1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2001,2002 Richard Russon 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/spinlock.h> 15 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 16 #include <linux/backing-dev.h> 17 #include <linux/buffer_head.h> 18 #include <linux/vfs.h> 19 #include <linux/moduleparam.h> 20 #include <linux/bitmap.h> 21 22 #include "sysctl.h" 23 #include "logfile.h" 24 #include "quota.h" 25 #include "usnjrnl.h" 26 #include "dir.h" 27 #include "debug.h" 28 #include "index.h" 29 #include "inode.h" 30 #include "aops.h" 31 #include "layout.h" 32 #include "malloc.h" 33 #include "ntfs.h" 34 35 /* Number of mounted filesystems which have compression enabled. */ 36 static unsigned long ntfs_nr_compression_users; 37 38 /* A global default upcase table and a corresponding reference count. */ 39 static ntfschar *default_upcase; 40 static unsigned long ntfs_nr_upcase_users; 41 42 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 43 typedef enum { 44 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 45 ON_ERRORS_PANIC = 0x01, 46 ON_ERRORS_REMOUNT_RO = 0x02, 47 ON_ERRORS_CONTINUE = 0x04, 48 /* Optional, can be combined with any of the above. */ 49 ON_ERRORS_RECOVER = 0x10, 50 } ON_ERRORS_ACTIONS; 51 52 const option_t on_errors_arr[] = { 53 { ON_ERRORS_PANIC, "panic" }, 54 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 55 { ON_ERRORS_CONTINUE, "continue", }, 56 { ON_ERRORS_RECOVER, "recover" }, 57 { 0, NULL } 58 }; 59 60 /** 61 * simple_getbool - 62 * 63 * Copied from old ntfs driver (which copied from vfat driver). 64 */ 65 static int simple_getbool(char *s, bool *setval) 66 { 67 if (s) { 68 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 69 *setval = true; 70 else if (!strcmp(s, "0") || !strcmp(s, "no") || 71 !strcmp(s, "false")) 72 *setval = false; 73 else 74 return 0; 75 } else 76 *setval = true; 77 return 1; 78 } 79 80 /** 81 * parse_options - parse the (re)mount options 82 * @vol: ntfs volume 83 * @opt: string containing the (re)mount options 84 * 85 * Parse the recognized options in @opt for the ntfs volume described by @vol. 86 */ 87 static bool parse_options(ntfs_volume *vol, char *opt) 88 { 89 char *p, *v, *ov; 90 static char *utf8 = "utf8"; 91 int errors = 0, sloppy = 0; 92 kuid_t uid = INVALID_UID; 93 kgid_t gid = INVALID_GID; 94 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1; 95 int mft_zone_multiplier = -1, on_errors = -1; 96 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 97 struct nls_table *nls_map = NULL, *old_nls; 98 99 /* I am lazy... (-8 */ 100 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 101 if (!strcmp(p, option)) { \ 102 if (!v || !*v) \ 103 variable = default_value; \ 104 else { \ 105 variable = simple_strtoul(ov = v, &v, 0); \ 106 if (*v) \ 107 goto needs_val; \ 108 } \ 109 } 110 #define NTFS_GETOPT(option, variable) \ 111 if (!strcmp(p, option)) { \ 112 if (!v || !*v) \ 113 goto needs_arg; \ 114 variable = simple_strtoul(ov = v, &v, 0); \ 115 if (*v) \ 116 goto needs_val; \ 117 } 118 #define NTFS_GETOPT_UID(option, variable) \ 119 if (!strcmp(p, option)) { \ 120 uid_t uid_value; \ 121 if (!v || !*v) \ 122 goto needs_arg; \ 123 uid_value = simple_strtoul(ov = v, &v, 0); \ 124 if (*v) \ 125 goto needs_val; \ 126 variable = make_kuid(current_user_ns(), uid_value); \ 127 if (!uid_valid(variable)) \ 128 goto needs_val; \ 129 } 130 #define NTFS_GETOPT_GID(option, variable) \ 131 if (!strcmp(p, option)) { \ 132 gid_t gid_value; \ 133 if (!v || !*v) \ 134 goto needs_arg; \ 135 gid_value = simple_strtoul(ov = v, &v, 0); \ 136 if (*v) \ 137 goto needs_val; \ 138 variable = make_kgid(current_user_ns(), gid_value); \ 139 if (!gid_valid(variable)) \ 140 goto needs_val; \ 141 } 142 #define NTFS_GETOPT_OCTAL(option, variable) \ 143 if (!strcmp(p, option)) { \ 144 if (!v || !*v) \ 145 goto needs_arg; \ 146 variable = simple_strtoul(ov = v, &v, 8); \ 147 if (*v) \ 148 goto needs_val; \ 149 } 150 #define NTFS_GETOPT_BOOL(option, variable) \ 151 if (!strcmp(p, option)) { \ 152 bool val; \ 153 if (!simple_getbool(v, &val)) \ 154 goto needs_bool; \ 155 variable = val; \ 156 } 157 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 158 if (!strcmp(p, option)) { \ 159 int _i; \ 160 if (!v || !*v) \ 161 goto needs_arg; \ 162 ov = v; \ 163 if (variable == -1) \ 164 variable = 0; \ 165 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 166 if (!strcmp(opt_array[_i].str, v)) { \ 167 variable |= opt_array[_i].val; \ 168 break; \ 169 } \ 170 if (!opt_array[_i].str || !*opt_array[_i].str) \ 171 goto needs_val; \ 172 } 173 if (!opt || !*opt) 174 goto no_mount_options; 175 ntfs_debug("Entering with mount options string: %s", opt); 176 while ((p = strsep(&opt, ","))) { 177 if ((v = strchr(p, '='))) 178 *v++ = 0; 179 NTFS_GETOPT_UID("uid", uid) 180 else NTFS_GETOPT_GID("gid", gid) 181 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 182 else NTFS_GETOPT_OCTAL("fmask", fmask) 183 else NTFS_GETOPT_OCTAL("dmask", dmask) 184 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 185 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 186 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 187 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 188 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 189 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 190 on_errors_arr) 191 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 192 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 193 p); 194 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 195 if (!strcmp(p, "iocharset")) 196 ntfs_warning(vol->sb, "Option iocharset is " 197 "deprecated. Please use " 198 "option nls=<charsetname> in " 199 "the future."); 200 if (!v || !*v) 201 goto needs_arg; 202 use_utf8: 203 old_nls = nls_map; 204 nls_map = load_nls(v); 205 if (!nls_map) { 206 if (!old_nls) { 207 ntfs_error(vol->sb, "NLS character set " 208 "%s not found.", v); 209 return false; 210 } 211 ntfs_error(vol->sb, "NLS character set %s not " 212 "found. Using previous one %s.", 213 v, old_nls->charset); 214 nls_map = old_nls; 215 } else /* nls_map */ { 216 unload_nls(old_nls); 217 } 218 } else if (!strcmp(p, "utf8")) { 219 bool val = false; 220 ntfs_warning(vol->sb, "Option utf8 is no longer " 221 "supported, using option nls=utf8. Please " 222 "use option nls=utf8 in the future and " 223 "make sure utf8 is compiled either as a " 224 "module or into the kernel."); 225 if (!v || !*v) 226 val = true; 227 else if (!simple_getbool(v, &val)) 228 goto needs_bool; 229 if (val) { 230 v = utf8; 231 goto use_utf8; 232 } 233 } else { 234 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 235 if (errors < INT_MAX) 236 errors++; 237 } 238 #undef NTFS_GETOPT_OPTIONS_ARRAY 239 #undef NTFS_GETOPT_BOOL 240 #undef NTFS_GETOPT 241 #undef NTFS_GETOPT_WITH_DEFAULT 242 } 243 no_mount_options: 244 if (errors && !sloppy) 245 return false; 246 if (sloppy) 247 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 248 "unrecognized mount option(s) and continuing."); 249 /* Keep this first! */ 250 if (on_errors != -1) { 251 if (!on_errors) { 252 ntfs_error(vol->sb, "Invalid errors option argument " 253 "or bug in options parser."); 254 return false; 255 } 256 } 257 if (nls_map) { 258 if (vol->nls_map && vol->nls_map != nls_map) { 259 ntfs_error(vol->sb, "Cannot change NLS character set " 260 "on remount."); 261 return false; 262 } /* else (!vol->nls_map) */ 263 ntfs_debug("Using NLS character set %s.", nls_map->charset); 264 vol->nls_map = nls_map; 265 } else /* (!nls_map) */ { 266 if (!vol->nls_map) { 267 vol->nls_map = load_nls_default(); 268 if (!vol->nls_map) { 269 ntfs_error(vol->sb, "Failed to load default " 270 "NLS character set."); 271 return false; 272 } 273 ntfs_debug("Using default NLS character set (%s).", 274 vol->nls_map->charset); 275 } 276 } 277 if (mft_zone_multiplier != -1) { 278 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 279 mft_zone_multiplier) { 280 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 281 "on remount."); 282 return false; 283 } 284 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 285 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 286 "Using default value, i.e. 1."); 287 mft_zone_multiplier = 1; 288 } 289 vol->mft_zone_multiplier = mft_zone_multiplier; 290 } 291 if (!vol->mft_zone_multiplier) 292 vol->mft_zone_multiplier = 1; 293 if (on_errors != -1) 294 vol->on_errors = on_errors; 295 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 296 vol->on_errors |= ON_ERRORS_CONTINUE; 297 if (uid_valid(uid)) 298 vol->uid = uid; 299 if (gid_valid(gid)) 300 vol->gid = gid; 301 if (fmask != (umode_t)-1) 302 vol->fmask = fmask; 303 if (dmask != (umode_t)-1) 304 vol->dmask = dmask; 305 if (show_sys_files != -1) { 306 if (show_sys_files) 307 NVolSetShowSystemFiles(vol); 308 else 309 NVolClearShowSystemFiles(vol); 310 } 311 if (case_sensitive != -1) { 312 if (case_sensitive) 313 NVolSetCaseSensitive(vol); 314 else 315 NVolClearCaseSensitive(vol); 316 } 317 if (disable_sparse != -1) { 318 if (disable_sparse) 319 NVolClearSparseEnabled(vol); 320 else { 321 if (!NVolSparseEnabled(vol) && 322 vol->major_ver && vol->major_ver < 3) 323 ntfs_warning(vol->sb, "Not enabling sparse " 324 "support due to NTFS volume " 325 "version %i.%i (need at least " 326 "version 3.0).", vol->major_ver, 327 vol->minor_ver); 328 else 329 NVolSetSparseEnabled(vol); 330 } 331 } 332 return true; 333 needs_arg: 334 ntfs_error(vol->sb, "The %s option requires an argument.", p); 335 return false; 336 needs_bool: 337 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 338 return false; 339 needs_val: 340 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 341 return false; 342 } 343 344 #ifdef NTFS_RW 345 346 /** 347 * ntfs_write_volume_flags - write new flags to the volume information flags 348 * @vol: ntfs volume on which to modify the flags 349 * @flags: new flags value for the volume information flags 350 * 351 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 352 * instead (see below). 353 * 354 * Replace the volume information flags on the volume @vol with the value 355 * supplied in @flags. Note, this overwrites the volume information flags, so 356 * make sure to combine the flags you want to modify with the old flags and use 357 * the result when calling ntfs_write_volume_flags(). 358 * 359 * Return 0 on success and -errno on error. 360 */ 361 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 362 { 363 ntfs_inode *ni = NTFS_I(vol->vol_ino); 364 MFT_RECORD *m; 365 VOLUME_INFORMATION *vi; 366 ntfs_attr_search_ctx *ctx; 367 int err; 368 369 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 370 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 371 if (vol->vol_flags == flags) 372 goto done; 373 BUG_ON(!ni); 374 m = map_mft_record(ni); 375 if (IS_ERR(m)) { 376 err = PTR_ERR(m); 377 goto err_out; 378 } 379 ctx = ntfs_attr_get_search_ctx(ni, m); 380 if (!ctx) { 381 err = -ENOMEM; 382 goto put_unm_err_out; 383 } 384 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 385 ctx); 386 if (err) 387 goto put_unm_err_out; 388 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 389 le16_to_cpu(ctx->attr->data.resident.value_offset)); 390 vol->vol_flags = vi->flags = flags; 391 flush_dcache_mft_record_page(ctx->ntfs_ino); 392 mark_mft_record_dirty(ctx->ntfs_ino); 393 ntfs_attr_put_search_ctx(ctx); 394 unmap_mft_record(ni); 395 done: 396 ntfs_debug("Done."); 397 return 0; 398 put_unm_err_out: 399 if (ctx) 400 ntfs_attr_put_search_ctx(ctx); 401 unmap_mft_record(ni); 402 err_out: 403 ntfs_error(vol->sb, "Failed with error code %i.", -err); 404 return err; 405 } 406 407 /** 408 * ntfs_set_volume_flags - set bits in the volume information flags 409 * @vol: ntfs volume on which to modify the flags 410 * @flags: flags to set on the volume 411 * 412 * Set the bits in @flags in the volume information flags on the volume @vol. 413 * 414 * Return 0 on success and -errno on error. 415 */ 416 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 417 { 418 flags &= VOLUME_FLAGS_MASK; 419 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 420 } 421 422 /** 423 * ntfs_clear_volume_flags - clear bits in the volume information flags 424 * @vol: ntfs volume on which to modify the flags 425 * @flags: flags to clear on the volume 426 * 427 * Clear the bits in @flags in the volume information flags on the volume @vol. 428 * 429 * Return 0 on success and -errno on error. 430 */ 431 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 432 { 433 flags &= VOLUME_FLAGS_MASK; 434 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 435 return ntfs_write_volume_flags(vol, flags); 436 } 437 438 #endif /* NTFS_RW */ 439 440 /** 441 * ntfs_remount - change the mount options of a mounted ntfs filesystem 442 * @sb: superblock of mounted ntfs filesystem 443 * @flags: remount flags 444 * @opt: remount options string 445 * 446 * Change the mount options of an already mounted ntfs filesystem. 447 * 448 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 449 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 450 * @sb->s_flags are not changed. 