1 /* 2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 5 * Copyright (c) 2001,2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/stddef.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/string.h> 28 #include <linux/spinlock.h> 29 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 30 #include <linux/backing-dev.h> 31 #include <linux/buffer_head.h> 32 #include <linux/vfs.h> 33 #include <linux/moduleparam.h> 34 #include <linux/bitmap.h> 35 36 #include "sysctl.h" 37 #include "logfile.h" 38 #include "quota.h" 39 #include "usnjrnl.h" 40 #include "dir.h" 41 #include "debug.h" 42 #include "index.h" 43 #include "inode.h" 44 #include "aops.h" 45 #include "layout.h" 46 #include "malloc.h" 47 #include "ntfs.h" 48 49 /* Number of mounted filesystems which have compression enabled. */ 50 static unsigned long ntfs_nr_compression_users; 51 52 /* A global default upcase table and a corresponding reference count. */ 53 static ntfschar *default_upcase = NULL; 54 static unsigned long ntfs_nr_upcase_users = 0; 55 56 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 57 typedef enum { 58 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 59 ON_ERRORS_PANIC = 0x01, 60 ON_ERRORS_REMOUNT_RO = 0x02, 61 ON_ERRORS_CONTINUE = 0x04, 62 /* Optional, can be combined with any of the above. */ 63 ON_ERRORS_RECOVER = 0x10, 64 } ON_ERRORS_ACTIONS; 65 66 const option_t on_errors_arr[] = { 67 { ON_ERRORS_PANIC, "panic" }, 68 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 69 { ON_ERRORS_CONTINUE, "continue", }, 70 { ON_ERRORS_RECOVER, "recover" }, 71 { 0, NULL } 72 }; 73 74 /** 75 * simple_getbool - 76 * 77 * Copied from old ntfs driver (which copied from vfat driver). 78 */ 79 static int simple_getbool(char *s, bool *setval) 80 { 81 if (s) { 82 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 83 *setval = true; 84 else if (!strcmp(s, "0") || !strcmp(s, "no") || 85 !strcmp(s, "false")) 86 *setval = false; 87 else 88 return 0; 89 } else 90 *setval = true; 91 return 1; 92 } 93 94 /** 95 * parse_options - parse the (re)mount options 96 * @vol: ntfs volume 97 * @opt: string containing the (re)mount options 98 * 99 * Parse the recognized options in @opt for the ntfs volume described by @vol. 100 */ 101 static bool parse_options(ntfs_volume *vol, char *opt) 102 { 103 char *p, *v, *ov; 104 static char *utf8 = "utf8"; 105 int errors = 0, sloppy = 0; 106 kuid_t uid = INVALID_UID; 107 kgid_t gid = INVALID_GID; 108 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1; 109 int mft_zone_multiplier = -1, on_errors = -1; 110 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 111 struct nls_table *nls_map = NULL, *old_nls; 112 113 /* I am lazy... (-8 */ 114 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 115 if (!strcmp(p, option)) { \ 116 if (!v || !*v) \ 117 variable = default_value; \ 118 else { \ 119 variable = simple_strtoul(ov = v, &v, 0); \ 120 if (*v) \ 121 goto needs_val; \ 122 } \ 123 } 124 #define NTFS_GETOPT(option, variable) \ 125 if (!strcmp(p, option)) { \ 126 if (!v || !*v) \ 127 goto needs_arg; \ 128 variable = simple_strtoul(ov = v, &v, 0); \ 129 if (*v) \ 130 goto needs_val; \ 131 } 132 #define NTFS_GETOPT_UID(option, variable) \ 133 if (!strcmp(p, option)) { \ 134 uid_t uid_value; \ 135 if (!v || !*v) \ 136 goto needs_arg; \ 137 uid_value = simple_strtoul(ov = v, &v, 0); \ 138 if (*v) \ 139 goto needs_val; \ 140 variable = make_kuid(current_user_ns(), uid_value); \ 141 if (!uid_valid(variable)) \ 142 goto needs_val; \ 143 } 144 #define NTFS_GETOPT_GID(option, variable) \ 145 if (!strcmp(p, option)) { \ 146 gid_t gid_value; \ 147 if (!v || !*v) \ 148 goto needs_arg; \ 149 gid_value = simple_strtoul(ov = v, &v, 0); \ 150 if (*v) \ 151 goto needs_val; \ 152 variable = make_kgid(current_user_ns(), gid_value); \ 153 if (!gid_valid(variable)) \ 154 goto needs_val; \ 155 } 156 #define NTFS_GETOPT_OCTAL(option, variable) \ 157 if (!strcmp(p, option)) { \ 158 if (!v || !*v) \ 159 goto needs_arg; \ 160 variable = simple_strtoul(ov = v, &v, 8); \ 161 if (*v) \ 162 goto needs_val; \ 163 } 164 #define NTFS_GETOPT_BOOL(option, variable) \ 165 if (!strcmp(p, option)) { \ 166 bool val; \ 167 if (!simple_getbool(v, &val)) \ 168 goto needs_bool; \ 169 variable = val; \ 170 } 171 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 172 if (!strcmp(p, option)) { \ 173 int _i; \ 174 if (!v || !*v) \ 175 goto needs_arg; \ 176 ov = v; \ 177 if (variable == -1) \ 178 variable = 0; \ 179 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 180 if (!strcmp(opt_array[_i].str, v)) { \ 181 variable |= opt_array[_i].val; \ 182 break; \ 183 } \ 184 if (!opt_array[_i].str || !*opt_array[_i].str) \ 185 goto needs_val; \ 186 } 187 if (!opt || !*opt) 188 goto no_mount_options; 189 ntfs_debug("Entering with mount options string: %s", opt); 190 while ((p = strsep(&opt, ","))) { 191 if ((v = strchr(p, '='))) 192 *v++ = 0; 193 NTFS_GETOPT_UID("uid", uid) 194 else NTFS_GETOPT_GID("gid", gid) 195 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 196 else NTFS_GETOPT_OCTAL("fmask", fmask) 197 else NTFS_GETOPT_OCTAL("dmask", dmask) 198 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 199 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 200 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 201 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 202 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 203 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 204 on_errors_arr) 205 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 206 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 207 p); 208 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 209 if (!strcmp(p, "iocharset")) 210 ntfs_warning(vol->sb, "Option iocharset is " 211 "deprecated. Please use " 212 "option nls=<charsetname> in " 213 "the future."); 214 if (!v || !*v) 215 goto needs_arg; 216 use_utf8: 217 old_nls = nls_map; 218 nls_map = load_nls(v); 219 if (!nls_map) { 220 if (!old_nls) { 221 ntfs_error(vol->sb, "NLS character set " 222 "%s not found.", v); 223 return false; 224 } 225 ntfs_error(vol->sb, "NLS character set %s not " 226 "found. Using previous one %s.", 227 v, old_nls->charset); 228 nls_map = old_nls; 229 } else /* nls_map */ { 230 unload_nls(old_nls); 231 } 232 } else if (!strcmp(p, "utf8")) { 233 bool val = false; 234 ntfs_warning(vol->sb, "Option utf8 is no longer " 235 "supported, using option nls=utf8. Please " 236 "use option nls=utf8 in the future and " 237 "make sure utf8 is compiled either as a " 238 "module or into the kernel."); 239 if (!v || !*v) 240 val = true; 241 else if (!simple_getbool(v, &val)) 242 goto needs_bool; 243 if (val) { 244 v = utf8; 245 goto use_utf8; 246 } 247 } else { 248 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 249 if (errors < INT_MAX) 250 errors++; 251 } 252 #undef NTFS_GETOPT_OPTIONS_ARRAY 253 #undef NTFS_GETOPT_BOOL 254 #undef NTFS_GETOPT 255 #undef NTFS_GETOPT_WITH_DEFAULT 256 } 257 no_mount_options: 258 if (errors && !sloppy) 259 return false; 260 if (sloppy) 261 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 262 "unrecognized mount option(s) and continuing."); 263 /* Keep this first! */ 264 if (on_errors != -1) { 265 if (!on_errors) { 266 ntfs_error(vol->sb, "Invalid errors option argument " 267 "or bug in options parser."); 268 return false; 269 } 270 } 271 if (nls_map) { 272 if (vol->nls_map && vol->nls_map != nls_map) { 273 ntfs_error(vol->sb, "Cannot change NLS character set " 274 "on remount."); 275 return false; 276 } /* else (!vol->nls_map) */ 277 ntfs_debug("Using NLS character set %s.", nls_map->charset); 278 vol->nls_map = nls_map; 279 } else /* (!nls_map) */ { 280 if (!vol->nls_map) { 281 vol->nls_map = load_nls_default(); 282 if (!vol->nls_map) { 283 ntfs_error(vol->sb, "Failed to load default " 284 "NLS character set."); 285 return false; 286 } 287 ntfs_debug("Using default NLS character set (%s).", 288 vol->nls_map->charset); 289 } 290 } 291 if (mft_zone_multiplier != -1) { 292 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 293 mft_zone_multiplier) { 294 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 295 "on remount."); 296 return false; 297 } 298 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 299 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 300 "Using default value, i.e. 1."); 301 mft_zone_multiplier = 1; 302 } 303 vol->mft_zone_multiplier = mft_zone_multiplier; 304 } 305 if (!vol->mft_zone_multiplier) 306 vol->mft_zone_multiplier = 1; 307 if (on_errors != -1) 308 vol->on_errors = on_errors; 309 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 310 vol->on_errors |= ON_ERRORS_CONTINUE; 311 if (uid_valid(uid)) 312 vol->uid = uid; 313 if (gid_valid(gid)) 314 vol->gid = gid; 315 if (fmask != (umode_t)-1) 316 vol->fmask = fmask; 317 if (dmask != (umode_t)-1) 318 vol->dmask = dmask; 319 if (show_sys_files != -1) { 320 if (show_sys_files) 321 NVolSetShowSystemFiles(vol); 322 else 323 NVolClearShowSystemFiles(vol); 324 } 325 if (case_sensitive != -1) { 326 if (case_sensitive) 327 NVolSetCaseSensitive(vol); 328 else 329 NVolClearCaseSensitive(vol); 330 } 331 if (disable_sparse != -1) { 332 if (disable_sparse) 333 NVolClearSparseEnabled(vol); 334 else { 335 if (!NVolSparseEnabled(vol) && 336 vol->major_ver && vol->major_ver < 3) 337 ntfs_warning(vol->sb, "Not enabling sparse " 338 "support due to NTFS volume " 339 "version %i.%i (need at least " 340 "version 3.0).", vol->major_ver, 341 vol->minor_ver); 342 else 343 NVolSetSparseEnabled(vol); 344 } 345 } 346 return true; 347 needs_arg: 348 ntfs_error(vol->sb, "The %s option requires an argument.", p); 349 return false; 350 needs_bool: 351 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 352 return false; 353 needs_val: 354 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 355 return false; 356 } 357 358 #ifdef NTFS_RW 359 360 /** 361 * ntfs_write_volume_flags - write new flags to the volume information flags 362 * @vol: ntfs volume on which to modify the flags 363 * @flags: new flags value for the volume information flags 364 * 365 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 366 * instead (see below). 367 * 368 * Replace the volume information flags on the volume @vol with the value 369 * supplied in @flags. Note, this overwrites the volume information flags, so 370 * make sure to combine the flags you want to modify with the old flags and use 371 * the result when calling ntfs_write_volume_flags(). 372 * 373 * Return 0 on success and -errno on error. 374 */ 375 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 376 { 377 ntfs_inode *ni = NTFS_I(vol->vol_ino); 378 MFT_RECORD *m; 379 VOLUME_INFORMATION *vi; 380 ntfs_attr_search_ctx *ctx; 381 int err; 382 383 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 384 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 385 if (vol->vol_flags == flags) 386 goto done; 387 BUG_ON(!ni); 388 m = map_mft_record(ni); 389 if (IS_ERR(m)) { 390 err = PTR_ERR(m); 391 goto err_out; 392 } 393 ctx = ntfs_attr_get_search_ctx(ni, m); 394 if (!ctx) { 395 err = -ENOMEM; 396 goto put_unm_err_out; 397 } 398 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 399 ctx); 400 if (err) 401 goto put_unm_err_out; 402 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 403 le16_to_cpu(ctx->attr->data.resident.value_offset)); 404 vol->vol_flags = vi->flags = flags; 405 flush_dcache_mft_record_page(ctx->ntfs_ino); 406 mark_mft_record_dirty(ctx->ntfs_ino); 407 ntfs_attr_put_search_ctx(ctx); 408 unmap_mft_record(ni); 409 done: 410 ntfs_debug("Done."); 411 return 0; 412 put_unm_err_out: 413 if (ctx) 414 ntfs_attr_put_search_ctx(ctx); 415 unmap_mft_record(ni); 416 err_out: 417 ntfs_error(vol->sb, "Failed with error code %i.", -err); 418 return err; 419 } 420 421 /** 422 * ntfs_set_volume_flags - set bits in the volume information flags 423 * @vol: ntfs volume on which to modify the flags 424 * @flags: flags to set on the volume 425 * 426 * Set the bits in @flags in the volume information flags on the volume @vol. 427 * 428 * Return 0 on success and -errno on error. 429 */ 430 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 431 { 432 flags &= VOLUME_FLAGS_MASK; 433 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 434 } 435 436 /** 437 * ntfs_clear_volume_flags - clear bits in the volume information flags 438 * @vol: ntfs volume on which to modify the flags 439 * @flags: flags to clear on the volume 440 * 441 * Clear the bits in @flags in the volume information flags on the volume @vol. 442 * 443 * Return 0 on success and -errno on error. 444 */ 445 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 446 { 447 flags &= VOLUME_FLAGS_MASK; 448 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 449 return ntfs_write_volume_flags(vol, flags); 450 } 451 452 #endif /* NTFS_RW */ 453 454 /** 455 * ntfs_remount - change the mount options of a mounted ntfs filesystem 456 * @sb: superblock of mounted ntfs filesystem 457 * @flags: remount flags 458 * @opt: remount options string 459 * 460 * Change the mount options of an already mounted ntfs filesystem. 461 * 462 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 463 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 464 * @sb->s_flags are not changed. 