1 /* 2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * Copyright (c) 2001,2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/stddef.h> 24 #include <linux/init.h> 25 #include <linux/slab.h> 26 #include <linux/string.h> 27 #include <linux/spinlock.h> 28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 29 #include <linux/backing-dev.h> 30 #include <linux/buffer_head.h> 31 #include <linux/vfs.h> 32 #include <linux/moduleparam.h> 33 #include <linux/smp_lock.h> 34 35 #include "sysctl.h" 36 #include "logfile.h" 37 #include "quota.h" 38 #include "usnjrnl.h" 39 #include "dir.h" 40 #include "debug.h" 41 #include "index.h" 42 #include "aops.h" 43 #include "layout.h" 44 #include "malloc.h" 45 #include "ntfs.h" 46 47 /* Number of mounted filesystems which have compression enabled. */ 48 static unsigned long ntfs_nr_compression_users; 49 50 /* A global default upcase table and a corresponding reference count. */ 51 static ntfschar *default_upcase = NULL; 52 static unsigned long ntfs_nr_upcase_users = 0; 53 54 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 55 typedef enum { 56 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 57 ON_ERRORS_PANIC = 0x01, 58 ON_ERRORS_REMOUNT_RO = 0x02, 59 ON_ERRORS_CONTINUE = 0x04, 60 /* Optional, can be combined with any of the above. */ 61 ON_ERRORS_RECOVER = 0x10, 62 } ON_ERRORS_ACTIONS; 63 64 const option_t on_errors_arr[] = { 65 { ON_ERRORS_PANIC, "panic" }, 66 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 67 { ON_ERRORS_CONTINUE, "continue", }, 68 { ON_ERRORS_RECOVER, "recover" }, 69 { 0, NULL } 70 }; 71 72 /** 73 * simple_getbool - 74 * 75 * Copied from old ntfs driver (which copied from vfat driver). 76 */ 77 static int simple_getbool(char *s, bool *setval) 78 { 79 if (s) { 80 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 81 *setval = true; 82 else if (!strcmp(s, "0") || !strcmp(s, "no") || 83 !strcmp(s, "false")) 84 *setval = false; 85 else 86 return 0; 87 } else 88 *setval = true; 89 return 1; 90 } 91 92 /** 93 * parse_options - parse the (re)mount options 94 * @vol: ntfs volume 95 * @opt: string containing the (re)mount options 96 * 97 * Parse the recognized options in @opt for the ntfs volume described by @vol. 98 */ 99 static bool parse_options(ntfs_volume *vol, char *opt) 100 { 101 char *p, *v, *ov; 102 static char *utf8 = "utf8"; 103 int errors = 0, sloppy = 0; 104 uid_t uid = (uid_t)-1; 105 gid_t gid = (gid_t)-1; 106 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1; 107 int mft_zone_multiplier = -1, on_errors = -1; 108 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 109 struct nls_table *nls_map = NULL, *old_nls; 110 111 /* I am lazy... (-8 */ 112 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 113 if (!strcmp(p, option)) { \ 114 if (!v || !*v) \ 115 variable = default_value; \ 116 else { \ 117 variable = simple_strtoul(ov = v, &v, 0); \ 118 if (*v) \ 119 goto needs_val; \ 120 } \ 121 } 122 #define NTFS_GETOPT(option, variable) \ 123 if (!strcmp(p, option)) { \ 124 if (!v || !*v) \ 125 goto needs_arg; \ 126 variable = simple_strtoul(ov = v, &v, 0); \ 127 if (*v) \ 128 goto needs_val; \ 129 } 130 #define NTFS_GETOPT_OCTAL(option, variable) \ 131 if (!strcmp(p, option)) { \ 132 if (!v || !*v) \ 133 goto needs_arg; \ 134 variable = simple_strtoul(ov = v, &v, 8); \ 135 if (*v) \ 136 goto needs_val; \ 137 } 138 #define NTFS_GETOPT_BOOL(option, variable) \ 139 if (!strcmp(p, option)) { \ 140 bool val; \ 141 if (!simple_getbool(v, &val)) \ 142 goto needs_bool; \ 143 variable = val; \ 144 } 145 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 146 if (!strcmp(p, option)) { \ 147 int _i; \ 148 if (!v || !*v) \ 149 goto needs_arg; \ 150 ov = v; \ 151 if (variable == -1) \ 152 variable = 0; \ 153 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 154 if (!strcmp(opt_array[_i].str, v)) { \ 155 variable |= opt_array[_i].val; \ 156 break; \ 157 } \ 158 if (!opt_array[_i].str || !*opt_array[_i].str) \ 159 goto needs_val; \ 160 } 161 if (!opt || !*opt) 162 goto no_mount_options; 163 ntfs_debug("Entering with mount options string: %s", opt); 164 while ((p = strsep(&opt, ","))) { 165 if ((v = strchr(p, '='))) 166 *v++ = 0; 167 NTFS_GETOPT("uid", uid) 168 else NTFS_GETOPT("gid", gid) 169 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 170 else NTFS_GETOPT_OCTAL("fmask", fmask) 171 else NTFS_GETOPT_OCTAL("dmask", dmask) 172 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 173 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 174 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 175 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 176 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 177 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 178 on_errors_arr) 179 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 180 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 181 p); 182 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 183 if (!strcmp(p, "iocharset")) 184 ntfs_warning(vol->sb, "Option iocharset is " 185 "deprecated. Please use " 186 "option nls=<charsetname> in " 187 "the future."); 188 if (!v || !*v) 189 goto needs_arg; 190 use_utf8: 191 old_nls = nls_map; 192 nls_map = load_nls(v); 193 if (!nls_map) { 194 if (!old_nls) { 195 ntfs_error(vol->sb, "NLS character set " 196 "%s not found.", v); 197 return false; 198 } 199 ntfs_error(vol->sb, "NLS character set %s not " 200 "found. Using previous one %s.", 201 v, old_nls->charset); 202 nls_map = old_nls; 203 } else /* nls_map */ { 204 unload_nls(old_nls); 205 } 206 } else if (!strcmp(p, "utf8")) { 207 bool val = false; 208 ntfs_warning(vol->sb, "Option utf8 is no longer " 209 "supported, using option nls=utf8. Please " 210 "use option nls=utf8 in the future and " 211 "make sure utf8 is compiled either as a " 212 "module or into the kernel."); 213 if (!v || !*v) 214 val = true; 215 else if (!simple_getbool(v, &val)) 216 goto needs_bool; 217 if (val) { 218 v = utf8; 219 goto use_utf8; 220 } 221 } else { 222 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 223 if (errors < INT_MAX) 224 errors++; 225 } 226 #undef NTFS_GETOPT_OPTIONS_ARRAY 227 #undef NTFS_GETOPT_BOOL 228 #undef NTFS_GETOPT 229 #undef NTFS_GETOPT_WITH_DEFAULT 230 } 231 no_mount_options: 232 if (errors && !sloppy) 233 return false; 234 if (sloppy) 235 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 236 "unrecognized mount option(s) and continuing."); 237 /* Keep this first! */ 238 if (on_errors != -1) { 239 if (!on_errors) { 240 ntfs_error(vol->sb, "Invalid errors option argument " 241 "or bug in options parser."); 242 return false; 243 } 244 } 245 if (nls_map) { 246 if (vol->nls_map && vol->nls_map != nls_map) { 247 ntfs_error(vol->sb, "Cannot change NLS character set " 248 "on remount."); 249 return false; 250 } /* else (!vol->nls_map) */ 251 ntfs_debug("Using NLS character set %s.", nls_map->charset); 252 vol->nls_map = nls_map; 253 } else /* (!nls_map) */ { 254 if (!vol->nls_map) { 255 vol->nls_map = load_nls_default(); 256 if (!vol->nls_map) { 257 ntfs_error(vol->sb, "Failed to load default " 258 "NLS character set."); 259 return false; 260 } 261 ntfs_debug("Using default NLS character set (%s).", 262 vol->nls_map->charset); 263 } 264 } 265 if (mft_zone_multiplier != -1) { 266 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 267 mft_zone_multiplier) { 268 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 269 "on remount."); 270 return false; 271 } 272 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 273 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 274 "Using default value, i.e. 1."); 275 mft_zone_multiplier = 1; 276 } 277 vol->mft_zone_multiplier = mft_zone_multiplier; 278 } 279 if (!vol->mft_zone_multiplier) 280 vol->mft_zone_multiplier = 1; 281 if (on_errors != -1) 282 vol->on_errors = on_errors; 283 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 284 vol->on_errors |= ON_ERRORS_CONTINUE; 285 if (uid != (uid_t)-1) 286 vol->uid = uid; 287 if (gid != (gid_t)-1) 288 vol->gid = gid; 289 if (fmask != (mode_t)-1) 290 vol->fmask = fmask; 291 if (dmask != (mode_t)-1) 292 vol->dmask = dmask; 293 if (show_sys_files != -1) { 294 if (show_sys_files) 295 NVolSetShowSystemFiles(vol); 296 else 297 NVolClearShowSystemFiles(vol); 298 } 299 if (case_sensitive != -1) { 300 if (case_sensitive) 301 NVolSetCaseSensitive(vol); 302 else 303 NVolClearCaseSensitive(vol); 304 } 305 if (disable_sparse != -1) { 306 if (disable_sparse) 307 NVolClearSparseEnabled(vol); 308 else { 309 if (!NVolSparseEnabled(vol) && 310 vol->major_ver && vol->major_ver < 3) 311 ntfs_warning(vol->sb, "Not enabling sparse " 312 "support due to NTFS volume " 313 "version %i.%i (need at least " 314 "version 3.0).", vol->major_ver, 315 vol->minor_ver); 316 else 317 NVolSetSparseEnabled(vol); 318 } 319 } 320 return true; 321 needs_arg: 322 ntfs_error(vol->sb, "The %s option requires an argument.", p); 323 return false; 324 needs_bool: 325 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 326 return false; 327 needs_val: 328 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 329 return false; 330 } 331 332 #ifdef NTFS_RW 333 334 /** 335 * ntfs_write_volume_flags - write new flags to the volume information flags 336 * @vol: ntfs volume on which to modify the flags 337 * @flags: new flags value for the volume information flags 338 * 339 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 340 * instead (see below). 341 * 342 * Replace the volume information flags on the volume @vol with the value 343 * supplied in @flags. Note, this overwrites the volume information flags, so 344 * make sure to combine the flags you want to modify with the old flags and use 345 * the result when calling ntfs_write_volume_flags(). 346 * 347 * Return 0 on success and -errno on error. 348 */ 349 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 350 { 351 ntfs_inode *ni = NTFS_I(vol->vol_ino); 352 MFT_RECORD *m; 353 VOLUME_INFORMATION *vi; 354 ntfs_attr_search_ctx *ctx; 355 int err; 356 357 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 358 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 359 if (vol->vol_flags == flags) 360 goto done; 361 BUG_ON(!ni); 362 m = map_mft_record(ni); 363 if (IS_ERR(m)) { 364 err = PTR_ERR(m); 365 goto err_out; 366 } 367 ctx = ntfs_attr_get_search_ctx(ni, m); 368 if (!ctx) { 369 err = -ENOMEM; 370 goto put_unm_err_out; 371 } 372 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 373 ctx); 374 if (err) 375 goto put_unm_err_out; 376 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 377 le16_to_cpu(ctx->attr->data.resident.value_offset)); 378 vol->vol_flags = vi->flags = flags; 379 flush_dcache_mft_record_page(ctx->ntfs_ino); 380 mark_mft_record_dirty(ctx->ntfs_ino); 381 ntfs_attr_put_search_ctx(ctx); 382 unmap_mft_record(ni); 383 done: 384 ntfs_debug("Done."); 385 return 0; 386 put_unm_err_out: 387 if (ctx) 388 ntfs_attr_put_search_ctx(ctx); 389 unmap_mft_record(ni); 390 err_out: 391 ntfs_error(vol->sb, "Failed with error code %i.", -err); 392 return err; 393 } 394 395 /** 396 * ntfs_set_volume_flags - set bits in the volume information flags 397 * @vol: ntfs volume on which to modify the flags 398 * @flags: flags to set on the volume 399 * 400 * Set the bits in @flags in the volume information flags on the volume @vol. 401 * 402 * Return 0 on success and -errno on error. 403 */ 404 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 405 { 406 flags &= VOLUME_FLAGS_MASK; 407 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 408 } 409 410 /** 411 * ntfs_clear_volume_flags - clear bits in the volume information flags 412 * @vol: ntfs volume on which to modify the flags 413 * @flags: flags to clear on the volume 414 * 415 * Clear the bits in @flags in the volume information flags on the volume @vol. 416 * 417 * Return 0 on success and -errno on error. 418 */ 419 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 420 { 421 flags &= VOLUME_FLAGS_MASK; 422 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 423 return ntfs_write_volume_flags(vol, flags); 424 } 425 426 #endif /* NTFS_RW */ 427 428 /** 429 * ntfs_remount - change the mount options of a mounted ntfs filesystem 430 * @sb: superblock of mounted ntfs filesystem 431 * @flags: remount flags 432 * @opt: remount options string 433 * 434 * Change the mount options of an already mounted ntfs filesystem. 435 * 436 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 437 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 438 * @sb->s_flags are not changed. 439 */ 440 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 441 { 442 ntfs_volume *vol = NTFS_SB(sb); 443 444 ntfs_debug("Entering with remount options string: %s", opt); 445 446 lock_kernel(); 447 #ifndef NTFS_RW 448 /* For read-only compiled driver, enforce read-only flag. */ 449 *flags |= MS_RDONLY; 450 #else /* NTFS_RW */ 451 /* 452 * For the read-write compiled driver, if we are remounting read-write, 453 * make sure there are no volume errors and that no unsupported volume 454 * flags are set. Also, empty the logfile journal as it would become 455 * stale as soon as something is written to the volume and mark the 456 * volume dirty so that chkdsk is run if the volume is not umounted 457 * cleanly. Finally, mark the quotas out of date so Windows rescans 458 * the volume on boot and updates them. 459 * 460 * When remounting read-only, mark the volume clean if no volume errors 461 * have occured. 