451 */ 452 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 453 { 454 ntfs_volume *vol = NTFS_SB(sb); 455 456 ntfs_debug("Entering with remount options string: %s", opt); 457 458 sync_filesystem(sb); 459 460 #ifndef NTFS_RW 461 /* For read-only compiled driver, enforce read-only flag. */ 462 *flags |= SB_RDONLY; 463 #else /* NTFS_RW */ 464 /* 465 * For the read-write compiled driver, if we are remounting read-write, 466 * make sure there are no volume errors and that no unsupported volume 467 * flags are set. Also, empty the logfile journal as it would become 468 * stale as soon as something is written to the volume and mark the 469 * volume dirty so that chkdsk is run if the volume is not umounted 470 * cleanly. Finally, mark the quotas out of date so Windows rescans 471 * the volume on boot and updates them. 472 * 473 * When remounting read-only, mark the volume clean if no volume errors 474 * have occurred. 475 */ 476 if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) { 477 static const char *es = ". Cannot remount read-write."; 478 479 /* Remounting read-write. */ 480 if (NVolErrors(vol)) { 481 ntfs_error(sb, "Volume has errors and is read-only%s", 482 es); 483 return -EROFS; 484 } 485 if (vol->vol_flags & VOLUME_IS_DIRTY) { 486 ntfs_error(sb, "Volume is dirty and read-only%s", es); 487 return -EROFS; 488 } 489 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 490 ntfs_error(sb, "Volume has been modified by chkdsk " 491 "and is read-only%s", es); 492 return -EROFS; 493 } 494 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 495 ntfs_error(sb, "Volume has unsupported flags set " 496 "(0x%x) and is read-only%s", 497 (unsigned)le16_to_cpu(vol->vol_flags), 498 es); 499 return -EROFS; 500 } 501 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 502 ntfs_error(sb, "Failed to set dirty bit in volume " 503 "information flags%s", es); 504 return -EROFS; 505 } 506 #if 0 507 // TODO: Enable this code once we start modifying anything that 508 // is different between NTFS 1.2 and 3.x... 509 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 510 if ((vol->major_ver > 1)) { 511 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 512 ntfs_error(sb, "Failed to set NT4 " 513 "compatibility flag%s", es); 514 NVolSetErrors(vol); 515 return -EROFS; 516 } 517 } 518 #endif 519 if (!ntfs_empty_logfile(vol->logfile_ino)) { 520 ntfs_error(sb, "Failed to empty journal $LogFile%s", 521 es); 522 NVolSetErrors(vol); 523 return -EROFS; 524 } 525 if (!ntfs_mark_quotas_out_of_date(vol)) { 526 ntfs_error(sb, "Failed to mark quotas out of date%s", 527 es); 528 NVolSetErrors(vol); 529 return -EROFS; 530 } 531 if (!ntfs_stamp_usnjrnl(vol)) { 532 ntfs_error(sb, "Failed to stamp transaction log " 533 "($UsnJrnl)%s", es); 534 NVolSetErrors(vol); 535 return -EROFS; 536 } 537 } else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) { 538 /* Remounting read-only. */ 539 if (!NVolErrors(vol)) { 540 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 541 ntfs_warning(sb, "Failed to clear dirty bit " 542 "in volume information " 543 "flags. Run chkdsk."); 544 } 545 } 546 #endif /* NTFS_RW */ 547 548 // TODO: Deal with *flags. 549 550 if (!parse_options(vol, opt)) 551 return -EINVAL; 552 553 ntfs_debug("Done."); 554 return 0; 555 } 556 557 /** 558 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 559 * @sb: Super block of the device to which @b belongs. 560 * @b: Boot sector of device @sb to check. 561 * @silent: If 'true', all output will be silenced. 562 * 563 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 564 * sector. Returns 'true' if it is valid and 'false' if not. 565 * 566 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 567 * is 'true'. 568 */ 569 static bool is_boot_sector_ntfs(const struct super_block *sb, 570 const NTFS_BOOT_SECTOR *b, const bool silent) 571 { 572 /* 573 * Check that checksum == sum of u32 values from b to the checksum 574 * field. If checksum is zero, no checking is done. We will work when 575 * the checksum test fails, since some utilities update the boot sector 576 * ignoring the checksum which leaves the checksum out-of-date. We 577 * report a warning if this is the case. 578 */ 579 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 580 le32 *u; 581 u32 i; 582 583 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 584 i += le32_to_cpup(u); 585 if (le32_to_cpu(b->checksum) != i) 586 ntfs_warning(sb, "Invalid boot sector checksum."); 587 } 588 /* Check OEMidentifier is "NTFS " */ 589 if (b->oem_id != magicNTFS) 590 goto not_ntfs; 591 /* Check bytes per sector value is between 256 and 4096. */ 592 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 593 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 594 goto not_ntfs; 595 /* Check sectors per cluster value is valid. */ 596 switch (b->bpb.sectors_per_cluster) { 597 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 598 break; 599 default: 600 goto not_ntfs; 601 } 602 /* Check the cluster size is not above the maximum (64kiB). */ 603 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 604 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 605 goto not_ntfs; 606 /* Check reserved/unused fields are really zero. */ 607 if (le16_to_cpu(b->bpb.reserved_sectors) || 608 le16_to_cpu(b->bpb.root_entries) || 609 le16_to_cpu(b->bpb.sectors) || 610 le16_to_cpu(b->bpb.sectors_per_fat) || 611 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 612 goto not_ntfs; 613 /* Check clusters per file mft record value is valid. */ 614 if ((u8)b->clusters_per_mft_record < 0xe1 || 615 (u8)b->clusters_per_mft_record > 0xf7) 616 switch (b->clusters_per_mft_record) { 617 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 618 break; 619 default: 620 goto not_ntfs; 621 } 622 /* Check clusters per index block value is valid. */ 623 if ((u8)b->clusters_per_index_record < 0xe1 || 624 (u8)b->clusters_per_index_record > 0xf7) 625 switch (b->clusters_per_index_record) { 626 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 627 break; 628 default: 629 goto not_ntfs; 630 } 631 /* 632 * Check for valid end of sector marker. We will work without it, but 633 * many BIOSes will refuse to boot from a bootsector if the magic is 634 * incorrect, so we emit a warning. 635 */ 636 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 637 ntfs_warning(sb, "Invalid end of sector marker."); 638 return true; 639 not_ntfs: 640 return false; 641 } 642 643 /** 644 * read_ntfs_boot_sector - read the NTFS boot sector of a device 645 * @sb: super block of device to read the boot sector from 646 * @silent: if true, suppress all output 647 * 648 * Reads the boot sector from the device and validates it. If that fails, tries 649 * to read the backup boot sector, first from the end of the device a-la NT4 and 650 * later and then from the middle of the device a-la NT3.51 and before. 651 * 652 * If a valid boot sector is found but it is not the primary boot sector, we 653 * repair the primary boot sector silently (unless the device is read-only or 654 * the primary boot sector is not accessible). 655 * 656 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 657 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 658 * to their respective values. 659 * 660 * Return the unlocked buffer head containing the boot sector or NULL on error. 661 */ 662 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 663 const int silent) 664 { 665 const char *read_err_str = "Unable to read %s boot sector."; 666 struct buffer_head *bh_primary, *bh_backup; 667 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 668 669 /* Try to read primary boot sector. */ 670 if ((bh_primary = sb_bread(sb, 0))) { 671 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 672 bh_primary->b_data, silent)) 673 return bh_primary; 674 if (!silent) 675 ntfs_error(sb, "Primary boot sector is invalid."); 676 } else if (!silent) 677 ntfs_error(sb, read_err_str, "primary"); 678 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 679 if (bh_primary) 680 brelse(bh_primary); 681 if (!silent) 682 ntfs_error(sb, "Mount option errors=recover not used. " 683 "Aborting without trying to recover."); 684 return NULL; 685 } 686 /* Try to read NT4+ backup boot sector. */ 687 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 688 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 689 bh_backup->b_data, silent)) 690 goto hotfix_primary_boot_sector; 691 brelse(bh_backup); 692 } else if (!silent) 693 ntfs_error(sb, read_err_str, "backup"); 694 /* Try to read NT3.51- backup boot sector. */ 695 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 696 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 697 bh_backup->b_data, silent)) 698 goto hotfix_primary_boot_sector; 699 if (!silent) 700 ntfs_error(sb, "Could not find a valid backup boot " 701 "sector."); 702 brelse(bh_backup); 703 } else if (!silent) 704 ntfs_error(sb, read_err_str, "backup"); 705 /* We failed. Cleanup and return. */ 706 if (bh_primary) 707 brelse(bh_primary); 708 return NULL; 709 hotfix_primary_boot_sector: 710 if (bh_primary) { 711 /* 712 * If we managed to read sector zero and the volume is not 713 * read-only, copy the found, valid backup boot sector to the 714 * primary boot sector. Note we only copy the actual boot 715 * sector structure, not the actual whole device sector as that 716 * may be bigger and would potentially damage the $Boot system 717 * file (FIXME: Would be nice to know if the backup boot sector 718 * on a large sector device contains the whole boot loader or 719 * just the first 512 bytes). 720 */ 721 if (!sb_rdonly(sb)) { 722 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 723 "boot sector from backup copy."); 724 memcpy(bh_primary->b_data, bh_backup->b_data, 725 NTFS_BLOCK_SIZE); 726 mark_buffer_dirty(bh_primary); 727 sync_dirty_buffer(bh_primary); 728 if (buffer_uptodate(bh_primary)) { 729 brelse(bh_backup); 730 return bh_primary; 731 } 732 ntfs_error(sb, "Hot-fix: Device write error while " 733 "recovering primary boot sector."); 734 } else { 735 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 736 "sector failed: Read-only mount."); 737 } 738 brelse(bh_primary); 739 } 740 ntfs_warning(sb, "Using backup boot sector."); 741 return bh_backup; 742 } 743 744 /** 745 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 746 * @vol: volume structure to initialise with data from boot sector 747 * @b: boot sector to parse 748 * 749 * Parse the ntfs boot sector @b and store all imporant information therein in 750 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 751 */ 752 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 753 { 754 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 755 int clusters_per_mft_record, clusters_per_index_record; 756 s64 ll; 757 758 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 759 vol->sector_size_bits = ffs(vol->sector_size) - 1; 760 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 761 vol->sector_size); 762 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 763 vol->sector_size_bits); 764 if (vol->sector_size < vol->sb->s_blocksize) { 765 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 766 "device block size (%lu). This is not " 767 "supported. Sorry.", vol->sector_size, 768 vol->sb->s_blocksize); 769 return false; 770 } 771 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 772 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 773 ntfs_debug("sectors_per_cluster_bits = 0x%x", 774 sectors_per_cluster_bits); 775 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 776 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 777 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 778 vol->cluster_size_mask = vol->cluster_size - 1; 779 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 780 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 781 vol->cluster_size); 782 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 783 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 784 if (vol->cluster_size < vol->sector_size) { 785 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 786 "sector size (%i). This is not supported. " 787 "Sorry.", vol->cluster_size, vol->sector_size); 788 return false; 789 } 790 clusters_per_mft_record = b->clusters_per_mft_record; 791 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 792 clusters_per_mft_record, clusters_per_mft_record); 793 if (clusters_per_mft_record > 0) 794 vol->mft_record_size = vol->cluster_size << 795 (ffs(clusters_per_mft_record) - 1); 796 else 797 /* 798 * When mft_record_size < cluster_size, clusters_per_mft_record 799 * = -log2(mft_record_size) bytes. mft_record_size normaly is 800 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 801 */ 802 vol->mft_record_size = 1 << -clusters_per_mft_record; 803 vol->mft_record_size_mask = vol->mft_record_size - 1; 804 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 805 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 806 vol->mft_record_size); 807 ntfs_debug("vol->mft_record_size_mask = 0x%x", 808 vol->mft_record_size_mask); 809 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 810 vol->mft_record_size_bits, vol->mft_record_size_bits); 811 /* 812 * We cannot support mft record sizes above the PAGE_SIZE since 813 * we store $MFT/$DATA, the table of mft records in the page cache. 814 */ 815 if (vol->mft_record_size > PAGE_SIZE) { 816 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 817 "PAGE_SIZE on your system (%lu). " 818 "This is not supported. Sorry.", 819 vol->mft_record_size, PAGE_SIZE); 820 return false; 821 } 822 /* We cannot support mft record sizes below the sector size. */ 823 if (vol->mft_record_size < vol->sector_size) { 824 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 825 "sector size (%i). This is not supported. " 826 "Sorry.", vol->mft_record_size, 827 vol->sector_size); 828 return false; 829 } 830 clusters_per_index_record = b->clusters_per_index_record; 831 ntfs_debug("clusters_per_index_record = %i (0x%x)", 832 clusters_per_index_record, clusters_per_index_record); 833 if (clusters_per_index_record > 0) 834 vol->index_record_size = vol->cluster_size << 835 (ffs(clusters_per_index_record) - 1); 836 else 837 /* 838 * When index_record_size < cluster_size, 839 * clusters_per_index_record = -log2(index_record_size) bytes. 