465 */ 466 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 467 { 468 ntfs_volume *vol = NTFS_SB(sb); 469 470 ntfs_debug("Entering with remount options string: %s", opt); 471 472 sync_filesystem(sb); 473 474 #ifndef NTFS_RW 475 /* For read-only compiled driver, enforce read-only flag. */ 476 *flags |= MS_RDONLY; 477 #else /* NTFS_RW */ 478 /* 479 * For the read-write compiled driver, if we are remounting read-write, 480 * make sure there are no volume errors and that no unsupported volume 481 * flags are set. Also, empty the logfile journal as it would become 482 * stale as soon as something is written to the volume and mark the 483 * volume dirty so that chkdsk is run if the volume is not umounted 484 * cleanly. Finally, mark the quotas out of date so Windows rescans 485 * the volume on boot and updates them. 486 * 487 * When remounting read-only, mark the volume clean if no volume errors 488 * have occurred. 489 */ 490 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 491 static const char *es = ". Cannot remount read-write."; 492 493 /* Remounting read-write. */ 494 if (NVolErrors(vol)) { 495 ntfs_error(sb, "Volume has errors and is read-only%s", 496 es); 497 return -EROFS; 498 } 499 if (vol->vol_flags & VOLUME_IS_DIRTY) { 500 ntfs_error(sb, "Volume is dirty and read-only%s", es); 501 return -EROFS; 502 } 503 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 504 ntfs_error(sb, "Volume has been modified by chkdsk " 505 "and is read-only%s", es); 506 return -EROFS; 507 } 508 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 509 ntfs_error(sb, "Volume has unsupported flags set " 510 "(0x%x) and is read-only%s", 511 (unsigned)le16_to_cpu(vol->vol_flags), 512 es); 513 return -EROFS; 514 } 515 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 516 ntfs_error(sb, "Failed to set dirty bit in volume " 517 "information flags%s", es); 518 return -EROFS; 519 } 520 #if 0 521 // TODO: Enable this code once we start modifying anything that 522 // is different between NTFS 1.2 and 3.x... 523 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 524 if ((vol->major_ver > 1)) { 525 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 526 ntfs_error(sb, "Failed to set NT4 " 527 "compatibility flag%s", es); 528 NVolSetErrors(vol); 529 return -EROFS; 530 } 531 } 532 #endif 533 if (!ntfs_empty_logfile(vol->logfile_ino)) { 534 ntfs_error(sb, "Failed to empty journal $LogFile%s", 535 es); 536 NVolSetErrors(vol); 537 return -EROFS; 538 } 539 if (!ntfs_mark_quotas_out_of_date(vol)) { 540 ntfs_error(sb, "Failed to mark quotas out of date%s", 541 es); 542 NVolSetErrors(vol); 543 return -EROFS; 544 } 545 if (!ntfs_stamp_usnjrnl(vol)) { 546 ntfs_error(sb, "Failed to stamp transation log " 547 "($UsnJrnl)%s", es); 548 NVolSetErrors(vol); 549 return -EROFS; 550 } 551 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 552 /* Remounting read-only. */ 553 if (!NVolErrors(vol)) { 554 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 555 ntfs_warning(sb, "Failed to clear dirty bit " 556 "in volume information " 557 "flags. Run chkdsk."); 558 } 559 } 560 #endif /* NTFS_RW */ 561 562 // TODO: Deal with *flags. 563 564 if (!parse_options(vol, opt)) 565 return -EINVAL; 566 567 ntfs_debug("Done."); 568 return 0; 569 } 570 571 /** 572 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 573 * @sb: Super block of the device to which @b belongs. 574 * @b: Boot sector of device @sb to check. 575 * @silent: If 'true', all output will be silenced. 576 * 577 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 578 * sector. Returns 'true' if it is valid and 'false' if not. 579 * 580 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 581 * is 'true'. 582 */ 583 static bool is_boot_sector_ntfs(const struct super_block *sb, 584 const NTFS_BOOT_SECTOR *b, const bool silent) 585 { 586 /* 587 * Check that checksum == sum of u32 values from b to the checksum 588 * field. If checksum is zero, no checking is done. We will work when 589 * the checksum test fails, since some utilities update the boot sector 590 * ignoring the checksum which leaves the checksum out-of-date. We 591 * report a warning if this is the case. 592 */ 593 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 594 le32 *u; 595 u32 i; 596 597 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 598 i += le32_to_cpup(u); 599 if (le32_to_cpu(b->checksum) != i) 600 ntfs_warning(sb, "Invalid boot sector checksum."); 601 } 602 /* Check OEMidentifier is "NTFS " */ 603 if (b->oem_id != magicNTFS) 604 goto not_ntfs; 605 /* Check bytes per sector value is between 256 and 4096. */ 606 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 607 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 608 goto not_ntfs; 609 /* Check sectors per cluster value is valid. */ 610 switch (b->bpb.sectors_per_cluster) { 611 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 612 break; 613 default: 614 goto not_ntfs; 615 } 616 /* Check the cluster size is not above the maximum (64kiB). */ 617 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 618 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 619 goto not_ntfs; 620 /* Check reserved/unused fields are really zero. */ 621 if (le16_to_cpu(b->bpb.reserved_sectors) || 622 le16_to_cpu(b->bpb.root_entries) || 623 le16_to_cpu(b->bpb.sectors) || 624 le16_to_cpu(b->bpb.sectors_per_fat) || 625 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 626 goto not_ntfs; 627 /* Check clusters per file mft record value is valid. */ 628 if ((u8)b->clusters_per_mft_record < 0xe1 || 629 (u8)b->clusters_per_mft_record > 0xf7) 630 switch (b->clusters_per_mft_record) { 631 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 632 break; 633 default: 634 goto not_ntfs; 635 } 636 /* Check clusters per index block value is valid. */ 637 if ((u8)b->clusters_per_index_record < 0xe1 || 638 (u8)b->clusters_per_index_record > 0xf7) 639 switch (b->clusters_per_index_record) { 640 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 641 break; 642 default: 643 goto not_ntfs; 644 } 645 /* 646 * Check for valid end of sector marker. We will work without it, but 647 * many BIOSes will refuse to boot from a bootsector if the magic is 648 * incorrect, so we emit a warning. 649 */ 650 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 651 ntfs_warning(sb, "Invalid end of sector marker."); 652 return true; 653 not_ntfs: 654 return false; 655 } 656 657 /** 658 * read_ntfs_boot_sector - read the NTFS boot sector of a device 659 * @sb: super block of device to read the boot sector from 660 * @silent: if true, suppress all output 661 * 662 * Reads the boot sector from the device and validates it. If that fails, tries 663 * to read the backup boot sector, first from the end of the device a-la NT4 and 664 * later and then from the middle of the device a-la NT3.51 and before. 665 * 666 * If a valid boot sector is found but it is not the primary boot sector, we 667 * repair the primary boot sector silently (unless the device is read-only or 668 * the primary boot sector is not accessible). 669 * 670 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 671 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 672 * to their respective values. 673 * 674 * Return the unlocked buffer head containing the boot sector or NULL on error. 675 */ 676 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 677 const int silent) 678 { 679 const char *read_err_str = "Unable to read %s boot sector."; 680 struct buffer_head *bh_primary, *bh_backup; 681 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 682 683 /* Try to read primary boot sector. */ 684 if ((bh_primary = sb_bread(sb, 0))) { 685 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 686 bh_primary->b_data, silent)) 687 return bh_primary; 688 if (!silent) 689 ntfs_error(sb, "Primary boot sector is invalid."); 690 } else if (!silent) 691 ntfs_error(sb, read_err_str, "primary"); 692 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 693 if (bh_primary) 694 brelse(bh_primary); 695 if (!silent) 696 ntfs_error(sb, "Mount option errors=recover not used. " 697 "Aborting without trying to recover."); 698 return NULL; 699 } 700 /* Try to read NT4+ backup boot sector. */ 701 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 702 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 703 bh_backup->b_data, silent)) 704 goto hotfix_primary_boot_sector; 705 brelse(bh_backup); 706 } else if (!silent) 707 ntfs_error(sb, read_err_str, "backup"); 708 /* Try to read NT3.51- backup boot sector. */ 709 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 710 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 711 bh_backup->b_data, silent)) 712 goto hotfix_primary_boot_sector; 713 if (!silent) 714 ntfs_error(sb, "Could not find a valid backup boot " 715 "sector."); 716 brelse(bh_backup); 717 } else if (!silent) 718 ntfs_error(sb, read_err_str, "backup"); 719 /* We failed. Cleanup and return. */ 720 if (bh_primary) 721 brelse(bh_primary); 722 return NULL; 723 hotfix_primary_boot_sector: 724 if (bh_primary) { 725 /* 726 * If we managed to read sector zero and the volume is not 727 * read-only, copy the found, valid backup boot sector to the 728 * primary boot sector. Note we only copy the actual boot 729 * sector structure, not the actual whole device sector as that 730 * may be bigger and would potentially damage the $Boot system 731 * file (FIXME: Would be nice to know if the backup boot sector 732 * on a large sector device contains the whole boot loader or 733 * just the first 512 bytes). 734 */ 735 if (!(sb->s_flags & MS_RDONLY)) { 736 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 737 "boot sector from backup copy."); 738 memcpy(bh_primary->b_data, bh_backup->b_data, 739 NTFS_BLOCK_SIZE); 740 mark_buffer_dirty(bh_primary); 741 sync_dirty_buffer(bh_primary); 742 if (buffer_uptodate(bh_primary)) { 743 brelse(bh_backup); 744 return bh_primary; 745 } 746 ntfs_error(sb, "Hot-fix: Device write error while " 747 "recovering primary boot sector."); 748 } else { 749 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 750 "sector failed: Read-only mount."); 751 } 752 brelse(bh_primary); 753 } 754 ntfs_warning(sb, "Using backup boot sector."); 755 return bh_backup; 756 } 757 758 /** 759 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 760 * @vol: volume structure to initialise with data from boot sector 761 * @b: boot sector to parse 762 * 763 * Parse the ntfs boot sector @b and store all imporant information therein in 764 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 765 */ 766 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 767 { 768 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 769 int clusters_per_mft_record, clusters_per_index_record; 770 s64 ll; 771 772 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 773 vol->sector_size_bits = ffs(vol->sector_size) - 1; 774 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 775 vol->sector_size); 776 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 777 vol->sector_size_bits); 778 if (vol->sector_size < vol->sb->s_blocksize) { 779 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 780 "device block size (%lu). This is not " 781 "supported. Sorry.", vol->sector_size, 782 vol->sb->s_blocksize); 783 return false; 784 } 785 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 786 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 787 ntfs_debug("sectors_per_cluster_bits = 0x%x", 788 sectors_per_cluster_bits); 789 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 790 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 791 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 792 vol->cluster_size_mask = vol->cluster_size - 1; 793 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 794 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 795 vol->cluster_size); 796 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 797 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 798 if (vol->cluster_size < vol->sector_size) { 799 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 800 "sector size (%i). This is not supported. " 801 "Sorry.", vol->cluster_size, vol->sector_size); 802 return false; 803 } 804 clusters_per_mft_record = b->clusters_per_mft_record; 805 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 806 clusters_per_mft_record, clusters_per_mft_record); 807 if (clusters_per_mft_record > 0) 808 vol->mft_record_size = vol->cluster_size << 809 (ffs(clusters_per_mft_record) - 1); 810 else 811 /* 812 * When mft_record_size < cluster_size, clusters_per_mft_record 813 * = -log2(mft_record_size) bytes. mft_record_size normaly is 814 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 815 */ 816 vol->mft_record_size = 1 << -clusters_per_mft_record; 817 vol->mft_record_size_mask = vol->mft_record_size - 1; 818 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 819 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 820 vol->mft_record_size); 821 ntfs_debug("vol->mft_record_size_mask = 0x%x", 822 vol->mft_record_size_mask); 823 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 824 vol->mft_record_size_bits, vol->mft_record_size_bits); 825 /* 826 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since 827 * we store $MFT/$DATA, the table of mft records in the page cache. 828 */ 829 if (vol->mft_record_size > PAGE_CACHE_SIZE) { 830 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 831 "PAGE_CACHE_SIZE on your system (%lu). " 832 "This is not supported. Sorry.", 833 vol->mft_record_size, PAGE_CACHE_SIZE); 834 return false; 835 } 836 /* We cannot support mft record sizes below the sector size. */ 837 if (vol->mft_record_size < vol->sector_size) { 838 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 839 "sector size (%i). This is not supported. " 840 "Sorry.", vol->mft_record_size, 841 vol->sector_size); 842 return false; 843 } 844 clusters_per_index_record = b->clusters_per_index_record; 845 ntfs_debug("clusters_per_index_record = %i (0x%x)", 846 clusters_per_index_record, clusters_per_index_record); 847 if (clusters_per_index_record > 0) 848 vol->index_record_size = vol->cluster_size << 849 (ffs(clusters_per_index_record) - 1); 850 else 851 /* 852 * When index_record_size < cluster_size, 853 * clusters_per_index_record = -log2(index_record_size) bytes. 