462 */ 463 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 464 static const char *es = ". Cannot remount read-write."; 465 466 /* Remounting read-write. */ 467 if (NVolErrors(vol)) { 468 ntfs_error(sb, "Volume has errors and is read-only%s", 469 es); 470 unlock_kernel(); 471 return -EROFS; 472 } 473 if (vol->vol_flags & VOLUME_IS_DIRTY) { 474 ntfs_error(sb, "Volume is dirty and read-only%s", es); 475 unlock_kernel(); 476 return -EROFS; 477 } 478 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 479 ntfs_error(sb, "Volume has been modified by chkdsk " 480 "and is read-only%s", es); 481 unlock_kernel(); 482 return -EROFS; 483 } 484 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 485 ntfs_error(sb, "Volume has unsupported flags set " 486 "(0x%x) and is read-only%s", 487 (unsigned)le16_to_cpu(vol->vol_flags), 488 es); 489 unlock_kernel(); 490 return -EROFS; 491 } 492 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 493 ntfs_error(sb, "Failed to set dirty bit in volume " 494 "information flags%s", es); 495 unlock_kernel(); 496 return -EROFS; 497 } 498 #if 0 499 // TODO: Enable this code once we start modifying anything that 500 // is different between NTFS 1.2 and 3.x... 501 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 502 if ((vol->major_ver > 1)) { 503 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 504 ntfs_error(sb, "Failed to set NT4 " 505 "compatibility flag%s", es); 506 NVolSetErrors(vol); 507 return -EROFS; 508 } 509 } 510 #endif 511 if (!ntfs_empty_logfile(vol->logfile_ino)) { 512 ntfs_error(sb, "Failed to empty journal $LogFile%s", 513 es); 514 NVolSetErrors(vol); 515 unlock_kernel(); 516 return -EROFS; 517 } 518 if (!ntfs_mark_quotas_out_of_date(vol)) { 519 ntfs_error(sb, "Failed to mark quotas out of date%s", 520 es); 521 NVolSetErrors(vol); 522 unlock_kernel(); 523 return -EROFS; 524 } 525 if (!ntfs_stamp_usnjrnl(vol)) { 526 ntfs_error(sb, "Failed to stamp transation log " 527 "($UsnJrnl)%s", es); 528 NVolSetErrors(vol); 529 unlock_kernel(); 530 return -EROFS; 531 } 532 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 533 /* Remounting read-only. */ 534 if (!NVolErrors(vol)) { 535 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 536 ntfs_warning(sb, "Failed to clear dirty bit " 537 "in volume information " 538 "flags. Run chkdsk."); 539 } 540 } 541 #endif /* NTFS_RW */ 542 543 // TODO: Deal with *flags. 544 545 if (!parse_options(vol, opt)) { 546 unlock_kernel(); 547 return -EINVAL; 548 } 549 unlock_kernel(); 550 ntfs_debug("Done."); 551 return 0; 552 } 553 554 /** 555 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 556 * @sb: Super block of the device to which @b belongs. 557 * @b: Boot sector of device @sb to check. 558 * @silent: If 'true', all output will be silenced. 559 * 560 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 561 * sector. Returns 'true' if it is valid and 'false' if not. 562 * 563 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 564 * is 'true'. 565 */ 566 static bool is_boot_sector_ntfs(const struct super_block *sb, 567 const NTFS_BOOT_SECTOR *b, const bool silent) 568 { 569 /* 570 * Check that checksum == sum of u32 values from b to the checksum 571 * field. If checksum is zero, no checking is done. We will work when 572 * the checksum test fails, since some utilities update the boot sector 573 * ignoring the checksum which leaves the checksum out-of-date. We 574 * report a warning if this is the case. 575 */ 576 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 577 le32 *u; 578 u32 i; 579 580 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 581 i += le32_to_cpup(u); 582 if (le32_to_cpu(b->checksum) != i) 583 ntfs_warning(sb, "Invalid boot sector checksum."); 584 } 585 /* Check OEMidentifier is "NTFS " */ 586 if (b->oem_id != magicNTFS) 587 goto not_ntfs; 588 /* Check bytes per sector value is between 256 and 4096. */ 589 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 590 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 591 goto not_ntfs; 592 /* Check sectors per cluster value is valid. */ 593 switch (b->bpb.sectors_per_cluster) { 594 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 595 break; 596 default: 597 goto not_ntfs; 598 } 599 /* Check the cluster size is not above the maximum (64kiB). */ 600 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 601 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 602 goto not_ntfs; 603 /* Check reserved/unused fields are really zero. */ 604 if (le16_to_cpu(b->bpb.reserved_sectors) || 605 le16_to_cpu(b->bpb.root_entries) || 606 le16_to_cpu(b->bpb.sectors) || 607 le16_to_cpu(b->bpb.sectors_per_fat) || 608 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 609 goto not_ntfs; 610 /* Check clusters per file mft record value is valid. */ 611 if ((u8)b->clusters_per_mft_record < 0xe1 || 612 (u8)b->clusters_per_mft_record > 0xf7) 613 switch (b->clusters_per_mft_record) { 614 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 615 break; 616 default: 617 goto not_ntfs; 618 } 619 /* Check clusters per index block value is valid. */ 620 if ((u8)b->clusters_per_index_record < 0xe1 || 621 (u8)b->clusters_per_index_record > 0xf7) 622 switch (b->clusters_per_index_record) { 623 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 624 break; 625 default: 626 goto not_ntfs; 627 } 628 /* 629 * Check for valid end of sector marker. We will work without it, but 630 * many BIOSes will refuse to boot from a bootsector if the magic is 631 * incorrect, so we emit a warning. 632 */ 633 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 634 ntfs_warning(sb, "Invalid end of sector marker."); 635 return true; 636 not_ntfs: 637 return false; 638 } 639 640 /** 641 * read_ntfs_boot_sector - read the NTFS boot sector of a device 642 * @sb: super block of device to read the boot sector from 643 * @silent: if true, suppress all output 644 * 645 * Reads the boot sector from the device and validates it. If that fails, tries 646 * to read the backup boot sector, first from the end of the device a-la NT4 and 647 * later and then from the middle of the device a-la NT3.51 and before. 648 * 649 * If a valid boot sector is found but it is not the primary boot sector, we 650 * repair the primary boot sector silently (unless the device is read-only or 651 * the primary boot sector is not accessible). 652 * 653 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 654 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 655 * to their respective values. 656 * 657 * Return the unlocked buffer head containing the boot sector or NULL on error. 658 */ 659 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 660 const int silent) 661 { 662 const char *read_err_str = "Unable to read %s boot sector."; 663 struct buffer_head *bh_primary, *bh_backup; 664 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 665 666 /* Try to read primary boot sector. */ 667 if ((bh_primary = sb_bread(sb, 0))) { 668 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 669 bh_primary->b_data, silent)) 670 return bh_primary; 671 if (!silent) 672 ntfs_error(sb, "Primary boot sector is invalid."); 673 } else if (!silent) 674 ntfs_error(sb, read_err_str, "primary"); 675 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 676 if (bh_primary) 677 brelse(bh_primary); 678 if (!silent) 679 ntfs_error(sb, "Mount option errors=recover not used. " 680 "Aborting without trying to recover."); 681 return NULL; 682 } 683 /* Try to read NT4+ backup boot sector. */ 684 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 685 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 686 bh_backup->b_data, silent)) 687 goto hotfix_primary_boot_sector; 688 brelse(bh_backup); 689 } else if (!silent) 690 ntfs_error(sb, read_err_str, "backup"); 691 /* Try to read NT3.51- backup boot sector. */ 692 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 693 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 694 bh_backup->b_data, silent)) 695 goto hotfix_primary_boot_sector; 696 if (!silent) 697 ntfs_error(sb, "Could not find a valid backup boot " 698 "sector."); 699 brelse(bh_backup); 700 } else if (!silent) 701 ntfs_error(sb, read_err_str, "backup"); 702 /* We failed. Cleanup and return. */ 703 if (bh_primary) 704 brelse(bh_primary); 705 return NULL; 706 hotfix_primary_boot_sector: 707 if (bh_primary) { 708 /* 709 * If we managed to read sector zero and the volume is not 710 * read-only, copy the found, valid backup boot sector to the 711 * primary boot sector. Note we only copy the actual boot 712 * sector structure, not the actual whole device sector as that 713 * may be bigger and would potentially damage the $Boot system 714 * file (FIXME: Would be nice to know if the backup boot sector 715 * on a large sector device contains the whole boot loader or 716 * just the first 512 bytes). 717 */ 718 if (!(sb->s_flags & MS_RDONLY)) { 719 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 720 "boot sector from backup copy."); 721 memcpy(bh_primary->b_data, bh_backup->b_data, 722 NTFS_BLOCK_SIZE); 723 mark_buffer_dirty(bh_primary); 724 sync_dirty_buffer(bh_primary); 725 if (buffer_uptodate(bh_primary)) { 726 brelse(bh_backup); 727 return bh_primary; 728 } 729 ntfs_error(sb, "Hot-fix: Device write error while " 730 "recovering primary boot sector."); 731 } else { 732 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 733 "sector failed: Read-only mount."); 734 } 735 brelse(bh_primary); 736 } 737 ntfs_warning(sb, "Using backup boot sector."); 738 return bh_backup; 739 } 740 741 /** 742 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 743 * @vol: volume structure to initialise with data from boot sector 744 * @b: boot sector to parse 745 * 746 * Parse the ntfs boot sector @b and store all imporant information therein in 747 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 748 */ 749 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 750 { 751 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 752 int clusters_per_mft_record, clusters_per_index_record; 753 s64 ll; 754 755 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 756 vol->sector_size_bits = ffs(vol->sector_size) - 1; 757 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 758 vol->sector_size); 759 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 760 vol->sector_size_bits); 761 if (vol->sector_size < vol->sb->s_blocksize) { 762 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 763 "device block size (%lu). This is not " 764 "supported. Sorry.", vol->sector_size, 765 vol->sb->s_blocksize); 766 return false; 767 } 768 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 769 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 770 ntfs_debug("sectors_per_cluster_bits = 0x%x", 771 sectors_per_cluster_bits); 772 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 773 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 774 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 775 vol->cluster_size_mask = vol->cluster_size - 1; 776 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 777 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 778 vol->cluster_size); 779 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 780 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 781 if (vol->cluster_size < vol->sector_size) { 782 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 783 "sector size (%i). This is not supported. " 784 "Sorry.", vol->cluster_size, vol->sector_size); 785 return false; 786 } 787 clusters_per_mft_record = b->clusters_per_mft_record; 788 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 789 clusters_per_mft_record, clusters_per_mft_record); 790 if (clusters_per_mft_record > 0) 791 vol->mft_record_size = vol->cluster_size << 792 (ffs(clusters_per_mft_record) - 1); 793 else 794 /* 795 * When mft_record_size < cluster_size, clusters_per_mft_record 796 * = -log2(mft_record_size) bytes. mft_record_size normaly is 797 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 798 */ 799 vol->mft_record_size = 1 << -clusters_per_mft_record; 800 vol->mft_record_size_mask = vol->mft_record_size - 1; 801 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 802 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 803 vol->mft_record_size); 804 ntfs_debug("vol->mft_record_size_mask = 0x%x", 805 vol->mft_record_size_mask); 806 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 807 vol->mft_record_size_bits, vol->mft_record_size_bits); 808 /* 809 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since 810 * we store $MFT/$DATA, the table of mft records in the page cache. 811 */ 812 if (vol->mft_record_size > PAGE_CACHE_SIZE) { 813 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 814 "PAGE_CACHE_SIZE on your system (%lu). " 815 "This is not supported. Sorry.", 816 vol->mft_record_size, PAGE_CACHE_SIZE); 817 return false; 818 } 819 /* We cannot support mft record sizes below the sector size. */ 820 if (vol->mft_record_size < vol->sector_size) { 821 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 822 "sector size (%i). This is not supported. " 823 "Sorry.", vol->mft_record_size, 824 vol->sector_size); 825 return false; 826 } 827 clusters_per_index_record = b->clusters_per_index_record; 828 ntfs_debug("clusters_per_index_record = %i (0x%x)", 829 clusters_per_index_record, clusters_per_index_record); 830 if (clusters_per_index_record > 0) 831 vol->index_record_size = vol->cluster_size << 832 (ffs(clusters_per_index_record) - 1); 833 else 834 /* 835 * When index_record_size < cluster_size, 836 * clusters_per_index_record = -log2(index_record_size) bytes. 837 * index_record_size normaly equals 4096 bytes, which is 838 * encoded as 0xF4 (-12 in decimal). 