840 * index_record_size normaly equals 4096 bytes, which is 841 * encoded as 0xF4 (-12 in decimal). 842 */ 843 vol->index_record_size = 1 << -clusters_per_index_record; 844 vol->index_record_size_mask = vol->index_record_size - 1; 845 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 846 ntfs_debug("vol->index_record_size = %i (0x%x)", 847 vol->index_record_size, vol->index_record_size); 848 ntfs_debug("vol->index_record_size_mask = 0x%x", 849 vol->index_record_size_mask); 850 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 851 vol->index_record_size_bits, 852 vol->index_record_size_bits); 853 /* We cannot support index record sizes below the sector size. */ 854 if (vol->index_record_size < vol->sector_size) { 855 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 856 "the sector size (%i). This is not " 857 "supported. Sorry.", vol->index_record_size, 858 vol->sector_size); 859 return false; 860 } 861 /* 862 * Get the size of the volume in clusters and check for 64-bit-ness. 863 * Windows currently only uses 32 bits to save the clusters so we do 864 * the same as it is much faster on 32-bit CPUs. 865 */ 866 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 867 if ((u64)ll >= 1ULL << 32) { 868 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 869 return false; 870 } 871 vol->nr_clusters = ll; 872 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 873 /* 874 * On an architecture where unsigned long is 32-bits, we restrict the 875 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 876 * will hopefully optimize the whole check away. 877 */ 878 if (sizeof(unsigned long) < 8) { 879 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 880 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 881 "large for this architecture. " 882 "Maximum supported is 2TiB. Sorry.", 883 (unsigned long long)ll >> (40 - 884 vol->cluster_size_bits)); 885 return false; 886 } 887 } 888 ll = sle64_to_cpu(b->mft_lcn); 889 if (ll >= vol->nr_clusters) { 890 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 891 "volume. Weird.", (unsigned long long)ll, 892 (unsigned long long)ll); 893 return false; 894 } 895 vol->mft_lcn = ll; 896 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 897 ll = sle64_to_cpu(b->mftmirr_lcn); 898 if (ll >= vol->nr_clusters) { 899 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 900 "of volume. Weird.", (unsigned long long)ll, 901 (unsigned long long)ll); 902 return false; 903 } 904 vol->mftmirr_lcn = ll; 905 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 906 #ifdef NTFS_RW 907 /* 908 * Work out the size of the mft mirror in number of mft records. If the 909 * cluster size is less than or equal to the size taken by four mft 910 * records, the mft mirror stores the first four mft records. If the 911 * cluster size is bigger than the size taken by four mft records, the 912 * mft mirror contains as many mft records as will fit into one 913 * cluster. 914 */ 915 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 916 vol->mftmirr_size = 4; 917 else 918 vol->mftmirr_size = vol->cluster_size >> 919 vol->mft_record_size_bits; 920 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 921 #endif /* NTFS_RW */ 922 vol->serial_no = le64_to_cpu(b->volume_serial_number); 923 ntfs_debug("vol->serial_no = 0x%llx", 924 (unsigned long long)vol->serial_no); 925 return true; 926 } 927 928 /** 929 * ntfs_setup_allocators - initialize the cluster and mft allocators 930 * @vol: volume structure for which to setup the allocators 931 * 932 * Setup the cluster (lcn) and mft allocators to the starting values. 933 */ 934 static void ntfs_setup_allocators(ntfs_volume *vol) 935 { 936 #ifdef NTFS_RW 937 LCN mft_zone_size, mft_lcn; 938 #endif /* NTFS_RW */ 939 940 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 941 vol->mft_zone_multiplier); 942 #ifdef NTFS_RW 943 /* Determine the size of the MFT zone. */ 944 mft_zone_size = vol->nr_clusters; 945 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 946 case 4: 947 mft_zone_size >>= 1; /* 50% */ 948 break; 949 case 3: 950 mft_zone_size = (mft_zone_size + 951 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 952 break; 953 case 2: 954 mft_zone_size >>= 2; /* 25% */ 955 break; 956 /* case 1: */ 957 default: 958 mft_zone_size >>= 3; /* 12.5% */ 959 break; 960 } 961 /* Setup the mft zone. */ 962 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 963 ntfs_debug("vol->mft_zone_pos = 0x%llx", 964 (unsigned long long)vol->mft_zone_pos); 965 /* 966 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 967 * source) and if the actual mft_lcn is in the expected place or even 968 * further to the front of the volume, extend the mft_zone to cover the 969 * beginning of the volume as well. This is in order to protect the 970 * area reserved for the mft bitmap as well within the mft_zone itself. 971 * On non-standard volumes we do not protect it as the overhead would 972 * be higher than the speed increase we would get by doing it. 973 */ 974 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 975 if (mft_lcn * vol->cluster_size < 16 * 1024) 976 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 977 vol->cluster_size; 978 if (vol->mft_zone_start <= mft_lcn) 979 vol->mft_zone_start = 0; 980 ntfs_debug("vol->mft_zone_start = 0x%llx", 981 (unsigned long long)vol->mft_zone_start); 982 /* 983 * Need to cap the mft zone on non-standard volumes so that it does 984 * not point outside the boundaries of the volume. We do this by 985 * halving the zone size until we are inside the volume. 986 */ 987 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 988 while (vol->mft_zone_end >= vol->nr_clusters) { 989 mft_zone_size >>= 1; 990 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 991 } 992 ntfs_debug("vol->mft_zone_end = 0x%llx", 993 (unsigned long long)vol->mft_zone_end); 994 /* 995 * Set the current position within each data zone to the start of the 996 * respective zone. 997 */ 998 vol->data1_zone_pos = vol->mft_zone_end; 999 ntfs_debug("vol->data1_zone_pos = 0x%llx", 1000 (unsigned long long)vol->data1_zone_pos); 1001 vol->data2_zone_pos = 0; 1002 ntfs_debug("vol->data2_zone_pos = 0x%llx", 1003 (unsigned long long)vol->data2_zone_pos); 1004 1005 /* Set the mft data allocation position to mft record 24. */ 1006 vol->mft_data_pos = 24; 1007 ntfs_debug("vol->mft_data_pos = 0x%llx", 1008 (unsigned long long)vol->mft_data_pos); 1009 #endif /* NTFS_RW */ 1010 } 1011 1012 #ifdef NTFS_RW 1013 1014 /** 1015 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1016 * @vol: ntfs super block describing device whose mft mirror to load 1017 * 1018 * Return 'true' on success or 'false' on error. 1019 */ 1020 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1021 { 1022 struct inode *tmp_ino; 1023 ntfs_inode *tmp_ni; 1024 1025 ntfs_debug("Entering."); 1026 /* Get mft mirror inode. */ 1027 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1028 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1029 if (!IS_ERR(tmp_ino)) 1030 iput(tmp_ino); 1031 /* Caller will display error message. */ 1032 return false; 1033 } 1034 /* 1035 * Re-initialize some specifics about $MFTMirr's inode as 1036 * ntfs_read_inode() will have set up the default ones. 1037 */ 1038 /* Set uid and gid to root. */ 1039 tmp_ino->i_uid = GLOBAL_ROOT_UID; 1040 tmp_ino->i_gid = GLOBAL_ROOT_GID; 1041 /* Regular file. No access for anyone. */ 1042 tmp_ino->i_mode = S_IFREG; 1043 /* No VFS initiated operations allowed for $MFTMirr. */ 1044 tmp_ino->i_op = &ntfs_empty_inode_ops; 1045 tmp_ino->i_fop = &ntfs_empty_file_ops; 1046 /* Put in our special address space operations. */ 1047 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1048 tmp_ni = NTFS_I(tmp_ino); 1049 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1050 NInoSetMstProtected(tmp_ni); 1051 NInoSetSparseDisabled(tmp_ni); 1052 /* 1053 * Set up our little cheat allowing us to reuse the async read io 1054 * completion handler for directories. 1055 */ 1056 tmp_ni->itype.index.block_size = vol->mft_record_size; 1057 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1058 vol->mftmirr_ino = tmp_ino; 1059 ntfs_debug("Done."); 1060 return true; 1061 } 1062 1063 /** 1064 * check_mft_mirror - compare contents of the mft mirror with the mft 1065 * @vol: ntfs super block describing device whose mft mirror to check 1066 * 1067 * Return 'true' on success or 'false' on error. 1068 * 1069 * Note, this function also results in the mft mirror runlist being completely 1070 * mapped into memory. The mft mirror write code requires this and will BUG() 1071 * should it find an unmapped runlist element. 1072 */ 1073 static bool check_mft_mirror(ntfs_volume *vol) 1074 { 1075 struct super_block *sb = vol->sb; 1076 ntfs_inode *mirr_ni; 1077 struct page *mft_page, *mirr_page; 1078 u8 *kmft, *kmirr; 1079 runlist_element *rl, rl2[2]; 1080 pgoff_t index; 1081 int mrecs_per_page, i; 1082 1083 ntfs_debug("Entering."); 1084 /* Compare contents of $MFT and $MFTMirr. */ 1085 mrecs_per_page = PAGE_SIZE / vol->mft_record_size; 1086 BUG_ON(!mrecs_per_page); 1087 BUG_ON(!vol->mftmirr_size); 1088 mft_page = mirr_page = NULL; 1089 kmft = kmirr = NULL; 1090 index = i = 0; 1091 do { 1092 u32 bytes; 1093 1094 /* Switch pages if necessary. */ 1095 if (!(i % mrecs_per_page)) { 1096 if (index) { 1097 ntfs_unmap_page(mft_page); 1098 ntfs_unmap_page(mirr_page); 1099 } 1100 /* Get the $MFT page. */ 1101 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1102 index); 1103 if (IS_ERR(mft_page)) { 1104 ntfs_error(sb, "Failed to read $MFT."); 1105 return false; 1106 } 1107 kmft = page_address(mft_page); 1108 /* Get the $MFTMirr page. */ 1109 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1110 index); 1111 if (IS_ERR(mirr_page)) { 1112 ntfs_error(sb, "Failed to read $MFTMirr."); 1113 goto mft_unmap_out; 1114 } 1115 kmirr = page_address(mirr_page); 1116 ++index; 1117 } 1118 /* Do not check the record if it is not in use. */ 1119 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1120 /* Make sure the record is ok. */ 1121 if (ntfs_is_baad_recordp((le32*)kmft)) { 1122 ntfs_error(sb, "Incomplete multi sector " 1123 "transfer detected in mft " 1124 "record %i.", i); 1125 mm_unmap_out: 1126 ntfs_unmap_page(mirr_page); 1127 mft_unmap_out: 1128 ntfs_unmap_page(mft_page); 1129 return false; 1130 } 1131 } 1132 /* Do not check the mirror record if it is not in use. */ 1133 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1134 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1135 ntfs_error(sb, "Incomplete multi sector " 1136 "transfer detected in mft " 1137 "mirror record %i.", i); 1138 goto mm_unmap_out; 1139 } 1140 } 1141 /* Get the amount of data in the current record. */ 1142 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1143 if (bytes < sizeof(MFT_RECORD_OLD) || 1144 bytes > vol->mft_record_size || 1145 ntfs_is_baad_recordp((le32*)kmft)) { 1146 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1147 if (bytes < sizeof(MFT_RECORD_OLD) || 1148 bytes > vol->mft_record_size || 1149 ntfs_is_baad_recordp((le32*)kmirr)) 1150 bytes = vol->mft_record_size; 1151 } 1152 /* Compare the two records. */ 1153 if (memcmp(kmft, kmirr, bytes)) { 1154 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1155 "match. Run ntfsfix or chkdsk.", i); 1156 goto mm_unmap_out; 1157 } 1158 kmft += vol->mft_record_size; 1159 kmirr += vol->mft_record_size; 1160 } while (++i < vol->mftmirr_size); 1161 /* Release the last pages. */ 1162 ntfs_unmap_page(mft_page); 1163 ntfs_unmap_page(mirr_page); 1164 1165 /* Construct the mft mirror runlist by hand. */ 1166 rl2[0].vcn = 0; 1167 rl2[0].lcn = vol->mftmirr_lcn; 1168 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1169 vol->cluster_size - 1) / vol->cluster_size; 1170 rl2[1].vcn = rl2[0].length; 1171 rl2[1].lcn = LCN_ENOENT; 1172 rl2[1].length = 0; 1173 /* 1174 * Because we have just read all of the mft mirror, we know we have 1175 * mapped the full runlist for it. 1176 */ 1177 mirr_ni = NTFS_I(vol->mftmirr_ino); 1178 down_read(&mirr_ni->runlist.lock); 1179 rl = mirr_ni->runlist.rl; 1180 /* Compare the two runlists. They must be identical. */ 1181 i = 0; 1182 do { 1183 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1184 rl2[i].length != rl[i].length) { 1185 ntfs_error(sb, "$MFTMirr location mismatch. " 1186 "Run chkdsk."); 1187 up_read(&mirr_ni->runlist.lock); 1188 return false; 1189 } 1190 } while (rl2[i++].length); 1191 up_read(&mirr_ni->runlist.lock); 1192 ntfs_debug("Done."); 1193 return true; 1194 } 1195 1196 /** 1197 * load_and_check_logfile - load and check the logfile inode for a volume 1198 * @vol: ntfs super block describing device whose logfile to load 1199 * 1200 * Return 'true' on success or 'false' on error. 