854 * index_record_size normaly equals 4096 bytes, which is 855 * encoded as 0xF4 (-12 in decimal). 856 */ 857 vol->index_record_size = 1 << -clusters_per_index_record; 858 vol->index_record_size_mask = vol->index_record_size - 1; 859 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 860 ntfs_debug("vol->index_record_size = %i (0x%x)", 861 vol->index_record_size, vol->index_record_size); 862 ntfs_debug("vol->index_record_size_mask = 0x%x", 863 vol->index_record_size_mask); 864 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 865 vol->index_record_size_bits, 866 vol->index_record_size_bits); 867 /* We cannot support index record sizes below the sector size. */ 868 if (vol->index_record_size < vol->sector_size) { 869 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 870 "the sector size (%i). This is not " 871 "supported. Sorry.", vol->index_record_size, 872 vol->sector_size); 873 return false; 874 } 875 /* 876 * Get the size of the volume in clusters and check for 64-bit-ness. 877 * Windows currently only uses 32 bits to save the clusters so we do 878 * the same as it is much faster on 32-bit CPUs. 879 */ 880 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 881 if ((u64)ll >= 1ULL << 32) { 882 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 883 return false; 884 } 885 vol->nr_clusters = ll; 886 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 887 /* 888 * On an architecture where unsigned long is 32-bits, we restrict the 889 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 890 * will hopefully optimize the whole check away. 891 */ 892 if (sizeof(unsigned long) < 8) { 893 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 894 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 895 "large for this architecture. " 896 "Maximum supported is 2TiB. Sorry.", 897 (unsigned long long)ll >> (40 - 898 vol->cluster_size_bits)); 899 return false; 900 } 901 } 902 ll = sle64_to_cpu(b->mft_lcn); 903 if (ll >= vol->nr_clusters) { 904 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 905 "volume. Weird.", (unsigned long long)ll, 906 (unsigned long long)ll); 907 return false; 908 } 909 vol->mft_lcn = ll; 910 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 911 ll = sle64_to_cpu(b->mftmirr_lcn); 912 if (ll >= vol->nr_clusters) { 913 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 914 "of volume. Weird.", (unsigned long long)ll, 915 (unsigned long long)ll); 916 return false; 917 } 918 vol->mftmirr_lcn = ll; 919 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 920 #ifdef NTFS_RW 921 /* 922 * Work out the size of the mft mirror in number of mft records. If the 923 * cluster size is less than or equal to the size taken by four mft 924 * records, the mft mirror stores the first four mft records. If the 925 * cluster size is bigger than the size taken by four mft records, the 926 * mft mirror contains as many mft records as will fit into one 927 * cluster. 928 */ 929 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 930 vol->mftmirr_size = 4; 931 else 932 vol->mftmirr_size = vol->cluster_size >> 933 vol->mft_record_size_bits; 934 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 935 #endif /* NTFS_RW */ 936 vol->serial_no = le64_to_cpu(b->volume_serial_number); 937 ntfs_debug("vol->serial_no = 0x%llx", 938 (unsigned long long)vol->serial_no); 939 return true; 940 } 941 942 /** 943 * ntfs_setup_allocators - initialize the cluster and mft allocators 944 * @vol: volume structure for which to setup the allocators 945 * 946 * Setup the cluster (lcn) and mft allocators to the starting values. 947 */ 948 static void ntfs_setup_allocators(ntfs_volume *vol) 949 { 950 #ifdef NTFS_RW 951 LCN mft_zone_size, mft_lcn; 952 #endif /* NTFS_RW */ 953 954 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 955 vol->mft_zone_multiplier); 956 #ifdef NTFS_RW 957 /* Determine the size of the MFT zone. */ 958 mft_zone_size = vol->nr_clusters; 959 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 960 case 4: 961 mft_zone_size >>= 1; /* 50% */ 962 break; 963 case 3: 964 mft_zone_size = (mft_zone_size + 965 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 966 break; 967 case 2: 968 mft_zone_size >>= 2; /* 25% */ 969 break; 970 /* case 1: */ 971 default: 972 mft_zone_size >>= 3; /* 12.5% */ 973 break; 974 } 975 /* Setup the mft zone. */ 976 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 977 ntfs_debug("vol->mft_zone_pos = 0x%llx", 978 (unsigned long long)vol->mft_zone_pos); 979 /* 980 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 981 * source) and if the actual mft_lcn is in the expected place or even 982 * further to the front of the volume, extend the mft_zone to cover the 983 * beginning of the volume as well. This is in order to protect the 984 * area reserved for the mft bitmap as well within the mft_zone itself. 985 * On non-standard volumes we do not protect it as the overhead would 986 * be higher than the speed increase we would get by doing it. 987 */ 988 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 989 if (mft_lcn * vol->cluster_size < 16 * 1024) 990 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 991 vol->cluster_size; 992 if (vol->mft_zone_start <= mft_lcn) 993 vol->mft_zone_start = 0; 994 ntfs_debug("vol->mft_zone_start = 0x%llx", 995 (unsigned long long)vol->mft_zone_start); 996 /* 997 * Need to cap the mft zone on non-standard volumes so that it does 998 * not point outside the boundaries of the volume. We do this by 999 * halving the zone size until we are inside the volume. 1000 */ 1001 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 1002 while (vol->mft_zone_end >= vol->nr_clusters) { 1003 mft_zone_size >>= 1; 1004 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 1005 } 1006 ntfs_debug("vol->mft_zone_end = 0x%llx", 1007 (unsigned long long)vol->mft_zone_end); 1008 /* 1009 * Set the current position within each data zone to the start of the 1010 * respective zone. 1011 */ 1012 vol->data1_zone_pos = vol->mft_zone_end; 1013 ntfs_debug("vol->data1_zone_pos = 0x%llx", 1014 (unsigned long long)vol->data1_zone_pos); 1015 vol->data2_zone_pos = 0; 1016 ntfs_debug("vol->data2_zone_pos = 0x%llx", 1017 (unsigned long long)vol->data2_zone_pos); 1018 1019 /* Set the mft data allocation position to mft record 24. */ 1020 vol->mft_data_pos = 24; 1021 ntfs_debug("vol->mft_data_pos = 0x%llx", 1022 (unsigned long long)vol->mft_data_pos); 1023 #endif /* NTFS_RW */ 1024 } 1025 1026 #ifdef NTFS_RW 1027 1028 /** 1029 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1030 * @vol: ntfs super block describing device whose mft mirror to load 1031 * 1032 * Return 'true' on success or 'false' on error. 1033 */ 1034 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1035 { 1036 struct inode *tmp_ino; 1037 ntfs_inode *tmp_ni; 1038 1039 ntfs_debug("Entering."); 1040 /* Get mft mirror inode. */ 1041 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1042 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1043 if (!IS_ERR(tmp_ino)) 1044 iput(tmp_ino); 1045 /* Caller will display error message. */ 1046 return false; 1047 } 1048 /* 1049 * Re-initialize some specifics about $MFTMirr's inode as 1050 * ntfs_read_inode() will have set up the default ones. 1051 */ 1052 /* Set uid and gid to root. */ 1053 tmp_ino->i_uid = GLOBAL_ROOT_UID; 1054 tmp_ino->i_gid = GLOBAL_ROOT_GID; 1055 /* Regular file. No access for anyone. */ 1056 tmp_ino->i_mode = S_IFREG; 1057 /* No VFS initiated operations allowed for $MFTMirr. */ 1058 tmp_ino->i_op = &ntfs_empty_inode_ops; 1059 tmp_ino->i_fop = &ntfs_empty_file_ops; 1060 /* Put in our special address space operations. */ 1061 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1062 tmp_ni = NTFS_I(tmp_ino); 1063 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1064 NInoSetMstProtected(tmp_ni); 1065 NInoSetSparseDisabled(tmp_ni); 1066 /* 1067 * Set up our little cheat allowing us to reuse the async read io 1068 * completion handler for directories. 1069 */ 1070 tmp_ni->itype.index.block_size = vol->mft_record_size; 1071 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1072 vol->mftmirr_ino = tmp_ino; 1073 ntfs_debug("Done."); 1074 return true; 1075 } 1076 1077 /** 1078 * check_mft_mirror - compare contents of the mft mirror with the mft 1079 * @vol: ntfs super block describing device whose mft mirror to check 1080 * 1081 * Return 'true' on success or 'false' on error. 1082 * 1083 * Note, this function also results in the mft mirror runlist being completely 1084 * mapped into memory. The mft mirror write code requires this and will BUG() 1085 * should it find an unmapped runlist element. 1086 */ 1087 static bool check_mft_mirror(ntfs_volume *vol) 1088 { 1089 struct super_block *sb = vol->sb; 1090 ntfs_inode *mirr_ni; 1091 struct page *mft_page, *mirr_page; 1092 u8 *kmft, *kmirr; 1093 runlist_element *rl, rl2[2]; 1094 pgoff_t index; 1095 int mrecs_per_page, i; 1096 1097 ntfs_debug("Entering."); 1098 /* Compare contents of $MFT and $MFTMirr. */ 1099 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size; 1100 BUG_ON(!mrecs_per_page); 1101 BUG_ON(!vol->mftmirr_size); 1102 mft_page = mirr_page = NULL; 1103 kmft = kmirr = NULL; 1104 index = i = 0; 1105 do { 1106 u32 bytes; 1107 1108 /* Switch pages if necessary. */ 1109 if (!(i % mrecs_per_page)) { 1110 if (index) { 1111 ntfs_unmap_page(mft_page); 1112 ntfs_unmap_page(mirr_page); 1113 } 1114 /* Get the $MFT page. */ 1115 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1116 index); 1117 if (IS_ERR(mft_page)) { 1118 ntfs_error(sb, "Failed to read $MFT."); 1119 return false; 1120 } 1121 kmft = page_address(mft_page); 1122 /* Get the $MFTMirr page. */ 1123 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1124 index); 1125 if (IS_ERR(mirr_page)) { 1126 ntfs_error(sb, "Failed to read $MFTMirr."); 1127 goto mft_unmap_out; 1128 } 1129 kmirr = page_address(mirr_page); 1130 ++index; 1131 } 1132 /* Do not check the record if it is not in use. */ 1133 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1134 /* Make sure the record is ok. */ 1135 if (ntfs_is_baad_recordp((le32*)kmft)) { 1136 ntfs_error(sb, "Incomplete multi sector " 1137 "transfer detected in mft " 1138 "record %i.", i); 1139 mm_unmap_out: 1140 ntfs_unmap_page(mirr_page); 1141 mft_unmap_out: 1142 ntfs_unmap_page(mft_page); 1143 return false; 1144 } 1145 } 1146 /* Do not check the mirror record if it is not in use. */ 1147 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1148 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1149 ntfs_error(sb, "Incomplete multi sector " 1150 "transfer detected in mft " 1151 "mirror record %i.", i); 1152 goto mm_unmap_out; 1153 } 1154 } 1155 /* Get the amount of data in the current record. */ 1156 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1157 if (bytes < sizeof(MFT_RECORD_OLD) || 1158 bytes > vol->mft_record_size || 1159 ntfs_is_baad_recordp((le32*)kmft)) { 1160 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1161 if (bytes < sizeof(MFT_RECORD_OLD) || 1162 bytes > vol->mft_record_size || 1163 ntfs_is_baad_recordp((le32*)kmirr)) 1164 bytes = vol->mft_record_size; 1165 } 1166 /* Compare the two records. */ 1167 if (memcmp(kmft, kmirr, bytes)) { 1168 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1169 "match. Run ntfsfix or chkdsk.", i); 1170 goto mm_unmap_out; 1171 } 1172 kmft += vol->mft_record_size; 1173 kmirr += vol->mft_record_size; 1174 } while (++i < vol->mftmirr_size); 1175 /* Release the last pages. */ 1176 ntfs_unmap_page(mft_page); 1177 ntfs_unmap_page(mirr_page); 1178 1179 /* Construct the mft mirror runlist by hand. */ 1180 rl2[0].vcn = 0; 1181 rl2[0].lcn = vol->mftmirr_lcn; 1182 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1183 vol->cluster_size - 1) / vol->cluster_size; 1184 rl2[1].vcn = rl2[0].length; 1185 rl2[1].lcn = LCN_ENOENT; 1186 rl2[1].length = 0; 1187 /* 1188 * Because we have just read all of the mft mirror, we know we have 1189 * mapped the full runlist for it. 1190 */ 1191 mirr_ni = NTFS_I(vol->mftmirr_ino); 1192 down_read(&mirr_ni->runlist.lock); 1193 rl = mirr_ni->runlist.rl; 1194 /* Compare the two runlists. They must be identical. */ 1195 i = 0; 1196 do { 1197 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1198 rl2[i].length != rl[i].length) { 1199 ntfs_error(sb, "$MFTMirr location mismatch. " 1200 "Run chkdsk."); 1201 up_read(&mirr_ni->runlist.lock); 1202 return false; 1203 } 1204 } while (rl2[i++].length); 1205 up_read(&mirr_ni->runlist.lock); 1206 ntfs_debug("Done."); 1207 return true; 1208 } 1209 1210 /** 1211 * load_and_check_logfile - load and check the logfile inode for a volume 1212 * @vol: ntfs super block describing device whose logfile to load 1213 * 1214 * Return 'true' on success or 'false' on error. 