xref: /openbmc/linux/fs/ntfs/super.c (revision b6dcefde)
1 /*
2  * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2007 Anton Altaparmakov
5  * Copyright (c) 2001,2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
34 
35 #include "sysctl.h"
36 #include "logfile.h"
37 #include "quota.h"
38 #include "usnjrnl.h"
39 #include "dir.h"
40 #include "debug.h"
41 #include "index.h"
42 #include "aops.h"
43 #include "layout.h"
44 #include "malloc.h"
45 #include "ntfs.h"
46 
47 /* Number of mounted filesystems which have compression enabled. */
48 static unsigned long ntfs_nr_compression_users;
49 
50 /* A global default upcase table and a corresponding reference count. */
51 static ntfschar *default_upcase = NULL;
52 static unsigned long ntfs_nr_upcase_users = 0;
53 
54 /* Error constants/strings used in inode.c::ntfs_show_options(). */
55 typedef enum {
56 	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
57 	ON_ERRORS_PANIC			= 0x01,
58 	ON_ERRORS_REMOUNT_RO		= 0x02,
59 	ON_ERRORS_CONTINUE		= 0x04,
60 	/* Optional, can be combined with any of the above. */
61 	ON_ERRORS_RECOVER		= 0x10,
62 } ON_ERRORS_ACTIONS;
63 
64 const option_t on_errors_arr[] = {
65 	{ ON_ERRORS_PANIC,	"panic" },
66 	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
67 	{ ON_ERRORS_CONTINUE,	"continue", },
68 	{ ON_ERRORS_RECOVER,	"recover" },
69 	{ 0,			NULL }
70 };
71 
72 /**
73  * simple_getbool -
74  *
75  * Copied from old ntfs driver (which copied from vfat driver).
76  */
77 static int simple_getbool(char *s, bool *setval)
78 {
79 	if (s) {
80 		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
81 			*setval = true;
82 		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
83 							!strcmp(s, "false"))
84 			*setval = false;
85 		else
86 			return 0;
87 	} else
88 		*setval = true;
89 	return 1;
90 }
91 
92 /**
93  * parse_options - parse the (re)mount options
94  * @vol:	ntfs volume
95  * @opt:	string containing the (re)mount options
96  *
97  * Parse the recognized options in @opt for the ntfs volume described by @vol.
98  */
99 static bool parse_options(ntfs_volume *vol, char *opt)
100 {
101 	char *p, *v, *ov;
102 	static char *utf8 = "utf8";
103 	int errors = 0, sloppy = 0;
104 	uid_t uid = (uid_t)-1;
105 	gid_t gid = (gid_t)-1;
106 	mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
107 	int mft_zone_multiplier = -1, on_errors = -1;
108 	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
109 	struct nls_table *nls_map = NULL, *old_nls;
110 
111 	/* I am lazy... (-8 */
112 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
113 	if (!strcmp(p, option)) {					\
114 		if (!v || !*v)						\
115 			variable = default_value;			\
116 		else {							\
117 			variable = simple_strtoul(ov = v, &v, 0);	\
118 			if (*v)						\
119 				goto needs_val;				\
120 		}							\
121 	}
122 #define NTFS_GETOPT(option, variable)					\
123 	if (!strcmp(p, option)) {					\
124 		if (!v || !*v)						\
125 			goto needs_arg;					\
126 		variable = simple_strtoul(ov = v, &v, 0);		\
127 		if (*v)							\
128 			goto needs_val;					\
129 	}
130 #define NTFS_GETOPT_OCTAL(option, variable)				\
131 	if (!strcmp(p, option)) {					\
132 		if (!v || !*v)						\
133 			goto needs_arg;					\
134 		variable = simple_strtoul(ov = v, &v, 8);		\
135 		if (*v)							\
136 			goto needs_val;					\
137 	}
138 #define NTFS_GETOPT_BOOL(option, variable)				\
139 	if (!strcmp(p, option)) {					\
140 		bool val;						\
141 		if (!simple_getbool(v, &val))				\
142 			goto needs_bool;				\
143 		variable = val;						\
144 	}
145 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
146 	if (!strcmp(p, option)) {					\
147 		int _i;							\
148 		if (!v || !*v)						\
149 			goto needs_arg;					\
150 		ov = v;							\
151 		if (variable == -1)					\
152 			variable = 0;					\
153 		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
154 			if (!strcmp(opt_array[_i].str, v)) {		\
155 				variable |= opt_array[_i].val;		\
156 				break;					\
157 			}						\
158 		if (!opt_array[_i].str || !*opt_array[_i].str)		\
159 			goto needs_val;					\
160 	}
161 	if (!opt || !*opt)
162 		goto no_mount_options;
163 	ntfs_debug("Entering with mount options string: %s", opt);
164 	while ((p = strsep(&opt, ","))) {
165 		if ((v = strchr(p, '=')))
166 			*v++ = 0;
167 		NTFS_GETOPT("uid", uid)
168 		else NTFS_GETOPT("gid", gid)
169 		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
170 		else NTFS_GETOPT_OCTAL("fmask", fmask)
171 		else NTFS_GETOPT_OCTAL("dmask", dmask)
172 		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
173 		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
174 		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
175 		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
176 		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
177 		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
178 				on_errors_arr)
179 		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
180 			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
181 					p);
182 		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
183 			if (!strcmp(p, "iocharset"))
184 				ntfs_warning(vol->sb, "Option iocharset is "
185 						"deprecated. Please use "
186 						"option nls=<charsetname> in "
187 						"the future.");
188 			if (!v || !*v)
189 				goto needs_arg;
190 use_utf8:
191 			old_nls = nls_map;
192 			nls_map = load_nls(v);
193 			if (!nls_map) {
194 				if (!old_nls) {
195 					ntfs_error(vol->sb, "NLS character set "
196 							"%s not found.", v);
197 					return false;
198 				}
199 				ntfs_error(vol->sb, "NLS character set %s not "
200 						"found. Using previous one %s.",
201 						v, old_nls->charset);
202 				nls_map = old_nls;
203 			} else /* nls_map */ {
204 				unload_nls(old_nls);
205 			}
206 		} else if (!strcmp(p, "utf8")) {
207 			bool val = false;
208 			ntfs_warning(vol->sb, "Option utf8 is no longer "
209 				   "supported, using option nls=utf8. Please "
210 				   "use option nls=utf8 in the future and "
211 				   "make sure utf8 is compiled either as a "
212 				   "module or into the kernel.");
213 			if (!v || !*v)
214 				val = true;
215 			else if (!simple_getbool(v, &val))
216 				goto needs_bool;
217 			if (val) {
218 				v = utf8;
219 				goto use_utf8;
220 			}
221 		} else {
222 			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
223 			if (errors < INT_MAX)
224 				errors++;
225 		}
226 #undef NTFS_GETOPT_OPTIONS_ARRAY
227 #undef NTFS_GETOPT_BOOL
228 #undef NTFS_GETOPT
229 #undef NTFS_GETOPT_WITH_DEFAULT
230 	}
231 no_mount_options:
232 	if (errors && !sloppy)
233 		return false;
234 	if (sloppy)
235 		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
236 				"unrecognized mount option(s) and continuing.");
237 	/* Keep this first! */
238 	if (on_errors != -1) {
239 		if (!on_errors) {
240 			ntfs_error(vol->sb, "Invalid errors option argument "
241 					"or bug in options parser.");
242 			return false;
243 		}
244 	}
245 	if (nls_map) {
246 		if (vol->nls_map && vol->nls_map != nls_map) {
247 			ntfs_error(vol->sb, "Cannot change NLS character set "
248 					"on remount.");
249 			return false;
250 		} /* else (!vol->nls_map) */
251 		ntfs_debug("Using NLS character set %s.", nls_map->charset);
252 		vol->nls_map = nls_map;
253 	} else /* (!nls_map) */ {
254 		if (!vol->nls_map) {
255 			vol->nls_map = load_nls_default();
256 			if (!vol->nls_map) {
257 				ntfs_error(vol->sb, "Failed to load default "
258 						"NLS character set.");
259 				return false;
260 			}
261 			ntfs_debug("Using default NLS character set (%s).",
262 					vol->nls_map->charset);
263 		}
264 	}
265 	if (mft_zone_multiplier != -1) {
266 		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
267 				mft_zone_multiplier) {
268 			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
269 					"on remount.");
270 			return false;
271 		}
272 		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
273 			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
274 					"Using default value, i.e. 1.");
275 			mft_zone_multiplier = 1;
276 		}
277 		vol->mft_zone_multiplier = mft_zone_multiplier;
278 	}
279 	if (!vol->mft_zone_multiplier)
280 		vol->mft_zone_multiplier = 1;
281 	if (on_errors != -1)
282 		vol->on_errors = on_errors;
283 	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
284 		vol->on_errors |= ON_ERRORS_CONTINUE;
285 	if (uid != (uid_t)-1)
286 		vol->uid = uid;
287 	if (gid != (gid_t)-1)
288 		vol->gid = gid;
289 	if (fmask != (mode_t)-1)
290 		vol->fmask = fmask;
291 	if (dmask != (mode_t)-1)
292 		vol->dmask = dmask;
293 	if (show_sys_files != -1) {
294 		if (show_sys_files)
295 			NVolSetShowSystemFiles(vol);
296 		else
297 			NVolClearShowSystemFiles(vol);
298 	}
299 	if (case_sensitive != -1) {
300 		if (case_sensitive)
301 			NVolSetCaseSensitive(vol);
302 		else
303 			NVolClearCaseSensitive(vol);
304 	}
305 	if (disable_sparse != -1) {
306 		if (disable_sparse)
307 			NVolClearSparseEnabled(vol);
308 		else {
309 			if (!NVolSparseEnabled(vol) &&
310 					vol->major_ver && vol->major_ver < 3)
311 				ntfs_warning(vol->sb, "Not enabling sparse "
312 						"support due to NTFS volume "
313 						"version %i.%i (need at least "
314 						"version 3.0).", vol->major_ver,
315 						vol->minor_ver);
316 			else
317 				NVolSetSparseEnabled(vol);
318 		}
319 	}
320 	return true;
321 needs_arg:
322 	ntfs_error(vol->sb, "The %s option requires an argument.", p);
323 	return false;
324 needs_bool:
325 	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
326 	return false;
327 needs_val:
328 	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
329 	return false;
330 }
331 
332 #ifdef NTFS_RW
333 
334 /**
335  * ntfs_write_volume_flags - write new flags to the volume information flags
336  * @vol:	ntfs volume on which to modify the flags
337  * @flags:	new flags value for the volume information flags
338  *
339  * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
340  * instead (see below).
341  *
342  * Replace the volume information flags on the volume @vol with the value
343  * supplied in @flags.  Note, this overwrites the volume information flags, so
344  * make sure to combine the flags you want to modify with the old flags and use
345  * the result when calling ntfs_write_volume_flags().
346  *
347  * Return 0 on success and -errno on error.
348  */
349 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
350 {
351 	ntfs_inode *ni = NTFS_I(vol->vol_ino);
352 	MFT_RECORD *m;
353 	VOLUME_INFORMATION *vi;
354 	ntfs_attr_search_ctx *ctx;
355 	int err;
356 
357 	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
358 			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
359 	if (vol->vol_flags == flags)
360 		goto done;
361 	BUG_ON(!ni);
362 	m = map_mft_record(ni);
363 	if (IS_ERR(m)) {
364 		err = PTR_ERR(m);
365 		goto err_out;
366 	}
367 	ctx = ntfs_attr_get_search_ctx(ni, m);
368 	if (!ctx) {
369 		err = -ENOMEM;
370 		goto put_unm_err_out;
371 	}
372 	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
373 			ctx);
374 	if (err)
375 		goto put_unm_err_out;
376 	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
377 			le16_to_cpu(ctx->attr->data.resident.value_offset));
378 	vol->vol_flags = vi->flags = flags;
379 	flush_dcache_mft_record_page(ctx->ntfs_ino);
380 	mark_mft_record_dirty(ctx->ntfs_ino);
381 	ntfs_attr_put_search_ctx(ctx);
382 	unmap_mft_record(ni);
383 done:
384 	ntfs_debug("Done.");
385 	return 0;
386 put_unm_err_out:
387 	if (ctx)
388 		ntfs_attr_put_search_ctx(ctx);
389 	unmap_mft_record(ni);
390 err_out:
391 	ntfs_error(vol->sb, "Failed with error code %i.", -err);
392 	return err;
393 }
394 
395 /**
396  * ntfs_set_volume_flags - set bits in the volume information flags
397  * @vol:	ntfs volume on which to modify the flags
398  * @flags:	flags to set on the volume
399  *
400  * Set the bits in @flags in the volume information flags on the volume @vol.
401  *
402  * Return 0 on success and -errno on error.
403  */
404 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
405 {
406 	flags &= VOLUME_FLAGS_MASK;
407 	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
408 }
409 
410 /**
411  * ntfs_clear_volume_flags - clear bits in the volume information flags
412  * @vol:	ntfs volume on which to modify the flags
413  * @flags:	flags to clear on the volume
414  *
415  * Clear the bits in @flags in the volume information flags on the volume @vol.
416  *
417  * Return 0 on success and -errno on error.
418  */
419 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
420 {
421 	flags &= VOLUME_FLAGS_MASK;
422 	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
423 	return ntfs_write_volume_flags(vol, flags);
424 }
425 
426 #endif /* NTFS_RW */
427 
428 /**
429  * ntfs_remount - change the mount options of a mounted ntfs filesystem
430  * @sb:		superblock of mounted ntfs filesystem
431  * @flags:	remount flags
432  * @opt:	remount options string
433  *
434  * Change the mount options of an already mounted ntfs filesystem.
435  *
436  * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
437  * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
438  * @sb->s_flags are not changed.
439  */
440 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
441 {
442 	ntfs_volume *vol = NTFS_SB(sb);
443 
444 	ntfs_debug("Entering with remount options string: %s", opt);
445 
446 	lock_kernel();
447 #ifndef NTFS_RW
448 	/* For read-only compiled driver, enforce read-only flag. */
449 	*flags |= MS_RDONLY;
450 #else /* NTFS_RW */
451 	/*
452 	 * For the read-write compiled driver, if we are remounting read-write,
453 	 * make sure there are no volume errors and that no unsupported volume
454 	 * flags are set.  Also, empty the logfile journal as it would become
455 	 * stale as soon as something is written to the volume and mark the
456 	 * volume dirty so that chkdsk is run if the volume is not umounted
457 	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
458 	 * the volume on boot and updates them.
459 	 *
460 	 * When remounting read-only, mark the volume clean if no volume errors
461 	 * have occured.
