xref: /openbmc/linux/fs/ntfs/super.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
6  * Copyright (c) 2001,2002 Richard Russon
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include <linux/spinlock.h>
15 #include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
16 #include <linux/backing-dev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/vfs.h>
19 #include <linux/moduleparam.h>
20 #include <linux/bitmap.h>
21 
22 #include "sysctl.h"
23 #include "logfile.h"
24 #include "quota.h"
25 #include "usnjrnl.h"
26 #include "dir.h"
27 #include "debug.h"
28 #include "index.h"
29 #include "inode.h"
30 #include "aops.h"
31 #include "layout.h"
32 #include "malloc.h"
33 #include "ntfs.h"
34 
35 /* Number of mounted filesystems which have compression enabled. */
36 static unsigned long ntfs_nr_compression_users;
37 
38 /* A global default upcase table and a corresponding reference count. */
39 static ntfschar *default_upcase;
40 static unsigned long ntfs_nr_upcase_users;
41 
42 /* Error constants/strings used in inode.c::ntfs_show_options(). */
43 typedef enum {
44 	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
45 	ON_ERRORS_PANIC			= 0x01,
46 	ON_ERRORS_REMOUNT_RO		= 0x02,
47 	ON_ERRORS_CONTINUE		= 0x04,
48 	/* Optional, can be combined with any of the above. */
49 	ON_ERRORS_RECOVER		= 0x10,
50 } ON_ERRORS_ACTIONS;
51 
52 const option_t on_errors_arr[] = {
53 	{ ON_ERRORS_PANIC,	"panic" },
54 	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
55 	{ ON_ERRORS_CONTINUE,	"continue", },
56 	{ ON_ERRORS_RECOVER,	"recover" },
57 	{ 0,			NULL }
58 };
59 
60 /**
61  * simple_getbool -
62  *
63  * Copied from old ntfs driver (which copied from vfat driver).
64  */
65 static int simple_getbool(char *s, bool *setval)
66 {
67 	if (s) {
68 		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
69 			*setval = true;
70 		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
71 							!strcmp(s, "false"))
72 			*setval = false;
73 		else
74 			return 0;
75 	} else
76 		*setval = true;
77 	return 1;
78 }
79 
80 /**
81  * parse_options - parse the (re)mount options
82  * @vol:	ntfs volume
83  * @opt:	string containing the (re)mount options
84  *
85  * Parse the recognized options in @opt for the ntfs volume described by @vol.
86  */
87 static bool parse_options(ntfs_volume *vol, char *opt)
88 {
89 	char *p, *v, *ov;
90 	static char *utf8 = "utf8";
91 	int errors = 0, sloppy = 0;
92 	kuid_t uid = INVALID_UID;
93 	kgid_t gid = INVALID_GID;
94 	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
95 	int mft_zone_multiplier = -1, on_errors = -1;
96 	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
97 	struct nls_table *nls_map = NULL, *old_nls;
98 
99 	/* I am lazy... (-8 */
100 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
101 	if (!strcmp(p, option)) {					\
102 		if (!v || !*v)						\
103 			variable = default_value;			\
104 		else {							\
105 			variable = simple_strtoul(ov = v, &v, 0);	\
106 			if (*v)						\
107 				goto needs_val;				\
108 		}							\
109 	}
110 #define NTFS_GETOPT(option, variable)					\
111 	if (!strcmp(p, option)) {					\
112 		if (!v || !*v)						\
113 			goto needs_arg;					\
114 		variable = simple_strtoul(ov = v, &v, 0);		\
115 		if (*v)							\
116 			goto needs_val;					\
117 	}
118 #define NTFS_GETOPT_UID(option, variable)				\
119 	if (!strcmp(p, option)) {					\
120 		uid_t uid_value;					\
121 		if (!v || !*v)						\
122 			goto needs_arg;					\
123 		uid_value = simple_strtoul(ov = v, &v, 0);		\
124 		if (*v)							\
125 			goto needs_val;					\
126 		variable = make_kuid(current_user_ns(), uid_value);	\
127 		if (!uid_valid(variable))				\
128 			goto needs_val;					\
129 	}
130 #define NTFS_GETOPT_GID(option, variable)				\
131 	if (!strcmp(p, option)) {					\
132 		gid_t gid_value;					\
133 		if (!v || !*v)						\
134 			goto needs_arg;					\
135 		gid_value = simple_strtoul(ov = v, &v, 0);		\
136 		if (*v)							\
137 			goto needs_val;					\
138 		variable = make_kgid(current_user_ns(), gid_value);	\
139 		if (!gid_valid(variable))				\
140 			goto needs_val;					\
141 	}
142 #define NTFS_GETOPT_OCTAL(option, variable)				\
143 	if (!strcmp(p, option)) {					\
144 		if (!v || !*v)						\
145 			goto needs_arg;					\
146 		variable = simple_strtoul(ov = v, &v, 8);		\
147 		if (*v)							\
148 			goto needs_val;					\
149 	}
150 #define NTFS_GETOPT_BOOL(option, variable)				\
151 	if (!strcmp(p, option)) {					\
152 		bool val;						\
153 		if (!simple_getbool(v, &val))				\
154 			goto needs_bool;				\
155 		variable = val;						\
156 	}
157 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
158 	if (!strcmp(p, option)) {					\
159 		int _i;							\
160 		if (!v || !*v)						\
161 			goto needs_arg;					\
162 		ov = v;							\
163 		if (variable == -1)					\
164 			variable = 0;					\
165 		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
166 			if (!strcmp(opt_array[_i].str, v)) {		\
167 				variable |= opt_array[_i].val;		\
168 				break;					\
169 			}						\
170 		if (!opt_array[_i].str || !*opt_array[_i].str)		\
171 			goto needs_val;					\
172 	}
173 	if (!opt || !*opt)
174 		goto no_mount_options;
175 	ntfs_debug("Entering with mount options string: %s", opt);
176 	while ((p = strsep(&opt, ","))) {
177 		if ((v = strchr(p, '=')))
178 			*v++ = 0;
179 		NTFS_GETOPT_UID("uid", uid)
180 		else NTFS_GETOPT_GID("gid", gid)
181 		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
182 		else NTFS_GETOPT_OCTAL("fmask", fmask)
183 		else NTFS_GETOPT_OCTAL("dmask", dmask)
184 		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
185 		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
186 		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
187 		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
188 		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
189 		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
190 				on_errors_arr)
191 		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
192 			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
193 					p);
194 		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
195 			if (!strcmp(p, "iocharset"))
196 				ntfs_warning(vol->sb, "Option iocharset is "
197 						"deprecated. Please use "
198 						"option nls=<charsetname> in "
199 						"the future.");
200 			if (!v || !*v)
201 				goto needs_arg;
202 use_utf8:
203 			old_nls = nls_map;
204 			nls_map = load_nls(v);
205 			if (!nls_map) {
206 				if (!old_nls) {
207 					ntfs_error(vol->sb, "NLS character set "
208 							"%s not found.", v);
209 					return false;
210 				}
211 				ntfs_error(vol->sb, "NLS character set %s not "
212 						"found. Using previous one %s.",
213 						v, old_nls->charset);
214 				nls_map = old_nls;
215 			} else /* nls_map */ {
216 				unload_nls(old_nls);
217 			}
218 		} else if (!strcmp(p, "utf8")) {
219 			bool val = false;
220 			ntfs_warning(vol->sb, "Option utf8 is no longer "
221 				   "supported, using option nls=utf8. Please "
222 				   "use option nls=utf8 in the future and "
223 				   "make sure utf8 is compiled either as a "
224 				   "module or into the kernel.");
225 			if (!v || !*v)
226 				val = true;
227 			else if (!simple_getbool(v, &val))
228 				goto needs_bool;
229 			if (val) {
230 				v = utf8;
231 				goto use_utf8;
232 			}
233 		} else {
234 			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
235 			if (errors < INT_MAX)
236 				errors++;
237 		}
238 #undef NTFS_GETOPT_OPTIONS_ARRAY
239 #undef NTFS_GETOPT_BOOL
240 #undef NTFS_GETOPT
241 #undef NTFS_GETOPT_WITH_DEFAULT
242 	}
243 no_mount_options:
244 	if (errors && !sloppy)
245 		return false;
246 	if (sloppy)
247 		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
248 				"unrecognized mount option(s) and continuing.");
249 	/* Keep this first! */
250 	if (on_errors != -1) {
251 		if (!on_errors) {
252 			ntfs_error(vol->sb, "Invalid errors option argument "
253 					"or bug in options parser.");
254 			return false;
255 		}
256 	}
257 	if (nls_map) {
258 		if (vol->nls_map && vol->nls_map != nls_map) {
259 			ntfs_error(vol->sb, "Cannot change NLS character set "
260 					"on remount.");
261 			return false;
262 		} /* else (!vol->nls_map) */
263 		ntfs_debug("Using NLS character set %s.", nls_map->charset);
264 		vol->nls_map = nls_map;
265 	} else /* (!nls_map) */ {
266 		if (!vol->nls_map) {
267 			vol->nls_map = load_nls_default();
268 			if (!vol->nls_map) {
269 				ntfs_error(vol->sb, "Failed to load default "
270 						"NLS character set.");
271 				return false;
272 			}
273 			ntfs_debug("Using default NLS character set (%s).",
274 					vol->nls_map->charset);
275 		}
276 	}
277 	if (mft_zone_multiplier != -1) {
278 		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
279 				mft_zone_multiplier) {
280 			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
281 					"on remount.");
282 			return false;
283 		}
284 		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
285 			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
286 					"Using default value, i.e. 1.");
287 			mft_zone_multiplier = 1;
288 		}
289 		vol->mft_zone_multiplier = mft_zone_multiplier;
290 	}
291 	if (!vol->mft_zone_multiplier)
292 		vol->mft_zone_multiplier = 1;
293 	if (on_errors != -1)
294 		vol->on_errors = on_errors;
295 	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
296 		vol->on_errors |= ON_ERRORS_CONTINUE;
297 	if (uid_valid(uid))
298 		vol->uid = uid;
299 	if (gid_valid(gid))
300 		vol->gid = gid;
301 	if (fmask != (umode_t)-1)
302 		vol->fmask = fmask;
303 	if (dmask != (umode_t)-1)
304 		vol->dmask = dmask;
305 	if (show_sys_files != -1) {
306 		if (show_sys_files)
307 			NVolSetShowSystemFiles(vol);
308 		else
309 			NVolClearShowSystemFiles(vol);
310 	}
311 	if (case_sensitive != -1) {
312 		if (case_sensitive)
313 			NVolSetCaseSensitive(vol);
314 		else
315 			NVolClearCaseSensitive(vol);
316 	}
317 	if (disable_sparse != -1) {
318 		if (disable_sparse)
319 			NVolClearSparseEnabled(vol);
320 		else {
321 			if (!NVolSparseEnabled(vol) &&
322 					vol->major_ver && vol->major_ver < 3)
323 				ntfs_warning(vol->sb, "Not enabling sparse "
324 						"support due to NTFS volume "
325 						"version %i.%i (need at least "
326 						"version 3.0).", vol->major_ver,
327 						vol->minor_ver);
328 			else
329 				NVolSetSparseEnabled(vol);
330 		}
331 	}
332 	return true;
333 needs_arg:
334 	ntfs_error(vol->sb, "The %s option requires an argument.", p);
335 	return false;
336 needs_bool:
337 	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
338 	return false;
339 needs_val:
340 	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
341 	return false;
342 }
343 
344 #ifdef NTFS_RW
345 
346 /**
347  * ntfs_write_volume_flags - write new flags to the volume information flags
348  * @vol:	ntfs volume on which to modify the flags
349  * @flags:	new flags value for the volume information flags
350  *
351  * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
352  * instead (see below).
353  *
354  * Replace the volume information flags on the volume @vol with the value
355  * supplied in @flags.  Note, this overwrites the volume information flags, so
356  * make sure to combine the flags you want to modify with the old flags and use
357  * the result when calling ntfs_write_volume_flags().
358  *
359  * Return 0 on success and -errno on error.
360  */
361 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
362 {
363 	ntfs_inode *ni = NTFS_I(vol->vol_ino);
364 	MFT_RECORD *m;
365 	VOLUME_INFORMATION *vi;
366 	ntfs_attr_search_ctx *ctx;
367 	int err;
368 
369 	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
370 			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
371 	if (vol->vol_flags == flags)
372 		goto done;
373 	BUG_ON(!ni);
374 	m = map_mft_record(ni);
375 	if (IS_ERR(m)) {
376 		err = PTR_ERR(m);
377 		goto err_out;
378 	}
379 	ctx = ntfs_attr_get_search_ctx(ni, m);
380 	if (!ctx) {
381 		err = -ENOMEM;
382 		goto put_unm_err_out;
383 	}
384 	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
385 			ctx);
386 	if (err)
387 		goto put_unm_err_out;
388 	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
389 			le16_to_cpu(ctx->attr->data.resident.value_offset));
390 	vol->vol_flags = vi->flags = flags;
391 	flush_dcache_mft_record_page(ctx->ntfs_ino);
392 	mark_mft_record_dirty(ctx->ntfs_ino);
393 	ntfs_attr_put_search_ctx(ctx);
394 	unmap_mft_record(ni);
395 done:
396 	ntfs_debug("Done.");
397 	return 0;
398 put_unm_err_out:
399 	if (ctx)
400 		ntfs_attr_put_search_ctx(ctx);
401 	unmap_mft_record(ni);
402 err_out:
403 	ntfs_error(vol->sb, "Failed with error code %i.", -err);
404 	return err;
405 }
406 
407 /**
408  * ntfs_set_volume_flags - set bits in the volume information flags
409  * @vol:	ntfs volume on which to modify the flags
410  * @flags:	flags to set on the volume
411  *
412  * Set the bits in @flags in the volume information flags on the volume @vol.
413  *
414  * Return 0 on success and -errno on error.
415  */
416 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
417 {
418 	flags &= VOLUME_FLAGS_MASK;
419 	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
420 }
421 
422 /**
423  * ntfs_clear_volume_flags - clear bits in the volume information flags
424  * @vol:	ntfs volume on which to modify the flags
425  * @flags:	flags to clear on the volume
426  *
427  * Clear the bits in @flags in the volume information flags on the volume @vol.
428  *
429  * Return 0 on success and -errno on error.
430  */
431 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
432 {
433 	flags &= VOLUME_FLAGS_MASK;
434 	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
435 	return ntfs_write_volume_flags(vol, flags);
436 }
437 
438 #endif /* NTFS_RW */
439 
440 /**
441  * ntfs_remount - change the mount options of a mounted ntfs filesystem
442  * @sb:		superblock of mounted ntfs filesystem
443  * @flags:	remount flags
444  * @opt:	remount options string
445  *
446  * Change the mount options of an already mounted ntfs filesystem.
