1 /* 2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2005 Anton Altaparmakov 5 * Copyright (c) 2001,2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/stddef.h> 24 #include <linux/init.h> 25 #include <linux/string.h> 26 #include <linux/spinlock.h> 27 #include <linux/blkdev.h> /* For bdev_hardsect_size(). */ 28 #include <linux/backing-dev.h> 29 #include <linux/buffer_head.h> 30 #include <linux/vfs.h> 31 #include <linux/moduleparam.h> 32 #include <linux/smp_lock.h> 33 34 #include "sysctl.h" 35 #include "logfile.h" 36 #include "quota.h" 37 #include "usnjrnl.h" 38 #include "dir.h" 39 #include "debug.h" 40 #include "index.h" 41 #include "aops.h" 42 #include "layout.h" 43 #include "malloc.h" 44 #include "ntfs.h" 45 46 /* Number of mounted filesystems which have compression enabled. */ 47 static unsigned long ntfs_nr_compression_users; 48 49 /* A global default upcase table and a corresponding reference count. */ 50 static ntfschar *default_upcase = NULL; 51 static unsigned long ntfs_nr_upcase_users = 0; 52 53 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 54 typedef enum { 55 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 56 ON_ERRORS_PANIC = 0x01, 57 ON_ERRORS_REMOUNT_RO = 0x02, 58 ON_ERRORS_CONTINUE = 0x04, 59 /* Optional, can be combined with any of the above. */ 60 ON_ERRORS_RECOVER = 0x10, 61 } ON_ERRORS_ACTIONS; 62 63 const option_t on_errors_arr[] = { 64 { ON_ERRORS_PANIC, "panic" }, 65 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 66 { ON_ERRORS_CONTINUE, "continue", }, 67 { ON_ERRORS_RECOVER, "recover" }, 68 { 0, NULL } 69 }; 70 71 /** 72 * simple_getbool - 73 * 74 * Copied from old ntfs driver (which copied from vfat driver). 75 */ 76 static int simple_getbool(char *s, BOOL *setval) 77 { 78 if (s) { 79 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 80 *setval = TRUE; 81 else if (!strcmp(s, "0") || !strcmp(s, "no") || 82 !strcmp(s, "false")) 83 *setval = FALSE; 84 else 85 return 0; 86 } else 87 *setval = TRUE; 88 return 1; 89 } 90 91 /** 92 * parse_options - parse the (re)mount options 93 * @vol: ntfs volume 94 * @opt: string containing the (re)mount options 95 * 96 * Parse the recognized options in @opt for the ntfs volume described by @vol. 97 */ 98 static BOOL parse_options(ntfs_volume *vol, char *opt) 99 { 100 char *p, *v, *ov; 101 static char *utf8 = "utf8"; 102 int errors = 0, sloppy = 0; 103 uid_t uid = (uid_t)-1; 104 gid_t gid = (gid_t)-1; 105 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1; 106 int mft_zone_multiplier = -1, on_errors = -1; 107 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 108 struct nls_table *nls_map = NULL, *old_nls; 109 110 /* I am lazy... (-8 */ 111 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 112 if (!strcmp(p, option)) { \ 113 if (!v || !*v) \ 114 variable = default_value; \ 115 else { \ 116 variable = simple_strtoul(ov = v, &v, 0); \ 117 if (*v) \ 118 goto needs_val; \ 119 } \ 120 } 121 #define NTFS_GETOPT(option, variable) \ 122 if (!strcmp(p, option)) { \ 123 if (!v || !*v) \ 124 goto needs_arg; \ 125 variable = simple_strtoul(ov = v, &v, 0); \ 126 if (*v) \ 127 goto needs_val; \ 128 } 129 #define NTFS_GETOPT_OCTAL(option, variable) \ 130 if (!strcmp(p, option)) { \ 131 if (!v || !*v) \ 132 goto needs_arg; \ 133 variable = simple_strtoul(ov = v, &v, 8); \ 134 if (*v) \ 135 goto needs_val; \ 136 } 137 #define NTFS_GETOPT_BOOL(option, variable) \ 138 if (!strcmp(p, option)) { \ 139 BOOL val; \ 140 if (!simple_getbool(v, &val)) \ 141 goto needs_bool; \ 142 variable = val; \ 143 } 144 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 145 if (!strcmp(p, option)) { \ 146 int _i; \ 147 if (!v || !*v) \ 148 goto needs_arg; \ 149 ov = v; \ 150 if (variable == -1) \ 151 variable = 0; \ 152 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 153 if (!strcmp(opt_array[_i].str, v)) { \ 154 variable |= opt_array[_i].val; \ 155 break; \ 156 } \ 157 if (!opt_array[_i].str || !*opt_array[_i].str) \ 158 goto needs_val; \ 159 } 160 if (!opt || !*opt) 161 goto no_mount_options; 162 ntfs_debug("Entering with mount options string: %s", opt); 163 while ((p = strsep(&opt, ","))) { 164 if ((v = strchr(p, '='))) 165 *v++ = 0; 166 NTFS_GETOPT("uid", uid) 167 else NTFS_GETOPT("gid", gid) 168 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 169 else NTFS_GETOPT_OCTAL("fmask", fmask) 170 else NTFS_GETOPT_OCTAL("dmask", dmask) 171 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 172 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, TRUE) 173 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 174 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 175 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 176 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 177 on_errors_arr) 178 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 179 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 180 p); 181 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 182 if (!strcmp(p, "iocharset")) 183 ntfs_warning(vol->sb, "Option iocharset is " 184 "deprecated. Please use " 185 "option nls=<charsetname> in " 186 "the future."); 187 if (!v || !*v) 188 goto needs_arg; 189 use_utf8: 190 old_nls = nls_map; 191 nls_map = load_nls(v); 192 if (!nls_map) { 193 if (!old_nls) { 194 ntfs_error(vol->sb, "NLS character set " 195 "%s not found.", v); 196 return FALSE; 197 } 198 ntfs_error(vol->sb, "NLS character set %s not " 199 "found. Using previous one %s.", 200 v, old_nls->charset); 201 nls_map = old_nls; 202 } else /* nls_map */ { 203 if (old_nls) 204 unload_nls(old_nls); 205 } 206 } else if (!strcmp(p, "utf8")) { 207 BOOL val = FALSE; 208 ntfs_warning(vol->sb, "Option utf8 is no longer " 209 "supported, using option nls=utf8. Please " 210 "use option nls=utf8 in the future and " 211 "make sure utf8 is compiled either as a " 212 "module or into the kernel."); 213 if (!v || !