462 	 */
463 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
464 		static const char *es = ".  Cannot remount read-write.";
465 
466 		/* Remounting read-write. */
467 		if (NVolErrors(vol)) {
468 			ntfs_error(sb, "Volume has errors and is read-only%s",
469 					es);
470 			unlock_kernel();
471 			return -EROFS;
472 		}
473 		if (vol->vol_flags & VOLUME_IS_DIRTY) {
474 			ntfs_error(sb, "Volume is dirty and read-only%s", es);
475 			unlock_kernel();
476 			return -EROFS;
477 		}
478 		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
479 			ntfs_error(sb, "Volume has been modified by chkdsk "
480 					"and is read-only%s", es);
481 			unlock_kernel();
482 			return -EROFS;
483 		}
484 		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
485 			ntfs_error(sb, "Volume has unsupported flags set "
486 					"(0x%x) and is read-only%s",
487 					(unsigned)le16_to_cpu(vol->vol_flags),
488 					es);
489 			unlock_kernel();
490 			return -EROFS;
491 		}
492 		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
493 			ntfs_error(sb, "Failed to set dirty bit in volume "
494 					"information flags%s", es);
495 			unlock_kernel();
496 			return -EROFS;
497 		}
498 #if 0
499 		// TODO: Enable this code once we start modifying anything that
500 		//	 is different between NTFS 1.2 and 3.x...
501 		/* Set NT4 compatibility flag on newer NTFS version volumes. */
502 		if ((vol->major_ver > 1)) {
503 			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
504 				ntfs_error(sb, "Failed to set NT4 "
505 						"compatibility flag%s", es);
506 				NVolSetErrors(vol);
507 				return -EROFS;
508 			}
509 		}
510 #endif
511 		if (!ntfs_empty_logfile(vol->logfile_ino)) {
512 			ntfs_error(sb, "Failed to empty journal $LogFile%s",
513 					es);
514 			NVolSetErrors(vol);
515 			unlock_kernel();
516 			return -EROFS;
517 		}
518 		if (!ntfs_mark_quotas_out_of_date(vol)) {
519 			ntfs_error(sb, "Failed to mark quotas out of date%s",
520 					es);
521 			NVolSetErrors(vol);
522 			unlock_kernel();
523 			return -EROFS;
524 		}
525 		if (!ntfs_stamp_usnjrnl(vol)) {
526 			ntfs_error(sb, "Failed to stamp transation log "
527 					"($UsnJrnl)%s", es);
528 			NVolSetErrors(vol);
529 			unlock_kernel();
530 			return -EROFS;
531 		}
532 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
533 		/* Remounting read-only. */
534 		if (!NVolErrors(vol)) {
535 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
536 				ntfs_warning(sb, "Failed to clear dirty bit "
537 						"in volume information "
538 						"flags.  Run chkdsk.");
539 		}
540 	}
541 #endif /* NTFS_RW */
542 
543 	// TODO: Deal with *flags.
544 
545 	if (!parse_options(vol, opt)) {
546 		unlock_kernel();
547 		return -EINVAL;
548 	}
549 	unlock_kernel();
550 	ntfs_debug("Done.");
551 	return 0;
552 }
553 
554 /**
555  * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
556  * @sb:		Super block of the device to which @b belongs.
557  * @b:		Boot sector of device @sb to check.
558  * @silent:	If 'true', all output will be silenced.
559  *
560  * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
561  * sector. Returns 'true' if it is valid and 'false' if not.
562  *
563  * @sb is only needed for warning/error output, i.e. it can be NULL when silent
564  * is 'true'.
565  */
566 static bool is_boot_sector_ntfs(const struct super_block *sb,
567 		const NTFS_BOOT_SECTOR *b, const bool silent)
568 {
569 	/*
570 	 * Check that checksum == sum of u32 values from b to the checksum
571 	 * field.  If checksum is zero, no checking is done.  We will work when
572 	 * the checksum test fails, since some utilities update the boot sector
573 	 * ignoring the checksum which leaves the checksum out-of-date.  We
574 	 * report a warning if this is the case.
575 	 */
576 	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
577 		le32 *u;
578 		u32 i;
579 
580 		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
581 			i += le32_to_cpup(u);
582 		if (le32_to_cpu(b->checksum) != i)
583 			ntfs_warning(sb, "Invalid boot sector checksum.");
584 	}
585 	/* Check OEMidentifier is "NTFS    " */
586 	if (b->oem_id != magicNTFS)
587 		goto not_ntfs;
588 	/* Check bytes per sector value is between 256 and 4096. */
589 	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
590 			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
591 		goto not_ntfs;
592 	/* Check sectors per cluster value is valid. */
593 	switch (b->bpb.sectors_per_cluster) {
594 	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
595 		break;
596 	default:
597 		goto not_ntfs;
598 	}
599 	/* Check the cluster size is not above the maximum (64kiB). */
600 	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
601 			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
602 		goto not_ntfs;
603 	/* Check reserved/unused fields are really zero. */
604 	if (le16_to_cpu(b->bpb.reserved_sectors) ||
605 			le16_to_cpu(b->bpb.root_entries) ||
606 			le16_to_cpu(b->bpb.sectors) ||
607 			le16_to_cpu(b->bpb.sectors_per_fat) ||
608 			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
609 		goto not_ntfs;
610 	/* Check clusters per file mft record value is valid. */
611 	if ((u8)b->clusters_per_mft_record < 0xe1 ||
612 			(u8)b->clusters_per_mft_record > 0xf7)
613 		switch (b->clusters_per_mft_record) {
614 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
615 			break;
616 		default:
617 			goto not_ntfs;
618 		}
619 	/* Check clusters per index block value is valid. */
620 	if ((u8)b->clusters_per_index_record < 0xe1 ||
621 			(u8)b->clusters_per_index_record > 0xf7)
622 		switch (b->clusters_per_index_record) {
623 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
624 			break;
625 		default:
626 			goto not_ntfs;
627 		}
628 	/*
629 	 * Check for valid end of sector marker. We will work without it, but
630 	 * many BIOSes will refuse to boot from a bootsector if the magic is
631 	 * incorrect, so we emit a warning.
632 	 */
633 	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
634 		ntfs_warning(sb, "Invalid end of sector marker.");
635 	return true;
636 not_ntfs:
637 	return false;
638 }
639 
640 /**
641  * read_ntfs_boot_sector - read the NTFS boot sector of a device
642  * @sb:		super block of device to read the boot sector from
643  * @silent:	if true, suppress all output
644  *
645  * Reads the boot sector from the device and validates it. If that fails, tries
646  * to read the backup boot sector, first from the end of the device a-la NT4 and
647  * later and then from the middle of the device a-la NT3.51 and before.
648  *
649  * If a valid boot sector is found but it is not the primary boot sector, we
650  * repair the primary boot sector silently (unless the device is read-only or
651  * the primary boot sector is not accessible).
652  *
653  * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
654  * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
655  * to their respective values.
656  *
657  * Return the unlocked buffer head containing the boot sector or NULL on error.
658  */
659 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
660 		const int silent)
661 {
662 	const char *read_err_str = "Unable to read %s boot sector.";
663 	struct buffer_head *bh_primary, *bh_backup;
664 	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
665 
666 	/* Try to read primary boot sector. */
667 	if ((bh_primary = sb_bread(sb, 0))) {
668 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
669 				bh_primary->b_data, silent))
670 			return bh_primary;
671 		if (!silent)
672 			ntfs_error(sb, "Primary boot sector is invalid.");
673 	} else if (!silent)
674 		ntfs_error(sb, read_err_str, "primary");
675 	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
676 		if (bh_primary)
677 			brelse(bh_primary);
678 		if (!silent)
679 			ntfs_error(sb, "Mount option errors=recover not used. "
680 					"Aborting without trying to recover.");
681 		return NULL;
682 	}
683 	/* Try to read NT4+ backup boot sector. */
684 	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
685 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
686 				bh_backup->b_data, silent))
687 			goto hotfix_primary_boot_sector;
688 		brelse(bh_backup);
689 	} else if (!silent)
690 		ntfs_error(sb, read_err_str, "backup");
691 	/* Try to read NT3.51- backup boot sector. */
692 	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
693 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
694 				bh_backup->b_data, silent))
695 			goto hotfix_primary_boot_sector;
696 		if (!silent)
697 			ntfs_error(sb, "Could not find a valid backup boot "
698 					"sector.");
699 		brelse(bh_backup);
700 	} else if (!silent)
701 		ntfs_error(sb, read_err_str, "backup");
702 	/* We failed. Cleanup and return. */
703 	if (bh_primary)
704 		brelse(bh_primary);
705 	return NULL;
706 hotfix_primary_boot_sector:
707 	if (bh_primary) {
708 		/*
709 		 * If we managed to read sector zero and the volume is not
710 		 * read-only, copy the found, valid backup boot sector to the
711 		 * primary boot sector.  Note we only copy the actual boot
712 		 * sector structure, not the actual whole device sector as that
713 		 * may be bigger and would potentially damage the $Boot system
714 		 * file (FIXME: Would be nice to know if the backup boot sector
715 		 * on a large sector device contains the whole boot loader or
716 		 * just the first 512 bytes).
717 		 */
718 		if (!(sb->s_flags & MS_RDONLY)) {
719 			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
720 					"boot sector from backup copy.");
721 			memcpy(bh_primary->b_data, bh_backup->b_data,
722 					NTFS_BLOCK_SIZE);
723 			mark_buffer_dirty(bh_primary);
724 			sync_dirty_buffer(bh_primary);
725 			if (buffer_uptodate(bh_primary)) {
726 				brelse(bh_backup);
727 				return bh_primary;
728 			}
729 			ntfs_error(sb, "Hot-fix: Device write error while "
730 					"recovering primary boot sector.");
731 		} else {
732 			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
733 					"sector failed: Read-only mount.");
734 		}
735 		brelse(bh_primary);
736 	}
737 	ntfs_warning(sb, "Using backup boot sector.");
738 	return bh_backup;
739 }
740 
741 /**
742  * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
743  * @vol:	volume structure to initialise with data from boot sector
744  * @b:		boot sector to parse
745  *
746  * Parse the ntfs boot sector @b and store all imporant information therein in
747  * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
748  */
749 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
750 {
751 	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
752 	int clusters_per_mft_record, clusters_per_index_record;
753 	s64 ll;
754 
755 	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
756 	vol->sector_size_bits = ffs(vol->sector_size) - 1;
757 	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
758 			vol->sector_size);
759 	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
760 			vol->sector_size_bits);
761 	if (vol->sector_size < vol->sb->s_blocksize) {
762 		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
763 				"device block size (%lu).  This is not "
764 				"supported.  Sorry.", vol->sector_size,
765 				vol->sb->s_blocksize);
766 		return false;
767 	}
768 	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
769 	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
770 	ntfs_debug("sectors_per_cluster_bits = 0x%x",
771 			sectors_per_cluster_bits);
772 	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
773 	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
774 	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
775 	vol->cluster_size_mask = vol->cluster_size - 1;
776 	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
777 	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
778 			vol->cluster_size);
779 	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
780 	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
781 	if (vol->cluster_size < vol->sector_size) {
782 		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
783 				"sector size (%i).  This is not supported.  "
784 				"Sorry.", vol->cluster_size, vol->sector_size);
785 		return false;
786 	}
787 	clusters_per_mft_record = b->clusters_per_mft_record;
788 	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
789 			clusters_per_mft_record, clusters_per_mft_record);
790 	if (clusters_per_mft_record > 0)
791 		vol->mft_record_size = vol->cluster_size <<
792 				(ffs(clusters_per_mft_record) - 1);
793 	else
794 		/*
795 		 * When mft_record_size < cluster_size, clusters_per_mft_record
796 		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
797 		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
798 		 */
799 		vol->mft_record_size = 1 << -clusters_per_mft_record;
800 	vol->mft_record_size_mask = vol->mft_record_size - 1;
801 	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
802 	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
803 			vol->mft_record_size);
804 	ntfs_debug("vol->mft_record_size_mask = 0x%x",
805 			vol->mft_record_size_mask);
806 	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
807 			vol->mft_record_size_bits, vol->mft_record_size_bits);
808 	/*
809 	 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
810 	 * we store $MFT/$DATA, the table of mft records in the page cache.
811 	 */
812 	if (vol->mft_record_size > PAGE_CACHE_SIZE) {
813 		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
814 				"PAGE_CACHE_SIZE on your system (%lu).  "
815 				"This is not supported.  Sorry.",
816 				vol->mft_record_size, PAGE_CACHE_SIZE);
817 		return false;
818 	}
819 	/* We cannot support mft record sizes below the sector size. */
820 	if (vol->mft_record_size < vol->sector_size) {
821 		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
822 				"sector size (%i).  This is not supported.  "
823 				"Sorry.", vol->mft_record_size,
824 				vol->sector_size);
825 		return false;
826 	}
827 	clusters_per_index_record = b->clusters_per_index_record;
828 	ntfs_debug("clusters_per_index_record = %i (0x%x)",
829 			clusters_per_index_record, clusters_per_index_record);
830 	if (clusters_per_index_record > 0)
831 		vol->index_record_size = vol->cluster_size <<
832 				(ffs(clusters_per_index_record) - 1);
833 	else
834 		/*
835 		 * When index_record_size < cluster_size,
836 		 * clusters_per_index_record = -log2(index_record_size) bytes.
837 		 * index_record_size normaly equals 4096 bytes, which is
838 		 * encoded as 0xF4 (-12 in decimal).
839 		 */
840 		vol->index_record_size = 1 << -clusters_per_index_record;
841 	vol->index_record_size_mask = vol->index_record_size - 1;
842 	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
843 	ntfs_debug("vol->index_record_size = %i (0x%x)",
844 			vol->index_record_size, vol->index_record_size);
845 	ntfs_debug("vol->index_record_size_mask = 0x%x",
846 			vol->index_record_size_mask);
847 	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
848 			vol->index_record_size_bits,
849 			vol->index_record_size_bits);
850 	/* We cannot support index record sizes below the sector size. */
851 	if (vol->index_record_size < vol->sector_size) {
852 		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
853 				"the sector size (%i).  This is not "
854 				"supported.  Sorry.", vol->index_record_size,
855 				vol->sector_size);
856 		return false;
857 	}
858 	/*
859 	 * Get the size of the volume in clusters and check for 64-bit-ness.
860 	 * Windows currently only uses 32 bits to save the clusters so we do
861 	 * the same as it is much faster on 32-bit CPUs.
862 	 */
863 	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
864 	if ((u64)ll >= 1ULL << 32) {
865 		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
866 		return false;
867 	}
868 	vol->nr_clusters = ll;
869 	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
870 	/*
871 	 * On an architecture where unsigned long is 32-bits, we restrict the
872 	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
873 	 * will hopefully optimize the whole check away.
