xref: /openbmc/linux/fs/ntfs/super.c (revision b3b77c8c)
1 /*
2  * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2007 Anton Altaparmakov
5  * Copyright (c) 2001,2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
34 #include <linux/bitmap.h>
35 
36 #include "sysctl.h"
37 #include "logfile.h"
38 #include "quota.h"
39 #include "usnjrnl.h"
40 #include "dir.h"
41 #include "debug.h"
42 #include "index.h"
43 #include "inode.h"
44 #include "aops.h"
45 #include "layout.h"
46 #include "malloc.h"
47 #include "ntfs.h"
48 
49 /* Number of mounted filesystems which have compression enabled. */
50 static unsigned long ntfs_nr_compression_users;
51 
52 /* A global default upcase table and a corresponding reference count. */
53 static ntfschar *default_upcase = NULL;
54 static unsigned long ntfs_nr_upcase_users = 0;
55 
56 /* Error constants/strings used in inode.c::ntfs_show_options(). */
57 typedef enum {
58 	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
59 	ON_ERRORS_PANIC			= 0x01,
60 	ON_ERRORS_REMOUNT_RO		= 0x02,
61 	ON_ERRORS_CONTINUE		= 0x04,
62 	/* Optional, can be combined with any of the above. */
63 	ON_ERRORS_RECOVER		= 0x10,
64 } ON_ERRORS_ACTIONS;
65 
66 const option_t on_errors_arr[] = {
67 	{ ON_ERRORS_PANIC,	"panic" },
68 	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
69 	{ ON_ERRORS_CONTINUE,	"continue", },
70 	{ ON_ERRORS_RECOVER,	"recover" },
71 	{ 0,			NULL }
72 };
73 
74 /**
75  * simple_getbool -
76  *
77  * Copied from old ntfs driver (which copied from vfat driver).
78  */
79 static int simple_getbool(char *s, bool *setval)
80 {
81 	if (s) {
82 		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
83 			*setval = true;
84 		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
85 							!strcmp(s, "false"))
86 			*setval = false;
87 		else
88 			return 0;
89 	} else
90 		*setval = true;
91 	return 1;
92 }
93 
94 /**
95  * parse_options - parse the (re)mount options
96  * @vol:	ntfs volume
97  * @opt:	string containing the (re)mount options
98  *
99  * Parse the recognized options in @opt for the ntfs volume described by @vol.
100  */
101 static bool parse_options(ntfs_volume *vol, char *opt)
102 {
103 	char *p, *v, *ov;
104 	static char *utf8 = "utf8";
105 	int errors = 0, sloppy = 0;
106 	uid_t uid = (uid_t)-1;
107 	gid_t gid = (gid_t)-1;
108 	mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
109 	int mft_zone_multiplier = -1, on_errors = -1;
110 	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
111 	struct nls_table *nls_map = NULL, *old_nls;
112 
113 	/* I am lazy... (-8 */
114 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
115 	if (!strcmp(p, option)) {					\
116 		if (!v || !*v)						\
117 			variable = default_value;			\
118 		else {							\
119 			variable = simple_strtoul(ov = v, &v, 0);	\
120 			if (*v)						\
121 				goto needs_val;				\
122 		}							\
123 	}
124 #define NTFS_GETOPT(option, variable)					\
125 	if (!strcmp(p, option)) {					\
126 		if (!v || !*v)						\
127 			goto needs_arg;					\
128 		variable = simple_strtoul(ov = v, &v, 0);		\
129 		if (*v)							\
130 			goto needs_val;					\
131 	}
132 #define NTFS_GETOPT_OCTAL(option, variable)				\
133 	if (!strcmp(p, option)) {					\
134 		if (!v || !*v)						\
135 			goto needs_arg;					\
136 		variable = simple_strtoul(ov = v, &v, 8);		\
137 		if (*v)							\
138 			goto needs_val;					\
139 	}
140 #define NTFS_GETOPT_BOOL(option, variable)				\
141 	if (!strcmp(p, option)) {					\
142 		bool val;						\
143 		if (!simple_getbool(v, &val))				\
144 			goto needs_bool;				\
145 		variable = val;						\
146 	}
147 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
148 	if (!strcmp(p, option)) {					\
149 		int _i;							\
150 		if (!v || !*v)						\
151 			goto needs_arg;					\
152 		ov = v;							\
153 		if (variable == -1)					\
154 			variable = 0;					\
155 		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
156 			if (!strcmp(opt_array[_i].str, v)) {		\
157 				variable |= opt_array[_i].val;		\
158 				break;					\
159 			}						\
160 		if (!opt_array[_i].str || !*opt_array[_i].str)		\
161 			goto needs_val;					\
162 	}
163 	if (!opt || !*opt)
164 		goto no_mount_options;
165 	ntfs_debug("Entering with mount options string: %s", opt);
166 	while ((p = strsep(&opt, ","))) {
167 		if ((v = strchr(p, '=')))
168 			*v++ = 0;
169 		NTFS_GETOPT("uid", uid)
170 		else NTFS_GETOPT("gid", gid)
171 		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
172 		else NTFS_GETOPT_OCTAL("fmask", fmask)
173 		else NTFS_GETOPT_OCTAL("dmask", dmask)
174 		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
175 		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
176 		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
177 		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
178 		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
179 		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
180 				on_errors_arr)
181 		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
182 			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
183 					p);
184 		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
185 			if (!strcmp(p, "iocharset"))
186 				ntfs_warning(vol->sb, "Option iocharset is "
187 						"deprecated. Please use "
188 						"option nls=<charsetname> in "
189 						"the future.");
190 			if (!v || !*v)
191 				goto needs_arg;
192 use_utf8:
193 			old_nls = nls_map;
194 			nls_map = load_nls(v);
195 			if (!nls_map) {
196 				if (!old_nls) {
197 					ntfs_error(vol->sb, "NLS character set "
198 							"%s not found.", v);
199 					return false;
200 				}
201 				ntfs_error(vol->sb, "NLS character set %s not "
202 						"found. Using previous one %s.",
203 						v, old_nls->charset);
204 				nls_map = old_nls;
205 			} else /* nls_map */ {
206 				unload_nls(old_nls);
207 			}
208 		} else if (!strcmp(p, "utf8")) {
209 			bool val = false;
210 			ntfs_warning(vol->sb, "Option utf8 is no longer "
211 				   "supported, using option nls=utf8. Please "
212 				   "use option nls=utf8 in the future and "
213 				   "make sure utf8 is compiled either as a "
214 				   "module or into the kernel.");
215 			if (!v || !*v)
216 				val = true;
217 			else if (!simple_getbool(v, &val))
218 				goto needs_bool;
219 			if (val) {
220 				v = utf8;
221 				goto use_utf8;
222 			}
223 		} else {
224 			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
225 			if (errors < INT_MAX)
226 				errors++;
227 		}
228 #undef NTFS_GETOPT_OPTIONS_ARRAY
229 #undef NTFS_GETOPT_BOOL
230 #undef NTFS_GETOPT
231 #undef NTFS_GETOPT_WITH_DEFAULT
232 	}
233 no_mount_options:
234 	if (errors && !sloppy)
235 		return false;
236 	if (sloppy)
237 		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
238 				"unrecognized mount option(s) and continuing.");
239 	/* Keep this first! */
240 	if (on_errors != -1) {
241 		if (!on_errors) {
242 			ntfs_error(vol->sb, "Invalid errors option argument "
243 					"or bug in options parser.");
244 			return false;
245 		}
246 	}
247 	if (nls_map) {
248 		if (vol->nls_map && vol->nls_map != nls_map) {
249 			ntfs_error(vol->sb, "Cannot change NLS character set "
250 					"on remount.");
251 			return false;
252 		} /* else (!vol->nls_map) */
253 		ntfs_debug("Using NLS character set %s.", nls_map->charset);
254 		vol->nls_map = nls_map;
255 	} else /* (!nls_map) */ {
256 		if (!vol->nls_map) {
257 			vol->nls_map = load_nls_default();
258 			if (!vol->nls_map) {
259 				ntfs_error(vol->sb, "Failed to load default "
260 						"NLS character set.");
261 				return false;
262 			}
263 			ntfs_debug("Using default NLS character set (%s).",
264 					vol->nls_map->charset);
265 		}
266 	}
267 	if (mft_zone_multiplier != -1) {
268 		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
269 				mft_zone_multiplier) {
270 			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
271 					"on remount.");
272 			return false;
273 		}
274 		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
275 			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
276 					"Using default value, i.e. 1.");
277 			mft_zone_multiplier = 1;
278 		}
279 		vol->mft_zone_multiplier = mft_zone_multiplier;
280 	}
281 	if (!vol->mft_zone_multiplier)
282 		vol->mft_zone_multiplier = 1;
283 	if (on_errors != -1)
284 		vol->on_errors = on_errors;
285 	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
286 		vol->on_errors |= ON_ERRORS_CONTINUE;
287 	if (uid != (uid_t)-1)
288 		vol->uid = uid;
289 	if (gid != (gid_t)-1)
290 		vol->gid = gid;
291 	if (fmask != (mode_t)-1)
292 		vol->fmask = fmask;
293 	if (dmask != (mode_t)-1)
294 		vol->dmask = dmask;
295 	if (show_sys_files != -1) {
296 		if (show_sys_files)
297 			NVolSetShowSystemFiles(vol);
298 		else
299 			NVolClearShowSystemFiles(vol);
300 	}
301 	if (case_sensitive != -1) {
302 		if (case_sensitive)
303 			NVolSetCaseSensitive(vol);
304 		else
305 			NVolClearCaseSensitive(vol);
306 	}
307 	if (disable_sparse != -1) {
308 		if (disable_sparse)
309 			NVolClearSparseEnabled(vol);
310 		else {
311 			if (!NVolSparseEnabled(vol) &&
312 					vol->major_ver && vol->major_ver < 3)
313 				ntfs_warning(vol->sb, "Not enabling sparse "
314 						"support due to NTFS volume "
315 						"version %i.%i (need at least "
316 						"version 3.0).", vol->major_ver,
317 						vol->minor_ver);
318 			else
319 				NVolSetSparseEnabled(vol);
320 		}
321 	}
322 	return true;
323 needs_arg:
324 	ntfs_error(vol->sb, "The %s option requires an argument.", p);
325 	return false;
326 needs_bool:
327 	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
328 	return false;
329 needs_val:
330 	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
331 	return false;
332 }
333 
334 #ifdef NTFS_RW
335 
336 /**
337  * ntfs_write_volume_flags - write new flags to the volume information flags
338  * @vol:	ntfs volume on which to modify the flags
339  * @flags:	new flags value for the volume information flags
340  *
341  * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
342  * instead (see below).
343  *
344  * Replace the volume information flags on the volume @vol with the value
345  * supplied in @flags.  Note, this overwrites the volume information flags, so
346  * make sure to combine the flags you want to modify with the old flags and use
347  * the result when calling ntfs_write_volume_flags().
348  *
349  * Return 0 on success and -errno on error.
350  */
351 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
352 {
353 	ntfs_inode *ni = NTFS_I(vol->vol_ino);
354 	MFT_RECORD *m;
355 	VOLUME_INFORMATION *vi;
356 	ntfs_attr_search_ctx *ctx;
357 	int err;
358 
359 	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
360 			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
361 	if (vol->vol_flags == flags)
362 		goto done;
363 	BUG_ON(!ni);
364 	m = map_mft_record(ni);
365 	if (IS_ERR(m)) {
366 		err = PTR_ERR(m);
367 		goto err_out;
368 	}
369 	ctx = ntfs_attr_get_search_ctx(ni, m);
370 	if (!ctx) {
371 		err = -ENOMEM;
372 		goto put_unm_err_out;
373 	}
374 	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
375 			ctx);
376 	if (err)
377 		goto put_unm_err_out;
378 	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
379 			le16_to_cpu(ctx->attr->data.resident.value_offset));
380 	vol->vol_flags = vi->flags = flags;
381 	flush_dcache_mft_record_page(ctx->ntfs_ino);
382 	mark_mft_record_dirty(ctx->ntfs_ino);
383 	ntfs_attr_put_search_ctx(ctx);
384 	unmap_mft_record(ni);
385 done:
386 	ntfs_debug("Done.");
387 	return 0;
388 put_unm_err_out:
389 	if (ctx)
390 		ntfs_attr_put_search_ctx(ctx);
391 	unmap_mft_record(ni);
392 err_out:
393 	ntfs_error(vol->sb, "Failed with error code %i.", -err);
394 	return err;
395 }
396 
397 /**
398  * ntfs_set_volume_flags - set bits in the volume information flags
399  * @vol:	ntfs volume on which to modify the flags
400  * @flags:	flags to set on the volume
401  *
402  * Set the bits in @flags in the volume information flags on the volume @vol.
403  *
404  * Return 0 on success and -errno on error.
405  */
406 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
407 {
408 	flags &= VOLUME_FLAGS_MASK;
409 	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
410 }
411 
412 /**
413  * ntfs_clear_volume_flags - clear bits in the volume information flags
414  * @vol:	ntfs volume on which to modify the flags
415  * @flags:	flags to clear on the volume
416  *
417  * Clear the bits in @flags in the volume information flags on the volume @vol.
418  *
419  * Return 0 on success and -errno on error.
420  */
421 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
422 {
423 	flags &= VOLUME_FLAGS_MASK;
424 	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
425 	return ntfs_write_volume_flags(vol, flags);
426 }
427 
428 #endif /* NTFS_RW */
429 
430 /**
431  * ntfs_remount - change the mount options of a mounted ntfs filesystem
432  * @sb:		superblock of mounted ntfs filesystem
433  * @flags:	remount flags
434  * @opt:	remount options string
435  *
436  * Change the mount options of an already mounted ntfs filesystem.
437  *
438  * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
439  * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
440  * @sb->s_flags are not changed.
441  */
442 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
443 {
444 	ntfs_volume *vol = NTFS_SB(sb);
445 
446 	ntfs_debug("Entering with remount options string: %s", opt);
447 
448 	lock_kernel();
449 #ifndef NTFS_RW
450 	/* For read-only compiled driver, enforce read-only flag. */
451 	*flags |= MS_RDONLY;
452 #else /* NTFS_RW */
453 	/*
454 	 * For the read-write compiled driver, if we are remounting read-write,
455 	 * make sure there are no volume errors and that no unsupported volume
456 	 * flags are set.  Also, empty the logfile journal as it would become
457 	 * stale as soon as something is written to the volume and mark the
458 	 * volume dirty so that chkdsk is run if the volume is not umounted
459 	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
460 	 * the volume on boot and updates them.
461 	 *
462 	 * When remounting read-only, mark the volume clean if no volume errors
463 	 * have occured.