1215 */ 1216 static bool load_and_check_logfile(ntfs_volume *vol, 1217 RESTART_PAGE_HEADER **rp) 1218 { 1219 struct inode *tmp_ino; 1220 1221 ntfs_debug("Entering."); 1222 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1223 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1224 if (!IS_ERR(tmp_ino)) 1225 iput(tmp_ino); 1226 /* Caller will display error message. */ 1227 return false; 1228 } 1229 if (!ntfs_check_logfile(tmp_ino, rp)) { 1230 iput(tmp_ino); 1231 /* ntfs_check_logfile() will have displayed error output. */ 1232 return false; 1233 } 1234 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1235 vol->logfile_ino = tmp_ino; 1236 ntfs_debug("Done."); 1237 return true; 1238 } 1239 1240 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1241 1242 /** 1243 * check_windows_hibernation_status - check if Windows is suspended on a volume 1244 * @vol: ntfs super block of device to check 1245 * 1246 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1247 * looking for the file hiberfil.sys in the root directory of the volume. If 1248 * the file is not present Windows is definitely not suspended. 1249 * 1250 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1251 * definitely suspended (this volume is not the system volume). Caveat: on a 1252 * system with many volumes it is possible that the < 4kiB check is bogus but 1253 * for now this should do fine. 1254 * 1255 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1256 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1257 * Windows is definitely suspended. If it is completely full of zeroes, 1258 * Windows is definitely not hibernated. Any other case is treated as if 1259 * Windows is suspended. This caters for the above mentioned caveat of a 1260 * system with many volumes where no "hibr" magic would be present and there is 1261 * no zero header. 1262 * 1263 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1264 * hibernated on the volume, and -errno on error. 1265 */ 1266 static int check_windows_hibernation_status(ntfs_volume *vol) 1267 { 1268 MFT_REF mref; 1269 struct inode *vi; 1270 struct page *page; 1271 u32 *kaddr, *kend; 1272 ntfs_name *name = NULL; 1273 int ret = 1; 1274 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1275 cpu_to_le16('i'), cpu_to_le16('b'), 1276 cpu_to_le16('e'), cpu_to_le16('r'), 1277 cpu_to_le16('f'), cpu_to_le16('i'), 1278 cpu_to_le16('l'), cpu_to_le16('.'), 1279 cpu_to_le16('s'), cpu_to_le16('y'), 1280 cpu_to_le16('s'), 0 }; 1281 1282 ntfs_debug("Entering."); 1283 /* 1284 * Find the inode number for the hibernation file by looking up the 1285 * filename hiberfil.sys in the root directory. 1286 */ 1287 mutex_lock(&vol->root_ino->i_mutex); 1288 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1289 &name); 1290 mutex_unlock(&vol->root_ino->i_mutex); 1291 if (IS_ERR_MREF(mref)) { 1292 ret = MREF_ERR(mref); 1293 /* If the file does not exist, Windows is not hibernated. */ 1294 if (ret == -ENOENT) { 1295 ntfs_debug("hiberfil.sys not present. Windows is not " 1296 "hibernated on the volume."); 1297 return 0; 1298 } 1299 /* A real error occurred. */ 1300 ntfs_error(vol->sb, "Failed to find inode number for " 1301 "hiberfil.sys."); 1302 return ret; 1303 } 1304 /* We do not care for the type of match that was found. */ 1305 kfree(name); 1306 /* Get the inode. */ 1307 vi = ntfs_iget(vol->sb, MREF(mref)); 1308 if (IS_ERR(vi) || is_bad_inode(vi)) { 1309 if (!IS_ERR(vi)) 1310 iput(vi); 1311 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1312 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1313 } 1314 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1315 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1316 "Windows is hibernated on the volume. This " 1317 "is not the system volume.", i_size_read(vi)); 1318 goto iput_out; 1319 } 1320 page = ntfs_map_page(vi->i_mapping, 0); 1321 if (IS_ERR(page)) { 1322 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1323 ret = PTR_ERR(page); 1324 goto iput_out; 1325 } 1326 kaddr = (u32*)page_address(page); 1327 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1328 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1329 "hibernated on the volume. This is the " 1330 "system volume."); 1331 goto unm_iput_out; 1332 } 1333 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1334 do { 1335 if (unlikely(*kaddr)) { 1336 ntfs_debug("hiberfil.sys is larger than 4kiB " 1337 "(0x%llx), does not contain the " 1338 "\"hibr\" magic, and does not have a " 1339 "zero header. Windows is hibernated " 1340 "on the volume. This is not the " 1341 "system volume.", i_size_read(vi)); 1342 goto unm_iput_out; 1343 } 1344 } while (++kaddr < kend); 1345 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1346 "hibernated on the volume. This is the system " 1347 "volume."); 1348 ret = 0; 1349 unm_iput_out: 1350 ntfs_unmap_page(page); 1351 iput_out: 1352 iput(vi); 1353 return ret; 1354 } 1355 1356 /** 1357 * load_and_init_quota - load and setup the quota file for a volume if present 1358 * @vol: ntfs super block describing device whose quota file to load 1359 * 1360 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1361 * leave vol->quota_ino as NULL and return success. 1362 */ 1363 static bool load_and_init_quota(ntfs_volume *vol) 1364 { 1365 MFT_REF mref; 1366 struct inode *tmp_ino; 1367 ntfs_name *name = NULL; 1368 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1369 cpu_to_le16('Q'), cpu_to_le16('u'), 1370 cpu_to_le16('o'), cpu_to_le16('t'), 1371 cpu_to_le16('a'), 0 }; 1372 static ntfschar Q[3] = { cpu_to_le16('$'), 1373 cpu_to_le16('Q'), 0 }; 1374 1375 ntfs_debug("Entering."); 1376 /* 1377 * Find the inode number for the quota file by looking up the filename 1378 * $Quota in the extended system files directory $Extend. 1379 */ 1380 mutex_lock(&vol->extend_ino->i_mutex); 1381 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1382 &name); 1383 mutex_unlock(&vol->extend_ino->i_mutex); 1384 if (IS_ERR_MREF(mref)) { 1385 /* 1386 * If the file does not exist, quotas are disabled and have 1387 * never been enabled on this volume, just return success. 1388 */ 1389 if (MREF_ERR(mref) == -ENOENT) { 1390 ntfs_debug("$Quota not present. Volume does not have " 1391 "quotas enabled."); 1392 /* 1393 * No need to try to set quotas out of date if they are 1394 * not enabled. 1395 */ 1396 NVolSetQuotaOutOfDate(vol); 1397 return true; 1398 } 1399 /* A real error occurred. */ 1400 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1401 return false; 1402 } 1403 /* We do not care for the type of match that was found. */ 1404 kfree(name); 1405 /* Get the inode. */ 1406 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1407 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1408 if (!IS_ERR(tmp_ino)) 1409 iput(tmp_ino); 1410 ntfs_error(vol->sb, "Failed to load $Quota."); 1411 return false; 1412 } 1413 vol->quota_ino = tmp_ino; 1414 /* Get the $Q index allocation attribute. */ 1415 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1416 if (IS_ERR(tmp_ino)) { 1417 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1418 return false; 1419 } 1420 vol->quota_q_ino = tmp_ino; 1421 ntfs_debug("Done."); 1422 return true; 1423 } 1424 1425 /** 1426 * load_and_init_usnjrnl - load and setup the transaction log if present 1427 * @vol: ntfs super block describing device whose usnjrnl file to load 1428 * 1429 * Return 'true' on success or 'false' on error. 1430 * 1431 * If $UsnJrnl is not present or in the process of being disabled, we set 1432 * NVolUsnJrnlStamped() and return success. 1433 * 1434 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1435 * i.e. transaction logging has only just been enabled or the journal has been 1436 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1437 * and return success. 1438 */ 1439 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1440 { 1441 MFT_REF mref; 1442 struct inode *tmp_ino; 1443 ntfs_inode *tmp_ni; 1444 struct page *page; 1445 ntfs_name *name = NULL; 1446 USN_HEADER *uh; 1447 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1448 cpu_to_le16('U'), cpu_to_le16('s'), 1449 cpu_to_le16('n'), cpu_to_le16('J'), 1450 cpu_to_le16('r'), cpu_to_le16('n'), 1451 cpu_to_le16('l'), 0 }; 1452 static ntfschar Max[5] = { cpu_to_le16('$'), 1453 cpu_to_le16('M'), cpu_to_le16('a'), 1454 cpu_to_le16('x'), 0 }; 1455 static ntfschar J[3] = { cpu_to_le16('$'), 1456 cpu_to_le16('J'), 0 }; 1457 1458 ntfs_debug("Entering."); 1459 /* 1460 * Find the inode number for the transaction log file by looking up the 1461 * filename $UsnJrnl in the extended system files directory $Extend. 1462 */ 1463 mutex_lock(&vol->extend_ino->i_mutex); 1464 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1465 &name); 1466 mutex_unlock(&vol->extend_ino->i_mutex); 1467 if (IS_ERR_MREF(mref)) { 1468 /* 1469 * If the file does not exist, transaction logging is disabled, 1470 * just return success. 1471 */ 1472 if (MREF_ERR(mref) == -ENOENT) { 1473 ntfs_debug("$UsnJrnl not present. Volume does not " 1474 "have transaction logging enabled."); 1475 not_enabled: 1476 /* 1477 * No need to try to stamp the transaction log if 1478 * transaction logging is not enabled. 1479 */ 1480 NVolSetUsnJrnlStamped(vol); 1481 return true; 1482 } 1483 /* A real error occurred. */ 1484 ntfs_error(vol->sb, "Failed to find inode number for " 1485 "$UsnJrnl."); 1486 return false; 1487 } 1488 /* We do not care for the type of match that was found. */ 1489 kfree(name); 1490 /* Get the inode. */ 1491 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1492 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) { 1493 if (!IS_ERR(tmp_ino)) 1494 iput(tmp_ino); 1495 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1496 return false; 1497 } 1498 vol->usnjrnl_ino = tmp_ino; 1499 /* 1500 * If the transaction log is in the process of being deleted, we can 1501 * ignore it. 1502 */ 1503 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1504 ntfs_debug("$UsnJrnl in the process of being disabled. " 1505 "Volume does not have transaction logging " 1506 "enabled."); 1507 goto not_enabled; 1508 } 1509 /* Get the $DATA/$Max attribute. */ 1510 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1511 if (IS_ERR(tmp_ino)) { 1512 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1513 "attribute."); 1514 return false; 1515 } 1516 vol->usnjrnl_max_ino = tmp_ino; 1517 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1518 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1519 "attribute (size is 0x%llx but should be at " 1520 "least 0x%zx bytes).", i_size_read(tmp_ino), 1521 sizeof(USN_HEADER)); 1522 return false; 1523 } 1524 /* Get the $DATA/$J attribute. */ 1525 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1526 if (IS_ERR(tmp_ino)) { 1527 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1528 "attribute."); 1529 return false; 1530 } 1531 vol->usnjrnl_j_ino = tmp_ino; 1532 /* Verify $J is non-resident and sparse. */ 1533 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1534 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1535 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1536 "and/or not sparse."); 1537 return false; 1538 } 1539 /* Read the USN_HEADER from $DATA/$Max. */ 1540 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1541 if (IS_ERR(page)) { 1542 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1543 "attribute."); 1544 return false; 1545 } 1546 uh = (USN_HEADER*)page_address(page); 1547 /* Sanity check the $Max. */ 1548 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1549 sle64_to_cpu(uh->maximum_size))) { 1550 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1551 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1552 (long long)sle64_to_cpu(uh->allocation_delta), 1553 (long long)sle64_to_cpu(uh->maximum_size)); 1554 ntfs_unmap_page(page); 1555 return false; 1556 } 1557 /* 1558 * If the transaction log has been stamped and nothing has been written 1559 * to it since, we do not need to stamp it. 1560 */ 1561 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1562 i_size_read(vol->usnjrnl_j_ino))) { 1563 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1564 i_size_read(vol->usnjrnl_j_ino))) { 1565 ntfs_unmap_page(page); 1566 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1567 "logged since it was last stamped. " 1568 "Treating this as if the volume does " 1569 "not have transaction logging " 1570 "enabled."); 1571 goto not_enabled; 1572 } 1573 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1574 "which is out of bounds (0x%llx). $UsnJrnl " 1575 "is corrupt.", 1576 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1577 i_size_read(vol->usnjrnl_j_ino)); 1578 ntfs_unmap_page(page); 1579 return false; 1580 } 1581 ntfs_unmap_page(page); 1582 ntfs_debug("Done."); 1583 return true; 1584 } 1585 1586 /** 1587 * load_and_init_attrdef - load the attribute definitions table for a volume 1588 * @vol: ntfs super block describing device whose attrdef to load 1589 * 1590 * Return 'true' on success or 'false' on error. 