874 	 */
875 	if (sizeof(unsigned long) < 8) {
876 		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
877 			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
878 					"large for this architecture.  "
879 					"Maximum supported is 2TiB.  Sorry.",
880 					(unsigned long long)ll >> (40 -
881 					vol->cluster_size_bits));
882 			return false;
883 		}
884 	}
885 	ll = sle64_to_cpu(b->mft_lcn);
886 	if (ll >= vol->nr_clusters) {
887 		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
888 				"volume.  Weird.", (unsigned long long)ll,
889 				(unsigned long long)ll);
890 		return false;
891 	}
892 	vol->mft_lcn = ll;
893 	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
894 	ll = sle64_to_cpu(b->mftmirr_lcn);
895 	if (ll >= vol->nr_clusters) {
896 		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
897 				"of volume.  Weird.", (unsigned long long)ll,
898 				(unsigned long long)ll);
899 		return false;
900 	}
901 	vol->mftmirr_lcn = ll;
902 	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
903 #ifdef NTFS_RW
904 	/*
905 	 * Work out the size of the mft mirror in number of mft records. If the
906 	 * cluster size is less than or equal to the size taken by four mft
907 	 * records, the mft mirror stores the first four mft records. If the
908 	 * cluster size is bigger than the size taken by four mft records, the
909 	 * mft mirror contains as many mft records as will fit into one
910 	 * cluster.
911 	 */
912 	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
913 		vol->mftmirr_size = 4;
914 	else
915 		vol->mftmirr_size = vol->cluster_size >>
916 				vol->mft_record_size_bits;
917 	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
918 #endif /* NTFS_RW */
919 	vol->serial_no = le64_to_cpu(b->volume_serial_number);
920 	ntfs_debug("vol->serial_no = 0x%llx",
921 			(unsigned long long)vol->serial_no);
922 	return true;
923 }
924 
925 /**
926  * ntfs_setup_allocators - initialize the cluster and mft allocators
927  * @vol:	volume structure for which to setup the allocators
928  *
929  * Setup the cluster (lcn) and mft allocators to the starting values.
930  */
931 static void ntfs_setup_allocators(ntfs_volume *vol)
932 {
933 #ifdef NTFS_RW
934 	LCN mft_zone_size, mft_lcn;
935 #endif /* NTFS_RW */
936 
937 	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
938 			vol->mft_zone_multiplier);
939 #ifdef NTFS_RW
940 	/* Determine the size of the MFT zone. */
941 	mft_zone_size = vol->nr_clusters;
942 	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
943 	case 4:
944 		mft_zone_size >>= 1;			/* 50%   */
945 		break;
946 	case 3:
947 		mft_zone_size = (mft_zone_size +
948 				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
949 		break;
950 	case 2:
951 		mft_zone_size >>= 2;			/* 25%   */
952 		break;
953 	/* case 1: */
954 	default:
955 		mft_zone_size >>= 3;			/* 12.5% */
956 		break;
957 	}
958 	/* Setup the mft zone. */
959 	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
960 	ntfs_debug("vol->mft_zone_pos = 0x%llx",
961 			(unsigned long long)vol->mft_zone_pos);
962 	/*
963 	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
964 	 * source) and if the actual mft_lcn is in the expected place or even
965 	 * further to the front of the volume, extend the mft_zone to cover the
966 	 * beginning of the volume as well.  This is in order to protect the
967 	 * area reserved for the mft bitmap as well within the mft_zone itself.
968 	 * On non-standard volumes we do not protect it as the overhead would
969 	 * be higher than the speed increase we would get by doing it.
970 	 */
971 	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
972 	if (mft_lcn * vol->cluster_size < 16 * 1024)
973 		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
974 				vol->cluster_size;
975 	if (vol->mft_zone_start <= mft_lcn)
976 		vol->mft_zone_start = 0;
977 	ntfs_debug("vol->mft_zone_start = 0x%llx",
978 			(unsigned long long)vol->mft_zone_start);
979 	/*
980 	 * Need to cap the mft zone on non-standard volumes so that it does
981 	 * not point outside the boundaries of the volume.  We do this by
982 	 * halving the zone size until we are inside the volume.
983 	 */
984 	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
985 	while (vol->mft_zone_end >= vol->nr_clusters) {
986 		mft_zone_size >>= 1;
987 		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
988 	}
989 	ntfs_debug("vol->mft_zone_end = 0x%llx",
990 			(unsigned long long)vol->mft_zone_end);
991 	/*
992 	 * Set the current position within each data zone to the start of the
993 	 * respective zone.
994 	 */
995 	vol->data1_zone_pos = vol->mft_zone_end;
996 	ntfs_debug("vol->data1_zone_pos = 0x%llx",
997 			(unsigned long long)vol->data1_zone_pos);
998 	vol->data2_zone_pos = 0;
999 	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1000 			(unsigned long long)vol->data2_zone_pos);
1001 
1002 	/* Set the mft data allocation position to mft record 24. */
1003 	vol->mft_data_pos = 24;
1004 	ntfs_debug("vol->mft_data_pos = 0x%llx",
1005 			(unsigned long long)vol->mft_data_pos);
1006 #endif /* NTFS_RW */
1007 }
1008 
1009 #ifdef NTFS_RW
1010 
1011 /**
1012  * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1013  * @vol:	ntfs super block describing device whose mft mirror to load
1014  *
1015  * Return 'true' on success or 'false' on error.
1016  */
1017 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1018 {
1019 	struct inode *tmp_ino;
1020 	ntfs_inode *tmp_ni;
1021 
1022 	ntfs_debug("Entering.");
1023 	/* Get mft mirror inode. */
1024 	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1025 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1026 		if (!IS_ERR(tmp_ino))
1027 			iput(tmp_ino);
1028 		/* Caller will display error message. */
1029 		return false;
1030 	}
1031 	/*
1032 	 * Re-initialize some specifics about $MFTMirr's inode as
1033 	 * ntfs_read_inode() will have set up the default ones.
1034 	 */
1035 	/* Set uid and gid to root. */
1036 	tmp_ino->i_uid = tmp_ino->i_gid = 0;
1037 	/* Regular file.  No access for anyone. */
1038 	tmp_ino->i_mode = S_IFREG;
1039 	/* No VFS initiated operations allowed for $MFTMirr. */
1040 	tmp_ino->i_op = &ntfs_empty_inode_ops;
1041 	tmp_ino->i_fop = &ntfs_empty_file_ops;
1042 	/* Put in our special address space operations. */
1043 	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1044 	tmp_ni = NTFS_I(tmp_ino);
1045 	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1046 	NInoSetMstProtected(tmp_ni);
1047 	NInoSetSparseDisabled(tmp_ni);
1048 	/*
1049 	 * Set up our little cheat allowing us to reuse the async read io
1050 	 * completion handler for directories.
1051 	 */
1052 	tmp_ni->itype.index.block_size = vol->mft_record_size;
1053 	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1054 	vol->mftmirr_ino = tmp_ino;
1055 	ntfs_debug("Done.");
1056 	return true;
1057 }
1058 
1059 /**
1060  * check_mft_mirror - compare contents of the mft mirror with the mft
1061  * @vol:	ntfs super block describing device whose mft mirror to check
1062  *
1063  * Return 'true' on success or 'false' on error.
1064  *
1065  * Note, this function also results in the mft mirror runlist being completely
1066  * mapped into memory.  The mft mirror write code requires this and will BUG()
1067  * should it find an unmapped runlist element.
1068  */
1069 static bool check_mft_mirror(ntfs_volume *vol)
1070 {
1071 	struct super_block *sb = vol->sb;
1072 	ntfs_inode *mirr_ni;
1073 	struct page *mft_page, *mirr_page;
1074 	u8 *kmft, *kmirr;
1075 	runlist_element *rl, rl2[2];
1076 	pgoff_t index;
1077 	int mrecs_per_page, i;
1078 
1079 	ntfs_debug("Entering.");
1080 	/* Compare contents of $MFT and $MFTMirr. */
1081 	mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1082 	BUG_ON(!mrecs_per_page);
1083 	BUG_ON(!vol->mftmirr_size);
1084 	mft_page = mirr_page = NULL;
1085 	kmft = kmirr = NULL;
1086 	index = i = 0;
1087 	do {
1088 		u32 bytes;
1089 
1090 		/* Switch pages if necessary. */
1091 		if (!(i % mrecs_per_page)) {
1092 			if (index) {
1093 				ntfs_unmap_page(mft_page);
1094 				ntfs_unmap_page(mirr_page);
1095 			}
1096 			/* Get the $MFT page. */
1097 			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1098 					index);
1099 			if (IS_ERR(mft_page)) {
1100 				ntfs_error(sb, "Failed to read $MFT.");
1101 				return false;
1102 			}
1103 			kmft = page_address(mft_page);
1104 			/* Get the $MFTMirr page. */
1105 			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1106 					index);
1107 			if (IS_ERR(mirr_page)) {
1108 				ntfs_error(sb, "Failed to read $MFTMirr.");
1109 				goto mft_unmap_out;
1110 			}
1111 			kmirr = page_address(mirr_page);
1112 			++index;
1113 		}
1114 		/* Do not check the record if it is not in use. */
1115 		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1116 			/* Make sure the record is ok. */
1117 			if (ntfs_is_baad_recordp((le32*)kmft)) {
1118 				ntfs_error(sb, "Incomplete multi sector "
1119 						"transfer detected in mft "
1120 						"record %i.", i);
1121 mm_unmap_out:
1122 				ntfs_unmap_page(mirr_page);
1123 mft_unmap_out:
1124 				ntfs_unmap_page(mft_page);
1125 				return false;
1126 			}
1127 		}
1128 		/* Do not check the mirror record if it is not in use. */
1129 		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1130 			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1131 				ntfs_error(sb, "Incomplete multi sector "
1132 						"transfer detected in mft "
1133 						"mirror record %i.", i);
1134 				goto mm_unmap_out;
1135 			}
1136 		}
1137 		/* Get the amount of data in the current record. */
1138 		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1139 		if (bytes < sizeof(MFT_RECORD_OLD) ||
1140 				bytes > vol->mft_record_size ||
1141 				ntfs_is_baad_recordp((le32*)kmft)) {
1142 			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1143 			if (bytes < sizeof(MFT_RECORD_OLD) ||
1144 					bytes > vol->mft_record_size ||
1145 					ntfs_is_baad_recordp((le32*)kmirr))
1146 				bytes = vol->mft_record_size;
1147 		}
1148 		/* Compare the two records. */
1149 		if (memcmp(kmft, kmirr, bytes)) {
1150 			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1151 					"match.  Run ntfsfix or chkdsk.", i);
1152 			goto mm_unmap_out;
1153 		}
1154 		kmft += vol->mft_record_size;
1155 		kmirr += vol->mft_record_size;
1156 	} while (++i < vol->mftmirr_size);
1157 	/* Release the last pages. */
1158 	ntfs_unmap_page(mft_page);
1159 	ntfs_unmap_page(mirr_page);
1160 
1161 	/* Construct the mft mirror runlist by hand. */
1162 	rl2[0].vcn = 0;
1163 	rl2[0].lcn = vol->mftmirr_lcn;
1164 	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1165 			vol->cluster_size - 1) / vol->cluster_size;
1166 	rl2[1].vcn = rl2[0].length;
1167 	rl2[1].lcn = LCN_ENOENT;
1168 	rl2[1].length = 0;
1169 	/*
1170 	 * Because we have just read all of the mft mirror, we know we have
1171 	 * mapped the full runlist for it.
1172 	 */
1173 	mirr_ni = NTFS_I(vol->mftmirr_ino);
1174 	down_read(&mirr_ni->runlist.lock);
1175 	rl = mirr_ni->runlist.rl;
1176 	/* Compare the two runlists.  They must be identical. */
1177 	i = 0;
1178 	do {
1179 		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1180 				rl2[i].length != rl[i].length) {
1181 			ntfs_error(sb, "$MFTMirr location mismatch.  "
1182 					"Run chkdsk.");
1183 			up_read(&mirr_ni->runlist.lock);
1184 			return false;
1185 		}
1186 	} while (rl2[i++].length);
1187 	up_read(&mirr_ni->runlist.lock);
1188 	ntfs_debug("Done.");
1189 	return true;
1190 }
1191 
1192 /**
1193  * load_and_check_logfile - load and check the logfile inode for a volume
1194  * @vol:	ntfs super block describing device whose logfile to load
1195  *
1196  * Return 'true' on success or 'false' on error.
1197  */
1198 static bool load_and_check_logfile(ntfs_volume *vol,
1199 		RESTART_PAGE_HEADER **rp)
1200 {
1201 	struct inode *tmp_ino;
1202 
1203 	ntfs_debug("Entering.");
1204 	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1205 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1206 		if (!IS_ERR(tmp_ino))
1207 			iput(tmp_ino);
1208 		/* Caller will display error message. */
1209 		return false;
1210 	}
1211 	if (!ntfs_check_logfile(tmp_ino, rp)) {
1212 		iput(tmp_ino);
1213 		/* ntfs_check_logfile() will have displayed error output. */
1214 		return false;
1215 	}
1216 	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1217 	vol->logfile_ino = tmp_ino;
1218 	ntfs_debug("Done.");
1219 	return true;
1220 }
1221 
1222 #define NTFS_HIBERFIL_HEADER_SIZE	4096
1223 
1224 /**
1225  * check_windows_hibernation_status - check if Windows is suspended on a volume
1226  * @vol:	ntfs super block of device to check
1227  *
1228  * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1229  * looking for the file hiberfil.sys in the root directory of the volume.  If
1230  * the file is not present Windows is definitely not suspended.
1231  *
1232  * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1233  * definitely suspended (this volume is not the system volume).  Caveat:  on a
1234  * system with many volumes it is possible that the < 4kiB check is bogus but
1235  * for now this should do fine.
1236  *
1237  * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1238  * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1239  * Windows is definitely suspended.  If it is completely full of zeroes,
1240  * Windows is definitely not hibernated.  Any other case is treated as if
1241  * Windows is suspended.  This caters for the above mentioned caveat of a
1242  * system with many volumes where no "hibr" magic would be present and there is
1243  * no zero header.
1244  *
1245  * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1246  * hibernated on the volume, and -errno on error.
1247  */
1248 static int check_windows_hibernation_status(ntfs_volume *vol)
1249 {
1250 	MFT_REF mref;
1251 	struct inode *vi;
1252 	ntfs_inode *ni;
1253 	struct page *page;
1254 	u32 *kaddr, *kend;
1255 	ntfs_name *name = NULL;
1256 	int ret = 1;
1257 	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1258 			cpu_to_le16('i'), cpu_to_le16('b'),
1259 			cpu_to_le16('e'), cpu_to_le16('r'),
1260 			cpu_to_le16('f'), cpu_to_le16('i'),
1261 			cpu_to_le16('l'), cpu_to_le16('.'),
1262 			cpu_to_le16('s'), cpu_to_le16('y'),
1263 			cpu_to_le16('s'), 0 };
1264 
1265 	ntfs_debug("Entering.");
1266 	/*
1267 	 * Find the inode number for the hibernation file by looking up the
1268 	 * filename hiberfil.sys in the root directory.