447  *
448  * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
449  * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
450  * @sb->s_flags are not changed.
451  */
452 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
453 {
454 	ntfs_volume *vol = NTFS_SB(sb);
455 
456 	ntfs_debug("Entering with remount options string: %s", opt);
457 
458 	sync_filesystem(sb);
459 
460 #ifndef NTFS_RW
461 	/* For read-only compiled driver, enforce read-only flag. */
462 	*flags |= SB_RDONLY;
463 #else /* NTFS_RW */
464 	/*
465 	 * For the read-write compiled driver, if we are remounting read-write,
466 	 * make sure there are no volume errors and that no unsupported volume
467 	 * flags are set.  Also, empty the logfile journal as it would become
468 	 * stale as soon as something is written to the volume and mark the
469 	 * volume dirty so that chkdsk is run if the volume is not umounted
470 	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
471 	 * the volume on boot and updates them.
472 	 *
473 	 * When remounting read-only, mark the volume clean if no volume errors
474 	 * have occurred.
475 	 */
476 	if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) {
477 		static const char *es = ".  Cannot remount read-write.";
478 
479 		/* Remounting read-write. */
480 		if (NVolErrors(vol)) {
481 			ntfs_error(sb, "Volume has errors and is read-only%s",
482 					es);
483 			return -EROFS;
484 		}
485 		if (vol->vol_flags & VOLUME_IS_DIRTY) {
486 			ntfs_error(sb, "Volume is dirty and read-only%s", es);
487 			return -EROFS;
488 		}
489 		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
490 			ntfs_error(sb, "Volume has been modified by chkdsk "
491 					"and is read-only%s", es);
492 			return -EROFS;
493 		}
494 		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
495 			ntfs_error(sb, "Volume has unsupported flags set "
496 					"(0x%x) and is read-only%s",
497 					(unsigned)le16_to_cpu(vol->vol_flags),
498 					es);
499 			return -EROFS;
500 		}
501 		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
502 			ntfs_error(sb, "Failed to set dirty bit in volume "
503 					"information flags%s", es);
504 			return -EROFS;
505 		}
506 #if 0
507 		// TODO: Enable this code once we start modifying anything that
508 		//	 is different between NTFS 1.2 and 3.x...
509 		/* Set NT4 compatibility flag on newer NTFS version volumes. */
510 		if ((vol->major_ver > 1)) {
511 			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
512 				ntfs_error(sb, "Failed to set NT4 "
513 						"compatibility flag%s", es);
514 				NVolSetErrors(vol);
515 				return -EROFS;
516 			}
517 		}
518 #endif
519 		if (!ntfs_empty_logfile(vol->logfile_ino)) {
520 			ntfs_error(sb, "Failed to empty journal $LogFile%s",
521 					es);
522 			NVolSetErrors(vol);
523 			return -EROFS;
524 		}
525 		if (!ntfs_mark_quotas_out_of_date(vol)) {
526 			ntfs_error(sb, "Failed to mark quotas out of date%s",
527 					es);
528 			NVolSetErrors(vol);
529 			return -EROFS;
530 		}
531 		if (!ntfs_stamp_usnjrnl(vol)) {
532 			ntfs_error(sb, "Failed to stamp transaction log "
533 					"($UsnJrnl)%s", es);
534 			NVolSetErrors(vol);
535 			return -EROFS;
536 		}
537 	} else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) {
538 		/* Remounting read-only. */
539 		if (!NVolErrors(vol)) {
540 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
541 				ntfs_warning(sb, "Failed to clear dirty bit "
542 						"in volume information "
543 						"flags.  Run chkdsk.");
544 		}
545 	}
546 #endif /* NTFS_RW */
547 
548 	// TODO: Deal with *flags.
549 
550 	if (!parse_options(vol, opt))
551 		return -EINVAL;
552 
553 	ntfs_debug("Done.");
554 	return 0;
555 }
556 
557 /**
558  * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
559  * @sb:		Super block of the device to which @b belongs.
560  * @b:		Boot sector of device @sb to check.
561  * @silent:	If 'true', all output will be silenced.
562  *
563  * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
564  * sector. Returns 'true' if it is valid and 'false' if not.
565  *
566  * @sb is only needed for warning/error output, i.e. it can be NULL when silent
567  * is 'true'.
568  */
569 static bool is_boot_sector_ntfs(const struct super_block *sb,
570 		const NTFS_BOOT_SECTOR *b, const bool silent)
571 {
572 	/*
573 	 * Check that checksum == sum of u32 values from b to the checksum
574 	 * field.  If checksum is zero, no checking is done.  We will work when
575 	 * the checksum test fails, since some utilities update the boot sector
576 	 * ignoring the checksum which leaves the checksum out-of-date.  We
577 	 * report a warning if this is the case.
578 	 */
579 	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
580 		le32 *u;
581 		u32 i;
582 
583 		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
584 			i += le32_to_cpup(u);
585 		if (le32_to_cpu(b->checksum) != i)
586 			ntfs_warning(sb, "Invalid boot sector checksum.");
587 	}
588 	/* Check OEMidentifier is "NTFS    " */
589 	if (b->oem_id != magicNTFS)
590 		goto not_ntfs;
591 	/* Check bytes per sector value is between 256 and 4096. */
592 	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
593 			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
594 		goto not_ntfs;
595 	/* Check sectors per cluster value is valid. */
596 	switch (b->bpb.sectors_per_cluster) {
597 	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
598 		break;
599 	default:
600 		goto not_ntfs;
601 	}
602 	/* Check the cluster size is not above the maximum (64kiB). */
603 	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
604 			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
605 		goto not_ntfs;
606 	/* Check reserved/unused fields are really zero. */
607 	if (le16_to_cpu(b->bpb.reserved_sectors) ||
608 			le16_to_cpu(b->bpb.root_entries) ||
609 			le16_to_cpu(b->bpb.sectors) ||
610 			le16_to_cpu(b->bpb.sectors_per_fat) ||
611 			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
612 		goto not_ntfs;
613 	/* Check clusters per file mft record value is valid. */
614 	if ((u8)b->clusters_per_mft_record < 0xe1 ||
615 			(u8)b->clusters_per_mft_record > 0xf7)
616 		switch (b->clusters_per_mft_record) {
617 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
618 			break;
619 		default:
620 			goto not_ntfs;
621 		}
622 	/* Check clusters per index block value is valid. */
623 	if ((u8)b->clusters_per_index_record < 0xe1 ||
624 			(u8)b->clusters_per_index_record > 0xf7)
625 		switch (b->clusters_per_index_record) {
626 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
627 			break;
628 		default:
629 			goto not_ntfs;
630 		}
631 	/*
632 	 * Check for valid end of sector marker. We will work without it, but
633 	 * many BIOSes will refuse to boot from a bootsector if the magic is
634 	 * incorrect, so we emit a warning.
635 	 */
636 	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
637 		ntfs_warning(sb, "Invalid end of sector marker.");
638 	return true;
639 not_ntfs:
640 	return false;
641 }
642 
643 /**
644  * read_ntfs_boot_sector - read the NTFS boot sector of a device
645  * @sb:		super block of device to read the boot sector from
646  * @silent:	if true, suppress all output
647  *
648  * Reads the boot sector from the device and validates it. If that fails, tries
649  * to read the backup boot sector, first from the end of the device a-la NT4 and
650  * later and then from the middle of the device a-la NT3.51 and before.
651  *
652  * If a valid boot sector is found but it is not the primary boot sector, we
653  * repair the primary boot sector silently (unless the device is read-only or
654  * the primary boot sector is not accessible).
655  *
656  * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
657  * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
658  * to their respective values.
659  *
660  * Return the unlocked buffer head containing the boot sector or NULL on error.
661  */
662 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
663 		const int silent)
664 {
665 	const char *read_err_str = "Unable to read %s boot sector.";
666 	struct buffer_head *bh_primary, *bh_backup;
667 	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
668 
669 	/* Try to read primary boot sector. */
670 	if ((bh_primary = sb_bread(sb, 0))) {
671 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
672 				bh_primary->b_data, silent))
673 			return bh_primary;
674 		if (!silent)
675 			ntfs_error(sb, "Primary boot sector is invalid.");
676 	} else if (!silent)
677 		ntfs_error(sb, read_err_str, "primary");
678 	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
679 		if (bh_primary)
680 			brelse(bh_primary);
681 		if (!silent)
682 			ntfs_error(sb, "Mount option errors=recover not used. "
683 					"Aborting without trying to recover.");
684 		return NULL;
685 	}
686 	/* Try to read NT4+ backup boot sector. */
687 	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
688 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
689 				bh_backup->b_data, silent))
690 			goto hotfix_primary_boot_sector;
691 		brelse(bh_backup);
692 	} else if (!silent)
693 		ntfs_error(sb, read_err_str, "backup");
694 	/* Try to read NT3.51- backup boot sector. */
695 	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
696 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
697 				bh_backup->b_data, silent))
698 			goto hotfix_primary_boot_sector;
699 		if (!silent)
700 			ntfs_error(sb, "Could not find a valid backup boot "
701 					"sector.");
702 		brelse(bh_backup);
703 	} else if (!silent)
704 		ntfs_error(sb, read_err_str, "backup");
705 	/* We failed. Cleanup and return. */
706 	if (bh_primary)
707 		brelse(bh_primary);
708 	return NULL;
709 hotfix_primary_boot_sector:
710 	if (bh_primary) {
711 		/*
712 		 * If we managed to read sector zero and the volume is not
713 		 * read-only, copy the found, valid backup boot sector to the
714 		 * primary boot sector.  Note we only copy the actual boot
715 		 * sector structure, not the actual whole device sector as that
716 		 * may be bigger and would potentially damage the $Boot system
717 		 * file (FIXME: Would be nice to know if the backup boot sector
718 		 * on a large sector device contains the whole boot loader or
719 		 * just the first 512 bytes).
720 		 */
721 		if (!sb_rdonly(sb)) {
722 			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
723 					"boot sector from backup copy.");
724 			memcpy(bh_primary->b_data, bh_backup->b_data,
725 					NTFS_BLOCK_SIZE);
726 			mark_buffer_dirty(bh_primary);
727 			sync_dirty_buffer(bh_primary);
728 			if (buffer_uptodate(bh_primary)) {
729 				brelse(bh_backup);
730 				return bh_primary;
731 			}
732 			ntfs_error(sb, "Hot-fix: Device write error while "
733 					"recovering primary boot sector.");
734 		} else {
735 			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
736 					"sector failed: Read-only mount.");
737 		}
738 		brelse(bh_primary);
739 	}
740 	ntfs_warning(sb, "Using backup boot sector.");
741 	return bh_backup;
742 }
743 
744 /**
745  * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
746  * @vol:	volume structure to initialise with data from boot sector
747  * @b:		boot sector to parse
748  *
749  * Parse the ntfs boot sector @b and store all imporant information therein in
750  * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
751  */
752 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
753 {
754 	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
755 	int clusters_per_mft_record, clusters_per_index_record;
756 	s64 ll;
757 
758 	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
759 	vol->sector_size_bits = ffs(vol->sector_size) - 1;
760 	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
761 			vol->sector_size);
762 	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
763 			vol->sector_size_bits);
764 	if (vol->sector_size < vol->sb->s_blocksize) {
765 		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
766 				"device block size (%lu).  This is not "
767 				"supported.  Sorry.", vol->sector_size,
768 				vol->sb->s_blocksize);
769 		return false;
770 	}
771 	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
772 	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
773 	ntfs_debug("sectors_per_cluster_bits = 0x%x",
774 			sectors_per_cluster_bits);
775 	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
776 	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
777 	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
778 	vol->cluster_size_mask = vol->cluster_size - 1;
779 	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
780 	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
781 			vol->cluster_size);
782 	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
783 	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
784 	if (vol->cluster_size < vol->sector_size) {
785 		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
786 				"sector size (%i).  This is not supported.  "
787 				"Sorry.", vol->cluster_size, vol->sector_size);
788 		return false;
789 	}
790 	clusters_per_mft_record = b->clusters_per_mft_record;
791 	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
792 			clusters_per_mft_record, clusters_per_mft_record);
793 	if (clusters_per_mft_record > 0)
794 		vol->mft_record_size = vol->cluster_size <<
795 				(ffs(clusters_per_mft_record) - 1);
796 	else
797 		/*
798 		 * When mft_record_size < cluster_size, clusters_per_mft_record
799 		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
800 		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
801 		 */
802 		vol->mft_record_size = 1 << -clusters_per_mft_record;
803 	vol->mft_record_size_mask = vol->mft_record_size - 1;
804 	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
805 	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
806 			vol->mft_record_size);
807 	ntfs_debug("vol->mft_record_size_mask = 0x%x",
808 			vol->mft_record_size_mask);
809 	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
810 			vol->mft_record_size_bits, vol->mft_record_size_bits);
811 	/*
812 	 * We cannot support mft record sizes above the PAGE_SIZE since
813 	 * we store $MFT/$DATA, the table of mft records in the page cache.
814 	 */
815 	if (vol->mft_record_size > PAGE_SIZE) {
816 		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
817 				"PAGE_SIZE on your system (%lu).  "
818 				"This is not supported.  Sorry.",
819 				vol->mft_record_size, PAGE_SIZE);
820 		return false;
821 	}
822 	/* We cannot support mft record sizes below the sector size. */
823 	if (vol->mft_record_size < vol->sector_size) {
824 		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
825 				"sector size (%i).  This is not supported.  "
826 				"Sorry.", vol->mft_record_size,
827 				vol->sector_size);
828 		return false;
829 	}
830 	clusters_per_index_record = b->clusters_per_index_record;
831 	ntfs_debug("clusters_per_index_record = %i (0x%x)",
832 			clusters_per_index_record, clusters_per_index_record);
833 	if (clusters_per_index_record > 0)
834 		vol->index_record_size = vol->cluster_size <<
835 				(ffs(clusters_per_index_record) - 1);
836 	else
837 		/*
838 		 * When index_record_size < cluster_size,
839 		 * clusters_per_index_record = -log2(index_record_size) bytes.
840 		 * index_record_size normaly equals 4096 bytes, which is
841 		 * encoded as 0xF4 (-12 in decimal).
842 		 */
843 		vol->index_record_size = 1 << -clusters_per_index_record;
844 	vol->index_record_size_mask = vol->index_record_size - 1;
845 	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
846 	ntfs_debug("vol->index_record_size = %i (0x%x)",
847 			vol->index_record_size, vol->index_record_size);
848 	ntfs_debug("vol->index_record_size_mask = 0x%x",
849 			vol->index_record_size_mask);
850 	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
851 			vol->index_record_size_bits,
852 			vol->index_record_size_bits);
853 	/* We cannot support index record sizes below the sector size. */
854 	if (vol->index_record_size < vol->sector_size) {
855 		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
856 				"the sector size (%i).  This is not "
857 				"supported.  Sorry.", vol->index_record_size,
858 				vol->sector_size);
859 		return false;
860 	}
861 	/*
862 	 * Get the size of the volume in clusters and check for 64-bit-ness.