1591 */ 1592 static bool load_and_init_attrdef(ntfs_volume *vol) 1593 { 1594 loff_t i_size; 1595 struct super_block *sb = vol->sb; 1596 struct inode *ino; 1597 struct page *page; 1598 pgoff_t index, max_index; 1599 unsigned int size; 1600 1601 ntfs_debug("Entering."); 1602 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1603 ino = ntfs_iget(sb, FILE_AttrDef); 1604 if (IS_ERR(ino) || is_bad_inode(ino)) { 1605 if (!IS_ERR(ino)) 1606 iput(ino); 1607 goto failed; 1608 } 1609 NInoSetSparseDisabled(NTFS_I(ino)); 1610 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1611 i_size = i_size_read(ino); 1612 if (i_size <= 0 || i_size > 0x7fffffff) 1613 goto iput_failed; 1614 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1615 if (!vol->attrdef) 1616 goto iput_failed; 1617 index = 0; 1618 max_index = i_size >> PAGE_CACHE_SHIFT; 1619 size = PAGE_CACHE_SIZE; 1620 while (index < max_index) { 1621 /* Read the attrdef table and copy it into the linear buffer. */ 1622 read_partial_attrdef_page: 1623 page = ntfs_map_page(ino->i_mapping, index); 1624 if (IS_ERR(page)) 1625 goto free_iput_failed; 1626 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT), 1627 page_address(page), size); 1628 ntfs_unmap_page(page); 1629 }; 1630 if (size == PAGE_CACHE_SIZE) { 1631 size = i_size & ~PAGE_CACHE_MASK; 1632 if (size) 1633 goto read_partial_attrdef_page; 1634 } 1635 vol->attrdef_size = i_size; 1636 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1637 iput(ino); 1638 return true; 1639 free_iput_failed: 1640 ntfs_free(vol->attrdef); 1641 vol->attrdef = NULL; 1642 iput_failed: 1643 iput(ino); 1644 failed: 1645 ntfs_error(sb, "Failed to initialize attribute definition table."); 1646 return false; 1647 } 1648 1649 #endif /* NTFS_RW */ 1650 1651 /** 1652 * load_and_init_upcase - load the upcase table for an ntfs volume 1653 * @vol: ntfs super block describing device whose upcase to load 1654 * 1655 * Return 'true' on success or 'false' on error. 1656 */ 1657 static bool load_and_init_upcase(ntfs_volume *vol) 1658 { 1659 loff_t i_size; 1660 struct super_block *sb = vol->sb; 1661 struct inode *ino; 1662 struct page *page; 1663 pgoff_t index, max_index; 1664 unsigned int size; 1665 int i, max; 1666 1667 ntfs_debug("Entering."); 1668 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1669 ino = ntfs_iget(sb, FILE_UpCase); 1670 if (IS_ERR(ino) || is_bad_inode(ino)) { 1671 if (!IS_ERR(ino)) 1672 iput(ino); 1673 goto upcase_failed; 1674 } 1675 /* 1676 * The upcase size must not be above 64k Unicode characters, must not 1677 * be zero and must be a multiple of sizeof(ntfschar). 1678 */ 1679 i_size = i_size_read(ino); 1680 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1681 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1682 goto iput_upcase_failed; 1683 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1684 if (!vol->upcase) 1685 goto iput_upcase_failed; 1686 index = 0; 1687 max_index = i_size >> PAGE_CACHE_SHIFT; 1688 size = PAGE_CACHE_SIZE; 1689 while (index < max_index) { 1690 /* Read the upcase table and copy it into the linear buffer. */ 1691 read_partial_upcase_page: 1692 page = ntfs_map_page(ino->i_mapping, index); 1693 if (IS_ERR(page)) 1694 goto iput_upcase_failed; 1695 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT), 1696 page_address(page), size); 1697 ntfs_unmap_page(page); 1698 }; 1699 if (size == PAGE_CACHE_SIZE) { 1700 size = i_size & ~PAGE_CACHE_MASK; 1701 if (size) 1702 goto read_partial_upcase_page; 1703 } 1704 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1705 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1706 i_size, 64 * 1024 * sizeof(ntfschar)); 1707 iput(ino); 1708 mutex_lock(&ntfs_lock); 1709 if (!default_upcase) { 1710 ntfs_debug("Using volume specified $UpCase since default is " 1711 "not present."); 1712 mutex_unlock(&ntfs_lock); 1713 return true; 1714 } 1715 max = default_upcase_len; 1716 if (max > vol->upcase_len) 1717 max = vol->upcase_len; 1718 for (i = 0; i < max; i++) 1719 if (vol->upcase[i] != default_upcase[i]) 1720 break; 1721 if (i == max) { 1722 ntfs_free(vol->upcase); 1723 vol->upcase = default_upcase; 1724 vol->upcase_len = max; 1725 ntfs_nr_upcase_users++; 1726 mutex_unlock(&ntfs_lock); 1727 ntfs_debug("Volume specified $UpCase matches default. Using " 1728 "default."); 1729 return true; 1730 } 1731 mutex_unlock(&ntfs_lock); 1732 ntfs_debug("Using volume specified $UpCase since it does not match " 1733 "the default."); 1734 return true; 1735 iput_upcase_failed: 1736 iput(ino); 1737 ntfs_free(vol->upcase); 1738 vol->upcase = NULL; 1739 upcase_failed: 1740 mutex_lock(&ntfs_lock); 1741 if (default_upcase) { 1742 vol->upcase = default_upcase; 1743 vol->upcase_len = default_upcase_len; 1744 ntfs_nr_upcase_users++; 1745 mutex_unlock(&ntfs_lock); 1746 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1747 "default."); 1748 return true; 1749 } 1750 mutex_unlock(&ntfs_lock); 1751 ntfs_error(sb, "Failed to initialize upcase table."); 1752 return false; 1753 } 1754 1755 /* 1756 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1757 * their own special locking rules: 1758 */ 1759 static struct lock_class_key 1760 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1761 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1762 1763 /** 1764 * load_system_files - open the system files using normal functions 1765 * @vol: ntfs super block describing device whose system files to load 1766 * 1767 * Open the system files with normal access functions and complete setting up 1768 * the ntfs super block @vol. 1769 * 1770 * Return 'true' on success or 'false' on error. 1771 */ 1772 static bool load_system_files(ntfs_volume *vol) 1773 { 1774 struct super_block *sb = vol->sb; 1775 MFT_RECORD *m; 1776 VOLUME_INFORMATION *vi; 1777 ntfs_attr_search_ctx *ctx; 1778 #ifdef NTFS_RW 1779 RESTART_PAGE_HEADER *rp; 1780 int err; 1781 #endif /* NTFS_RW */ 1782 1783 ntfs_debug("Entering."); 1784 #ifdef NTFS_RW 1785 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1786 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1787 static const char *es1 = "Failed to load $MFTMirr"; 1788 static const char *es2 = "$MFTMirr does not match $MFT"; 1789 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1790 1791 /* If a read-write mount, convert it to a read-only mount. */ 1792 if (!(sb->s_flags & MS_RDONLY)) { 1793 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1794 ON_ERRORS_CONTINUE))) { 1795 ntfs_error(sb, "%s and neither on_errors=" 1796 "continue nor on_errors=" 1797 "remount-ro was specified%s", 1798 !vol->mftmirr_ino ? es1 : es2, 1799 es3); 1800 goto iput_mirr_err_out; 1801 } 1802 sb->s_flags |= MS_RDONLY; 1803 ntfs_error(sb, "%s. Mounting read-only%s", 1804 !vol->mftmirr_ino ? es1 : es2, es3); 1805 } else 1806 ntfs_warning(sb, "%s. Will not be able to remount " 1807 "read-write%s", 1808 !vol->mftmirr_ino ? es1 : es2, es3); 1809 /* This will prevent a read-write remount. */ 1810 NVolSetErrors(vol); 1811 } 1812 #endif /* NTFS_RW */ 1813 /* Get mft bitmap attribute inode. */ 1814 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1815 if (IS_ERR(vol->mftbmp_ino)) { 1816 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1817 goto iput_mirr_err_out; 1818 } 1819 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1820 &mftbmp_runlist_lock_key); 1821 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1822 &mftbmp_mrec_lock_key); 1823 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1824 if (!load_and_init_upcase(vol)) 1825 goto iput_mftbmp_err_out; 1826 #ifdef NTFS_RW 1827 /* 1828 * Read attribute definitions table and setup @vol->attrdef and 1829 * @vol->attrdef_size. 1830 */ 1831 if (!load_and_init_attrdef(vol)) 1832 goto iput_upcase_err_out; 1833 #endif /* NTFS_RW */ 1834 /* 1835 * Get the cluster allocation bitmap inode and verify the size, no 1836 * need for any locking at this stage as we are already running 1837 * exclusively as we are mount in progress task. 1838 */ 1839 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1840 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1841 if (!IS_ERR(vol->lcnbmp_ino)) 1842 iput(vol->lcnbmp_ino); 1843 goto bitmap_failed; 1844 } 1845 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1846 &lcnbmp_runlist_lock_key); 1847 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1848 &lcnbmp_mrec_lock_key); 1849 1850 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1851 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1852 iput(vol->lcnbmp_ino); 1853 bitmap_failed: 1854 ntfs_error(sb, "Failed to load $Bitmap."); 1855 goto iput_attrdef_err_out; 1856 } 1857 /* 1858 * Get the volume inode and setup our cache of the volume flags and 1859 * version. 1860 */ 1861 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1862 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1863 if (!IS_ERR(vol->vol_ino)) 1864 iput(vol->vol_ino); 1865 volume_failed: 1866 ntfs_error(sb, "Failed to load $Volume."); 1867 goto iput_lcnbmp_err_out; 1868 } 1869 m = map_mft_record(NTFS_I(vol->vol_ino)); 1870 if (IS_ERR(m)) { 1871 iput_volume_failed: 1872 iput(vol->vol_ino); 1873 goto volume_failed; 1874 } 1875 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1876 ntfs_error(sb, "Failed to get attribute search context."); 1877 goto get_ctx_vol_failed; 1878 } 1879 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1880 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1881 err_put_vol: 1882 ntfs_attr_put_search_ctx(ctx); 1883 get_ctx_vol_failed: 1884 unmap_mft_record(NTFS_I(vol->vol_ino)); 1885 goto iput_volume_failed; 1886 } 1887 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1888 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1889 /* Some bounds checks. */ 1890 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1891 le32_to_cpu(ctx->attr->data.resident.value_length) > 1892 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1893 goto err_put_vol; 1894 /* Copy the volume flags and version to the ntfs_volume structure. */ 1895 vol->vol_flags = vi->flags; 1896 vol->major_ver = vi->major_ver; 1897 vol->minor_ver = vi->minor_ver; 1898 ntfs_attr_put_search_ctx(ctx); 1899 unmap_mft_record(NTFS_I(vol->vol_ino)); 1900 pr_info("volume version %i.%i.\n", vol->major_ver, 1901 vol->minor_ver); 1902 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1903 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1904 "volume version %i.%i (need at least version " 1905 "3.0).", vol->major_ver, vol->minor_ver); 1906 NVolClearSparseEnabled(vol); 1907 } 1908 #ifdef NTFS_RW 1909 /* Make sure that no unsupported volume flags are set. */ 1910 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1911 static const char *es1a = "Volume is dirty"; 1912 static const char *es1b = "Volume has been modified by chkdsk"; 1913 static const char *es1c = "Volume has unsupported flags set"; 1914 static const char *es2a = ". Run chkdsk and mount in Windows."; 1915 static const char *es2b = ". Mount in Windows."; 1916 const char *es1, *es2; 1917 1918 es2 = es2a; 1919 if (vol->vol_flags & VOLUME_IS_DIRTY) 1920 es1 = es1a; 1921 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1922 es1 = es1b; 1923 es2 = es2b; 1924 } else { 1925 es1 = es1c; 1926 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1927 "encountered.", 1928 (unsigned)le16_to_cpu(vol->vol_flags)); 1929 } 1930 /* If a read-write mount, convert it to a read-only mount. */ 1931 if (!(sb->s_flags & MS_RDONLY)) { 1932 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1933 ON_ERRORS_CONTINUE))) { 1934 ntfs_error(sb, "%s and neither on_errors=" 1935 "continue nor on_errors=" 1936 "remount-ro was specified%s", 1937 es1, es2); 1938 goto iput_vol_err_out; 1939 } 1940 sb->s_flags |= MS_RDONLY; 1941 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1942 } else 1943 ntfs_warning(sb, "%s. Will not be able to remount " 1944 "read-write%s", es1, es2); 1945 /* 1946 * Do not set NVolErrors() because ntfs_remount() re-checks the 1947 * flags which we need to do in case any flags have changed. 1948 */ 1949 } 1950 /* 1951 * Get the inode for the logfile, check it and determine if the volume 1952 * was shutdown cleanly. 1953 */ 1954 rp = NULL; 1955 if (!load_and_check_logfile(vol, &rp) || 1956 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1957 static const char *es1a = "Failed to load $LogFile"; 1958 static const char *es1b = "$LogFile is not clean"; 1959 static const char *es2 = ". Mount in Windows."; 1960 const char *es1; 1961 1962 es1 = !vol->logfile_ino ? es1a : es1b; 1963 /* If a read-write mount, convert it to a read-only mount. */ 1964 if (!(sb->s_flags & MS_RDONLY)) { 1965 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1966 ON_ERRORS_CONTINUE))) { 1967 ntfs_error(sb, "%s and neither on_errors=" 1968 "continue nor on_errors=" 1969 "remount-ro was specified%s", 1970 es1, es2); 1971 if (vol->logfile_ino) { 1972 BUG_ON(!rp); 1973 ntfs_free(rp); 1974 } 1975 goto iput_logfile_err_out; 1976 } 1977 sb->s_flags |= MS_RDONLY; 1978 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1979 } else 1980 ntfs_warning(sb, "%s. Will not be able to remount " 1981 "read-write%s", es1, es2); 1982 /* This will prevent a read-write remount. */ 1983 NVolSetErrors(vol); 1984 } 1985 ntfs_free(rp); 1986 #endif /* NTFS_RW */ 1987 /* Get the root directory inode so we can do path lookups. */ 1988 vol->root_ino = ntfs_iget(sb, FILE_root); 1989 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1990 if (!IS_ERR(vol->root_ino)) 1991 iput(vol->root_ino); 1992 ntfs_error(sb, "Failed to load root directory."); 1993 goto iput_logfile_err_out; 1994 } 1995 #ifdef NTFS_RW 1996 /* 1997 * Check if Windows is suspended to disk on the target volume. If it 1998 * is hibernated, we must not write *anything* to the disk so set 1999 * NVolErrors() without setting the dirty volume flag and mount 2000 * read-only. This will prevent read-write remounting and it will also 2001 * prevent all writes. 2002 */ 2003 err = check_windows_hibernation_status(vol); 2004 if (unlikely(err)) { 2005 static const char *es1a = "Failed to determine if Windows is " 2006 "hibernated"; 2007 static const char *es1b = "Windows is hibernated"; 2008 static const char *es2 = ". Run chkdsk."; 2009 const char *es1; 2010 2011 es1 = err < 0 ? es1a : es1b; 2012 /* If a read-write mount, convert it to a read-only mount. */ 2013 if (!