*v) 214 val = TRUE; 215 else if (!simple_getbool(v, &val)) 216 goto needs_bool; 217 if (val) { 218 v = utf8; 219 goto use_utf8; 220 } 221 } else { 222 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 223 if (errors < INT_MAX) 224 errors++; 225 } 226 #undef NTFS_GETOPT_OPTIONS_ARRAY 227 #undef NTFS_GETOPT_BOOL 228 #undef NTFS_GETOPT 229 #undef NTFS_GETOPT_WITH_DEFAULT 230 } 231 no_mount_options: 232 if (errors && !sloppy) 233 return FALSE; 234 if (sloppy) 235 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 236 "unrecognized mount option(s) and continuing."); 237 /* Keep this first! */ 238 if (on_errors != -1) { 239 if (!on_errors) { 240 ntfs_error(vol->sb, "Invalid errors option argument " 241 "or bug in options parser."); 242 return FALSE; 243 } 244 } 245 if (nls_map) { 246 if (vol->nls_map && vol->nls_map != nls_map) { 247 ntfs_error(vol->sb, "Cannot change NLS character set " 248 "on remount."); 249 return FALSE; 250 } /* else (!vol->nls_map) */ 251 ntfs_debug("Using NLS character set %s.", nls_map->charset); 252 vol->nls_map = nls_map; 253 } else /* (!nls_map) */ { 254 if (!vol->nls_map) { 255 vol->nls_map = load_nls_default(); 256 if (!vol->nls_map) { 257 ntfs_error(vol->sb, "Failed to load default " 258 "NLS character set."); 259 return FALSE; 260 } 261 ntfs_debug("Using default NLS character set (%s).", 262 vol->nls_map->charset); 263 } 264 } 265 if (mft_zone_multiplier != -1) { 266 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 267 mft_zone_multiplier) { 268 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 269 "on remount."); 270 return FALSE; 271 } 272 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 273 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 274 "Using default value, i.e. 1."); 275 mft_zone_multiplier = 1; 276 } 277 vol->mft_zone_multiplier = mft_zone_multiplier; 278 } 279 if (!vol->mft_zone_multiplier) 280 vol->mft_zone_multiplier = 1; 281 if (on_errors != -1) 282 vol->on_errors = on_errors; 283 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 284 vol->on_errors |= ON_ERRORS_CONTINUE; 285 if (uid != (uid_t)-1) 286 vol->uid = uid; 287 if (gid != (gid_t)-1) 288 vol->gid = gid; 289 if (fmask != (mode_t)-1) 290 vol->fmask = fmask; 291 if (dmask != (mode_t)-1) 292 vol->dmask = dmask; 293 if (show_sys_files != -1) { 294 if (show_sys_files) 295 NVolSetShowSystemFiles(vol); 296 else 297 NVolClearShowSystemFiles(vol); 298 } 299 if (case_sensitive != -1) { 300 if (case_sensitive) 301 NVolSetCaseSensitive(vol); 302 else 303 NVolClearCaseSensitive(vol); 304 } 305 if (disable_sparse != -1) { 306 if (disable_sparse) 307 NVolClearSparseEnabled(vol); 308 else { 309 if (!NVolSparseEnabled(vol) && 310 vol->major_ver && vol->major_ver < 3) 311 ntfs_warning(vol->sb, "Not enabling sparse " 312 "support due to NTFS volume " 313 "version %i.%i (need at least " 314 "version 3.0).", vol->major_ver, 315 vol->minor_ver); 316 else 317 NVolSetSparseEnabled(vol); 318 } 319 } 320 return TRUE; 321 needs_arg: 322 ntfs_error(vol->sb, "The %s option requires an argument.", p); 323 return FALSE; 324 needs_bool: 325 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 326 return FALSE; 327 needs_val: 328 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 329 return FALSE; 330 } 331 332 #ifdef NTFS_RW 333 334 /** 335 * ntfs_write_volume_flags - write new flags to the volume information flags 336 * @vol: ntfs volume on which to modify the flags 337 * @flags: new flags value for the volume information flags 338 * 339 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 340 * instead (see below). 341 * 342 * Replace the volume information flags on the volume @vol with the value 343 * supplied in @flags. Note, this overwrites the volume information flags, so 344 * make sure to combine the flags you want to modify with the old flags and use 345 * the result when calling ntfs_write_volume_flags(). 346 * 347 * Return 0 on success and -errno on error. 348 */ 349 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 350 { 351 ntfs_inode *ni = NTFS_I(vol->vol_ino); 352 MFT_RECORD *m; 353 VOLUME_INFORMATION *vi; 354 ntfs_attr_search_ctx *ctx; 355 int err; 356 357 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 358 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 359 if (vol->vol_flags == flags) 360 goto done; 361 BUG_ON(!ni); 362 m = map_mft_record(ni); 363 if (IS_ERR(m)) { 364 err = PTR_ERR(m); 365 goto err_out; 366 } 367 ctx = ntfs_attr_get_search_ctx(ni, m); 368 if (!ctx) { 369 err = -ENOMEM; 370 goto put_unm_err_out; 371 } 372 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 373 ctx); 374 if (err) 375 goto put_unm_err_out; 376 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 377 le16_to_cpu(ctx->attr->data.resident.value_offset)); 378 vol->vol_flags = vi->flags = flags; 379 flush_dcache_mft_record_page(ctx->ntfs_ino); 380 mark_mft_record_dirty(ctx->ntfs_ino); 381 ntfs_attr_put_search_ctx(ctx); 382 unmap_mft_record(ni); 383 done: 384 ntfs_debug("Done."); 385 return 0; 386 put_unm_err_out: 387 if (ctx) 388 ntfs_attr_put_search_ctx(ctx); 389 unmap_mft_record(ni); 390 err_out: 391 ntfs_error(vol->sb, "Failed with error code %i.", -err); 392 return err; 393 } 394 395 /** 396 * ntfs_set_volume_flags - set bits in the volume information flags 397 * @vol: ntfs volume on which to modify the flags 398 * @flags: flags to set on the volume 399 * 400 * Set the bits in @flags in the volume information flags on the volume @vol. 401 * 402 * Return 0 on success and -errno on error. 