863 	 * Windows currently only uses 32 bits to save the clusters so we do
864 	 * the same as it is much faster on 32-bit CPUs.
865 	 */
866 	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
867 	if ((u64)ll >= 1ULL << 32) {
868 		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
869 		return false;
870 	}
871 	vol->nr_clusters = ll;
872 	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
873 	/*
874 	 * On an architecture where unsigned long is 32-bits, we restrict the
875 	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
876 	 * will hopefully optimize the whole check away.
877 	 */
878 	if (sizeof(unsigned long) < 8) {
879 		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
880 			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
881 					"large for this architecture.  "
882 					"Maximum supported is 2TiB.  Sorry.",
883 					(unsigned long long)ll >> (40 -
884 					vol->cluster_size_bits));
885 			return false;
886 		}
887 	}
888 	ll = sle64_to_cpu(b->mft_lcn);
889 	if (ll >= vol->nr_clusters) {
890 		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
891 				"volume.  Weird.", (unsigned long long)ll,
892 				(unsigned long long)ll);
893 		return false;
894 	}
895 	vol->mft_lcn = ll;
896 	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
897 	ll = sle64_to_cpu(b->mftmirr_lcn);
898 	if (ll >= vol->nr_clusters) {
899 		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
900 				"of volume.  Weird.", (unsigned long long)ll,
901 				(unsigned long long)ll);
902 		return false;
903 	}
904 	vol->mftmirr_lcn = ll;
905 	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
906 #ifdef NTFS_RW
907 	/*
908 	 * Work out the size of the mft mirror in number of mft records. If the
909 	 * cluster size is less than or equal to the size taken by four mft
910 	 * records, the mft mirror stores the first four mft records. If the
911 	 * cluster size is bigger than the size taken by four mft records, the
912 	 * mft mirror contains as many mft records as will fit into one
913 	 * cluster.
914 	 */
915 	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
916 		vol->mftmirr_size = 4;
917 	else
918 		vol->mftmirr_size = vol->cluster_size >>
919 				vol->mft_record_size_bits;
920 	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
921 #endif /* NTFS_RW */
922 	vol->serial_no = le64_to_cpu(b->volume_serial_number);
923 	ntfs_debug("vol->serial_no = 0x%llx",
924 			(unsigned long long)vol->serial_no);
925 	return true;
926 }
927 
928 /**
929  * ntfs_setup_allocators - initialize the cluster and mft allocators
930  * @vol:	volume structure for which to setup the allocators
931  *
932  * Setup the cluster (lcn) and mft allocators to the starting values.
933  */
934 static void ntfs_setup_allocators(ntfs_volume *vol)
935 {
936 #ifdef NTFS_RW
937 	LCN mft_zone_size, mft_lcn;
938 #endif /* NTFS_RW */
939 
940 	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
941 			vol->mft_zone_multiplier);
942 #ifdef NTFS_RW
943 	/* Determine the size of the MFT zone. */
944 	mft_zone_size = vol->nr_clusters;
945 	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
946 	case 4:
947 		mft_zone_size >>= 1;			/* 50%   */
948 		break;
949 	case 3:
950 		mft_zone_size = (mft_zone_size +
951 				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
952 		break;
953 	case 2:
954 		mft_zone_size >>= 2;			/* 25%   */
955 		break;
956 	/* case 1: */
957 	default:
958 		mft_zone_size >>= 3;			/* 12.5% */
959 		break;
960 	}
961 	/* Setup the mft zone. */
962 	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
963 	ntfs_debug("vol->mft_zone_pos = 0x%llx",
964 			(unsigned long long)vol->mft_zone_pos);
965 	/*
966 	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
967 	 * source) and if the actual mft_lcn is in the expected place or even
968 	 * further to the front of the volume, extend the mft_zone to cover the
969 	 * beginning of the volume as well.  This is in order to protect the
970 	 * area reserved for the mft bitmap as well within the mft_zone itself.
971 	 * On non-standard volumes we do not protect it as the overhead would
972 	 * be higher than the speed increase we would get by doing it.
973 	 */
974 	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
975 	if (mft_lcn * vol->cluster_size < 16 * 1024)
976 		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
977 				vol->cluster_size;
978 	if (vol->mft_zone_start <= mft_lcn)
979 		vol->mft_zone_start = 0;
980 	ntfs_debug("vol->mft_zone_start = 0x%llx",
981 			(unsigned long long)vol->mft_zone_start);
982 	/*
983 	 * Need to cap the mft zone on non-standard volumes so that it does
984 	 * not point outside the boundaries of the volume.  We do this by
985 	 * halving the zone size until we are inside the volume.
986 	 */
987 	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
988 	while (vol->mft_zone_end >= vol->nr_clusters) {
989 		mft_zone_size >>= 1;
990 		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
991 	}
992 	ntfs_debug("vol->mft_zone_end = 0x%llx",
993 			(unsigned long long)vol->mft_zone_end);
994 	/*
995 	 * Set the current position within each data zone to the start of the
996 	 * respective zone.
997 	 */
998 	vol->data1_zone_pos = vol->mft_zone_end;
999 	ntfs_debug("vol->data1_zone_pos = 0x%llx",
1000 			(unsigned long long)vol->data1_zone_pos);
1001 	vol->data2_zone_pos = 0;
1002 	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1003 			(unsigned long long)vol->data2_zone_pos);
1004 
1005 	/* Set the mft data allocation position to mft record 24. */
1006 	vol->mft_data_pos = 24;
1007 	ntfs_debug("vol->mft_data_pos = 0x%llx",
1008 			(unsigned long long)vol->mft_data_pos);
1009 #endif /* NTFS_RW */
1010 }
1011 
1012 #ifdef NTFS_RW
1013 
1014 /**
1015  * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1016  * @vol:	ntfs super block describing device whose mft mirror to load
1017  *
1018  * Return 'true' on success or 'false' on error.
1019  */
1020 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1021 {
1022 	struct inode *tmp_ino;
1023 	ntfs_inode *tmp_ni;
1024 
1025 	ntfs_debug("Entering.");
1026 	/* Get mft mirror inode. */
1027 	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1028 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1029 		if (!IS_ERR(tmp_ino))
1030 			iput(tmp_ino);
1031 		/* Caller will display error message. */
1032 		return false;
1033 	}
1034 	/*
1035 	 * Re-initialize some specifics about $MFTMirr's inode as
1036 	 * ntfs_read_inode() will have set up the default ones.
1037 	 */
1038 	/* Set uid and gid to root. */
1039 	tmp_ino->i_uid = GLOBAL_ROOT_UID;
1040 	tmp_ino->i_gid = GLOBAL_ROOT_GID;
1041 	/* Regular file.  No access for anyone. */
1042 	tmp_ino->i_mode = S_IFREG;
1043 	/* No VFS initiated operations allowed for $MFTMirr. */
1044 	tmp_ino->i_op = &ntfs_empty_inode_ops;
1045 	tmp_ino->i_fop = &ntfs_empty_file_ops;
1046 	/* Put in our special address space operations. */
1047 	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1048 	tmp_ni = NTFS_I(tmp_ino);
1049 	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1050 	NInoSetMstProtected(tmp_ni);
1051 	NInoSetSparseDisabled(tmp_ni);
1052 	/*
1053 	 * Set up our little cheat allowing us to reuse the async read io
1054 	 * completion handler for directories.
1055 	 */
1056 	tmp_ni->itype.index.block_size = vol->mft_record_size;
1057 	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1058 	vol->mftmirr_ino = tmp_ino;
1059 	ntfs_debug("Done.");
1060 	return true;
1061 }
1062 
1063 /**
1064  * check_mft_mirror - compare contents of the mft mirror with the mft
1065  * @vol:	ntfs super block describing device whose mft mirror to check
1066  *
1067  * Return 'true' on success or 'false' on error.
1068  *
1069  * Note, this function also results in the mft mirror runlist being completely
1070  * mapped into memory.  The mft mirror write code requires this and will BUG()
1071  * should it find an unmapped runlist element.
1072  */
1073 static bool check_mft_mirror(ntfs_volume *vol)
1074 {
1075 	struct super_block *sb = vol->sb;
1076 	ntfs_inode *mirr_ni;
1077 	struct page *mft_page, *mirr_page;
1078 	u8 *kmft, *kmirr;
1079 	runlist_element *rl, rl2[2];
1080 	pgoff_t index;
1081 	int mrecs_per_page, i;
1082 
1083 	ntfs_debug("Entering.");
1084 	/* Compare contents of $MFT and $MFTMirr. */
1085 	mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
1086 	BUG_ON(!mrecs_per_page);
1087 	BUG_ON(!vol->mftmirr_size);
1088 	mft_page = mirr_page = NULL;
1089 	kmft = kmirr = NULL;
1090 	index = i = 0;
1091 	do {
1092 		u32 bytes;
1093 
1094 		/* Switch pages if necessary. */
1095 		if (!(i % mrecs_per_page)) {
1096 			if (index) {
1097 				ntfs_unmap_page(mft_page);
1098 				ntfs_unmap_page(mirr_page);
1099 			}
1100 			/* Get the $MFT page. */
1101 			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1102 					index);
1103 			if (IS_ERR(mft_page)) {
1104 				ntfs_error(sb, "Failed to read $MFT.");
1105 				return false;
1106 			}
1107 			kmft = page_address(mft_page);
1108 			/* Get the $MFTMirr page. */
1109 			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1110 					index);
1111 			if (IS_ERR(mirr_page)) {
1112 				ntfs_error(sb, "Failed to read $MFTMirr.");
1113 				goto mft_unmap_out;
1114 			}
1115 			kmirr = page_address(mirr_page);
1116 			++index;
1117 		}
1118 		/* Do not check the record if it is not in use. */
1119 		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1120 			/* Make sure the record is ok. */
1121 			if (ntfs_is_baad_recordp((le32*)kmft)) {
1122 				ntfs_error(sb, "Incomplete multi sector "
1123 						"transfer detected in mft "
1124 						"record %i.", i);
1125 mm_unmap_out:
1126 				ntfs_unmap_page(mirr_page);
1127 mft_unmap_out:
1128 				ntfs_unmap_page(mft_page);
1129 				return false;
1130 			}
1131 		}
1132 		/* Do not check the mirror record if it is not in use. */
1133 		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1134 			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1135 				ntfs_error(sb, "Incomplete multi sector "
1136 						"transfer detected in mft "
1137 						"mirror record %i.", i);
1138 				goto mm_unmap_out;
1139 			}
1140 		}
1141 		/* Get the amount of data in the current record. */
1142 		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1143 		if (bytes < sizeof(MFT_RECORD_OLD) ||
1144 				bytes > vol->mft_record_size ||
1145 				ntfs_is_baad_recordp((le32*)kmft)) {
1146 			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1147 			if (bytes < sizeof(MFT_RECORD_OLD) ||
1148 					bytes > vol->mft_record_size ||
1149 					ntfs_is_baad_recordp((le32*)kmirr))
1150 				bytes = vol->mft_record_size;
1151 		}
1152 		/* Compare the two records. */
1153 		if (memcmp(kmft, kmirr, bytes)) {
1154 			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1155 					"match.  Run ntfsfix or chkdsk.", i);
1156 			goto mm_unmap_out;
1157 		}
1158 		kmft += vol->mft_record_size;
1159 		kmirr += vol->mft_record_size;
1160 	} while (++i < vol->mftmirr_size);
1161 	/* Release the last pages. */
1162 	ntfs_unmap_page(mft_page);
1163 	ntfs_unmap_page(mirr_page);
1164 
1165 	/* Construct the mft mirror runlist by hand. */
1166 	rl2[0].vcn = 0;
1167 	rl2[0].lcn = vol->mftmirr_lcn;
1168 	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1169 			vol->cluster_size - 1) / vol->cluster_size;
1170 	rl2[1].vcn = rl2[0].length;
1171 	rl2[1].lcn = LCN_ENOENT;
1172 	rl2[1].length = 0;
1173 	/*
1174 	 * Because we have just read all of the mft mirror, we know we have
1175 	 * mapped the full runlist for it.
1176 	 */
1177 	mirr_ni = NTFS_I(vol->mftmirr_ino);
1178 	down_read(&mirr_ni->runlist.lock);
1179 	rl = mirr_ni->runlist.rl;
1180 	/* Compare the two runlists.  They must be identical. */
1181 	i = 0;
1182 	do {
1183 		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1184 				rl2[i].length != rl[i].length) {
1185 			ntfs_error(sb, "$MFTMirr location mismatch.  "
1186 					"Run chkdsk.");
1187 			up_read(&mirr_ni->runlist.lock);
1188 			return false;
1189 		}
1190 	} while (rl2[i++].length);
1191 	up_read(&mirr_ni->runlist.lock);
1192 	ntfs_debug("Done.");
1193 	return true;
1194 }
1195 
1196 /**
1197  * load_and_check_logfile - load and check the logfile inode for a volume
1198  * @vol:	ntfs super block describing device whose logfile to load
1199  *
1200  * Return 'true' on success or 'false' on error.
1201  */
1202 static bool load_and_check_logfile(ntfs_volume *vol,
1203 		RESTART_PAGE_HEADER **rp)
1204 {
1205 	struct inode *tmp_ino;
1206 
1207 	ntfs_debug("Entering.");
1208 	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1209 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1210 		if (!IS_ERR(tmp_ino))
1211 			iput(tmp_ino);
1212 		/* Caller will display error message. */
1213 		return false;
1214 	}
1215 	if (!ntfs_check_logfile(tmp_ino, rp)) {
1216 		iput(tmp_ino);
1217 		/* ntfs_check_logfile() will have displayed error output. */
1218 		return false;
1219 	}
1220 	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1221 	vol->logfile_ino = tmp_ino;
1222 	ntfs_debug("Done.");
1223 	return true;
1224 }
1225 
1226 #define NTFS_HIBERFIL_HEADER_SIZE	4096
1227 
1228 /**
1229  * check_windows_hibernation_status - check if Windows is suspended on a volume
1230  * @vol:	ntfs super block of device to check
1231  *
1232  * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1233  * looking for the file hiberfil.sys in the root directory of the volume.  If
1234  * the file is not present Windows is definitely not suspended.
1235  *
1236  * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1237  * definitely suspended (this volume is not the system volume).  Caveat:  on a
1238  * system with many volumes it is possible that the < 4kiB check is bogus but
1239  * for now this should do fine.