839 */ 840 vol->index_record_size = 1 << -clusters_per_index_record; 841 vol->index_record_size_mask = vol->index_record_size - 1; 842 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 843 ntfs_debug("vol->index_record_size = %i (0x%x)", 844 vol->index_record_size, vol->index_record_size); 845 ntfs_debug("vol->index_record_size_mask = 0x%x", 846 vol->index_record_size_mask); 847 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 848 vol->index_record_size_bits, 849 vol->index_record_size_bits); 850 /* We cannot support index record sizes below the sector size. */ 851 if (vol->index_record_size < vol->sector_size) { 852 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 853 "the sector size (%i). This is not " 854 "supported. Sorry.", vol->index_record_size, 855 vol->sector_size); 856 return false; 857 } 858 /* 859 * Get the size of the volume in clusters and check for 64-bit-ness. 860 * Windows currently only uses 32 bits to save the clusters so we do 861 * the same as it is much faster on 32-bit CPUs. 862 */ 863 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 864 if ((u64)ll >= 1ULL << 32) { 865 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 866 return false; 867 } 868 vol->nr_clusters = ll; 869 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 870 /* 871 * On an architecture where unsigned long is 32-bits, we restrict the 872 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 873 * will hopefully optimize the whole check away. 874 */ 875 if (sizeof(unsigned long) < 8) { 876 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 877 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 878 "large for this architecture. " 879 "Maximum supported is 2TiB. Sorry.", 880 (unsigned long long)ll >> (40 - 881 vol->cluster_size_bits)); 882 return false; 883 } 884 } 885 ll = sle64_to_cpu(b->mft_lcn); 886 if (ll >= vol->nr_clusters) { 887 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 888 "volume. Weird.", (unsigned long long)ll, 889 (unsigned long long)ll); 890 return false; 891 } 892 vol->mft_lcn = ll; 893 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 894 ll = sle64_to_cpu(b->mftmirr_lcn); 895 if (ll >= vol->nr_clusters) { 896 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 897 "of volume. Weird.", (unsigned long long)ll, 898 (unsigned long long)ll); 899 return false; 900 } 901 vol->mftmirr_lcn = ll; 902 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 903 #ifdef NTFS_RW 904 /* 905 * Work out the size of the mft mirror in number of mft records. If the 906 * cluster size is less than or equal to the size taken by four mft 907 * records, the mft mirror stores the first four mft records. If the 908 * cluster size is bigger than the size taken by four mft records, the 909 * mft mirror contains as many mft records as will fit into one 910 * cluster. 911 */ 912 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 913 vol->mftmirr_size = 4; 914 else 915 vol->mftmirr_size = vol->cluster_size >> 916 vol->mft_record_size_bits; 917 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 918 #endif /* NTFS_RW */ 919 vol->serial_no = le64_to_cpu(b->volume_serial_number); 920 ntfs_debug("vol->serial_no = 0x%llx", 921 (unsigned long long)vol->serial_no); 922 return true; 923 } 924 925 /** 926 * ntfs_setup_allocators - initialize the cluster and mft allocators 927 * @vol: volume structure for which to setup the allocators 928 * 929 * Setup the cluster (lcn) and mft allocators to the starting values. 930 */ 931 static void ntfs_setup_allocators(ntfs_volume *vol) 932 { 933 #ifdef NTFS_RW 934 LCN mft_zone_size, mft_lcn; 935 #endif /* NTFS_RW */ 936 937 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 938 vol->mft_zone_multiplier); 939 #ifdef NTFS_RW 940 /* Determine the size of the MFT zone. */ 941 mft_zone_size = vol->nr_clusters; 942 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 943 case 4: 944 mft_zone_size >>= 1; /* 50% */ 945 break; 946 case 3: 947 mft_zone_size = (mft_zone_size + 948 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 949 break; 950 case 2: 951 mft_zone_size >>= 2; /* 25% */ 952 break; 953 /* case 1: */ 954 default: 955 mft_zone_size >>= 3; /* 12.5% */ 956 break; 957 } 958 /* Setup the mft zone. */ 959 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 960 ntfs_debug("vol->mft_zone_pos = 0x%llx", 961 (unsigned long long)vol->mft_zone_pos); 962 /* 963 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 964 * source) and if the actual mft_lcn is in the expected place or even 965 * further to the front of the volume, extend the mft_zone to cover the 966 * beginning of the volume as well. This is in order to protect the 967 * area reserved for the mft bitmap as well within the mft_zone itself. 968 * On non-standard volumes we do not protect it as the overhead would 969 * be higher than the speed increase we would get by doing it. 970 */ 971 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 972 if (mft_lcn * vol->cluster_size < 16 * 1024) 973 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 974 vol->cluster_size; 975 if (vol->mft_zone_start <= mft_lcn) 976 vol->mft_zone_start = 0; 977 ntfs_debug("vol->mft_zone_start = 0x%llx", 978 (unsigned long long)vol->mft_zone_start); 979 /* 980 * Need to cap the mft zone on non-standard volumes so that it does 981 * not point outside the boundaries of the volume. We do this by 982 * halving the zone size until we are inside the volume. 983 */ 984 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 985 while (vol->mft_zone_end >= vol->nr_clusters) { 986 mft_zone_size >>= 1; 987 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 988 } 989 ntfs_debug("vol->mft_zone_end = 0x%llx", 990 (unsigned long long)vol->mft_zone_end); 991 /* 992 * Set the current position within each data zone to the start of the 993 * respective zone. 994 */ 995 vol->data1_zone_pos = vol->mft_zone_end; 996 ntfs_debug("vol->data1_zone_pos = 0x%llx", 997 (unsigned long long)vol->data1_zone_pos); 998 vol->data2_zone_pos = 0; 999 ntfs_debug("vol->data2_zone_pos = 0x%llx", 1000 (unsigned long long)vol->data2_zone_pos); 1001 1002 /* Set the mft data allocation position to mft record 24. */ 1003 vol->mft_data_pos = 24; 1004 ntfs_debug("vol->mft_data_pos = 0x%llx", 1005 (unsigned long long)vol->mft_data_pos); 1006 #endif /* NTFS_RW */ 1007 } 1008 1009 #ifdef NTFS_RW 1010 1011 /** 1012 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1013 * @vol: ntfs super block describing device whose mft mirror to load 1014 * 1015 * Return 'true' on success or 'false' on error. 1016 */ 1017 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1018 { 1019 struct inode *tmp_ino; 1020 ntfs_inode *tmp_ni; 1021 1022 ntfs_debug("Entering."); 1023 /* Get mft mirror inode. */ 1024 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1025 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1026 if (!IS_ERR(tmp_ino)) 1027 iput(tmp_ino); 1028 /* Caller will display error message. */ 1029 return false; 1030 } 1031 /* 1032 * Re-initialize some specifics about $MFTMirr's inode as 1033 * ntfs_read_inode() will have set up the default ones. 1034 */ 1035 /* Set uid and gid to root. */ 1036 tmp_ino->i_uid = tmp_ino->i_gid = 0; 1037 /* Regular file. No access for anyone. */ 1038 tmp_ino->i_mode = S_IFREG; 1039 /* No VFS initiated operations allowed for $MFTMirr. */ 1040 tmp_ino->i_op = &ntfs_empty_inode_ops; 1041 tmp_ino->i_fop = &ntfs_empty_file_ops; 1042 /* Put in our special address space operations. */ 1043 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1044 tmp_ni = NTFS_I(tmp_ino); 1045 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1046 NInoSetMstProtected(tmp_ni); 1047 NInoSetSparseDisabled(tmp_ni); 1048 /* 1049 * Set up our little cheat allowing us to reuse the async read io 1050 * completion handler for directories. 1051 */ 1052 tmp_ni->itype.index.block_size = vol->mft_record_size; 1053 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1054 vol->mftmirr_ino = tmp_ino; 1055 ntfs_debug("Done."); 1056 return true; 1057 } 1058 1059 /** 1060 * check_mft_mirror - compare contents of the mft mirror with the mft 1061 * @vol: ntfs super block describing device whose mft mirror to check 1062 * 1063 * Return 'true' on success or 'false' on error. 1064 * 1065 * Note, this function also results in the mft mirror runlist being completely 1066 * mapped into memory. The mft mirror write code requires this and will BUG() 1067 * should it find an unmapped runlist element. 1068 */ 1069 static bool check_mft_mirror(ntfs_volume *vol) 1070 { 1071 struct super_block *sb = vol->sb; 1072 ntfs_inode *mirr_ni; 1073 struct page *mft_page, *mirr_page; 1074 u8 *kmft, *kmirr; 1075 runlist_element *rl, rl2[2]; 1076 pgoff_t index; 1077 int mrecs_per_page, i; 1078 1079 ntfs_debug("Entering."); 1080 /* Compare contents of $MFT and $MFTMirr. */ 1081 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size; 1082 BUG_ON(!mrecs_per_page); 1083 BUG_ON(!vol->mftmirr_size); 1084 mft_page = mirr_page = NULL; 1085 kmft = kmirr = NULL; 1086 index = i = 0; 1087 do { 1088 u32 bytes; 1089 1090 /* Switch pages if necessary. */ 1091 if (!(i % mrecs_per_page)) { 1092 if (index) { 1093 ntfs_unmap_page(mft_page); 1094 ntfs_unmap_page(mirr_page); 1095 } 1096 /* Get the $MFT page. */ 1097 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1098 index); 1099 if (IS_ERR(mft_page)) { 1100 ntfs_error(sb, "Failed to read $MFT."); 1101 return false; 1102 } 1103 kmft = page_address(mft_page); 1104 /* Get the $MFTMirr page. */ 1105 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1106 index); 1107 if (IS_ERR(mirr_page)) { 1108 ntfs_error(sb, "Failed to read $MFTMirr."); 1109 goto mft_unmap_out; 1110 } 1111 kmirr = page_address(mirr_page); 1112 ++index; 1113 } 1114 /* Do not check the record if it is not in use. */ 1115 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1116 /* Make sure the record is ok. */ 1117 if (ntfs_is_baad_recordp((le32*)kmft)) { 1118 ntfs_error(sb, "Incomplete multi sector " 1119 "transfer detected in mft " 1120 "record %i.", i); 1121 mm_unmap_out: 1122 ntfs_unmap_page(mirr_page); 1123 mft_unmap_out: 1124 ntfs_unmap_page(mft_page); 1125 return false; 1126 } 1127 } 1128 /* Do not check the mirror record if it is not in use. */ 1129 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1130 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1131 ntfs_error(sb, "Incomplete multi sector " 1132 "transfer detected in mft " 1133 "mirror record %i.", i); 1134 goto mm_unmap_out; 1135 } 1136 } 1137 /* Get the amount of data in the current record. */ 1138 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1139 if (bytes < sizeof(MFT_RECORD_OLD) || 1140 bytes > vol->mft_record_size || 1141 ntfs_is_baad_recordp((le32*)kmft)) { 1142 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1143 if (bytes < sizeof(MFT_RECORD_OLD) || 1144 bytes > vol->mft_record_size || 1145 ntfs_is_baad_recordp((le32*)kmirr)) 1146 bytes = vol->mft_record_size; 1147 } 1148 /* Compare the two records. */ 1149 if (memcmp(kmft, kmirr, bytes)) { 1150 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1151 "match. Run ntfsfix or chkdsk.", i); 1152 goto mm_unmap_out; 1153 } 1154 kmft += vol->mft_record_size; 1155 kmirr += vol->mft_record_size; 1156 } while (++i < vol->mftmirr_size); 1157 /* Release the last pages. */ 1158 ntfs_unmap_page(mft_page); 1159 ntfs_unmap_page(mirr_page); 1160 1161 /* Construct the mft mirror runlist by hand. */ 1162 rl2[0].vcn = 0; 1163 rl2[0].lcn = vol->mftmirr_lcn; 1164 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1165 vol->cluster_size - 1) / vol->cluster_size; 1166 rl2[1].vcn = rl2[0].length; 1167 rl2[1].lcn = LCN_ENOENT; 1168 rl2[1].length = 0; 1169 /* 1170 * Because we have just read all of the mft mirror, we know we have 1171 * mapped the full runlist for it. 1172 */ 1173 mirr_ni = NTFS_I(vol->mftmirr_ino); 1174 down_read(&mirr_ni->runlist.lock); 1175 rl = mirr_ni->runlist.rl; 1176 /* Compare the two runlists. They must be identical. */ 1177 i = 0; 1178 do { 1179 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1180 rl2[i].length != rl[i].length) { 1181 ntfs_error(sb, "$MFTMirr location mismatch. " 1182 "Run chkdsk."); 1183 up_read(&mirr_ni->runlist.lock); 1184 return false; 1185 } 1186 } while (rl2[i++].length); 1187 up_read(&mirr_ni->runlist.lock); 1188 ntfs_debug("Done."); 1189 return true; 1190 } 1191 1192 /** 1193 * load_and_check_logfile - load and check the logfile inode for a volume 1194 * @vol: ntfs super block describing device whose logfile to load 1195 * 1196 * Return 'true' on success or 'false' on error. 1197 */ 1198 static bool load_and_check_logfile(ntfs_volume *vol, 1199 RESTART_PAGE_HEADER **rp) 1200 { 1201 struct inode *tmp_ino; 1202 1203 ntfs_debug("Entering."); 1204 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1205 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1206 if (!IS_ERR(tmp_ino)) 1207 iput(tmp_ino); 1208 /* Caller will display error message. */ 1209 return false; 1210 } 1211 if (!ntfs_check_logfile(tmp_ino, rp)) { 1212 iput(tmp_ino); 1213 /* ntfs_check_logfile() will have displayed error output. */ 1214 return false; 1215 } 1216 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1217 vol->logfile_ino = tmp_ino; 1218 ntfs_debug("Done."); 1219 return true; 1220 } 1221 1222 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1223 1224 /** 1225 * check_windows_hibernation_status - check if Windows is suspended on a volume 1226 * @vol: ntfs super block of device to check 1227 * 1228 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1229 * looking for the file hiberfil.sys in the root directory of the volume. If 1230 * the file is not present Windows is definitely not suspended. 