1201 */ 1202 static bool load_and_check_logfile(ntfs_volume *vol, 1203 RESTART_PAGE_HEADER **rp) 1204 { 1205 struct inode *tmp_ino; 1206 1207 ntfs_debug("Entering."); 1208 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1209 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1210 if (!IS_ERR(tmp_ino)) 1211 iput(tmp_ino); 1212 /* Caller will display error message. */ 1213 return false; 1214 } 1215 if (!ntfs_check_logfile(tmp_ino, rp)) { 1216 iput(tmp_ino); 1217 /* ntfs_check_logfile() will have displayed error output. */ 1218 return false; 1219 } 1220 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1221 vol->logfile_ino = tmp_ino; 1222 ntfs_debug("Done."); 1223 return true; 1224 } 1225 1226 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1227 1228 /** 1229 * check_windows_hibernation_status - check if Windows is suspended on a volume 1230 * @vol: ntfs super block of device to check 1231 * 1232 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1233 * looking for the file hiberfil.sys in the root directory of the volume. If 1234 * the file is not present Windows is definitely not suspended. 1235 * 1236 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1237 * definitely suspended (this volume is not the system volume). Caveat: on a 1238 * system with many volumes it is possible that the < 4kiB check is bogus but 1239 * for now this should do fine. 1240 * 1241 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1242 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1243 * Windows is definitely suspended. If it is completely full of zeroes, 1244 * Windows is definitely not hibernated. Any other case is treated as if 1245 * Windows is suspended. This caters for the above mentioned caveat of a 1246 * system with many volumes where no "hibr" magic would be present and there is 1247 * no zero header. 1248 * 1249 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1250 * hibernated on the volume, and -errno on error. 1251 */ 1252 static int check_windows_hibernation_status(ntfs_volume *vol) 1253 { 1254 MFT_REF mref; 1255 struct inode *vi; 1256 struct page *page; 1257 u32 *kaddr, *kend; 1258 ntfs_name *name = NULL; 1259 int ret = 1; 1260 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1261 cpu_to_le16('i'), cpu_to_le16('b'), 1262 cpu_to_le16('e'), cpu_to_le16('r'), 1263 cpu_to_le16('f'), cpu_to_le16('i'), 1264 cpu_to_le16('l'), cpu_to_le16('.'), 1265 cpu_to_le16('s'), cpu_to_le16('y'), 1266 cpu_to_le16('s'), 0 }; 1267 1268 ntfs_debug("Entering."); 1269 /* 1270 * Find the inode number for the hibernation file by looking up the 1271 * filename hiberfil.sys in the root directory. 1272 */ 1273 inode_lock(vol->root_ino); 1274 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1275 &name); 1276 inode_unlock(vol->root_ino); 1277 if (IS_ERR_MREF(mref)) { 1278 ret = MREF_ERR(mref); 1279 /* If the file does not exist, Windows is not hibernated. */ 1280 if (ret == -ENOENT) { 1281 ntfs_debug("hiberfil.sys not present. Windows is not " 1282 "hibernated on the volume."); 1283 return 0; 1284 } 1285 /* A real error occurred. */ 1286 ntfs_error(vol->sb, "Failed to find inode number for " 1287 "hiberfil.sys."); 1288 return ret; 1289 } 1290 /* We do not care for the type of match that was found. */ 1291 kfree(name); 1292 /* Get the inode. */ 1293 vi = ntfs_iget(vol->sb, MREF(mref)); 1294 if (IS_ERR(vi) || is_bad_inode(vi)) { 1295 if (!IS_ERR(vi)) 1296 iput(vi); 1297 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1298 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1299 } 1300 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1301 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1302 "Windows is hibernated on the volume. This " 1303 "is not the system volume.", i_size_read(vi)); 1304 goto iput_out; 1305 } 1306 page = ntfs_map_page(vi->i_mapping, 0); 1307 if (IS_ERR(page)) { 1308 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1309 ret = PTR_ERR(page); 1310 goto iput_out; 1311 } 1312 kaddr = (u32*)page_address(page); 1313 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1314 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1315 "hibernated on the volume. This is the " 1316 "system volume."); 1317 goto unm_iput_out; 1318 } 1319 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1320 do { 1321 if (unlikely(*kaddr)) { 1322 ntfs_debug("hiberfil.sys is larger than 4kiB " 1323 "(0x%llx), does not contain the " 1324 "\"hibr\" magic, and does not have a " 1325 "zero header. Windows is hibernated " 1326 "on the volume. This is not the " 1327 "system volume.", i_size_read(vi)); 1328 goto unm_iput_out; 1329 } 1330 } while (++kaddr < kend); 1331 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1332 "hibernated on the volume. This is the system " 1333 "volume."); 1334 ret = 0; 1335 unm_iput_out: 1336 ntfs_unmap_page(page); 1337 iput_out: 1338 iput(vi); 1339 return ret; 1340 } 1341 1342 /** 1343 * load_and_init_quota - load and setup the quota file for a volume if present 1344 * @vol: ntfs super block describing device whose quota file to load 1345 * 1346 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1347 * leave vol->quota_ino as NULL and return success. 1348 */ 1349 static bool load_and_init_quota(ntfs_volume *vol) 1350 { 1351 MFT_REF mref; 1352 struct inode *tmp_ino; 1353 ntfs_name *name = NULL; 1354 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1355 cpu_to_le16('Q'), cpu_to_le16('u'), 1356 cpu_to_le16('o'), cpu_to_le16('t'), 1357 cpu_to_le16('a'), 0 }; 1358 static ntfschar Q[3] = { cpu_to_le16('$'), 1359 cpu_to_le16('Q'), 0 }; 1360 1361 ntfs_debug("Entering."); 1362 /* 1363 * Find the inode number for the quota file by looking up the filename 1364 * $Quota in the extended system files directory $Extend. 1365 */ 1366 inode_lock(vol->extend_ino); 1367 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1368 &name); 1369 inode_unlock(vol->extend_ino); 1370 if (IS_ERR_MREF(mref)) { 1371 /* 1372 * If the file does not exist, quotas are disabled and have 1373 * never been enabled on this volume, just return success. 1374 */ 1375 if (MREF_ERR(mref) == -ENOENT) { 1376 ntfs_debug("$Quota not present. Volume does not have " 1377 "quotas enabled."); 1378 /* 1379 * No need to try to set quotas out of date if they are 1380 * not enabled. 1381 */ 1382 NVolSetQuotaOutOfDate(vol); 1383 return true; 1384 } 1385 /* A real error occurred. */ 1386 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1387 return false; 1388 } 1389 /* We do not care for the type of match that was found. */ 1390 kfree(name); 1391 /* Get the inode. */ 1392 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1393 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1394 if (!IS_ERR(tmp_ino)) 1395 iput(tmp_ino); 1396 ntfs_error(vol->sb, "Failed to load $Quota."); 1397 return false; 1398 } 1399 vol->quota_ino = tmp_ino; 1400 /* Get the $Q index allocation attribute. */ 1401 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1402 if (IS_ERR(tmp_ino)) { 1403 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1404 return false; 1405 } 1406 vol->quota_q_ino = tmp_ino; 1407 ntfs_debug("Done."); 1408 return true; 1409 } 1410 1411 /** 1412 * load_and_init_usnjrnl - load and setup the transaction log if present 1413 * @vol: ntfs super block describing device whose usnjrnl file to load 1414 * 1415 * Return 'true' on success or 'false' on error. 1416 * 1417 * If $UsnJrnl is not present or in the process of being disabled, we set 1418 * NVolUsnJrnlStamped() and return success. 1419 * 1420 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1421 * i.e. transaction logging has only just been enabled or the journal has been 1422 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1423 * and return success. 1424 */ 1425 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1426 { 1427 MFT_REF mref; 1428 struct inode *tmp_ino; 1429 ntfs_inode *tmp_ni; 1430 struct page *page; 1431 ntfs_name *name = NULL; 1432 USN_HEADER *uh; 1433 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1434 cpu_to_le16('U'), cpu_to_le16('s'), 1435 cpu_to_le16('n'), cpu_to_le16('J'), 1436 cpu_to_le16('r'), cpu_to_le16('n'), 1437 cpu_to_le16('l'), 0 }; 1438 static ntfschar Max[5] = { cpu_to_le16('$'), 1439 cpu_to_le16('M'), cpu_to_le16('a'), 1440 cpu_to_le16('x'), 0 }; 1441 static ntfschar J[3] = { cpu_to_le16('$'), 1442 cpu_to_le16('J'), 0 }; 1443 1444 ntfs_debug("Entering."); 1445 /* 1446 * Find the inode number for the transaction log file by looking up the 1447 * filename $UsnJrnl in the extended system files directory $Extend. 1448 */ 1449 inode_lock(vol->extend_ino); 1450 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1451 &name); 1452 inode_unlock(vol->extend_ino); 1453 if (IS_ERR_MREF(mref)) { 1454 /* 1455 * If the file does not exist, transaction logging is disabled, 1456 * just return success. 1457 */ 1458 if (MREF_ERR(mref) == -ENOENT) { 1459 ntfs_debug("$UsnJrnl not present. Volume does not " 1460 "have transaction logging enabled."); 1461 not_enabled: 1462 /* 1463 * No need to try to stamp the transaction log if 1464 * transaction logging is not enabled. 1465 */ 1466 NVolSetUsnJrnlStamped(vol); 1467 return true; 1468 } 1469 /* A real error occurred. */ 1470 ntfs_error(vol->sb, "Failed to find inode number for " 1471 "$UsnJrnl."); 1472 return false; 1473 } 1474 /* We do not care for the type of match that was found. */ 1475 kfree(name); 1476 /* Get the inode. */ 1477 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1478 if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) { 1479 if (!IS_ERR(tmp_ino)) 1480 iput(tmp_ino); 1481 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1482 return false; 1483 } 1484 vol->usnjrnl_ino = tmp_ino; 1485 /* 1486 * If the transaction log is in the process of being deleted, we can 1487 * ignore it. 1488 */ 1489 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1490 ntfs_debug("$UsnJrnl in the process of being disabled. " 1491 "Volume does not have transaction logging " 1492 "enabled."); 1493 goto not_enabled; 1494 } 1495 /* Get the $DATA/$Max attribute. */ 1496 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1497 if (IS_ERR(tmp_ino)) { 1498 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1499 "attribute."); 1500 return false; 1501 } 1502 vol->usnjrnl_max_ino = tmp_ino; 1503 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1504 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1505 "attribute (size is 0x%llx but should be at " 1506 "least 0x%zx bytes).", i_size_read(tmp_ino), 1507 sizeof(USN_HEADER)); 1508 return false; 1509 } 1510 /* Get the $DATA/$J attribute. */ 1511 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1512 if (IS_ERR(tmp_ino)) { 1513 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1514 "attribute."); 1515 return false; 1516 } 1517 vol->usnjrnl_j_ino = tmp_ino; 1518 /* Verify $J is non-resident and sparse. */ 1519 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1520 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1521 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1522 "and/or not sparse."); 1523 return false; 1524 } 1525 /* Read the USN_HEADER from $DATA/$Max. */ 1526 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1527 if (IS_ERR(page)) { 1528 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1529 "attribute."); 1530 return false; 1531 } 1532 uh = (USN_HEADER*)page_address(page); 1533 /* Sanity check the $Max. */ 1534 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1535 sle64_to_cpu(uh->maximum_size))) { 1536 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1537 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1538 (long long)sle64_to_cpu(uh->allocation_delta), 1539 (long long)sle64_to_cpu(uh->maximum_size)); 1540 ntfs_unmap_page(page); 1541 return false; 1542 } 1543 /* 1544 * If the transaction log has been stamped and nothing has been written 1545 * to it since, we do not need to stamp it. 1546 */ 1547 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1548 i_size_read(vol->usnjrnl_j_ino))) { 1549 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1550 i_size_read(vol->usnjrnl_j_ino))) { 1551 ntfs_unmap_page(page); 1552 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1553 "logged since it was last stamped. " 1554 "Treating this as if the volume does " 1555 "not have transaction logging " 1556 "enabled."); 1557 goto not_enabled; 1558 } 1559 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1560 "which is out of bounds (0x%llx). $UsnJrnl " 1561 "is corrupt.", 1562 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1563 i_size_read(vol->usnjrnl_j_ino)); 1564 ntfs_unmap_page(page); 1565 return false; 1566 } 1567 ntfs_unmap_page(page); 1568 ntfs_debug("Done."); 1569 return true; 1570 } 1571 1572 /** 1573 * load_and_init_attrdef - load the attribute definitions table for a volume 1574 * @vol: ntfs super block describing device whose attrdef to load 1575 * 1576 * Return 'true' on success or 'false' on error. 