403 */ 404 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 405 { 406 flags &= VOLUME_FLAGS_MASK; 407 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 408 } 409 410 /** 411 * ntfs_clear_volume_flags - clear bits in the volume information flags 412 * @vol: ntfs volume on which to modify the flags 413 * @flags: flags to clear on the volume 414 * 415 * Clear the bits in @flags in the volume information flags on the volume @vol. 416 * 417 * Return 0 on success and -errno on error. 418 */ 419 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 420 { 421 flags &= VOLUME_FLAGS_MASK; 422 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 423 return ntfs_write_volume_flags(vol, flags); 424 } 425 426 #endif /* NTFS_RW */ 427 428 /** 429 * ntfs_remount - change the mount options of a mounted ntfs filesystem 430 * @sb: superblock of mounted ntfs filesystem 431 * @flags: remount flags 432 * @opt: remount options string 433 * 434 * Change the mount options of an already mounted ntfs filesystem. 435 * 436 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 437 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 438 * @sb->s_flags are not changed. 439 */ 440 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 441 { 442 ntfs_volume *vol = NTFS_SB(sb); 443 444 ntfs_debug("Entering with remount options string: %s", opt); 445 #ifndef NTFS_RW 446 /* For read-only compiled driver, enforce read-only flag. */ 447 *flags |= MS_RDONLY; 448 #else /* NTFS_RW */ 449 /* 450 * For the read-write compiled driver, if we are remounting read-write, 451 * make sure there are no volume errors and that no unsupported volume 452 * flags are set. Also, empty the logfile journal as it would become 453 * stale as soon as something is written to the volume and mark the 454 * volume dirty so that chkdsk is run if the volume is not umounted 455 * cleanly. Finally, mark the quotas out of date so Windows rescans 456 * the volume on boot and updates them. 457 * 458 * When remounting read-only, mark the volume clean if no volume errors 459 * have occured. 460 */ 461 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 462 static const char *es = ". Cannot remount read-write."; 463 464 /* Remounting read-write. */ 465 if (NVolErrors(vol)) { 466 ntfs_error(sb, "Volume has errors and is read-only%s", 467 es); 468 return -EROFS; 469 } 470 if (vol->vol_flags & VOLUME_IS_DIRTY) { 471 ntfs_error(sb, "Volume is dirty and read-only%s", es); 472 return -EROFS; 473 } 474 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 475 ntfs_error(sb, "Volume has unsupported flags set and " 476 "is read-only%s", es); 477 return -EROFS; 478 } 479 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 480 ntfs_error(sb, "Failed to set dirty bit in volume " 481 "information flags%s", es); 482 return -EROFS; 483 } 484 #if 0 485 // TODO: Enable this code once we start modifying anything that 486 // is different between NTFS 1.2 and 3.x... 487 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 488 if ((vol->major_ver > 1)) { 489 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 490 ntfs_error(sb, "Failed to set NT4 " 491 "compatibility flag%s", es); 492 NVolSetErrors(vol); 493 return -EROFS; 494 } 495 } 496 #endif 497 if (!ntfs_empty_logfile(vol->logfile_ino)) { 498 ntfs_error(sb, "Failed to empty journal $LogFile%s", 499 es); 500 NVolSetErrors(vol); 501 return -EROFS; 502 } 503 if (!ntfs_mark_quotas_out_of_date(vol)) { 504 ntfs_error(sb, "Failed to mark quotas out of date%s", 505 es); 506 NVolSetErrors(vol); 507 return -EROFS; 508 } 509 if (!ntfs_stamp_usnjrnl(vol)) { 510 ntfs_error(sb, "Failed to stamp transation log " 511 "($UsnJrnl)%s", es); 512 NVolSetErrors(vol); 513 return -EROFS; 514 } 515 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 516 /* Remounting read-only. */ 517 if (!NVolErrors(vol)) { 518 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 519 ntfs_warning(sb, "Failed to clear dirty bit " 520 "in volume information " 521 "flags. Run chkdsk."); 522 } 523 } 524 #endif /* NTFS_RW */ 525 526 // TODO: Deal with *flags. 527 528 if (!parse_options(vol, opt)) 529 return -EINVAL; 530 ntfs_debug("Done."); 531 return 0; 532 } 533 534 /** 535 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 536 * @sb: Super block of the device to which @b belongs. 537 * @b: Boot sector of device @sb to check. 538 * @silent: If TRUE, all output will be silenced. 539 * 540 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 541 * sector. Returns TRUE if it is valid and FALSE if not. 542 * 543 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 544 * is TRUE. 545 */ 546 static BOOL is_boot_sector_ntfs(const struct super_block *sb, 547 const NTFS_BOOT_SECTOR *b, const BOOL silent) 548 { 549 /* 550 * Check that checksum == sum of u32 values from b to the checksum 551 * field. If checksum is zero, no checking is done. We will work when 552 * the checksum test fails, since some utilities update the boot sector 553 * ignoring the checksum which leaves the checksum out-of-date. We 554 * report a warning if this is the case. 555 */ 556 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 557 le32 *u; 558 u32 i; 559 560 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 561 i += le32_to_cpup(u); 562 if (le32_to_cpu(b->checksum) != i) 563 ntfs_warning(sb, "Invalid boot sector checksum."); 564 } 565 /* Check OEMidentifier is "NTFS " */ 566 if (b->oem_id != magicNTFS) 567 goto not_ntfs; 568 /* Check bytes per sector value is between 256 and 4096. */ 569 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 570 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 571 goto not_ntfs; 572 /* Check sectors per cluster value is valid. */ 573 switch (b->bpb.sectors_per_cluster) { 574 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 575 break; 576 default: 577 goto not_ntfs; 578 } 579 /* Check the cluster size is not above the maximum (64kiB). */ 580 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 581 