1269 	 */
1270 	mutex_lock(&vol->root_ino->i_mutex);
1271 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1272 			&name);
1273 	mutex_unlock(&vol->root_ino->i_mutex);
1274 	if (IS_ERR_MREF(mref)) {
1275 		ret = MREF_ERR(mref);
1276 		/* If the file does not exist, Windows is not hibernated. */
1277 		if (ret == -ENOENT) {
1278 			ntfs_debug("hiberfil.sys not present.  Windows is not "
1279 					"hibernated on the volume.");
1280 			return 0;
1281 		}
1282 		/* A real error occured. */
1283 		ntfs_error(vol->sb, "Failed to find inode number for "
1284 				"hiberfil.sys.");
1285 		return ret;
1286 	}
1287 	/* We do not care for the type of match that was found. */
1288 	kfree(name);
1289 	/* Get the inode. */
1290 	vi = ntfs_iget(vol->sb, MREF(mref));
1291 	if (IS_ERR(vi) || is_bad_inode(vi)) {
1292 		if (!IS_ERR(vi))
1293 			iput(vi);
1294 		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1295 		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1296 	}
1297 	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1298 		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1299 				"Windows is hibernated on the volume.  This "
1300 				"is not the system volume.", i_size_read(vi));
1301 		goto iput_out;
1302 	}
1303 	ni = NTFS_I(vi);
1304 	page = ntfs_map_page(vi->i_mapping, 0);
1305 	if (IS_ERR(page)) {
1306 		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1307 		ret = PTR_ERR(page);
1308 		goto iput_out;
1309 	}
1310 	kaddr = (u32*)page_address(page);
1311 	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1312 		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1313 				"hibernated on the volume.  This is the "
1314 				"system volume.");
1315 		goto unm_iput_out;
1316 	}
1317 	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1318 	do {
1319 		if (unlikely(*kaddr)) {
1320 			ntfs_debug("hiberfil.sys is larger than 4kiB "
1321 					"(0x%llx), does not contain the "
1322 					"\"hibr\" magic, and does not have a "
1323 					"zero header.  Windows is hibernated "
1324 					"on the volume.  This is not the "
1325 					"system volume.", i_size_read(vi));
1326 			goto unm_iput_out;
1327 		}
1328 	} while (++kaddr < kend);
1329 	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1330 			"hibernated on the volume.  This is the system "
1331 			"volume.");
1332 	ret = 0;
1333 unm_iput_out:
1334 	ntfs_unmap_page(page);
1335 iput_out:
1336 	iput(vi);
1337 	return ret;
1338 }
1339 
1340 /**
1341  * load_and_init_quota - load and setup the quota file for a volume if present
1342  * @vol:	ntfs super block describing device whose quota file to load
1343  *
1344  * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1345  * leave vol->quota_ino as NULL and return success.
1346  */
1347 static bool load_and_init_quota(ntfs_volume *vol)
1348 {
1349 	MFT_REF mref;
1350 	struct inode *tmp_ino;
1351 	ntfs_name *name = NULL;
1352 	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1353 			cpu_to_le16('Q'), cpu_to_le16('u'),
1354 			cpu_to_le16('o'), cpu_to_le16('t'),
1355 			cpu_to_le16('a'), 0 };
1356 	static ntfschar Q[3] = { cpu_to_le16('$'),
1357 			cpu_to_le16('Q'), 0 };
1358 
1359 	ntfs_debug("Entering.");
1360 	/*
1361 	 * Find the inode number for the quota file by looking up the filename
1362 	 * $Quota in the extended system files directory $Extend.
1363 	 */
1364 	mutex_lock(&vol->extend_ino->i_mutex);
1365 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1366 			&name);
1367 	mutex_unlock(&vol->extend_ino->i_mutex);
1368 	if (IS_ERR_MREF(mref)) {
1369 		/*
1370 		 * If the file does not exist, quotas are disabled and have
1371 		 * never been enabled on this volume, just return success.
1372 		 */
1373 		if (MREF_ERR(mref) == -ENOENT) {
1374 			ntfs_debug("$Quota not present.  Volume does not have "
1375 					"quotas enabled.");
1376 			/*
1377 			 * No need to try to set quotas out of date if they are
1378 			 * not enabled.
1379 			 */
1380 			NVolSetQuotaOutOfDate(vol);
1381 			return true;
1382 		}
1383 		/* A real error occured. */
1384 		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1385 		return false;
1386 	}
1387 	/* We do not care for the type of match that was found. */
1388 	kfree(name);
1389 	/* Get the inode. */
1390 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1391 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1392 		if (!IS_ERR(tmp_ino))
1393 			iput(tmp_ino);
1394 		ntfs_error(vol->sb, "Failed to load $Quota.");
1395 		return false;
1396 	}
1397 	vol->quota_ino = tmp_ino;
1398 	/* Get the $Q index allocation attribute. */
1399 	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1400 	if (IS_ERR(tmp_ino)) {
1401 		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1402 		return false;
1403 	}
1404 	vol->quota_q_ino = tmp_ino;
1405 	ntfs_debug("Done.");
1406 	return true;
1407 }
1408 
1409 /**
1410  * load_and_init_usnjrnl - load and setup the transaction log if present
1411  * @vol:	ntfs super block describing device whose usnjrnl file to load
1412  *
1413  * Return 'true' on success or 'false' on error.
1414  *
1415  * If $UsnJrnl is not present or in the process of being disabled, we set
1416  * NVolUsnJrnlStamped() and return success.
1417  *
1418  * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1419  * i.e. transaction logging has only just been enabled or the journal has been
1420  * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1421  * and return success.
1422  */
1423 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1424 {
1425 	MFT_REF mref;
1426 	struct inode *tmp_ino;
1427 	ntfs_inode *tmp_ni;
1428 	struct page *page;
1429 	ntfs_name *name = NULL;
1430 	USN_HEADER *uh;
1431 	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1432 			cpu_to_le16('U'), cpu_to_le16('s'),
1433 			cpu_to_le16('n'), cpu_to_le16('J'),
1434 			cpu_to_le16('r'), cpu_to_le16('n'),
1435 			cpu_to_le16('l'), 0 };
1436 	static ntfschar Max[5] = { cpu_to_le16('$'),
1437 			cpu_to_le16('M'), cpu_to_le16('a'),
1438 			cpu_to_le16('x'), 0 };
1439 	static ntfschar J[3] = { cpu_to_le16('$'),
1440 			cpu_to_le16('J'), 0 };
1441 
1442 	ntfs_debug("Entering.");
1443 	/*
1444 	 * Find the inode number for the transaction log file by looking up the
1445 	 * filename $UsnJrnl in the extended system files directory $Extend.
1446 	 */
1447 	mutex_lock(&vol->extend_ino->i_mutex);
1448 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1449 			&name);
1450 	mutex_unlock(&vol->extend_ino->i_mutex);
1451 	if (IS_ERR_MREF(mref)) {
1452 		/*
1453 		 * If the file does not exist, transaction logging is disabled,
1454 		 * just return success.
1455 		 */
1456 		if (MREF_ERR(mref) == -ENOENT) {
1457 			ntfs_debug("$UsnJrnl not present.  Volume does not "
1458 					"have transaction logging enabled.");
1459 not_enabled:
1460 			/*
1461 			 * No need to try to stamp the transaction log if
1462 			 * transaction logging is not enabled.
1463 			 */
1464 			NVolSetUsnJrnlStamped(vol);
1465 			return true;
1466 		}
1467 		/* A real error occured. */
1468 		ntfs_error(vol->sb, "Failed to find inode number for "
1469 				"$UsnJrnl.");
1470 		return false;
1471 	}
1472 	/* We do not care for the type of match that was found. */
1473 	kfree(name);
1474 	/* Get the inode. */
1475 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1476 	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1477 		if (!IS_ERR(tmp_ino))
1478 			iput(tmp_ino);
1479 		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1480 		return false;
1481 	}
1482 	vol->usnjrnl_ino = tmp_ino;
1483 	/*
1484 	 * If the transaction log is in the process of being deleted, we can
1485 	 * ignore it.
1486 	 */
1487 	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1488 		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1489 				"Volume does not have transaction logging "
1490 				"enabled.");
1491 		goto not_enabled;
1492 	}
1493 	/* Get the $DATA/$Max attribute. */
1494 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1495 	if (IS_ERR(tmp_ino)) {
1496 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1497 				"attribute.");
1498 		return false;
1499 	}
1500 	vol->usnjrnl_max_ino = tmp_ino;
1501 	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1502 		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1503 				"attribute (size is 0x%llx but should be at "
1504 				"least 0x%zx bytes).", i_size_read(tmp_ino),
1505 				sizeof(USN_HEADER));
1506 		return false;
1507 	}
1508 	/* Get the $DATA/$J attribute. */
1509 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1510 	if (IS_ERR(tmp_ino)) {
1511 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1512 				"attribute.");
1513 		return false;
1514 	}
1515 	vol->usnjrnl_j_ino = tmp_ino;
1516 	/* Verify $J is non-resident and sparse. */
1517 	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1518 	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1519 		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1520 				"and/or not sparse.");
1521 		return false;
1522 	}
1523 	/* Read the USN_HEADER from $DATA/$Max. */
1524 	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1525 	if (IS_ERR(page)) {
1526 		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1527 				"attribute.");
1528 		return false;
1529 	}
1530 	uh = (USN_HEADER*)page_address(page);
1531 	/* Sanity check the $Max. */
1532 	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1533 			sle64_to_cpu(uh->maximum_size))) {
1534 		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1535 				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1536 				(long long)sle64_to_cpu(uh->allocation_delta),
1537 				(long long)sle64_to_cpu(uh->maximum_size));
1538 		ntfs_unmap_page(page);
1539 		return false;
1540 	}
1541 	/*
1542 	 * If the transaction log has been stamped and nothing has been written
1543 	 * to it since, we do not need to stamp it.
1544 	 */
1545 	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1546 			i_size_read(vol->usnjrnl_j_ino))) {
1547 		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1548 				i_size_read(vol->usnjrnl_j_ino))) {
1549 			ntfs_unmap_page(page);
1550 			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1551 					"logged since it was last stamped.  "
1552 					"Treating this as if the volume does "
1553 					"not have transaction logging "
1554 					"enabled.");
1555 			goto not_enabled;
1556 		}
1557 		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1558 				"which is out of bounds (0x%llx).  $UsnJrnl "
1559 				"is corrupt.",
1560 				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1561 				i_size_read(vol->usnjrnl_j_ino));
1562 		ntfs_unmap_page(page);
1563 		return false;
1564 	}
1565 	ntfs_unmap_page(page);
1566 	ntfs_debug("Done.");
1567 	return true;
1568 }
1569 
1570 /**
1571  * load_and_init_attrdef - load the attribute definitions table for a volume
1572  * @vol:	ntfs super block describing device whose attrdef to load
1573  *
1574  * Return 'true' on success or 'false' on error.
1575  */
1576 static bool load_and_init_attrdef(ntfs_volume *vol)
1577 {
1578 	loff_t i_size;
1579 	struct super_block *sb = vol->sb;
1580 	struct inode *ino;
1581 	struct page *page;
1582 	pgoff_t index, max_index;
1583 	unsigned int size;
1584 
1585 	ntfs_debug("Entering.");
1586 	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1587 	ino = ntfs_iget(sb, FILE_AttrDef);
1588 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1589 		if (!IS_ERR(ino))
1590 			iput(ino);
1591 		goto failed;
1592 	}
1593 	NInoSetSparseDisabled(NTFS_I(ino));
1594 	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1595 	i_size = i_size_read(ino);
1596 	if (i_size <= 0 || i_size > 0x7fffffff)
1597 		goto iput_failed;
1598 	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1599 	if (!vol->attrdef)
1600 		goto iput_failed;
1601 	index = 0;
1602 	max_index = i_size >> PAGE_CACHE_SHIFT;
1603 	size = PAGE_CACHE_SIZE;
1604 	while (index < max_index) {
1605 		/* Read the attrdef table and copy it into the linear buffer. */
1606 read_partial_attrdef_page:
1607 		page = ntfs_map_page(ino->i_mapping, index);
1608 		if (IS_ERR(page))
1609 			goto free_iput_failed;
1610 		memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1611 				page_address(page), size);
1612 		ntfs_unmap_page(page);
1613 	};
1614 	if (size == PAGE_CACHE_SIZE) {
1615 		size = i_size & ~PAGE_CACHE_MASK;
1616 		if (size)
1617 			goto read_partial_attrdef_page;
1618 	}
1619 	vol->attrdef_size = i_size;
1620 	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1621 	iput(ino);
1622 	return true;
1623 free_iput_failed:
1624 	ntfs_free(vol->attrdef);
1625 	vol->attrdef = NULL;
1626 iput_failed:
1627 	iput(ino);
1628 failed:
1629 	ntfs_error(sb, "Failed to initialize attribute definition table.");
1630 	return false;
1631 }
1632 
1633 #endif /* NTFS_RW */
1634 
1635 /**
1636  * load_and_init_upcase - load the upcase table for an ntfs volume
1637  * @vol:	ntfs super block describing device whose upcase to load
1638  *
1639  * Return 'true' on success or 'false' on error.
1640  */
1641 static bool load_and_init_upcase(ntfs_volume *vol)
1642 {
1643 	loff_t i_size;
1644 	struct super_block *sb = vol->sb;
1645 	struct inode *ino;
1646 	struct page *page;
1647 	pgoff_t index, max_index;
1648 	unsigned int size;
1649 	int i, max;
1650 
1651 	ntfs_debug("Entering.");
1652 	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1653 	ino = ntfs_iget(sb, FILE_UpCase);
1654 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1655 		if (!IS_ERR(ino))
1656 			iput(ino);
1657 		goto upcase_failed;
1658 	}
1659 	/*
1660 	 * The upcase size must not be above 64k Unicode characters, must not
1661 	 * be zero and must be a multiple of sizeof(ntfschar).