(sb->s_flags & MS_RDONLY)) { 2014 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2015 ON_ERRORS_CONTINUE))) { 2016 ntfs_error(sb, "%s and neither on_errors=" 2017 "continue nor on_errors=" 2018 "remount-ro was specified%s", 2019 es1, es2); 2020 goto iput_root_err_out; 2021 } 2022 sb->s_flags |= MS_RDONLY; 2023 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2024 } else 2025 ntfs_warning(sb, "%s. Will not be able to remount " 2026 "read-write%s", es1, es2); 2027 /* This will prevent a read-write remount. */ 2028 NVolSetErrors(vol); 2029 } 2030 /* If (still) a read-write mount, mark the volume dirty. */ 2031 if (!(sb->s_flags & MS_RDONLY) && 2032 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2033 static const char *es1 = "Failed to set dirty bit in volume " 2034 "information flags"; 2035 static const char *es2 = ". Run chkdsk."; 2036 2037 /* Convert to a read-only mount. */ 2038 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2039 ON_ERRORS_CONTINUE))) { 2040 ntfs_error(sb, "%s and neither on_errors=continue nor " 2041 "on_errors=remount-ro was specified%s", 2042 es1, es2); 2043 goto iput_root_err_out; 2044 } 2045 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2046 sb->s_flags |= MS_RDONLY; 2047 /* 2048 * Do not set NVolErrors() because ntfs_remount() might manage 2049 * to set the dirty flag in which case all would be well. 2050 */ 2051 } 2052 #if 0 2053 // TODO: Enable this code once we start modifying anything that is 2054 // different between NTFS 1.2 and 3.x... 2055 /* 2056 * If (still) a read-write mount, set the NT4 compatibility flag on 2057 * newer NTFS version volumes. 2058 */ 2059 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) && 2060 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2061 static const char *es1 = "Failed to set NT4 compatibility flag"; 2062 static const char *es2 = ". Run chkdsk."; 2063 2064 /* Convert to a read-only mount. */ 2065 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2066 ON_ERRORS_CONTINUE))) { 2067 ntfs_error(sb, "%s and neither on_errors=continue nor " 2068 "on_errors=remount-ro was specified%s", 2069 es1, es2); 2070 goto iput_root_err_out; 2071 } 2072 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2073 sb->s_flags |= MS_RDONLY; 2074 NVolSetErrors(vol); 2075 } 2076 #endif 2077 /* If (still) a read-write mount, empty the logfile. */ 2078 if (!(sb->s_flags & MS_RDONLY) && 2079 !ntfs_empty_logfile(vol->logfile_ino)) { 2080 static const char *es1 = "Failed to empty $LogFile"; 2081 static const char *es2 = ". Mount in Windows."; 2082 2083 /* Convert to a read-only mount. */ 2084 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2085 ON_ERRORS_CONTINUE))) { 2086 ntfs_error(sb, "%s and neither on_errors=continue nor " 2087 "on_errors=remount-ro was specified%s", 2088 es1, es2); 2089 goto iput_root_err_out; 2090 } 2091 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2092 sb->s_flags |= MS_RDONLY; 2093 NVolSetErrors(vol); 2094 } 2095 #endif /* NTFS_RW */ 2096 /* If on NTFS versions before 3.0, we are done. */ 2097 if (unlikely(vol->major_ver < 3)) 2098 return true; 2099 /* NTFS 3.0+ specific initialization. */ 2100 /* Get the security descriptors inode. */ 2101 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2102 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2103 if (!IS_ERR(vol->secure_ino)) 2104 iput(vol->secure_ino); 2105 ntfs_error(sb, "Failed to load $Secure."); 2106 goto iput_root_err_out; 2107 } 2108 // TODO: Initialize security. 2109 /* Get the extended system files' directory inode. */ 2110 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2111 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { 2112 if (!IS_ERR(vol->extend_ino)) 2113 iput(vol->extend_ino); 2114 ntfs_error(sb, "Failed to load $Extend."); 2115 goto iput_sec_err_out; 2116 } 2117 #ifdef NTFS_RW 2118 /* Find the quota file, load it if present, and set it up. */ 2119 if (!load_and_init_quota(vol)) { 2120 static const char *es1 = "Failed to load $Quota"; 2121 static const char *es2 = ". Run chkdsk."; 2122 2123 /* If a read-write mount, convert it to a read-only mount. */ 2124 if (!(sb->s_flags & MS_RDONLY)) { 2125 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2126 ON_ERRORS_CONTINUE))) { 2127 ntfs_error(sb, "%s and neither on_errors=" 2128 "continue nor on_errors=" 2129 "remount-ro was specified%s", 2130 es1, es2); 2131 goto iput_quota_err_out; 2132 } 2133 sb->s_flags |= MS_RDONLY; 2134 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2135 } else 2136 ntfs_warning(sb, "%s. Will not be able to remount " 2137 "read-write%s", es1, es2); 2138 /* This will prevent a read-write remount. */ 2139 NVolSetErrors(vol); 2140 } 2141 /* If (still) a read-write mount, mark the quotas out of date. */ 2142 if (!(sb->s_flags & MS_RDONLY) && 2143 !ntfs_mark_quotas_out_of_date(vol)) { 2144 static const char *es1 = "Failed to mark quotas out of date"; 2145 static const char *es2 = ". Run chkdsk."; 2146 2147 /* Convert to a read-only mount. */ 2148 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2149 ON_ERRORS_CONTINUE))) { 2150 ntfs_error(sb, "%s and neither on_errors=continue nor " 2151 "on_errors=remount-ro was specified%s", 2152 es1, es2); 2153 goto iput_quota_err_out; 2154 } 2155 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2156 sb->s_flags |= MS_RDONLY; 2157 NVolSetErrors(vol); 2158 } 2159 /* 2160 * Find the transaction log file ($UsnJrnl), load it if present, check 2161 * it, and set it up. 2162 */ 2163 if (!load_and_init_usnjrnl(vol)) { 2164 static const char *es1 = "Failed to load $UsnJrnl"; 2165 static const char *es2 = ". Run chkdsk."; 2166 2167 /* If a read-write mount, convert it to a read-only mount. */ 2168 if (!(sb->s_flags & MS_RDONLY)) { 2169 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2170 ON_ERRORS_CONTINUE))) { 2171 ntfs_error(sb, "%s and neither on_errors=" 2172 "continue nor on_errors=" 2173 "remount-ro was specified%s", 2174 es1, es2); 2175 goto iput_usnjrnl_err_out; 2176 } 2177 sb->s_flags |= MS_RDONLY; 2178 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2179 } else 2180 ntfs_warning(sb, "%s. Will not be able to remount " 2181 "read-write%s", es1, es2); 2182 /* This will prevent a read-write remount. */ 2183 NVolSetErrors(vol); 2184 } 2185 /* If (still) a read-write mount, stamp the transaction log. */ 2186 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) { 2187 static const char *es1 = "Failed to stamp transaction log " 2188 "($UsnJrnl)"; 2189 static const char *es2 = ". Run chkdsk."; 2190 2191 /* Convert to a read-only mount. */ 2192 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2193 ON_ERRORS_CONTINUE))) { 2194 ntfs_error(sb, "%s and neither on_errors=continue nor " 2195 "on_errors=remount-ro was specified%s", 2196 es1, es2); 2197 goto iput_usnjrnl_err_out; 2198 } 2199 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2200 sb->s_flags |= MS_RDONLY; 2201 NVolSetErrors(vol); 2202 } 2203 #endif /* NTFS_RW */ 2204 return true; 2205 #ifdef NTFS_RW 2206 iput_usnjrnl_err_out: 2207 if (vol->usnjrnl_j_ino) 2208 iput(vol->usnjrnl_j_ino); 2209 if (vol->usnjrnl_max_ino) 2210 iput(vol->usnjrnl_max_ino); 2211 if (vol->usnjrnl_ino) 2212 iput(vol->usnjrnl_ino); 2213 iput_quota_err_out: 2214 if (vol->quota_q_ino) 2215 iput(vol->quota_q_ino); 2216 if (vol->quota_ino) 2217 iput(vol->quota_ino); 2218 iput(vol->extend_ino); 2219 #endif /* NTFS_RW */ 2220 iput_sec_err_out: 2221 iput(vol->secure_ino); 2222 iput_root_err_out: 2223 iput(vol->root_ino); 2224 iput_logfile_err_out: 2225 #ifdef NTFS_RW 2226 if (vol->logfile_ino) 2227 iput(vol->logfile_ino); 2228 iput_vol_err_out: 2229 #endif /* NTFS_RW */ 2230 iput(vol->vol_ino); 2231 iput_lcnbmp_err_out: 2232 iput(vol->lcnbmp_ino); 2233 iput_attrdef_err_out: 2234 vol->attrdef_size = 0; 2235 if (vol->attrdef) { 2236 ntfs_free(vol->attrdef); 2237 vol->attrdef = NULL; 2238 } 2239 #ifdef NTFS_RW 2240 iput_upcase_err_out: 2241 #endif /* NTFS_RW */ 2242 vol->upcase_len = 0; 2243 mutex_lock(&ntfs_lock); 2244 if (vol->upcase == default_upcase) { 2245 ntfs_nr_upcase_users--; 2246 vol->upcase = NULL; 2247 } 2248 mutex_unlock(&ntfs_lock); 2249 if (vol->upcase) { 2250 ntfs_free(vol->upcase); 2251 vol->upcase = NULL; 2252 } 2253 iput_mftbmp_err_out: 2254 iput(vol->mftbmp_ino); 2255 iput_mirr_err_out: 2256 #ifdef NTFS_RW 2257 if (vol->mftmirr_ino) 2258 iput(vol->mftmirr_ino); 2259 #endif /* NTFS_RW */ 2260 return false; 2261 } 2262 2263 /** 2264 * ntfs_put_super - called by the vfs to unmount a volume 2265 * @sb: vfs superblock of volume to unmount 2266 * 2267 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2268 * the volume is being unmounted (umount system call has been invoked) and it 2269 * releases all inodes and memory belonging to the NTFS specific part of the 2270 * super block. 2271 */ 2272 static void ntfs_put_super(struct super_block *sb) 2273 { 2274 ntfs_volume *vol = NTFS_SB(sb); 2275 2276 ntfs_debug("Entering."); 2277 2278 #ifdef NTFS_RW 2279 /* 2280 * Commit all inodes while they are still open in case some of them 2281 * cause others to be dirtied. 2282 */ 2283 ntfs_commit_inode(vol->vol_ino); 2284 2285 /* NTFS 3.0+ specific. */ 2286 if (vol->major_ver >= 3) { 2287 if (vol->usnjrnl_j_ino) 2288 ntfs_commit_inode(vol->usnjrnl_j_ino); 2289 if (vol->usnjrnl_max_ino) 2290 ntfs_commit_inode(vol->usnjrnl_max_ino); 2291 if (vol->usnjrnl_ino) 2292 ntfs_commit_inode(vol->usnjrnl_ino); 2293 if (vol->quota_q_ino) 2294 ntfs_commit_inode(vol->quota_q_ino); 2295 if (vol->quota_ino) 2296 ntfs_commit_inode(vol->quota_ino); 2297 if (vol->extend_ino) 2298 ntfs_commit_inode(vol->extend_ino); 2299 if (vol->secure_ino) 2300 ntfs_commit_inode(vol->secure_ino); 2301 } 2302 2303 ntfs_commit_inode(vol->root_ino); 2304 2305 down_write(&vol->lcnbmp_lock); 2306 ntfs_commit_inode(vol->lcnbmp_ino); 2307 up_write(&vol->lcnbmp_lock); 2308 2309 down_write(&vol->mftbmp_lock); 2310 ntfs_commit_inode(vol->mftbmp_ino); 2311 up_write(&vol->mftbmp_lock); 2312 2313 if (vol->logfile_ino) 2314 ntfs_commit_inode(vol->logfile_ino); 2315 2316 if (vol->mftmirr_ino) 2317 ntfs_commit_inode(vol->mftmirr_ino); 2318 ntfs_commit_inode(vol->mft_ino); 2319 2320 /* 2321 * If a read-write mount and no volume errors have occurred, mark the 2322 * volume clean. Also, re-commit all affected inodes. 2323 */ 2324 if (!(sb->s_flags & MS_RDONLY)) { 2325 if (!NVolErrors(vol)) { 2326 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2327 ntfs_warning(sb, "Failed to clear dirty bit " 2328 "in volume information " 2329 "flags. Run chkdsk."); 2330 ntfs_commit_inode(vol->vol_ino); 2331 ntfs_commit_inode(vol->root_ino); 2332 if (vol->mftmirr_ino) 2333 ntfs_commit_inode(vol->mftmirr_ino); 2334 ntfs_commit_inode(vol->mft_ino); 2335 } else { 2336 ntfs_warning(sb, "Volume has errors. Leaving volume " 2337 "marked dirty. Run chkdsk."); 2338 } 2339 } 2340 #endif /* NTFS_RW */ 2341 2342 iput(vol->vol_ino); 2343 vol->vol_ino = NULL; 2344 2345 /* NTFS 3.0+ specific clean up. */ 2346 if (vol->major_ver >= 3) { 2347 #ifdef NTFS_RW 2348 if (vol->usnjrnl_j_ino) { 2349 iput(vol->usnjrnl_j_ino); 2350 vol->usnjrnl_j_ino = NULL; 2351 } 2352 if (vol->usnjrnl_max_ino) { 2353 iput(vol->usnjrnl_max_ino); 2354 vol->usnjrnl_max_ino = NULL; 2355 } 2356 if (vol->usnjrnl_ino) { 2357 iput(vol->usnjrnl_ino); 2358 vol->usnjrnl_ino = NULL; 2359 } 2360 if (vol->quota_q_ino) { 2361 iput(vol->quota_q_ino); 2362 vol->quota_q_ino = NULL; 2363 } 2364 if (vol->quota_ino) { 2365 iput(vol->quota_ino); 2366 vol->quota_ino = NULL; 2367 } 2368 #endif /* NTFS_RW */ 2369 if (vol->extend_ino) { 2370 iput(vol->extend_ino); 2371 vol->extend_ino = NULL; 2372 } 2373 if (vol->secure_ino) { 2374 iput(vol->secure_ino); 2375 vol->secure_ino = NULL; 2376 } 2377 } 2378 2379 iput(vol->root_ino); 2380 vol->root_ino = NULL; 2381 2382 down_write(&vol->lcnbmp_lock); 2383 iput(vol->lcnbmp_ino); 2384 vol->lcnbmp_ino = NULL; 2385 up_write(&vol->lcnbmp_lock); 2386 2387 down_write(&vol->mftbmp_lock); 2388 iput(vol->mftbmp_ino); 2389 vol->mftbmp_ino = NULL; 2390 up_write(&vol->mftbmp_lock); 2391 2392 #ifdef NTFS_RW 2393 if (vol->logfile_ino) { 2394 iput(vol->logfile_ino); 2395 vol->logfile_ino = NULL; 2396 } 2397 if (vol->mftmirr_ino) { 2398 /* Re-commit the mft mirror and mft just in case. */ 2399 ntfs_commit_inode(vol->mftmirr_ino); 2400 ntfs_commit_inode(vol->mft_ino); 2401 iput(vol->mftmirr_ino); 2402 vol->mftmirr_ino = NULL; 2403 } 2404 /* 2405 * We should have no dirty inodes left, due to 2406 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2407 * the underlying mft records are written out and cleaned. 2408 */ 2409 ntfs_commit_inode(vol->mft_ino); 2410 write_inode_now(vol->mft_ino, 1); 2411 #endif /* NTFS_RW */ 2412 2413 iput(vol->mft_ino); 2414 vol->mft_ino = NULL; 2415 2416 /* Throw away the table of attribute definitions. */ 2417 vol->attrdef_size = 0; 2418 if (vol->attrdef) { 2419 ntfs_free(vol->attrdef); 2420 vol->attrdef = NULL; 2421 } 2422 vol->upcase_len = 0; 2423 /* 2424 * Destroy the global default upcase table if necessary. Also decrease 2425 * the number of upcase users if we are a user. 2426 */ 2427 mutex_lock(&ntfs_lock); 2428 if (vol->upcase == default_upcase) { 2429 ntfs_nr_upcase_users--; 2430 vol->upcase = NULL; 2431 } 2432 if (!ntfs_nr_upcase_users && default_upcase) { 2433 ntfs_free(default_upcase); 2434 default_upcase = NULL; 2435 } 2436 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2437 free_compression_buffers(); 2438 mutex_unlock(&ntfs_lock); 2439 if (vol->upcase) { 2440 ntfs_free(vol->upcase); 2441 vol->upcase = NULL; 2442 } 2443 2444 unload_nls(vol->nls_map); 2445 2446 sb->s_fs_info = NULL; 2447 kfree(vol); 2448 } 2449 2450 /** 2451 * get_nr_free_clusters - return the number of free clusters on a volume 2452 * @vol: ntfs volume for which to obtain free cluster count 2453 * 2454 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2455 * actually calculate the number of clusters in use instead because this 2456 * allows us to not care about partial pages as these will be just zero filled 2457 * and hence not be counted as allocated clusters. 