 0;
2934 	}
2935 	ntfs_error(sb, "Failed to allocate root directory.");
2936 	/* Clean up after the successful load_system_files() call from above. */
2937 	// TODO: Use ntfs_put_super() instead of repeating all this code...
2938 	// FIXME: Should mark the volume clean as the error is most likely
2939 	// 	  -ENOMEM.
2940 	iput(vol->vol_ino);
2941 	vol->vol_ino = NULL;
2942 	/* NTFS 3.0+ specific clean up. */
2943 	if (vol->major_ver >= 3) {
2944 #ifdef NTFS_RW
2945 		if (vol->usnjrnl_j_ino) {
2946 			iput(vol->usnjrnl_j_ino);
2947 			vol->usnjrnl_j_ino = NULL;
2948 		}
2949 		if (vol->usnjrnl_max_ino) {
2950 			iput(vol->usnjrnl_max_ino);
2951 			vol->usnjrnl_max_ino = NULL;
2952 		}
2953 		if (vol->usnjrnl_ino) {
2954 			iput(vol->usnjrnl_ino);
2955 			vol->usnjrnl_ino = NULL;
2956 		}
2957 		if (vol->quota_q_ino) {
2958 			iput(vol->quota_q_ino);
2959 			vol->quota_q_ino = NULL;
2960 		}
2961 		if (vol->quota_ino) {
2962 			iput(vol->quota_ino);
2963 			vol->quota_ino = NULL;
2964 		}
2965 #endif /* NTFS_RW */
2966 		if (vol->extend_ino) {
2967 			iput(vol->extend_ino);
2968 			vol->extend_ino = NULL;
2969 		}
2970 		if (vol->secure_ino) {
2971 			iput(vol->secure_ino);
2972 			vol->secure_ino = NULL;
2973 		}
2974 	}
2975 	iput(vol->root_ino);
2976 	vol->root_ino = NULL;
2977 	iput(vol->lcnbmp_ino);
2978 	vol->lcnbmp_ino = NULL;
2979 	iput(vol->mftbmp_ino);
2980 	vol->mftbmp_ino = NULL;
2981 #ifdef NTFS_RW
2982 	if (vol->logfile_ino) {
2983 		iput(vol->logfile_ino);
2984 		vol->logfile_ino = NULL;
2985 	}
2986 	if (vol->mftmirr_ino) {
2987 		iput(vol->mftmirr_ino);
2988 		vol->mftmirr_ino = NULL;
2989 	}
2990 #endif /* NTFS_RW */
2991 	/* Throw away the table of attribute definitions. */
2992 	vol->attrdef_size = 0;
2993 	if (vol->attrdef) {
2994 		ntfs_free(vol->attrdef);
2995 		vol->attrdef = NULL;
2996 	}
2997 	vol->upcase_len = 0;
2998 	mutex_lock(&ntfs_lock);
2999 	if (vol->upcase == default_upcase) {
3000 		ntfs_nr_upcase_users--;
3001 		vol->upcase = NULL;
3002 	}
3003 	mutex_unlock(&ntfs_lock);
3004 	if (vol->upcase) {
3005 		ntfs_free(vol->upcase);
3006 		vol->upcase = NULL;
3007 	}
3008 	if (vol->nls_map) {
3009 		unload_nls(vol->nls_map);
3010 		vol->nls_map = NULL;
3011 	}
3012 	/* Error exit code path. */
3013 unl_upcase_iput_tmp_ino_err_out_now:
3014 	/*
3015 	 * Decrease the number of upcase users and destroy the global default
3016 	 * upcase table if necessary.
3017 	 */
3018 	mutex_lock(&ntfs_lock);
3019 	if (!--ntfs_nr_upcase_users && default_upcase) {
3020 		ntfs_free(default_upcase);
3021 		default_upcase = NULL;
3022 	}
3023 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3024 		free_compression_buffers();
3025 	mutex_unlock(&ntfs_lock);
3026 iput_tmp_ino_err_out_now:
3027 	iput(tmp_ino);
3028 	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3029 		iput(vol->mft_ino);
3030 	vol->mft_ino = NULL;
3031 	/* Errors at this stage are irrelevant. */
3032 err_out_now:
3033 	sb->s_fs_info = NULL;
3034 	kfree(vol);
3035 	ntfs_debug("Failed, returning -EINVAL.");
3036 	lockdep_on();
3037 	return -EINVAL;
3038 }
3039 
3040 /*
3041  * This is a slab cache to optimize allocations and deallocations of Unicode
3042  * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3043  * (255) Unicode characters + a terminating NULL Unicode character.
3044  */
3045 struct kmem_cache *ntfs_name_cache;
3046 
3047 /* Slab caches for efficient allocation/deallocation of inodes. */
3048 struct kmem_cache *ntfs_inode_cache;
3049 struct kmem_cache *ntfs_big_inode_cache;
3050 
3051 /* Init once constructor for the inode slab cache. */
3052 static void ntfs_big_inode_init_once(void *foo)
3053 {
3054 	ntfs_inode *ni = (ntfs_inode *)foo;
3055 
3056 	inode_init_once(VFS_I(ni));
3057 }
3058 
3059 /*
3060  * Slab caches to optimize allocations and deallocations of attribute search
3061  * contexts and index contexts, respectively.