1662 	 */
1663 	i_size = i_size_read(ino);
1664 	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1665 			i_size > 64ULL * 1024 * sizeof(ntfschar))
1666 		goto iput_upcase_failed;
1667 	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1668 	if (!vol->upcase)
1669 		goto iput_upcase_failed;
1670 	index = 0;
1671 	max_index = i_size >> PAGE_CACHE_SHIFT;
1672 	size = PAGE_CACHE_SIZE;
1673 	while (index < max_index) {
1674 		/* Read the upcase table and copy it into the linear buffer. */
1675 read_partial_upcase_page:
1676 		page = ntfs_map_page(ino->i_mapping, index);
1677 		if (IS_ERR(page))
1678 			goto iput_upcase_failed;
1679 		memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1680 				page_address(page), size);
1681 		ntfs_unmap_page(page);
1682 	};
1683 	if (size == PAGE_CACHE_SIZE) {
1684 		size = i_size & ~PAGE_CACHE_MASK;
1685 		if (size)
1686 			goto read_partial_upcase_page;
1687 	}
1688 	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1689 	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1690 			i_size, 64 * 1024 * sizeof(ntfschar));
1691 	iput(ino);
1692 	mutex_lock(&ntfs_lock);
1693 	if (!default_upcase) {
1694 		ntfs_debug("Using volume specified $UpCase since default is "
1695 				"not present.");
1696 		mutex_unlock(&ntfs_lock);
1697 		return true;
1698 	}
1699 	max = default_upcase_len;
1700 	if (max > vol->upcase_len)
1701 		max = vol->upcase_len;
1702 	for (i = 0; i < max; i++)
1703 		if (vol->upcase[i] != default_upcase[i])
1704 			break;
1705 	if (i == max) {
1706 		ntfs_free(vol->upcase);
1707 		vol->upcase = default_upcase;
1708 		vol->upcase_len = max;
1709 		ntfs_nr_upcase_users++;
1710 		mutex_unlock(&ntfs_lock);
1711 		ntfs_debug("Volume specified $UpCase matches default. Using "
1712 				"default.");
1713 		return true;
1714 	}
1715 	mutex_unlock(&ntfs_lock);
1716 	ntfs_debug("Using volume specified $UpCase since it does not match "
1717 			"the default.");
1718 	return true;
1719 iput_upcase_failed:
1720 	iput(ino);
1721 	ntfs_free(vol->upcase);
1722 	vol->upcase = NULL;
1723 upcase_failed:
1724 	mutex_lock(&ntfs_lock);
1725 	if (default_upcase) {
1726 		vol->upcase = default_upcase;
1727 		vol->upcase_len = default_upcase_len;
1728 		ntfs_nr_upcase_users++;
1729 		mutex_unlock(&ntfs_lock);
1730 		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1731 				"default.");
1732 		return true;
1733 	}
1734 	mutex_unlock(&ntfs_lock);
1735 	ntfs_error(sb, "Failed to initialize upcase table.");
1736 	return false;
1737 }
1738 
1739 /*
1740  * The lcn and mft bitmap inodes are NTFS-internal inodes with
1741  * their own special locking rules:
1742  */
1743 static struct lock_class_key
1744 	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1745 	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1746 
1747 /**
1748  * load_system_files - open the system files using normal functions
1749  * @vol:	ntfs super block describing device whose system files to load
1750  *
1751  * Open the system files with normal access functions and complete setting up
1752  * the ntfs super block @vol.
1753  *
1754  * Return 'true' on success or 'false' on error.
1755  */
1756 static bool load_system_files(ntfs_volume *vol)
1757 {
1758 	struct super_block *sb = vol->sb;
1759 	MFT_RECORD *m;
1760 	VOLUME_INFORMATION *vi;
1761 	ntfs_attr_search_ctx *ctx;
1762 #ifdef NTFS_RW
1763 	RESTART_PAGE_HEADER *rp;
1764 	int err;
1765 #endif /* NTFS_RW */
1766 
1767 	ntfs_debug("Entering.");
1768 #ifdef NTFS_RW
1769 	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1770 	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1771 		static const char *es1 = "Failed to load $MFTMirr";
1772 		static const char *es2 = "$MFTMirr does not match $MFT";
1773 		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1774 
1775 		/* If a read-write mount, convert it to a read-only mount. */
1776 		if (!(sb->s_flags & MS_RDONLY)) {
1777 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1778 					ON_ERRORS_CONTINUE))) {
1779 				ntfs_error(sb, "%s and neither on_errors="
1780 						"continue nor on_errors="
1781 						"remount-ro was specified%s",
1782 						!vol->mftmirr_ino ? es1 : es2,
1783 						es3);
1784 				goto iput_mirr_err_out;
1785 			}
1786 			sb->s_flags |= MS_RDONLY;
1787 			ntfs_error(sb, "%s.  Mounting read-only%s",
1788 					!vol->mftmirr_ino ? es1 : es2, es3);
1789 		} else
1790 			ntfs_warning(sb, "%s.  Will not be able to remount "
1791 					"read-write%s",
1792 					!vol->mftmirr_ino ? es1 : es2, es3);
1793 		/* This will prevent a read-write remount. */
1794 		NVolSetErrors(vol);
1795 	}
1796 #endif /* NTFS_RW */
1797 	/* Get mft bitmap attribute inode. */
1798 	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1799 	if (IS_ERR(vol->mftbmp_ino)) {
1800 		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1801 		goto iput_mirr_err_out;
1802 	}
1803 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1804 			   &mftbmp_runlist_lock_key);
1805 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1806 			   &mftbmp_mrec_lock_key);
1807 	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1808 	if (!load_and_init_upcase(vol))
1809 		goto iput_mftbmp_err_out;
1810 #ifdef NTFS_RW
1811 	/*
1812 	 * Read attribute definitions table and setup @vol->attrdef and
1813 	 * @vol->attrdef_size.
1814 	 */
1815 	if (!load_and_init_attrdef(vol))
1816 		goto iput_upcase_err_out;
1817 #endif /* NTFS_RW */
1818 	/*
1819 	 * Get the cluster allocation bitmap inode and verify the size, no
1820 	 * need for any locking at this stage as we are already running
1821 	 * exclusively as we are mount in progress task.
1822 	 */
1823 	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1824 	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1825 		if (!IS_ERR(vol->lcnbmp_ino))
1826 			iput(vol->lcnbmp_ino);
1827 		goto bitmap_failed;
1828 	}
1829 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1830 			   &lcnbmp_runlist_lock_key);
1831 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1832 			   &lcnbmp_mrec_lock_key);
1833 
1834 	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1835 	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1836 		iput(vol->lcnbmp_ino);
1837 bitmap_failed:
1838 		ntfs_error(sb, "Failed to load $Bitmap.");
1839 		goto iput_attrdef_err_out;
1840 	}
1841 	/*
1842 	 * Get the volume inode and setup our cache of the volume flags and
1843 	 * version.
1844 	 */
1845 	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1846 	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1847 		if (!IS_ERR(vol->vol_ino))
1848 			iput(vol->vol_ino);
1849 volume_failed:
1850 		ntfs_error(sb, "Failed to load $Volume.");
1851 		goto iput_lcnbmp_err_out;
1852 	}
1853 	m = map_mft_record(NTFS_I(vol->vol_ino));
1854 	if (IS_ERR(m)) {
1855 iput_volume_failed:
1856 		iput(vol->vol_ino);
1857 		goto volume_failed;
1858 	}
1859 	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1860 		ntfs_error(sb, "Failed to get attribute search context.");
1861 		goto get_ctx_vol_failed;
1862 	}
1863 	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1864 			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1865 err_put_vol:
1866 		ntfs_attr_put_search_ctx(ctx);
1867 get_ctx_vol_failed:
1868 		unmap_mft_record(NTFS_I(vol->vol_ino));
1869 		goto iput_volume_failed;
1870 	}
1871 	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1872 			le16_to_cpu(ctx->attr->data.resident.value_offset));
1873 	/* Some bounds checks. */
1874 	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1875 			le32_to_cpu(ctx->attr->data.resident.value_length) >
1876 			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1877 		goto err_put_vol;
1878 	/* Copy the volume flags and version to the ntfs_volume structure. */
1879 	vol->vol_flags = vi->flags;
1880 	vol->major_ver = vi->major_ver;
1881 	vol->minor_ver = vi->minor_ver;
1882 	ntfs_attr_put_search_ctx(ctx);
1883 	unmap_mft_record(NTFS_I(vol->vol_ino));
1884 	printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1885 			vol->minor_ver);
1886 	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1887 		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1888 				"volume version %i.%i (need at least version "
1889 				"3.0).", vol->major_ver, vol->minor_ver);
1890 		NVolClearSparseEnabled(vol);
1891 	}
1892 #ifdef NTFS_RW
1893 	/* Make sure that no unsupported volume flags are set. */
1894 	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1895 		static const char *es1a = "Volume is dirty";
1896 		static const char *es1b = "Volume has been modified by chkdsk";
1897 		static const char *es1c = "Volume has unsupported flags set";
1898 		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1899 		static const char *es2b = ".  Mount in Windows.";
1900 		const char *es1, *es2;
1901 
1902 		es2 = es2a;
1903 		if (vol->vol_flags & VOLUME_IS_DIRTY)
1904 			es1 = es1a;
1905 		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1906 			es1 = es1b;
1907 			es2 = es2b;
1908 		} else {
1909 			es1 = es1c;
1910 			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1911 					"encountered.",
1912 					(unsigned)le16_to_cpu(vol->vol_flags));
1913 		}
1914 		/* If a read-write mount, convert it to a read-only mount. */
1915 		if (!(sb->s_flags & MS_RDONLY)) {
1916 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1917 					ON_ERRORS_CONTINUE))) {
1918 				ntfs_error(sb, "%s and neither on_errors="
1919 						"continue nor on_errors="
1920 						"remount-ro was specified%s",
1921 						es1, es2);
1922 				goto iput_vol_err_out;
1923 			}
1924 			sb->s_flags |= MS_RDONLY;
1925 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1926 		} else
1927 			ntfs_warning(sb, "%s.  Will not be able to remount "
1928 					"read-write%s", es1, es2);
1929 		/*
1930 		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1931 		 * flags which we need to do in case any flags have changed.
1932 		 */
1933 	}
1934 	/*
1935 	 * Get the inode for the logfile, check it and determine if the volume
1936 	 * was shutdown cleanly.
1937 	 */
1938 	rp = NULL;
1939 	if (!load_and_check_logfile(vol, &rp) ||
1940 			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1941 		static const char *es1a = "Failed to load $LogFile";
1942 		static const char *es1b = "$LogFile is not clean";
1943 		static const char *es2 = ".  Mount in Windows.";
1944 		const char *es1;
1945 
1946 		es1 = !vol->logfile_ino ? es1a : es1b;
1947 		/* If a read-write mount, convert it to a read-only mount. */
1948 		if (!(sb->s_flags & MS_RDONLY)) {
1949 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1950 					ON_ERRORS_CONTINUE))) {
1951 				ntfs_error(sb, "%s and neither on_errors="
1952 						"continue nor on_errors="
1953 						"remount-ro was specified%s",
1954 						es1, es2);
1955 				if (vol->logfile_ino) {
1956 					BUG_ON(!rp);
1957 					ntfs_free(rp);
1958 				}
1959 				goto iput_logfile_err_out;
1960 			}
1961 			sb->s_flags |= MS_RDONLY;
1962 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1963 		} else
1964 			ntfs_warning(sb, "%s.  Will not be able to remount "
1965 					"read-write%s", es1, es2);
1966 		/* This will prevent a read-write remount. */
1967 		NVolSetErrors(vol);
1968 	}
1969 	ntfs_free(rp);
1970 #endif /* NTFS_RW */
1971 	/* Get the root directory inode so we can do path lookups. */
1972 	vol->root_ino = ntfs_iget(sb, FILE_root);
1973 	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1974 		if (!IS_ERR(vol->root_ino))
1975 			iput(vol->root_ino);
1976 		ntfs_error(sb, "Failed to load root directory.");
1977 		goto iput_logfile_err_out;
1978 	}
1979 #ifdef NTFS_RW
1980 	/*
1981 	 * Check if Windows is suspended to disk on the target volume.  If it
1982 	 * is hibernated, we must not write *anything* to the disk so set
1983 	 * NVolErrors() without setting the dirty volume flag and mount
1984 	 * read-only.  This will prevent read-write remounting and it will also
1985 	 * prevent all writes.
1986 	 */
1987 	err = check_windows_hibernation_status(vol);
1988 	if (unlikely(err)) {
1989 		static const char *es1a = "Failed to determine if Windows is "
1990 				"hibernated";
1991 		static const char *es1b = "Windows is hibernated";
1992 		static const char *es2 = ".  Run chkdsk.";
1993 		const char *es1;
1994 
1995 		es1 = err < 0 ? es1a : es1b;
1996 		/* If a read-write mount, convert it to a read-only mount. */
1997 		if (!(sb->s_flags & MS_RDONLY)) {
1998 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1999 					ON_ERRORS_CONTINUE))) {
2000 				ntfs_error(sb, "%s and neither on_errors="
2001 						"continue nor on_errors="
2002 						"remount-ro was specified%s",
2003 						es1, es2);
2004 				goto iput_root_err_out;
2005 			}
2006 			sb->s_flags |= MS_RDONLY;
2007 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2008 		} else
2009 			ntfs_warning(sb, "%s.  Will not be able to remount "
2010 					"read-write%s", es1, es2);
2011 		/* This will prevent a read-write remount. */
2012 		NVolSetErrors(vol);
2013 	}
2014 	/* If (still) a read-write mount, mark the volume dirty. */
2015 	if (!(sb->s_flags & MS_RDONLY) &&
2016 			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2017 		static const char *es1 = "Failed to set dirty bit in volume "
2018 				"information flags";
2019 		static const char *es2 = ".  Run chkdsk.";
2020 
2021 		/* Convert to a read-only mount. */
2022 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2023 				ON_ERRORS_CONTINUE))) {
2024 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2025 					"on_errors=remount-ro was specified%s",
2026 					es1, es2);
2027 			goto iput_root_err_out;
2028 		}
2029 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2030 		sb->s_flags |= MS_RDONLY;
2031 		/*
2032 		 * Do not set NVolErrors() because ntfs_remount() might manage
2033 		 * to set the dirty flag in which case all would be well.
2034 		 */
2035 	}
2036 #if 0
2037 	// TODO: Enable this code once we start modifying anything that is
2038 	//	 different between NTFS 1.2 and 3.x...
2039 	/*
2040 	 * If (still) a read-write mount, set the NT4 compatibility flag on
2041 	 * newer NTFS version volumes.
2042 	 */
2043 	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2044 			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2045 		static const char *es1 = "Failed to set NT4 compatibility flag";
2046 		static const char *es2 = ".  Run chkdsk.";
2047 
2048 		/* Convert to a read-only mount. */
2049 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2050 				ON_ERRORS_CONTINUE))) {
2051 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2052 					"on_errors=remount-ro was specified%s",
2053 					es1, es2);
2054 			goto iput_root_err_out;
2055 		}
2056 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2057 		sb->s_flags |= MS_RDONLY;
2058 		NVolSetErrors(vol);
2059 	}
2060 #endif
2061 	/* If (still) a read-write mount, empty the logfile. */
2062 	if (!(sb->s_flags & MS_RDONLY) &&
2063 			!ntfs_empty_logfile(vol->logfile_ino)) {
2064 		static const char *es1 = "Failed to empty $LogFile";
2065 		static const char *es2 = ".  Mount in Windows.";
2066 
2067 		/* Convert to a read-only mount. */
2068 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2069 				ON_ERRORS_CONTINUE))) {
2070 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2071 					"on_errors=remount-ro was specified%s",
2072 					es1, es2);
2073 			goto iput_root_err_out;
2074 		}
2075 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2076 		sb->s_flags |= MS_RDONLY;
2077 		NVolSetErrors(vol);
2078 	}
2079 #endif /* NTFS_RW */
2080 	/* If on NTFS versions before 3.0, we are done. */
2081 	if (unlikely(vol->major_ver < 3))
2082 		return true;
2083 	/* NTFS 3.0+ specific initialization. */
2084 	/* Get the security descriptors inode. */
2085 	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2086 	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2087 		if (!IS_ERR(vol->secure_ino))
2088 			iput(vol->secure_ino);
2089 		ntfs_error(sb, "Failed to load $Secure.");
2090 		goto iput_root_err_out;
2091 	}
2092 	// TODO: Initialize security.