1231 * 1232 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1233 * definitely suspended (this volume is not the system volume). Caveat: on a 1234 * system with many volumes it is possible that the < 4kiB check is bogus but 1235 * for now this should do fine. 1236 * 1237 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1238 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1239 * Windows is definitely suspended. If it is completely full of zeroes, 1240 * Windows is definitely not hibernated. Any other case is treated as if 1241 * Windows is suspended. This caters for the above mentioned caveat of a 1242 * system with many volumes where no "hibr" magic would be present and there is 1243 * no zero header. 1244 * 1245 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1246 * hibernated on the volume, and -errno on error. 1247 */ 1248 static int check_windows_hibernation_status(ntfs_volume *vol) 1249 { 1250 MFT_REF mref; 1251 struct inode *vi; 1252 ntfs_inode *ni; 1253 struct page *page; 1254 u32 *kaddr, *kend; 1255 ntfs_name *name = NULL; 1256 int ret = 1; 1257 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1258 cpu_to_le16('i'), cpu_to_le16('b'), 1259 cpu_to_le16('e'), cpu_to_le16('r'), 1260 cpu_to_le16('f'), cpu_to_le16('i'), 1261 cpu_to_le16('l'), cpu_to_le16('.'), 1262 cpu_to_le16('s'), cpu_to_le16('y'), 1263 cpu_to_le16('s'), 0 }; 1264 1265 ntfs_debug("Entering."); 1266 /* 1267 * Find the inode number for the hibernation file by looking up the 1268 * filename hiberfil.sys in the root directory. 1269 */ 1270 mutex_lock(&vol->root_ino->i_mutex); 1271 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1272 &name); 1273 mutex_unlock(&vol->root_ino->i_mutex); 1274 if (IS_ERR_MREF(mref)) { 1275 ret = MREF_ERR(mref); 1276 /* If the file does not exist, Windows is not hibernated. */ 1277 if (ret == -ENOENT) { 1278 ntfs_debug("hiberfil.sys not present. Windows is not " 1279 "hibernated on the volume."); 1280 return 0; 1281 } 1282 /* A real error occured. */ 1283 ntfs_error(vol->sb, "Failed to find inode number for " 1284 "hiberfil.sys."); 1285 return ret; 1286 } 1287 /* We do not care for the type of match that was found. */ 1288 kfree(name); 1289 /* Get the inode. */ 1290 vi = ntfs_iget(vol->sb, MREF(mref)); 1291 if (IS_ERR(vi) || is_bad_inode(vi)) { 1292 if (!IS_ERR(vi)) 1293 iput(vi); 1294 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1295 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1296 } 1297 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1298 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1299 "Windows is hibernated on the volume. This " 1300 "is not the system volume.", i_size_read(vi)); 1301 goto iput_out; 1302 } 1303 ni = NTFS_I(vi); 1304 page = ntfs_map_page(vi->i_mapping, 0); 1305 if (IS_ERR(page)) { 1306 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1307 ret = PTR_ERR(page); 1308 goto iput_out; 1309 } 1310 kaddr = (u32*)page_address(page); 1311 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1312 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1313 "hibernated on the volume. This is the " 1314 "system volume."); 1315 goto unm_iput_out; 1316 } 1317 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1318 do { 1319 if (unlikely(*kaddr)) { 1320 ntfs_debug("hiberfil.sys is larger than 4kiB " 1321 "(0x%llx), does not contain the " 1322 "\"hibr\" magic, and does not have a " 1323 "zero header. Windows is hibernated " 1324 "on the volume. This is not the " 1325 "system volume.", i_size_read(vi)); 1326 goto unm_iput_out; 1327 } 1328 } while (++kaddr < kend); 1329 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1330 "hibernated on the volume. This is the system " 1331 "volume."); 1332 ret = 0; 1333 unm_iput_out: 1334 ntfs_unmap_page(page); 1335 iput_out: 1336 iput(vi); 1337 return ret; 1338 } 1339 1340 /** 1341 * load_and_init_quota - load and setup the quota file for a volume if present 1342 * @vol: ntfs super block describing device whose quota file to load 1343 * 1344 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1345 * leave vol->quota_ino as NULL and return success. 1346 */ 1347 static bool load_and_init_quota(ntfs_volume *vol) 1348 { 1349 MFT_REF mref; 1350 struct inode *tmp_ino; 1351 ntfs_name *name = NULL; 1352 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1353 cpu_to_le16('Q'), cpu_to_le16('u'), 1354 cpu_to_le16('o'), cpu_to_le16('t'), 1355 cpu_to_le16('a'), 0 }; 1356 static ntfschar Q[3] = { cpu_to_le16('$'), 1357 cpu_to_le16('Q'), 0 }; 1358 1359 ntfs_debug("Entering."); 1360 /* 1361 * Find the inode number for the quota file by looking up the filename 1362 * $Quota in the extended system files directory $Extend. 1363 */ 1364 mutex_lock(&vol->extend_ino->i_mutex); 1365 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1366 &name); 1367 mutex_unlock(&vol->extend_ino->i_mutex); 1368 if (IS_ERR_MREF(mref)) { 1369 /* 1370 * If the file does not exist, quotas are disabled and have 1371 * never been enabled on this volume, just return success. 1372 */ 1373 if (MREF_ERR(mref) == -ENOENT) { 1374 ntfs_debug("$Quota not present. Volume does not have " 1375 "quotas enabled."); 1376 /* 1377 * No need to try to set quotas out of date if they are 1378 * not enabled. 1379 */ 1380 NVolSetQuotaOutOfDate(vol); 1381 return true; 1382 } 1383 /* A real error occured. */ 1384 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1385 return false; 1386 } 1387 /* We do not care for the type of match that was found. */ 1388 kfree(name); 1389 /* Get the inode. */ 1390 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1391 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1392 if (!IS_ERR(tmp_ino)) 1393 iput(tmp_ino); 1394 ntfs_error(vol->sb, "Failed to load $Quota."); 1395 return false; 1396 } 1397 vol->quota_ino = tmp_ino; 1398 /* Get the $Q index allocation attribute. */ 1399 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1400 if (IS_ERR(tmp_ino)) { 1401 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1402 return false; 1403 } 1404 vol->quota_q_ino = tmp_ino; 1405 ntfs_debug("Done."); 1406 return true; 1407 } 1408 1409 /** 1410 * load_and_init_usnjrnl - load and setup the transaction log if present 1411 * @vol: ntfs super block describing device whose usnjrnl file to load 1412 * 1413 * Return 'true' on success or 'false' on error. 1414 * 1415 * If $UsnJrnl is not present or in the process of being disabled, we set 1416 * NVolUsnJrnlStamped() and return success. 1417 * 1418 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1419 * i.e. transaction logging has only just been enabled or the journal has been 1420 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1421 * and return success. 1422 */ 1423 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1424 { 1425 MFT_REF mref; 1426 struct inode *tmp_ino; 1427 ntfs_inode *tmp_ni; 1428 struct page *page; 1429 ntfs_name *name = NULL; 1430 USN_HEADER *uh; 1431 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1432 cpu_to_le16('U'), cpu_to_le16('s'), 1433 cpu_to_le16('n'), cpu_to_le16('J'), 1434 cpu_to_le16('r'), cpu_to_le16('n'), 1435 cpu_to_le16('l'), 0 }; 1436 static ntfschar Max[5] = { cpu_to_le16('$'), 1437 cpu_to_le16('M'), cpu_to_le16('a'), 1438 cpu_to_le16('x'), 0 }; 1439 static ntfschar J[3] = { cpu_to_le16('$'), 1440 cpu_to_le16('J'), 0 }; 1441 1442 ntfs_debug("Entering."); 1443 /* 1444 * Find the inode number for the transaction log file by looking up the 1445 * filename $UsnJrnl in the extended system files directory $Extend. 1446 */ 1447 mutex_lock(&vol->extend_ino->i_mutex); 1448 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1449 &name); 1450 mutex_unlock(&vol->extend_ino->i_mutex); 1451 if (IS_ERR_MREF(mref)) { 1452 /* 1453 * If the file does not exist, transaction logging is disabled, 1454 * just return success. 1455 */ 1456 if (MREF_ERR(mref) == -ENOENT) { 1457 ntfs_debug("$UsnJrnl not present. Volume does not " 1458 "have transaction logging enabled."); 1459 not_enabled: 1460 /* 1461 * No need to try to stamp the transaction log if 1462 * transaction logging is not enabled. 1463 */ 1464 NVolSetUsnJrnlStamped(vol); 1465 return true; 1466 } 1467 /* A real error occured. */ 1468 ntfs_error(vol->sb, "Failed to find inode number for " 1469 "$UsnJrnl."); 1470 return false; 1471 } 1472 /* We do not care for the type of match that was found. */ 1473 kfree(name); 1474 /* Get the inode. */ 1475 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1476 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) { 1477 if (!IS_ERR(tmp_ino)) 1478 iput(tmp_ino); 1479 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1480 return false; 1481 } 1482 vol->usnjrnl_ino = tmp_ino; 1483 /* 1484 * If the transaction log is in the process of being deleted, we can 1485 * ignore it. 1486 */ 1487 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1488 ntfs_debug("$UsnJrnl in the process of being disabled. " 1489 "Volume does not have transaction logging " 1490 "enabled."); 1491 goto not_enabled; 1492 } 1493 /* Get the $DATA/$Max attribute. */ 1494 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1495 if (IS_ERR(tmp_ino)) { 1496 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1497 "attribute."); 1498 return false; 1499 } 1500 vol->usnjrnl_max_ino = tmp_ino; 1501 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1502 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1503 "attribute (size is 0x%llx but should be at " 1504 "least 0x%zx bytes).", i_size_read(tmp_ino), 1505 sizeof(USN_HEADER)); 1506 return false; 1507 } 1508 /* Get the $DATA/$J attribute. */ 1509 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1510 if (IS_ERR(tmp_ino)) { 1511 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1512 "attribute."); 1513 return false; 1514 } 1515 vol->usnjrnl_j_ino = tmp_ino; 1516 /* Verify $J is non-resident and sparse. */ 1517 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1518 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1519 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1520 "and/or not sparse."); 1521 return false; 1522 } 1523 /* Read the USN_HEADER from $DATA/$Max. */ 1524 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1525 if (IS_ERR(page)) { 1526 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1527 "attribute."); 1528 return false; 1529 } 1530 uh = (USN_HEADER*)page_address(page); 1531 /* Sanity check the $Max. */ 1532 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1533 sle64_to_cpu(uh->maximum_size))) { 1534 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1535 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1536 (long long)sle64_to_cpu(uh->allocation_delta), 1537 (long long)sle64_to_cpu(uh->maximum_size)); 1538 ntfs_unmap_page(page); 1539 return false; 1540 } 1541 /* 1542 * If the transaction log has been stamped and nothing has been written 1543 * to it since, we do not need to stamp it. 1544 */ 1545 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1546 i_size_read(vol->usnjrnl_j_ino))) { 1547 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1548 i_size_read(vol->usnjrnl_j_ino))) { 1549 ntfs_unmap_page(page); 1550 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1551 "logged since it was last stamped. " 1552 "Treating this as if the volume does " 1553 "not have transaction logging " 1554 "enabled."); 1555 goto not_enabled; 1556 } 1557 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1558 "which is out of bounds (0x%llx). $UsnJrnl " 1559 "is corrupt.", 1560 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1561 i_size_read(vol->usnjrnl_j_ino)); 1562 ntfs_unmap_page(page); 1563 return false; 1564 } 1565 ntfs_unmap_page(page); 1566 ntfs_debug("Done."); 1567 return true; 1568 } 1569 1570 /** 1571 * load_and_init_attrdef - load the attribute definitions table for a volume 1572 * @vol: ntfs super block describing device whose attrdef to load 1573 * 1574 * Return 'true' on success or 'false' on error. 1575 */ 1576 static bool load_and_init_attrdef(ntfs_volume *vol) 1577 { 1578 loff_t i_size; 1579 struct super_block *sb = vol->sb; 1580 struct inode *ino; 1581 struct page *page; 1582 pgoff_t index, max_index; 1583 unsigned int size; 1584 1585 ntfs_debug("Entering."); 1586 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1587 ino = ntfs_iget(sb, FILE_AttrDef); 1588 if (IS_ERR(ino) || is_bad_inode(ino)) { 1589 if (!IS_ERR(ino)) 1590 iput(ino); 1591 goto failed; 1592 } 1593 NInoSetSparseDisabled(NTFS_I(ino)); 1594 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1595 i_size = i_size_read(ino); 1596 if (i_size <= 0 || i_size > 0x7fffffff) 1597 goto iput_failed; 1598 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1599 if (!vol->attrdef) 1600 goto iput_failed; 1601 index = 0; 1602 max_index = i_size >> PAGE_CACHE_SHIFT; 1603 size = PAGE_CACHE_SIZE; 1604 while (index < max_index) { 1605 /* Read the attrdef table and copy it into the linear buffer. */ 1606 read_partial_attrdef_page: 1607 page = ntfs_map_page(ino->i_mapping, index); 1608 if (IS_ERR(page)) 1609 goto free_iput_failed; 1610 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT), 1611 page_address(page), size); 1612 ntfs_unmap_page(page); 1613 }; 1614 if (size == PAGE_CACHE_SIZE) { 1615 size = i_size & ~PAGE_CACHE_MASK; 1616 if (size) 1617 goto read_partial_attrdef_page; 1618 } 1619 vol->attrdef_size = i_size; 1620 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1621 iput(ino); 1622 return true; 1623 free_iput_failed: 1624 ntfs_free(vol->attrdef); 1625 vol->attrdef = NULL; 1626 iput_failed: 1627 iput(ino); 1628 failed: 1629 ntfs_error(sb, "Failed to initialize attribute definition table."); 1630 return false; 1631 } 1632 1633 #endif /* NTFS_RW */ 1634 1635 /** 1636 * load_and_init_upcase - load the upcase table for an ntfs volume 1637 * @vol: ntfs super block describing device whose upcase to load 1638 * 1639 * Return 'true' on success or 'false' on error. 