464 	 */
465 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
466 		static const char *es = ".  Cannot remount read-write.";
467 
468 		/* Remounting read-write. */
469 		if (NVolErrors(vol)) {
470 			ntfs_error(sb, "Volume has errors and is read-only%s",
471 					es);
472 			unlock_kernel();
473 			return -EROFS;
474 		}
475 		if (vol->vol_flags & VOLUME_IS_DIRTY) {
476 			ntfs_error(sb, "Volume is dirty and read-only%s", es);
477 			unlock_kernel();
478 			return -EROFS;
479 		}
480 		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
481 			ntfs_error(sb, "Volume has been modified by chkdsk "
482 					"and is read-only%s", es);
483 			unlock_kernel();
484 			return -EROFS;
485 		}
486 		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
487 			ntfs_error(sb, "Volume has unsupported flags set "
488 					"(0x%x) and is read-only%s",
489 					(unsigned)le16_to_cpu(vol->vol_flags),
490 					es);
491 			unlock_kernel();
492 			return -EROFS;
493 		}
494 		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
495 			ntfs_error(sb, "Failed to set dirty bit in volume "
496 					"information flags%s", es);
497 			unlock_kernel();
498 			return -EROFS;
499 		}
500 #if 0
501 		// TODO: Enable this code once we start modifying anything that
502 		//	 is different between NTFS 1.2 and 3.x...
503 		/* Set NT4 compatibility flag on newer NTFS version volumes. */
504 		if ((vol->major_ver > 1)) {
505 			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
506 				ntfs_error(sb, "Failed to set NT4 "
507 						"compatibility flag%s", es);
508 				NVolSetErrors(vol);
509 				return -EROFS;
510 			}
511 		}
512 #endif
513 		if (!ntfs_empty_logfile(vol->logfile_ino)) {
514 			ntfs_error(sb, "Failed to empty journal $LogFile%s",
515 					es);
516 			NVolSetErrors(vol);
517 			unlock_kernel();
518 			return -EROFS;
519 		}
520 		if (!ntfs_mark_quotas_out_of_date(vol)) {
521 			ntfs_error(sb, "Failed to mark quotas out of date%s",
522 					es);
523 			NVolSetErrors(vol);
524 			unlock_kernel();
525 			return -EROFS;
526 		}
527 		if (!ntfs_stamp_usnjrnl(vol)) {
528 			ntfs_error(sb, "Failed to stamp transation log "
529 					"($UsnJrnl)%s", es);
530 			NVolSetErrors(vol);
531 			unlock_kernel();
532 			return -EROFS;
533 		}
534 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
535 		/* Remounting read-only. */
536 		if (!NVolErrors(vol)) {
537 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
538 				ntfs_warning(sb, "Failed to clear dirty bit "
539 						"in volume information "
540 						"flags.  Run chkdsk.");
541 		}
542 	}
543 #endif /* NTFS_RW */
544 
545 	// TODO: Deal with *flags.
546 
547 	if (!parse_options(vol, opt)) {
548 		unlock_kernel();
549 		return -EINVAL;
550 	}
551 	unlock_kernel();
552 	ntfs_debug("Done.");
553 	return 0;
554 }
555 
556 /**
557  * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
558  * @sb:		Super block of the device to which @b belongs.
559  * @b:		Boot sector of device @sb to check.
560  * @silent:	If 'true', all output will be silenced.
561  *
562  * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
563  * sector. Returns 'true' if it is valid and 'false' if not.
564  *
565  * @sb is only needed for warning/error output, i.e. it can be NULL when silent
566  * is 'true'.
567  */
568 static bool is_boot_sector_ntfs(const struct super_block *sb,
569 		const NTFS_BOOT_SECTOR *b, const bool silent)
570 {
571 	/*
572 	 * Check that checksum == sum of u32 values from b to the checksum
573 	 * field.  If checksum is zero, no checking is done.  We will work when
574 	 * the checksum test fails, since some utilities update the boot sector
575 	 * ignoring the checksum which leaves the checksum out-of-date.  We
576 	 * report a warning if this is the case.
577 	 */
578 	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
579 		le32 *u;
580 		u32 i;
581 
582 		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
583 			i += le32_to_cpup(u);
584 		if (le32_to_cpu(b->checksum) != i)
585 			ntfs_warning(sb, "Invalid boot sector checksum.");
586 	}
587 	/* Check OEMidentifier is "NTFS    " */
588 	if (b->oem_id != magicNTFS)
589 		goto not_ntfs;
590 	/* Check bytes per sector value is between 256 and 4096. */
591 	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
592 			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
593 		goto not_ntfs;
594 	/* Check sectors per cluster value is valid. */
595 	switch (b->bpb.sectors_per_cluster) {
596 	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
597 		break;
598 	default:
599 		goto not_ntfs;
600 	}
601 	/* Check the cluster size is not above the maximum (64kiB). */
602 	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
603 			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
604 		goto not_ntfs;
605 	/* Check reserved/unused fields are really zero. */
606 	if (le16_to_cpu(b->bpb.reserved_sectors) ||
607 			le16_to_cpu(b->bpb.root_entries) ||
608 			le16_to_cpu(b->bpb.sectors) ||
609 			le16_to_cpu(b->bpb.sectors_per_fat) ||
610 			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
611 		goto not_ntfs;
612 	/* Check clusters per file mft record value is valid. */
613 	if ((u8)b->clusters_per_mft_record < 0xe1 ||
614 			(u8)b->clusters_per_mft_record > 0xf7)
615 		switch (b->clusters_per_mft_record) {
616 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
617 			break;
618 		default:
619 			goto not_ntfs;
620 		}
621 	/* Check clusters per index block value is valid. */
622 	if ((u8)b->clusters_per_index_record < 0xe1 ||
623 			(u8)b->clusters_per_index_record > 0xf7)
624 		switch (b->clusters_per_index_record) {
625 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
626 			break;
627 		default:
628 			goto not_ntfs;
629 		}
630 	/*
631 	 * Check for valid end of sector marker. We will work without it, but
632 	 * many BIOSes will refuse to boot from a bootsector if the magic is
633 	 * incorrect, so we emit a warning.
634 	 */
635 	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
636 		ntfs_warning(sb, "Invalid end of sector marker.");
637 	return true;
638 not_ntfs:
639 	return false;
640 }
641 
642 /**
643  * read_ntfs_boot_sector - read the NTFS boot sector of a device
644  * @sb:		super block of device to read the boot sector from
645  * @silent:	if true, suppress all output
646  *
647  * Reads the boot sector from the device and validates it. If that fails, tries
648  * to read the backup boot sector, first from the end of the device a-la NT4 and
649  * later and then from the middle of the device a-la NT3.51 and before.
650  *
651  * If a valid boot sector is found but it is not the primary boot sector, we
652  * repair the primary boot sector silently (unless the device is read-only or
653  * the primary boot sector is not accessible).
654  *
655  * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
656  * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
657  * to their respective values.
658  *
659  * Return the unlocked buffer head containing the boot sector or NULL on error.
660  */
661 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
662 		const int silent)
663 {
664 	const char *read_err_str = "Unable to read %s boot sector.";
665 	struct buffer_head *bh_primary, *bh_backup;
666 	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
667 
668 	/* Try to read primary boot sector. */
669 	if ((bh_primary = sb_bread(sb, 0))) {
670 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
671 				bh_primary->b_data, silent))
672 			return bh_primary;
673 		if (!silent)
674 			ntfs_error(sb, "Primary boot sector is invalid.");
675 	} else if (!silent)
676 		ntfs_error(sb, read_err_str, "primary");
677 	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
678 		if (bh_primary)
679 			brelse(bh_primary);
680 		if (!silent)
681 			ntfs_error(sb, "Mount option errors=recover not used. "
682 					"Aborting without trying to recover.");
683 		return NULL;
684 	}
685 	/* Try to read NT4+ backup boot sector. */
686 	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
687 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
688 				bh_backup->b_data, silent))
689 			goto hotfix_primary_boot_sector;
690 		brelse(bh_backup);
691 	} else if (!silent)
692 		ntfs_error(sb, read_err_str, "backup");
693 	/* Try to read NT3.51- backup boot sector. */
694 	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
695 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
696 				bh_backup->b_data, silent))
697 			goto hotfix_primary_boot_sector;
698 		if (!silent)
699 			ntfs_error(sb, "Could not find a valid backup boot "
700 					"sector.");
701 		brelse(bh_backup);
702 	} else if (!silent)
703 		ntfs_error(sb, read_err_str, "backup");
704 	/* We failed. Cleanup and return. */
705 	if (bh_primary)
706 		brelse(bh_primary);
707 	return NULL;
708 hotfix_primary_boot_sector:
709 	if (bh_primary) {
710 		/*
711 		 * If we managed to read sector zero and the volume is not
712 		 * read-only, copy the found, valid backup boot sector to the
713 		 * primary boot sector.  Note we only copy the actual boot
714 		 * sector structure, not the actual whole device sector as that
715 		 * may be bigger and would potentially damage the $Boot system
716 		 * file (FIXME: Would be nice to know if the backup boot sector
717 		 * on a large sector device contains the whole boot loader or
718 		 * just the first 512 bytes).
719 		 */
720 		if (!(sb->s_flags & MS_RDONLY)) {
721 			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
722 					"boot sector from backup copy.");
723 			memcpy(bh_primary->b_data, bh_backup->b_data,
724 					NTFS_BLOCK_SIZE);
725 			mark_buffer_dirty(bh_primary);
726 			sync_dirty_buffer(bh_primary);
727 			if (buffer_uptodate(bh_primary)) {
728 				brelse(bh_backup);
729 				return bh_primary;
730 			}
731 			ntfs_error(sb, "Hot-fix: Device write error while "
732 					"recovering primary boot sector.");
733 		} else {
734 			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
735 					"sector failed: Read-only mount.");
736 		}
737 		brelse(bh_primary);
738 	}
739 	ntfs_warning(sb, "Using backup boot sector.");
740 	return bh_backup;
741 }
742 
743 /**
744  * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
745  * @vol:	volume structure to initialise with data from boot sector
746  * @b:		boot sector to parse
747  *
748  * Parse the ntfs boot sector @b and store all imporant information therein in
749  * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
750  */
751 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
752 {
753 	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
754 	int clusters_per_mft_record, clusters_per_index_record;
755 	s64 ll;
756 
757 	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
758 	vol->sector_size_bits = ffs(vol->sector_size) - 1;
759 	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
760 			vol->sector_size);
761 	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
762 			vol->sector_size_bits);
763 	if (vol->sector_size < vol->sb->s_blocksize) {
764 		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
765 				"device block size (%lu).  This is not "
766 				"supported.  Sorry.", vol->sector_size,
767 				vol->sb->s_blocksize);
768 		return false;
769 	}
770 	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
771 	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
772 	ntfs_debug("sectors_per_cluster_bits = 0x%x",
773 			sectors_per_cluster_bits);
774 	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
775 	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
776 	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
777 	vol->cluster_size_mask = vol->cluster_size - 1;
778 	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
779 	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
780 			vol->cluster_size);
781 	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
782 	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
783 	if (vol->cluster_size < vol->sector_size) {
784 		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
785 				"sector size (%i).  This is not supported.  "
786 				"Sorry.", vol->cluster_size, vol->sector_size);
787 		return false;
788 	}
789 	clusters_per_mft_record = b->clusters_per_mft_record;
790 	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
791 			clusters_per_mft_record, clusters_per_mft_record);
792 	if (clusters_per_mft_record > 0)
793 		vol->mft_record_size = vol->cluster_size <<
794 				(ffs(clusters_per_mft_record) - 1);
795 	else
796 		/*
797 		 * When mft_record_size < cluster_size, clusters_per_mft_record
798 		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
799 		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
800 		 */
801 		vol->mft_record_size = 1 << -clusters_per_mft_record;
802 	vol->mft_record_size_mask = vol->mft_record_size - 1;
803 	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
804 	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
805 			vol->mft_record_size);
806 	ntfs_debug("vol->mft_record_size_mask = 0x%x",
807 			vol->mft_record_size_mask);
808 	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
809 			vol->mft_record_size_bits, vol->mft_record_size_bits);
810 	/*
811 	 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
812 	 * we store $MFT/$DATA, the table of mft records in the page cache.
813 	 */
814 	if (vol->mft_record_size > PAGE_CACHE_SIZE) {
815 		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
816 				"PAGE_CACHE_SIZE on your system (%lu).  "
817 				"This is not supported.  Sorry.",
818 				vol->mft_record_size, PAGE_CACHE_SIZE);
819 		return false;
820 	}
821 	/* We cannot support mft record sizes below the sector size. */
822 	if (vol->mft_record_size < vol->sector_size) {
823 		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
824 				"sector size (%i).  This is not supported.  "
825 				"Sorry.", vol->mft_record_size,
826 				vol->sector_size);
827 		return false;
828 	}
829 	clusters_per_index_record = b->clusters_per_index_record;
830 	ntfs_debug("clusters_per_index_record = %i (0x%x)",
831 			clusters_per_index_record, clusters_per_index_record);
832 	if (clusters_per_index_record > 0)
833 		vol->index_record_size = vol->cluster_size <<
834 				(ffs(clusters_per_index_record) - 1);
835 	else
836 		/*
837 		 * When index_record_size < cluster_size,
838 		 * clusters_per_index_record = -log2(index_record_size) bytes.
839 		 * index_record_size normaly equals 4096 bytes, which is
840 		 * encoded as 0xF4 (-12 in decimal).
841 		 */
842 		vol->index_record_size = 1 << -clusters_per_index_record;
843 	vol->index_record_size_mask = vol->index_record_size - 1;
844 	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
845 	ntfs_debug("vol->index_record_size = %i (0x%x)",
846 			vol->index_record_size, vol->index_record_size);
847 	ntfs_debug("vol->index_record_size_mask = 0x%x",
848 			vol->index_record_size_mask);
849 	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
850 			vol->index_record_size_bits,
851 			vol->index_record_size_bits);
852 	/* We cannot support index record sizes below the sector size. */
853 	if (vol->index_record_size < vol->sector_size) {
854 		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
855 				"the sector size (%i).  This is not "
856 				"supported.  Sorry.", vol->index_record_size,
857 				vol->sector_size);
858 		return false;
859 	}
860 	/*
861 	 * Get the size of the volume in clusters and check for 64-bit-ness.
862 	 * Windows currently only uses 32 bits to save the clusters so we do
863 	 * the same as it is much faster on 32-bit CPUs.
864 	 */
865 	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
866 	if ((u64)ll >= 1ULL << 32) {
867 		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
868 		return false;
869 	}
870 	vol->nr_clusters = ll;
871 	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
872 	/*
873 	 * On an architecture where unsigned long is 32-bits, we restrict the
874 	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
875 	 * will hopefully optimize the whole check away.