2093 	/* Get the extended system files' directory inode. */
2094 	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2095 	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2096 		if (!IS_ERR(vol->extend_ino))
2097 			iput(vol->extend_ino);
2098 		ntfs_error(sb, "Failed to load $Extend.");
2099 		goto iput_sec_err_out;
2100 	}
2101 #ifdef NTFS_RW
2102 	/* Find the quota file, load it if present, and set it up. */
2103 	if (!load_and_init_quota(vol)) {
2104 		static const char *es1 = "Failed to load $Quota";
2105 		static const char *es2 = ".  Run chkdsk.";
2106 
2107 		/* If a read-write mount, convert it to a read-only mount. */
2108 		if (!(sb->s_flags & MS_RDONLY)) {
2109 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2110 					ON_ERRORS_CONTINUE))) {
2111 				ntfs_error(sb, "%s and neither on_errors="
2112 						"continue nor on_errors="
2113 						"remount-ro was specified%s",
2114 						es1, es2);
2115 				goto iput_quota_err_out;
2116 			}
2117 			sb->s_flags |= MS_RDONLY;
2118 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2119 		} else
2120 			ntfs_warning(sb, "%s.  Will not be able to remount "
2121 					"read-write%s", es1, es2);
2122 		/* This will prevent a read-write remount. */
2123 		NVolSetErrors(vol);
2124 	}
2125 	/* If (still) a read-write mount, mark the quotas out of date. */
2126 	if (!(sb->s_flags & MS_RDONLY) &&
2127 			!ntfs_mark_quotas_out_of_date(vol)) {
2128 		static const char *es1 = "Failed to mark quotas out of date";
2129 		static const char *es2 = ".  Run chkdsk.";
2130 
2131 		/* Convert to a read-only mount. */
2132 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2133 				ON_ERRORS_CONTINUE))) {
2134 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2135 					"on_errors=remount-ro was specified%s",
2136 					es1, es2);
2137 			goto iput_quota_err_out;
2138 		}
2139 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2140 		sb->s_flags |= MS_RDONLY;
2141 		NVolSetErrors(vol);
2142 	}
2143 	/*
2144 	 * Find the transaction log file ($UsnJrnl), load it if present, check
2145 	 * it, and set it up.
2146 	 */
2147 	if (!load_and_init_usnjrnl(vol)) {
2148 		static const char *es1 = "Failed to load $UsnJrnl";
2149 		static const char *es2 = ".  Run chkdsk.";
2150 
2151 		/* If a read-write mount, convert it to a read-only mount. */
2152 		if (!(sb->s_flags & MS_RDONLY)) {
2153 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2154 					ON_ERRORS_CONTINUE))) {
2155 				ntfs_error(sb, "%s and neither on_errors="
2156 						"continue nor on_errors="
2157 						"remount-ro was specified%s",
2158 						es1, es2);
2159 				goto iput_usnjrnl_err_out;
2160 			}
2161 			sb->s_flags |= MS_RDONLY;
2162 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2163 		} else
2164 			ntfs_warning(sb, "%s.  Will not be able to remount "
2165 					"read-write%s", es1, es2);
2166 		/* This will prevent a read-write remount. */
2167 		NVolSetErrors(vol);
2168 	}
2169 	/* If (still) a read-write mount, stamp the transaction log. */
2170 	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2171 		static const char *es1 = "Failed to stamp transaction log "
2172 				"($UsnJrnl)";
2173 		static const char *es2 = ".  Run chkdsk.";
2174 
2175 		/* Convert to a read-only mount. */
2176 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2177 				ON_ERRORS_CONTINUE))) {
2178 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2179 					"on_errors=remount-ro was specified%s",
2180 					es1, es2);
2181 			goto iput_usnjrnl_err_out;
2182 		}
2183 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2184 		sb->s_flags |= MS_RDONLY;
2185 		NVolSetErrors(vol);
2186 	}
2187 #endif /* NTFS_RW */
2188 	return true;
2189 #ifdef NTFS_RW
2190 iput_usnjrnl_err_out:
2191 	if (vol->usnjrnl_j_ino)
2192 		iput(vol->usnjrnl_j_ino);
2193 	if (vol->usnjrnl_max_ino)
2194 		iput(vol->usnjrnl_max_ino);
2195 	if (vol->usnjrnl_ino)
2196 		iput(vol->usnjrnl_ino);
2197 iput_quota_err_out:
2198 	if (vol->quota_q_ino)
2199 		iput(vol->quota_q_ino);
2200 	if (vol->quota_ino)
2201 		iput(vol->quota_ino);
2202 	iput(vol->extend_ino);
2203 #endif /* NTFS_RW */
2204 iput_sec_err_out:
2205 	iput(vol->secure_ino);
2206 iput_root_err_out:
2207 	iput(vol->root_ino);
2208 iput_logfile_err_out:
2209 #ifdef NTFS_RW
2210 	if (vol->logfile_ino)
2211 		iput(vol->logfile_ino);
2212 iput_vol_err_out:
2213 #endif /* NTFS_RW */
2214 	iput(vol->vol_ino);
2215 iput_lcnbmp_err_out:
2216 	iput(vol->lcnbmp_ino);
2217 iput_attrdef_err_out:
2218 	vol->attrdef_size = 0;
2219 	if (vol->attrdef) {
2220 		ntfs_free(vol->attrdef);
2221 		vol->attrdef = NULL;
2222 	}
2223 #ifdef NTFS_RW
2224 iput_upcase_err_out:
2225 #endif /* NTFS_RW */
2226 	vol->upcase_len = 0;
2227 	mutex_lock(&ntfs_lock);
2228 	if (vol->upcase == default_upcase) {
2229 		ntfs_nr_upcase_users--;
2230 		vol->upcase = NULL;
2231 	}
2232 	mutex_unlock(&ntfs_lock);
2233 	if (vol->upcase) {
2234 		ntfs_free(vol->upcase);
2235 		vol->upcase = NULL;
2236 	}
2237 iput_mftbmp_err_out:
2238 	iput(vol->mftbmp_ino);
2239 iput_mirr_err_out:
2240 #ifdef NTFS_RW
2241 	if (vol->mftmirr_ino)
2242 		iput(vol->mftmirr_ino);
2243 #endif /* NTFS_RW */
2244 	return false;
2245 }
2246 
2247 /**
2248  * ntfs_put_super - called by the vfs to unmount a volume
2249  * @sb:		vfs superblock of volume to unmount
2250  *
2251  * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2252  * the volume is being unmounted (umount system call has been invoked) and it
2253  * releases all inodes and memory belonging to the NTFS specific part of the
2254  * super block.
2255  */
2256 static void ntfs_put_super(struct super_block *sb)
2257 {
2258 	ntfs_volume *vol = NTFS_SB(sb);
2259 
2260 	ntfs_debug("Entering.");
2261 
2262 	lock_kernel();
2263 
2264 #ifdef NTFS_RW
2265 	/*
2266 	 * Commit all inodes while they are still open in case some of them
2267 	 * cause others to be dirtied.
2268 	 */
2269 	ntfs_commit_inode(vol->vol_ino);
2270 
2271 	/* NTFS 3.0+ specific. */
2272 	if (vol->major_ver >= 3) {
2273 		if (vol->usnjrnl_j_ino)
2274 			ntfs_commit_inode(vol->usnjrnl_j_ino);
2275 		if (vol->usnjrnl_max_ino)
2276 			ntfs_commit_inode(vol->usnjrnl_max_ino);
2277 		if (vol->usnjrnl_ino)
2278 			ntfs_commit_inode(vol->usnjrnl_ino);
2279 		if (vol->quota_q_ino)
2280 			ntfs_commit_inode(vol->quota_q_ino);
2281 		if (vol->quota_ino)
2282 			ntfs_commit_inode(vol->quota_ino);
2283 		if (vol->extend_ino)
2284 			ntfs_commit_inode(vol->extend_ino);
2285 		if (vol->secure_ino)
2286 			ntfs_commit_inode(vol->secure_ino);
2287 	}
2288 
2289 	ntfs_commit_inode(vol->root_ino);
2290 
2291 	down_write(&vol->lcnbmp_lock);
2292 	ntfs_commit_inode(vol->lcnbmp_ino);
2293 	up_write(&vol->lcnbmp_lock);
2294 
2295 	down_write(&vol->mftbmp_lock);
2296 	ntfs_commit_inode(vol->mftbmp_ino);
2297 	up_write(&vol->mftbmp_lock);
2298 
2299 	if (vol->logfile_ino)
2300 		ntfs_commit_inode(vol->logfile_ino);
2301 
2302 	if (vol->mftmirr_ino)
2303 		ntfs_commit_inode(vol->mftmirr_ino);
2304 	ntfs_commit_inode(vol->mft_ino);
2305 
2306 	/*
2307 	 * If a read-write mount and no volume errors have occured, mark the
2308 	 * volume clean.  Also, re-commit all affected inodes.
2309 	 */
2310 	if (!(sb->s_flags & MS_RDONLY)) {
2311 		if (!NVolErrors(vol)) {
2312 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2313 				ntfs_warning(sb, "Failed to clear dirty bit "
2314 						"in volume information "
2315 						"flags.  Run chkdsk.");
2316 			ntfs_commit_inode(vol->vol_ino);
2317 			ntfs_commit_inode(vol->root_ino);
2318 			if (vol->mftmirr_ino)
2319 				ntfs_commit_inode(vol->mftmirr_ino);
2320 			ntfs_commit_inode(vol->mft_ino);
2321 		} else {
2322 			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2323 					"marked dirty.  Run chkdsk.");
2324 		}
2325 	}
2326 #endif /* NTFS_RW */
2327 
2328 	iput(vol->vol_ino);
2329 	vol->vol_ino = NULL;
2330 
2331 	/* NTFS 3.0+ specific clean up. */
2332 	if (vol->major_ver >= 3) {
2333 #ifdef NTFS_RW
2334 		if (vol->usnjrnl_j_ino) {
2335 			iput(vol->usnjrnl_j_ino);
2336 			vol->usnjrnl_j_ino = NULL;
2337 		}
2338 		if (vol->usnjrnl_max_ino) {
2339 			iput(vol->usnjrnl_max_ino);
2340 			vol->usnjrnl_max_ino = NULL;
2341 		}
2342 		if (vol->usnjrnl_ino) {
2343 			iput(vol->usnjrnl_ino);
2344 			vol->usnjrnl_ino = NULL;
2345 		}
2346 		if (vol->quota_q_ino) {
2347 			iput(vol->quota_q_ino);
2348 			vol->quota_q_ino = NULL;
2349 		}
2350 		if (vol->quota_ino) {
2351 			iput(vol->quota_ino);
2352 			vol->quota_ino = NULL;
2353 		}
2354 #endif /* NTFS_RW */
2355 		if (vol->extend_ino) {
2356 			iput(vol->extend_ino);
2357 			vol->extend_ino = NULL;
2358 		}
2359 		if (vol->secure_ino) {
2360 			iput(vol->secure_ino);
2361 			vol->secure_ino = NULL;
2362 		}
2363 	}
2364 
2365 	iput(vol->root_ino);
2366 	vol->root_ino = NULL;
2367 
2368 	down_write(&vol->lcnbmp_lock);
2369 	iput(vol->lcnbmp_ino);
2370 	vol->lcnbmp_ino = NULL;
2371 	up_write(&vol->lcnbmp_lock);
2372 
2373 	down_write(&vol->mftbmp_lock);
2374 	iput(vol->mftbmp_ino);
2375 	vol->mftbmp_ino = NULL;
2376 	up_write(&vol->mftbmp_lock);
2377 
2378 #ifdef NTFS_RW
2379 	if (vol->logfile_ino) {
2380 		iput(vol->logfile_ino);
2381 		vol->logfile_ino = NULL;
2382 	}
2383 	if (vol->mftmirr_ino) {
2384 		/* Re-commit the mft mirror and mft just in case. */
2385 		ntfs_commit_inode(vol->mftmirr_ino);
2386 		ntfs_commit_inode(vol->mft_ino);
2387 		iput(vol->mftmirr_ino);
2388 		vol->mftmirr_ino = NULL;
2389 	}
2390 	/*
2391 	 * We should have no dirty inodes left, due to
2392 	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2393 	 * the underlying mft records are written out and cleaned.
2394 	 */
2395 	ntfs_commit_inode(vol->mft_ino);
2396 	write_inode_now(vol->mft_ino, 1);
2397 #endif /* NTFS_RW */
2398 
2399 	iput(vol->mft_ino);
2400 	vol->mft_ino = NULL;
2401 
2402 	/* Throw away the table of attribute definitions. */
2403 	vol->attrdef_size = 0;
2404 	if (vol->attrdef) {
2405 		ntfs_free(vol->attrdef);
2406 		vol->attrdef = NULL;
2407 	}
2408 	vol->upcase_len = 0;
2409 	/*
2410 	 * Destroy the global default upcase table if necessary.  Also decrease
2411 	 * the number of upcase users if we are a user.
2412 	 */
2413 	mutex_lock(&ntfs_lock);
2414 	if (vol->upcase == default_upcase) {
2415 		ntfs_nr_upcase_users--;
2416 		vol->upcase = NULL;
2417 	}
2418 	if (!ntfs_nr_upcase_users && default_upcase) {
2419 		ntfs_free(default_upcase);
2420 		default_upcase = NULL;
2421 	}
2422 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2423 		free_compression_buffers();
2424 	mutex_unlock(&ntfs_lock);
2425 	if (vol->upcase) {
2426 		ntfs_free(vol->upcase);
2427 		vol->upcase = NULL;
2428 	}
2429 
2430 	unload_nls(vol->nls_map);
2431 
2432 	sb->s_fs_info = NULL;
2433 	kfree(vol);
2434 
2435 	unlock_kernel();
2436 }
2437 
2438 /**
2439  * get_nr_free_clusters - return the number of free clusters on a volume
2440  * @vol:	ntfs volume for which to obtain free cluster count
2441  *
2442  * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2443  * actually calculate the number of clusters in use instead because this
2444  * allows us to not care about partial pages as these will be just zero filled
2445  * and hence not be counted as allocated clusters.
2446  *
2447  * The only particularity is that clusters beyond the end of the logical ntfs
2448  * volume will be marked as allocated to prevent errors which means we have to
2449  * discount those at the end. This is important as the cluster bitmap always
2450  * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2451  * the logical volume and marked in use when they are not as they do not exist.