1640 */ 1641 static bool load_and_init_upcase(ntfs_volume *vol) 1642 { 1643 loff_t i_size; 1644 struct super_block *sb = vol->sb; 1645 struct inode *ino; 1646 struct page *page; 1647 pgoff_t index, max_index; 1648 unsigned int size; 1649 int i, max; 1650 1651 ntfs_debug("Entering."); 1652 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1653 ino = ntfs_iget(sb, FILE_UpCase); 1654 if (IS_ERR(ino) || is_bad_inode(ino)) { 1655 if (!IS_ERR(ino)) 1656 iput(ino); 1657 goto upcase_failed; 1658 } 1659 /* 1660 * The upcase size must not be above 64k Unicode characters, must not 1661 * be zero and must be a multiple of sizeof(ntfschar). 1662 */ 1663 i_size = i_size_read(ino); 1664 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1665 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1666 goto iput_upcase_failed; 1667 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1668 if (!vol->upcase) 1669 goto iput_upcase_failed; 1670 index = 0; 1671 max_index = i_size >> PAGE_CACHE_SHIFT; 1672 size = PAGE_CACHE_SIZE; 1673 while (index < max_index) { 1674 /* Read the upcase table and copy it into the linear buffer. */ 1675 read_partial_upcase_page: 1676 page = ntfs_map_page(ino->i_mapping, index); 1677 if (IS_ERR(page)) 1678 goto iput_upcase_failed; 1679 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT), 1680 page_address(page), size); 1681 ntfs_unmap_page(page); 1682 }; 1683 if (size == PAGE_CACHE_SIZE) { 1684 size = i_size & ~PAGE_CACHE_MASK; 1685 if (size) 1686 goto read_partial_upcase_page; 1687 } 1688 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1689 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1690 i_size, 64 * 1024 * sizeof(ntfschar)); 1691 iput(ino); 1692 mutex_lock(&ntfs_lock); 1693 if (!default_upcase) { 1694 ntfs_debug("Using volume specified $UpCase since default is " 1695 "not present."); 1696 mutex_unlock(&ntfs_lock); 1697 return true; 1698 } 1699 max = default_upcase_len; 1700 if (max > vol->upcase_len) 1701 max = vol->upcase_len; 1702 for (i = 0; i < max; i++) 1703 if (vol->upcase[i] != default_upcase[i]) 1704 break; 1705 if (i == max) { 1706 ntfs_free(vol->upcase); 1707 vol->upcase = default_upcase; 1708 vol->upcase_len = max; 1709 ntfs_nr_upcase_users++; 1710 mutex_unlock(&ntfs_lock); 1711 ntfs_debug("Volume specified $UpCase matches default. Using " 1712 "default."); 1713 return true; 1714 } 1715 mutex_unlock(&ntfs_lock); 1716 ntfs_debug("Using volume specified $UpCase since it does not match " 1717 "the default."); 1718 return true; 1719 iput_upcase_failed: 1720 iput(ino); 1721 ntfs_free(vol->upcase); 1722 vol->upcase = NULL; 1723 upcase_failed: 1724 mutex_lock(&ntfs_lock); 1725 if (default_upcase) { 1726 vol->upcase = default_upcase; 1727 vol->upcase_len = default_upcase_len; 1728 ntfs_nr_upcase_users++; 1729 mutex_unlock(&ntfs_lock); 1730 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1731 "default."); 1732 return true; 1733 } 1734 mutex_unlock(&ntfs_lock); 1735 ntfs_error(sb, "Failed to initialize upcase table."); 1736 return false; 1737 } 1738 1739 /* 1740 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1741 * their own special locking rules: 1742 */ 1743 static struct lock_class_key 1744 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1745 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1746 1747 /** 1748 * load_system_files - open the system files using normal functions 1749 * @vol: ntfs super block describing device whose system files to load 1750 * 1751 * Open the system files with normal access functions and complete setting up 1752 * the ntfs super block @vol. 1753 * 1754 * Return 'true' on success or 'false' on error. 1755 */ 1756 static bool load_system_files(ntfs_volume *vol) 1757 { 1758 struct super_block *sb = vol->sb; 1759 MFT_RECORD *m; 1760 VOLUME_INFORMATION *vi; 1761 ntfs_attr_search_ctx *ctx; 1762 #ifdef NTFS_RW 1763 RESTART_PAGE_HEADER *rp; 1764 int err; 1765 #endif /* NTFS_RW */ 1766 1767 ntfs_debug("Entering."); 1768 #ifdef NTFS_RW 1769 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1770 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1771 static const char *es1 = "Failed to load $MFTMirr"; 1772 static const char *es2 = "$MFTMirr does not match $MFT"; 1773 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1774 1775 /* If a read-write mount, convert it to a read-only mount. */ 1776 if (!(sb->s_flags & MS_RDONLY)) { 1777 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1778 ON_ERRORS_CONTINUE))) { 1779 ntfs_error(sb, "%s and neither on_errors=" 1780 "continue nor on_errors=" 1781 "remount-ro was specified%s", 1782 !vol->mftmirr_ino ? es1 : es2, 1783 es3); 1784 goto iput_mirr_err_out; 1785 } 1786 sb->s_flags |= MS_RDONLY; 1787 ntfs_error(sb, "%s. Mounting read-only%s", 1788 !vol->mftmirr_ino ? es1 : es2, es3); 1789 } else 1790 ntfs_warning(sb, "%s. Will not be able to remount " 1791 "read-write%s", 1792 !vol->mftmirr_ino ? es1 : es2, es3); 1793 /* This will prevent a read-write remount. */ 1794 NVolSetErrors(vol); 1795 } 1796 #endif /* NTFS_RW */ 1797 /* Get mft bitmap attribute inode. */ 1798 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1799 if (IS_ERR(vol->mftbmp_ino)) { 1800 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1801 goto iput_mirr_err_out; 1802 } 1803 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1804 &mftbmp_runlist_lock_key); 1805 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1806 &mftbmp_mrec_lock_key); 1807 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1808 if (!load_and_init_upcase(vol)) 1809 goto iput_mftbmp_err_out; 1810 #ifdef NTFS_RW 1811 /* 1812 * Read attribute definitions table and setup @vol->attrdef and 1813 * @vol->attrdef_size. 1814 */ 1815 if (!load_and_init_attrdef(vol)) 1816 goto iput_upcase_err_out; 1817 #endif /* NTFS_RW */ 1818 /* 1819 * Get the cluster allocation bitmap inode and verify the size, no 1820 * need for any locking at this stage as we are already running 1821 * exclusively as we are mount in progress task. 1822 */ 1823 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1824 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1825 if (!IS_ERR(vol->lcnbmp_ino)) 1826 iput(vol->lcnbmp_ino); 1827 goto bitmap_failed; 1828 } 1829 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1830 &lcnbmp_runlist_lock_key); 1831 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1832 &lcnbmp_mrec_lock_key); 1833 1834 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1835 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1836 iput(vol->lcnbmp_ino); 1837 bitmap_failed: 1838 ntfs_error(sb, "Failed to load $Bitmap."); 1839 goto iput_attrdef_err_out; 1840 } 1841 /* 1842 * Get the volume inode and setup our cache of the volume flags and 1843 * version. 1844 */ 1845 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1846 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1847 if (!IS_ERR(vol->vol_ino)) 1848 iput(vol->vol_ino); 1849 volume_failed: 1850 ntfs_error(sb, "Failed to load $Volume."); 1851 goto iput_lcnbmp_err_out; 1852 } 1853 m = map_mft_record(NTFS_I(vol->vol_ino)); 1854 if (IS_ERR(m)) { 1855 iput_volume_failed: 1856 iput(vol->vol_ino); 1857 goto volume_failed; 1858 } 1859 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1860 ntfs_error(sb, "Failed to get attribute search context."); 1861 goto get_ctx_vol_failed; 1862 } 1863 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1864 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1865 err_put_vol: 1866 ntfs_attr_put_search_ctx(ctx); 1867 get_ctx_vol_failed: 1868 unmap_mft_record(NTFS_I(vol->vol_ino)); 1869 goto iput_volume_failed; 1870 } 1871 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1872 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1873 /* Some bounds checks. */ 1874 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1875 le32_to_cpu(ctx->attr->data.resident.value_length) > 1876 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1877 goto err_put_vol; 1878 /* Copy the volume flags and version to the ntfs_volume structure. */ 1879 vol->vol_flags = vi->flags; 1880 vol->major_ver = vi->major_ver; 1881 vol->minor_ver = vi->minor_ver; 1882 ntfs_attr_put_search_ctx(ctx); 1883 unmap_mft_record(NTFS_I(vol->vol_ino)); 1884 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver, 1885 vol->minor_ver); 1886 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1887 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1888 "volume version %i.%i (need at least version " 1889 "3.0).", vol->major_ver, vol->minor_ver); 1890 NVolClearSparseEnabled(vol); 1891 } 1892 #ifdef NTFS_RW 1893 /* Make sure that no unsupported volume flags are set. */ 1894 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1895 static const char *es1a = "Volume is dirty"; 1896 static const char *es1b = "Volume has been modified by chkdsk"; 1897 static const char *es1c = "Volume has unsupported flags set"; 1898 static const char *es2a = ". Run chkdsk and mount in Windows."; 1899 static const char *es2b = ". Mount in Windows."; 1900 const char *es1, *es2; 1901 1902 es2 = es2a; 1903 if (vol->vol_flags & VOLUME_IS_DIRTY) 1904 es1 = es1a; 1905 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1906 es1 = es1b; 1907 es2 = es2b; 1908 } else { 1909 es1 = es1c; 1910 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1911 "encountered.", 1912 (unsigned)le16_to_cpu(vol->vol_flags)); 1913 } 1914 /* If a read-write mount, convert it to a read-only mount. */ 1915 if (!(sb->s_flags & MS_RDONLY)) { 1916 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1917 ON_ERRORS_CONTINUE))) { 1918 ntfs_error(sb, "%s and neither on_errors=" 1919 "continue nor on_errors=" 1920 "remount-ro was specified%s", 1921 es1, es2); 1922 goto iput_vol_err_out; 1923 } 1924 sb->s_flags |= MS_RDONLY; 1925 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1926 } else 1927 ntfs_warning(sb, "%s. Will not be able to remount " 1928 "read-write%s", es1, es2); 1929 /* 1930 * Do not set NVolErrors() because ntfs_remount() re-checks the 1931 * flags which we need to do in case any flags have changed. 1932 */ 1933 } 1934 /* 1935 * Get the inode for the logfile, check it and determine if the volume 1936 * was shutdown cleanly. 1937 */ 1938 rp = NULL; 1939 if (!load_and_check_logfile(vol, &rp) || 1940 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1941 static const char *es1a = "Failed to load $LogFile"; 1942 static const char *es1b = "$LogFile is not clean"; 1943 static const char *es2 = ". Mount in Windows."; 1944 const char *es1; 1945 1946 es1 = !vol->logfile_ino ? es1a : es1b; 1947 /* If a read-write mount, convert it to a read-only mount. */ 1948 if (!(sb->s_flags & MS_RDONLY)) { 1949 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1950 ON_ERRORS_CONTINUE))) { 1951 ntfs_error(sb, "%s and neither on_errors=" 1952 "continue nor on_errors=" 1953 "remount-ro was specified%s", 1954 es1, es2); 1955 if (vol->logfile_ino) { 1956 BUG_ON(!rp); 1957 ntfs_free(rp); 1958 } 1959 goto iput_logfile_err_out; 1960 } 1961 sb->s_flags |= MS_RDONLY; 1962 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1963 } else 1964 ntfs_warning(sb, "%s. Will not be able to remount " 1965 "read-write%s", es1, es2); 1966 /* This will prevent a read-write remount. */ 1967 NVolSetErrors(vol); 1968 } 1969 ntfs_free(rp); 1970 #endif /* NTFS_RW */ 1971 /* Get the root directory inode so we can do path lookups. */ 1972 vol->root_ino = ntfs_iget(sb, FILE_root); 1973 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1974 if (!IS_ERR(vol->root_ino)) 1975 iput(vol->root_ino); 1976 ntfs_error(sb, "Failed to load root directory."); 1977 goto iput_logfile_err_out; 1978 } 1979 #ifdef NTFS_RW 1980 /* 1981 * Check if Windows is suspended to disk on the target volume. If it 1982 * is hibernated, we must not write *anything* to the disk so set 1983 * NVolErrors() without setting the dirty volume flag and mount 1984 * read-only. This will prevent read-write remounting and it will also 1985 * prevent all writes. 1986 */ 1987 err = check_windows_hibernation_status(vol); 1988 if (unlikely(err)) { 1989 static const char *es1a = "Failed to determine if Windows is " 1990 "hibernated"; 1991 static const char *es1b = "Windows is hibernated"; 1992 static const char *es2 = ". Run chkdsk."; 1993 const char *es1; 1994 1995 es1 = err < 0 ? es1a : es1b; 1996 /* If a read-write mount, convert it to a read-only mount. */ 1997 if (!(sb->s_flags & MS_RDONLY)) { 1998 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1999 ON_ERRORS_CONTINUE))) { 2000 ntfs_error(sb, "%s and neither on_errors=" 2001 "continue nor on_errors=" 2002 "remount-ro was specified%s", 2003 es1, es2); 2004 goto iput_root_err_out; 2005 } 2006 sb->s_flags |= MS_RDONLY; 2007 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2008 } else 2009 ntfs_warning(sb, "%s. Will not be able to remount " 2010 "read-write%s", es1, es2); 2011 /* This will prevent a read-write remount. */ 2012 NVolSetErrors(vol); 2013 } 2014 /* If (still) a read-write mount, mark the volume dirty. */ 2015 if (!(sb->s_flags & MS_RDONLY) && 2016 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2017 static const char *es1 = "Failed to set dirty bit in volume " 2018 "information flags"; 2019 static const char *es2 = ". Run chkdsk."; 2020 2021 /* Convert to a read-only mount. */ 2022 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2023 ON_ERRORS_CONTINUE))) { 2024 ntfs_error(sb, "%s and neither on_errors=continue nor " 2025 "on_errors=remount-ro was specified%s", 2026 es1, es2); 2027 goto iput_root_err_out; 2028 } 2029 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2030 sb->s_flags |= MS_RDONLY; 2031 /* 2032 * Do not set NVolErrors() because ntfs_remount() might manage 2033 * to set the dirty flag in which case all would be well. 2034 */ 2035 } 2036 #if 0 2037 // TODO: Enable this code once we start modifying anything that is 2038 // different between NTFS 1.2 and 3.x... 2039 /* 2040 * If (still) a read-write mount, set the NT4 compatibility flag on 2041 * newer NTFS version volumes. 