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 582 goto not_ntfs; 583 /* Check reserved/unused fields are really zero. */ 584 if (le16_to_cpu(b->bpb.reserved_sectors) || 585 le16_to_cpu(b->bpb.root_entries) || 586 le16_to_cpu(b->bpb.sectors) || 587 le16_to_cpu(b->bpb.sectors_per_fat) || 588 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 589 goto not_ntfs; 590 /* Check clusters per file mft record value is valid. */ 591 if ((u8)b->clusters_per_mft_record < 0xe1 || 592 (u8)b->clusters_per_mft_record > 0xf7) 593 switch (b->clusters_per_mft_record) { 594 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 595 break; 596 default: 597 goto not_ntfs; 598 } 599 /* Check clusters per index block value is valid. */ 600 if ((u8)b->clusters_per_index_record < 0xe1 || 601 (u8)b->clusters_per_index_record > 0xf7) 602 switch (b->clusters_per_index_record) { 603 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 604 break; 605 default: 606 goto not_ntfs; 607 } 608 /* 609 * Check for valid end of sector marker. We will work without it, but 610 * many BIOSes will refuse to boot from a bootsector if the magic is 611 * incorrect, so we emit a warning. 612 */ 613 if (!silent && b->end_of_sector_marker != const_cpu_to_le16(0xaa55)) 614 ntfs_warning(sb, "Invalid end of sector marker."); 615 return TRUE; 616 not_ntfs: 617 return FALSE; 618 } 619 620 /** 621 * read_ntfs_boot_sector - read the NTFS boot sector of a device 622 * @sb: super block of device to read the boot sector from 623 * @silent: if true, suppress all output 624 * 625 * Reads the boot sector from the device and validates it. If that fails, tries 626 * to read the backup boot sector, first from the end of the device a-la NT4 and 627 * later and then from the middle of the device a-la NT3.51 and before. 628 * 629 * If a valid boot sector is found but it is not the primary boot sector, we 630 * repair the primary boot sector silently (unless the device is read-only or 631 * the primary boot sector is not accessible). 632 * 633 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 634 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 635 * to their respective values. 636 * 637 * Return the unlocked buffer head containing the boot sector or NULL on error. 638 */ 639 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 640 const int silent) 641 { 642 const char *read_err_str = "Unable to read %s boot sector."; 643 struct buffer_head *bh_primary, *bh_backup; 644 long nr_blocks = NTFS_SB(sb)->nr_blocks; 645 646 /* Try to read primary boot sector. */ 647 if ((bh_primary = sb_bread(sb, 0))) { 648 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 649 bh_primary->b_data, silent)) 650 return bh_primary; 651 if (!silent) 652 ntfs_error(sb, "Primary boot sector is invalid."); 653 } else if (!silent) 654 ntfs_error(sb, read_err_str, "primary"); 655 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 656 if (bh_primary) 657 brelse(bh_primary); 658 if (!silent) 659 ntfs_error(sb, "Mount option errors=recover not used. " 660 "Aborting without trying to recover."); 661 return NULL; 662 } 663 /* Try to read NT4+ backup boot sector. */ 664 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 665 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 666 bh_backup->b_data, silent)) 667 goto hotfix_primary_boot_sector; 668 brelse(bh_backup); 669 } else if (!silent) 670 ntfs_error(sb, read_err_str, "backup"); 671 /* Try to read NT3.51- backup boot sector. */ 672 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 673 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 674 bh_backup->b_data, silent)) 675 goto hotfix_primary_boot_sector; 676 if (!silent) 677 ntfs_error(sb, "Could not find a valid backup boot " 678 "sector."); 679 brelse(bh_backup); 680 } else if (!silent) 681 ntfs_error(sb, read_err_str, "backup"); 682 /* We failed. Cleanup and return. */ 683 if (bh_primary) 684 brelse(bh_primary); 685 return NULL; 686 hotfix_primary_boot_sector: 687 if (bh_primary) { 688 /* 689 * If we managed to read sector zero and the volume is not 690 * read-only, copy the found, valid backup boot sector to the 691 * primary boot sector. 692 */ 693 if (!(sb->s_flags & MS_RDONLY)) { 694 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 695 "boot sector from backup copy."); 696 memcpy(bh_primary->b_data, bh_backup->b_data, 697 sb->s_blocksize); 698 mark_buffer_dirty(bh_primary); 699 sync_dirty_buffer(bh_primary); 700 if (buffer_uptodate(bh_primary)) { 701 brelse(bh_backup); 702 return bh_primary; 703 } 704 ntfs_error(sb, "Hot-fix: Device write error while " 705 "recovering primary boot sector."); 706 } else { 707 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 708 "sector failed: Read-only mount."); 709 } 710 brelse(bh_primary); 711 } 712 ntfs_warning(sb, "Using backup boot sector."); 713 return bh_backup; 714 } 715 716 /** 717 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 718 * @vol: volume structure to initialise with data from boot sector 719 * @b: boot sector to parse 720 * 721 * Parse the ntfs boot sector @b and store all imporant information therein in 722 * the ntfs super block @vol. Return TRUE on success and FALSE on error. 