2452  *
2453  * If any pages cannot be read we assume all clusters in the erroring pages are
2454  * in use. This means we return an underestimate on errors which is better than
2455  * an overestimate.
2456  */
2457 static s64 get_nr_free_clusters(ntfs_volume *vol)
2458 {
2459 	s64 nr_free = vol->nr_clusters;
2460 	u32 *kaddr;
2461 	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2462 	struct page *page;
2463 	pgoff_t index, max_index;
2464 
2465 	ntfs_debug("Entering.");
2466 	/* Serialize accesses to the cluster bitmap. */
2467 	down_read(&vol->lcnbmp_lock);
2468 	/*
2469 	 * Convert the number of bits into bytes rounded up, then convert into
2470 	 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2471 	 * full and one partial page max_index = 2.
2472 	 */
2473 	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2474 			PAGE_CACHE_SHIFT;
2475 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2476 	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2477 			max_index, PAGE_CACHE_SIZE / 4);
2478 	for (index = 0; index < max_index; index++) {
2479 		unsigned int i;
2480 		/*
2481 		 * Read the page from page cache, getting it from backing store
2482 		 * if necessary, and increment the use count.
2483 		 */
2484 		page = read_mapping_page(mapping, index, NULL);
2485 		/* Ignore pages which errored synchronously. */
2486 		if (IS_ERR(page)) {
2487 			ntfs_debug("read_mapping_page() error. Skipping "
2488 					"page (index 0x%lx).", index);
2489 			nr_free -= PAGE_CACHE_SIZE * 8;
2490 			continue;
2491 		}
2492 		kaddr = (u32*)kmap_atomic(page, KM_USER0);
2493 		/*
2494 		 * For each 4 bytes, subtract the number of set bits. If this
2495 		 * is the last page and it is partial we don't really care as
2496 		 * it just means we do a little extra work but it won't affect
2497 		 * the result as all out of range bytes are set to zero by
2498 		 * ntfs_readpage().
2499 		 */
2500 	  	for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2501 			nr_free -= (s64)hweight32(kaddr[i]);
2502 		kunmap_atomic(kaddr, KM_USER0);
2503 		page_cache_release(page);
2504 	}
2505 	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2506 	/*
2507 	 * Fixup for eventual bits outside logical ntfs volume (see function
2508 	 * description above).
2509 	 */
2510 	if (vol->nr_clusters & 63)
2511 		nr_free += 64 - (vol->nr_clusters & 63);
2512 	up_read(&vol->lcnbmp_lock);
2513 	/* If errors occured we may well have gone below zero, fix this. */
2514 	if (nr_free < 0)
2515 		nr_free = 0;
2516 	ntfs_debug("Exiting.");
2517 	return nr_free;
2518 }
2519 
2520 /**
2521  * __get_nr_free_mft_records - return the number of free inodes on a volume
2522  * @vol:	ntfs volume for which to obtain free inode count
2523  * @nr_free:	number of mft records in filesystem
2524  * @max_index:	maximum number of pages containing set bits
2525  *
2526  * Calculate the number of free mft records (inodes) on the mounted NTFS
2527  * volume @vol. We actually calculate the number of mft records in use instead
2528  * because this allows us to not care about partial pages as these will be just
2529  * zero filled and hence not be counted as allocated mft record.
2530  *
2531  * If any pages cannot be read we assume all mft records in the erroring pages
2532  * are in use. This means we return an underestimate on errors which is better
2533  * than an overestimate.
2534  *
2535  * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2536  */
2537 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2538 		s64 nr_free, const pgoff_t max_index)
2539 {
2540 	u32 *kaddr;
2541 	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2542 	struct page *page;
2543 	pgoff_t index;
2544 
2545 	ntfs_debug("Entering.");
2546 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2547 	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2548 			"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2549 	for (index = 0; index < max_index; index++) {
2550 		unsigned int i;
2551 		/*
2552 		 * Read the page from page cache, getting it from backing store
2553 		 * if necessary, and increment the use count.
2554 		 */
2555 		page = read_mapping_page(mapping, index, NULL);
2556 		/* Ignore pages which errored synchronously. */
2557 		if (IS_ERR(page)) {
2558 			ntfs_debug("read_mapping_page() error. Skipping "
2559 					"page (index 0x%lx).", index);
2560 			nr_free -= PAGE_CACHE_SIZE * 8;
2561 			continue;
2562 		}
2563 		kaddr = (u32*)kmap_atomic(page, KM_USER0);
2564 		/*
2565 		 * For each 4 bytes, subtract the number of set bits. If this
2566 		 * is the last page and it is partial we don't really care as
2567 		 * it just means we do a little extra work but it won't affect
2568 		 * the result as all out of range bytes are set to zero by
2569 		 * ntfs_readpage().
2570 		 */
2571 	  	for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2572 			nr_free -= (s64)hweight32(kaddr[i]);
2573 		kunmap_atomic(kaddr, KM_USER0);
2574 		page_cache_release(page);
2575 	}
2576 	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2577 			index - 1);
2578 	/* If errors occured we may well have gone below zero, fix this. */
2579 	if (nr_free < 0)
2580 		nr_free = 0;
2581 	ntfs_debug("Exiting.");
2582 	return nr_free;
2583 }
2584 
2585 /**
2586  * ntfs_statfs - return information about mounted NTFS volume
2587  * @dentry:	dentry from mounted volume
2588  * @sfs:	statfs structure in which to return the information
2589  *
2590  * Return information about the mounted NTFS volume @dentry in the statfs structure
2591  * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2592  * called). We interpret the values to be correct of the moment in time at
2593  * which we are called. Most values are variable otherwise and this isn't just
2594  * the free values but the totals as well. For example we can increase the
2595  * total number of file nodes if we run out and we can keep doing this until
2596  * there is no more space on the volume left at all.
2597  *
2598  * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2599  * ustat system calls.
2600  *
2601  * Return 0 on success or -errno on error.
2602  */
2603 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2604 {
2605 	struct super_block *sb = dentry->d_sb;
2606 	s64 size;
2607 	ntfs_volume *vol = NTFS_SB(sb);
2608 	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2609 	pgoff_t max_index;
2610 	unsigned long flags;
2611 
2612 	ntfs_debug("Entering.");
2613 	/* Type of filesystem. */
2614 	sfs->f_type   = NTFS_SB_MAGIC;
2615 	/* Optimal transfer block size. */
2616 	sfs->f_bsize  = PAGE_CACHE_SIZE;
2617 	/*
2618 	 * Total data blocks in filesystem in units of f_bsize and since
2619 	 * inodes are also stored in data blocs ($MFT is a file) this is just
2620 	 * the total clusters.
2621 	 */
2622 	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2623 				PAGE_CACHE_SHIFT;
2624 	/* Free data blocks in filesystem in units of f_bsize. */
2625 	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2626 				PAGE_CACHE_SHIFT;
2627 	if (size < 0LL)
2628 		size = 0LL;
2629 	/* Free blocks avail to non-superuser, same as above on NTFS. */
2630 	sfs->f_bavail = sfs->f_bfree = size;
2631 	/* Serialize accesses to the inode bitmap. */
2632 	down_read(&vol->mftbmp_lock);
2633 	read_lock_irqsave(&mft_ni->size_lock, flags);
2634 	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2635 	/*
2636 	 * Convert the maximum number of set bits into bytes rounded up, then
2637 	 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2638 	 * have one full and one partial page max_index = 2.
2639 	 */
2640 	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2641 			+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2642 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2643 	/* Number of inodes in filesystem (at this point in time). */
2644 	sfs->f_files = size;
2645 	/* Free inodes in fs (based on current total count). */
2646 	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2647 	up_read(&vol->mftbmp_lock);
2648 	/*
2649 	 * File system id. This is extremely *nix flavour dependent and even
2650 	 * within Linux itself all fs do their own thing. I interpret this to
2651 	 * mean a unique id associated with the mounted fs and not the id
2652 	 * associated with the filesystem driver, the latter is already given
2653 	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2654 	 * volume serial number splitting it into two 32-bit parts. We enter
2655 	 * the least significant 32-bits in f_fsid[0] and the most significant
2656 	 * 32-bits in f_fsid[1].
2657 	 */
2658 	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2659 	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2660 	/* Maximum length of filenames. */
2661 	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2662 	return 0;
2663 }
2664 
2665 /**
2666  * The complete super operations.
2667  */
2668 static const struct super_operations ntfs_sops = {
2669 	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2670 	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2671 #ifdef NTFS_RW
2672 	//.dirty_inode	= NULL,			/* VFS: Called from
2673 	//					   __mark_inode_dirty(). */
2674 	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2675 						   disk. */
2676 	//.drop_inode	= NULL,			/* VFS: Called just after the
2677 	//					   inode reference count has
2678 	//					   been decreased to zero.
2679 	//					   NOTE: The inode lock is
2680 	//					   held. See fs/inode.c::
2681 	//					   generic_drop_inode(). */
2682 	//.delete_inode	= NULL,			/* VFS: Delete inode from disk.
2683 	//					   Called when i_count becomes
2684 	//					   0 and i_nlink is also 0. */
2685 	//.write_super	= NULL,			/* Flush dirty super block to
2686 	//					   disk. */
2687 	//.sync_fs	= NULL,			/* ? */
2688 	//.write_super_lockfs	= NULL,		/* ? */
2689 	//.unlockfs	= NULL,			/* ? */
2690 #endif /* NTFS_RW */
2691 	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2692 	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2693 	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2694 	.clear_inode	= ntfs_clear_big_inode,	/* VFS: Called when an inode is
2695 						   removed from memory. */
2696 	//.umount_begin	= NULL,			/* Forced umount. */
2697 	.show_options	= ntfs_show_options,	/* Show mount options in
2698 						   proc. */
2699 };
2700 
2701 /**
2702  * ntfs_fill_super - mount an ntfs filesystem
2703  * @sb:		super block of ntfs filesystem to mount
2704  * @opt:	string containing the mount options
2705  * @silent:	silence error output
2706  *
2707  * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2708  * with the mount otions in @data with the NTFS filesystem.
2709  *
2710  * If @silent is true, remain silent even if errors are detected. This is used
2711  * during bootup, when the kernel tries to mount the root filesystem with all
2712  * registered filesystems one after the other until one succeeds. This implies
2713  * that all filesystems except the correct one will quite correctly and
2714  * expectedly return an error, but nobody wants to see error messages when in
2715  * fact this is what is supposed to happen.
2716  *
2717  * NOTE: @sb->s_flags contains the mount options flags.
2718  */
2719 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2720 {
2721 	ntfs_volume *vol;
2722 	struct buffer_head *bh;
2723 	struct inode *tmp_ino;
2724 	int blocksize, result;
2725 
2726 	/*
2727 	 * We do a pretty difficult piece of bootstrap by reading the
2728 	 * MFT (and other metadata) from disk into memory. We'll only
2729 	 * release this metadata during umount, so the locking patterns
2730 	 * observed during bootstrap do not count. So turn off the
2731 	 * observation of locking patterns (strictly for this context
2732 	 * only) while mounting NTFS. [The validator is still active
2733 	 * otherwise, even for this context: it will for example record
2734 	 * lock class registrations.]
2735 	 */
2736 	lockdep_off();
2737 	ntfs_debug("Entering.");
2738 #ifndef NTFS_RW
2739 	sb->s_flags |= MS_RDONLY;
2740 #endif /* ! NTFS_RW */
2741 	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2742 	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2743 	vol = NTFS_SB(sb);
2744 	if (!vol) {
2745 		if (!silent)
2746 			ntfs_error(sb, "Allocation of NTFS volume structure "
2747 					"failed. Aborting mount...");
2748 		lockdep_on();
2749 		return -ENOMEM;
2750 	}
2751 	/* Initialize ntfs_volume structure. */
2752 	*vol = (ntfs_volume) {
2753 		.sb = sb,
2754 		/*
2755 		 * Default is group and other don't have any access to files or
2756 		 * directories while owner has full access. Further, files by
2757 		 * default are not executable but directories are of course
2758 		 * browseable.
2759 		 */
2760 		.fmask = 0177,
2761 		.dmask = 0077,
2762 	};
2763 	init_rwsem(&vol->mftbmp_lock);
2764 	init_rwsem(&vol->lcnbmp_lock);
2765 
2766 	unlock_kernel();
2767 
2768 	/* By default, enable sparse support. */
2769 	NVolSetSparseEnabled(vol);
2770 
2771 	/* Important to get the mount options dealt with now. */
2772 	if (!parse_options(vol, (char*)opt))
2773 		goto err_out_now;
2774 
2775 	/* We support sector sizes up to the PAGE_CACHE_SIZE. */
2776 	if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2777 		if (!silent)
2778 			ntfs_error(sb, "Device has unsupported sector size "
2779 					"(%i).  The maximum supported sector "
2780 					"size on this architecture is %lu "
2781 					"bytes.",
2782 					bdev_logical_block_size(sb->s_bdev),
2783 					PAGE_CACHE_SIZE);
2784 		goto err_out_now;
2785 	}
2786 	/*
2787 	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2788 	 * sector size, whichever is bigger.
2789 	 */
2790 	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2791 	if (blocksize < NTFS_BLOCK_SIZE) {
2792 		if (!silent)
2793 			ntfs_error(sb, "Unable to set device block size.");
2794 		goto err_out_now;
2795 	}
2796 	BUG_ON(blocksize != sb->s_blocksize);
2797 	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2798 			blocksize, sb->s_blocksize_bits);
2799 	/* Determine the size of the device in units of block_size bytes. */
2800 	if (!i_size_read(sb->s_bdev->bd_inode)) {
2801 		if (!silent)
2802 			ntfs_error(sb, "Unable to determine device size.");
2803 		goto err_out_now;
2804 	}
2805 	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2806 			sb->s_blocksize_bits;
2807 	/* Read the boot sector and return unlocked buffer head to it. */
2808 	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2809 		if (!silent)
2810 			ntfs_error(sb, "Not an NTFS volume.");
2811 		goto err_out_now;
2812 	}
2813 	/*
2814 	 * Extract the data from the boot sector and setup the ntfs volume
2815 	 * using it.
2816 	 */
2817 	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2818 	brelse(bh);
2819 	if (!result) {
2820 		if (!silent)
2821 			ntfs_error(sb, "Unsupported NTFS filesystem.");
2822 		goto err_out_now;
2823 	}
2824 	/*
2825 	 * If the boot sector indicates a sector size bigger than the current
2826 	 * device block size, switch the device block size to the sector size.
2827 	 * TODO: It may be possible to support this case even when the set
2828 	 * below fails, we would just be breaking up the i/o for each sector
2829 	 * into multiple blocks for i/o purposes but otherwise it should just
2830 	 * work.  However it is safer to leave disabled until someone hits this
2831 	 * error message and then we can get them to try it without the setting
2832 	 * so we know for sure that it works.