876 	 */
877 	if (sizeof(unsigned long) < 8) {
878 		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
879 			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
880 					"large for this architecture.  "
881 					"Maximum supported is 2TiB.  Sorry.",
882 					(unsigned long long)ll >> (40 -
883 					vol->cluster_size_bits));
884 			return false;
885 		}
886 	}
887 	ll = sle64_to_cpu(b->mft_lcn);
888 	if (ll >= vol->nr_clusters) {
889 		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
890 				"volume.  Weird.", (unsigned long long)ll,
891 				(unsigned long long)ll);
892 		return false;
893 	}
894 	vol->mft_lcn = ll;
895 	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
896 	ll = sle64_to_cpu(b->mftmirr_lcn);
897 	if (ll >= vol->nr_clusters) {
898 		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
899 				"of volume.  Weird.", (unsigned long long)ll,
900 				(unsigned long long)ll);
901 		return false;
902 	}
903 	vol->mftmirr_lcn = ll;
904 	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
905 #ifdef NTFS_RW
906 	/*
907 	 * Work out the size of the mft mirror in number of mft records. If the
908 	 * cluster size is less than or equal to the size taken by four mft
909 	 * records, the mft mirror stores the first four mft records. If the
910 	 * cluster size is bigger than the size taken by four mft records, the
911 	 * mft mirror contains as many mft records as will fit into one
912 	 * cluster.
913 	 */
914 	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
915 		vol->mftmirr_size = 4;
916 	else
917 		vol->mftmirr_size = vol->cluster_size >>
918 				vol->mft_record_size_bits;
919 	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
920 #endif /* NTFS_RW */
921 	vol->serial_no = le64_to_cpu(b->volume_serial_number);
922 	ntfs_debug("vol->serial_no = 0x%llx",
923 			(unsigned long long)vol->serial_no);
924 	return true;
925 }
926 
927 /**
928  * ntfs_setup_allocators - initialize the cluster and mft allocators
929  * @vol:	volume structure for which to setup the allocators
930  *
931  * Setup the cluster (lcn) and mft allocators to the starting values.
932  */
933 static void ntfs_setup_allocators(ntfs_volume *vol)
934 {
935 #ifdef NTFS_RW
936 	LCN mft_zone_size, mft_lcn;
937 #endif /* NTFS_RW */
938 
939 	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
940 			vol->mft_zone_multiplier);
941 #ifdef NTFS_RW
942 	/* Determine the size of the MFT zone. */
943 	mft_zone_size = vol->nr_clusters;
944 	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
945 	case 4:
946 		mft_zone_size >>= 1;			/* 50%   */
947 		break;
948 	case 3:
949 		mft_zone_size = (mft_zone_size +
950 				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
951 		break;
952 	case 2:
953 		mft_zone_size >>= 2;			/* 25%   */
954 		break;
955 	/* case 1: */
956 	default:
957 		mft_zone_size >>= 3;			/* 12.5% */
958 		break;
959 	}
960 	/* Setup the mft zone. */
961 	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
962 	ntfs_debug("vol->mft_zone_pos = 0x%llx",
963 			(unsigned long long)vol->mft_zone_pos);
964 	/*
965 	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
966 	 * source) and if the actual mft_lcn is in the expected place or even
967 	 * further to the front of the volume, extend the mft_zone to cover the
968 	 * beginning of the volume as well.  This is in order to protect the
969 	 * area reserved for the mft bitmap as well within the mft_zone itself.
970 	 * On non-standard volumes we do not protect it as the overhead would
971 	 * be higher than the speed increase we would get by doing it.
972 	 */
973 	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
974 	if (mft_lcn * vol->cluster_size < 16 * 1024)
975 		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
976 				vol->cluster_size;
977 	if (vol->mft_zone_start <= mft_lcn)
978 		vol->mft_zone_start = 0;
979 	ntfs_debug("vol->mft_zone_start = 0x%llx",
980 			(unsigned long long)vol->mft_zone_start);
981 	/*
982 	 * Need to cap the mft zone on non-standard volumes so that it does
983 	 * not point outside the boundaries of the volume.  We do this by
984 	 * halving the zone size until we are inside the volume.
985 	 */
986 	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
987 	while (vol->mft_zone_end >= vol->nr_clusters) {
988 		mft_zone_size >>= 1;
989 		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
990 	}
991 	ntfs_debug("vol->mft_zone_end = 0x%llx",
992 			(unsigned long long)vol->mft_zone_end);
993 	/*
994 	 * Set the current position within each data zone to the start of the
995 	 * respective zone.
996 	 */
997 	vol->data1_zone_pos = vol->mft_zone_end;
998 	ntfs_debug("vol->data1_zone_pos = 0x%llx",
999 			(unsigned long long)vol->data1_zone_pos);
1000 	vol->data2_zone_pos = 0;
1001 	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1002 			(unsigned long long)vol->data2_zone_pos);
1003 
1004 	/* Set the mft data allocation position to mft record 24. */
1005 	vol->mft_data_pos = 24;
1006 	ntfs_debug("vol->mft_data_pos = 0x%llx",
1007 			(unsigned long long)vol->mft_data_pos);
1008 #endif /* NTFS_RW */
1009 }
1010 
1011 #ifdef NTFS_RW
1012 
1013 /**
1014  * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1015  * @vol:	ntfs super block describing device whose mft mirror to load
1016  *
1017  * Return 'true' on success or 'false' on error.
1018  */
1019 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1020 {
1021 	struct inode *tmp_ino;
1022 	ntfs_inode *tmp_ni;
1023 
1024 	ntfs_debug("Entering.");
1025 	/* Get mft mirror inode. */
1026 	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1027 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1028 		if (!IS_ERR(tmp_ino))
1029 			iput(tmp_ino);
1030 		/* Caller will display error message. */
1031 		return false;
1032 	}
1033 	/*
1034 	 * Re-initialize some specifics about $MFTMirr's inode as
1035 	 * ntfs_read_inode() will have set up the default ones.
1036 	 */
1037 	/* Set uid and gid to root. */
1038 	tmp_ino->i_uid = tmp_ino->i_gid = 0;
1039 	/* Regular file.  No access for anyone. */
1040 	tmp_ino->i_mode = S_IFREG;
1041 	/* No VFS initiated operations allowed for $MFTMirr. */
1042 	tmp_ino->i_op = &ntfs_empty_inode_ops;
1043 	tmp_ino->i_fop = &ntfs_empty_file_ops;
1044 	/* Put in our special address space operations. */
1045 	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1046 	tmp_ni = NTFS_I(tmp_ino);
1047 	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1048 	NInoSetMstProtected(tmp_ni);
1049 	NInoSetSparseDisabled(tmp_ni);
1050 	/*
1051 	 * Set up our little cheat allowing us to reuse the async read io
1052 	 * completion handler for directories.
1053 	 */
1054 	tmp_ni->itype.index.block_size = vol->mft_record_size;
1055 	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1056 	vol->mftmirr_ino = tmp_ino;
1057 	ntfs_debug("Done.");
1058 	return true;
1059 }
1060 
1061 /**
1062  * check_mft_mirror - compare contents of the mft mirror with the mft
1063  * @vol:	ntfs super block describing device whose mft mirror to check
1064  *
1065  * Return 'true' on success or 'false' on error.
1066  *
1067  * Note, this function also results in the mft mirror runlist being completely
1068  * mapped into memory.  The mft mirror write code requires this and will BUG()
1069  * should it find an unmapped runlist element.
1070  */
1071 static bool check_mft_mirror(ntfs_volume *vol)
1072 {
1073 	struct super_block *sb = vol->sb;
1074 	ntfs_inode *mirr_ni;
1075 	struct page *mft_page, *mirr_page;
1076 	u8 *kmft, *kmirr;
1077 	runlist_element *rl, rl2[2];
1078 	pgoff_t index;
1079 	int mrecs_per_page, i;
1080 
1081 	ntfs_debug("Entering.");
1082 	/* Compare contents of $MFT and $MFTMirr. */
1083 	mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1084 	BUG_ON(!mrecs_per_page);
1085 	BUG_ON(!vol->mftmirr_size);
1086 	mft_page = mirr_page = NULL;
1087 	kmft = kmirr = NULL;
1088 	index = i = 0;
1089 	do {
1090 		u32 bytes;
1091 
1092 		/* Switch pages if necessary. */
1093 		if (!(i % mrecs_per_page)) {
1094 			if (index) {
1095 				ntfs_unmap_page(mft_page);
1096 				ntfs_unmap_page(mirr_page);
1097 			}
1098 			/* Get the $MFT page. */
1099 			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1100 					index);
1101 			if (IS_ERR(mft_page)) {
1102 				ntfs_error(sb, "Failed to read $MFT.");
1103 				return false;
1104 			}
1105 			kmft = page_address(mft_page);
1106 			/* Get the $MFTMirr page. */
1107 			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1108 					index);
1109 			if (IS_ERR(mirr_page)) {
1110 				ntfs_error(sb, "Failed to read $MFTMirr.");
1111 				goto mft_unmap_out;
1112 			}
1113 			kmirr = page_address(mirr_page);
1114 			++index;
1115 		}
1116 		/* Do not check the record if it is not in use. */
1117 		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1118 			/* Make sure the record is ok. */
1119 			if (ntfs_is_baad_recordp((le32*)kmft)) {
1120 				ntfs_error(sb, "Incomplete multi sector "
1121 						"transfer detected in mft "
1122 						"record %i.", i);
1123 mm_unmap_out:
1124 				ntfs_unmap_page(mirr_page);
1125 mft_unmap_out:
1126 				ntfs_unmap_page(mft_page);
1127 				return false;
1128 			}
1129 		}
1130 		/* Do not check the mirror record if it is not in use. */
1131 		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1132 			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1133 				ntfs_error(sb, "Incomplete multi sector "
1134 						"transfer detected in mft "
1135 						"mirror record %i.", i);
1136 				goto mm_unmap_out;
1137 			}
1138 		}
1139 		/* Get the amount of data in the current record. */
1140 		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1141 		if (bytes < sizeof(MFT_RECORD_OLD) ||
1142 				bytes > vol->mft_record_size ||
1143 				ntfs_is_baad_recordp((le32*)kmft)) {
1144 			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1145 			if (bytes < sizeof(MFT_RECORD_OLD) ||
1146 					bytes > vol->mft_record_size ||
1147 					ntfs_is_baad_recordp((le32*)kmirr))
1148 				bytes = vol->mft_record_size;
1149 		}
1150 		/* Compare the two records. */
1151 		if (memcmp(kmft, kmirr, bytes)) {
1152 			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1153 					"match.  Run ntfsfix or chkdsk.", i);
1154 			goto mm_unmap_out;
1155 		}
1156 		kmft += vol->mft_record_size;
1157 		kmirr += vol->mft_record_size;
1158 	} while (++i < vol->mftmirr_size);
1159 	/* Release the last pages. */
1160 	ntfs_unmap_page(mft_page);
1161 	ntfs_unmap_page(mirr_page);
1162 
1163 	/* Construct the mft mirror runlist by hand. */
1164 	rl2[0].vcn = 0;
1165 	rl2[0].lcn = vol->mftmirr_lcn;
1166 	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1167 			vol->cluster_size - 1) / vol->cluster_size;
1168 	rl2[1].vcn = rl2[0].length;
1169 	rl2[1].lcn = LCN_ENOENT;
1170 	rl2[1].length = 0;
1171 	/*
1172 	 * Because we have just read all of the mft mirror, we know we have
1173 	 * mapped the full runlist for it.
1174 	 */
1175 	mirr_ni = NTFS_I(vol->mftmirr_ino);
1176 	down_read(&mirr_ni->runlist.lock);
1177 	rl = mirr_ni->runlist.rl;
1178 	/* Compare the two runlists.  They must be identical. */
1179 	i = 0;
1180 	do {
1181 		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1182 				rl2[i].length != rl[i].length) {
1183 			ntfs_error(sb, "$MFTMirr location mismatch.  "
1184 					"Run chkdsk.");
1185 			up_read(&mirr_ni->runlist.lock);
1186 			return false;
1187 		}
1188 	} while (rl2[i++].length);
1189 	up_read(&mirr_ni->runlist.lock);
1190 	ntfs_debug("Done.");
1191 	return true;
1192 }
1193 
1194 /**
1195  * load_and_check_logfile - load and check the logfile inode for a volume
1196  * @vol:	ntfs super block describing device whose logfile to load
1197  *
1198  * Return 'true' on success or 'false' on error.
1199  */
1200 static bool load_and_check_logfile(ntfs_volume *vol,
1201 		RESTART_PAGE_HEADER **rp)
1202 {
1203 	struct inode *tmp_ino;
1204 
1205 	ntfs_debug("Entering.");
1206 	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1207 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1208 		if (!IS_ERR(tmp_ino))
1209 			iput(tmp_ino);
1210 		/* Caller will display error message. */
1211 		return false;
1212 	}
1213 	if (!ntfs_check_logfile(tmp_ino, rp)) {
1214 		iput(tmp_ino);
1215 		/* ntfs_check_logfile() will have displayed error output. */
1216 		return false;
1217 	}
1218 	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1219 	vol->logfile_ino = tmp_ino;
1220 	ntfs_debug("Done.");
1221 	return true;
1222 }
1223 
1224 #define NTFS_HIBERFIL_HEADER_SIZE	4096
1225 
1226 /**
1227  * check_windows_hibernation_status - check if Windows is suspended on a volume
1228  * @vol:	ntfs super block of device to check
1229  *
1230  * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1231  * looking for the file hiberfil.sys in the root directory of the volume.  If
1232  * the file is not present Windows is definitely not suspended.
1233  *
1234  * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1235  * definitely suspended (this volume is not the system volume).  Caveat:  on a
1236  * system with many volumes it is possible that the < 4kiB check is bogus but
1237  * for now this should do fine.
1238  *
1239  * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1240  * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1241  * Windows is definitely suspended.  If it is completely full of zeroes,
1242  * Windows is definitely not hibernated.  Any other case is treated as if
1243  * Windows is suspended.  This caters for the above mentioned caveat of a
1244  * system with many volumes where no "hibr" magic would be present and there is
1245  * no zero header.
1246  *
1247  * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1248  * hibernated on the volume, and -errno on error.
1249  */
1250 static int check_windows_hibernation_status(ntfs_volume *vol)
1251 {
1252 	MFT_REF mref;
1253 	struct inode *vi;
1254 	ntfs_inode *ni;
1255 	struct page *page;
1256 	u32 *kaddr, *kend;
1257 	ntfs_name *name = NULL;
1258 	int ret = 1;
1259 	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1260 			cpu_to_le16('i'), cpu_to_le16('b'),
1261 			cpu_to_le16('e'), cpu_to_le16('r'),
1262 			cpu_to_le16('f'), cpu_to_le16('i'),
1263 			cpu_to_le16('l'), cpu_to_le16('.'),
1264 			cpu_to_le16('s'), cpu_to_le16('y'),
1265 			cpu_to_le16('s'), 0 };
1266 
1267 	ntfs_debug("Entering.");
1268 	/*
1269 	 * Find the inode number for the hibernation file by looking up the
1270 	 * filename hiberfil.sys in the root directory.