1240  *
1241  * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1242  * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1243  * Windows is definitely suspended.  If it is completely full of zeroes,
1244  * Windows is definitely not hibernated.  Any other case is treated as if
1245  * Windows is suspended.  This caters for the above mentioned caveat of a
1246  * system with many volumes where no "hibr" magic would be present and there is
1247  * no zero header.
1248  *
1249  * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1250  * hibernated on the volume, and -errno on error.
1251  */
1252 static int check_windows_hibernation_status(ntfs_volume *vol)
1253 {
1254 	MFT_REF mref;
1255 	struct inode *vi;
1256 	struct page *page;
1257 	u32 *kaddr, *kend;
1258 	ntfs_name *name = NULL;
1259 	int ret = 1;
1260 	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1261 			cpu_to_le16('i'), cpu_to_le16('b'),
1262 			cpu_to_le16('e'), cpu_to_le16('r'),
1263 			cpu_to_le16('f'), cpu_to_le16('i'),
1264 			cpu_to_le16('l'), cpu_to_le16('.'),
1265 			cpu_to_le16('s'), cpu_to_le16('y'),
1266 			cpu_to_le16('s'), 0 };
1267 
1268 	ntfs_debug("Entering.");
1269 	/*
1270 	 * Find the inode number for the hibernation file by looking up the
1271 	 * filename hiberfil.sys in the root directory.
1272 	 */
1273 	inode_lock(vol->root_ino);
1274 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1275 			&name);
1276 	inode_unlock(vol->root_ino);
1277 	if (IS_ERR_MREF(mref)) {
1278 		ret = MREF_ERR(mref);
1279 		/* If the file does not exist, Windows is not hibernated. */
1280 		if (ret == -ENOENT) {
1281 			ntfs_debug("hiberfil.sys not present.  Windows is not "
1282 					"hibernated on the volume.");
1283 			return 0;
1284 		}
1285 		/* A real error occurred. */
1286 		ntfs_error(vol->sb, "Failed to find inode number for "
1287 				"hiberfil.sys.");
1288 		return ret;
1289 	}
1290 	/* We do not care for the type of match that was found. */
1291 	kfree(name);
1292 	/* Get the inode. */
1293 	vi = ntfs_iget(vol->sb, MREF(mref));
1294 	if (IS_ERR(vi) || is_bad_inode(vi)) {
1295 		if (!IS_ERR(vi))
1296 			iput(vi);
1297 		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1298 		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1299 	}
1300 	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1301 		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1302 				"Windows is hibernated on the volume.  This "
1303 				"is not the system volume.", i_size_read(vi));
1304 		goto iput_out;
1305 	}
1306 	page = ntfs_map_page(vi->i_mapping, 0);
1307 	if (IS_ERR(page)) {
1308 		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1309 		ret = PTR_ERR(page);
1310 		goto iput_out;
1311 	}
1312 	kaddr = (u32*)page_address(page);
1313 	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1314 		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1315 				"hibernated on the volume.  This is the "
1316 				"system volume.");
1317 		goto unm_iput_out;
1318 	}
1319 	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1320 	do {
1321 		if (unlikely(*kaddr)) {
1322 			ntfs_debug("hiberfil.sys is larger than 4kiB "
1323 					"(0x%llx), does not contain the "
1324 					"\"hibr\" magic, and does not have a "
1325 					"zero header.  Windows is hibernated "
1326 					"on the volume.  This is not the "
1327 					"system volume.", i_size_read(vi));
1328 			goto unm_iput_out;
1329 		}
1330 	} while (++kaddr < kend);
1331 	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1332 			"hibernated on the volume.  This is the system "
1333 			"volume.");
1334 	ret = 0;
1335 unm_iput_out:
1336 	ntfs_unmap_page(page);
1337 iput_out:
1338 	iput(vi);
1339 	return ret;
1340 }
1341 
1342 /**
1343  * load_and_init_quota - load and setup the quota file for a volume if present
1344  * @vol:	ntfs super block describing device whose quota file to load
1345  *
1346  * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1347  * leave vol->quota_ino as NULL and return success.
1348  */
1349 static bool load_and_init_quota(ntfs_volume *vol)
1350 {
1351 	MFT_REF mref;
1352 	struct inode *tmp_ino;
1353 	ntfs_name *name = NULL;
1354 	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1355 			cpu_to_le16('Q'), cpu_to_le16('u'),
1356 			cpu_to_le16('o'), cpu_to_le16('t'),
1357 			cpu_to_le16('a'), 0 };
1358 	static ntfschar Q[3] = { cpu_to_le16('$'),
1359 			cpu_to_le16('Q'), 0 };
1360 
1361 	ntfs_debug("Entering.");
1362 	/*
1363 	 * Find the inode number for the quota file by looking up the filename
1364 	 * $Quota in the extended system files directory $Extend.
1365 	 */
1366 	inode_lock(vol->extend_ino);
1367 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1368 			&name);
1369 	inode_unlock(vol->extend_ino);
1370 	if (IS_ERR_MREF(mref)) {
1371 		/*
1372 		 * If the file does not exist, quotas are disabled and have
1373 		 * never been enabled on this volume, just return success.
1374 		 */
1375 		if (MREF_ERR(mref) == -ENOENT) {
1376 			ntfs_debug("$Quota not present.  Volume does not have "
1377 					"quotas enabled.");
1378 			/*
1379 			 * No need to try to set quotas out of date if they are
1380 			 * not enabled.
1381 			 */
1382 			NVolSetQuotaOutOfDate(vol);
1383 			return true;
1384 		}
1385 		/* A real error occurred. */
1386 		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1387 		return false;
1388 	}
1389 	/* We do not care for the type of match that was found. */
1390 	kfree(name);
1391 	/* Get the inode. */
1392 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1393 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1394 		if (!IS_ERR(tmp_ino))
1395 			iput(tmp_ino);
1396 		ntfs_error(vol->sb, "Failed to load $Quota.");
1397 		return false;
1398 	}
1399 	vol->quota_ino = tmp_ino;
1400 	/* Get the $Q index allocation attribute. */
1401 	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1402 	if (IS_ERR(tmp_ino)) {
1403 		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1404 		return false;
1405 	}
1406 	vol->quota_q_ino = tmp_ino;
1407 	ntfs_debug("Done.");
1408 	return true;
1409 }
1410 
1411 /**
1412  * load_and_init_usnjrnl - load and setup the transaction log if present
1413  * @vol:	ntfs super block describing device whose usnjrnl file to load
1414  *
1415  * Return 'true' on success or 'false' on error.
1416  *
1417  * If $UsnJrnl is not present or in the process of being disabled, we set
1418  * NVolUsnJrnlStamped() and return success.
1419  *
1420  * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1421  * i.e. transaction logging has only just been enabled or the journal has been
1422  * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1423  * and return success.
1424  */
1425 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1426 {
1427 	MFT_REF mref;
1428 	struct inode *tmp_ino;
1429 	ntfs_inode *tmp_ni;
1430 	struct page *page;
1431 	ntfs_name *name = NULL;
1432 	USN_HEADER *uh;
1433 	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1434 			cpu_to_le16('U'), cpu_to_le16('s'),
1435 			cpu_to_le16('n'), cpu_to_le16('J'),
1436 			cpu_to_le16('r'), cpu_to_le16('n'),
1437 			cpu_to_le16('l'), 0 };
1438 	static ntfschar Max[5] = { cpu_to_le16('$'),
1439 			cpu_to_le16('M'), cpu_to_le16('a'),
1440 			cpu_to_le16('x'), 0 };
1441 	static ntfschar J[3] = { cpu_to_le16('$'),
1442 			cpu_to_le16('J'), 0 };
1443 
1444 	ntfs_debug("Entering.");
1445 	/*
1446 	 * Find the inode number for the transaction log file by looking up the
1447 	 * filename $UsnJrnl in the extended system files directory $Extend.
1448 	 */
1449 	inode_lock(vol->extend_ino);
1450 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1451 			&name);
1452 	inode_unlock(vol->extend_ino);
1453 	if (IS_ERR_MREF(mref)) {
1454 		/*
1455 		 * If the file does not exist, transaction logging is disabled,
1456 		 * just return success.
1457 		 */
1458 		if (MREF_ERR(mref) == -ENOENT) {
1459 			ntfs_debug("$UsnJrnl not present.  Volume does not "
1460 					"have transaction logging enabled.");
1461 not_enabled:
1462 			/*
1463 			 * No need to try to stamp the transaction log if
1464 			 * transaction logging is not enabled.
1465 			 */
1466 			NVolSetUsnJrnlStamped(vol);
1467 			return true;
1468 		}
1469 		/* A real error occurred. */
1470 		ntfs_error(vol->sb, "Failed to find inode number for "
1471 				"$UsnJrnl.");
1472 		return false;
1473 	}
1474 	/* We do not care for the type of match that was found. */
1475 	kfree(name);
1476 	/* Get the inode. */
1477 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1478 	if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) {
1479 		if (!IS_ERR(tmp_ino))
1480 			iput(tmp_ino);
1481 		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1482 		return false;
1483 	}
1484 	vol->usnjrnl_ino = tmp_ino;
1485 	/*
1486 	 * If the transaction log is in the process of being deleted, we can
1487 	 * ignore it.
1488 	 */
1489 	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1490 		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1491 				"Volume does not have transaction logging "
1492 				"enabled.");
1493 		goto not_enabled;
1494 	}
1495 	/* Get the $DATA/$Max attribute. */
1496 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1497 	if (IS_ERR(tmp_ino)) {
1498 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1499 				"attribute.");
1500 		return false;
1501 	}
1502 	vol->usnjrnl_max_ino = tmp_ino;
1503 	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1504 		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1505 				"attribute (size is 0x%llx but should be at "
1506 				"least 0x%zx bytes).", i_size_read(tmp_ino),
1507 				sizeof(USN_HEADER));
1508 		return false;
1509 	}
1510 	/* Get the $DATA/$J attribute. */
1511 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1512 	if (IS_ERR(tmp_ino)) {
1513 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1514 				"attribute.");
1515 		return false;
1516 	}
1517 	vol->usnjrnl_j_ino = tmp_ino;
1518 	/* Verify $J is non-resident and sparse. */
1519 	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1520 	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1521 		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1522 				"and/or not sparse.");
1523 		return false;
1524 	}
1525 	/* Read the USN_HEADER from $DATA/$Max. */
1526 	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1527 	if (IS_ERR(page)) {
1528 		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1529 				"attribute.");
1530 		return false;
1531 	}
1532 	uh = (USN_HEADER*)page_address(page);
1533 	/* Sanity check the $Max. */
1534 	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1535 			sle64_to_cpu(uh->maximum_size))) {
1536 		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1537 				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1538 				(long long)sle64_to_cpu(uh->allocation_delta),
1539 				(long long)sle64_to_cpu(uh->maximum_size));
1540 		ntfs_unmap_page(page);
1541 		return false;
1542 	}
1543 	/*
1544 	 * If the transaction log has been stamped and nothing has been written
1545 	 * to it since, we do not need to stamp it.
1546 	 */
1547 	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1548 			i_size_read(vol->usnjrnl_j_ino))) {
1549 		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1550 				i_size_read(vol->usnjrnl_j_ino))) {
1551 			ntfs_unmap_page(page);
1552 			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1553 					"logged since it was last stamped.  "
1554 					"Treating this as if the volume does "
1555 					"not have transaction logging "
1556 					"enabled.");
1557 			goto not_enabled;
1558 		}
1559 		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1560 				"which is out of bounds (0x%llx).  $UsnJrnl "
1561 				"is corrupt.",
1562 				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1563 				i_size_read(vol->usnjrnl_j_ino));
1564 		ntfs_unmap_page(page);
1565 		return false;
1566 	}
1567 	ntfs_unmap_page(page);
1568 	ntfs_debug("Done.");
1569 	return true;
1570 }
1571 
1572 /**
1573  * load_and_init_attrdef - load the attribute definitions table for a volume
1574  * @vol:	ntfs super block describing device whose attrdef to load
1575  *
1576  * Return 'true' on success or 'false' on error.
1577  */
1578 static bool load_and_init_attrdef(ntfs_volume *vol)
1579 {
1580 	loff_t i_size;
1581 	struct super_block *sb = vol->sb;
1582 	struct inode *ino;
1583 	struct page *page;
1584 	pgoff_t index, max_index;
1585 	unsigned int size;
1586 
1587 	ntfs_debug("Entering.");
1588 	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1589 	ino = ntfs_iget(sb, FILE_AttrDef);
1590 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1591 		if (!IS_ERR(ino))
1592 			iput(ino);
1593 		goto failed;
1594 	}
1595 	NInoSetSparseDisabled(NTFS_I(ino));
1596 	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1597 	i_size = i_size_read(ino);
1598 	if (i_size <= 0 || i_size > 0x7fffffff)
1599 		goto iput_failed;
1600 	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1601 	if (!vol->attrdef)
1602 		goto iput_failed;
1603 	index = 0;
1604 	max_index = i_size >> PAGE_SHIFT;
1605 	size = PAGE_SIZE;
1606 	while (index < max_index) {
1607 		/* Read the attrdef table and copy it into the linear buffer. */
1608 read_partial_attrdef_page:
1609 		page = ntfs_map_page(ino->i_mapping, index);
1610 		if (IS_ERR(page))
1611 			goto free_iput_failed;
1612 		memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
1613 				page_address(page), size);
1614 		ntfs_unmap_page(page);
1615 	};
1616 	if (size == PAGE_SIZE) {
1617 		size = i_size & ~PAGE_MASK;
1618 		if (size)
1619 			goto read_partial_attrdef_page;
1620 	}
1621 	vol->attrdef_size = i_size;
1622 	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1623 	iput(ino);
1624 	return true;
1625 free_iput_failed:
1626 	ntfs_free(vol->attrdef);
1627 	vol->attrdef = NULL;
1628 iput_failed:
1629 	iput(ino);
1630 failed:
1631 	ntfs_error(sb, "Failed to initialize attribute definition table.");
1632 	return false;
1633 }
1634 
1635 #endif /* NTFS_RW */
1636 
1637 /**
1638  * load_and_init_upcase - load the upcase table for an ntfs volume
1639  * @vol:	ntfs super block describing device whose upcase to load
1640  *
1641  * Return 'true' on success or 'false' on error.
1642  */
1643 static bool load_and_init_upcase(ntfs_volume *vol)
1644 {
1645 	loff_t i_size;
1646 	struct super_block *sb = vol->sb;
1647 	struct inode *ino;
1648 	struct page *page;
1649 	pgoff_t index, max_index;
1650 	unsigned int size;
1651 	int i, max;
1652 
1653 	ntfs_debug("Entering.");
1654 	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1655 	ino = ntfs_iget(sb, FILE_UpCase);
1656 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1657 		if (!IS_ERR(ino))
1658 			iput(ino);
1659 		goto upcase_failed;
1660 	}
1661 	/*
1662 	 * The upcase size must not be above 64k Unicode characters, must not
1663 	 * be zero and must be a multiple of sizeof(ntfschar).