1577 */ 1578 static bool load_and_init_attrdef(ntfs_volume *vol) 1579 { 1580 loff_t i_size; 1581 struct super_block *sb = vol->sb; 1582 struct inode *ino; 1583 struct page *page; 1584 pgoff_t index, max_index; 1585 unsigned int size; 1586 1587 ntfs_debug("Entering."); 1588 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1589 ino = ntfs_iget(sb, FILE_AttrDef); 1590 if (IS_ERR(ino) || is_bad_inode(ino)) { 1591 if (!IS_ERR(ino)) 1592 iput(ino); 1593 goto failed; 1594 } 1595 NInoSetSparseDisabled(NTFS_I(ino)); 1596 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1597 i_size = i_size_read(ino); 1598 if (i_size <= 0 || i_size > 0x7fffffff) 1599 goto iput_failed; 1600 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1601 if (!vol->attrdef) 1602 goto iput_failed; 1603 index = 0; 1604 max_index = i_size >> PAGE_SHIFT; 1605 size = PAGE_SIZE; 1606 while (index < max_index) { 1607 /* Read the attrdef table and copy it into the linear buffer. */ 1608 read_partial_attrdef_page: 1609 page = ntfs_map_page(ino->i_mapping, index); 1610 if (IS_ERR(page)) 1611 goto free_iput_failed; 1612 memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT), 1613 page_address(page), size); 1614 ntfs_unmap_page(page); 1615 }; 1616 if (size == PAGE_SIZE) { 1617 size = i_size & ~PAGE_MASK; 1618 if (size) 1619 goto read_partial_attrdef_page; 1620 } 1621 vol->attrdef_size = i_size; 1622 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1623 iput(ino); 1624 return true; 1625 free_iput_failed: 1626 ntfs_free(vol->attrdef); 1627 vol->attrdef = NULL; 1628 iput_failed: 1629 iput(ino); 1630 failed: 1631 ntfs_error(sb, "Failed to initialize attribute definition table."); 1632 return false; 1633 } 1634 1635 #endif /* NTFS_RW */ 1636 1637 /** 1638 * load_and_init_upcase - load the upcase table for an ntfs volume 1639 * @vol: ntfs super block describing device whose upcase to load 1640 * 1641 * Return 'true' on success or 'false' on error. 1642 */ 1643 static bool load_and_init_upcase(ntfs_volume *vol) 1644 { 1645 loff_t i_size; 1646 struct super_block *sb = vol->sb; 1647 struct inode *ino; 1648 struct page *page; 1649 pgoff_t index, max_index; 1650 unsigned int size; 1651 int i, max; 1652 1653 ntfs_debug("Entering."); 1654 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1655 ino = ntfs_iget(sb, FILE_UpCase); 1656 if (IS_ERR(ino) || is_bad_inode(ino)) { 1657 if (!IS_ERR(ino)) 1658 iput(ino); 1659 goto upcase_failed; 1660 } 1661 /* 1662 * The upcase size must not be above 64k Unicode characters, must not 1663 * be zero and must be a multiple of sizeof(ntfschar). 1664 */ 1665 i_size = i_size_read(ino); 1666 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1667 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1668 goto iput_upcase_failed; 1669 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1670 if (!vol->upcase) 1671 goto iput_upcase_failed; 1672 index = 0; 1673 max_index = i_size >> PAGE_SHIFT; 1674 size = PAGE_SIZE; 1675 while (index < max_index) { 1676 /* Read the upcase table and copy it into the linear buffer. */ 1677 read_partial_upcase_page: 1678 page = ntfs_map_page(ino->i_mapping, index); 1679 if (IS_ERR(page)) 1680 goto iput_upcase_failed; 1681 memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT), 1682 page_address(page), size); 1683 ntfs_unmap_page(page); 1684 }; 1685 if (size == PAGE_SIZE) { 1686 size = i_size & ~PAGE_MASK; 1687 if (size) 1688 goto read_partial_upcase_page; 1689 } 1690 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1691 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1692 i_size, 64 * 1024 * sizeof(ntfschar)); 1693 iput(ino); 1694 mutex_lock(&ntfs_lock); 1695 if (!default_upcase) { 1696 ntfs_debug("Using volume specified $UpCase since default is " 1697 "not present."); 1698 mutex_unlock(&ntfs_lock); 1699 return true; 1700 } 1701 max = default_upcase_len; 1702 if (max > vol->upcase_len) 1703 max = vol->upcase_len; 1704 for (i = 0; i < max; i++) 1705 if (vol->upcase[i] != default_upcase[i]) 1706 break; 1707 if (i == max) { 1708 ntfs_free(vol->upcase); 1709 vol->upcase = default_upcase; 1710 vol->upcase_len = max; 1711 ntfs_nr_upcase_users++; 1712 mutex_unlock(&ntfs_lock); 1713 ntfs_debug("Volume specified $UpCase matches default. Using " 1714 "default."); 1715 return true; 1716 } 1717 mutex_unlock(&ntfs_lock); 1718 ntfs_debug("Using volume specified $UpCase since it does not match " 1719 "the default."); 1720 return true; 1721 iput_upcase_failed: 1722 iput(ino); 1723 ntfs_free(vol->upcase); 1724 vol->upcase = NULL; 1725 upcase_failed: 1726 mutex_lock(&ntfs_lock); 1727 if (default_upcase) { 1728 vol->upcase = default_upcase; 1729 vol->upcase_len = default_upcase_len; 1730 ntfs_nr_upcase_users++; 1731 mutex_unlock(&ntfs_lock); 1732 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1733 "default."); 1734 return true; 1735 } 1736 mutex_unlock(&ntfs_lock); 1737 ntfs_error(sb, "Failed to initialize upcase table."); 1738 return false; 1739 } 1740 1741 /* 1742 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1743 * their own special locking rules: 1744 */ 1745 static struct lock_class_key 1746 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1747 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1748 1749 /** 1750 * load_system_files - open the system files using normal functions 1751 * @vol: ntfs super block describing device whose system files to load 1752 * 1753 * Open the system files with normal access functions and complete setting up 1754 * the ntfs super block @vol. 1755 * 1756 * Return 'true' on success or 'false' on error. 1757 */ 1758 static bool load_system_files(ntfs_volume *vol) 1759 { 1760 struct super_block *sb = vol->sb; 1761 MFT_RECORD *m; 1762 VOLUME_INFORMATION *vi; 1763 ntfs_attr_search_ctx *ctx; 1764 #ifdef NTFS_RW 1765 RESTART_PAGE_HEADER *rp; 1766 int err; 1767 #endif /* NTFS_RW */ 1768 1769 ntfs_debug("Entering."); 1770 #ifdef NTFS_RW 1771 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1772 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1773 static const char *es1 = "Failed to load $MFTMirr"; 1774 static const char *es2 = "$MFTMirr does not match $MFT"; 1775 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1776 1777 /* If a read-write mount, convert it to a read-only mount. */ 1778 if (!sb_rdonly(sb)) { 1779 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1780 ON_ERRORS_CONTINUE))) { 1781 ntfs_error(sb, "%s and neither on_errors=" 1782 "continue nor on_errors=" 1783 "remount-ro was specified%s", 1784 !vol->mftmirr_ino ? es1 : es2, 1785 es3); 1786 goto iput_mirr_err_out; 1787 } 1788 sb->s_flags |= SB_RDONLY; 1789 ntfs_error(sb, "%s. Mounting read-only%s", 1790 !vol->mftmirr_ino ? es1 : es2, es3); 1791 } else 1792 ntfs_warning(sb, "%s. Will not be able to remount " 1793 "read-write%s", 1794 !vol->mftmirr_ino ? es1 : es2, es3); 1795 /* This will prevent a read-write remount. */ 1796 NVolSetErrors(vol); 1797 } 1798 #endif /* NTFS_RW */ 1799 /* Get mft bitmap attribute inode. */ 1800 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1801 if (IS_ERR(vol->mftbmp_ino)) { 1802 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1803 goto iput_mirr_err_out; 1804 } 1805 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1806 &mftbmp_runlist_lock_key); 1807 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1808 &mftbmp_mrec_lock_key); 1809 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1810 if (!load_and_init_upcase(vol)) 1811 goto iput_mftbmp_err_out; 1812 #ifdef NTFS_RW 1813 /* 1814 * Read attribute definitions table and setup @vol->attrdef and 1815 * @vol->attrdef_size. 1816 */ 1817 if (!load_and_init_attrdef(vol)) 1818 goto iput_upcase_err_out; 1819 #endif /* NTFS_RW */ 1820 /* 1821 * Get the cluster allocation bitmap inode and verify the size, no 1822 * need for any locking at this stage as we are already running 1823 * exclusively as we are mount in progress task. 1824 */ 1825 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1826 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1827 if (!IS_ERR(vol->lcnbmp_ino)) 1828 iput(vol->lcnbmp_ino); 1829 goto bitmap_failed; 1830 } 1831 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1832 &lcnbmp_runlist_lock_key); 1833 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1834 &lcnbmp_mrec_lock_key); 1835 1836 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1837 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1838 iput(vol->lcnbmp_ino); 1839 bitmap_failed: 1840 ntfs_error(sb, "Failed to load $Bitmap."); 1841 goto iput_attrdef_err_out; 1842 } 1843 /* 1844 * Get the volume inode and setup our cache of the volume flags and 1845 * version. 1846 */ 1847 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1848 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1849 if (!IS_ERR(vol->vol_ino)) 1850 iput(vol->vol_ino); 1851 volume_failed: 1852 ntfs_error(sb, "Failed to load $Volume."); 1853 goto iput_lcnbmp_err_out; 1854 } 1855 m = map_mft_record(NTFS_I(vol->vol_ino)); 1856 if (IS_ERR(m)) { 1857 iput_volume_failed: 1858 iput(vol->vol_ino); 1859 goto volume_failed; 1860 } 1861 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1862 ntfs_error(sb, "Failed to get attribute search context."); 1863 goto get_ctx_vol_failed; 1864 } 1865 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1866 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1867 err_put_vol: 1868 ntfs_attr_put_search_ctx(ctx); 1869 get_ctx_vol_failed: 1870 unmap_mft_record(NTFS_I(vol->vol_ino)); 1871 goto iput_volume_failed; 1872 } 1873 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1874 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1875 /* Some bounds checks. */ 1876 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1877 le32_to_cpu(ctx->attr->data.resident.value_length) > 1878 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1879 goto err_put_vol; 1880 /* Copy the volume flags and version to the ntfs_volume structure. */ 1881 vol->vol_flags = vi->flags; 1882 vol->major_ver = vi->major_ver; 1883 vol->minor_ver = vi->minor_ver; 1884 ntfs_attr_put_search_ctx(ctx); 1885 unmap_mft_record(NTFS_I(vol->vol_ino)); 1886 pr_info("volume version %i.%i.\n", vol->major_ver, 1887 vol->minor_ver); 1888 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1889 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1890 "volume version %i.%i (need at least version " 1891 "3.0).", vol->major_ver, vol->minor_ver); 1892 NVolClearSparseEnabled(vol); 1893 } 1894 #ifdef NTFS_RW 1895 /* Make sure that no unsupported volume flags are set. */ 1896 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1897 static const char *es1a = "Volume is dirty"; 1898 static const char *es1b = "Volume has been modified by chkdsk"; 1899 static const char *es1c = "Volume has unsupported flags set"; 1900 static const char *es2a = ". Run chkdsk and mount in Windows."; 1901 static const char *es2b = ". Mount in Windows."; 1902 const char *es1, *es2; 1903 1904 es2 = es2a; 1905 if (vol->vol_flags & VOLUME_IS_DIRTY) 1906 es1 = es1a; 1907 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1908 es1 = es1b; 1909 es2 = es2b; 1910 } else { 1911 es1 = es1c; 1912 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1913 "encountered.", 1914 (unsigned)le16_to_cpu(vol->vol_flags)); 1915 } 1916 /* If a read-write mount, convert it to a read-only mount. */ 1917 if (!sb_rdonly(sb)) { 1918 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1919 ON_ERRORS_CONTINUE))) { 1920 ntfs_error(sb, "%s and neither on_errors=" 1921 "continue nor on_errors=" 1922 "remount-ro was specified%s", 1923 es1, es2); 1924 goto iput_vol_err_out; 1925 } 1926 sb->s_flags |= SB_RDONLY; 1927 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1928 } else 1929 ntfs_warning(sb, "%s. Will not be able to remount " 1930 "read-write%s", es1, es2); 1931 /* 1932 * Do not set NVolErrors() because ntfs_remount() re-checks the 1933 * flags which we need to do in case any flags have changed. 1934 */ 1935 } 1936 /* 1937 * Get the inode for the logfile, check it and determine if the volume 1938 * was shutdown cleanly. 1939 */ 1940 rp = NULL; 1941 if (!load_and_check_logfile(vol, &rp) || 1942 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1943 static const char *es1a = "Failed to load $LogFile"; 1944 static const char *es1b = "$LogFile is not clean"; 1945 static const char *es2 = ". Mount in Windows."; 1946 const char *es1; 1947 1948 es1 = !vol->logfile_ino ? es1a : es1b; 1949 /* If a read-write mount, convert it to a read-only mount. */ 1950 if (!sb_rdonly(sb)) { 1951 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1952 ON_ERRORS_CONTINUE))) { 1953 ntfs_error(sb, "%s and neither on_errors=" 1954 "continue nor on_errors=" 1955 "remount-ro was specified%s", 1956 es1, es2); 1957 if (vol->logfile_ino) { 1958 BUG_ON(!rp); 1959 ntfs_free(rp); 1960 } 1961 goto iput_logfile_err_out; 1962 } 1963 sb->s_flags |= SB_RDONLY; 1964 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1965 } else 1966 ntfs_warning(sb, "%s. Will not be able to remount " 1967 "read-write%s", es1, es2); 1968 /* This will prevent a read-write remount. */ 1969 NVolSetErrors(vol); 1970 } 1971 ntfs_free(rp); 1972 #endif /* NTFS_RW */ 1973 /* Get the root directory inode so we can do path lookups. */ 1974 vol->root_ino = ntfs_iget(sb, FILE_root); 1975 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1976 if (!IS_ERR(vol->root_ino)) 1977 iput(vol->root_ino); 1978 ntfs_error(sb, "Failed to load root directory."); 1979 goto iput_logfile_err_out; 1980 } 1981 #ifdef NTFS_RW 1982 /* 1983 * Check if Windows is suspended to disk on the target volume. If it 1984 * is hibernated, we must not write *anything* to the disk so set 1985 * NVolErrors() without setting the dirty volume flag and mount 1986 * read-only. This will prevent read-write remounting and it will also 1987 * prevent all writes. 