1271 	 */
1272 	mutex_lock(&vol->root_ino->i_mutex);
1273 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1274 			&name);
1275 	mutex_unlock(&vol->root_ino->i_mutex);
1276 	if (IS_ERR_MREF(mref)) {
1277 		ret = MREF_ERR(mref);
1278 		/* If the file does not exist, Windows is not hibernated. */
1279 		if (ret == -ENOENT) {
1280 			ntfs_debug("hiberfil.sys not present.  Windows is not "
1281 					"hibernated on the volume.");
1282 			return 0;
1283 		}
1284 		/* A real error occured. */
1285 		ntfs_error(vol->sb, "Failed to find inode number for "
1286 				"hiberfil.sys.");
1287 		return ret;
1288 	}
1289 	/* We do not care for the type of match that was found. */
1290 	kfree(name);
1291 	/* Get the inode. */
1292 	vi = ntfs_iget(vol->sb, MREF(mref));
1293 	if (IS_ERR(vi) || is_bad_inode(vi)) {
1294 		if (!IS_ERR(vi))
1295 			iput(vi);
1296 		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1297 		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1298 	}
1299 	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1300 		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1301 				"Windows is hibernated on the volume.  This "
1302 				"is not the system volume.", i_size_read(vi));
1303 		goto iput_out;
1304 	}
1305 	ni = NTFS_I(vi);
1306 	page = ntfs_map_page(vi->i_mapping, 0);
1307 	if (IS_ERR(page)) {
1308 		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1309 		ret = PTR_ERR(page);
1310 		goto iput_out;
1311 	}
1312 	kaddr = (u32*)page_address(page);
1313 	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1314 		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1315 				"hibernated on the volume.  This is the "
1316 				"system volume.");
1317 		goto unm_iput_out;
1318 	}
1319 	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1320 	do {
1321 		if (unlikely(*kaddr)) {
1322 			ntfs_debug("hiberfil.sys is larger than 4kiB "
1323 					"(0x%llx), does not contain the "
1324 					"\"hibr\" magic, and does not have a "
1325 					"zero header.  Windows is hibernated "
1326 					"on the volume.  This is not the "
1327 					"system volume.", i_size_read(vi));
1328 			goto unm_iput_out;
1329 		}
1330 	} while (++kaddr < kend);
1331 	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1332 			"hibernated on the volume.  This is the system "
1333 			"volume.");
1334 	ret = 0;
1335 unm_iput_out:
1336 	ntfs_unmap_page(page);
1337 iput_out:
1338 	iput(vi);
1339 	return ret;
1340 }
1341 
1342 /**
1343  * load_and_init_quota - load and setup the quota file for a volume if present
1344  * @vol:	ntfs super block describing device whose quota file to load
1345  *
1346  * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1347  * leave vol->quota_ino as NULL and return success.
1348  */
1349 static bool load_and_init_quota(ntfs_volume *vol)
1350 {
1351 	MFT_REF mref;
1352 	struct inode *tmp_ino;
1353 	ntfs_name *name = NULL;
1354 	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1355 			cpu_to_le16('Q'), cpu_to_le16('u'),
1356 			cpu_to_le16('o'), cpu_to_le16('t'),
1357 			cpu_to_le16('a'), 0 };
1358 	static ntfschar Q[3] = { cpu_to_le16('$'),
1359 			cpu_to_le16('Q'), 0 };
1360 
1361 	ntfs_debug("Entering.");
1362 	/*
1363 	 * Find the inode number for the quota file by looking up the filename
1364 	 * $Quota in the extended system files directory $Extend.
1365 	 */
1366 	mutex_lock(&vol->extend_ino->i_mutex);
1367 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1368 			&name);
1369 	mutex_unlock(&vol->extend_ino->i_mutex);
1370 	if (IS_ERR_MREF(mref)) {
1371 		/*
1372 		 * If the file does not exist, quotas are disabled and have
1373 		 * never been enabled on this volume, just return success.
1374 		 */
1375 		if (MREF_ERR(mref) == -ENOENT) {
1376 			ntfs_debug("$Quota not present.  Volume does not have "
1377 					"quotas enabled.");
1378 			/*
1379 			 * No need to try to set quotas out of date if they are
1380 			 * not enabled.
1381 			 */
1382 			NVolSetQuotaOutOfDate(vol);
1383 			return true;
1384 		}
1385 		/* A real error occured. */
1386 		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1387 		return false;
1388 	}
1389 	/* We do not care for the type of match that was found. */
1390 	kfree(name);
1391 	/* Get the inode. */
1392 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1393 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1394 		if (!IS_ERR(tmp_ino))
1395 			iput(tmp_ino);
1396 		ntfs_error(vol->sb, "Failed to load $Quota.");
1397 		return false;
1398 	}
1399 	vol->quota_ino = tmp_ino;
1400 	/* Get the $Q index allocation attribute. */
1401 	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1402 	if (IS_ERR(tmp_ino)) {
1403 		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1404 		return false;
1405 	}
1406 	vol->quota_q_ino = tmp_ino;
1407 	ntfs_debug("Done.");
1408 	return true;
1409 }
1410 
1411 /**
1412  * load_and_init_usnjrnl - load and setup the transaction log if present
1413  * @vol:	ntfs super block describing device whose usnjrnl file to load
1414  *
1415  * Return 'true' on success or 'false' on error.
1416  *
1417  * If $UsnJrnl is not present or in the process of being disabled, we set
1418  * NVolUsnJrnlStamped() and return success.
1419  *
1420  * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1421  * i.e. transaction logging has only just been enabled or the journal has been
1422  * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1423  * and return success.
1424  */
1425 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1426 {
1427 	MFT_REF mref;
1428 	struct inode *tmp_ino;
1429 	ntfs_inode *tmp_ni;
1430 	struct page *page;
1431 	ntfs_name *name = NULL;
1432 	USN_HEADER *uh;
1433 	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1434 			cpu_to_le16('U'), cpu_to_le16('s'),
1435 			cpu_to_le16('n'), cpu_to_le16('J'),
1436 			cpu_to_le16('r'), cpu_to_le16('n'),
1437 			cpu_to_le16('l'), 0 };
1438 	static ntfschar Max[5] = { cpu_to_le16('$'),
1439 			cpu_to_le16('M'), cpu_to_le16('a'),
1440 			cpu_to_le16('x'), 0 };
1441 	static ntfschar J[3] = { cpu_to_le16('$'),
1442 			cpu_to_le16('J'), 0 };
1443 
1444 	ntfs_debug("Entering.");
1445 	/*
1446 	 * Find the inode number for the transaction log file by looking up the
1447 	 * filename $UsnJrnl in the extended system files directory $Extend.
1448 	 */
1449 	mutex_lock(&vol->extend_ino->i_mutex);
1450 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1451 			&name);
1452 	mutex_unlock(&vol->extend_ino->i_mutex);
1453 	if (IS_ERR_MREF(mref)) {
1454 		/*
1455 		 * If the file does not exist, transaction logging is disabled,
1456 		 * just return success.
1457 		 */
1458 		if (MREF_ERR(mref) == -ENOENT) {
1459 			ntfs_debug("$UsnJrnl not present.  Volume does not "
1460 					"have transaction logging enabled.");
1461 not_enabled:
1462 			/*
1463 			 * No need to try to stamp the transaction log if
1464 			 * transaction logging is not enabled.
1465 			 */
1466 			NVolSetUsnJrnlStamped(vol);
1467 			return true;
1468 		}
1469 		/* A real error occured. */
1470 		ntfs_error(vol->sb, "Failed to find inode number for "
1471 				"$UsnJrnl.");
1472 		return false;
1473 	}
1474 	/* We do not care for the type of match that was found. */
1475 	kfree(name);
1476 	/* Get the inode. */
1477 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1478 	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1479 		if (!IS_ERR(tmp_ino))
1480 			iput(tmp_ino);
1481 		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1482 		return false;
1483 	}
1484 	vol->usnjrnl_ino = tmp_ino;
1485 	/*
1486 	 * If the transaction log is in the process of being deleted, we can
1487 	 * ignore it.
1488 	 */
1489 	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1490 		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1491 				"Volume does not have transaction logging "
1492 				"enabled.");
1493 		goto not_enabled;
1494 	}
1495 	/* Get the $DATA/$Max attribute. */
1496 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1497 	if (IS_ERR(tmp_ino)) {
1498 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1499 				"attribute.");
1500 		return false;
1501 	}
1502 	vol->usnjrnl_max_ino = tmp_ino;
1503 	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1504 		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1505 				"attribute (size is 0x%llx but should be at "
1506 				"least 0x%zx bytes).", i_size_read(tmp_ino),
1507 				sizeof(USN_HEADER));
1508 		return false;
1509 	}
1510 	/* Get the $DATA/$J attribute. */
1511 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1512 	if (IS_ERR(tmp_ino)) {
1513 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1514 				"attribute.");
1515 		return false;
1516 	}
1517 	vol->usnjrnl_j_ino = tmp_ino;
1518 	/* Verify $J is non-resident and sparse. */
1519 	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1520 	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1521 		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1522 				"and/or not sparse.");
1523 		return false;
1524 	}
1525 	/* Read the USN_HEADER from $DATA/$Max. */
1526 	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1527 	if (IS_ERR(page)) {
1528 		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1529 				"attribute.");
1530 		return false;
1531 	}
1532 	uh = (USN_HEADER*)page_address(page);
1533 	/* Sanity check the $Max. */
1534 	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1535 			sle64_to_cpu(uh->maximum_size))) {
1536 		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1537 				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1538 				(long long)sle64_to_cpu(uh->allocation_delta),
1539 				(long long)sle64_to_cpu(uh->maximum_size));
1540 		ntfs_unmap_page(page);
1541 		return false;
1542 	}
1543 	/*
1544 	 * If the transaction log has been stamped and nothing has been written
1545 	 * to it since, we do not need to stamp it.
1546 	 */
1547 	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1548 			i_size_read(vol->usnjrnl_j_ino))) {
1549 		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1550 				i_size_read(vol->usnjrnl_j_ino))) {
1551 			ntfs_unmap_page(page);
1552 			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1553 					"logged since it was last stamped.  "
1554 					"Treating this as if the volume does "
1555 					"not have transaction logging "
1556 					"enabled.");
1557 			goto not_enabled;
1558 		}
1559 		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1560 				"which is out of bounds (0x%llx).  $UsnJrnl "
1561 				"is corrupt.",
1562 				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1563 				i_size_read(vol->usnjrnl_j_ino));
1564 		ntfs_unmap_page(page);
1565 		return false;
1566 	}
1567 	ntfs_unmap_page(page);
1568 	ntfs_debug("Done.");
1569 	return true;
1570 }
1571 
1572 /**
1573  * load_and_init_attrdef - load the attribute definitions table for a volume
1574  * @vol:	ntfs super block describing device whose attrdef to load
1575  *
1576  * Return 'true' on success or 'false' on error.
1577  */
1578 static bool load_and_init_attrdef(ntfs_volume *vol)
1579 {
1580 	loff_t i_size;
1581 	struct super_block *sb = vol->sb;
1582 	struct inode *ino;
1583 	struct page *page;
1584 	pgoff_t index, max_index;
1585 	unsigned int size;
1586 
1587 	ntfs_debug("Entering.");
1588 	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1589 	ino = ntfs_iget(sb, FILE_AttrDef);
1590 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1591 		if (!IS_ERR(ino))
1592 			iput(ino);
1593 		goto failed;
1594 	}
1595 	NInoSetSparseDisabled(NTFS_I(ino));
1596 	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1597 	i_size = i_size_read(ino);
1598 	if (i_size <= 0 || i_size > 0x7fffffff)
1599 		goto iput_failed;
1600 	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1601 	if (!vol->attrdef)
1602 		goto iput_failed;
1603 	index = 0;
1604 	max_index = i_size >> PAGE_CACHE_SHIFT;
1605 	size = PAGE_CACHE_SIZE;
1606 	while (index < max_index) {
1607 		/* Read the attrdef table and copy it into the linear buffer. */
1608 read_partial_attrdef_page:
1609 		page = ntfs_map_page(ino->i_mapping, index);
1610 		if (IS_ERR(page))
1611 			goto free_iput_failed;
1612 		memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1613 				page_address(page), size);
1614 		ntfs_unmap_page(page);
1615 	};
1616 	if (size == PAGE_CACHE_SIZE) {
1617 		size = i_size & ~PAGE_CACHE_MASK;
1618 		if (size)
1619 			goto read_partial_attrdef_page;
1620 	}
1621 	vol->attrdef_size = i_size;
1622 	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1623 	iput(ino);
1624 	return true;
1625 free_iput_failed:
1626 	ntfs_free(vol->attrdef);
1627 	vol->attrdef = NULL;
1628 iput_failed:
1629 	iput(ino);
1630 failed:
1631 	ntfs_error(sb, "Failed to initialize attribute definition table.");
1632 	return false;
1633 }
1634 
1635 #endif /* NTFS_RW */
1636 
1637 /**
1638  * load_and_init_upcase - load the upcase table for an ntfs volume
1639  * @vol:	ntfs super block describing device whose upcase to load
1640  *
1641  * Return 'true' on success or 'false' on error.
1642  */
1643 static bool load_and_init_upcase(ntfs_volume *vol)
1644 {
1645 	loff_t i_size;
1646 	struct super_block *sb = vol->sb;
1647 	struct inode *ino;
1648 	struct page *page;
1649 	pgoff_t index, max_index;
1650 	unsigned int size;
1651 	int i, max;
1652 
1653 	ntfs_debug("Entering.");
1654 	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1655 	ino = ntfs_iget(sb, FILE_UpCase);
1656 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1657 		if (!IS_ERR(ino))
1658 			iput(ino);
1659 		goto upcase_failed;
1660 	}
1661 	/*
1662 	 * The upcase size must not be above 64k Unicode characters, must not
1663 	 * be zero and must be a multiple of sizeof(ntfschar).