1664 	 */
1665 	i_size = i_size_read(ino);
1666 	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1667 			i_size > 64ULL * 1024 * sizeof(ntfschar))
1668 		goto iput_upcase_failed;
1669 	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1670 	if (!vol->upcase)
1671 		goto iput_upcase_failed;
1672 	index = 0;
1673 	max_index = i_size >> PAGE_SHIFT;
1674 	size = PAGE_SIZE;
1675 	while (index < max_index) {
1676 		/* Read the upcase table and copy it into the linear buffer. */
1677 read_partial_upcase_page:
1678 		page = ntfs_map_page(ino->i_mapping, index);
1679 		if (IS_ERR(page))
1680 			goto iput_upcase_failed;
1681 		memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
1682 				page_address(page), size);
1683 		ntfs_unmap_page(page);
1684 	};
1685 	if (size == PAGE_SIZE) {
1686 		size = i_size & ~PAGE_MASK;
1687 		if (size)
1688 			goto read_partial_upcase_page;
1689 	}
1690 	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1691 	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1692 			i_size, 64 * 1024 * sizeof(ntfschar));
1693 	iput(ino);
1694 	mutex_lock(&ntfs_lock);
1695 	if (!default_upcase) {
1696 		ntfs_debug("Using volume specified $UpCase since default is "
1697 				"not present.");
1698 		mutex_unlock(&ntfs_lock);
1699 		return true;
1700 	}
1701 	max = default_upcase_len;
1702 	if (max > vol->upcase_len)
1703 		max = vol->upcase_len;
1704 	for (i = 0; i < max; i++)
1705 		if (vol->upcase[i] != default_upcase[i])
1706 			break;
1707 	if (i == max) {
1708 		ntfs_free(vol->upcase);
1709 		vol->upcase = default_upcase;
1710 		vol->upcase_len = max;
1711 		ntfs_nr_upcase_users++;
1712 		mutex_unlock(&ntfs_lock);
1713 		ntfs_debug("Volume specified $UpCase matches default. Using "
1714 				"default.");
1715 		return true;
1716 	}
1717 	mutex_unlock(&ntfs_lock);
1718 	ntfs_debug("Using volume specified $UpCase since it does not match "
1719 			"the default.");
1720 	return true;
1721 iput_upcase_failed:
1722 	iput(ino);
1723 	ntfs_free(vol->upcase);
1724 	vol->upcase = NULL;
1725 upcase_failed:
1726 	mutex_lock(&ntfs_lock);
1727 	if (default_upcase) {
1728 		vol->upcase = default_upcase;
1729 		vol->upcase_len = default_upcase_len;
1730 		ntfs_nr_upcase_users++;
1731 		mutex_unlock(&ntfs_lock);
1732 		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1733 				"default.");
1734 		return true;
1735 	}
1736 	mutex_unlock(&ntfs_lock);
1737 	ntfs_error(sb, "Failed to initialize upcase table.");
1738 	return false;
1739 }
1740 
1741 /*
1742  * The lcn and mft bitmap inodes are NTFS-internal inodes with
1743  * their own special locking rules:
1744  */
1745 static struct lock_class_key
1746 	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1747 	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1748 
1749 /**
1750  * load_system_files - open the system files using normal functions
1751  * @vol:	ntfs super block describing device whose system files to load
1752  *
1753  * Open the system files with normal access functions and complete setting up
1754  * the ntfs super block @vol.
1755  *
1756  * Return 'true' on success or 'false' on error.
1757  */
1758 static bool load_system_files(ntfs_volume *vol)
1759 {
1760 	struct super_block *sb = vol->sb;
1761 	MFT_RECORD *m;
1762 	VOLUME_INFORMATION *vi;
1763 	ntfs_attr_search_ctx *ctx;
1764 #ifdef NTFS_RW
1765 	RESTART_PAGE_HEADER *rp;
1766 	int err;
1767 #endif /* NTFS_RW */
1768 
1769 	ntfs_debug("Entering.");
1770 #ifdef NTFS_RW
1771 	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1772 	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1773 		static const char *es1 = "Failed to load $MFTMirr";
1774 		static const char *es2 = "$MFTMirr does not match $MFT";
1775 		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1776 
1777 		/* If a read-write mount, convert it to a read-only mount. */
1778 		if (!sb_rdonly(sb)) {
1779 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1780 					ON_ERRORS_CONTINUE))) {
1781 				ntfs_error(sb, "%s and neither on_errors="
1782 						"continue nor on_errors="
1783 						"remount-ro was specified%s",
1784 						!vol->mftmirr_ino ? es1 : es2,
1785 						es3);
1786 				goto iput_mirr_err_out;
1787 			}
1788 			sb->s_flags |= SB_RDONLY;
1789 			ntfs_error(sb, "%s.  Mounting read-only%s",
1790 					!vol->mftmirr_ino ? es1 : es2, es3);
1791 		} else
1792 			ntfs_warning(sb, "%s.  Will not be able to remount "
1793 					"read-write%s",
1794 					!vol->mftmirr_ino ? es1 : es2, es3);
1795 		/* This will prevent a read-write remount. */
1796 		NVolSetErrors(vol);
1797 	}
1798 #endif /* NTFS_RW */
1799 	/* Get mft bitmap attribute inode. */
1800 	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1801 	if (IS_ERR(vol->mftbmp_ino)) {
1802 		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1803 		goto iput_mirr_err_out;
1804 	}
1805 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1806 			   &mftbmp_runlist_lock_key);
1807 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1808 			   &mftbmp_mrec_lock_key);
1809 	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1810 	if (!load_and_init_upcase(vol))
1811 		goto iput_mftbmp_err_out;
1812 #ifdef NTFS_RW
1813 	/*
1814 	 * Read attribute definitions table and setup @vol->attrdef and
1815 	 * @vol->attrdef_size.
1816 	 */
1817 	if (!load_and_init_attrdef(vol))
1818 		goto iput_upcase_err_out;
1819 #endif /* NTFS_RW */
1820 	/*
1821 	 * Get the cluster allocation bitmap inode and verify the size, no
1822 	 * need for any locking at this stage as we are already running
1823 	 * exclusively as we are mount in progress task.
1824 	 */
1825 	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1826 	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1827 		if (!IS_ERR(vol->lcnbmp_ino))
1828 			iput(vol->lcnbmp_ino);
1829 		goto bitmap_failed;
1830 	}
1831 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1832 			   &lcnbmp_runlist_lock_key);
1833 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1834 			   &lcnbmp_mrec_lock_key);
1835 
1836 	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1837 	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1838 		iput(vol->lcnbmp_ino);
1839 bitmap_failed:
1840 		ntfs_error(sb, "Failed to load $Bitmap.");
1841 		goto iput_attrdef_err_out;
1842 	}
1843 	/*
1844 	 * Get the volume inode and setup our cache of the volume flags and
1845 	 * version.
1846 	 */
1847 	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1848 	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1849 		if (!IS_ERR(vol->vol_ino))
1850 			iput(vol->vol_ino);
1851 volume_failed:
1852 		ntfs_error(sb, "Failed to load $Volume.");
1853 		goto iput_lcnbmp_err_out;
1854 	}
1855 	m = map_mft_record(NTFS_I(vol->vol_ino));
1856 	if (IS_ERR(m)) {
1857 iput_volume_failed:
1858 		iput(vol->vol_ino);
1859 		goto volume_failed;
1860 	}
1861 	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1862 		ntfs_error(sb, "Failed to get attribute search context.");
1863 		goto get_ctx_vol_failed;
1864 	}
1865 	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1866 			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1867 err_put_vol:
1868 		ntfs_attr_put_search_ctx(ctx);
1869 get_ctx_vol_failed:
1870 		unmap_mft_record(NTFS_I(vol->vol_ino));
1871 		goto iput_volume_failed;
1872 	}
1873 	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1874 			le16_to_cpu(ctx->attr->data.resident.value_offset));
1875 	/* Some bounds checks. */
1876 	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1877 			le32_to_cpu(ctx->attr->data.resident.value_length) >
1878 			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1879 		goto err_put_vol;
1880 	/* Copy the volume flags and version to the ntfs_volume structure. */
1881 	vol->vol_flags = vi->flags;
1882 	vol->major_ver = vi->major_ver;
1883 	vol->minor_ver = vi->minor_ver;
1884 	ntfs_attr_put_search_ctx(ctx);
1885 	unmap_mft_record(NTFS_I(vol->vol_ino));
1886 	pr_info("volume version %i.%i.\n", vol->major_ver,
1887 			vol->minor_ver);
1888 	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1889 		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1890 				"volume version %i.%i (need at least version "
1891 				"3.0).", vol->major_ver, vol->minor_ver);
1892 		NVolClearSparseEnabled(vol);
1893 	}
1894 #ifdef NTFS_RW
1895 	/* Make sure that no unsupported volume flags are set. */
1896 	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1897 		static const char *es1a = "Volume is dirty";
1898 		static const char *es1b = "Volume has been modified by chkdsk";
1899 		static const char *es1c = "Volume has unsupported flags set";
1900 		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1901 		static const char *es2b = ".  Mount in Windows.";
1902 		const char *es1, *es2;
1903 
1904 		es2 = es2a;
1905 		if (vol->vol_flags & VOLUME_IS_DIRTY)
1906 			es1 = es1a;
1907 		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1908 			es1 = es1b;
1909 			es2 = es2b;
1910 		} else {
1911 			es1 = es1c;
1912 			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1913 					"encountered.",
1914 					(unsigned)le16_to_cpu(vol->vol_flags));
1915 		}
1916 		/* If a read-write mount, convert it to a read-only mount. */
1917 		if (!sb_rdonly(sb)) {
1918 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1919 					ON_ERRORS_CONTINUE))) {
1920 				ntfs_error(sb, "%s and neither on_errors="
1921 						"continue nor on_errors="
1922 						"remount-ro was specified%s",
1923 						es1, es2);
1924 				goto iput_vol_err_out;
1925 			}
1926 			sb->s_flags |= SB_RDONLY;
1927 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1928 		} else
1929 			ntfs_warning(sb, "%s.  Will not be able to remount "
1930 					"read-write%s", es1, es2);
1931 		/*
1932 		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1933 		 * flags which we need to do in case any flags have changed.
1934 		 */
1935 	}
1936 	/*
1937 	 * Get the inode for the logfile, check it and determine if the volume
1938 	 * was shutdown cleanly.
1939 	 */
1940 	rp = NULL;
1941 	if (!load_and_check_logfile(vol, &rp) ||
1942 			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1943 		static const char *es1a = "Failed to load $LogFile";
1944 		static const char *es1b = "$LogFile is not clean";
1945 		static const char *es2 = ".  Mount in Windows.";
1946 		const char *es1;
1947 
1948 		es1 = !vol->logfile_ino ? es1a : es1b;
1949 		/* If a read-write mount, convert it to a read-only mount. */
1950 		if (!sb_rdonly(sb)) {
1951 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1952 					ON_ERRORS_CONTINUE))) {
1953 				ntfs_error(sb, "%s and neither on_errors="
1954 						"continue nor on_errors="
1955 						"remount-ro was specified%s",
1956 						es1, es2);
1957 				if (vol->logfile_ino) {
1958 					BUG_ON(!rp);
1959 					ntfs_free(rp);
1960 				}
1961 				goto iput_logfile_err_out;
1962 			}
1963 			sb->s_flags |= SB_RDONLY;
1964 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1965 		} else
1966 			ntfs_warning(sb, "%s.  Will not be able to remount "
1967 					"read-write%s", es1, es2);
1968 		/* This will prevent a read-write remount. */
1969 		NVolSetErrors(vol);
1970 	}
1971 	ntfs_free(rp);
1972 #endif /* NTFS_RW */
1973 	/* Get the root directory inode so we can do path lookups. */
1974 	vol->root_ino = ntfs_iget(sb, FILE_root);
1975 	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1976 		if (!IS_ERR(vol->root_ino))
1977 			iput(vol->root_ino);
1978 		ntfs_error(sb, "Failed to load root directory.");
1979 		goto iput_logfile_err_out;
1980 	}
1981 #ifdef NTFS_RW
1982 	/*
1983 	 * Check if Windows is suspended to disk on the target volume.  If it
1984 	 * is hibernated, we must not write *anything* to the disk so set
1985 	 * NVolErrors() without setting the dirty volume flag and mount
1986 	 * read-only.  This will prevent read-write remounting and it will also
1987 	 * prevent all writes.
1988 	 */
1989 	err = check_windows_hibernation_status(vol);
1990 	if (unlikely(err)) {
1991 		static const char *es1a = "Failed to determine if Windows is "
1992 				"hibernated";
1993 		static const char *es1b = "Windows is hibernated";
1994 		static const char *es2 = ".  Run chkdsk.";
1995 		const char *es1;
1996 
1997 		es1 = err < 0 ? es1a : es1b;
1998 		/* If a read-write mount, convert it to a read-only mount. */
1999 		if (!sb_rdonly(sb)) {
2000 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2001 					ON_ERRORS_CONTINUE))) {
2002 				ntfs_error(sb, "%s and neither on_errors="
2003 						"continue nor on_errors="
2004 						"remount-ro was specified%s",
2005 						es1, es2);
2006 				goto iput_root_err_out;
2007 			}
2008 			sb->s_flags |= SB_RDONLY;
2009 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2010 		} else
2011 			ntfs_warning(sb, "%s.  Will not be able to remount "
2012 					"read-write%s", es1, es2);
2013 		/* This will prevent a read-write remount. */
2014 		NVolSetErrors(vol);
2015 	}
2016 	/* If (still) a read-write mount, mark the volume dirty. */
2017 	if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2018 		static const char *es1 = "Failed to set dirty bit in volume "
2019 				"information flags";
2020 		static const char *es2 = ".  Run chkdsk.";
2021 
2022 		/* Convert to a read-only mount. */
2023 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2024 				ON_ERRORS_CONTINUE))) {
2025 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2026 					"on_errors=remount-ro was specified%s",
2027 					es1, es2);
2028 			goto iput_root_err_out;
2029 		}
2030 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2031 		sb->s_flags |= SB_RDONLY;
2032 		/*
2033 		 * Do not set NVolErrors() because ntfs_remount() might manage
2034 		 * to set the dirty flag in which case all would be well.
2035 		 */
2036 	}
2037 #if 0
2038 	// TODO: Enable this code once we start modifying anything that is
2039 	//	 different between NTFS 1.2 and 3.x...
2040 	/*
2041 	 * If (still) a read-write mount, set the NT4 compatibility flag on
2042 	 * newer NTFS version volumes.