1988 */ 1989 err = check_windows_hibernation_status(vol); 1990 if (unlikely(err)) { 1991 static const char *es1a = "Failed to determine if Windows is " 1992 "hibernated"; 1993 static const char *es1b = "Windows is hibernated"; 1994 static const char *es2 = ". Run chkdsk."; 1995 const char *es1; 1996 1997 es1 = err < 0 ? es1a : es1b; 1998 /* If a read-write mount, convert it to a read-only mount. */ 1999 if (!sb_rdonly(sb)) { 2000 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2001 ON_ERRORS_CONTINUE))) { 2002 ntfs_error(sb, "%s and neither on_errors=" 2003 "continue nor on_errors=" 2004 "remount-ro was specified%s", 2005 es1, es2); 2006 goto iput_root_err_out; 2007 } 2008 sb->s_flags |= SB_RDONLY; 2009 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2010 } else 2011 ntfs_warning(sb, "%s. Will not be able to remount " 2012 "read-write%s", es1, es2); 2013 /* This will prevent a read-write remount. */ 2014 NVolSetErrors(vol); 2015 } 2016 /* If (still) a read-write mount, mark the volume dirty. */ 2017 if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2018 static const char *es1 = "Failed to set dirty bit in volume " 2019 "information flags"; 2020 static const char *es2 = ". Run chkdsk."; 2021 2022 /* Convert to a read-only mount. */ 2023 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2024 ON_ERRORS_CONTINUE))) { 2025 ntfs_error(sb, "%s and neither on_errors=continue nor " 2026 "on_errors=remount-ro was specified%s", 2027 es1, es2); 2028 goto iput_root_err_out; 2029 } 2030 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2031 sb->s_flags |= SB_RDONLY; 2032 /* 2033 * Do not set NVolErrors() because ntfs_remount() might manage 2034 * to set the dirty flag in which case all would be well. 2035 */ 2036 } 2037 #if 0 2038 // TODO: Enable this code once we start modifying anything that is 2039 // different between NTFS 1.2 and 3.x... 2040 /* 2041 * If (still) a read-write mount, set the NT4 compatibility flag on 2042 * newer NTFS version volumes. 2043 */ 2044 if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) && 2045 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2046 static const char *es1 = "Failed to set NT4 compatibility flag"; 2047 static const char *es2 = ". Run chkdsk."; 2048 2049 /* Convert to a read-only mount. */ 2050 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2051 ON_ERRORS_CONTINUE))) { 2052 ntfs_error(sb, "%s and neither on_errors=continue nor " 2053 "on_errors=remount-ro was specified%s", 2054 es1, es2); 2055 goto iput_root_err_out; 2056 } 2057 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2058 sb->s_flags |= SB_RDONLY; 2059 NVolSetErrors(vol); 2060 } 2061 #endif 2062 /* If (still) a read-write mount, empty the logfile. */ 2063 if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) { 2064 static const char *es1 = "Failed to empty $LogFile"; 2065 static const char *es2 = ". Mount in Windows."; 2066 2067 /* Convert to a read-only mount. */ 2068 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2069 ON_ERRORS_CONTINUE))) { 2070 ntfs_error(sb, "%s and neither on_errors=continue nor " 2071 "on_errors=remount-ro was specified%s", 2072 es1, es2); 2073 goto iput_root_err_out; 2074 } 2075 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2076 sb->s_flags |= SB_RDONLY; 2077 NVolSetErrors(vol); 2078 } 2079 #endif /* NTFS_RW */ 2080 /* If on NTFS versions before 3.0, we are done. */ 2081 if (unlikely(vol->major_ver < 3)) 2082 return true; 2083 /* NTFS 3.0+ specific initialization. */ 2084 /* Get the security descriptors inode. */ 2085 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2086 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2087 if (!IS_ERR(vol->secure_ino)) 2088 iput(vol->secure_ino); 2089 ntfs_error(sb, "Failed to load $Secure."); 2090 goto iput_root_err_out; 2091 } 2092 // TODO: Initialize security. 2093 /* Get the extended system files' directory inode. */ 2094 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2095 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { 2096 if (!IS_ERR(vol->extend_ino)) 2097 iput(vol->extend_ino); 2098 ntfs_error(sb, "Failed to load $Extend."); 2099 goto iput_sec_err_out; 2100 } 2101 #ifdef NTFS_RW 2102 /* Find the quota file, load it if present, and set it up. */ 2103 if (!load_and_init_quota(vol)) { 2104 static const char *es1 = "Failed to load $Quota"; 2105 static const char *es2 = ". Run chkdsk."; 2106 2107 /* If a read-write mount, convert it to a read-only mount. */ 2108 if (!sb_rdonly(sb)) { 2109 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2110 ON_ERRORS_CONTINUE))) { 2111 ntfs_error(sb, "%s and neither on_errors=" 2112 "continue nor on_errors=" 2113 "remount-ro was specified%s", 2114 es1, es2); 2115 goto iput_quota_err_out; 2116 } 2117 sb->s_flags |= SB_RDONLY; 2118 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2119 } else 2120 ntfs_warning(sb, "%s. Will not be able to remount " 2121 "read-write%s", es1, es2); 2122 /* This will prevent a read-write remount. */ 2123 NVolSetErrors(vol); 2124 } 2125 /* If (still) a read-write mount, mark the quotas out of date. */ 2126 if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) { 2127 static const char *es1 = "Failed to mark quotas out of date"; 2128 static const char *es2 = ". Run chkdsk."; 2129 2130 /* Convert to a read-only mount. */ 2131 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2132 ON_ERRORS_CONTINUE))) { 2133 ntfs_error(sb, "%s and neither on_errors=continue nor " 2134 "on_errors=remount-ro was specified%s", 2135 es1, es2); 2136 goto iput_quota_err_out; 2137 } 2138 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2139 sb->s_flags |= SB_RDONLY; 2140 NVolSetErrors(vol); 2141 } 2142 /* 2143 * Find the transaction log file ($UsnJrnl), load it if present, check 2144 * it, and set it up. 2145 */ 2146 if (!load_and_init_usnjrnl(vol)) { 2147 static const char *es1 = "Failed to load $UsnJrnl"; 2148 static const char *es2 = ". Run chkdsk."; 2149 2150 /* If a read-write mount, convert it to a read-only mount. */ 2151 if (!sb_rdonly(sb)) { 2152 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2153 ON_ERRORS_CONTINUE))) { 2154 ntfs_error(sb, "%s and neither on_errors=" 2155 "continue nor on_errors=" 2156 "remount-ro was specified%s", 2157 es1, es2); 2158 goto iput_usnjrnl_err_out; 2159 } 2160 sb->s_flags |= SB_RDONLY; 2161 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2162 } else 2163 ntfs_warning(sb, "%s. Will not be able to remount " 2164 "read-write%s", es1, es2); 2165 /* This will prevent a read-write remount. */ 2166 NVolSetErrors(vol); 2167 } 2168 /* If (still) a read-write mount, stamp the transaction log. */ 2169 if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) { 2170 static const char *es1 = "Failed to stamp transaction log " 2171 "($UsnJrnl)"; 2172 static const char *es2 = ". Run chkdsk."; 2173 2174 /* Convert to a read-only mount. */ 2175 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2176 ON_ERRORS_CONTINUE))) { 2177 ntfs_error(sb, "%s and neither on_errors=continue nor " 2178 "on_errors=remount-ro was specified%s", 2179 es1, es2); 2180 goto iput_usnjrnl_err_out; 2181 } 2182 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2183 sb->s_flags |= SB_RDONLY; 2184 NVolSetErrors(vol); 2185 } 2186 #endif /* NTFS_RW */ 2187 return true; 2188 #ifdef NTFS_RW 2189 iput_usnjrnl_err_out: 2190 iput(vol->usnjrnl_j_ino); 2191 iput(vol->usnjrnl_max_ino); 2192 iput(vol->usnjrnl_ino); 2193 iput_quota_err_out: 2194 iput(vol->quota_q_ino); 2195 iput(vol->quota_ino); 2196 iput(vol->extend_ino); 2197 #endif /* NTFS_RW */ 2198 iput_sec_err_out: 2199 iput(vol->secure_ino); 2200 iput_root_err_out: 2201 iput(vol->root_ino); 2202 iput_logfile_err_out: 2203 #ifdef NTFS_RW 2204 iput(vol->logfile_ino); 2205 iput_vol_err_out: 2206 #endif /* NTFS_RW */ 2207 iput(vol->vol_ino); 2208 iput_lcnbmp_err_out: 2209 iput(vol->lcnbmp_ino); 2210 iput_attrdef_err_out: 2211 vol->attrdef_size = 0; 2212 if (vol->attrdef) { 2213 ntfs_free(vol->attrdef); 2214 vol->attrdef = NULL; 2215 } 2216 #ifdef NTFS_RW 2217 iput_upcase_err_out: 2218 #endif /* NTFS_RW */ 2219 vol->upcase_len = 0; 2220 mutex_lock(&ntfs_lock); 2221 if (vol->upcase == default_upcase) { 2222 ntfs_nr_upcase_users--; 2223 vol->upcase = NULL; 2224 } 2225 mutex_unlock(&ntfs_lock); 2226 if (vol->upcase) { 2227 ntfs_free(vol->upcase); 2228 vol->upcase = NULL; 2229 } 2230 iput_mftbmp_err_out: 2231 iput(vol->mftbmp_ino); 2232 iput_mirr_err_out: 2233 #ifdef NTFS_RW 2234 iput(vol->mftmirr_ino); 2235 #endif /* NTFS_RW */ 2236 return false; 2237 } 2238 2239 /** 2240 * ntfs_put_super - called by the vfs to unmount a volume 2241 * @sb: vfs superblock of volume to unmount 2242 * 2243 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2244 * the volume is being unmounted (umount system call has been invoked) and it 2245 * releases all inodes and memory belonging to the NTFS specific part of the 2246 * super block. 2247 */ 2248 static void ntfs_put_super(struct super_block *sb) 2249 { 2250 ntfs_volume *vol = NTFS_SB(sb); 2251 2252 ntfs_debug("Entering."); 2253 2254 #ifdef NTFS_RW 2255 /* 2256 * Commit all inodes while they are still open in case some of them 2257 * cause others to be dirtied. 2258 */ 2259 ntfs_commit_inode(vol->vol_ino); 2260 2261 /* NTFS 3.0+ specific. */ 2262 if (vol->major_ver >= 3) { 2263 if (vol->usnjrnl_j_ino) 2264 ntfs_commit_inode(vol->usnjrnl_j_ino); 2265 if (vol->usnjrnl_max_ino) 2266 ntfs_commit_inode(vol->usnjrnl_max_ino); 2267 if (vol->usnjrnl_ino) 2268 ntfs_commit_inode(vol->usnjrnl_ino); 2269 if (vol->quota_q_ino) 2270 ntfs_commit_inode(vol->quota_q_ino); 2271 if (vol->quota_ino) 2272 ntfs_commit_inode(vol->quota_ino); 2273 if (vol->extend_ino) 2274 ntfs_commit_inode(vol->extend_ino); 2275 if (vol->secure_ino) 2276 ntfs_commit_inode(vol->secure_ino); 2277 } 2278 2279 ntfs_commit_inode(vol->root_ino); 2280 2281 down_write(&vol->lcnbmp_lock); 2282 ntfs_commit_inode(vol->lcnbmp_ino); 2283 up_write(&vol->lcnbmp_lock); 2284 2285 down_write(&vol->mftbmp_lock); 2286 ntfs_commit_inode(vol->mftbmp_ino); 2287 up_write(&vol->mftbmp_lock); 2288 2289 if (vol->logfile_ino) 2290 ntfs_commit_inode(vol->logfile_ino); 2291 2292 if (vol->mftmirr_ino) 2293 ntfs_commit_inode(vol->mftmirr_ino); 2294 ntfs_commit_inode(vol->mft_ino); 2295 2296 /* 2297 * If a read-write mount and no volume errors have occurred, mark the 2298 * volume clean. Also, re-commit all affected inodes. 2299 */ 2300 if (!sb_rdonly(sb)) { 2301 if (!NVolErrors(vol)) { 2302 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2303 ntfs_warning(sb, "Failed to clear dirty bit " 2304 "in volume information " 2305 "flags. Run chkdsk."); 2306 ntfs_commit_inode(vol->vol_ino); 2307 ntfs_commit_inode(vol->root_ino); 2308 if (vol->mftmirr_ino) 2309 ntfs_commit_inode(vol->mftmirr_ino); 2310 ntfs_commit_inode(vol->mft_ino); 2311 } else { 2312 ntfs_warning(sb, "Volume has errors. Leaving volume " 2313 "marked dirty. Run chkdsk."); 2314 } 2315 } 2316 #endif /* NTFS_RW */ 2317 2318 iput(vol->vol_ino); 2319 vol->vol_ino = NULL; 2320 2321 /* NTFS 3.0+ specific clean up. */ 2322 if (vol->major_ver >= 3) { 2323 #ifdef NTFS_RW 2324 if (vol->usnjrnl_j_ino) { 2325 iput(vol->usnjrnl_j_ino); 2326 vol->usnjrnl_j_ino = NULL; 2327 } 2328 if (vol->usnjrnl_max_ino) { 2329 iput(vol->usnjrnl_max_ino); 2330 vol->usnjrnl_max_ino = NULL; 2331 } 2332 if (vol->usnjrnl_ino) { 2333 iput(vol->usnjrnl_ino); 2334 vol->usnjrnl_ino = NULL; 2335 } 2336 if (vol->quota_q_ino) { 2337 iput(vol->quota_q_ino); 2338 vol->quota_q_ino = NULL; 2339 } 2340 if (vol->quota_ino) { 2341 iput(vol->quota_ino); 2342 vol->quota_ino = NULL; 2343 } 2344 #endif /* NTFS_RW */ 2345 if (vol->extend_ino) { 2346 iput(vol->extend_ino); 2347 vol->extend_ino = NULL; 2348 } 2349 if (vol->secure_ino) { 2350 iput(vol->secure_ino); 2351 vol->secure_ino = NULL; 2352 } 2353 } 2354 2355 iput(vol->root_ino); 2356 vol->root_ino = NULL; 2357 2358 down_write(&vol->lcnbmp_lock); 2359 iput(vol->lcnbmp_ino); 2360 vol->lcnbmp_ino = NULL; 2361 up_write(&vol->lcnbmp_lock); 2362 2363 down_write(&vol->mftbmp_lock); 2364 iput(vol->mftbmp_ino); 2365 vol->mftbmp_ino = NULL; 2366 up_write(&vol->mftbmp_lock); 2367 2368 #ifdef NTFS_RW 2369 if (vol->logfile_ino) { 2370 iput(vol->logfile_ino); 2371 vol->logfile_ino = NULL; 2372 } 2373 if (vol->mftmirr_ino) { 2374 /* Re-commit the mft mirror and mft just in case. */ 2375 ntfs_commit_inode(vol->mftmirr_ino); 2376 ntfs_commit_inode(vol->mft_ino); 2377 iput(vol->mftmirr_ino); 2378 vol->mftmirr_ino = NULL; 2379 } 2380 /* 2381 * We should have no dirty inodes left, due to 2382 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2383 * the underlying mft records are written out and cleaned. 2384 */ 2385 ntfs_commit_inode(vol->mft_ino); 2386 write_inode_now(vol->mft_ino, 1); 2387 #endif /* NTFS_RW */ 2388 2389 iput(vol->mft_ino); 2390 vol->mft_ino = NULL; 2391 2392 /* Throw away the table of attribute definitions. */ 2393 vol->attrdef_size = 0; 2394 if (vol->attrdef) { 2395 ntfs_free(vol->attrdef); 2396 vol->attrdef = NULL; 2397 } 2398 vol->upcase_len = 0; 2399 /* 2400 * Destroy the global default upcase table if necessary. Also decrease 2401 * the number of upcase users if we are a user. 2402 */ 2403 mutex_lock(&ntfs_lock); 2404 if (vol->upcase == default_upcase) { 2405 ntfs_nr_upcase_users--; 2406 vol->upcase = NULL; 2407 } 2408 if (!ntfs_nr_upcase_users && default_upcase) { 2409 ntfs_free(default_upcase); 2410 default_upcase = NULL; 2411 } 2412 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2413 free_compression_buffers(); 2414 mutex_unlock(&ntfs_lock); 2415 if (vol->upcase) { 2416 ntfs_free(vol->upcase); 2417 vol->upcase = NULL; 2418 } 2419 2420 unload_nls(vol->nls_map); 2421 2422 sb->s_fs_info = NULL; 2423 kfree(vol); 2424 } 2425 2426 /** 2427 * get_nr_free_clusters - return the number of free clusters on a volume 2428 * @vol: ntfs volume for which to obtain free cluster count 2429 * 2430 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2431 * actually calculate the number of clusters in use instead because this 2432 * allows us to not care about partial pages as these will be just zero filled 2433 * and hence not be counted as allocated clusters. 