1664 	 */
1665 	i_size = i_size_read(ino);
1666 	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1667 			i_size > 64ULL * 1024 * sizeof(ntfschar))
1668 		goto iput_upcase_failed;
1669 	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1670 	if (!vol->upcase)
1671 		goto iput_upcase_failed;
1672 	index = 0;
1673 	max_index = i_size >> PAGE_CACHE_SHIFT;
1674 	size = PAGE_CACHE_SIZE;
1675 	while (index < max_index) {
1676 		/* Read the upcase table and copy it into the linear buffer. */
1677 read_partial_upcase_page:
1678 		page = ntfs_map_page(ino->i_mapping, index);
1679 		if (IS_ERR(page))
1680 			goto iput_upcase_failed;
1681 		memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1682 				page_address(page), size);
1683 		ntfs_unmap_page(page);
1684 	};
1685 	if (size == PAGE_CACHE_SIZE) {
1686 		size = i_size & ~PAGE_CACHE_MASK;
1687 		if (size)
1688 			goto read_partial_upcase_page;
1689 	}
1690 	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1691 	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1692 			i_size, 64 * 1024 * sizeof(ntfschar));
1693 	iput(ino);
1694 	mutex_lock(&ntfs_lock);
1695 	if (!default_upcase) {
1696 		ntfs_debug("Using volume specified $UpCase since default is "
1697 				"not present.");
1698 		mutex_unlock(&ntfs_lock);
1699 		return true;
1700 	}
1701 	max = default_upcase_len;
1702 	if (max > vol->upcase_len)
1703 		max = vol->upcase_len;
1704 	for (i = 0; i < max; i++)
1705 		if (vol->upcase[i] != default_upcase[i])
1706 			break;
1707 	if (i == max) {
1708 		ntfs_free(vol->upcase);
1709 		vol->upcase = default_upcase;
1710 		vol->upcase_len = max;
1711 		ntfs_nr_upcase_users++;
1712 		mutex_unlock(&ntfs_lock);
1713 		ntfs_debug("Volume specified $UpCase matches default. Using "
1714 				"default.");
1715 		return true;
1716 	}
1717 	mutex_unlock(&ntfs_lock);
1718 	ntfs_debug("Using volume specified $UpCase since it does not match "
1719 			"the default.");
1720 	return true;
1721 iput_upcase_failed:
1722 	iput(ino);
1723 	ntfs_free(vol->upcase);
1724 	vol->upcase = NULL;
1725 upcase_failed:
1726 	mutex_lock(&ntfs_lock);
1727 	if (default_upcase) {
1728 		vol->upcase = default_upcase;
1729 		vol->upcase_len = default_upcase_len;
1730 		ntfs_nr_upcase_users++;
1731 		mutex_unlock(&ntfs_lock);
1732 		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1733 				"default.");
1734 		return true;
1735 	}
1736 	mutex_unlock(&ntfs_lock);
1737 	ntfs_error(sb, "Failed to initialize upcase table.");
1738 	return false;
1739 }
1740 
1741 /*
1742  * The lcn and mft bitmap inodes are NTFS-internal inodes with
1743  * their own special locking rules:
1744  */
1745 static struct lock_class_key
1746 	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1747 	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1748 
1749 /**
1750  * load_system_files - open the system files using normal functions
1751  * @vol:	ntfs super block describing device whose system files to load
1752  *
1753  * Open the system files with normal access functions and complete setting up
1754  * the ntfs super block @vol.
1755  *
1756  * Return 'true' on success or 'false' on error.
1757  */
1758 static bool load_system_files(ntfs_volume *vol)
1759 {
1760 	struct super_block *sb = vol->sb;
1761 	MFT_RECORD *m;
1762 	VOLUME_INFORMATION *vi;
1763 	ntfs_attr_search_ctx *ctx;
1764 #ifdef NTFS_RW
1765 	RESTART_PAGE_HEADER *rp;
1766 	int err;
1767 #endif /* NTFS_RW */
1768 
1769 	ntfs_debug("Entering.");
1770 #ifdef NTFS_RW
1771 	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1772 	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1773 		static const char *es1 = "Failed to load $MFTMirr";
1774 		static const char *es2 = "$MFTMirr does not match $MFT";
1775 		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1776 
1777 		/* If a read-write mount, convert it to a read-only mount. */
1778 		if (!(sb->s_flags & MS_RDONLY)) {
1779 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1780 					ON_ERRORS_CONTINUE))) {
1781 				ntfs_error(sb, "%s and neither on_errors="
1782 						"continue nor on_errors="
1783 						"remount-ro was specified%s",
1784 						!vol->mftmirr_ino ? es1 : es2,
1785 						es3);
1786 				goto iput_mirr_err_out;
1787 			}
1788 			sb->s_flags |= MS_RDONLY;
1789 			ntfs_error(sb, "%s.  Mounting read-only%s",
1790 					!vol->mftmirr_ino ? es1 : es2, es3);
1791 		} else
1792 			ntfs_warning(sb, "%s.  Will not be able to remount "
1793 					"read-write%s",
1794 					!vol->mftmirr_ino ? es1 : es2, es3);
1795 		/* This will prevent a read-write remount. */
1796 		NVolSetErrors(vol);
1797 	}
1798 #endif /* NTFS_RW */
1799 	/* Get mft bitmap attribute inode. */
1800 	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1801 	if (IS_ERR(vol->mftbmp_ino)) {
1802 		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1803 		goto iput_mirr_err_out;
1804 	}
1805 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1806 			   &mftbmp_runlist_lock_key);
1807 	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1808 			   &mftbmp_mrec_lock_key);
1809 	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1810 	if (!load_and_init_upcase(vol))
1811 		goto iput_mftbmp_err_out;
1812 #ifdef NTFS_RW
1813 	/*
1814 	 * Read attribute definitions table and setup @vol->attrdef and
1815 	 * @vol->attrdef_size.
1816 	 */
1817 	if (!load_and_init_attrdef(vol))
1818 		goto iput_upcase_err_out;
1819 #endif /* NTFS_RW */
1820 	/*
1821 	 * Get the cluster allocation bitmap inode and verify the size, no
1822 	 * need for any locking at this stage as we are already running
1823 	 * exclusively as we are mount in progress task.
1824 	 */
1825 	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1826 	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1827 		if (!IS_ERR(vol->lcnbmp_ino))
1828 			iput(vol->lcnbmp_ino);
1829 		goto bitmap_failed;
1830 	}
1831 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1832 			   &lcnbmp_runlist_lock_key);
1833 	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1834 			   &lcnbmp_mrec_lock_key);
1835 
1836 	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1837 	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1838 		iput(vol->lcnbmp_ino);
1839 bitmap_failed:
1840 		ntfs_error(sb, "Failed to load $Bitmap.");
1841 		goto iput_attrdef_err_out;
1842 	}
1843 	/*
1844 	 * Get the volume inode and setup our cache of the volume flags and
1845 	 * version.
1846 	 */
1847 	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1848 	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1849 		if (!IS_ERR(vol->vol_ino))
1850 			iput(vol->vol_ino);
1851 volume_failed:
1852 		ntfs_error(sb, "Failed to load $Volume.");
1853 		goto iput_lcnbmp_err_out;
1854 	}
1855 	m = map_mft_record(NTFS_I(vol->vol_ino));
1856 	if (IS_ERR(m)) {
1857 iput_volume_failed:
1858 		iput(vol->vol_ino);
1859 		goto volume_failed;
1860 	}
1861 	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1862 		ntfs_error(sb, "Failed to get attribute search context.");
1863 		goto get_ctx_vol_failed;
1864 	}
1865 	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1866 			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1867 err_put_vol:
1868 		ntfs_attr_put_search_ctx(ctx);
1869 get_ctx_vol_failed:
1870 		unmap_mft_record(NTFS_I(vol->vol_ino));
1871 		goto iput_volume_failed;
1872 	}
1873 	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1874 			le16_to_cpu(ctx->attr->data.resident.value_offset));
1875 	/* Some bounds checks. */
1876 	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1877 			le32_to_cpu(ctx->attr->data.resident.value_length) >
1878 			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1879 		goto err_put_vol;
1880 	/* Copy the volume flags and version to the ntfs_volume structure. */
1881 	vol->vol_flags = vi->flags;
1882 	vol->major_ver = vi->major_ver;
1883 	vol->minor_ver = vi->minor_ver;
1884 	ntfs_attr_put_search_ctx(ctx);
1885 	unmap_mft_record(NTFS_I(vol->vol_ino));
1886 	printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1887 			vol->minor_ver);
1888 	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1889 		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1890 				"volume version %i.%i (need at least version "
1891 				"3.0).", vol->major_ver, vol->minor_ver);
1892 		NVolClearSparseEnabled(vol);
1893 	}
1894 #ifdef NTFS_RW
1895 	/* Make sure that no unsupported volume flags are set. */
1896 	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1897 		static const char *es1a = "Volume is dirty";
1898 		static const char *es1b = "Volume has been modified by chkdsk";
1899 		static const char *es1c = "Volume has unsupported flags set";
1900 		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1901 		static const char *es2b = ".  Mount in Windows.";
1902 		const char *es1, *es2;
1903 
1904 		es2 = es2a;
1905 		if (vol->vol_flags & VOLUME_IS_DIRTY)
1906 			es1 = es1a;
1907 		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1908 			es1 = es1b;
1909 			es2 = es2b;
1910 		} else {
1911 			es1 = es1c;
1912 			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1913 					"encountered.",
1914 					(unsigned)le16_to_cpu(vol->vol_flags));
1915 		}
1916 		/* If a read-write mount, convert it to a read-only mount. */
1917 		if (!(sb->s_flags & MS_RDONLY)) {
1918 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1919 					ON_ERRORS_CONTINUE))) {
1920 				ntfs_error(sb, "%s and neither on_errors="
1921 						"continue nor on_errors="
1922 						"remount-ro was specified%s",
1923 						es1, es2);
1924 				goto iput_vol_err_out;
1925 			}
1926 			sb->s_flags |= MS_RDONLY;
1927 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1928 		} else
1929 			ntfs_warning(sb, "%s.  Will not be able to remount "
1930 					"read-write%s", es1, es2);
1931 		/*
1932 		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1933 		 * flags which we need to do in case any flags have changed.
1934 		 */
1935 	}
1936 	/*
1937 	 * Get the inode for the logfile, check it and determine if the volume
1938 	 * was shutdown cleanly.
1939 	 */
1940 	rp = NULL;
1941 	if (!load_and_check_logfile(vol, &rp) ||
1942 			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1943 		static const char *es1a = "Failed to load $LogFile";
1944 		static const char *es1b = "$LogFile is not clean";
1945 		static const char *es2 = ".  Mount in Windows.";
1946 		const char *es1;
1947 
1948 		es1 = !vol->logfile_ino ? es1a : es1b;
1949 		/* If a read-write mount, convert it to a read-only mount. */
1950 		if (!(sb->s_flags & MS_RDONLY)) {
1951 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1952 					ON_ERRORS_CONTINUE))) {
1953 				ntfs_error(sb, "%s and neither on_errors="
1954 						"continue nor on_errors="
1955 						"remount-ro was specified%s",
1956 						es1, es2);
1957 				if (vol->logfile_ino) {
1958 					BUG_ON(!rp);
1959 					ntfs_free(rp);
1960 				}
1961 				goto iput_logfile_err_out;
1962 			}
1963 			sb->s_flags |= MS_RDONLY;
1964 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1965 		} else
1966 			ntfs_warning(sb, "%s.  Will not be able to remount "
1967 					"read-write%s", es1, es2);
1968 		/* This will prevent a read-write remount. */
1969 		NVolSetErrors(vol);
1970 	}
1971 	ntfs_free(rp);
1972 #endif /* NTFS_RW */
1973 	/* Get the root directory inode so we can do path lookups. */
1974 	vol->root_ino = ntfs_iget(sb, FILE_root);
1975 	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1976 		if (!IS_ERR(vol->root_ino))
1977 			iput(vol->root_ino);
1978 		ntfs_error(sb, "Failed to load root directory.");
1979 		goto iput_logfile_err_out;
1980 	}
1981 #ifdef NTFS_RW
1982 	/*
1983 	 * Check if Windows is suspended to disk on the target volume.  If it
1984 	 * is hibernated, we must not write *anything* to the disk so set
1985 	 * NVolErrors() without setting the dirty volume flag and mount
1986 	 * read-only.  This will prevent read-write remounting and it will also
1987 	 * prevent all writes.
1988 	 */
1989 	err = check_windows_hibernation_status(vol);
1990 	if (unlikely(err)) {
1991 		static const char *es1a = "Failed to determine if Windows is "
1992 				"hibernated";
1993 		static const char *es1b = "Windows is hibernated";
1994 		static const char *es2 = ".  Run chkdsk.";
1995 		const char *es1;
1996 
1997 		es1 = err < 0 ? es1a : es1b;
1998 		/* If a read-write mount, convert it to a read-only mount. */
1999 		if (!(sb->s_flags & MS_RDONLY)) {
2000 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2001 					ON_ERRORS_CONTINUE))) {
2002 				ntfs_error(sb, "%s and neither on_errors="
2003 						"continue nor on_errors="
2004 						"remount-ro was specified%s",
2005 						es1, es2);
2006 				goto iput_root_err_out;
2007 			}
2008 			sb->s_flags |= MS_RDONLY;
2009 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2010 		} else
2011 			ntfs_warning(sb, "%s.  Will not be able to remount "
2012 					"read-write%s", es1, es2);
2013 		/* This will prevent a read-write remount. */
2014 		NVolSetErrors(vol);
2015 	}
2016 	/* If (still) a read-write mount, mark the volume dirty. */
2017 	if (!(sb->s_flags & MS_RDONLY) &&
2018 			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2019 		static const char *es1 = "Failed to set dirty bit in volume "
2020 				"information flags";
2021 		static const char *es2 = ".  Run chkdsk.";
2022 
2023 		/* Convert to a read-only mount. */
2024 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2025 				ON_ERRORS_CONTINUE))) {
2026 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2027 					"on_errors=remount-ro was specified%s",
2028 					es1, es2);
2029 			goto iput_root_err_out;
2030 		}
2031 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2032 		sb->s_flags |= MS_RDONLY;
2033 		/*
2034 		 * Do not set NVolErrors() because ntfs_remount() might manage
2035 		 * to set the dirty flag in which case all would be well.
2036 		 */
2037 	}
2038 #if 0
2039 	// TODO: Enable this code once we start modifying anything that is
2040 	//	 different between NTFS 1.2 and 3.x...
2041 	/*
2042 	 * If (still) a read-write mount, set the NT4 compatibility flag on
2043 	 * newer NTFS version volumes.
2044 	 */
2045 	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2046 			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2047 		static const char *es1 = "Failed to set NT4 compatibility flag";
2048 		static const char *es2 = ".  Run chkdsk.";
2049 
2050 		/* Convert to a read-only mount. */
2051 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2052 				ON_ERRORS_CONTINUE))) {
2053 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2054 					"on_errors=remount-ro was specified%s",
2055 					es1, es2);
2056 			goto iput_root_err_out;
2057 		}
2058 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2059 		sb->s_flags |= MS_RDONLY;
2060 		NVolSetErrors(vol);
2061 	}
2062 #endif
2063 	/* If (still) a read-write mount, empty the logfile. */
2064 	if (!(sb->s_flags & MS_RDONLY) &&
2065 			!ntfs_empty_logfile(vol->logfile_ino)) {
2066 		static const char *es1 = "Failed to empty $LogFile";
2067 		static const char *es2 = ".  Mount in Windows.";
2068 
2069 		/* Convert to a read-only mount. */
2070 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2071 				ON_ERRORS_CONTINUE))) {
2072 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2073 					"on_errors=remount-ro was specified%s",
2074 					es1, es2);
2075 			goto iput_root_err_out;
2076 		}
2077 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2078 		sb->s_flags |= MS_RDONLY;
2079 		NVolSetErrors(vol);
2080 	}
2081 #endif /* NTFS_RW */
2082 	/* If on NTFS versions before 3.0, we are done. */
2083 	if (unlikely(vol->major_ver < 3))
2084 		return true;
2085 	/* NTFS 3.0+ specific initialization. */
2086 	/* Get the security descriptors inode. */
2087 	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2088 	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2089 		if (!IS_ERR(vol->secure_ino))
2090 			iput(vol->secure_ino);
2091 		ntfs_error(sb, "Failed to load $Secure.");
2092 		goto iput_root_err_out;
2093 	}
2094 	// TODO: Initialize security.