2043 	 */
2044 	if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) &&
2045 			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2046 		static const char *es1 = "Failed to set NT4 compatibility flag";
2047 		static const char *es2 = ".  Run chkdsk.";
2048 
2049 		/* Convert to a read-only mount. */
2050 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2051 				ON_ERRORS_CONTINUE))) {
2052 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2053 					"on_errors=remount-ro was specified%s",
2054 					es1, es2);
2055 			goto iput_root_err_out;
2056 		}
2057 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2058 		sb->s_flags |= SB_RDONLY;
2059 		NVolSetErrors(vol);
2060 	}
2061 #endif
2062 	/* If (still) a read-write mount, empty the logfile. */
2063 	if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) {
2064 		static const char *es1 = "Failed to empty $LogFile";
2065 		static const char *es2 = ".  Mount in Windows.";
2066 
2067 		/* Convert to a read-only mount. */
2068 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2069 				ON_ERRORS_CONTINUE))) {
2070 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2071 					"on_errors=remount-ro was specified%s",
2072 					es1, es2);
2073 			goto iput_root_err_out;
2074 		}
2075 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2076 		sb->s_flags |= SB_RDONLY;
2077 		NVolSetErrors(vol);
2078 	}
2079 #endif /* NTFS_RW */
2080 	/* If on NTFS versions before 3.0, we are done. */
2081 	if (unlikely(vol->major_ver < 3))
2082 		return true;
2083 	/* NTFS 3.0+ specific initialization. */
2084 	/* Get the security descriptors inode. */
2085 	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2086 	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2087 		if (!IS_ERR(vol->secure_ino))
2088 			iput(vol->secure_ino);
2089 		ntfs_error(sb, "Failed to load $Secure.");
2090 		goto iput_root_err_out;
2091 	}
2092 	// TODO: Initialize security.
2093 	/* Get the extended system files' directory inode. */
2094 	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2095 	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino) ||
2096 	    !S_ISDIR(vol->extend_ino->i_mode)) {
2097 		if (!IS_ERR(vol->extend_ino))
2098 			iput(vol->extend_ino);
2099 		ntfs_error(sb, "Failed to load $Extend.");
2100 		goto iput_sec_err_out;
2101 	}
2102 #ifdef NTFS_RW
2103 	/* Find the quota file, load it if present, and set it up. */
2104 	if (!load_and_init_quota(vol)) {
2105 		static const char *es1 = "Failed to load $Quota";
2106 		static const char *es2 = ".  Run chkdsk.";
2107 
2108 		/* If a read-write mount, convert it to a read-only mount. */
2109 		if (!sb_rdonly(sb)) {
2110 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2111 					ON_ERRORS_CONTINUE))) {
2112 				ntfs_error(sb, "%s and neither on_errors="
2113 						"continue nor on_errors="
2114 						"remount-ro was specified%s",
2115 						es1, es2);
2116 				goto iput_quota_err_out;
2117 			}
2118 			sb->s_flags |= SB_RDONLY;
2119 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2120 		} else
2121 			ntfs_warning(sb, "%s.  Will not be able to remount "
2122 					"read-write%s", es1, es2);
2123 		/* This will prevent a read-write remount. */
2124 		NVolSetErrors(vol);
2125 	}
2126 	/* If (still) a read-write mount, mark the quotas out of date. */
2127 	if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) {
2128 		static const char *es1 = "Failed to mark quotas out of date";
2129 		static const char *es2 = ".  Run chkdsk.";
2130 
2131 		/* Convert to a read-only mount. */
2132 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2133 				ON_ERRORS_CONTINUE))) {
2134 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2135 					"on_errors=remount-ro was specified%s",
2136 					es1, es2);
2137 			goto iput_quota_err_out;
2138 		}
2139 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2140 		sb->s_flags |= SB_RDONLY;
2141 		NVolSetErrors(vol);
2142 	}
2143 	/*
2144 	 * Find the transaction log file ($UsnJrnl), load it if present, check
2145 	 * it, and set it up.
2146 	 */
2147 	if (!load_and_init_usnjrnl(vol)) {
2148 		static const char *es1 = "Failed to load $UsnJrnl";
2149 		static const char *es2 = ".  Run chkdsk.";
2150 
2151 		/* If a read-write mount, convert it to a read-only mount. */
2152 		if (!sb_rdonly(sb)) {
2153 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2154 					ON_ERRORS_CONTINUE))) {
2155 				ntfs_error(sb, "%s and neither on_errors="
2156 						"continue nor on_errors="
2157 						"remount-ro was specified%s",
2158 						es1, es2);
2159 				goto iput_usnjrnl_err_out;
2160 			}
2161 			sb->s_flags |= SB_RDONLY;
2162 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2163 		} else
2164 			ntfs_warning(sb, "%s.  Will not be able to remount "
2165 					"read-write%s", es1, es2);
2166 		/* This will prevent a read-write remount. */
2167 		NVolSetErrors(vol);
2168 	}
2169 	/* If (still) a read-write mount, stamp the transaction log. */
2170 	if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) {
2171 		static const char *es1 = "Failed to stamp transaction log "
2172 				"($UsnJrnl)";
2173 		static const char *es2 = ".  Run chkdsk.";
2174 
2175 		/* Convert to a read-only mount. */
2176 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2177 				ON_ERRORS_CONTINUE))) {
2178 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2179 					"on_errors=remount-ro was specified%s",
2180 					es1, es2);
2181 			goto iput_usnjrnl_err_out;
2182 		}
2183 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2184 		sb->s_flags |= SB_RDONLY;
2185 		NVolSetErrors(vol);
2186 	}
2187 #endif /* NTFS_RW */
2188 	return true;
2189 #ifdef NTFS_RW
2190 iput_usnjrnl_err_out:
2191 	iput(vol->usnjrnl_j_ino);
2192 	iput(vol->usnjrnl_max_ino);
2193 	iput(vol->usnjrnl_ino);
2194 iput_quota_err_out:
2195 	iput(vol->quota_q_ino);
2196 	iput(vol->quota_ino);
2197 	iput(vol->extend_ino);
2198 #endif /* NTFS_RW */
2199 iput_sec_err_out:
2200 	iput(vol->secure_ino);
2201 iput_root_err_out:
2202 	iput(vol->root_ino);
2203 iput_logfile_err_out:
2204 #ifdef NTFS_RW
2205 	iput(vol->logfile_ino);
2206 iput_vol_err_out:
2207 #endif /* NTFS_RW */
2208 	iput(vol->vol_ino);
2209 iput_lcnbmp_err_out:
2210 	iput(vol->lcnbmp_ino);
2211 iput_attrdef_err_out:
2212 	vol->attrdef_size = 0;
2213 	if (vol->attrdef) {
2214 		ntfs_free(vol->attrdef);
2215 		vol->attrdef = NULL;
2216 	}
2217 #ifdef NTFS_RW
2218 iput_upcase_err_out:
2219 #endif /* NTFS_RW */
2220 	vol->upcase_len = 0;
2221 	mutex_lock(&ntfs_lock);
2222 	if (vol->upcase == default_upcase) {
2223 		ntfs_nr_upcase_users--;
2224 		vol->upcase = NULL;
2225 	}
2226 	mutex_unlock(&ntfs_lock);
2227 	if (vol->upcase) {
2228 		ntfs_free(vol->upcase);
2229 		vol->upcase = NULL;
2230 	}
2231 iput_mftbmp_err_out:
2232 	iput(vol->mftbmp_ino);
2233 iput_mirr_err_out:
2234 #ifdef NTFS_RW
2235 	iput(vol->mftmirr_ino);
2236 #endif /* NTFS_RW */
2237 	return false;
2238 }
2239 
2240 /**
2241  * ntfs_put_super - called by the vfs to unmount a volume
2242  * @sb:		vfs superblock of volume to unmount
2243  *
2244  * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2245  * the volume is being unmounted (umount system call has been invoked) and it
2246  * releases all inodes and memory belonging to the NTFS specific part of the
2247  * super block.
2248  */
2249 static void ntfs_put_super(struct super_block *sb)
2250 {
2251 	ntfs_volume *vol = NTFS_SB(sb);
2252 
2253 	ntfs_debug("Entering.");
2254 
2255 #ifdef NTFS_RW
2256 	/*
2257 	 * Commit all inodes while they are still open in case some of them
2258 	 * cause others to be dirtied.
2259 	 */
2260 	ntfs_commit_inode(vol->vol_ino);
2261 
2262 	/* NTFS 3.0+ specific. */
2263 	if (vol->major_ver >= 3) {
2264 		if (vol->usnjrnl_j_ino)
2265 			ntfs_commit_inode(vol->usnjrnl_j_ino);
2266 		if (vol->usnjrnl_max_ino)
2267 			ntfs_commit_inode(vol->usnjrnl_max_ino);
2268 		if (vol->usnjrnl_ino)
2269 			ntfs_commit_inode(vol->usnjrnl_ino);
2270 		if (vol->quota_q_ino)
2271 			ntfs_commit_inode(vol->quota_q_ino);
2272 		if (vol->quota_ino)
2273 			ntfs_commit_inode(vol->quota_ino);
2274 		if (vol->extend_ino)
2275 			ntfs_commit_inode(vol->extend_ino);
2276 		if (vol->secure_ino)
2277 			ntfs_commit_inode(vol->secure_ino);
2278 	}
2279 
2280 	ntfs_commit_inode(vol->root_ino);
2281 
2282 	down_write(&vol->lcnbmp_lock);
2283 	ntfs_commit_inode(vol->lcnbmp_ino);
2284 	up_write(&vol->lcnbmp_lock);
2285 
2286 	down_write(&vol->mftbmp_lock);
2287 	ntfs_commit_inode(vol->mftbmp_ino);
2288 	up_write(&vol->mftbmp_lock);
2289 
2290 	if (vol->logfile_ino)
2291 		ntfs_commit_inode(vol->logfile_ino);
2292 
2293 	if (vol->mftmirr_ino)
2294 		ntfs_commit_inode(vol->mftmirr_ino);
2295 	ntfs_commit_inode(vol->mft_ino);
2296 
2297 	/*
2298 	 * If a read-write mount and no volume errors have occurred, mark the
2299 	 * volume clean.  Also, re-commit all affected inodes.
2300 	 */
2301 	if (!sb_rdonly(sb)) {
2302 		if (!NVolErrors(vol)) {
2303 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2304 				ntfs_warning(sb, "Failed to clear dirty bit "
2305 						"in volume information "
2306 						"flags.  Run chkdsk.");
2307 			ntfs_commit_inode(vol->vol_ino);
2308 			ntfs_commit_inode(vol->root_ino);
2309 			if (vol->mftmirr_ino)
2310 				ntfs_commit_inode(vol->mftmirr_ino);
2311 			ntfs_commit_inode(vol->mft_ino);
2312 		} else {
2313 			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2314 					"marked dirty.  Run chkdsk.");
2315 		}
2316 	}
2317 #endif /* NTFS_RW */
2318 
2319 	iput(vol->vol_ino);
2320 	vol->vol_ino = NULL;
2321 
2322 	/* NTFS 3.0+ specific clean up. */
2323 	if (vol->major_ver >= 3) {
2324 #ifdef NTFS_RW
2325 		if (vol->usnjrnl_j_ino) {
2326 			iput(vol->usnjrnl_j_ino);
2327 			vol->usnjrnl_j_ino = NULL;
2328 		}
2329 		if (vol->usnjrnl_max_ino) {
2330 			iput(vol->usnjrnl_max_ino);
2331 			vol->usnjrnl_max_ino = NULL;
2332 		}
2333 		if (vol->usnjrnl_ino) {
2334 			iput(vol->usnjrnl_ino);
2335 			vol->usnjrnl_ino = NULL;
2336 		}
2337 		if (vol->quota_q_ino) {
2338 			iput(vol->quota_q_ino);
2339 			vol->quota_q_ino = NULL;
2340 		}
2341 		if (vol->quota_ino) {
2342 			iput(vol->quota_ino);
2343 			vol->quota_ino = NULL;
2344 		}
2345 #endif /* NTFS_RW */
2346 		if (vol->extend_ino) {
2347 			iput(vol->extend_ino);
2348 			vol->extend_ino = NULL;
2349 		}
2350 		if (vol->secure_ino) {
2351 			iput(vol->secure_ino);
2352 			vol->secure_ino = NULL;
2353 		}
2354 	}
2355 
2356 	iput(vol->root_ino);
2357 	vol->root_ino = NULL;
2358 
2359 	down_write(&vol->lcnbmp_lock);
2360 	iput(vol->lcnbmp_ino);
2361 	vol->lcnbmp_ino = NULL;
2362 	up_write(&vol->lcnbmp_lock);
2363 
2364 	down_write(&vol->mftbmp_lock);
2365 	iput(vol->mftbmp_ino);
2366 	vol->mftbmp_ino = NULL;
2367 	up_write(&vol->mftbmp_lock);
2368 
2369 #ifdef NTFS_RW
2370 	if (vol->logfile_ino) {
2371 		iput(vol->logfile_ino);
2372 		vol->logfile_ino = NULL;
2373 	}
2374 	if (vol->mftmirr_ino) {
2375 		/* Re-commit the mft mirror and mft just in case. */
2376 		ntfs_commit_inode(vol->mftmirr_ino);
2377 		ntfs_commit_inode(vol->mft_ino);
2378 		iput(vol->mftmirr_ino);
2379 		vol->mftmirr_ino = NULL;
2380 	}
2381 	/*
2382 	 * We should have no dirty inodes left, due to
2383 	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2384 	 * the underlying mft records are written out and cleaned.
2385 	 */
2386 	ntfs_commit_inode(vol->mft_ino);
2387 	write_inode_now(vol->mft_ino, 1);
2388 #endif /* NTFS_RW */
2389 
2390 	iput(vol->mft_ino);
2391 	vol->mft_ino = NULL;
2392 
2393 	/* Throw away the table of attribute definitions. */
2394 	vol->attrdef_size = 0;
2395 	if (vol->attrdef) {
2396 		ntfs_free(vol->attrdef);
2397 		vol->attrdef = NULL;
2398 	}
2399 	vol->upcase_len = 0;
2400 	/*
2401 	 * Destroy the global default upcase table if necessary.  Also decrease
2402 	 * the number of upcase users if we are a user.