723 */ 724 static BOOL parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 725 { 726 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 727 int clusters_per_mft_record, clusters_per_index_record; 728 s64 ll; 729 730 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 731 vol->sector_size_bits = ffs(vol->sector_size) - 1; 732 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 733 vol->sector_size); 734 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 735 vol->sector_size_bits); 736 if (vol->sector_size != vol->sb->s_blocksize) 737 ntfs_warning(vol->sb, "The boot sector indicates a sector size " 738 "different from the device sector size."); 739 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 740 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 741 ntfs_debug("sectors_per_cluster_bits = 0x%x", 742 sectors_per_cluster_bits); 743 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 744 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 745 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 746 vol->cluster_size_mask = vol->cluster_size - 1; 747 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 748 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 749 vol->cluster_size); 750 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 751 ntfs_debug("vol->cluster_size_bits = %i (0x%x)", 752 vol->cluster_size_bits, vol->cluster_size_bits); 753 if (vol->sector_size > vol->cluster_size) { 754 ntfs_error(vol->sb, "Sector sizes above the cluster size are " 755 "not supported. Sorry."); 756 return FALSE; 757 } 758 if (vol->sb->s_blocksize > vol->cluster_size) { 759 ntfs_error(vol->sb, "Cluster sizes smaller than the device " 760 "sector size are not supported. Sorry."); 761 return FALSE; 762 } 763 clusters_per_mft_record = b->clusters_per_mft_record; 764 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 765 clusters_per_mft_record, clusters_per_mft_record); 766 if (clusters_per_mft_record > 0) 767 vol->mft_record_size = vol->cluster_size << 768 (ffs(clusters_per_mft_record) - 1); 769 else 770 /* 771 * When mft_record_size < cluster_size, clusters_per_mft_record 772 * = -log2(mft_record_size) bytes. mft_record_size normaly is 773 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 774 */ 775 vol->mft_record_size = 1 << -clusters_per_mft_record; 776 vol->mft_record_size_mask = vol->mft_record_size - 1; 777 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 778 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 779 vol->mft_record_size); 780 ntfs_debug("vol->mft_record_size_mask = 0x%x", 781 vol->mft_record_size_mask); 782 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 783 vol->mft_record_size_bits, vol->mft_record_size_bits); 784 /* 785 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since 786 * we store $MFT/$DATA, the table of mft records in the page cache. 787 */ 788 if (vol->mft_record_size > PAGE_CACHE_SIZE) { 789 ntfs_error(vol->sb, "Mft record size %i (0x%x) exceeds the " 790 "page cache size on your system %lu (0x%lx). " 791 "This is not supported. Sorry.", 792 vol->mft_record_size, vol->mft_record_size, 793 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE); 794 return FALSE; 795 } 796 clusters_per_index_record = b->clusters_per_index_record; 797 ntfs_debug("clusters_per_index_record = %i (0x%x)", 798 clusters_per_index_record, clusters_per_index_record); 799 if (clusters_per_index_record > 0) 800 vol->index_record_size = vol->cluster_size << 801 (ffs(clusters_per_index_record) - 1); 802 else 803 /* 804 * When index_record_size < cluster_size, 805 * clusters_per_index_record = -log2(index_record_size) bytes. 806 * index_record_size normaly equals 4096 bytes, which is 807 * encoded as 0xF4 (-12 in decimal). 808 */ 809 vol->index_record_size = 1 << -clusters_per_index_record; 810 vol->index_record_size_mask = vol->index_record_size - 1; 811 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 812 ntfs_debug("vol->index_record_size = %i (0x%x)", 813 vol->index_record_size, vol->index_record_size); 814 ntfs_debug("vol->index_record_size_mask = 0x%x", 815 vol->index_record_size_mask); 816 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 817 vol->index_record_size_bits, 818 vol->index_record_size_bits); 819 /* 820 * Get the size of the volume in clusters and check for 64-bit-ness. 821 * Windows currently only uses 32 bits to save the clusters so we do 822 * the same as it is much faster on 32-bit CPUs. 823 */ 824 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 825 if ((u64)ll >= 1ULL << 32) { 826 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 827 return FALSE; 828 } 829 vol->nr_clusters = ll; 830 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 831 /* 832 * On an architecture where unsigned long is 32-bits, we restrict the 833 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 834 * will hopefully optimize the whole check away. 835 */ 836 if (sizeof(unsigned long) < 8) { 837 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 838 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 839 "large for this architecture. " 840 "Maximum supported is 2TiB. Sorry.", 841 (unsigned long long)ll >> (40 - 842 vol->cluster_size_bits)); 843 return FALSE; 844 } 845 } 846 ll = sle64_to_cpu(b->mft_lcn); 847 if (ll >= vol->nr_clusters) { 848 ntfs_error(vol->sb, "MFT LCN is beyond end of volume. Weird."); 849 return FALSE; 850 } 851 vol->mft_lcn = ll; 852 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 853 ll = sle64_to_cpu(b->mftmirr_lcn); 854 if (ll >= vol->nr_clusters) { 855 ntfs_error(vol->sb, "MFTMirr LCN is beyond end of volume. " 856 "Weird."); 857 return FALSE; 858 } 859 vol->mftmirr_lcn = ll; 860 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 861 #ifdef NTFS_RW 862 /* 863 * Work out the size of the mft mirror in number of mft records. If the 864 * cluster size is less than or equal to the size taken by four mft 865 * records, the mft mirror stores the first four mft records. If the 866 * cluster size is bigger than the size taken by four mft records, the 867 * mft mirror contains as many mft records as will fit into one 868 * cluster. 