2833 	 */
2834 	if (vol->sector_size > blocksize) {
2835 		blocksize = sb_set_blocksize(sb, vol->sector_size);
2836 		if (blocksize != vol->sector_size) {
2837 			if (!silent)
2838 				ntfs_error(sb, "Unable to set device block "
2839 						"size to sector size (%i).",
2840 						vol->sector_size);
2841 			goto err_out_now;
2842 		}
2843 		BUG_ON(blocksize != sb->s_blocksize);
2844 		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2845 				sb->s_blocksize_bits;
2846 		ntfs_debug("Changed device block size to %i bytes (block size "
2847 				"bits %i) to match volume sector size.",
2848 				blocksize, sb->s_blocksize_bits);
2849 	}
2850 	/* Initialize the cluster and mft allocators. */
2851 	ntfs_setup_allocators(vol);
2852 	/* Setup remaining fields in the super block. */
2853 	sb->s_magic = NTFS_SB_MAGIC;
2854 	/*
2855 	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2856 	 *	sb->s_maxbytes = ~0ULL >> 1;
2857 	 * But the kernel uses a long as the page cache page index which on
2858 	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2859 	 * defined to the maximum the page cache page index can cope with
2860 	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2861 	 */
2862 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2863 	/* Ntfs measures time in 100ns intervals. */
2864 	sb->s_time_gran = 100;
2865 	/*
2866 	 * Now load the metadata required for the page cache and our address
2867 	 * space operations to function. We do this by setting up a specialised
2868 	 * read_inode method and then just calling the normal iget() to obtain
2869 	 * the inode for $MFT which is sufficient to allow our normal inode
2870 	 * operations and associated address space operations to function.
2871 	 */
2872 	sb->s_op = &ntfs_sops;
2873 	tmp_ino = new_inode(sb);
2874 	if (!tmp_ino) {
2875 		if (!silent)
2876 			ntfs_error(sb, "Failed to load essential metadata.");
2877 		goto err_out_now;
2878 	}
2879 	tmp_ino->i_ino = FILE_MFT;
2880 	insert_inode_hash(tmp_ino);
2881 	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2882 		if (!silent)
2883 			ntfs_error(sb, "Failed to load essential metadata.");
2884 		goto iput_tmp_ino_err_out_now;
2885 	}
2886 	mutex_lock(&ntfs_lock);
2887 	/*
2888 	 * The current mount is a compression user if the cluster size is
2889 	 * less than or equal 4kiB.
2890 	 */
2891 	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2892 		result = allocate_compression_buffers();
2893 		if (result) {
2894 			ntfs_error(NULL, "Failed to allocate buffers "
2895 					"for compression engine.");
2896 			ntfs_nr_compression_users--;
2897 			mutex_unlock(&ntfs_lock);
2898 			goto iput_tmp_ino_err_out_now;
2899 		}
2900 	}
2901 	/*
2902 	 * Generate the global default upcase table if necessary.  Also
2903 	 * temporarily increment the number of upcase users to avoid race
2904 	 * conditions with concurrent (u)mounts.
2905 	 */
2906 	if (!default_upcase)
2907 		default_upcase = generate_default_upcase();
2908 	ntfs_nr_upcase_users++;
2909 	mutex_unlock(&ntfs_lock);
2910 	/*
2911 	 * From now on, ignore @silent parameter. If we fail below this line,
2912 	 * it will be due to a corrupt fs or a system error, so we report it.
2913 	 */
2914 	/*
2915 	 * Open the system files with normal access functions and complete
2916 	 * setting up the ntfs super block.
2917 	 */
2918 	if (!load_system_files(vol)) {
2919 		ntfs_error(sb, "Failed to load system files.");
2920 		goto unl_upcase_iput_tmp_ino_err_out_now;
2921 	}
2922 	if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2923 		/* We increment i_count simulating an ntfs_iget(). */
2924 		atomic_inc(&vol->root_ino->i_count);
2925 		ntfs_debug("Exiting, status successful.");
2926 		/* Release the default upcase if it has no users. */
2927 		mutex_lock(&ntfs_lock);
2928 		if (!--ntfs_nr_upcase_users && default_upcase) {
2929 			ntfs_free(default_upcase);
2930 			default_upcase = NULL;
2931 		}
2932 		mutex_unlock(&ntfs_lock);
2933 		sb->s_export_op = &ntfs_export_ops;
2934 		lock_kernel();
2935 		lockdep_on();
2936 		return 0;
2937 	}
2938 	ntfs_error(sb, "Failed to allocate root directory.");
2939 	/* Clean up after the successful load_system_files() call from above. */
2940 	// TODO: Use ntfs_put_super() instead of repeating all this code...
2941 	// FIXME: Should mark the volume clean as the error is most likely
2942 	// 	  -ENOMEM.
2943 	iput(vol->vol_ino);
2944 	vol->vol_ino = NULL;
2945 	/* NTFS 3.0+ specific clean up. */
2946 	if (vol->major_ver >= 3) {
2947 #ifdef NTFS_RW
2948 		if (vol->usnjrnl_j_ino) {
2949 			iput(vol->usnjrnl_j_ino);
2950 			vol->usnjrnl_j_ino = NULL;
2951 		}
2952 		if (vol->usnjrnl_max_ino) {
2953 			iput(vol->usnjrnl_max_ino);
2954 			vol->usnjrnl_max_ino = NULL;
2955 		}
2956 		if (vol->usnjrnl_ino) {
2957 			iput(vol->usnjrnl_ino);
2958 			vol->usnjrnl_ino = NULL;
2959 		}
2960 		if (vol->quota_q_ino) {
2961 			iput(vol->quota_q_ino);
2962 			vol->quota_q_ino = NULL;
2963 		}
2964 		if (vol->quota_ino) {
2965 			iput(vol->quota_ino);
2966 			vol->quota_ino = NULL;
2967 		}
2968 #endif /* NTFS_RW */
2969 		if (vol->extend_ino) {
2970 			iput(vol->extend_ino);
2971 			vol->extend_ino = NULL;
2972 		}
2973 		if (vol->secure_ino) {
2974 			iput(vol->secure_ino);
2975 			vol->secure_ino = NULL;
2976 		}
2977 	}
2978 	iput(vol->root_ino);
2979 	vol->root_ino = NULL;
2980 	iput(vol->lcnbmp_ino);
2981 	vol->lcnbmp_ino = NULL;
2982 	iput(vol->mftbmp_ino);
2983 	vol->mftbmp_ino = NULL;
2984 #ifdef NTFS_RW
2985 	if (vol->logfile_ino) {
2986 		iput(vol->logfile_ino);
2987 		vol->logfile_ino = NULL;
2988 	}
2989 	if (vol->mftmirr_ino) {
2990 		iput(vol->mftmirr_ino);
2991 		vol->mftmirr_ino = NULL;
2992 	}
2993 #endif /* NTFS_RW */
2994 	/* Throw away the table of attribute definitions. */
2995 	vol->attrdef_size = 0;
2996 	if (vol->attrdef) {
2997 		ntfs_free(vol->attrdef);
2998 		vol->attrdef = NULL;
2999 	}
3000 	vol->upcase_len = 0;
3001 	mutex_lock(&ntfs_lock);
3002 	if (vol->upcase == default_upcase) {
3003 		ntfs_nr_upcase_users--;
3004 		vol->upcase = NULL;
3005 	}
3006 	mutex_unlock(&ntfs_lock);
3007 	if (vol->upcase) {
3008 		ntfs_free(vol->upcase);
3009 		vol->upcase = NULL;
3010 	}
3011 	if (vol->nls_map) {
3012 		unload_nls(vol->nls_map);
3013 		vol->nls_map = NULL;
3014 	}
3015 	/* Error exit code path. */
3016 unl_upcase_iput_tmp_ino_err_out_now:
3017 	/*
3018 	 * Decrease the number of upcase users and destroy the global default
3019 	 * upcase table if necessary.
3020 	 */
3021 	mutex_lock(&ntfs_lock);
3022 	if (!--ntfs_nr_upcase_users && default_upcase) {
3023 		ntfs_free(default_upcase);
3024 		default_upcase = NULL;
3025 	}
3026 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3027 		free_compression_buffers();
3028 	mutex_unlock(&ntfs_lock);
3029 iput_tmp_ino_err_out_now:
3030 	iput(tmp_ino);
3031 	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3032 		iput(vol->mft_ino);
3033 	vol->mft_ino = NULL;
3034 	/*
3035 	 * This is needed to get ntfs_clear_extent_inode() called for each
3036 	 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3037 	 * leak resources and B) a subsequent mount fails automatically due to
3038 	 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3039 	 * method again... FIXME: Do we need to do this twice now because of
3040 	 * attribute inodes? I think not, so leave as is for now... (AIA)
3041 	 */
3042 	if (invalidate_inodes(sb)) {
3043 		ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
3044 				"driver bug.");
3045 		/* Copied from fs/super.c. I just love this message. (-; */
3046 		printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3047 				"seconds.  Have a nice day...\n");
3048 	}
3049 	/* Errors at this stage are irrelevant. */
3050 err_out_now:
3051 	lock_kernel();
3052 	sb->s_fs_info = NULL;
3053 	kfree(vol);
3054 	ntfs_debug("Failed, returning -EINVAL.");
3055 	lockdep_on();
3056 	return -EINVAL;
3057 }
3058 
3059 /*
3060  * This is a slab cache to optimize allocations and deallocations of Unicode
3061  * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3062  * (255) Unicode characters + a terminating NULL Unicode character.
3063  */
3064 struct kmem_cache *ntfs_name_cache;
3065 
3066 /* Slab caches for efficient allocation/deallocation of inodes. */
3067 struct kmem_cache *ntfs_inode_cache;
3068 struct kmem_cache *ntfs_big_inode_cache;
3069 
3070 /* Init once constructor for the inode slab cache. */
3071 static void ntfs_big_inode_init_once(void *foo)
3072 {
3073 	ntfs_inode *ni = (ntfs_inode *)foo;
3074 
3075 	inode_init_once(VFS_I(ni));
3076 }
3077 
3078 /*
3079  * Slab caches to optimize allocations and deallocations of attribute search
3080  * contexts and index contexts, respectively.
3081  */
3082 struct kmem_cache *ntfs_attr_ctx_cache;
3083 struct kmem_cache *ntfs_index_ctx_cache;
3084 
3085 /* Driver wide mutex. */
3086 DEFINE_MUTEX(ntfs_lock);
3087 
3088 static int ntfs_get_sb(struct file_system_type *fs_type,
3089 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
3090 {
3091 	return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super,
3092 			   mnt);
3093 }
3094 
3095 static struct file_system_type ntfs_fs_type = {
3096 	.owner		= THIS_MODULE,
3097 	.name		= "ntfs",
3098 	.get_sb		= ntfs_get_sb,
3099 	.kill_sb	= kill_block_super,
3100 	.fs_flags	= FS_REQUIRES_DEV,
3101 };
3102 
3103 /* Stable names for the slab caches. */
3104 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3105 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3106 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3107 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3108 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3109 
3110 static int __init init_ntfs_fs(void)
3111 {
3112 	int err = 0;
3113 
3114 	/* This may be ugly but it results in pretty output so who cares. (-8 */
3115 	printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3116 #ifdef NTFS_RW
3117 			"W"
3118 #else
3119 			"O"
3120 #endif
3121 #ifdef DEBUG
3122 			" DEBUG"
3123 #endif
3124 #ifdef MODULE
3125 			" MODULE"
3126 #endif
3127 			"].\n");
3128 
3129 	ntfs_debug("Debug messages are enabled.");
3130 
3131 	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3132 			sizeof(ntfs_index_context), 0 /* offset */,
3133 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3134 	if (!ntfs_index_ctx_cache) {
3135 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3136 				ntfs_index_ctx_cache_name);
3137 		goto ictx_err_out;
3138 	}
3139 	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3140 			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3141 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3142 	if (!ntfs_attr_ctx_cache) {
3143 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3144 				ntfs_attr_ctx_cache_name);
3145 		goto actx_err_out;
3146 	}
3147 
3148 	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3149 			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3150 			SLAB_HWCACHE_ALIGN, NULL);
3151 	if (!ntfs_name_cache) {
3152 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3153 				ntfs_name_cache_name);
3154 		goto name_err_out;
3155 	}
3156 
3157 	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3158 			sizeof(ntfs_inode), 0,
3159 			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3160 	if (!ntfs_inode_cache) {
3161 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3162 				ntfs_inode_cache_name);
3163 		goto inode_err_out;
3164 	}
3165 
3166 	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3167 			sizeof(big_ntfs_inode), 0,
3168 			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3169 			ntfs_big_inode_init_once);
3170 	if (!ntfs_big_inode_cache) {
3171 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3172 				ntfs_big_inode_cache_name);
3173 		goto big_inode_err_out;
3174 	}
3175 
3176 	/* Register the ntfs sysctls. */
3177 	err = ntfs_sysctl(1);
3178 	if (err) {
3179 		printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3180 		goto sysctl_err_out;
3181 	}
3182 
3183 	err = register_filesystem(&ntfs_fs_type);
3184 	if (!err) {
3185 		ntfs_debug("NTFS driver registered successfully.");
3186 		return 0; /* Success! */
3187 	}
3188 	printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3189 
3190 sysctl_err_out:
3191 	kmem_cache_destroy(ntfs_big_inode_cache);
3192 big_inode_err_out:
3193 	kmem_cache_destroy(ntfs_inode_cache);
3194 inode_err_out:
3195 	kmem_cache_destroy(ntfs_name_cache);
3196 name_err_out:
3197 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3198 actx_err_out:
3199 	kmem_cache_destroy(ntfs_index_ctx_cache);
3200 ictx_err_out:
3201 	if (!err) {
3202 		printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3203 				"registration...\n");
3204 		err = -ENOMEM;
3205 	}
3206 	return err;
3207 }
3208 
3209 static void __exit exit_ntfs_fs(void)
3210 {
3211 	ntfs_debug("Unregistering NTFS driver.");
3212 
3213 	unregister_filesystem(&ntfs_fs_type);
3214 	kmem_cache_destroy(ntfs_big_inode_cache);
3215 	kmem_cache_destroy(ntfs_inode_cache);
3216 	kmem_cache_destroy(ntfs_name_cache);
3217 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3218 	kmem_cache_destroy(ntfs_index_ctx_cache);
3219 	/* Unregister the ntfs sysctls. */
3220 	ntfs_sysctl(0);
3221 }
3222 
3223 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3224 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2007 Anton Altaparmakov");
3225 MODULE_VERSION(NTFS_VERSION);
3226 MODULE_LICENSE("GPL");
3227 #ifdef DEBUG
3228 module_param(debug_msgs, bool, 0);
3229 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3230 #endif
3231 
3232 module_init(init_ntfs_fs)
3233 module_exit(exit_ntfs_fs)
3234