2042 */ 2043 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) && 2044 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2045 static const char *es1 = "Failed to set NT4 compatibility flag"; 2046 static const char *es2 = ". Run chkdsk."; 2047 2048 /* Convert to a read-only mount. */ 2049 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2050 ON_ERRORS_CONTINUE))) { 2051 ntfs_error(sb, "%s and neither on_errors=continue nor " 2052 "on_errors=remount-ro was specified%s", 2053 es1, es2); 2054 goto iput_root_err_out; 2055 } 2056 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2057 sb->s_flags |= MS_RDONLY; 2058 NVolSetErrors(vol); 2059 } 2060 #endif 2061 /* If (still) a read-write mount, empty the logfile. */ 2062 if (!(sb->s_flags & MS_RDONLY) && 2063 !ntfs_empty_logfile(vol->logfile_ino)) { 2064 static const char *es1 = "Failed to empty $LogFile"; 2065 static const char *es2 = ". Mount in Windows."; 2066 2067 /* Convert to a read-only mount. */ 2068 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2069 ON_ERRORS_CONTINUE))) { 2070 ntfs_error(sb, "%s and neither on_errors=continue nor " 2071 "on_errors=remount-ro was specified%s", 2072 es1, es2); 2073 goto iput_root_err_out; 2074 } 2075 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2076 sb->s_flags |= MS_RDONLY; 2077 NVolSetErrors(vol); 2078 } 2079 #endif /* NTFS_RW */ 2080 /* If on NTFS versions before 3.0, we are done. */ 2081 if (unlikely(vol->major_ver < 3)) 2082 return true; 2083 /* NTFS 3.0+ specific initialization. */ 2084 /* Get the security descriptors inode. */ 2085 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2086 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2087 if (!IS_ERR(vol->secure_ino)) 2088 iput(vol->secure_ino); 2089 ntfs_error(sb, "Failed to load $Secure."); 2090 goto iput_root_err_out; 2091 } 2092 // TODO: Initialize security. 2093 /* Get the extended system files' directory inode. */ 2094 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2095 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { 2096 if (!IS_ERR(vol->extend_ino)) 2097 iput(vol->extend_ino); 2098 ntfs_error(sb, "Failed to load $Extend."); 2099 goto iput_sec_err_out; 2100 } 2101 #ifdef NTFS_RW 2102 /* Find the quota file, load it if present, and set it up. */ 2103 if (!load_and_init_quota(vol)) { 2104 static const char *es1 = "Failed to load $Quota"; 2105 static const char *es2 = ". Run chkdsk."; 2106 2107 /* If a read-write mount, convert it to a read-only mount. */ 2108 if (!(sb->s_flags & MS_RDONLY)) { 2109 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2110 ON_ERRORS_CONTINUE))) { 2111 ntfs_error(sb, "%s and neither on_errors=" 2112 "continue nor on_errors=" 2113 "remount-ro was specified%s", 2114 es1, es2); 2115 goto iput_quota_err_out; 2116 } 2117 sb->s_flags |= MS_RDONLY; 2118 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2119 } else 2120 ntfs_warning(sb, "%s. Will not be able to remount " 2121 "read-write%s", es1, es2); 2122 /* This will prevent a read-write remount. */ 2123 NVolSetErrors(vol); 2124 } 2125 /* If (still) a read-write mount, mark the quotas out of date. */ 2126 if (!(sb->s_flags & MS_RDONLY) && 2127 !ntfs_mark_quotas_out_of_date(vol)) { 2128 static const char *es1 = "Failed to mark quotas out of date"; 2129 static const char *es2 = ". Run chkdsk."; 2130 2131 /* Convert to a read-only mount. */ 2132 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2133 ON_ERRORS_CONTINUE))) { 2134 ntfs_error(sb, "%s and neither on_errors=continue nor " 2135 "on_errors=remount-ro was specified%s", 2136 es1, es2); 2137 goto iput_quota_err_out; 2138 } 2139 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2140 sb->s_flags |= MS_RDONLY; 2141 NVolSetErrors(vol); 2142 } 2143 /* 2144 * Find the transaction log file ($UsnJrnl), load it if present, check 2145 * it, and set it up. 2146 */ 2147 if (!load_and_init_usnjrnl(vol)) { 2148 static const char *es1 = "Failed to load $UsnJrnl"; 2149 static const char *es2 = ". Run chkdsk."; 2150 2151 /* If a read-write mount, convert it to a read-only mount. */ 2152 if (!(sb->s_flags & MS_RDONLY)) { 2153 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2154 ON_ERRORS_CONTINUE))) { 2155 ntfs_error(sb, "%s and neither on_errors=" 2156 "continue nor on_errors=" 2157 "remount-ro was specified%s", 2158 es1, es2); 2159 goto iput_usnjrnl_err_out; 2160 } 2161 sb->s_flags |= MS_RDONLY; 2162 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2163 } else 2164 ntfs_warning(sb, "%s. Will not be able to remount " 2165 "read-write%s", es1, es2); 2166 /* This will prevent a read-write remount. */ 2167 NVolSetErrors(vol); 2168 } 2169 /* If (still) a read-write mount, stamp the transaction log. */ 2170 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) { 2171 static const char *es1 = "Failed to stamp transaction log " 2172 "($UsnJrnl)"; 2173 static const char *es2 = ". Run chkdsk."; 2174 2175 /* Convert to a read-only mount. */ 2176 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2177 ON_ERRORS_CONTINUE))) { 2178 ntfs_error(sb, "%s and neither on_errors=continue nor " 2179 "on_errors=remount-ro was specified%s", 2180 es1, es2); 2181 goto iput_usnjrnl_err_out; 2182 } 2183 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2184 sb->s_flags |= MS_RDONLY; 2185 NVolSetErrors(vol); 2186 } 2187 #endif /* NTFS_RW */ 2188 return true; 2189 #ifdef NTFS_RW 2190 iput_usnjrnl_err_out: 2191 if (vol->usnjrnl_j_ino) 2192 iput(vol->usnjrnl_j_ino); 2193 if (vol->usnjrnl_max_ino) 2194 iput(vol->usnjrnl_max_ino); 2195 if (vol->usnjrnl_ino) 2196 iput(vol->usnjrnl_ino); 2197 iput_quota_err_out: 2198 if (vol->quota_q_ino) 2199 iput(vol->quota_q_ino); 2200 if (vol->quota_ino) 2201 iput(vol->quota_ino); 2202 iput(vol->extend_ino); 2203 #endif /* NTFS_RW */ 2204 iput_sec_err_out: 2205 iput(vol->secure_ino); 2206 iput_root_err_out: 2207 iput(vol->root_ino); 2208 iput_logfile_err_out: 2209 #ifdef NTFS_RW 2210 if (vol->logfile_ino) 2211 iput(vol->logfile_ino); 2212 iput_vol_err_out: 2213 #endif /* NTFS_RW */ 2214 iput(vol->vol_ino); 2215 iput_lcnbmp_err_out: 2216 iput(vol->lcnbmp_ino); 2217 iput_attrdef_err_out: 2218 vol->attrdef_size = 0; 2219 if (vol->attrdef) { 2220 ntfs_free(vol->attrdef); 2221 vol->attrdef = NULL; 2222 } 2223 #ifdef NTFS_RW 2224 iput_upcase_err_out: 2225 #endif /* NTFS_RW */ 2226 vol->upcase_len = 0; 2227 mutex_lock(&ntfs_lock); 2228 if (vol->upcase == default_upcase) { 2229 ntfs_nr_upcase_users--; 2230 vol->upcase = NULL; 2231 } 2232 mutex_unlock(&ntfs_lock); 2233 if (vol->upcase) { 2234 ntfs_free(vol->upcase); 2235 vol->upcase = NULL; 2236 } 2237 iput_mftbmp_err_out: 2238 iput(vol->mftbmp_ino); 2239 iput_mirr_err_out: 2240 #ifdef NTFS_RW 2241 if (vol->mftmirr_ino) 2242 iput(vol->mftmirr_ino); 2243 #endif /* NTFS_RW */ 2244 return false; 2245 } 2246 2247 /** 2248 * ntfs_put_super - called by the vfs to unmount a volume 2249 * @sb: vfs superblock of volume to unmount 2250 * 2251 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2252 * the volume is being unmounted (umount system call has been invoked) and it 2253 * releases all inodes and memory belonging to the NTFS specific part of the 2254 * super block. 2255 */ 2256 static void ntfs_put_super(struct super_block *sb) 2257 { 2258 ntfs_volume *vol = NTFS_SB(sb); 2259 2260 ntfs_debug("Entering."); 2261 2262 lock_kernel(); 2263 2264 #ifdef NTFS_RW 2265 /* 2266 * Commit all inodes while they are still open in case some of them 2267 * cause others to be dirtied. 2268 */ 2269 ntfs_commit_inode(vol->vol_ino); 2270 2271 /* NTFS 3.0+ specific. */ 2272 if (vol->major_ver >= 3) { 2273 if (vol->usnjrnl_j_ino) 2274 ntfs_commit_inode(vol->usnjrnl_j_ino); 2275 if (vol->usnjrnl_max_ino) 2276 ntfs_commit_inode(vol->usnjrnl_max_ino); 2277 if (vol->usnjrnl_ino) 2278 ntfs_commit_inode(vol->usnjrnl_ino); 2279 if (vol->quota_q_ino) 2280 ntfs_commit_inode(vol->quota_q_ino); 2281 if (vol->quota_ino) 2282 ntfs_commit_inode(vol->quota_ino); 2283 if (vol->extend_ino) 2284 ntfs_commit_inode(vol->extend_ino); 2285 if (vol->secure_ino) 2286 ntfs_commit_inode(vol->secure_ino); 2287 } 2288 2289 ntfs_commit_inode(vol->root_ino); 2290 2291 down_write(&vol->lcnbmp_lock); 2292 ntfs_commit_inode(vol->lcnbmp_ino); 2293 up_write(&vol->lcnbmp_lock); 2294 2295 down_write(&vol->mftbmp_lock); 2296 ntfs_commit_inode(vol->mftbmp_ino); 2297 up_write(&vol->mftbmp_lock); 2298 2299 if (vol->logfile_ino) 2300 ntfs_commit_inode(vol->logfile_ino); 2301 2302 if (vol->mftmirr_ino) 2303 ntfs_commit_inode(vol->mftmirr_ino); 2304 ntfs_commit_inode(vol->mft_ino); 2305 2306 /* 2307 * If a read-write mount and no volume errors have occured, mark the 2308 * volume clean. Also, re-commit all affected inodes. 2309 */ 2310 if (!(sb->s_flags & MS_RDONLY)) { 2311 if (!NVolErrors(vol)) { 2312 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2313 ntfs_warning(sb, "Failed to clear dirty bit " 2314 "in volume information " 2315 "flags. Run chkdsk."); 2316 ntfs_commit_inode(vol->vol_ino); 2317 ntfs_commit_inode(vol->root_ino); 2318 if (vol->mftmirr_ino) 2319 ntfs_commit_inode(vol->mftmirr_ino); 2320 ntfs_commit_inode(vol->mft_ino); 2321 } else { 2322 ntfs_warning(sb, "Volume has errors. Leaving volume " 2323 "marked dirty. Run chkdsk."); 2324 } 2325 } 2326 #endif /* NTFS_RW */ 2327 2328 iput(vol->vol_ino); 2329 vol->vol_ino = NULL; 2330 2331 /* NTFS 3.0+ specific clean up. */ 2332 if (vol->major_ver >= 3) { 2333 #ifdef NTFS_RW 2334 if (vol->usnjrnl_j_ino) { 2335 iput(vol->usnjrnl_j_ino); 2336 vol->usnjrnl_j_ino = NULL; 2337 } 2338 if (vol->usnjrnl_max_ino) { 2339 iput(vol->usnjrnl_max_ino); 2340 vol->usnjrnl_max_ino = NULL; 2341 } 2342 if (vol->usnjrnl_ino) { 2343 iput(vol->usnjrnl_ino); 2344 vol->usnjrnl_ino = NULL; 2345 } 2346 if (vol->quota_q_ino) { 2347 iput(vol->quota_q_ino); 2348 vol->quota_q_ino = NULL; 2349 } 2350 if (vol->quota_ino) { 2351 iput(vol->quota_ino); 2352 vol->quota_ino = NULL; 2353 } 2354 #endif /* NTFS_RW */ 2355 if (vol->extend_ino) { 2356 iput(vol->extend_ino); 2357 vol->extend_ino = NULL; 2358 } 2359 if (vol->secure_ino) { 2360 iput(vol->secure_ino); 2361 vol->secure_ino = NULL; 2362 } 2363 } 2364 2365 iput(vol->root_ino); 2366 vol->root_ino = NULL; 2367 2368 down_write(&vol->lcnbmp_lock); 2369 iput(vol->lcnbmp_ino); 2370 vol->lcnbmp_ino = NULL; 2371 up_write(&vol->lcnbmp_lock); 2372 2373 down_write(&vol->mftbmp_lock); 2374 iput(vol->mftbmp_ino); 2375 vol->mftbmp_ino = NULL; 2376 up_write(&vol->mftbmp_lock); 2377 2378 #ifdef NTFS_RW 2379 if (vol->logfile_ino) { 2380 iput(vol->logfile_ino); 2381 vol->logfile_ino = NULL; 2382 } 2383 if (vol->mftmirr_ino) { 2384 /* Re-commit the mft mirror and mft just in case. */ 2385 ntfs_commit_inode(vol->mftmirr_ino); 2386 ntfs_commit_inode(vol->mft_ino); 2387 iput(vol->mftmirr_ino); 2388 vol->mftmirr_ino = NULL; 2389 } 2390 /* 2391 * We should have no dirty inodes left, due to 2392 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2393 * the underlying mft records are written out and cleaned. 2394 */ 2395 ntfs_commit_inode(vol->mft_ino); 2396 write_inode_now(vol->mft_ino, 1); 2397 #endif /* NTFS_RW */ 2398 2399 iput(vol->mft_ino); 2400 vol->mft_ino = NULL; 2401 2402 /* Throw away the table of attribute definitions. */ 2403 vol->attrdef_size = 0; 2404 if (vol->attrdef) { 2405 ntfs_free(vol->attrdef); 2406 vol->attrdef = NULL; 2407 } 2408 vol->upcase_len = 0; 2409 /* 2410 * Destroy the global default upcase table if necessary. Also decrease 2411 * the number of upcase users if we are a user. 2412 */ 2413 mutex_lock(&ntfs_lock); 2414 if (vol->upcase == default_upcase) { 2415 ntfs_nr_upcase_users--; 2416 vol->upcase = NULL; 2417 } 2418 if (!ntfs_nr_upcase_users && default_upcase) { 2419 ntfs_free(default_upcase); 2420 default_upcase = NULL; 2421 } 2422 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2423 free_compression_buffers(); 2424 mutex_unlock(&ntfs_lock); 2425 if (vol->upcase) { 2426 ntfs_free(vol->upcase); 2427 vol->upcase = NULL; 2428 } 2429 2430 unload_nls(vol->nls_map); 2431 2432 sb->s_fs_info = NULL; 2433 kfree(vol); 2434 2435 unlock_kernel(); 2436 } 2437 2438 /** 2439 * get_nr_free_clusters - return the number of free clusters on a volume 2440 * @vol: ntfs volume for which to obtain free cluster count 2441 * 2442 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2443 * actually calculate the number of clusters in use instead because this 2444 * allows us to not care about partial pages as these will be just zero filled 2445 * and hence not be counted as allocated clusters. 2446 * 2447 * The only particularity is that clusters beyond the end of the logical ntfs 2448 * volume will be marked as allocated to prevent errors which means we have to 2449 * discount those at the end. This is important as the cluster bitmap always 2450 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2451 * the logical volume and marked in use when they are not as they do not exist. 2452 * 2453 * If any pages cannot be read we assume all clusters in the erroring pages are 2454 * in use. This means we return an underestimate on errors which is better than 2455 * an overestimate. 2456 */ 2457 static s64 get_nr_free_clusters(ntfs_volume *vol) 2458 { 2459 s64 nr_free = vol->nr_clusters; 2460 u32 *kaddr; 2461 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2462 struct page *page; 2463 pgoff_t index, max_index; 2464 2465 ntfs_debug("Entering."); 2466 /* Serialize accesses to the cluster bitmap. */ 2467 down_read(&vol->lcnbmp_lock); 2468 /* 2469 * Convert the number of bits into bytes rounded up, then convert into 2470 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one 2471 * full and one partial page max_index = 2. 