2458 * 2459 * The only particularity is that clusters beyond the end of the logical ntfs 2460 * volume will be marked as allocated to prevent errors which means we have to 2461 * discount those at the end. This is important as the cluster bitmap always 2462 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2463 * the logical volume and marked in use when they are not as they do not exist. 2464 * 2465 * If any pages cannot be read we assume all clusters in the erroring pages are 2466 * in use. This means we return an underestimate on errors which is better than 2467 * an overestimate. 2468 */ 2469 static s64 get_nr_free_clusters(ntfs_volume *vol) 2470 { 2471 s64 nr_free = vol->nr_clusters; 2472 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2473 struct page *page; 2474 pgoff_t index, max_index; 2475 2476 ntfs_debug("Entering."); 2477 /* Serialize accesses to the cluster bitmap. */ 2478 down_read(&vol->lcnbmp_lock); 2479 /* 2480 * Convert the number of bits into bytes rounded up, then convert into 2481 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one 2482 * full and one partial page max_index = 2. 2483 */ 2484 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> 2485 PAGE_CACHE_SHIFT; 2486 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2487 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2488 max_index, PAGE_CACHE_SIZE / 4); 2489 for (index = 0; index < max_index; index++) { 2490 unsigned long *kaddr; 2491 2492 /* 2493 * Read the page from page cache, getting it from backing store 2494 * if necessary, and increment the use count. 2495 */ 2496 page = read_mapping_page(mapping, index, NULL); 2497 /* Ignore pages which errored synchronously. */ 2498 if (IS_ERR(page)) { 2499 ntfs_debug("read_mapping_page() error. Skipping " 2500 "page (index 0x%lx).", index); 2501 nr_free -= PAGE_CACHE_SIZE * 8; 2502 continue; 2503 } 2504 kaddr = kmap_atomic(page); 2505 /* 2506 * Subtract the number of set bits. If this 2507 * is the last page and it is partial we don't really care as 2508 * it just means we do a little extra work but it won't affect 2509 * the result as all out of range bytes are set to zero by 2510 * ntfs_readpage(). 2511 */ 2512 nr_free -= bitmap_weight(kaddr, 2513 PAGE_CACHE_SIZE * BITS_PER_BYTE); 2514 kunmap_atomic(kaddr); 2515 page_cache_release(page); 2516 } 2517 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2518 /* 2519 * Fixup for eventual bits outside logical ntfs volume (see function 2520 * description above). 2521 */ 2522 if (vol->nr_clusters & 63) 2523 nr_free += 64 - (vol->nr_clusters & 63); 2524 up_read(&vol->lcnbmp_lock); 2525 /* If errors occurred we may well have gone below zero, fix this. */ 2526 if (nr_free < 0) 2527 nr_free = 0; 2528 ntfs_debug("Exiting."); 2529 return nr_free; 2530 } 2531 2532 /** 2533 * __get_nr_free_mft_records - return the number of free inodes on a volume 2534 * @vol: ntfs volume for which to obtain free inode count 2535 * @nr_free: number of mft records in filesystem 2536 * @max_index: maximum number of pages containing set bits 2537 * 2538 * Calculate the number of free mft records (inodes) on the mounted NTFS 2539 * volume @vol. We actually calculate the number of mft records in use instead 2540 * because this allows us to not care about partial pages as these will be just 2541 * zero filled and hence not be counted as allocated mft record. 2542 * 2543 * If any pages cannot be read we assume all mft records in the erroring pages 2544 * are in use. This means we return an underestimate on errors which is better 2545 * than an overestimate. 2546 * 2547 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2548 */ 2549 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2550 s64 nr_free, const pgoff_t max_index) 2551 { 2552 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2553 struct page *page; 2554 pgoff_t index; 2555 2556 ntfs_debug("Entering."); 2557 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2558 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2559 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4); 2560 for (index = 0; index < max_index; index++) { 2561 unsigned long *kaddr; 2562 2563 /* 2564 * Read the page from page cache, getting it from backing store 2565 * if necessary, and increment the use count. 2566 */ 2567 page = read_mapping_page(mapping, index, NULL); 2568 /* Ignore pages which errored synchronously. */ 2569 if (IS_ERR(page)) { 2570 ntfs_debug("read_mapping_page() error. Skipping " 2571 "page (index 0x%lx).", index); 2572 nr_free -= PAGE_CACHE_SIZE * 8; 2573 continue; 2574 } 2575 kaddr = kmap_atomic(page); 2576 /* 2577 * Subtract the number of set bits. If this 2578 * is the last page and it is partial we don't really care as 2579 * it just means we do a little extra work but it won't affect 2580 * the result as all out of range bytes are set to zero by 2581 * ntfs_readpage(). 2582 */ 2583 nr_free -= bitmap_weight(kaddr, 2584 PAGE_CACHE_SIZE * BITS_PER_BYTE); 2585 kunmap_atomic(kaddr); 2586 page_cache_release(page); 2587 } 2588 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2589 index - 1); 2590 /* If errors occurred we may well have gone below zero, fix this. */ 2591 if (nr_free < 0) 2592 nr_free = 0; 2593 ntfs_debug("Exiting."); 2594 return nr_free; 2595 } 2596 2597 /** 2598 * ntfs_statfs - return information about mounted NTFS volume 2599 * @dentry: dentry from mounted volume 2600 * @sfs: statfs structure in which to return the information 2601 * 2602 * Return information about the mounted NTFS volume @dentry in the statfs structure 2603 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2604 * called). We interpret the values to be correct of the moment in time at 2605 * which we are called. Most values are variable otherwise and this isn't just 2606 * the free values but the totals as well. For example we can increase the 2607 * total number of file nodes if we run out and we can keep doing this until 2608 * there is no more space on the volume left at all. 2609 * 2610 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2611 * ustat system calls. 2612 * 2613 * Return 0 on success or -errno on error. 2614 */ 2615 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2616 { 2617 struct super_block *sb = dentry->d_sb; 2618 s64 size; 2619 ntfs_volume *vol = NTFS_SB(sb); 2620 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2621 pgoff_t max_index; 2622 unsigned long flags; 2623 2624 ntfs_debug("Entering."); 2625 /* Type of filesystem. */ 2626 sfs->f_type = NTFS_SB_MAGIC; 2627 /* Optimal transfer block size. */ 2628 sfs->f_bsize = PAGE_CACHE_SIZE; 2629 /* 2630 * Total data blocks in filesystem in units of f_bsize and since 2631 * inodes are also stored in data blocs ($MFT is a file) this is just 2632 * the total clusters. 2633 */ 2634 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2635 PAGE_CACHE_SHIFT; 2636 /* Free data blocks in filesystem in units of f_bsize. */ 2637 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2638 PAGE_CACHE_SHIFT; 2639 if (size < 0LL) 2640 size = 0LL; 2641 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2642 sfs->f_bavail = sfs->f_bfree = size; 2643 /* Serialize accesses to the inode bitmap. */ 2644 down_read(&vol->mftbmp_lock); 2645 read_lock_irqsave(&mft_ni->size_lock, flags); 2646 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2647 /* 2648 * Convert the maximum number of set bits into bytes rounded up, then 2649 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we 2650 * have one full and one partial page max_index = 2. 2651 */ 2652 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2653 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2654 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2655 /* Number of inodes in filesystem (at this point in time). */ 2656 sfs->f_files = size; 2657 /* Free inodes in fs (based on current total count). */ 2658 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2659 up_read(&vol->mftbmp_lock); 2660 /* 2661 * File system id. This is extremely *nix flavour dependent and even 2662 * within Linux itself all fs do their own thing. I interpret this to 2663 * mean a unique id associated with the mounted fs and not the id 2664 * associated with the filesystem driver, the latter is already given 2665 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2666 * volume serial number splitting it into two 32-bit parts. We enter 2667 * the least significant 32-bits in f_fsid[0] and the most significant 2668 * 32-bits in f_fsid[1]. 2669 */ 2670 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff; 2671 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff; 2672 /* Maximum length of filenames. */ 2673 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2674 return 0; 2675 } 2676 2677 #ifdef NTFS_RW 2678 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) 2679 { 2680 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); 2681 } 2682 #endif 2683 2684 /** 2685 * The complete super operations. 2686 */ 2687 static const struct super_operations ntfs_sops = { 2688 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2689 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */ 2690 #ifdef NTFS_RW 2691 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2692 disk. */ 2693 #endif /* NTFS_RW */ 2694 .put_super = ntfs_put_super, /* Syscall: umount. */ 2695 .statfs = ntfs_statfs, /* Syscall: statfs */ 2696 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2697 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is 2698 removed from memory. */ 2699 .show_options = ntfs_show_options, /* Show mount options in 2700 proc. */ 2701 }; 2702 2703 /** 2704 * ntfs_fill_super - mount an ntfs filesystem 2705 * @sb: super block of ntfs filesystem to mount 2706 * @opt: string containing the mount options 2707 * @silent: silence error output 2708 * 2709 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2710 * with the mount otions in @data with the NTFS filesystem. 2711 * 2712 * If @silent is true, remain silent even if errors are detected. This is used 2713 * during bootup, when the kernel tries to mount the root filesystem with all 2714 * registered filesystems one after the other until one succeeds. This implies 2715 * that all filesystems except the correct one will quite correctly and 2716 * expectedly return an error, but nobody wants to see error messages when in 2717 * fact this is what is supposed to happen. 2718 * 2719 * NOTE: @sb->s_flags contains the mount options flags. 2720 */ 2721 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2722 { 2723 ntfs_volume *vol; 2724 struct buffer_head *bh; 2725 struct inode *tmp_ino; 2726 int blocksize, result; 2727 2728 /* 2729 * We do a pretty difficult piece of bootstrap by reading the 2730 * MFT (and other metadata) from disk into memory. We'll only 2731 * release this metadata during umount, so the locking patterns 2732 * observed during bootstrap do not count. So turn off the 2733 * observation of locking patterns (strictly for this context 2734 * only) while mounting NTFS. [The validator is still active 2735 * otherwise, even for this context: it will for example record 2736 * lock class registrations.] 2737 */ 2738 lockdep_off(); 2739 ntfs_debug("Entering."); 2740 #ifndef NTFS_RW 2741 sb->s_flags |= MS_RDONLY; 2742 #endif /* ! NTFS_RW */ 2743 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2744 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2745 vol = NTFS_SB(sb); 2746 if (!vol) { 2747 if (!silent) 2748 ntfs_error(sb, "Allocation of NTFS volume structure " 2749 "failed. Aborting mount..."); 2750 lockdep_on(); 2751 return -ENOMEM; 2752 } 2753 /* Initialize ntfs_volume structure. */ 2754 *vol = (ntfs_volume) { 2755 .sb = sb, 2756 /* 2757 * Default is group and other don't have any access to files or 2758 * directories while owner has full access. Further, files by 2759 * default are not executable but directories are of course 2760 * browseable. 2761 */ 2762 .fmask = 0177, 2763 .dmask = 0077, 2764 }; 2765 init_rwsem(&vol->mftbmp_lock); 2766 init_rwsem(&vol->lcnbmp_lock); 2767 2768 /* By default, enable sparse support. */ 2769 NVolSetSparseEnabled(vol); 2770 2771 /* Important to get the mount options dealt with now. */ 2772 if (!parse_options(vol, (char*)opt)) 2773 goto err_out_now; 2774 2775 /* We support sector sizes up to the PAGE_CACHE_SIZE. */ 2776 if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) { 2777 if (!silent) 2778 ntfs_error(sb, "Device has unsupported sector size " 2779 "(%i). The maximum supported sector " 2780 "size on this architecture is %lu " 2781 "bytes.", 2782 bdev_logical_block_size(sb->s_bdev), 2783 PAGE_CACHE_SIZE); 2784 goto err_out_now; 2785 } 2786 /* 2787 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2788 * sector size, whichever is bigger. 