2434 * 2435 * The only particularity is that clusters beyond the end of the logical ntfs 2436 * volume will be marked as allocated to prevent errors which means we have to 2437 * discount those at the end. This is important as the cluster bitmap always 2438 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2439 * the logical volume and marked in use when they are not as they do not exist. 2440 * 2441 * If any pages cannot be read we assume all clusters in the erroring pages are 2442 * in use. This means we return an underestimate on errors which is better than 2443 * an overestimate. 2444 */ 2445 static s64 get_nr_free_clusters(ntfs_volume *vol) 2446 { 2447 s64 nr_free = vol->nr_clusters; 2448 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2449 struct page *page; 2450 pgoff_t index, max_index; 2451 2452 ntfs_debug("Entering."); 2453 /* Serialize accesses to the cluster bitmap. */ 2454 down_read(&vol->lcnbmp_lock); 2455 /* 2456 * Convert the number of bits into bytes rounded up, then convert into 2457 * multiples of PAGE_SIZE, rounding up so that if we have one 2458 * full and one partial page max_index = 2. 2459 */ 2460 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >> 2461 PAGE_SHIFT; 2462 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */ 2463 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2464 max_index, PAGE_SIZE / 4); 2465 for (index = 0; index < max_index; index++) { 2466 unsigned long *kaddr; 2467 2468 /* 2469 * Read the page from page cache, getting it from backing store 2470 * if necessary, and increment the use count. 2471 */ 2472 page = read_mapping_page(mapping, index, NULL); 2473 /* Ignore pages which errored synchronously. */ 2474 if (IS_ERR(page)) { 2475 ntfs_debug("read_mapping_page() error. Skipping " 2476 "page (index 0x%lx).", index); 2477 nr_free -= PAGE_SIZE * 8; 2478 continue; 2479 } 2480 kaddr = kmap_atomic(page); 2481 /* 2482 * Subtract the number of set bits. If this 2483 * is the last page and it is partial we don't really care as 2484 * it just means we do a little extra work but it won't affect 2485 * the result as all out of range bytes are set to zero by 2486 * ntfs_readpage(). 2487 */ 2488 nr_free -= bitmap_weight(kaddr, 2489 PAGE_SIZE * BITS_PER_BYTE); 2490 kunmap_atomic(kaddr); 2491 put_page(page); 2492 } 2493 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2494 /* 2495 * Fixup for eventual bits outside logical ntfs volume (see function 2496 * description above). 2497 */ 2498 if (vol->nr_clusters & 63) 2499 nr_free += 64 - (vol->nr_clusters & 63); 2500 up_read(&vol->lcnbmp_lock); 2501 /* If errors occurred we may well have gone below zero, fix this. */ 2502 if (nr_free < 0) 2503 nr_free = 0; 2504 ntfs_debug("Exiting."); 2505 return nr_free; 2506 } 2507 2508 /** 2509 * __get_nr_free_mft_records - return the number of free inodes on a volume 2510 * @vol: ntfs volume for which to obtain free inode count 2511 * @nr_free: number of mft records in filesystem 2512 * @max_index: maximum number of pages containing set bits 2513 * 2514 * Calculate the number of free mft records (inodes) on the mounted NTFS 2515 * volume @vol. We actually calculate the number of mft records in use instead 2516 * because this allows us to not care about partial pages as these will be just 2517 * zero filled and hence not be counted as allocated mft record. 2518 * 2519 * If any pages cannot be read we assume all mft records in the erroring pages 2520 * are in use. This means we return an underestimate on errors which is better 2521 * than an overestimate. 2522 * 2523 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2524 */ 2525 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2526 s64 nr_free, const pgoff_t max_index) 2527 { 2528 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2529 struct page *page; 2530 pgoff_t index; 2531 2532 ntfs_debug("Entering."); 2533 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */ 2534 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2535 "0x%lx.", max_index, PAGE_SIZE / 4); 2536 for (index = 0; index < max_index; index++) { 2537 unsigned long *kaddr; 2538 2539 /* 2540 * Read the page from page cache, getting it from backing store 2541 * if necessary, and increment the use count. 2542 */ 2543 page = read_mapping_page(mapping, index, NULL); 2544 /* Ignore pages which errored synchronously. */ 2545 if (IS_ERR(page)) { 2546 ntfs_debug("read_mapping_page() error. Skipping " 2547 "page (index 0x%lx).", index); 2548 nr_free -= PAGE_SIZE * 8; 2549 continue; 2550 } 2551 kaddr = kmap_atomic(page); 2552 /* 2553 * Subtract the number of set bits. If this 2554 * is the last page and it is partial we don't really care as 2555 * it just means we do a little extra work but it won't affect 2556 * the result as all out of range bytes are set to zero by 2557 * ntfs_readpage(). 2558 */ 2559 nr_free -= bitmap_weight(kaddr, 2560 PAGE_SIZE * BITS_PER_BYTE); 2561 kunmap_atomic(kaddr); 2562 put_page(page); 2563 } 2564 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2565 index - 1); 2566 /* If errors occurred we may well have gone below zero, fix this. */ 2567 if (nr_free < 0) 2568 nr_free = 0; 2569 ntfs_debug("Exiting."); 2570 return nr_free; 2571 } 2572 2573 /** 2574 * ntfs_statfs - return information about mounted NTFS volume 2575 * @dentry: dentry from mounted volume 2576 * @sfs: statfs structure in which to return the information 2577 * 2578 * Return information about the mounted NTFS volume @dentry in the statfs structure 2579 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2580 * called). We interpret the values to be correct of the moment in time at 2581 * which we are called. Most values are variable otherwise and this isn't just 2582 * the free values but the totals as well. For example we can increase the 2583 * total number of file nodes if we run out and we can keep doing this until 2584 * there is no more space on the volume left at all. 2585 * 2586 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2587 * ustat system calls. 2588 * 2589 * Return 0 on success or -errno on error. 2590 */ 2591 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2592 { 2593 struct super_block *sb = dentry->d_sb; 2594 s64 size; 2595 ntfs_volume *vol = NTFS_SB(sb); 2596 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2597 pgoff_t max_index; 2598 unsigned long flags; 2599 2600 ntfs_debug("Entering."); 2601 /* Type of filesystem. */ 2602 sfs->f_type = NTFS_SB_MAGIC; 2603 /* Optimal transfer block size. */ 2604 sfs->f_bsize = PAGE_SIZE; 2605 /* 2606 * Total data blocks in filesystem in units of f_bsize and since 2607 * inodes are also stored in data blocs ($MFT is a file) this is just 2608 * the total clusters. 2609 */ 2610 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2611 PAGE_SHIFT; 2612 /* Free data blocks in filesystem in units of f_bsize. */ 2613 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2614 PAGE_SHIFT; 2615 if (size < 0LL) 2616 size = 0LL; 2617 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2618 sfs->f_bavail = sfs->f_bfree = size; 2619 /* Serialize accesses to the inode bitmap. */ 2620 down_read(&vol->mftbmp_lock); 2621 read_lock_irqsave(&mft_ni->size_lock, flags); 2622 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2623 /* 2624 * Convert the maximum number of set bits into bytes rounded up, then 2625 * convert into multiples of PAGE_SIZE, rounding up so that if we 2626 * have one full and one partial page max_index = 2. 2627 */ 2628 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2629 + 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT; 2630 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2631 /* Number of inodes in filesystem (at this point in time). */ 2632 sfs->f_files = size; 2633 /* Free inodes in fs (based on current total count). */ 2634 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2635 up_read(&vol->mftbmp_lock); 2636 /* 2637 * File system id. This is extremely *nix flavour dependent and even 2638 * within Linux itself all fs do their own thing. I interpret this to 2639 * mean a unique id associated with the mounted fs and not the id 2640 * associated with the filesystem driver, the latter is already given 2641 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2642 * volume serial number splitting it into two 32-bit parts. We enter 2643 * the least significant 32-bits in f_fsid[0] and the most significant 2644 * 32-bits in f_fsid[1]. 2645 */ 2646 sfs->f_fsid = u64_to_fsid(vol->serial_no); 2647 /* Maximum length of filenames. */ 2648 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2649 return 0; 2650 } 2651 2652 #ifdef NTFS_RW 2653 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) 2654 { 2655 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); 2656 } 2657 #endif 2658 2659 /** 2660 * The complete super operations. 2661 */ 2662 static const struct super_operations ntfs_sops = { 2663 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2664 .free_inode = ntfs_free_big_inode, /* VFS: Deallocate inode. */ 2665 #ifdef NTFS_RW 2666 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2667 disk. */ 2668 #endif /* NTFS_RW */ 2669 .put_super = ntfs_put_super, /* Syscall: umount. */ 2670 .statfs = ntfs_statfs, /* Syscall: statfs */ 2671 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2672 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is 2673 removed from memory. */ 2674 .show_options = ntfs_show_options, /* Show mount options in 2675 proc. */ 2676 }; 2677 2678 /** 2679 * ntfs_fill_super - mount an ntfs filesystem 2680 * @sb: super block of ntfs filesystem to mount 2681 * @opt: string containing the mount options 2682 * @silent: silence error output 2683 * 2684 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2685 * with the mount otions in @data with the NTFS filesystem. 2686 * 2687 * If @silent is true, remain silent even if errors are detected. This is used 2688 * during bootup, when the kernel tries to mount the root filesystem with all 2689 * registered filesystems one after the other until one succeeds. This implies 2690 * that all filesystems except the correct one will quite correctly and 2691 * expectedly return an error, but nobody wants to see error messages when in 2692 * fact this is what is supposed to happen. 2693 * 2694 * NOTE: @sb->s_flags contains the mount options flags. 2695 */ 2696 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2697 { 2698 ntfs_volume *vol; 2699 struct buffer_head *bh; 2700 struct inode *tmp_ino; 2701 int blocksize, result; 2702 2703 /* 2704 * We do a pretty difficult piece of bootstrap by reading the 2705 * MFT (and other metadata) from disk into memory. We'll only 2706 * release this metadata during umount, so the locking patterns 2707 * observed during bootstrap do not count. So turn off the 2708 * observation of locking patterns (strictly for this context 2709 * only) while mounting NTFS. [The validator is still active 2710 * otherwise, even for this context: it will for example record 2711 * lock class registrations.] 2712 */ 2713 lockdep_off(); 2714 ntfs_debug("Entering."); 2715 #ifndef NTFS_RW 2716 sb->s_flags |= SB_RDONLY; 2717 #endif /* ! NTFS_RW */ 2718 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2719 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2720 vol = NTFS_SB(sb); 2721 if (!vol) { 2722 if (!silent) 2723 ntfs_error(sb, "Allocation of NTFS volume structure " 2724 "failed. Aborting mount..."); 2725 lockdep_on(); 2726 return -ENOMEM; 2727 } 2728 /* Initialize ntfs_volume structure. */ 2729 *vol = (ntfs_volume) { 2730 .sb = sb, 2731 /* 2732 * Default is group and other don't have any access to files or 2733 * directories while owner has full access. Further, files by 2734 * default are not executable but directories are of course 2735 * browseable. 2736 */ 2737 .fmask = 0177, 2738 .dmask = 0077, 2739 }; 2740 init_rwsem(&vol->mftbmp_lock); 2741 init_rwsem(&vol->lcnbmp_lock); 2742 2743 /* By default, enable sparse support. */ 2744 NVolSetSparseEnabled(vol); 2745 2746 /* Important to get the mount options dealt with now. */ 2747 if (!parse_options(vol, (char*)opt)) 2748 goto err_out_now; 2749 2750 /* We support sector sizes up to the PAGE_SIZE. */ 2751 if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) { 2752 if (!silent) 2753 ntfs_error(sb, "Device has unsupported sector size " 2754 "(%i). The maximum supported sector " 2755 "size on this architecture is %lu " 2756 "bytes.", 2757 bdev_logical_block_size(sb->s_bdev), 2758 PAGE_SIZE); 2759 goto err_out_now; 2760 } 2761 /* 2762 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2763 * sector size, whichever is bigger. 