3062  */
3063 struct kmem_cache *ntfs_attr_ctx_cache;
3064 struct kmem_cache *ntfs_index_ctx_cache;
3065 
3066 /* Driver wide mutex. */
3067 DEFINE_MUTEX(ntfs_lock);
3068 
3069 static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3070 	int flags, const char *dev_name, void *data)
3071 {
3072 	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3073 }
3074 
3075 static struct file_system_type ntfs_fs_type = {
3076 	.owner		= THIS_MODULE,
3077 	.name		= "ntfs",
3078 	.mount		= ntfs_mount,
3079 	.kill_sb	= kill_block_super,
3080 	.fs_flags	= FS_REQUIRES_DEV,
3081 };
3082 MODULE_ALIAS_FS("ntfs");
3083 
3084 /* Stable names for the slab caches. */
3085 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3086 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3087 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3088 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3089 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3090 
3091 static int __init init_ntfs_fs(void)
3092 {
3093 	int err = 0;
3094 
3095 	/* This may be ugly but it results in pretty output so who cares. (-8 */
3096 	printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3097 #ifdef NTFS_RW
3098 			"W"
3099 #else
3100 			"O"
3101 #endif
3102 #ifdef DEBUG
3103 			" DEBUG"
3104 #endif
3105 #ifdef MODULE
3106 			" MODULE"
3107 #endif
3108 			"].\n");
3109 
3110 	ntfs_debug("Debug messages are enabled.");
3111 
3112 	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3113 			sizeof(ntfs_index_context), 0 /* offset */,
3114 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3115 	if (!ntfs_index_ctx_cache) {
3116 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3117 				ntfs_index_ctx_cache_name);
3118 		goto ictx_err_out;
3119 	}
3120 	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3121 			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3122 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3123 	if (!ntfs_attr_ctx_cache) {
3124 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3125 				ntfs_attr_ctx_cache_name);
3126 		goto actx_err_out;
3127 	}
3128 
3129 	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3130 			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3131 			SLAB_HWCACHE_ALIGN, NULL);
3132 	if (!ntfs_name_cache) {
3133 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3134 				ntfs_name_cache_name);
3135 		goto name_err_out;
3136 	}
3137 
3138 	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3139 			sizeof(ntfs_inode), 0,
3140 			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3141 	if (!ntfs_inode_cache) {
3142 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3143 				ntfs_inode_cache_name);
3144 		goto inode_err_out;
3145 	}
3146 
3147 	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3148 			sizeof(big_ntfs_inode), 0,
3149 			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3150 			ntfs_big_inode_init_once);
3151 	if (!ntfs_big_inode_cache) {
3152 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3153 				ntfs_big_inode_cache_name);
3154 		goto big_inode_err_out;
3155 	}
3156 
3157 	/* Register the ntfs sysctls. */
3158 	err = ntfs_sysctl(1);
3159 	if (err) {
3160 		printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3161 		goto sysctl_err_out;
3162 	}
3163 
3164 	err = register_filesystem(&ntfs_fs_type);
3165 	if (!err) {
3166 		ntfs_debug("NTFS driver registered successfully.");
3167 		return 0; /* Success! */
3168 	}
3169 	printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3170 
3171 	/* Unregister the ntfs sysctls. */
3172 	ntfs_sysctl(0);
3173 sysctl_err_out:
3174 	kmem_cache_destroy(ntfs_big_inode_cache);
3175 big_inode_err_out:
3176 	kmem_cache_destroy(ntfs_inode_cache);
3177 inode_err_out:
3178 	kmem_cache_destroy(ntfs_name_cache);
3179 name_err_out:
3180 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3181 actx_err_out:
3182 	kmem_cache_destroy(ntfs_index_ctx_cache);
3183 ictx_err_out:
3184 	if (!err) {
3185 		printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3186 				"registration...\n");
3187 		err = -ENOMEM;
3188 	}
3189 	return err;
3190 }
3191 
3192 static void __exit exit_ntfs_fs(void)
3193 {
3194 	ntfs_debug("Unregistering NTFS driver.");
3195 
3196 	unregister_filesystem(&ntfs_fs_type);
3197 
3198 	/*
3199 	 * Make sure all delayed rcu free inodes are flushed before we
3200 	 * destroy cache.
3201 	 */
3202 	rcu_barrier();
3203 	kmem_cache_destroy(ntfs_big_inode_cache);
3204 	kmem_cache_destroy(ntfs_inode_cache);
3205 	kmem_cache_destroy(ntfs_name_cache);
3206 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3207 	kmem_cache_destroy(ntfs_index_ctx_cache);
3208 	/* Unregister the ntfs sysctls. */
3209 	ntfs_sysctl(0);
3210 }
3211 
3212 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3213 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.");
3214 MODULE_VERSION(NTFS_VERSION);
3215 MODULE_LICENSE("GPL");
3216 #ifdef DEBUG
3217 module_param(debug_msgs, bint, 0);
3218 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3219 #endif
3220 
3221 module_init(init_ntfs_fs)
3222 module_exit(exit_ntfs_fs)
3223