2789 */ 2790 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2791 if (blocksize < NTFS_BLOCK_SIZE) { 2792 if (!silent) 2793 ntfs_error(sb, "Unable to set device block size."); 2794 goto err_out_now; 2795 } 2796 BUG_ON(blocksize != sb->s_blocksize); 2797 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2798 blocksize, sb->s_blocksize_bits); 2799 /* Determine the size of the device in units of block_size bytes. */ 2800 if (!i_size_read(sb->s_bdev->bd_inode)) { 2801 if (!silent) 2802 ntfs_error(sb, "Unable to determine device size."); 2803 goto err_out_now; 2804 } 2805 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2806 sb->s_blocksize_bits; 2807 /* Read the boot sector and return unlocked buffer head to it. */ 2808 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2809 if (!silent) 2810 ntfs_error(sb, "Not an NTFS volume."); 2811 goto err_out_now; 2812 } 2813 /* 2814 * Extract the data from the boot sector and setup the ntfs volume 2815 * using it. 2816 */ 2817 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2818 brelse(bh); 2819 if (!result) { 2820 if (!silent) 2821 ntfs_error(sb, "Unsupported NTFS filesystem."); 2822 goto err_out_now; 2823 } 2824 /* 2825 * If the boot sector indicates a sector size bigger than the current 2826 * device block size, switch the device block size to the sector size. 2827 * TODO: It may be possible to support this case even when the set 2828 * below fails, we would just be breaking up the i/o for each sector 2829 * into multiple blocks for i/o purposes but otherwise it should just 2830 * work. However it is safer to leave disabled until someone hits this 2831 * error message and then we can get them to try it without the setting 2832 * so we know for sure that it works. 2833 */ 2834 if (vol->sector_size > blocksize) { 2835 blocksize = sb_set_blocksize(sb, vol->sector_size); 2836 if (blocksize != vol->sector_size) { 2837 if (!silent) 2838 ntfs_error(sb, "Unable to set device block " 2839 "size to sector size (%i).", 2840 vol->sector_size); 2841 goto err_out_now; 2842 } 2843 BUG_ON(blocksize != sb->s_blocksize); 2844 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2845 sb->s_blocksize_bits; 2846 ntfs_debug("Changed device block size to %i bytes (block size " 2847 "bits %i) to match volume sector size.", 2848 blocksize, sb->s_blocksize_bits); 2849 } 2850 /* Initialize the cluster and mft allocators. */ 2851 ntfs_setup_allocators(vol); 2852 /* Setup remaining fields in the super block. */ 2853 sb->s_magic = NTFS_SB_MAGIC; 2854 /* 2855 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2856 * sb->s_maxbytes = ~0ULL >> 1; 2857 * But the kernel uses a long as the page cache page index which on 2858 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2859 * defined to the maximum the page cache page index can cope with 2860 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2861 */ 2862 sb->s_maxbytes = MAX_LFS_FILESIZE; 2863 /* Ntfs measures time in 100ns intervals. */ 2864 sb->s_time_gran = 100; 2865 /* 2866 * Now load the metadata required for the page cache and our address 2867 * space operations to function. We do this by setting up a specialised 2868 * read_inode method and then just calling the normal iget() to obtain 2869 * the inode for $MFT which is sufficient to allow our normal inode 2870 * operations and associated address space operations to function. 2871 */ 2872 sb->s_op = &ntfs_sops; 2873 tmp_ino = new_inode(sb); 2874 if (!tmp_ino) { 2875 if (!silent) 2876 ntfs_error(sb, "Failed to load essential metadata."); 2877 goto err_out_now; 2878 } 2879 tmp_ino->i_ino = FILE_MFT; 2880 insert_inode_hash(tmp_ino); 2881 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2882 if (!silent) 2883 ntfs_error(sb, "Failed to load essential metadata."); 2884 goto iput_tmp_ino_err_out_now; 2885 } 2886 mutex_lock(&ntfs_lock); 2887 /* 2888 * The current mount is a compression user if the cluster size is 2889 * less than or equal 4kiB. 2890 */ 2891 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2892 result = allocate_compression_buffers(); 2893 if (result) { 2894 ntfs_error(NULL, "Failed to allocate buffers " 2895 "for compression engine."); 2896 ntfs_nr_compression_users--; 2897 mutex_unlock(&ntfs_lock); 2898 goto iput_tmp_ino_err_out_now; 2899 } 2900 } 2901 /* 2902 * Generate the global default upcase table if necessary. Also 2903 * temporarily increment the number of upcase users to avoid race 2904 * conditions with concurrent (u)mounts. 2905 */ 2906 if (!default_upcase) 2907 default_upcase = generate_default_upcase(); 2908 ntfs_nr_upcase_users++; 2909 mutex_unlock(&ntfs_lock); 2910 /* 2911 * From now on, ignore @silent parameter. If we fail below this line, 2912 * it will be due to a corrupt fs or a system error, so we report it. 2913 */ 2914 /* 2915 * Open the system files with normal access functions and complete 2916 * setting up the ntfs super block. 2917 */ 2918 if (!load_system_files(vol)) { 2919 ntfs_error(sb, "Failed to load system files."); 2920 goto unl_upcase_iput_tmp_ino_err_out_now; 2921 } 2922 2923 /* We grab a reference, simulating an ntfs_iget(). */ 2924 ihold(vol->root_ino); 2925 if ((sb->s_root = d_make_root(vol->root_ino))) { 2926 ntfs_debug("Exiting, status successful."); 2927 /* Release the default upcase if it has no users. */ 2928 mutex_lock(&ntfs_lock); 2929 if (!--ntfs_nr_upcase_users && default_upcase) { 2930 ntfs_free(default_upcase); 2931 default_upcase = NULL; 2932 } 2933 mutex_unlock(&ntfs_lock); 2934 sb->s_export_op = &ntfs_export_ops; 2935 lockdep_on(); 2936 return 0; 2937 } 2938 ntfs_error(sb, "Failed to allocate root directory."); 2939 /* Clean up after the successful load_system_files() call from above. */ 2940 // TODO: Use ntfs_put_super() instead of repeating all this code... 2941 // FIXME: Should mark the volume clean as the error is most likely 2942 // -ENOMEM. 2943 iput(vol->vol_ino); 2944 vol->vol_ino = NULL; 2945 /* NTFS 3.0+ specific clean up. */ 2946 if (vol->major_ver >= 3) { 2947 #ifdef NTFS_RW 2948 if (vol->usnjrnl_j_ino) { 2949 iput(vol->usnjrnl_j_ino); 2950 vol->usnjrnl_j_ino = NULL; 2951 } 2952 if (vol->usnjrnl_max_ino) { 2953 iput(vol->usnjrnl_max_ino); 2954 vol->usnjrnl_max_ino = NULL; 2955 } 2956 if (vol->usnjrnl_ino) { 2957 iput(vol->usnjrnl_ino); 2958 vol->usnjrnl_ino = NULL; 2959 } 2960 if (vol->quota_q_ino) { 2961 iput(vol->quota_q_ino); 2962 vol->quota_q_ino = NULL; 2963 } 2964 if (vol->quota_ino) { 2965 iput(vol->quota_ino); 2966 vol->quota_ino = NULL; 2967 } 2968 #endif /* NTFS_RW */ 2969 if (vol->extend_ino) { 2970 iput(vol->extend_ino); 2971 vol->extend_ino = NULL; 2972 } 2973 if (vol->secure_ino) { 2974 iput(vol->secure_ino); 2975 vol->secure_ino = NULL; 2976 } 2977 } 2978 iput(vol->root_ino); 2979 vol->root_ino = NULL; 2980 iput(vol->lcnbmp_ino); 2981 vol->lcnbmp_ino = NULL; 2982 iput(vol->mftbmp_ino); 2983 vol->mftbmp_ino = NULL; 2984 #ifdef NTFS_RW 2985 if (vol->logfile_ino) { 2986 iput(vol->logfile_ino); 2987 vol->logfile_ino = NULL; 2988 } 2989 if (vol->mftmirr_ino) { 2990 iput(vol->mftmirr_ino); 2991 vol->mftmirr_ino = NULL; 2992 } 2993 #endif /* NTFS_RW */ 2994 /* Throw away the table of attribute definitions. */ 2995 vol->attrdef_size = 0; 2996 if (vol->attrdef) { 2997 ntfs_free(vol->attrdef); 2998 vol->attrdef = NULL; 2999 } 3000 vol->upcase_len = 0; 3001 mutex_lock(&ntfs_lock); 3002 if (vol->upcase == default_upcase) { 3003 ntfs_nr_upcase_users--; 3004 vol->upcase = NULL; 3005 } 3006 mutex_unlock(&ntfs_lock); 3007 if (vol->upcase) { 3008 ntfs_free(vol->upcase); 3009 vol->upcase = NULL; 3010 } 3011 if (vol->nls_map) { 3012 unload_nls(vol->nls_map); 3013 vol->nls_map = NULL; 3014 } 3015 /* Error exit code path. */ 3016 unl_upcase_iput_tmp_ino_err_out_now: 3017 /* 3018 * Decrease the number of upcase users and destroy the global default 3019 * upcase table if necessary. 3020 */ 3021 mutex_lock(&ntfs_lock); 3022 if (!--ntfs_nr_upcase_users && default_upcase) { 3023 ntfs_free(default_upcase); 3024 default_upcase = NULL; 3025 } 3026 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3027 free_compression_buffers(); 3028 mutex_unlock(&ntfs_lock); 3029 iput_tmp_ino_err_out_now: 3030 iput(tmp_ino); 3031 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3032 iput(vol->mft_ino); 3033 vol->mft_ino = NULL; 3034 /* Errors at this stage are irrelevant. */ 3035 err_out_now: 3036 sb->s_fs_info = NULL; 3037 kfree(vol); 3038 ntfs_debug("Failed, returning -EINVAL."); 3039 lockdep_on(); 3040 return -EINVAL; 3041 } 3042 3043 /* 3044 * This is a slab cache to optimize allocations and deallocations of Unicode 3045 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3046 * (255) Unicode characters + a terminating NULL Unicode character. 3047 */ 3048 struct kmem_cache *ntfs_name_cache; 3049 3050 /* Slab caches for efficient allocation/deallocation of inodes. */ 3051 struct kmem_cache *ntfs_inode_cache; 3052 struct kmem_cache *ntfs_big_inode_cache; 3053 3054 /* Init once constructor for the inode slab cache. */ 3055 static void ntfs_big_inode_init_once(void *foo) 3056 { 3057 ntfs_inode *ni = (ntfs_inode *)foo; 3058 3059 inode_init_once(VFS_I(ni)); 3060 } 3061 3062 /* 3063 * Slab caches to optimize allocations and deallocations of attribute search 3064 * contexts and index contexts, respectively. 3065 */ 3066 struct kmem_cache *ntfs_attr_ctx_cache; 3067 struct kmem_cache *ntfs_index_ctx_cache; 3068 3069 /* Driver wide mutex. */ 3070 DEFINE_MUTEX(ntfs_lock); 3071 3072 static struct dentry *ntfs_mount(struct file_system_type *fs_type, 3073 int flags, const char *dev_name, void *data) 3074 { 3075 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3076 } 3077 3078 static struct file_system_type ntfs_fs_type = { 3079 .owner = THIS_MODULE, 3080 .name = "ntfs", 3081 .mount = ntfs_mount, 3082 .kill_sb = kill_block_super, 3083 .fs_flags = FS_REQUIRES_DEV, 3084 }; 3085 MODULE_ALIAS_FS("ntfs"); 3086 3087 /* Stable names for the slab caches. */ 3088 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3089 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3090 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3091 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3092 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3093 3094 static int __init init_ntfs_fs(void) 3095 { 3096 int err = 0; 3097 3098 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3099 pr_info("driver " NTFS_VERSION " [Flags: R/" 3100 #ifdef NTFS_RW 3101 "W" 3102 #else 3103 "O" 3104 #endif 3105 #ifdef DEBUG 3106 " DEBUG" 3107 #endif 3108 #ifdef MODULE 3109 " MODULE" 3110 #endif 3111 "].\n"); 3112 3113 ntfs_debug("Debug messages are enabled."); 3114 3115 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3116 sizeof(ntfs_index_context), 0 /* offset */, 3117 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3118 if (!ntfs_index_ctx_cache) { 3119 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name); 3120 goto ictx_err_out; 3121 } 3122 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3123 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3124 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3125 if (!ntfs_attr_ctx_cache) { 3126 pr_crit("NTFS: Failed to create %s!\n", 3127 ntfs_attr_ctx_cache_name); 3128 goto actx_err_out; 3129 } 3130 3131 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3132 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3133 SLAB_HWCACHE_ALIGN, NULL); 3134 if (!ntfs_name_cache) { 3135 pr_crit("Failed to create %s!\n", ntfs_name_cache_name); 3136 goto name_err_out; 3137 } 3138 3139 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3140 sizeof(ntfs_inode), 0, 3141 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3142 if (!ntfs_inode_cache) { 3143 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name); 3144 goto inode_err_out; 3145 } 3146 3147 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3148 sizeof(big_ntfs_inode), 0, 3149 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, 3150 ntfs_big_inode_init_once); 3151 if (!ntfs_big_inode_cache) { 3152 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name); 3153 goto big_inode_err_out; 3154 } 3155 3156 /* Register the ntfs sysctls. */ 3157 err = ntfs_sysctl(1); 3158 if (err) { 3159 pr_crit("Failed to register NTFS sysctls!\n"); 3160 goto sysctl_err_out; 3161 } 3162 3163 err = register_filesystem(&ntfs_fs_type); 3164 if (!err) { 3165 ntfs_debug("NTFS driver registered successfully."); 3166 return 0; /* Success! */ 3167 } 3168 pr_crit("Failed to register NTFS filesystem driver!\n"); 3169 3170 /* Unregister the ntfs sysctls. */ 3171 ntfs_sysctl(0); 3172 sysctl_err_out: 3173 kmem_cache_destroy(ntfs_big_inode_cache); 3174 big_inode_err_out: 3175 kmem_cache_destroy(ntfs_inode_cache); 3176 inode_err_out: 3177 kmem_cache_destroy(ntfs_name_cache); 3178 name_err_out: 3179 kmem_cache_destroy(ntfs_attr_ctx_cache); 3180 actx_err_out: 3181 kmem_cache_destroy(ntfs_index_ctx_cache); 3182 ictx_err_out: 3183 if (!err) { 3184 pr_crit("Aborting NTFS filesystem driver registration...\n"); 3185 err = -ENOMEM; 3186 } 3187 return err; 3188 } 3189 3190 static void __exit exit_ntfs_fs(void) 3191 { 3192 ntfs_debug("Unregistering NTFS driver."); 3193 3194 unregister_filesystem(&ntfs_fs_type); 3195 3196 /* 3197 * Make sure all delayed rcu free inodes are flushed before we 3198 * destroy cache. 3199 */ 3200 rcu_barrier(); 3201 kmem_cache_destroy(ntfs_big_inode_cache); 3202 kmem_cache_destroy(ntfs_inode_cache); 3203 kmem_cache_destroy(ntfs_name_cache); 3204 kmem_cache_destroy(ntfs_attr_ctx_cache); 3205 kmem_cache_destroy(ntfs_index_ctx_cache); 3206 /* Unregister the ntfs sysctls. */ 3207 ntfs_sysctl(0); 3208 } 3209 3210 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); 3211 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc."); 3212 MODULE_VERSION(NTFS_VERSION); 3213 MODULE_LICENSE("GPL"); 3214 #ifdef DEBUG 3215 module_param(debug_msgs, bint, 0); 3216 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3217 #endif 3218 3219 module_init(init_ntfs_fs) 3220 module_exit(exit_ntfs_fs) 3221