869 */ 870 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 871 vol->mftmirr_size = 4; 872 else 873 vol->mftmirr_size = vol->cluster_size >> 874 vol->mft_record_size_bits; 875 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 876 #endif /* NTFS_RW */ 877 vol->serial_no = le64_to_cpu(b->volume_serial_number); 878 ntfs_debug("vol->serial_no = 0x%llx", 879 (unsigned long long)vol->serial_no); 880 return TRUE; 881 } 882 883 /** 884 * ntfs_setup_allocators - initialize the cluster and mft allocators 885 * @vol: volume structure for which to setup the allocators 886 * 887 * Setup the cluster (lcn) and mft allocators to the starting values. 888 */ 889 static void ntfs_setup_allocators(ntfs_volume *vol) 890 { 891 #ifdef NTFS_RW 892 LCN mft_zone_size, mft_lcn; 893 #endif /* NTFS_RW */ 894 895 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 896 vol->mft_zone_multiplier); 897 #ifdef NTFS_RW 898 /* Determine the size of the MFT zone. */ 899 mft_zone_size = vol->nr_clusters; 900 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 901 case 4: 902 mft_zone_size >>= 1; /* 50% */ 903 break; 904 case 3: 905 mft_zone_size = (mft_zone_size + 906 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 907 break; 908 case 2: 909 mft_zone_size >>= 2; /* 25% */ 910 break; 911 /* case 1: */ 912 default: 913 mft_zone_size >>= 3; /* 12.5% */ 914 break; 915 } 916 /* Setup the mft zone. */ 917 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 918 ntfs_debug("vol->mft_zone_pos = 0x%llx", 919 (unsigned long long)vol->mft_zone_pos); 920 /* 921 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 922 * source) and if the actual mft_lcn is in the expected place or even 923 * further to the front of the volume, extend the mft_zone to cover the 924 * beginning of the volume as well. This is in order to protect the 925 * area reserved for the mft bitmap as well within the mft_zone itself. 926 * On non-standard volumes we do not protect it as the overhead would 927 * be higher than the speed increase we would get by doing it. 928 */ 929 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 930 if (mft_lcn * vol->cluster_size < 16 * 1024) 931 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 932 vol->cluster_size; 933 if (vol->mft_zone_start <= mft_lcn) 934 vol->mft_zone_start = 0; 935 ntfs_debug("vol->mft_zone_start = 0x%llx", 936 (unsigned long long)vol->mft_zone_start); 937 /* 938 * Need to cap the mft zone on non-standard volumes so that it does 939 * not point outside the boundaries of the volume. We do this by 940 * halving the zone size until we are inside the volume. 941 */ 942 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 943 while (vol->mft_zone_end >= vol->nr_clusters) { 944 mft_zone_size >>= 1; 945 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 946 } 947 ntfs_debug("vol->mft_zone_end = 0x%llx", 948 (unsigned long long)vol->mft_zone_end); 949 /* 950 * Set the current position within each data zone to the start of the 951 * respective zone. 952 */ 953 vol->data1_zone_pos = vol->mft_zone_end; 954 ntfs_debug("vol->data1_zone_pos = 0x%llx", 955 (unsigned long long)vol->data1_zone_pos); 956 vol->data2_zone_pos = 0; 957 ntfs_debug("vol->data2_zone_pos = 0x%llx", 958 (unsigned long long)vol->data2_zone_pos); 959 960 /* Set the mft data allocation position to mft record 24. */ 961 vol->mft_data_pos = 24; 962 ntfs_debug("vol->mft_data_pos = 0x%llx", 963 (unsigned long long)vol->mft_data_pos); 964 #endif /* NTFS_RW */ 965 } 966 967 #ifdef NTFS_RW 968 969 /** 970 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 971 * @vol: ntfs super block describing device whose mft mirror to load 972 * 973 * Return TRUE on success or FALSE on error. 974 */ 975 static BOOL load_and_init_mft_mirror(ntfs_volume *vol) 976 { 977 struct inode *tmp_ino; 978 ntfs_inode *tmp_ni; 979 980 ntfs_debug("Entering."); 981 /* Get mft mirror inode. */ 982 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 983 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 984 if (!IS_ERR(tmp_ino)) 985 iput(tmp_ino); 986 /* Caller will display error message. */ 987 return FALSE; 988 } 989 /* 990 * Re-initialize some specifics about $MFTMirr's inode as 991 * ntfs_read_inode() will have set up the default ones. 992 */ 993 /* Set uid and gid to root. */ 994 tmp_ino->i_uid = tmp_ino->i_gid = 0; 995 /* Regular file. No access for anyone. */ 996 tmp_ino->i_mode = S_IFREG; 997 /* No VFS initiated operations allowed for $MFTMirr. */ 998 tmp_ino->i_op = &ntfs_empty_inode_ops; 999 tmp_ino->i_fop = &ntfs_empty_file_ops; 1000 /* Put in our special address space operations. */ 1001 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1002 tmp_ni = NTFS_I(tmp_ino); 1003 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1004 NInoSetMstProtected(tmp_ni); 1005 NInoSetSparseDisabled(tmp_ni); 1006 /* 1007 * Set up our little cheat allowing us to reuse the async read io 1008 * completion handler for directories. 1009 */ 1010 tmp_ni->itype.index.block_size = vol->mft_record_size; 1011 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1012 vol->mftmirr_ino = tmp_ino; 1013 ntfs_debug("Done."); 1014 return TRUE; 1015 } 1016 1017 /** 1018 * check_mft_mirror - compare contents of the mft mirror with the mft 1019 * @vol: ntfs super block describing device whose mft mirror to check 1020 * 1021 * Return TRUE on success or FALSE on error. 1022 * 1023 * Note, this function also results in the mft mirror runlist being completely 1024 * mapped into memory. The mft mirror write code requires this and will BUG() 1025 * should it find an unmapped runlist element. 1026 */ 1027 static BOOL check_mft_mirror(ntfs_volume *vol) 1028 { 1029 struct super_block *sb = vol->sb; 1030 ntfs_inode *mirr_ni; 1031 struct page *mft_page, *mirr_page; 1032 u8 *kmft, *kmirr; 1033 runlist_element *rl, rl2[2]; 1034 pgoff_t index; 1035 int mrecs_per_page, i; 1036 1037 ntfs_debug("Entering."); 1038 /* Compare contents of $MFT and $MFTMirr. */ 1039 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size; 1040 BUG_ON(!mrecs_per_page); 1041 BUG_ON(!vol->mftmirr_size); 1042 mft_page = mirr_page = NULL; 1043 kmft = kmirr = NULL; 1044 index = i = 0; 1045 do { 1046 u32 bytes; 1047 1048 /* Switch pages if necessary. */ 1049 if (!