2095 	/* Get the extended system files' directory inode. */
2096 	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2097 	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2098 		if (!IS_ERR(vol->extend_ino))
2099 			iput(vol->extend_ino);
2100 		ntfs_error(sb, "Failed to load $Extend.");
2101 		goto iput_sec_err_out;
2102 	}
2103 #ifdef NTFS_RW
2104 	/* Find the quota file, load it if present, and set it up. */
2105 	if (!load_and_init_quota(vol)) {
2106 		static const char *es1 = "Failed to load $Quota";
2107 		static const char *es2 = ".  Run chkdsk.";
2108 
2109 		/* If a read-write mount, convert it to a read-only mount. */
2110 		if (!(sb->s_flags & MS_RDONLY)) {
2111 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2112 					ON_ERRORS_CONTINUE))) {
2113 				ntfs_error(sb, "%s and neither on_errors="
2114 						"continue nor on_errors="
2115 						"remount-ro was specified%s",
2116 						es1, es2);
2117 				goto iput_quota_err_out;
2118 			}
2119 			sb->s_flags |= MS_RDONLY;
2120 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2121 		} else
2122 			ntfs_warning(sb, "%s.  Will not be able to remount "
2123 					"read-write%s", es1, es2);
2124 		/* This will prevent a read-write remount. */
2125 		NVolSetErrors(vol);
2126 	}
2127 	/* If (still) a read-write mount, mark the quotas out of date. */
2128 	if (!(sb->s_flags & MS_RDONLY) &&
2129 			!ntfs_mark_quotas_out_of_date(vol)) {
2130 		static const char *es1 = "Failed to mark quotas out of date";
2131 		static const char *es2 = ".  Run chkdsk.";
2132 
2133 		/* Convert to a read-only mount. */
2134 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2135 				ON_ERRORS_CONTINUE))) {
2136 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2137 					"on_errors=remount-ro was specified%s",
2138 					es1, es2);
2139 			goto iput_quota_err_out;
2140 		}
2141 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2142 		sb->s_flags |= MS_RDONLY;
2143 		NVolSetErrors(vol);
2144 	}
2145 	/*
2146 	 * Find the transaction log file ($UsnJrnl), load it if present, check
2147 	 * it, and set it up.
2148 	 */
2149 	if (!load_and_init_usnjrnl(vol)) {
2150 		static const char *es1 = "Failed to load $UsnJrnl";
2151 		static const char *es2 = ".  Run chkdsk.";
2152 
2153 		/* If a read-write mount, convert it to a read-only mount. */
2154 		if (!(sb->s_flags & MS_RDONLY)) {
2155 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2156 					ON_ERRORS_CONTINUE))) {
2157 				ntfs_error(sb, "%s and neither on_errors="
2158 						"continue nor on_errors="
2159 						"remount-ro was specified%s",
2160 						es1, es2);
2161 				goto iput_usnjrnl_err_out;
2162 			}
2163 			sb->s_flags |= MS_RDONLY;
2164 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2165 		} else
2166 			ntfs_warning(sb, "%s.  Will not be able to remount "
2167 					"read-write%s", es1, es2);
2168 		/* This will prevent a read-write remount. */
2169 		NVolSetErrors(vol);
2170 	}
2171 	/* If (still) a read-write mount, stamp the transaction log. */
2172 	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2173 		static const char *es1 = "Failed to stamp transaction log "
2174 				"($UsnJrnl)";
2175 		static const char *es2 = ".  Run chkdsk.";
2176 
2177 		/* Convert to a read-only mount. */
2178 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2179 				ON_ERRORS_CONTINUE))) {
2180 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2181 					"on_errors=remount-ro was specified%s",
2182 					es1, es2);
2183 			goto iput_usnjrnl_err_out;
2184 		}
2185 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2186 		sb->s_flags |= MS_RDONLY;
2187 		NVolSetErrors(vol);
2188 	}
2189 #endif /* NTFS_RW */
2190 	return true;
2191 #ifdef NTFS_RW
2192 iput_usnjrnl_err_out:
2193 	if (vol->usnjrnl_j_ino)
2194 		iput(vol->usnjrnl_j_ino);
2195 	if (vol->usnjrnl_max_ino)
2196 		iput(vol->usnjrnl_max_ino);
2197 	if (vol->usnjrnl_ino)
2198 		iput(vol->usnjrnl_ino);
2199 iput_quota_err_out:
2200 	if (vol->quota_q_ino)
2201 		iput(vol->quota_q_ino);
2202 	if (vol->quota_ino)
2203 		iput(vol->quota_ino);
2204 	iput(vol->extend_ino);
2205 #endif /* NTFS_RW */
2206 iput_sec_err_out:
2207 	iput(vol->secure_ino);
2208 iput_root_err_out:
2209 	iput(vol->root_ino);
2210 iput_logfile_err_out:
2211 #ifdef NTFS_RW
2212 	if (vol->logfile_ino)
2213 		iput(vol->logfile_ino);
2214 iput_vol_err_out:
2215 #endif /* NTFS_RW */
2216 	iput(vol->vol_ino);
2217 iput_lcnbmp_err_out:
2218 	iput(vol->lcnbmp_ino);
2219 iput_attrdef_err_out:
2220 	vol->attrdef_size = 0;
2221 	if (vol->attrdef) {
2222 		ntfs_free(vol->attrdef);
2223 		vol->attrdef = NULL;
2224 	}
2225 #ifdef NTFS_RW
2226 iput_upcase_err_out:
2227 #endif /* NTFS_RW */
2228 	vol->upcase_len = 0;
2229 	mutex_lock(&ntfs_lock);
2230 	if (vol->upcase == default_upcase) {
2231 		ntfs_nr_upcase_users--;
2232 		vol->upcase = NULL;
2233 	}
2234 	mutex_unlock(&ntfs_lock);
2235 	if (vol->upcase) {
2236 		ntfs_free(vol->upcase);
2237 		vol->upcase = NULL;
2238 	}
2239 iput_mftbmp_err_out:
2240 	iput(vol->mftbmp_ino);
2241 iput_mirr_err_out:
2242 #ifdef NTFS_RW
2243 	if (vol->mftmirr_ino)
2244 		iput(vol->mftmirr_ino);
2245 #endif /* NTFS_RW */
2246 	return false;
2247 }
2248 
2249 /**
2250  * ntfs_put_super - called by the vfs to unmount a volume
2251  * @sb:		vfs superblock of volume to unmount
2252  *
2253  * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2254  * the volume is being unmounted (umount system call has been invoked) and it
2255  * releases all inodes and memory belonging to the NTFS specific part of the
2256  * super block.
2257  */
2258 static void ntfs_put_super(struct super_block *sb)
2259 {
2260 	ntfs_volume *vol = NTFS_SB(sb);
2261 
2262 	ntfs_debug("Entering.");
2263 
2264 	lock_kernel();
2265 
2266 #ifdef NTFS_RW
2267 	/*
2268 	 * Commit all inodes while they are still open in case some of them
2269 	 * cause others to be dirtied.
2270 	 */
2271 	ntfs_commit_inode(vol->vol_ino);
2272 
2273 	/* NTFS 3.0+ specific. */
2274 	if (vol->major_ver >= 3) {
2275 		if (vol->usnjrnl_j_ino)
2276 			ntfs_commit_inode(vol->usnjrnl_j_ino);
2277 		if (vol->usnjrnl_max_ino)
2278 			ntfs_commit_inode(vol->usnjrnl_max_ino);
2279 		if (vol->usnjrnl_ino)
2280 			ntfs_commit_inode(vol->usnjrnl_ino);
2281 		if (vol->quota_q_ino)
2282 			ntfs_commit_inode(vol->quota_q_ino);
2283 		if (vol->quota_ino)
2284 			ntfs_commit_inode(vol->quota_ino);
2285 		if (vol->extend_ino)
2286 			ntfs_commit_inode(vol->extend_ino);
2287 		if (vol->secure_ino)
2288 			ntfs_commit_inode(vol->secure_ino);
2289 	}
2290 
2291 	ntfs_commit_inode(vol->root_ino);
2292 
2293 	down_write(&vol->lcnbmp_lock);
2294 	ntfs_commit_inode(vol->lcnbmp_ino);
2295 	up_write(&vol->lcnbmp_lock);
2296 
2297 	down_write(&vol->mftbmp_lock);
2298 	ntfs_commit_inode(vol->mftbmp_ino);
2299 	up_write(&vol->mftbmp_lock);
2300 
2301 	if (vol->logfile_ino)
2302 		ntfs_commit_inode(vol->logfile_ino);
2303 
2304 	if (vol->mftmirr_ino)
2305 		ntfs_commit_inode(vol->mftmirr_ino);
2306 	ntfs_commit_inode(vol->mft_ino);
2307 
2308 	/*
2309 	 * If a read-write mount and no volume errors have occured, mark the
2310 	 * volume clean.  Also, re-commit all affected inodes.
2311 	 */
2312 	if (!(sb->s_flags & MS_RDONLY)) {
2313 		if (!NVolErrors(vol)) {
2314 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2315 				ntfs_warning(sb, "Failed to clear dirty bit "
2316 						"in volume information "
2317 						"flags.  Run chkdsk.");
2318 			ntfs_commit_inode(vol->vol_ino);
2319 			ntfs_commit_inode(vol->root_ino);
2320 			if (vol->mftmirr_ino)
2321 				ntfs_commit_inode(vol->mftmirr_ino);
2322 			ntfs_commit_inode(vol->mft_ino);
2323 		} else {
2324 			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2325 					"marked dirty.  Run chkdsk.");
2326 		}
2327 	}
2328 #endif /* NTFS_RW */
2329 
2330 	iput(vol->vol_ino);
2331 	vol->vol_ino = NULL;
2332 
2333 	/* NTFS 3.0+ specific clean up. */
2334 	if (vol->major_ver >= 3) {
2335 #ifdef NTFS_RW
2336 		if (vol->usnjrnl_j_ino) {
2337 			iput(vol->usnjrnl_j_ino);
2338 			vol->usnjrnl_j_ino = NULL;
2339 		}
2340 		if (vol->usnjrnl_max_ino) {
2341 			iput(vol->usnjrnl_max_ino);
2342 			vol->usnjrnl_max_ino = NULL;
2343 		}
2344 		if (vol->usnjrnl_ino) {
2345 			iput(vol->usnjrnl_ino);
2346 			vol->usnjrnl_ino = NULL;
2347 		}
2348 		if (vol->quota_q_ino) {
2349 			iput(vol->quota_q_ino);
2350 			vol->quota_q_ino = NULL;
2351 		}
2352 		if (vol->quota_ino) {
2353 			iput(vol->quota_ino);
2354 			vol->quota_ino = NULL;
2355 		}
2356 #endif /* NTFS_RW */
2357 		if (vol->extend_ino) {
2358 			iput(vol->extend_ino);
2359 			vol->extend_ino = NULL;
2360 		}
2361 		if (vol->secure_ino) {
2362 			iput(vol->secure_ino);
2363 			vol->secure_ino = NULL;
2364 		}
2365 	}
2366 
2367 	iput(vol->root_ino);
2368 	vol->root_ino = NULL;
2369 
2370 	down_write(&vol->lcnbmp_lock);
2371 	iput(vol->lcnbmp_ino);
2372 	vol->lcnbmp_ino = NULL;
2373 	up_write(&vol->lcnbmp_lock);
2374 
2375 	down_write(&vol->mftbmp_lock);
2376 	iput(vol->mftbmp_ino);
2377 	vol->mftbmp_ino = NULL;
2378 	up_write(&vol->mftbmp_lock);
2379 
2380 #ifdef NTFS_RW
2381 	if (vol->logfile_ino) {
2382 		iput(vol->logfile_ino);
2383 		vol->logfile_ino = NULL;
2384 	}
2385 	if (vol->mftmirr_ino) {
2386 		/* Re-commit the mft mirror and mft just in case. */
2387 		ntfs_commit_inode(vol->mftmirr_ino);
2388 		ntfs_commit_inode(vol->mft_ino);
2389 		iput(vol->mftmirr_ino);
2390 		vol->mftmirr_ino = NULL;
2391 	}
2392 	/*
2393 	 * We should have no dirty inodes left, due to
2394 	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2395 	 * the underlying mft records are written out and cleaned.
2396 	 */
2397 	ntfs_commit_inode(vol->mft_ino);
2398 	write_inode_now(vol->mft_ino, 1);
2399 #endif /* NTFS_RW */
2400 
2401 	iput(vol->mft_ino);
2402 	vol->mft_ino = NULL;
2403 
2404 	/* Throw away the table of attribute definitions. */
2405 	vol->attrdef_size = 0;
2406 	if (vol->attrdef) {
2407 		ntfs_free(vol->attrdef);
2408 		vol->attrdef = NULL;
2409 	}
2410 	vol->upcase_len = 0;
2411 	/*
2412 	 * Destroy the global default upcase table if necessary.  Also decrease
2413 	 * the number of upcase users if we are a user.
2414 	 */
2415 	mutex_lock(&ntfs_lock);
2416 	if (vol->upcase == default_upcase) {
2417 		ntfs_nr_upcase_users--;
2418 		vol->upcase = NULL;
2419 	}
2420 	if (!ntfs_nr_upcase_users && default_upcase) {
2421 		ntfs_free(default_upcase);
2422 		default_upcase = NULL;
2423 	}
2424 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2425 		free_compression_buffers();
2426 	mutex_unlock(&ntfs_lock);
2427 	if (vol->upcase) {
2428 		ntfs_free(vol->upcase);
2429 		vol->upcase = NULL;
2430 	}
2431 
2432 	unload_nls(vol->nls_map);
2433 
2434 	sb->s_fs_info = NULL;
2435 	kfree(vol);
2436 
2437 	unlock_kernel();
2438 }
2439 
2440 /**
2441  * get_nr_free_clusters - return the number of free clusters on a volume
2442  * @vol:	ntfs volume for which to obtain free cluster count
2443  *
2444  * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2445  * actually calculate the number of clusters in use instead because this
2446  * allows us to not care about partial pages as these will be just zero filled
2447  * and hence not be counted as allocated clusters.
2448  *
2449  * The only particularity is that clusters beyond the end of the logical ntfs
2450  * volume will be marked as allocated to prevent errors which means we have to
2451  * discount those at the end. This is important as the cluster bitmap always
2452  * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2453  * the logical volume and marked in use when they are not as they do not exist.