2472 */ 2473 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> 2474 PAGE_CACHE_SHIFT; 2475 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2476 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2477 max_index, PAGE_CACHE_SIZE / 4); 2478 for (index = 0; index < max_index; index++) { 2479 unsigned int i; 2480 /* 2481 * Read the page from page cache, getting it from backing store 2482 * if necessary, and increment the use count. 2483 */ 2484 page = read_mapping_page(mapping, index, NULL); 2485 /* Ignore pages which errored synchronously. */ 2486 if (IS_ERR(page)) { 2487 ntfs_debug("read_mapping_page() error. Skipping " 2488 "page (index 0x%lx).", index); 2489 nr_free -= PAGE_CACHE_SIZE * 8; 2490 continue; 2491 } 2492 kaddr = (u32*)kmap_atomic(page, KM_USER0); 2493 /* 2494 * For each 4 bytes, subtract the number of set bits. If this 2495 * is the last page and it is partial we don't really care as 2496 * it just means we do a little extra work but it won't affect 2497 * the result as all out of range bytes are set to zero by 2498 * ntfs_readpage(). 2499 */ 2500 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++) 2501 nr_free -= (s64)hweight32(kaddr[i]); 2502 kunmap_atomic(kaddr, KM_USER0); 2503 page_cache_release(page); 2504 } 2505 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2506 /* 2507 * Fixup for eventual bits outside logical ntfs volume (see function 2508 * description above). 2509 */ 2510 if (vol->nr_clusters & 63) 2511 nr_free += 64 - (vol->nr_clusters & 63); 2512 up_read(&vol->lcnbmp_lock); 2513 /* If errors occured we may well have gone below zero, fix this. */ 2514 if (nr_free < 0) 2515 nr_free = 0; 2516 ntfs_debug("Exiting."); 2517 return nr_free; 2518 } 2519 2520 /** 2521 * __get_nr_free_mft_records - return the number of free inodes on a volume 2522 * @vol: ntfs volume for which to obtain free inode count 2523 * @nr_free: number of mft records in filesystem 2524 * @max_index: maximum number of pages containing set bits 2525 * 2526 * Calculate the number of free mft records (inodes) on the mounted NTFS 2527 * volume @vol. We actually calculate the number of mft records in use instead 2528 * because this allows us to not care about partial pages as these will be just 2529 * zero filled and hence not be counted as allocated mft record. 2530 * 2531 * If any pages cannot be read we assume all mft records in the erroring pages 2532 * are in use. This means we return an underestimate on errors which is better 2533 * than an overestimate. 2534 * 2535 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2536 */ 2537 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2538 s64 nr_free, const pgoff_t max_index) 2539 { 2540 u32 *kaddr; 2541 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2542 struct page *page; 2543 pgoff_t index; 2544 2545 ntfs_debug("Entering."); 2546 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2547 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2548 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4); 2549 for (index = 0; index < max_index; index++) { 2550 unsigned int i; 2551 /* 2552 * Read the page from page cache, getting it from backing store 2553 * if necessary, and increment the use count. 2554 */ 2555 page = read_mapping_page(mapping, index, NULL); 2556 /* Ignore pages which errored synchronously. */ 2557 if (IS_ERR(page)) { 2558 ntfs_debug("read_mapping_page() error. Skipping " 2559 "page (index 0x%lx).", index); 2560 nr_free -= PAGE_CACHE_SIZE * 8; 2561 continue; 2562 } 2563 kaddr = (u32*)kmap_atomic(page, KM_USER0); 2564 /* 2565 * For each 4 bytes, subtract the number of set bits. If this 2566 * is the last page and it is partial we don't really care as 2567 * it just means we do a little extra work but it won't affect 2568 * the result as all out of range bytes are set to zero by 2569 * ntfs_readpage(). 2570 */ 2571 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++) 2572 nr_free -= (s64)hweight32(kaddr[i]); 2573 kunmap_atomic(kaddr, KM_USER0); 2574 page_cache_release(page); 2575 } 2576 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2577 index - 1); 2578 /* If errors occured we may well have gone below zero, fix this. */ 2579 if (nr_free < 0) 2580 nr_free = 0; 2581 ntfs_debug("Exiting."); 2582 return nr_free; 2583 } 2584 2585 /** 2586 * ntfs_statfs - return information about mounted NTFS volume 2587 * @dentry: dentry from mounted volume 2588 * @sfs: statfs structure in which to return the information 2589 * 2590 * Return information about the mounted NTFS volume @dentry in the statfs structure 2591 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2592 * called). We interpret the values to be correct of the moment in time at 2593 * which we are called. Most values are variable otherwise and this isn't just 2594 * the free values but the totals as well. For example we can increase the 2595 * total number of file nodes if we run out and we can keep doing this until 2596 * there is no more space on the volume left at all. 2597 * 2598 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2599 * ustat system calls. 2600 * 2601 * Return 0 on success or -errno on error. 2602 */ 2603 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2604 { 2605 struct super_block *sb = dentry->d_sb; 2606 s64 size; 2607 ntfs_volume *vol = NTFS_SB(sb); 2608 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2609 pgoff_t max_index; 2610 unsigned long flags; 2611 2612 ntfs_debug("Entering."); 2613 /* Type of filesystem. */ 2614 sfs->f_type = NTFS_SB_MAGIC; 2615 /* Optimal transfer block size. */ 2616 sfs->f_bsize = PAGE_CACHE_SIZE; 2617 /* 2618 * Total data blocks in filesystem in units of f_bsize and since 2619 * inodes are also stored in data blocs ($MFT is a file) this is just 2620 * the total clusters. 2621 */ 2622 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2623 PAGE_CACHE_SHIFT; 2624 /* Free data blocks in filesystem in units of f_bsize. */ 2625 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2626 PAGE_CACHE_SHIFT; 2627 if (size < 0LL) 2628 size = 0LL; 2629 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2630 sfs->f_bavail = sfs->f_bfree = size; 2631 /* Serialize accesses to the inode bitmap. */ 2632 down_read(&vol->mftbmp_lock); 2633 read_lock_irqsave(&mft_ni->size_lock, flags); 2634 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2635 /* 2636 * Convert the maximum number of set bits into bytes rounded up, then 2637 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we 2638 * have one full and one partial page max_index = 2. 2639 */ 2640 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2641 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2642 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2643 /* Number of inodes in filesystem (at this point in time). */ 2644 sfs->f_files = size; 2645 /* Free inodes in fs (based on current total count). */ 2646 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2647 up_read(&vol->mftbmp_lock); 2648 /* 2649 * File system id. This is extremely *nix flavour dependent and even 2650 * within Linux itself all fs do their own thing. I interpret this to 2651 * mean a unique id associated with the mounted fs and not the id 2652 * associated with the filesystem driver, the latter is already given 2653 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2654 * volume serial number splitting it into two 32-bit parts. We enter 2655 * the least significant 32-bits in f_fsid[0] and the most significant 2656 * 32-bits in f_fsid[1]. 2657 */ 2658 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff; 2659 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff; 2660 /* Maximum length of filenames. */ 2661 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2662 return 0; 2663 } 2664 2665 /** 2666 * The complete super operations. 2667 */ 2668 static const struct super_operations ntfs_sops = { 2669 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2670 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */ 2671 #ifdef NTFS_RW 2672 //.dirty_inode = NULL, /* VFS: Called from 2673 // __mark_inode_dirty(). */ 2674 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2675 disk. */ 2676 //.drop_inode = NULL, /* VFS: Called just after the 2677 // inode reference count has 2678 // been decreased to zero. 2679 // NOTE: The inode lock is 2680 // held. See fs/inode.c:: 2681 // generic_drop_inode(). */ 2682 //.delete_inode = NULL, /* VFS: Delete inode from disk. 2683 // Called when i_count becomes 2684 // 0 and i_nlink is also 0. */ 2685 //.write_super = NULL, /* Flush dirty super block to 2686 // disk. */ 2687 //.sync_fs = NULL, /* ? */ 2688 //.write_super_lockfs = NULL, /* ? */ 2689 //.unlockfs = NULL, /* ? */ 2690 #endif /* NTFS_RW */ 2691 .put_super = ntfs_put_super, /* Syscall: umount. */ 2692 .statfs = ntfs_statfs, /* Syscall: statfs */ 2693 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2694 .clear_inode = ntfs_clear_big_inode, /* VFS: Called when an inode is 2695 removed from memory. */ 2696 //.umount_begin = NULL, /* Forced umount. */ 2697 .show_options = ntfs_show_options, /* Show mount options in 2698 proc. */ 2699 }; 2700 2701 /** 2702 * ntfs_fill_super - mount an ntfs filesystem 2703 * @sb: super block of ntfs filesystem to mount 2704 * @opt: string containing the mount options 2705 * @silent: silence error output 2706 * 2707 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2708 * with the mount otions in @data with the NTFS filesystem. 2709 * 2710 * If @silent is true, remain silent even if errors are detected. This is used 2711 * during bootup, when the kernel tries to mount the root filesystem with all 2712 * registered filesystems one after the other until one succeeds. This implies 2713 * that all filesystems except the correct one will quite correctly and 2714 * expectedly return an error, but nobody wants to see error messages when in 2715 * fact this is what is supposed to happen. 2716 * 2717 * NOTE: @sb->s_flags contains the mount options flags. 2718 */ 2719 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2720 { 2721 ntfs_volume *vol; 2722 struct buffer_head *bh; 2723 struct inode *tmp_ino; 2724 int blocksize, result; 2725 2726 /* 2727 * We do a pretty difficult piece of bootstrap by reading the 2728 * MFT (and other metadata) from disk into memory. We'll only 2729 * release this metadata during umount, so the locking patterns 2730 * observed during bootstrap do not count. So turn off the 2731 * observation of locking patterns (strictly for this context 2732 * only) while mounting NTFS. [The validator is still active 2733 * otherwise, even for this context: it will for example record 2734 * lock class registrations.] 2735 */ 2736 lockdep_off(); 2737 ntfs_debug("Entering."); 2738 #ifndef NTFS_RW 2739 sb->s_flags |= MS_RDONLY; 2740 #endif /* ! NTFS_RW */ 2741 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2742 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2743 vol = NTFS_SB(sb); 2744 if (!vol) { 2745 if (!silent) 2746 ntfs_error(sb, "Allocation of NTFS volume structure " 2747 "failed. Aborting mount..."); 2748 lockdep_on(); 2749 return -ENOMEM; 2750 } 2751 /* Initialize ntfs_volume structure. */ 2752 *vol = (ntfs_volume) { 2753 .sb = sb, 2754 /* 2755 * Default is group and other don't have any access to files or 2756 * directories while owner has full access. Further, files by 2757 * default are not executable but directories are of course 2758 * browseable. 2759 */ 2760 .fmask = 0177, 2761 .dmask = 0077, 2762 }; 2763 init_rwsem(&vol->mftbmp_lock); 2764 init_rwsem(&vol->lcnbmp_lock); 2765 2766 unlock_kernel(); 2767 2768 /* By default, enable sparse support. */ 2769 NVolSetSparseEnabled(vol); 2770 2771 /* Important to get the mount options dealt with now. */ 2772 if (!parse_options(vol, (char*)opt)) 2773 goto err_out_now; 2774 2775 /* We support sector sizes up to the PAGE_CACHE_SIZE. */ 2776 if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) { 2777 if (!silent) 2778 ntfs_error(sb, "Device has unsupported sector size " 2779 "(%i). The maximum supported sector " 2780 "size on this architecture is %lu " 2781 "bytes.", 2782 bdev_logical_block_size(sb->s_bdev), 2783 PAGE_CACHE_SIZE); 2784 goto err_out_now; 2785 } 2786 /* 2787 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2788 * sector size, whichever is bigger. 2789 */ 2790 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2791 if (blocksize < NTFS_BLOCK_SIZE) { 2792 if (!silent) 2793 ntfs_error(sb, "Unable to set device block size."); 2794 goto err_out_now; 2795 } 2796 BUG_ON(blocksize != sb->s_blocksize); 2797 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2798 blocksize, sb->s_blocksize_bits); 2799 /* Determine the size of the device in units of block_size bytes. */ 2800 if (!i_size_read(sb->s_bdev->bd_inode)) { 2801 if (!silent) 2802 ntfs_error(sb, "Unable to determine device size."); 2803 goto err_out_now; 2804 } 2805 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2806 sb->s_blocksize_bits; 2807 /* Read the boot sector and return unlocked buffer head to it. */ 2808 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2809 if (!silent) 2810 ntfs_error(sb, "Not an NTFS volume."); 2811 goto err_out_now; 2812 } 2813 /* 2814 * Extract the data from the boot sector and setup the ntfs volume 2815 * using it. 2816 */ 2817 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2818 brelse(bh); 2819 if (!result) { 2820 if (!silent) 2821 ntfs_error(sb, "Unsupported NTFS filesystem."); 2822 goto err_out_now; 2823 } 2824 /* 2825 * If the boot sector indicates a sector size bigger than the current 2826 * device block size, switch the device block size to the sector size. 2827 * TODO: It may be possible to support this case even when the set 2828 * below fails, we would just be breaking up the i/o for each sector 2829 * into multiple blocks for i/o purposes but otherwise it should just 2830 * work. However it is safer to leave disabled until someone hits this 2831 * error message and then we can get them to try it without the setting 2832 * so we know for sure that it works. 