(i % mrecs_per_page)) { 1050 if (index) { 1051 ntfs_unmap_page(mft_page); 1052 ntfs_unmap_page(mirr_page); 1053 } 1054 /* Get the $MFT page. */ 1055 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1056 index); 1057 if (IS_ERR(mft_page)) { 1058 ntfs_error(sb, "Failed to read $MFT."); 1059 return FALSE; 1060 } 1061 kmft = page_address(mft_page); 1062 /* Get the $MFTMirr page. */ 1063 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1064 index); 1065 if (IS_ERR(mirr_page)) { 1066 ntfs_error(sb, "Failed to read $MFTMirr."); 1067 goto mft_unmap_out; 1068 } 1069 kmirr = page_address(mirr_page); 1070 ++index; 1071 } 1072 /* Make sure the record is ok. */ 1073 if (ntfs_is_baad_recordp((le32*)kmft)) { 1074 ntfs_error(sb, "Incomplete multi sector transfer " 1075 "detected in mft record %i.", i); 1076 mm_unmap_out: 1077 ntfs_unmap_page(mirr_page); 1078 mft_unmap_out: 1079 ntfs_unmap_page(mft_page); 1080 return FALSE; 1081 } 1082 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1083 ntfs_error(sb, "Incomplete multi sector transfer " 1084 "detected in mft mirror record %i.", i); 1085 goto mm_unmap_out; 1086 } 1087 /* Get the amount of data in the current record. */ 1088 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1089 if (!bytes || bytes > vol->mft_record_size) { 1090 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1091 if (!bytes || bytes > vol->mft_record_size) 1092 bytes = vol->mft_record_size; 1093 } 1094 /* Compare the two records. */ 1095 if (memcmp(kmft, kmirr, bytes)) { 1096 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1097 "match. Run ntfsfix or chkdsk.", i); 1098 goto mm_unmap_out; 1099 } 1100 kmft += vol->mft_record_size; 1101 kmirr += vol->mft_record_size; 1102 } while (++i < vol->mftmirr_size); 1103 /* Release the last pages. */ 1104 ntfs_unmap_page(mft_page); 1105 ntfs_unmap_page(mirr_page); 1106 1107 /* Construct the mft mirror runlist by hand. */ 1108 rl2[0].vcn = 0; 1109 rl2[0].lcn = vol->mftmirr_lcn; 1110 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1111 vol->cluster_size - 1) / vol->cluster_size; 1112 rl2[1].vcn = rl2[0].length; 1113 rl2[1].lcn = LCN_ENOENT; 1114 rl2[1].length = 0; 1115 /* 1116 * Because we have just read all of the mft mirror, we know we have 1117 * mapped the full runlist for it. 1118 */ 1119 mirr_ni = NTFS_I(vol->mftmirr_ino); 1120 down_read(&mirr_ni->runlist.lock); 1121 rl = mirr_ni->runlist.rl; 1122 /* Compare the two runlists. They must be identical. */ 1123 i = 0; 1124 do { 1125 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1126 rl2[i].length != rl[i].length) { 1127 ntfs_error(sb, "$MFTMirr location mismatch. " 1128 "Run chkdsk."); 1129 up_read(&mirr_ni->runlist.lock); 1130 return FALSE; 1131 } 1132 } while (rl2[i++].length); 1133 up_read(&mirr_ni->runlist.lock); 1134 ntfs_debug("Done."); 1135 return TRUE; 1136 } 1137 1138 /** 1139 * load_and_check_logfile - load and check the logfile inode for a volume 1140 * @vol: ntfs super block describing device whose logfile to load 1141 * 1142 * Return TRUE on success or FALSE on error. 1143 */ 1144 static BOOL load_and_check_logfile(ntfs_volume *vol, 1145 RESTART_PAGE_HEADER **rp) 1146 { 1147 struct inode *tmp_ino; 1148 1149 ntfs_debug("Entering."); 1150 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1151 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1152 if (!IS_ERR(tmp_ino)) 1153 iput(tmp_ino); 1154 /* Caller will display error message. */ 1155 return FALSE; 1156 } 1157 if (!ntfs_check_logfile(tmp_ino, rp)) { 1158 iput(tmp_ino); 1159 /* ntfs_check_logfile() will have displayed error output. */ 1160 return FALSE; 1161 } 1162 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1163 vol->logfile_ino = tmp_ino; 1164 ntfs_debug("Done."); 1165 return TRUE; 1166 } 1167 1168 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1169 1170 /** 1171 * check_windows_hibernation_status - check if Windows is suspended on a volume 1172 * @vol: ntfs super block of device to check 1173 * 1174 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1175 * looking for the file hiberfil.sys in the root directory of the volume. If 1176 * the file is not present Windows is definitely not suspended. 1177 * 1178 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1179 * definitely suspended (this volume is not the system volume). Caveat: on a 1180 * system with many volumes it is possible that the < 4kiB check is bogus but 1181 * for now this should do fine. 1182 * 1183 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1184 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1185 * Windows is definitely suspended. If it is completely full of zeroes, 1186 * Windows is definitely not hibernated. Any other case is treated as if 1187 * Windows is suspended. This caters for the above mentioned caveat of a 1188 * system with many volumes where no "hibr" magic would be present and there is 1189 * no zero header. 1190 * 1191 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1192 * hibernated on the volume, and -errno on error. 1193 */ 1194 static int check_windows_hibernation_status(ntfs_volume *vol) 1195 { 1196 MFT_REF mref; 1197 struct inode *vi; 1198 ntfs_inode *ni; 1199 struct page *page; 1200 u32 *kaddr, *kend; 1201 ntfs_name *name = NULL; 1202 int ret = 1; 1203 static const ntfschar hiberfil[13] = { const_cpu_to_le16('h'), 1204 const_cpu_to_le16('i'), const_cpu_to_le16('b'), 1205 const_cpu_to_le16('e'), const_cpu_to_le16('r'), 1206 const_cpu_to_le16('f'), const_cpu_to_le16('i'), 1207 const_cpu_to_le16('l'), const_cpu_to_le16('.'), 1208 const_cpu_to_le16('s'), const_cpu_to_le16('y'), 1209 const_cpu_to_le16('s'), 0 }; 1210 1211 ntfs_debug("Entering."); 1212 /* 1213 * Find the inode number for the hibernation file by looking up the 1214 * filename hiberfil.sys in the root directory. 