2454  *
2455  * If any pages cannot be read we assume all clusters in the erroring pages are
2456  * in use. This means we return an underestimate on errors which is better than
2457  * an overestimate.
2458  */
2459 static s64 get_nr_free_clusters(ntfs_volume *vol)
2460 {
2461 	s64 nr_free = vol->nr_clusters;
2462 	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2463 	struct page *page;
2464 	pgoff_t index, max_index;
2465 
2466 	ntfs_debug("Entering.");
2467 	/* Serialize accesses to the cluster bitmap. */
2468 	down_read(&vol->lcnbmp_lock);
2469 	/*
2470 	 * Convert the number of bits into bytes rounded up, then convert into
2471 	 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2472 	 * full and one partial page max_index = 2.
2473 	 */
2474 	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2475 			PAGE_CACHE_SHIFT;
2476 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2477 	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2478 			max_index, PAGE_CACHE_SIZE / 4);
2479 	for (index = 0; index < max_index; index++) {
2480 		unsigned long *kaddr;
2481 
2482 		/*
2483 		 * Read the page from page cache, getting it from backing store
2484 		 * if necessary, and increment the use count.
2485 		 */
2486 		page = read_mapping_page(mapping, index, NULL);
2487 		/* Ignore pages which errored synchronously. */
2488 		if (IS_ERR(page)) {
2489 			ntfs_debug("read_mapping_page() error. Skipping "
2490 					"page (index 0x%lx).", index);
2491 			nr_free -= PAGE_CACHE_SIZE * 8;
2492 			continue;
2493 		}
2494 		kaddr = kmap_atomic(page, KM_USER0);
2495 		/*
2496 		 * Subtract the number of set bits. If this
2497 		 * is the last page and it is partial we don't really care as
2498 		 * it just means we do a little extra work but it won't affect
2499 		 * the result as all out of range bytes are set to zero by
2500 		 * ntfs_readpage().
2501 		 */
2502 		nr_free -= bitmap_weight(kaddr,
2503 					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2504 		kunmap_atomic(kaddr, KM_USER0);
2505 		page_cache_release(page);
2506 	}
2507 	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2508 	/*
2509 	 * Fixup for eventual bits outside logical ntfs volume (see function
2510 	 * description above).
2511 	 */
2512 	if (vol->nr_clusters & 63)
2513 		nr_free += 64 - (vol->nr_clusters & 63);
2514 	up_read(&vol->lcnbmp_lock);
2515 	/* If errors occured we may well have gone below zero, fix this. */
2516 	if (nr_free < 0)
2517 		nr_free = 0;
2518 	ntfs_debug("Exiting.");
2519 	return nr_free;
2520 }
2521 
2522 /**
2523  * __get_nr_free_mft_records - return the number of free inodes on a volume
2524  * @vol:	ntfs volume for which to obtain free inode count
2525  * @nr_free:	number of mft records in filesystem
2526  * @max_index:	maximum number of pages containing set bits
2527  *
2528  * Calculate the number of free mft records (inodes) on the mounted NTFS
2529  * volume @vol. We actually calculate the number of mft records in use instead
2530  * because this allows us to not care about partial pages as these will be just
2531  * zero filled and hence not be counted as allocated mft record.
2532  *
2533  * If any pages cannot be read we assume all mft records in the erroring pages
2534  * are in use. This means we return an underestimate on errors which is better
2535  * than an overestimate.
2536  *
2537  * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2538  */
2539 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2540 		s64 nr_free, const pgoff_t max_index)
2541 {
2542 	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2543 	struct page *page;
2544 	pgoff_t index;
2545 
2546 	ntfs_debug("Entering.");
2547 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2548 	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2549 			"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2550 	for (index = 0; index < max_index; index++) {
2551 		unsigned long *kaddr;
2552 
2553 		/*
2554 		 * Read the page from page cache, getting it from backing store
2555 		 * if necessary, and increment the use count.
2556 		 */
2557 		page = read_mapping_page(mapping, index, NULL);
2558 		/* Ignore pages which errored synchronously. */
2559 		if (IS_ERR(page)) {
2560 			ntfs_debug("read_mapping_page() error. Skipping "
2561 					"page (index 0x%lx).", index);
2562 			nr_free -= PAGE_CACHE_SIZE * 8;
2563 			continue;
2564 		}
2565 		kaddr = kmap_atomic(page, KM_USER0);
2566 		/*
2567 		 * Subtract the number of set bits. If this
2568 		 * is the last page and it is partial we don't really care as
2569 		 * it just means we do a little extra work but it won't affect
2570 		 * the result as all out of range bytes are set to zero by
2571 		 * ntfs_readpage().
2572 		 */
2573 		nr_free -= bitmap_weight(kaddr,
2574 					PAGE_CACHE_SIZE * BITS_PER_BYTE);
2575 		kunmap_atomic(kaddr, KM_USER0);
2576 		page_cache_release(page);
2577 	}
2578 	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2579 			index - 1);
2580 	/* If errors occured we may well have gone below zero, fix this. */
2581 	if (nr_free < 0)
2582 		nr_free = 0;
2583 	ntfs_debug("Exiting.");
2584 	return nr_free;
2585 }
2586 
2587 /**
2588  * ntfs_statfs - return information about mounted NTFS volume
2589  * @dentry:	dentry from mounted volume
2590  * @sfs:	statfs structure in which to return the information
2591  *
2592  * Return information about the mounted NTFS volume @dentry in the statfs structure
2593  * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2594  * called). We interpret the values to be correct of the moment in time at
2595  * which we are called. Most values are variable otherwise and this isn't just
2596  * the free values but the totals as well. For example we can increase the
2597  * total number of file nodes if we run out and we can keep doing this until
2598  * there is no more space on the volume left at all.
2599  *
2600  * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2601  * ustat system calls.
2602  *
2603  * Return 0 on success or -errno on error.
2604  */
2605 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2606 {
2607 	struct super_block *sb = dentry->d_sb;
2608 	s64 size;
2609 	ntfs_volume *vol = NTFS_SB(sb);
2610 	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2611 	pgoff_t max_index;
2612 	unsigned long flags;
2613 
2614 	ntfs_debug("Entering.");
2615 	/* Type of filesystem. */
2616 	sfs->f_type   = NTFS_SB_MAGIC;
2617 	/* Optimal transfer block size. */
2618 	sfs->f_bsize  = PAGE_CACHE_SIZE;
2619 	/*
2620 	 * Total data blocks in filesystem in units of f_bsize and since
2621 	 * inodes are also stored in data blocs ($MFT is a file) this is just
2622 	 * the total clusters.
2623 	 */
2624 	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2625 				PAGE_CACHE_SHIFT;
2626 	/* Free data blocks in filesystem in units of f_bsize. */
2627 	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2628 				PAGE_CACHE_SHIFT;
2629 	if (size < 0LL)
2630 		size = 0LL;
2631 	/* Free blocks avail to non-superuser, same as above on NTFS. */
2632 	sfs->f_bavail = sfs->f_bfree = size;
2633 	/* Serialize accesses to the inode bitmap. */
2634 	down_read(&vol->mftbmp_lock);
2635 	read_lock_irqsave(&mft_ni->size_lock, flags);
2636 	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2637 	/*
2638 	 * Convert the maximum number of set bits into bytes rounded up, then
2639 	 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2640 	 * have one full and one partial page max_index = 2.
2641 	 */
2642 	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2643 			+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2644 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2645 	/* Number of inodes in filesystem (at this point in time). */
2646 	sfs->f_files = size;
2647 	/* Free inodes in fs (based on current total count). */
2648 	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2649 	up_read(&vol->mftbmp_lock);
2650 	/*
2651 	 * File system id. This is extremely *nix flavour dependent and even
2652 	 * within Linux itself all fs do their own thing. I interpret this to
2653 	 * mean a unique id associated with the mounted fs and not the id
2654 	 * associated with the filesystem driver, the latter is already given
2655 	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2656 	 * volume serial number splitting it into two 32-bit parts. We enter
2657 	 * the least significant 32-bits in f_fsid[0] and the most significant
2658 	 * 32-bits in f_fsid[1].
2659 	 */
2660 	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2661 	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2662 	/* Maximum length of filenames. */
2663 	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2664 	return 0;
2665 }
2666 
2667 #ifdef NTFS_RW
2668 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2669 {
2670 	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2671 }
2672 #endif
2673 
2674 /**
2675  * The complete super operations.
2676  */
2677 static const struct super_operations ntfs_sops = {
2678 	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2679 	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2680 #ifdef NTFS_RW
2681 	//.dirty_inode	= NULL,			/* VFS: Called from
2682 	//					   __mark_inode_dirty(). */
2683 	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2684 						   disk. */
2685 	//.drop_inode	= NULL,			/* VFS: Called just after the
2686 	//					   inode reference count has
2687 	//					   been decreased to zero.
2688 	//					   NOTE: The inode lock is
2689 	//					   held. See fs/inode.c::
2690 	//					   generic_drop_inode(). */
2691 	//.delete_inode	= NULL,			/* VFS: Delete inode from disk.
2692 	//					   Called when i_count becomes
2693 	//					   0 and i_nlink is also 0. */
2694 	//.write_super	= NULL,			/* Flush dirty super block to
2695 	//					   disk. */
2696 	//.sync_fs	= NULL,			/* ? */
2697 	//.write_super_lockfs	= NULL,		/* ? */
2698 	//.unlockfs	= NULL,			/* ? */
2699 #endif /* NTFS_RW */
2700 	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2701 	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2702 	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2703 	.clear_inode	= ntfs_clear_big_inode,	/* VFS: Called when an inode is
2704 						   removed from memory. */
2705 	//.umount_begin	= NULL,			/* Forced umount. */
2706 	.show_options	= ntfs_show_options,	/* Show mount options in
2707 						   proc. */
2708 };
2709 
2710 /**
2711  * ntfs_fill_super - mount an ntfs filesystem
2712  * @sb:		super block of ntfs filesystem to mount
2713  * @opt:	string containing the mount options
2714  * @silent:	silence error output
2715  *
2716  * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2717  * with the mount otions in @data with the NTFS filesystem.
2718  *
2719  * If @silent is true, remain silent even if errors are detected. This is used
2720  * during bootup, when the kernel tries to mount the root filesystem with all
2721  * registered filesystems one after the other until one succeeds. This implies
2722  * that all filesystems except the correct one will quite correctly and
2723  * expectedly return an error, but nobody wants to see error messages when in
2724  * fact this is what is supposed to happen.
2725  *
2726  * NOTE: @sb->s_flags contains the mount options flags.
2727  */
2728 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2729 {
2730 	ntfs_volume *vol;
2731 	struct buffer_head *bh;
2732 	struct inode *tmp_ino;
2733 	int blocksize, result;
2734 
2735 	/*
2736 	 * We do a pretty difficult piece of bootstrap by reading the
2737 	 * MFT (and other metadata) from disk into memory. We'll only
2738 	 * release this metadata during umount, so the locking patterns
2739 	 * observed during bootstrap do not count. So turn off the
2740 	 * observation of locking patterns (strictly for this context
2741 	 * only) while mounting NTFS. [The validator is still active
2742 	 * otherwise, even for this context: it will for example record
2743 	 * lock class registrations.]
2744 	 */
2745 	lockdep_off();
2746 	ntfs_debug("Entering.");
2747 #ifndef NTFS_RW
2748 	sb->s_flags |= MS_RDONLY;
2749 #endif /* ! NTFS_RW */
2750 	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2751 	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2752 	vol = NTFS_SB(sb);
2753 	if (!vol) {
2754 		if (!silent)
2755 			ntfs_error(sb, "Allocation of NTFS volume structure "
2756 					"failed. Aborting mount...");
2757 		lockdep_on();
2758 		return -ENOMEM;
2759 	}
2760 	/* Initialize ntfs_volume structure. */
2761 	*vol = (ntfs_volume) {
2762 		.sb = sb,
2763 		/*
2764 		 * Default is group and other don't have any access to files or
2765 		 * directories while owner has full access. Further, files by
2766 		 * default are not executable but directories are of course
2767 		 * browseable.
2768 		 */
2769 		.fmask = 0177,
2770 		.dmask = 0077,
2771 	};
2772 	init_rwsem(&vol->mftbmp_lock);
2773 	init_rwsem(&vol->lcnbmp_lock);
2774 
2775 	unlock_kernel();
2776 
2777 	/* By default, enable sparse support. */
2778 	NVolSetSparseEnabled(vol);
2779 
2780 	/* Important to get the mount options dealt with now. */
2781 	if (!parse_options(vol, (char*)opt))
2782 		goto err_out_now;
2783 
2784 	/* We support sector sizes up to the PAGE_CACHE_SIZE. */
2785 	if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2786 		if (!silent)
2787 			ntfs_error(sb, "Device has unsupported sector size "
2788 					"(%i).  The maximum supported sector "
2789 					"size on this architecture is %lu "
2790 					"bytes.",
2791 					bdev_logical_block_size(sb->s_bdev),
2792 					PAGE_CACHE_SIZE);
2793 		goto err_out_now;
2794 	}
2795 	/*
2796 	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2797 	 * sector size, whichever is bigger.
2798 	 */
2799 	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2800 	if (blocksize < NTFS_BLOCK_SIZE) {
2801 		if (!silent)
2802 			ntfs_error(sb, "Unable to set device block size.");
2803 		goto err_out_now;
2804 	}
2805 	BUG_ON(blocksize != sb->s_blocksize);
2806 	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2807 			blocksize, sb->s_blocksize_bits);
2808 	/* Determine the size of the device in units of block_size bytes. */
2809 	if (!i_size_read(sb->s_bdev->bd_inode)) {
2810 		if (!silent)
2811 			ntfs_error(sb, "Unable to determine device size.");
2812 		goto err_out_now;
2813 	}
2814 	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2815 			sb->s_blocksize_bits;
2816 	/* Read the boot sector and return unlocked buffer head to it. */
2817 	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2818 		if (!silent)
2819 			ntfs_error(sb, "Not an NTFS volume.");
2820 		goto err_out_now;
2821 	}
2822 	/*
2823 	 * Extract the data from the boot sector and setup the ntfs volume
2824 	 * using it.
2825 	 */
2826 	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2827 	brelse(bh);
2828 	if (!result) {
2829 		if (!silent)
2830 			ntfs_error(sb, "Unsupported NTFS filesystem.");
2831 		goto err_out_now;
2832 	}
2833 	/*
2834 	 * If the boot sector indicates a sector size bigger than the current
2835 	 * device block size, switch the device block size to the sector size.
2836 	 * TODO: It may be possible to support this case even when the set
2837 	 * below fails, we would just be breaking up the i/o for each sector
2838 	 * into multiple blocks for i/o purposes but otherwise it should just
2839 	 * work.  However it is safer to leave disabled until someone hits this
2840 	 * error message and then we can get them to try it without the setting
2841 	 * so we know for sure that it works.