2833 */ 2834 if (vol->sector_size > blocksize) { 2835 blocksize = sb_set_blocksize(sb, vol->sector_size); 2836 if (blocksize != vol->sector_size) { 2837 if (!silent) 2838 ntfs_error(sb, "Unable to set device block " 2839 "size to sector size (%i).", 2840 vol->sector_size); 2841 goto err_out_now; 2842 } 2843 BUG_ON(blocksize != sb->s_blocksize); 2844 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2845 sb->s_blocksize_bits; 2846 ntfs_debug("Changed device block size to %i bytes (block size " 2847 "bits %i) to match volume sector size.", 2848 blocksize, sb->s_blocksize_bits); 2849 } 2850 /* Initialize the cluster and mft allocators. */ 2851 ntfs_setup_allocators(vol); 2852 /* Setup remaining fields in the super block. */ 2853 sb->s_magic = NTFS_SB_MAGIC; 2854 /* 2855 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2856 * sb->s_maxbytes = ~0ULL >> 1; 2857 * But the kernel uses a long as the page cache page index which on 2858 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2859 * defined to the maximum the page cache page index can cope with 2860 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2861 */ 2862 sb->s_maxbytes = MAX_LFS_FILESIZE; 2863 /* Ntfs measures time in 100ns intervals. */ 2864 sb->s_time_gran = 100; 2865 /* 2866 * Now load the metadata required for the page cache and our address 2867 * space operations to function. We do this by setting up a specialised 2868 * read_inode method and then just calling the normal iget() to obtain 2869 * the inode for $MFT which is sufficient to allow our normal inode 2870 * operations and associated address space operations to function. 2871 */ 2872 sb->s_op = &ntfs_sops; 2873 tmp_ino = new_inode(sb); 2874 if (!tmp_ino) { 2875 if (!silent) 2876 ntfs_error(sb, "Failed to load essential metadata."); 2877 goto err_out_now; 2878 } 2879 tmp_ino->i_ino = FILE_MFT; 2880 insert_inode_hash(tmp_ino); 2881 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2882 if (!silent) 2883 ntfs_error(sb, "Failed to load essential metadata."); 2884 goto iput_tmp_ino_err_out_now; 2885 } 2886 mutex_lock(&ntfs_lock); 2887 /* 2888 * The current mount is a compression user if the cluster size is 2889 * less than or equal 4kiB. 2890 */ 2891 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2892 result = allocate_compression_buffers(); 2893 if (result) { 2894 ntfs_error(NULL, "Failed to allocate buffers " 2895 "for compression engine."); 2896 ntfs_nr_compression_users--; 2897 mutex_unlock(&ntfs_lock); 2898 goto iput_tmp_ino_err_out_now; 2899 } 2900 } 2901 /* 2902 * Generate the global default upcase table if necessary. Also 2903 * temporarily increment the number of upcase users to avoid race 2904 * conditions with concurrent (u)mounts. 2905 */ 2906 if (!default_upcase) 2907 default_upcase = generate_default_upcase(); 2908 ntfs_nr_upcase_users++; 2909 mutex_unlock(&ntfs_lock); 2910 /* 2911 * From now on, ignore @silent parameter. If we fail below this line, 2912 * it will be due to a corrupt fs or a system error, so we report it. 2913 */ 2914 /* 2915 * Open the system files with normal access functions and complete 2916 * setting up the ntfs super block. 2917 */ 2918 if (!load_system_files(vol)) { 2919 ntfs_error(sb, "Failed to load system files."); 2920 goto unl_upcase_iput_tmp_ino_err_out_now; 2921 } 2922 if ((sb->s_root = d_alloc_root(vol->root_ino))) { 2923 /* We increment i_count simulating an ntfs_iget(). */ 2924 atomic_inc(&vol->root_ino->i_count); 2925 ntfs_debug("Exiting, status successful."); 2926 /* Release the default upcase if it has no users. */ 2927 mutex_lock(&ntfs_lock); 2928 if (!--ntfs_nr_upcase_users && default_upcase) { 2929 ntfs_free(default_upcase); 2930 default_upcase = NULL; 2931 } 2932 mutex_unlock(&ntfs_lock); 2933 sb->s_export_op = &ntfs_export_ops; 2934 lock_kernel(); 2935 lockdep_on(); 2936 return 0; 2937 } 2938 ntfs_error(sb, "Failed to allocate root directory."); 2939 /* Clean up after the successful load_system_files() call from above. */ 2940 // TODO: Use ntfs_put_super() instead of repeating all this code... 2941 // FIXME: Should mark the volume clean as the error is most likely 2942 // -ENOMEM. 2943 iput(vol->vol_ino); 2944 vol->vol_ino = NULL; 2945 /* NTFS 3.0+ specific clean up. */ 2946 if (vol->major_ver >= 3) { 2947 #ifdef NTFS_RW 2948 if (vol->usnjrnl_j_ino) { 2949 iput(vol->usnjrnl_j_ino); 2950 vol->usnjrnl_j_ino = NULL; 2951 } 2952 if (vol->usnjrnl_max_ino) { 2953 iput(vol->usnjrnl_max_ino); 2954 vol->usnjrnl_max_ino = NULL; 2955 } 2956 if (vol->usnjrnl_ino) { 2957 iput(vol->usnjrnl_ino); 2958 vol->usnjrnl_ino = NULL; 2959 } 2960 if (vol->quota_q_ino) { 2961 iput(vol->quota_q_ino); 2962 vol->quota_q_ino = NULL; 2963 } 2964 if (vol->quota_ino) { 2965 iput(vol->quota_ino); 2966 vol->quota_ino = NULL; 2967 } 2968 #endif /* NTFS_RW */ 2969 if (vol->extend_ino) { 2970 iput(vol->extend_ino); 2971 vol->extend_ino = NULL; 2972 } 2973 if (vol->secure_ino) { 2974 iput(vol->secure_ino); 2975 vol->secure_ino = NULL; 2976 } 2977 } 2978 iput(vol->root_ino); 2979 vol->root_ino = NULL; 2980 iput(vol->lcnbmp_ino); 2981 vol->lcnbmp_ino = NULL; 2982 iput(vol->mftbmp_ino); 2983 vol->mftbmp_ino = NULL; 2984 #ifdef NTFS_RW 2985 if (vol->logfile_ino) { 2986 iput(vol->logfile_ino); 2987 vol->logfile_ino = NULL; 2988 } 2989 if (vol->mftmirr_ino) { 2990 iput(vol->mftmirr_ino); 2991 vol->mftmirr_ino = NULL; 2992 } 2993 #endif /* NTFS_RW */ 2994 /* Throw away the table of attribute definitions. */ 2995 vol->attrdef_size = 0; 2996 if (vol->attrdef) { 2997 ntfs_free(vol->attrdef); 2998 vol->attrdef = NULL; 2999 } 3000 vol->upcase_len = 0; 3001 mutex_lock(&ntfs_lock); 3002 if (vol->upcase == default_upcase) { 3003 ntfs_nr_upcase_users--; 3004 vol->upcase = NULL; 3005 } 3006 mutex_unlock(&ntfs_lock); 3007 if (vol->upcase) { 3008 ntfs_free(vol->upcase); 3009 vol->upcase = NULL; 3010 } 3011 if (vol->nls_map) { 3012 unload_nls(vol->nls_map); 3013 vol->nls_map = NULL; 3014 } 3015 /* Error exit code path. */ 3016 unl_upcase_iput_tmp_ino_err_out_now: 3017 /* 3018 * Decrease the number of upcase users and destroy the global default 3019 * upcase table if necessary. 3020 */ 3021 mutex_lock(&ntfs_lock); 3022 if (!--ntfs_nr_upcase_users && default_upcase) { 3023 ntfs_free(default_upcase); 3024 default_upcase = NULL; 3025 } 3026 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3027 free_compression_buffers(); 3028 mutex_unlock(&ntfs_lock); 3029 iput_tmp_ino_err_out_now: 3030 iput(tmp_ino); 3031 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3032 iput(vol->mft_ino); 3033 vol->mft_ino = NULL; 3034 /* 3035 * This is needed to get ntfs_clear_extent_inode() called for each 3036 * inode we have ever called ntfs_iget()/iput() on, otherwise we A) 3037 * leak resources and B) a subsequent mount fails automatically due to 3038 * ntfs_iget() never calling down into our ntfs_read_locked_inode() 3039 * method again... FIXME: Do we need to do this twice now because of 3040 * attribute inodes? I think not, so leave as is for now... (AIA) 3041 */ 3042 if (invalidate_inodes(sb)) { 3043 ntfs_error(sb, "Busy inodes left. This is most likely a NTFS " 3044 "driver bug."); 3045 /* Copied from fs/super.c. I just love this message. (-; */ 3046 printk("NTFS: Busy inodes after umount. Self-destruct in 5 " 3047 "seconds. Have a nice day...\n"); 3048 } 3049 /* Errors at this stage are irrelevant. */ 3050 err_out_now: 3051 lock_kernel(); 3052 sb->s_fs_info = NULL; 3053 kfree(vol); 3054 ntfs_debug("Failed, returning -EINVAL."); 3055 lockdep_on(); 3056 return -EINVAL; 3057 } 3058 3059 /* 3060 * This is a slab cache to optimize allocations and deallocations of Unicode 3061 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3062 * (255) Unicode characters + a terminating NULL Unicode character. 3063 */ 3064 struct kmem_cache *ntfs_name_cache; 3065 3066 /* Slab caches for efficient allocation/deallocation of inodes. */ 3067 struct kmem_cache *ntfs_inode_cache; 3068 struct kmem_cache *ntfs_big_inode_cache; 3069 3070 /* Init once constructor for the inode slab cache. */ 3071 static void ntfs_big_inode_init_once(void *foo) 3072 { 3073 ntfs_inode *ni = (ntfs_inode *)foo; 3074 3075 inode_init_once(VFS_I(ni)); 3076 } 3077 3078 /* 3079 * Slab caches to optimize allocations and deallocations of attribute search 3080 * contexts and index contexts, respectively. 3081 */ 3082 struct kmem_cache *ntfs_attr_ctx_cache; 3083 struct kmem_cache *ntfs_index_ctx_cache; 3084 3085 /* Driver wide mutex. */ 3086 DEFINE_MUTEX(ntfs_lock); 3087 3088 static int ntfs_get_sb(struct file_system_type *fs_type, 3089 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 3090 { 3091 return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super, 3092 mnt); 3093 } 3094 3095 static struct file_system_type ntfs_fs_type = { 3096 .owner = THIS_MODULE, 3097 .name = "ntfs", 3098 .get_sb = ntfs_get_sb, 3099 .kill_sb = kill_block_super, 3100 .fs_flags = FS_REQUIRES_DEV, 3101 }; 3102 3103 /* Stable names for the slab caches. */ 3104 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3105 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3106 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3107 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3108 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3109 3110 static int __init init_ntfs_fs(void) 3111 { 3112 int err = 0; 3113 3114 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3115 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/" 3116 #ifdef NTFS_RW 3117 "W" 3118 #else 3119 "O" 3120 #endif 3121 #ifdef DEBUG 3122 " DEBUG" 3123 #endif 3124 #ifdef MODULE 3125 " MODULE" 3126 #endif 3127 "].\n"); 3128 3129 ntfs_debug("Debug messages are enabled."); 3130 3131 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3132 sizeof(ntfs_index_context), 0 /* offset */, 3133 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3134 if (!ntfs_index_ctx_cache) { 3135 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3136 ntfs_index_ctx_cache_name); 3137 goto ictx_err_out; 3138 } 3139 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3140 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3141 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3142 if (!ntfs_attr_ctx_cache) { 3143 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3144 ntfs_attr_ctx_cache_name); 3145 goto actx_err_out; 3146 } 3147 3148 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3149 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3150 SLAB_HWCACHE_ALIGN, NULL); 3151 if (!ntfs_name_cache) { 3152 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3153 ntfs_name_cache_name); 3154 goto name_err_out; 3155 } 3156 3157 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3158 sizeof(ntfs_inode), 0, 3159 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3160 if (!ntfs_inode_cache) { 3161 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3162 ntfs_inode_cache_name); 3163 goto inode_err_out; 3164 } 3165 3166 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3167 sizeof(big_ntfs_inode), 0, 3168 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, 3169 ntfs_big_inode_init_once); 3170 if (!ntfs_big_inode_cache) { 3171 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3172 ntfs_big_inode_cache_name); 3173 goto big_inode_err_out; 3174 } 3175 3176 /* Register the ntfs sysctls. */ 3177 err = ntfs_sysctl(1); 3178 if (err) { 3179 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n"); 3180 goto sysctl_err_out; 3181 } 3182 3183 err = register_filesystem(&ntfs_fs_type); 3184 if (!err) { 3185 ntfs_debug("NTFS driver registered successfully."); 3186 return 0; /* Success! */ 3187 } 3188 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n"); 3189 3190 sysctl_err_out: 3191 kmem_cache_destroy(ntfs_big_inode_cache); 3192 big_inode_err_out: 3193 kmem_cache_destroy(ntfs_inode_cache); 3194 inode_err_out: 3195 kmem_cache_destroy(ntfs_name_cache); 3196 name_err_out: 3197 kmem_cache_destroy(ntfs_attr_ctx_cache); 3198 actx_err_out: 3199 kmem_cache_destroy(ntfs_index_ctx_cache); 3200 ictx_err_out: 3201 if (!err) { 3202 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver " 3203 "registration...\n"); 3204 err = -ENOMEM; 3205 } 3206 return err; 3207 } 3208 3209 static void __exit exit_ntfs_fs(void) 3210 { 3211 ntfs_debug("Unregistering NTFS driver."); 3212 3213 unregister_filesystem(&ntfs_fs_type); 3214 kmem_cache_destroy(ntfs_big_inode_cache); 3215 kmem_cache_destroy(ntfs_inode_cache); 3216 kmem_cache_destroy(ntfs_name_cache); 3217 kmem_cache_destroy(ntfs_attr_ctx_cache); 3218 kmem_cache_destroy(ntfs_index_ctx_cache); 3219 /* Unregister the ntfs sysctls. */ 3220 ntfs_sysctl(0); 3221 } 3222 3223 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>"); 3224 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2007 Anton Altaparmakov"); 3225 MODULE_VERSION(NTFS_VERSION); 3226 MODULE_LICENSE("GPL"); 3227 #ifdef DEBUG 3228 module_param(debug_msgs, bool, 0); 3229 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3230 #endif 3231 3232 module_init(init_ntfs_fs) 3233 module_exit(exit_ntfs_fs) 3234