2403 	 */
2404 	mutex_lock(&ntfs_lock);
2405 	if (vol->upcase == default_upcase) {
2406 		ntfs_nr_upcase_users--;
2407 		vol->upcase = NULL;
2408 	}
2409 	if (!ntfs_nr_upcase_users && default_upcase) {
2410 		ntfs_free(default_upcase);
2411 		default_upcase = NULL;
2412 	}
2413 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2414 		free_compression_buffers();
2415 	mutex_unlock(&ntfs_lock);
2416 	if (vol->upcase) {
2417 		ntfs_free(vol->upcase);
2418 		vol->upcase = NULL;
2419 	}
2420 
2421 	unload_nls(vol->nls_map);
2422 
2423 	sb->s_fs_info = NULL;
2424 	kfree(vol);
2425 }
2426 
2427 /**
2428  * get_nr_free_clusters - return the number of free clusters on a volume
2429  * @vol:	ntfs volume for which to obtain free cluster count
2430  *
2431  * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2432  * actually calculate the number of clusters in use instead because this
2433  * allows us to not care about partial pages as these will be just zero filled
2434  * and hence not be counted as allocated clusters.
2435  *
2436  * The only particularity is that clusters beyond the end of the logical ntfs
2437  * volume will be marked as allocated to prevent errors which means we have to
2438  * discount those at the end. This is important as the cluster bitmap always
2439  * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2440  * the logical volume and marked in use when they are not as they do not exist.
2441  *
2442  * If any pages cannot be read we assume all clusters in the erroring pages are
2443  * in use. This means we return an underestimate on errors which is better than
2444  * an overestimate.
2445  */
2446 static s64 get_nr_free_clusters(ntfs_volume *vol)
2447 {
2448 	s64 nr_free = vol->nr_clusters;
2449 	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2450 	struct page *page;
2451 	pgoff_t index, max_index;
2452 
2453 	ntfs_debug("Entering.");
2454 	/* Serialize accesses to the cluster bitmap. */
2455 	down_read(&vol->lcnbmp_lock);
2456 	/*
2457 	 * Convert the number of bits into bytes rounded up, then convert into
2458 	 * multiples of PAGE_SIZE, rounding up so that if we have one
2459 	 * full and one partial page max_index = 2.
2460 	 */
2461 	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
2462 			PAGE_SHIFT;
2463 	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2464 	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2465 			max_index, PAGE_SIZE / 4);
2466 	for (index = 0; index < max_index; index++) {
2467 		unsigned long *kaddr;
2468 
2469 		/*
2470 		 * Read the page from page cache, getting it from backing store
2471 		 * if necessary, and increment the use count.
2472 		 */
2473 		page = read_mapping_page(mapping, index, NULL);
2474 		/* Ignore pages which errored synchronously. */
2475 		if (IS_ERR(page)) {
2476 			ntfs_debug("read_mapping_page() error. Skipping "
2477 					"page (index 0x%lx).", index);
2478 			nr_free -= PAGE_SIZE * 8;
2479 			continue;
2480 		}
2481 		kaddr = kmap_atomic(page);
2482 		/*
2483 		 * Subtract the number of set bits. If this
2484 		 * is the last page and it is partial we don't really care as
2485 		 * it just means we do a little extra work but it won't affect
2486 		 * the result as all out of range bytes are set to zero by
2487 		 * ntfs_readpage().
2488 		 */
2489 		nr_free -= bitmap_weight(kaddr,
2490 					PAGE_SIZE * BITS_PER_BYTE);
2491 		kunmap_atomic(kaddr);
2492 		put_page(page);
2493 	}
2494 	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2495 	/*
2496 	 * Fixup for eventual bits outside logical ntfs volume (see function
2497 	 * description above).
2498 	 */
2499 	if (vol->nr_clusters & 63)
2500 		nr_free += 64 - (vol->nr_clusters & 63);
2501 	up_read(&vol->lcnbmp_lock);
2502 	/* If errors occurred we may well have gone below zero, fix this. */
2503 	if (nr_free < 0)
2504 		nr_free = 0;
2505 	ntfs_debug("Exiting.");
2506 	return nr_free;
2507 }
2508 
2509 /**
2510  * __get_nr_free_mft_records - return the number of free inodes on a volume
2511  * @vol:	ntfs volume for which to obtain free inode count
2512  * @nr_free:	number of mft records in filesystem
2513  * @max_index:	maximum number of pages containing set bits
2514  *
2515  * Calculate the number of free mft records (inodes) on the mounted NTFS
2516  * volume @vol. We actually calculate the number of mft records in use instead
2517  * because this allows us to not care about partial pages as these will be just
2518  * zero filled and hence not be counted as allocated mft record.
2519  *
2520  * If any pages cannot be read we assume all mft records in the erroring pages
2521  * are in use. This means we return an underestimate on errors which is better
2522  * than an overestimate.
2523  *
2524  * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2525  */
2526 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2527 		s64 nr_free, const pgoff_t max_index)
2528 {
2529 	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2530 	struct page *page;
2531 	pgoff_t index;
2532 
2533 	ntfs_debug("Entering.");
2534 	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2535 	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2536 			"0x%lx.", max_index, PAGE_SIZE / 4);
2537 	for (index = 0; index < max_index; index++) {
2538 		unsigned long *kaddr;
2539 
2540 		/*
2541 		 * Read the page from page cache, getting it from backing store
2542 		 * if necessary, and increment the use count.
2543 		 */
2544 		page = read_mapping_page(mapping, index, NULL);
2545 		/* Ignore pages which errored synchronously. */
2546 		if (IS_ERR(page)) {
2547 			ntfs_debug("read_mapping_page() error. Skipping "
2548 					"page (index 0x%lx).", index);
2549 			nr_free -= PAGE_SIZE * 8;
2550 			continue;
2551 		}
2552 		kaddr = kmap_atomic(page);
2553 		/*
2554 		 * Subtract the number of set bits. If this
2555 		 * is the last page and it is partial we don't really care as
2556 		 * it just means we do a little extra work but it won't affect
2557 		 * the result as all out of range bytes are set to zero by
2558 		 * ntfs_readpage().
2559 		 */
2560 		nr_free -= bitmap_weight(kaddr,
2561 					PAGE_SIZE * BITS_PER_BYTE);
2562 		kunmap_atomic(kaddr);
2563 		put_page(page);
2564 	}
2565 	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2566 			index - 1);
2567 	/* If errors occurred we may well have gone below zero, fix this. */
2568 	if (nr_free < 0)
2569 		nr_free = 0;
2570 	ntfs_debug("Exiting.");
2571 	return nr_free;
2572 }
2573 
2574 /**
2575  * ntfs_statfs - return information about mounted NTFS volume
2576  * @dentry:	dentry from mounted volume
2577  * @sfs:	statfs structure in which to return the information
2578  *
2579  * Return information about the mounted NTFS volume @dentry in the statfs structure
2580  * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2581  * called). We interpret the values to be correct of the moment in time at
2582  * which we are called. Most values are variable otherwise and this isn't just
2583  * the free values but the totals as well. For example we can increase the
2584  * total number of file nodes if we run out and we can keep doing this until
2585  * there is no more space on the volume left at all.
2586  *
2587  * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2588  * ustat system calls.
2589  *
2590  * Return 0 on success or -errno on error.
2591  */
2592 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2593 {
2594 	struct super_block *sb = dentry->d_sb;
2595 	s64 size;
2596 	ntfs_volume *vol = NTFS_SB(sb);
2597 	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2598 	pgoff_t max_index;
2599 	unsigned long flags;
2600 
2601 	ntfs_debug("Entering.");
2602 	/* Type of filesystem. */
2603 	sfs->f_type   = NTFS_SB_MAGIC;
2604 	/* Optimal transfer block size. */
2605 	sfs->f_bsize  = PAGE_SIZE;
2606 	/*
2607 	 * Total data blocks in filesystem in units of f_bsize and since
2608 	 * inodes are also stored in data blocs ($MFT is a file) this is just
2609 	 * the total clusters.
2610 	 */
2611 	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2612 				PAGE_SHIFT;
2613 	/* Free data blocks in filesystem in units of f_bsize. */
2614 	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2615 				PAGE_SHIFT;
2616 	if (size < 0LL)
2617 		size = 0LL;
2618 	/* Free blocks avail to non-superuser, same as above on NTFS. */
2619 	sfs->f_bavail = sfs->f_bfree = size;
2620 	/* Serialize accesses to the inode bitmap. */
2621 	down_read(&vol->mftbmp_lock);
2622 	read_lock_irqsave(&mft_ni->size_lock, flags);
2623 	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2624 	/*
2625 	 * Convert the maximum number of set bits into bytes rounded up, then
2626 	 * convert into multiples of PAGE_SIZE, rounding up so that if we
2627 	 * have one full and one partial page max_index = 2.
2628 	 */
2629 	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2630 			+ 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2631 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2632 	/* Number of inodes in filesystem (at this point in time). */
2633 	sfs->f_files = size;
2634 	/* Free inodes in fs (based on current total count). */
2635 	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2636 	up_read(&vol->mftbmp_lock);
2637 	/*
2638 	 * File system id. This is extremely *nix flavour dependent and even
2639 	 * within Linux itself all fs do their own thing. I interpret this to
2640 	 * mean a unique id associated with the mounted fs and not the id
2641 	 * associated with the filesystem driver, the latter is already given
2642 	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2643 	 * volume serial number splitting it into two 32-bit parts. We enter
2644 	 * the least significant 32-bits in f_fsid[0] and the most significant
2645 	 * 32-bits in f_fsid[1].
2646 	 */
2647 	sfs->f_fsid = u64_to_fsid(vol->serial_no);
2648 	/* Maximum length of filenames. */
2649 	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2650 	return 0;
2651 }
2652 
2653 #ifdef NTFS_RW
2654 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2655 {
2656 	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2657 }
2658 #endif
2659 
2660 /**
2661  * The complete super operations.
2662  */
2663 static const struct super_operations ntfs_sops = {
2664 	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2665 	.free_inode	= ntfs_free_big_inode, /* VFS: Deallocate inode. */
2666 #ifdef NTFS_RW
2667 	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2668 						   disk. */
2669 #endif /* NTFS_RW */
2670 	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2671 	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2672 	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2673 	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2674 						   removed from memory. */
2675 	.show_options	= ntfs_show_options,	/* Show mount options in
2676 						   proc. */
2677 };
2678 
2679 /**
2680  * ntfs_fill_super - mount an ntfs filesystem
2681  * @sb:		super block of ntfs filesystem to mount
2682  * @opt:	string containing the mount options
2683  * @silent:	silence error output
2684  *
2685  * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2686  * with the mount otions in @data with the NTFS filesystem.
2687  *
2688  * If @silent is true, remain silent even if errors are detected. This is used
2689  * during bootup, when the kernel tries to mount the root filesystem with all
2690  * registered filesystems one after the other until one succeeds. This implies
2691  * that all filesystems except the correct one will quite correctly and
2692  * expectedly return an error, but nobody wants to see error messages when in
2693  * fact this is what is supposed to happen.
2694  *
2695  * NOTE: @sb->s_flags contains the mount options flags.
2696  */
2697 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2698 {
2699 	ntfs_volume *vol;
2700 	struct buffer_head *bh;
2701 	struct inode *tmp_ino;
2702 	int blocksize, result;
2703 
2704 	/*
2705 	 * We do a pretty difficult piece of bootstrap by reading the
2706 	 * MFT (and other metadata) from disk into memory. We'll only
2707 	 * release this metadata during umount, so the locking patterns
2708 	 * observed during bootstrap do not count. So turn off the
2709 	 * observation of locking patterns (strictly for this context
2710 	 * only) while mounting NTFS. [The validator is still active
2711 	 * otherwise, even for this context: it will for example record
2712 	 * lock class registrations.]
2713 	 */
2714 	lockdep_off();
2715 	ntfs_debug("Entering.");
2716 #ifndef NTFS_RW
2717 	sb->s_flags |= SB_RDONLY;
2718 #endif /* ! NTFS_RW */
2719 	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2720 	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2721 	vol = NTFS_SB(sb);
2722 	if (!vol) {
2723 		if (!silent)
2724 			ntfs_error(sb, "Allocation of NTFS volume structure "
2725 					"failed. Aborting mount...");
2726 		lockdep_on();
2727 		return -ENOMEM;
2728 	}
2729 	/* Initialize ntfs_volume structure. */
2730 	*vol = (ntfs_volume) {
2731 		.sb = sb,
2732 		/*
2733 		 * Default is group and other don't have any access to files or
2734 		 * directories while owner has full access. Further, files by
2735 		 * default are not executable but directories are of course
2736 		 * browseable.
2737 		 */
2738 		.fmask = 0177,
2739 		.dmask = 0077,
2740 	};
2741 	init_rwsem(&vol->mftbmp_lock);
2742 	init_rwsem(&vol->lcnbmp_lock);
2743 
2744 	/* By default, enable sparse support. */
2745 	NVolSetSparseEnabled(vol);
2746 
2747 	/* Important to get the mount options dealt with now. */
2748 	if (!parse_options(vol, (char*)opt))
2749 		goto err_out_now;
2750 
2751 	/* We support sector sizes up to the PAGE_SIZE. */
2752 	if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
2753 		if (!silent)
2754 			ntfs_error(sb, "Device has unsupported sector size "
2755 					"(%i).  The maximum supported sector "
2756 					"size on this architecture is %lu "
2757 					"bytes.",
2758 					bdev_logical_block_size(sb->s_bdev),
2759 					PAGE_SIZE);
2760 		goto err_out_now;
2761 	}
2762 	/*
2763 	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2764 	 * sector size, whichever is bigger.
2765 	 */
2766 	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2767 	if (blocksize < NTFS_BLOCK_SIZE) {
2768 		if (!silent)
2769 			ntfs_error(sb, "Unable to set device block size.");
2770 		goto err_out_now;
2771 	}
2772 	BUG_ON(blocksize != sb->s_blocksize);
2773 	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2774 			blocksize, sb->s_blocksize_bits);
2775 	/* Determine the size of the device in units of block_size bytes. */
2776 	vol->nr_blocks = sb_bdev_nr_blocks(sb);
2777 	if (!vol->nr_blocks) {
2778 		if (!silent)
2779 			ntfs_error(sb, "Unable to determine device size.");
2780 		goto err_out_now;
2781 	}
2782 	/* Read the boot sector and return unlocked buffer head to it. */
2783 	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2784 		if (!silent)
2785 			ntfs_error(sb, "Not an NTFS volume.");
2786 		goto err_out_now;
2787 	}
2788 	/*
2789 	 * Extract the data from the boot sector and setup the ntfs volume
2790 	 * using it.
2791 	 */
2792 	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2793 	brelse(bh);
2794 	if (!result) {
2795 		if (!silent)
2796 			ntfs_error(sb, "Unsupported NTFS filesystem.");
2797 		goto err_out_now;
2798 	}
2799 	/*
2800 	 * If the boot sector indicates a sector size bigger than the current
2801 	 * device block size, switch the device block size to the sector size.
2802 	 * TODO: It may be possible to support this case even when the set
2803 	 * below fails, we would just be breaking up the i/o for each sector
2804 	 * into multiple blocks for i/o purposes but otherwise it should just
2805 	 * work.  However it is safer to leave disabled until someone hits this
2806 	 * error message and then we can get them to try it without the setting
2807 	 * so we know for sure that it works.