2842 	 */
2843 	if (vol->sector_size > blocksize) {
2844 		blocksize = sb_set_blocksize(sb, vol->sector_size);
2845 		if (blocksize != vol->sector_size) {
2846 			if (!silent)
2847 				ntfs_error(sb, "Unable to set device block "
2848 						"size to sector size (%i).",
2849 						vol->sector_size);
2850 			goto err_out_now;
2851 		}
2852 		BUG_ON(blocksize != sb->s_blocksize);
2853 		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2854 				sb->s_blocksize_bits;
2855 		ntfs_debug("Changed device block size to %i bytes (block size "
2856 				"bits %i) to match volume sector size.",
2857 				blocksize, sb->s_blocksize_bits);
2858 	}
2859 	/* Initialize the cluster and mft allocators. */
2860 	ntfs_setup_allocators(vol);
2861 	/* Setup remaining fields in the super block. */
2862 	sb->s_magic = NTFS_SB_MAGIC;
2863 	/*
2864 	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2865 	 *	sb->s_maxbytes = ~0ULL >> 1;
2866 	 * But the kernel uses a long as the page cache page index which on
2867 	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2868 	 * defined to the maximum the page cache page index can cope with
2869 	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2870 	 */
2871 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2872 	/* Ntfs measures time in 100ns intervals. */
2873 	sb->s_time_gran = 100;
2874 	/*
2875 	 * Now load the metadata required for the page cache and our address
2876 	 * space operations to function. We do this by setting up a specialised
2877 	 * read_inode method and then just calling the normal iget() to obtain
2878 	 * the inode for $MFT which is sufficient to allow our normal inode
2879 	 * operations and associated address space operations to function.
2880 	 */
2881 	sb->s_op = &ntfs_sops;
2882 	tmp_ino = new_inode(sb);
2883 	if (!tmp_ino) {
2884 		if (!silent)
2885 			ntfs_error(sb, "Failed to load essential metadata.");
2886 		goto err_out_now;
2887 	}
2888 	tmp_ino->i_ino = FILE_MFT;
2889 	insert_inode_hash(tmp_ino);
2890 	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2891 		if (!silent)
2892 			ntfs_error(sb, "Failed to load essential metadata.");
2893 		goto iput_tmp_ino_err_out_now;
2894 	}
2895 	mutex_lock(&ntfs_lock);
2896 	/*
2897 	 * The current mount is a compression user if the cluster size is
2898 	 * less than or equal 4kiB.
2899 	 */
2900 	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2901 		result = allocate_compression_buffers();
2902 		if (result) {
2903 			ntfs_error(NULL, "Failed to allocate buffers "
2904 					"for compression engine.");
2905 			ntfs_nr_compression_users--;
2906 			mutex_unlock(&ntfs_lock);
2907 			goto iput_tmp_ino_err_out_now;
2908 		}
2909 	}
2910 	/*
2911 	 * Generate the global default upcase table if necessary.  Also
2912 	 * temporarily increment the number of upcase users to avoid race
2913 	 * conditions with concurrent (u)mounts.
2914 	 */
2915 	if (!default_upcase)
2916 		default_upcase = generate_default_upcase();
2917 	ntfs_nr_upcase_users++;
2918 	mutex_unlock(&ntfs_lock);
2919 	/*
2920 	 * From now on, ignore @silent parameter. If we fail below this line,
2921 	 * it will be due to a corrupt fs or a system error, so we report it.
2922 	 */
2923 	/*
2924 	 * Open the system files with normal access functions and complete
2925 	 * setting up the ntfs super block.
2926 	 */
2927 	if (!load_system_files(vol)) {
2928 		ntfs_error(sb, "Failed to load system files.");
2929 		goto unl_upcase_iput_tmp_ino_err_out_now;
2930 	}
2931 	if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2932 		/* We increment i_count simulating an ntfs_iget(). */
2933 		atomic_inc(&vol->root_ino->i_count);
2934 		ntfs_debug("Exiting, status successful.");
2935 		/* Release the default upcase if it has no users. */
2936 		mutex_lock(&ntfs_lock);
2937 		if (!--ntfs_nr_upcase_users && default_upcase) {
2938 			ntfs_free(default_upcase);
2939 			default_upcase = NULL;
2940 		}
2941 		mutex_unlock(&ntfs_lock);
2942 		sb->s_export_op = &ntfs_export_ops;
2943 		lock_kernel();
2944 		lockdep_on();
2945 		return 0;
2946 	}
2947 	ntfs_error(sb, "Failed to allocate root directory.");
2948 	/* Clean up after the successful load_system_files() call from above. */
2949 	// TODO: Use ntfs_put_super() instead of repeating all this code...
2950 	// FIXME: Should mark the volume clean as the error is most likely
2951 	// 	  -ENOMEM.
2952 	iput(vol->vol_ino);
2953 	vol->vol_ino = NULL;
2954 	/* NTFS 3.0+ specific clean up. */
2955 	if (vol->major_ver >= 3) {
2956 #ifdef NTFS_RW
2957 		if (vol->usnjrnl_j_ino) {
2958 			iput(vol->usnjrnl_j_ino);
2959 			vol->usnjrnl_j_ino = NULL;
2960 		}
2961 		if (vol->usnjrnl_max_ino) {
2962 			iput(vol->usnjrnl_max_ino);
2963 			vol->usnjrnl_max_ino = NULL;
2964 		}
2965 		if (vol->usnjrnl_ino) {
2966 			iput(vol->usnjrnl_ino);
2967 			vol->usnjrnl_ino = NULL;
2968 		}
2969 		if (vol->quota_q_ino) {
2970 			iput(vol->quota_q_ino);
2971 			vol->quota_q_ino = NULL;
2972 		}
2973 		if (vol->quota_ino) {
2974 			iput(vol->quota_ino);
2975 			vol->quota_ino = NULL;
2976 		}
2977 #endif /* NTFS_RW */
2978 		if (vol->extend_ino) {
2979 			iput(vol->extend_ino);
2980 			vol->extend_ino = NULL;
2981 		}
2982 		if (vol->secure_ino) {
2983 			iput(vol->secure_ino);
2984 			vol->secure_ino = NULL;
2985 		}
2986 	}
2987 	iput(vol->root_ino);
2988 	vol->root_ino = NULL;
2989 	iput(vol->lcnbmp_ino);
2990 	vol->lcnbmp_ino = NULL;
2991 	iput(vol->mftbmp_ino);
2992 	vol->mftbmp_ino = NULL;
2993 #ifdef NTFS_RW
2994 	if (vol->logfile_ino) {
2995 		iput(vol->logfile_ino);
2996 		vol->logfile_ino = NULL;
2997 	}
2998 	if (vol->mftmirr_ino) {
2999 		iput(vol->mftmirr_ino);
3000 		vol->mftmirr_ino = NULL;
3001 	}
3002 #endif /* NTFS_RW */
3003 	/* Throw away the table of attribute definitions. */
3004 	vol->attrdef_size = 0;
3005 	if (vol->attrdef) {
3006 		ntfs_free(vol->attrdef);
3007 		vol->attrdef = NULL;
3008 	}
3009 	vol->upcase_len = 0;
3010 	mutex_lock(&ntfs_lock);
3011 	if (vol->upcase == default_upcase) {
3012 		ntfs_nr_upcase_users--;
3013 		vol->upcase = NULL;
3014 	}
3015 	mutex_unlock(&ntfs_lock);
3016 	if (vol->upcase) {
3017 		ntfs_free(vol->upcase);
3018 		vol->upcase = NULL;
3019 	}
3020 	if (vol->nls_map) {
3021 		unload_nls(vol->nls_map);
3022 		vol->nls_map = NULL;
3023 	}
3024 	/* Error exit code path. */
3025 unl_upcase_iput_tmp_ino_err_out_now:
3026 	/*
3027 	 * Decrease the number of upcase users and destroy the global default
3028 	 * upcase table if necessary.
3029 	 */
3030 	mutex_lock(&ntfs_lock);
3031 	if (!--ntfs_nr_upcase_users && default_upcase) {
3032 		ntfs_free(default_upcase);
3033 		default_upcase = NULL;
3034 	}
3035 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3036 		free_compression_buffers();
3037 	mutex_unlock(&ntfs_lock);
3038 iput_tmp_ino_err_out_now:
3039 	iput(tmp_ino);
3040 	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3041 		iput(vol->mft_ino);
3042 	vol->mft_ino = NULL;
3043 	/*
3044 	 * This is needed to get ntfs_clear_extent_inode() called for each
3045 	 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3046 	 * leak resources and B) a subsequent mount fails automatically due to
3047 	 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3048 	 * method again... FIXME: Do we need to do this twice now because of
3049 	 * attribute inodes? I think not, so leave as is for now... (AIA)
3050 	 */
3051 	if (invalidate_inodes(sb)) {
3052 		ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
3053 				"driver bug.");
3054 		/* Copied from fs/super.c. I just love this message. (-; */
3055 		printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3056 				"seconds.  Have a nice day...\n");
3057 	}
3058 	/* Errors at this stage are irrelevant. */
3059 err_out_now:
3060 	lock_kernel();
3061 	sb->s_fs_info = NULL;
3062 	kfree(vol);
3063 	ntfs_debug("Failed, returning -EINVAL.");
3064 	lockdep_on();
3065 	return -EINVAL;
3066 }
3067 
3068 /*
3069  * This is a slab cache to optimize allocations and deallocations of Unicode
3070  * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3071  * (255) Unicode characters + a terminating NULL Unicode character.
3072  */
3073 struct kmem_cache *ntfs_name_cache;
3074 
3075 /* Slab caches for efficient allocation/deallocation of inodes. */
3076 struct kmem_cache *ntfs_inode_cache;
3077 struct kmem_cache *ntfs_big_inode_cache;
3078 
3079 /* Init once constructor for the inode slab cache. */
3080 static void ntfs_big_inode_init_once(void *foo)
3081 {
3082 	ntfs_inode *ni = (ntfs_inode *)foo;
3083 
3084 	inode_init_once(VFS_I(ni));
3085 }
3086 
3087 /*
3088  * Slab caches to optimize allocations and deallocations of attribute search
3089  * contexts and index contexts, respectively.
3090  */
3091 struct kmem_cache *ntfs_attr_ctx_cache;
3092 struct kmem_cache *ntfs_index_ctx_cache;
3093 
3094 /* Driver wide mutex. */
3095 DEFINE_MUTEX(ntfs_lock);
3096 
3097 static int ntfs_get_sb(struct file_system_type *fs_type,
3098 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
3099 {
3100 	return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super,
3101 			   mnt);
3102 }
3103 
3104 static struct file_system_type ntfs_fs_type = {
3105 	.owner		= THIS_MODULE,
3106 	.name		= "ntfs",
3107 	.get_sb		= ntfs_get_sb,
3108 	.kill_sb	= kill_block_super,
3109 	.fs_flags	= FS_REQUIRES_DEV,
3110 };
3111 
3112 /* Stable names for the slab caches. */
3113 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3114 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3115 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3116 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3117 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3118 
3119 static int __init init_ntfs_fs(void)
3120 {
3121 	int err = 0;
3122 
3123 	/* This may be ugly but it results in pretty output so who cares. (-8 */
3124 	printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3125 #ifdef NTFS_RW
3126 			"W"
3127 #else
3128 			"O"
3129 #endif
3130 #ifdef DEBUG
3131 			" DEBUG"
3132 #endif
3133 #ifdef MODULE
3134 			" MODULE"
3135 #endif
3136 			"].\n");
3137 
3138 	ntfs_debug("Debug messages are enabled.");
3139 
3140 	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3141 			sizeof(ntfs_index_context), 0 /* offset */,
3142 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3143 	if (!ntfs_index_ctx_cache) {
3144 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3145 				ntfs_index_ctx_cache_name);
3146 		goto ictx_err_out;
3147 	}
3148 	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3149 			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3150 			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3151 	if (!ntfs_attr_ctx_cache) {
3152 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3153 				ntfs_attr_ctx_cache_name);
3154 		goto actx_err_out;
3155 	}
3156 
3157 	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3158 			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3159 			SLAB_HWCACHE_ALIGN, NULL);
3160 	if (!ntfs_name_cache) {
3161 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3162 				ntfs_name_cache_name);
3163 		goto name_err_out;
3164 	}
3165 
3166 	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3167 			sizeof(ntfs_inode), 0,
3168 			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3169 	if (!ntfs_inode_cache) {
3170 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3171 				ntfs_inode_cache_name);
3172 		goto inode_err_out;
3173 	}
3174 
3175 	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3176 			sizeof(big_ntfs_inode), 0,
3177 			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3178 			ntfs_big_inode_init_once);
3179 	if (!ntfs_big_inode_cache) {
3180 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3181 				ntfs_big_inode_cache_name);
3182 		goto big_inode_err_out;
3183 	}
3184 
3185 	/* Register the ntfs sysctls. */
3186 	err = ntfs_sysctl(1);
3187 	if (err) {
3188 		printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3189 		goto sysctl_err_out;
3190 	}
3191 
3192 	err = register_filesystem(&ntfs_fs_type);
3193 	if (!err) {
3194 		ntfs_debug("NTFS driver registered successfully.");
3195 		return 0; /* Success! */
3196 	}
3197 	printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3198 
3199 sysctl_err_out:
3200 	kmem_cache_destroy(ntfs_big_inode_cache);
3201 big_inode_err_out:
3202 	kmem_cache_destroy(ntfs_inode_cache);
3203 inode_err_out:
3204 	kmem_cache_destroy(ntfs_name_cache);
3205 name_err_out:
3206 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3207 actx_err_out:
3208 	kmem_cache_destroy(ntfs_index_ctx_cache);
3209 ictx_err_out:
3210 	if (!err) {
3211 		printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3212 				"registration...\n");
3213 		err = -ENOMEM;
3214 	}
3215 	return err;
3216 }
3217 
3218 static void __exit exit_ntfs_fs(void)
3219 {
3220 	ntfs_debug("Unregistering NTFS driver.");
3221 
3222 	unregister_filesystem(&ntfs_fs_type);
3223 	kmem_cache_destroy(ntfs_big_inode_cache);
3224 	kmem_cache_destroy(ntfs_inode_cache);
3225 	kmem_cache_destroy(ntfs_name_cache);
3226 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3227 	kmem_cache_destroy(ntfs_index_ctx_cache);
3228 	/* Unregister the ntfs sysctls. */
3229 	ntfs_sysctl(0);
3230 }
3231 
3232 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3233 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2007 Anton Altaparmakov");
3234 MODULE_VERSION(NTFS_VERSION);
3235 MODULE_LICENSE("GPL");
3236 #ifdef DEBUG
3237 module_param(debug_msgs, bool, 0);
3238 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3239 #endif
3240 
3241 module_init(init_ntfs_fs)
3242 module_exit(exit_ntfs_fs)
3243