2764 */ 2765 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2766 if (blocksize < NTFS_BLOCK_SIZE) { 2767 if (!silent) 2768 ntfs_error(sb, "Unable to set device block size."); 2769 goto err_out_now; 2770 } 2771 BUG_ON(blocksize != sb->s_blocksize); 2772 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2773 blocksize, sb->s_blocksize_bits); 2774 /* Determine the size of the device in units of block_size bytes. */ 2775 vol->nr_blocks = sb_bdev_nr_blocks(sb); 2776 if (!vol->nr_blocks) { 2777 if (!silent) 2778 ntfs_error(sb, "Unable to determine device size."); 2779 goto err_out_now; 2780 } 2781 /* Read the boot sector and return unlocked buffer head to it. */ 2782 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2783 if (!silent) 2784 ntfs_error(sb, "Not an NTFS volume."); 2785 goto err_out_now; 2786 } 2787 /* 2788 * Extract the data from the boot sector and setup the ntfs volume 2789 * using it. 2790 */ 2791 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2792 brelse(bh); 2793 if (!result) { 2794 if (!silent) 2795 ntfs_error(sb, "Unsupported NTFS filesystem."); 2796 goto err_out_now; 2797 } 2798 /* 2799 * If the boot sector indicates a sector size bigger than the current 2800 * device block size, switch the device block size to the sector size. 2801 * TODO: It may be possible to support this case even when the set 2802 * below fails, we would just be breaking up the i/o for each sector 2803 * into multiple blocks for i/o purposes but otherwise it should just 2804 * work. However it is safer to leave disabled until someone hits this 2805 * error message and then we can get them to try it without the setting 2806 * so we know for sure that it works. 2807 */ 2808 if (vol->sector_size > blocksize) { 2809 blocksize = sb_set_blocksize(sb, vol->sector_size); 2810 if (blocksize != vol->sector_size) { 2811 if (!silent) 2812 ntfs_error(sb, "Unable to set device block " 2813 "size to sector size (%i).", 2814 vol->sector_size); 2815 goto err_out_now; 2816 } 2817 BUG_ON(blocksize != sb->s_blocksize); 2818 vol->nr_blocks = sb_bdev_nr_blocks(sb); 2819 ntfs_debug("Changed device block size to %i bytes (block size " 2820 "bits %i) to match volume sector size.", 2821 blocksize, sb->s_blocksize_bits); 2822 } 2823 /* Initialize the cluster and mft allocators. */ 2824 ntfs_setup_allocators(vol); 2825 /* Setup remaining fields in the super block. */ 2826 sb->s_magic = NTFS_SB_MAGIC; 2827 /* 2828 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2829 * sb->s_maxbytes = ~0ULL >> 1; 2830 * But the kernel uses a long as the page cache page index which on 2831 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2832 * defined to the maximum the page cache page index can cope with 2833 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2834 */ 2835 sb->s_maxbytes = MAX_LFS_FILESIZE; 2836 /* Ntfs measures time in 100ns intervals. */ 2837 sb->s_time_gran = 100; 2838 /* 2839 * Now load the metadata required for the page cache and our address 2840 * space operations to function. We do this by setting up a specialised 2841 * read_inode method and then just calling the normal iget() to obtain 2842 * the inode for $MFT which is sufficient to allow our normal inode 2843 * operations and associated address space operations to function. 2844 */ 2845 sb->s_op = &ntfs_sops; 2846 tmp_ino = new_inode(sb); 2847 if (!tmp_ino) { 2848 if (!silent) 2849 ntfs_error(sb, "Failed to load essential metadata."); 2850 goto err_out_now; 2851 } 2852 tmp_ino->i_ino = FILE_MFT; 2853 insert_inode_hash(tmp_ino); 2854 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2855 if (!silent) 2856 ntfs_error(sb, "Failed to load essential metadata."); 2857 goto iput_tmp_ino_err_out_now; 2858 } 2859 mutex_lock(&ntfs_lock); 2860 /* 2861 * The current mount is a compression user if the cluster size is 2862 * less than or equal 4kiB. 2863 */ 2864 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2865 result = allocate_compression_buffers(); 2866 if (result) { 2867 ntfs_error(NULL, "Failed to allocate buffers " 2868 "for compression engine."); 2869 ntfs_nr_compression_users--; 2870 mutex_unlock(&ntfs_lock); 2871 goto iput_tmp_ino_err_out_now; 2872 } 2873 } 2874 /* 2875 * Generate the global default upcase table if necessary. Also 2876 * temporarily increment the number of upcase users to avoid race 2877 * conditions with concurrent (u)mounts. 2878 */ 2879 if (!default_upcase) 2880 default_upcase = generate_default_upcase(); 2881 ntfs_nr_upcase_users++; 2882 mutex_unlock(&ntfs_lock); 2883 /* 2884 * From now on, ignore @silent parameter. If we fail below this line, 2885 * it will be due to a corrupt fs or a system error, so we report it. 2886 */ 2887 /* 2888 * Open the system files with normal access functions and complete 2889 * setting up the ntfs super block. 2890 */ 2891 if (!load_system_files(vol)) { 2892 ntfs_error(sb, "Failed to load system files."); 2893 goto unl_upcase_iput_tmp_ino_err_out_now; 2894 } 2895 2896 /* We grab a reference, simulating an ntfs_iget(). */ 2897 ihold(vol->root_ino); 2898 if ((sb->s_root = d_make_root(vol->root_ino))) { 2899 ntfs_debug("Exiting, status successful."); 2900 /* Release the default upcase if it has no users. */ 2901 mutex_lock(&ntfs_lock); 2902 if (!--ntfs_nr_upcase_users && default_upcase) { 2903 ntfs_free(default_upcase); 2904 default_upcase = NULL; 2905 } 2906 mutex_unlock(&ntfs_lock); 2907 sb->s_export_op = &ntfs_export_ops; 2908 lockdep_on(); 2909 return 0; 2910 } 2911 ntfs_error(sb, "Failed to allocate root directory."); 2912 /* Clean up after the successful load_system_files() call from above. */ 2913 // TODO: Use ntfs_put_super() instead of repeating all this code... 2914 // FIXME: Should mark the volume clean as the error is most likely 2915 // -ENOMEM. 2916 iput(vol->vol_ino); 2917 vol->vol_ino = NULL; 2918 /* NTFS 3.0+ specific clean up. */ 2919 if (vol->major_ver >= 3) { 2920 #ifdef NTFS_RW 2921 if (vol->usnjrnl_j_ino) { 2922 iput(vol->usnjrnl_j_ino); 2923 vol->usnjrnl_j_ino = NULL; 2924 } 2925 if (vol->usnjrnl_max_ino) { 2926 iput(vol->usnjrnl_max_ino); 2927 vol->usnjrnl_max_ino = NULL; 2928 } 2929 if (vol->usnjrnl_ino) { 2930 iput(vol->usnjrnl_ino); 2931 vol->usnjrnl_ino = NULL; 2932 } 2933 if (vol->quota_q_ino) { 2934 iput(vol->quota_q_ino); 2935 vol->quota_q_ino = NULL; 2936 } 2937 if (vol->quota_ino) { 2938 iput(vol->quota_ino); 2939 vol->quota_ino = NULL; 2940 } 2941 #endif /* NTFS_RW */ 2942 if (vol->extend_ino) { 2943 iput(vol->extend_ino); 2944 vol->extend_ino = NULL; 2945 } 2946 if (vol->secure_ino) { 2947 iput(vol->secure_ino); 2948 vol->secure_ino = NULL; 2949 } 2950 } 2951 iput(vol->root_ino); 2952 vol->root_ino = NULL; 2953 iput(vol->lcnbmp_ino); 2954 vol->lcnbmp_ino = NULL; 2955 iput(vol->mftbmp_ino); 2956 vol->mftbmp_ino = NULL; 2957 #ifdef NTFS_RW 2958 if (vol->logfile_ino) { 2959 iput(vol->logfile_ino); 2960 vol->logfile_ino = NULL; 2961 } 2962 if (vol->mftmirr_ino) { 2963 iput(vol->mftmirr_ino); 2964 vol->mftmirr_ino = NULL; 2965 } 2966 #endif /* NTFS_RW */ 2967 /* Throw away the table of attribute definitions. */ 2968 vol->attrdef_size = 0; 2969 if (vol->attrdef) { 2970 ntfs_free(vol->attrdef); 2971 vol->attrdef = NULL; 2972 } 2973 vol->upcase_len = 0; 2974 mutex_lock(&ntfs_lock); 2975 if (vol->upcase == default_upcase) { 2976 ntfs_nr_upcase_users--; 2977 vol->upcase = NULL; 2978 } 2979 mutex_unlock(&ntfs_lock); 2980 if (vol->upcase) { 2981 ntfs_free(vol->upcase); 2982 vol->upcase = NULL; 2983 } 2984 if (vol->nls_map) { 2985 unload_nls(vol->nls_map); 2986 vol->nls_map = NULL; 2987 } 2988 /* Error exit code path. */ 2989 unl_upcase_iput_tmp_ino_err_out_now: 2990 /* 2991 * Decrease the number of upcase users and destroy the global default 2992 * upcase table if necessary. 2993 */ 2994 mutex_lock(&ntfs_lock); 2995 if (!--ntfs_nr_upcase_users && default_upcase) { 2996 ntfs_free(default_upcase); 2997 default_upcase = NULL; 2998 } 2999 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3000 free_compression_buffers(); 3001 mutex_unlock(&ntfs_lock); 3002 iput_tmp_ino_err_out_now: 3003 iput(tmp_ino); 3004 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3005 iput(vol->mft_ino); 3006 vol->mft_ino = NULL; 3007 /* Errors at this stage are irrelevant. */ 3008 err_out_now: 3009 sb->s_fs_info = NULL; 3010 kfree(vol); 3011 ntfs_debug("Failed, returning -EINVAL."); 3012 lockdep_on(); 3013 return -EINVAL; 3014 } 3015 3016 /* 3017 * This is a slab cache to optimize allocations and deallocations of Unicode 3018 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3019 * (255) Unicode characters + a terminating NULL Unicode character. 3020 */ 3021 struct kmem_cache *ntfs_name_cache; 3022 3023 /* Slab caches for efficient allocation/deallocation of inodes. */ 3024 struct kmem_cache *ntfs_inode_cache; 3025 struct kmem_cache *ntfs_big_inode_cache; 3026 3027 /* Init once constructor for the inode slab cache. */ 3028 static void ntfs_big_inode_init_once(void *foo) 3029 { 3030 ntfs_inode *ni = (ntfs_inode *)foo; 3031 3032 inode_init_once(VFS_I(ni)); 3033 } 3034 3035 /* 3036 * Slab caches to optimize allocations and deallocations of attribute search 3037 * contexts and index contexts, respectively. 3038 */ 3039 struct kmem_cache *ntfs_attr_ctx_cache; 3040 struct kmem_cache *ntfs_index_ctx_cache; 3041 3042 /* Driver wide mutex. */ 3043 DEFINE_MUTEX(ntfs_lock); 3044 3045 static struct dentry *ntfs_mount(struct file_system_type *fs_type, 3046 int flags, const char *dev_name, void *data) 3047 { 3048 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3049 } 3050 3051 static struct file_system_type ntfs_fs_type = { 3052 .owner = THIS_MODULE, 3053 .name = "ntfs", 3054 .mount = ntfs_mount, 3055 .kill_sb = kill_block_super, 3056 .fs_flags = FS_REQUIRES_DEV, 3057 }; 3058 MODULE_ALIAS_FS("ntfs"); 3059 3060 /* Stable names for the slab caches. */ 3061 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3062 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3063 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3064 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3065 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3066 3067 static int __init init_ntfs_fs(void) 3068 { 3069 int err = 0; 3070 3071 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3072 pr_info("driver " NTFS_VERSION " [Flags: R/" 3073 #ifdef NTFS_RW 3074 "W" 3075 #else 3076 "O" 3077 #endif 3078 #ifdef DEBUG 3079 " DEBUG" 3080 #endif 3081 #ifdef MODULE 3082 " MODULE" 3083 #endif 3084 "].\n"); 3085 3086 ntfs_debug("Debug messages are enabled."); 3087 3088 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3089 sizeof(ntfs_index_context), 0 /* offset */, 3090 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3091 if (!ntfs_index_ctx_cache) { 3092 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name); 3093 goto ictx_err_out; 3094 } 3095 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3096 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3097 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3098 if (!ntfs_attr_ctx_cache) { 3099 pr_crit("NTFS: Failed to create %s!\n", 3100 ntfs_attr_ctx_cache_name); 3101 goto actx_err_out; 3102 } 3103 3104 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3105 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3106 SLAB_HWCACHE_ALIGN, NULL); 3107 if (!ntfs_name_cache) { 3108 pr_crit("Failed to create %s!\n", ntfs_name_cache_name); 3109 goto name_err_out; 3110 } 3111 3112 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3113 sizeof(ntfs_inode), 0, 3114 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3115 if (!ntfs_inode_cache) { 3116 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name); 3117 goto inode_err_out; 3118 } 3119 3120 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3121 sizeof(big_ntfs_inode), 0, 3122 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 3123 SLAB_ACCOUNT, ntfs_big_inode_init_once); 3124 if (!ntfs_big_inode_cache) { 3125 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name); 3126 goto big_inode_err_out; 3127 } 3128 3129 /* Register the ntfs sysctls. */ 3130 err = ntfs_sysctl(1); 3131 if (err) { 3132 pr_crit("Failed to register NTFS sysctls!\n"); 3133 goto sysctl_err_out; 3134 } 3135 3136 err = register_filesystem(&ntfs_fs_type); 3137 if (!err) { 3138 ntfs_debug("NTFS driver registered successfully."); 3139 return 0; /* Success! */ 3140 } 3141 pr_crit("Failed to register NTFS filesystem driver!\n"); 3142 3143 /* Unregister the ntfs sysctls. */ 3144 ntfs_sysctl(0); 3145 sysctl_err_out: 3146 kmem_cache_destroy(ntfs_big_inode_cache); 3147 big_inode_err_out: 3148 kmem_cache_destroy(ntfs_inode_cache); 3149 inode_err_out: 3150 kmem_cache_destroy(ntfs_name_cache); 3151 name_err_out: 3152 kmem_cache_destroy(ntfs_attr_ctx_cache); 3153 actx_err_out: 3154 kmem_cache_destroy(ntfs_index_ctx_cache); 3155 ictx_err_out: 3156 if (!err) { 3157 pr_crit("Aborting NTFS filesystem driver registration...\n"); 3158 err = -ENOMEM; 3159 } 3160 return err; 3161 } 3162 3163 static void __exit exit_ntfs_fs(void) 3164 { 3165 ntfs_debug("Unregistering NTFS driver."); 3166 3167 unregister_filesystem(&ntfs_fs_type); 3168 3169 /* 3170 * Make sure all delayed rcu free inodes are flushed before we 3171 * destroy cache. 3172 */ 3173 rcu_barrier(); 3174 kmem_cache_destroy(ntfs_big_inode_cache); 3175 kmem_cache_destroy(ntfs_inode_cache); 3176 kmem_cache_destroy(ntfs_name_cache); 3177 kmem_cache_destroy(ntfs_attr_ctx_cache); 3178 kmem_cache_destroy(ntfs_index_ctx_cache); 3179 /* Unregister the ntfs sysctls. */ 3180 ntfs_sysctl(0); 3181 } 3182 3183 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); 3184 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc."); 3185 MODULE_VERSION(NTFS_VERSION); 3186 MODULE_LICENSE("GPL"); 3187 #ifdef DEBUG 3188 module_param(debug_msgs, bint, 0); 3189 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3190 #endif 3191 3192 module_init(init_ntfs_fs) 3193 module_exit(exit_ntfs_fs) 3194