2808 	 */
2809 	if (vol->sector_size > blocksize) {
2810 		blocksize = sb_set_blocksize(sb, vol->sector_size);
2811 		if (blocksize != vol->sector_size) {
2812 			if (!silent)
2813 				ntfs_error(sb, "Unable to set device block "
2814 						"size to sector size (%i).",
2815 						vol->sector_size);
2816 			goto err_out_now;
2817 		}
2818 		BUG_ON(blocksize != sb->s_blocksize);
2819 		vol->nr_blocks = sb_bdev_nr_blocks(sb);
2820 		ntfs_debug("Changed device block size to %i bytes (block size "
2821 				"bits %i) to match volume sector size.",
2822 				blocksize, sb->s_blocksize_bits);
2823 	}
2824 	/* Initialize the cluster and mft allocators. */
2825 	ntfs_setup_allocators(vol);
2826 	/* Setup remaining fields in the super block. */
2827 	sb->s_magic = NTFS_SB_MAGIC;
2828 	/*
2829 	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2830 	 *	sb->s_maxbytes = ~0ULL >> 1;
2831 	 * But the kernel uses a long as the page cache page index which on
2832 	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2833 	 * defined to the maximum the page cache page index can cope with
2834 	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2835 	 */
2836 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2837 	/* Ntfs measures time in 100ns intervals. */
2838 	sb->s_time_gran = 100;
2839 	/*
2840 	 * Now load the metadata required for the page cache and our address
2841 	 * space operations to function. We do this by setting up a specialised
2842 	 * read_inode method and then just calling the normal iget() to obtain
2843 	 * the inode for $MFT which is sufficient to allow our normal inode
2844 	 * operations and associated address space operations to function.
2845 	 */
2846 	sb->s_op = &ntfs_sops;
2847 	tmp_ino = new_inode(sb);
2848 	if (!tmp_ino) {
2849 		if (!silent)
2850 			ntfs_error(sb, "Failed to load essential metadata.");
2851 		goto err_out_now;
2852 	}
2853 	tmp_ino->i_ino = FILE_MFT;
2854 	insert_inode_hash(tmp_ino);
2855 	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2856 		if (!silent)
2857 			ntfs_error(sb, "Failed to load essential metadata.");
2858 		goto iput_tmp_ino_err_out_now;
2859 	}
2860 	mutex_lock(&ntfs_lock);
2861 	/*
2862 	 * The current mount is a compression user if the cluster size is
2863 	 * less than or equal 4kiB.
2864 	 */
2865 	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2866 		result = allocate_compression_buffers();
2867 		if (result) {
2868 			ntfs_error(NULL, "Failed to allocate buffers "
2869 					"for compression engine.");
2870 			ntfs_nr_compression_users--;
2871 			mutex_unlock(&ntfs_lock);
2872 			goto iput_tmp_ino_err_out_now;
2873 		}
2874 	}
2875 	/*
2876 	 * Generate the global default upcase table if necessary.  Also
2877 	 * temporarily increment the number of upcase users to avoid race
2878 	 * conditions with concurrent (u)mounts.
2879 	 */
2880 	if (!default_upcase)
2881 		default_upcase = generate_default_upcase();
2882 	ntfs_nr_upcase_users++;
2883 	mutex_unlock(&ntfs_lock);
2884 	/*
2885 	 * From now on, ignore @silent parameter. If we fail below this line,
2886 	 * it will be due to a corrupt fs or a system error, so we report it.
2887 	 */
2888 	/*
2889 	 * Open the system files with normal access functions and complete
2890 	 * setting up the ntfs super block.
2891 	 */
2892 	if (!load_system_files(vol)) {
2893 		ntfs_error(sb, "Failed to load system files.");
2894 		goto unl_upcase_iput_tmp_ino_err_out_now;
2895 	}
2896 
2897 	/* We grab a reference, simulating an ntfs_iget(). */
2898 	ihold(vol->root_ino);
2899 	if ((sb->s_root = d_make_root(vol->root_ino))) {
2900 		ntfs_debug("Exiting, status successful.");
2901 		/* Release the default upcase if it has no users. */
2902 		mutex_lock(&ntfs_lock);
2903 		if (!--ntfs_nr_upcase_users && default_upcase) {
2904 			ntfs_free(default_upcase);
2905 			default_upcase = NULL;
2906 		}
2907 		mutex_unlock(&ntfs_lock);
2908 		sb->s_export_op = &ntfs_export_ops;
2909 		lockdep_on();
2910 		return 0;
2911 	}
2912 	ntfs_error(sb, "Failed to allocate root directory.");
2913 	/* Clean up after the successful load_system_files() call from above. */
2914 	// TODO: Use ntfs_put_super() instead of repeating all this code...
2915 	// FIXME: Should mark the volume clean as the error is most likely
2916 	// 	  -ENOMEM.
2917 	iput(vol->vol_ino);
2918 	vol->vol_ino = NULL;
2919 	/* NTFS 3.0+ specific clean up. */
2920 	if (vol->major_ver >= 3) {
2921 #ifdef NTFS_RW
2922 		if (vol->usnjrnl_j_ino) {
2923 			iput(vol->usnjrnl_j_ino);
2924 			vol->usnjrnl_j_ino = NULL;
2925 		}
2926 		if (vol->usnjrnl_max_ino) {
2927 			iput(vol->usnjrnl_max_ino);
2928 			vol->usnjrnl_max_ino = NULL;
2929 		}
2930 		if (vol->usnjrnl_ino) {
2931 			iput(vol->usnjrnl_ino);
2932 			vol->usnjrnl_ino = NULL;
2933 		}
2934 		if (vol->quota_q_ino) {
2935 			iput(vol->quota_q_ino);
2936 			vol->quota_q_ino = NULL;
2937 		}
2938 		if (vol->quota_ino) {
2939 			iput(vol->quota_ino);
2940 			vol->quota_ino = NULL;
2941 		}
2942 #endif /* NTFS_RW */
2943 		if (vol->extend_ino) {
2944 			iput(vol->extend_ino);
2945 			vol->extend_ino = NULL;
2946 		}
2947 		if (vol->secure_ino) {
2948 			iput(vol->secure_ino);
2949 			vol->secure_ino = NULL;
2950 		}
2951 	}
2952 	iput(vol->root_ino);
2953 	vol->root_ino = NULL;
2954 	iput(vol->lcnbmp_ino);
2955 	vol->lcnbmp_ino = NULL;
2956 	iput(vol->mftbmp_ino);
2957 	vol->mftbmp_ino = NULL;
2958 #ifdef NTFS_RW
2959 	if (vol->logfile_ino) {
2960 		iput(vol->logfile_ino);
2961 		vol->logfile_ino = NULL;
2962 	}
2963 	if (vol->mftmirr_ino) {
2964 		iput(vol->mftmirr_ino);
2965 		vol->mftmirr_ino = NULL;
2966 	}
2967 #endif /* NTFS_RW */
2968 	/* Throw away the table of attribute definitions. */
2969 	vol->attrdef_size = 0;
2970 	if (vol->attrdef) {
2971 		ntfs_free(vol->attrdef);
2972 		vol->attrdef = NULL;
2973 	}
2974 	vol->upcase_len = 0;
2975 	mutex_lock(&ntfs_lock);
2976 	if (vol->upcase == default_upcase) {
2977 		ntfs_nr_upcase_users--;
2978 		vol->upcase = NULL;
2979 	}
2980 	mutex_unlock(&ntfs_lock);
2981 	if (vol->upcase) {
2982 		ntfs_free(vol->upcase);
2983 		vol->upcase = NULL;
2984 	}
2985 	if (vol->nls_map) {
2986 		unload_nls(vol->nls_map);
2987 		vol->nls_map = NULL;
2988 	}
2989 	/* Error exit code path. */
2990 unl_upcase_iput_tmp_ino_err_out_now:
2991 	/*
2992 	 * Decrease the number of upcase users and destroy the global default
2993 	 * upcase table if necessary.
2994 	 */
2995 	mutex_lock(&ntfs_lock);
2996 	if (!--ntfs_nr_upcase_users && default_upcase) {
2997 		ntfs_free(default_upcase);
2998 		default_upcase = NULL;
2999 	}
3000 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3001 		free_compression_buffers();
3002 	mutex_unlock(&ntfs_lock);
3003 iput_tmp_ino_err_out_now:
3004 	iput(tmp_ino);
3005 	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3006 		iput(vol->mft_ino);
3007 	vol->mft_ino = NULL;
3008 	/* Errors at this stage are irrelevant. */
3009 err_out_now:
3010 	sb->s_fs_info = NULL;
3011 	kfree(vol);
3012 	ntfs_debug("Failed, returning -EINVAL.");
3013 	lockdep_on();
3014 	return -EINVAL;
3015 }
3016 
3017 /*
3018  * This is a slab cache to optimize allocations and deallocations of Unicode
3019  * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3020  * (255) Unicode characters + a terminating NULL Unicode character.
3021  */
3022 struct kmem_cache *ntfs_name_cache;
3023 
3024 /* Slab caches for efficient allocation/deallocation of inodes. */
3025 struct kmem_cache *ntfs_inode_cache;
3026 struct kmem_cache *ntfs_big_inode_cache;
3027 
3028 /* Init once constructor for the inode slab cache. */
3029 static void ntfs_big_inode_init_once(void *foo)
3030 {
3031 	ntfs_inode *ni = (ntfs_inode *)foo;
3032 
3033 	inode_init_once(VFS_I(ni));
3034 }
3035 
3036 /*
3037  * Slab caches to optimize allocations and deallocations of attribute search
3038  * contexts and index contexts, respectively.
3039  */
3040 struct kmem_cache *ntfs_attr_ctx_cache;
3041 struct kmem_cache *ntfs_index_ctx_cache;
3042 
3043 /* Driver wide mutex. */
3044 DEFINE_MUTEX(ntfs_lock);
3045 
3046 static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3047 	int flags, const char *dev_name, void *data)
3048 {
3049 	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3050 }
3051 
3052 static struct file_system_type ntfs_fs_type = {
3053 	.owner		= THIS_MODULE,
3054 	.name		= "ntfs",
3055 	.mount		= ntfs_mount,
3056 	.kill_sb	= kill_block_super,
3057 	.fs_flags	= FS_REQUIRES_DEV,
3058 };
3059 MODULE_ALIAS_FS("ntfs");
3060 
3061 /* Stable names for the slab caches. */
3062 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3063 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3064 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3065 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3066 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3067 
3068 static int __init init_ntfs_fs(void)
3069 {
3070 	int err = 0;
3071 
3072 	/* This may be ugly but it results in pretty output so who cares. (-8 */
3073 	pr_info("driver " NTFS_VERSION " [Flags: R/"
3074 #ifdef NTFS_RW
3075 			"W"
3076 #else
3077 			"O"
3078 #endif
3079 #ifdef DEBUG
3080 			" DEBUG"
3081 #endif
3082 #ifdef MODULE
3083 			" MODULE"
3084 #endif
3085 			"].\n");
3086 
3087 	ntfs_debug("Debug messages are enabled.");
3088 
3089 	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3090 			sizeof(ntfs_index_context), 0 /* offset */,
3091 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3092 	if (!ntfs_index_ctx_cache) {
3093 		pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
3094 		goto ictx_err_out;
3095 	}
3096 	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3097 			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3098 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3099 	if (!ntfs_attr_ctx_cache) {
3100 		pr_crit("NTFS: Failed to create %s!\n",
3101 			ntfs_attr_ctx_cache_name);
3102 		goto actx_err_out;
3103 	}
3104 
3105 	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3106 			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3107 			SLAB_HWCACHE_ALIGN, NULL);
3108 	if (!ntfs_name_cache) {
3109 		pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
3110 		goto name_err_out;
3111 	}
3112 
3113 	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3114 			sizeof(ntfs_inode), 0,
3115 			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3116 	if (!ntfs_inode_cache) {
3117 		pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
3118 		goto inode_err_out;
3119 	}
3120 
3121 	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3122 			sizeof(big_ntfs_inode), 0,
3123 			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
3124 			SLAB_ACCOUNT, ntfs_big_inode_init_once);
3125 	if (!ntfs_big_inode_cache) {
3126 		pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
3127 		goto big_inode_err_out;
3128 	}
3129 
3130 	/* Register the ntfs sysctls. */
3131 	err = ntfs_sysctl(1);
3132 	if (err) {
3133 		pr_crit("Failed to register NTFS sysctls!\n");
3134 		goto sysctl_err_out;
3135 	}
3136 
3137 	err = register_filesystem(&ntfs_fs_type);
3138 	if (!err) {
3139 		ntfs_debug("NTFS driver registered successfully.");
3140 		return 0; /* Success! */
3141 	}
3142 	pr_crit("Failed to register NTFS filesystem driver!\n");
3143 
3144 	/* Unregister the ntfs sysctls. */
3145 	ntfs_sysctl(0);
3146 sysctl_err_out:
3147 	kmem_cache_destroy(ntfs_big_inode_cache);
3148 big_inode_err_out:
3149 	kmem_cache_destroy(ntfs_inode_cache);
3150 inode_err_out:
3151 	kmem_cache_destroy(ntfs_name_cache);
3152 name_err_out:
3153 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3154 actx_err_out:
3155 	kmem_cache_destroy(ntfs_index_ctx_cache);
3156 ictx_err_out:
3157 	if (!err) {
3158 		pr_crit("Aborting NTFS filesystem driver registration...\n");
3159 		err = -ENOMEM;
3160 	}
3161 	return err;
3162 }
3163 
3164 static void __exit exit_ntfs_fs(void)
3165 {
3166 	ntfs_debug("Unregistering NTFS driver.");
3167 
3168 	unregister_filesystem(&ntfs_fs_type);
3169 
3170 	/*
3171 	 * Make sure all delayed rcu free inodes are flushed before we
3172 	 * destroy cache.
3173 	 */
3174 	rcu_barrier();
3175 	kmem_cache_destroy(ntfs_big_inode_cache);
3176 	kmem_cache_destroy(ntfs_inode_cache);
3177 	kmem_cache_destroy(ntfs_name_cache);
3178 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3179 	kmem_cache_destroy(ntfs_index_ctx_cache);
3180 	/* Unregister the ntfs sysctls. */
3181 	ntfs_sysctl(0);
3182 }
3183 
3184 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3185 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3186 MODULE_VERSION(NTFS_VERSION);
3187 MODULE_LICENSE("GPL");
3188 #ifdef DEBUG
3189 module_param(debug_msgs, bint, 0);
3190 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3191 #endif
3192 
3193 module_init(init_ntfs_fs)
3194 module_exit(exit_ntfs_fs)
3195