1215 */ 1216 mutex_lock(&vol->root_ino->i_mutex); 1217 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1218 &name); 1219 mutex_unlock(&vol->root_ino->i_mutex); 1220 if (IS_ERR_MREF(mref)) { 1221 ret = MREF_ERR(mref); 1222 /* If the file does not exist, Windows is not hibernated. */ 1223 if (ret == -ENOENT) { 1224 ntfs_debug("hiberfil.sys not present. Windows is not " 1225 "hibernated on the volume."); 1226 return 0; 1227 } 1228 /* A real error occured. */ 1229 ntfs_error(vol->sb, "Failed to find inode number for " 1230 "hiberfil.sys."); 1231 return ret; 1232 } 1233 /* We do not care for the type of match that was found. */ 1234 kfree(name); 1235 /* Get the inode. */ 1236 vi = ntfs_iget(vol->sb, MREF(mref)); 1237 if (IS_ERR(vi) || is_bad_inode(vi)) { 1238 if (!IS_ERR(vi)) 1239 iput(vi); 1240 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1241 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1242 } 1243 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1244 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1245 "Windows is hibernated on the volume. This " 1246 "is not the system volume.", i_size_read(vi)); 1247 goto iput_out; 1248 } 1249 ni = NTFS_I(vi); 1250 page = ntfs_map_page(vi->i_mapping, 0); 1251 if (IS_ERR(page)) { 1252 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1253 ret = PTR_ERR(page); 1254 goto iput_out; 1255 } 1256 kaddr = (u32*)page_address(page); 1257 if (*(le32*)kaddr == const_cpu_to_le32(0x72626968)/*'hibr'*/) { 1258 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1259 "hibernated on the volume. This is the " 1260 "system volume."); 1261 goto unm_iput_out; 1262 } 1263 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1264 do { 1265 if (unlikely(*kaddr)) { 1266 ntfs_debug("hiberfil.sys is larger than 4kiB " 1267 "(0x%llx), does not contain the " 1268 "\"hibr\" magic, and does not have a " 1269 "zero header. Windows is hibernated " 1270 "on the volume. This is not the " 1271 "system volume.", i_size_read(vi)); 1272 goto unm_iput_out; 1273 } 1274 } while (++kaddr < kend); 1275 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1276 "hibernated on the volume. This is the system " 1277 "volume."); 1278 ret = 0; 1279 unm_iput_out: 1280 ntfs_unmap_page(page); 1281 iput_out: 1282 iput(vi); 1283 return ret; 1284 } 1285 1286 /** 1287 * load_and_init_quota - load and setup the quota file for a volume if present 1288 * @vol: ntfs super block describing device whose quota file to load 1289 * 1290 * Return TRUE on success or FALSE on error. If $Quota is not present, we 1291 * leave vol->quota_ino as NULL and return success. 1292 */ 1293 static BOOL load_and_init_quota(ntfs_volume *vol) 1294 { 1295 MFT_REF mref; 1296 struct inode *tmp_ino; 1297 ntfs_name *name = NULL; 1298 static const ntfschar Quota[7] = { const_cpu_to_le16('$'), 1299 const_cpu_to_le16('Q'), const_cpu_to_le16('u'), 1300 const_cpu_to_le16('o'), const_cpu_to_le16('t'), 1301 const_cpu_to_le16('a'), 0 }; 1302 static ntfschar Q[3] = { const_cpu_to_le16('$'), 1303 const_cpu_to_le16('Q'), 0 }; 1304 1305 ntfs_debug("Entering."); 1306 /* 1307 * Find the inode number for the quota file by looking up the filename 1308 * $Quota in the extended system files directory $Extend. 1309 */ 1310 mutex_lock(&vol->extend_ino->i_mutex); 1311 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1312 &name); 1313 mutex_unlock(&vol->extend_ino->i_mutex); 1314 if (IS_ERR_MREF(mref)) { 1315 /* 1316 * If the file does not exist, quotas are disabled and have 1317 * never been enabled on this volume, just return success. 1318 */ 1319 if (MREF_ERR(mref) == -ENOENT) { 1320 ntfs_debug("$Quota not present. Volume does not have " 1321 "quotas enabled."); 1322 /* 1323 * No need to try to set quotas out of date if they are 1324 * not enabled. 1325 */ 1326 NVolSetQuotaOutOfDate(vol); 1327 return TRUE; 1328 } 1329 /* A real error occured. */ 1330 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1331 return FALSE; 1332 } 1333 /* We do not care for the type of match that was found. */ 1334 kfree(name); 1335 /* Get the inode. */ 1336 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1337 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1338 if (!IS_ERR(tmp_ino)) 1339 iput(tmp_ino); 1340 ntfs_error(vol->sb, "Failed to load $Quota."); 1341 return FALSE; 1342 } 1343 vol->quota_ino = tmp_ino; 1344 /* Get the $Q index allocation attribute. */ 1345 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1346 if (IS_ERR(tmp_ino)) { 1347 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1348 return FALSE; 1349 } 1350 vol->quota_q_ino = tmp_ino; 1351 ntfs_debug("Done."); 1352 return TRUE; 1353 } 1354 1355 /** 1356 * load_and_init_usnjrnl - load and setup the transaction log if present 1357 * @vol: ntfs super block describing device whose usnjrnl file to load 1358 * 1359 * Return TRUE on success or FALSE on error. 1360 * 1361 * If $UsnJrnl is not present or in the process of being disabled, we set 1362 * NVolUsnJrnlStamped() and return success. 1363 * 1364 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1365 * i.e. transaction logging has only just been enabled or the journal has been 1366 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1367 * and return success. 1368 */ 1369 static BOOL load_and_init_usnjrnl(ntfs_volume *vol) 1370 { 1371 MFT_REF mref; 1372 struct inode *tmp_ino; 1373 ntfs_inode *tmp_ni; 1374 struct page *page; 1375 ntfs_name *name = NULL; 1376 USN_HEADER *uh; 1377 static const ntfschar UsnJrnl[9] = { const_cpu_to_le16('$'), 1378 const_cpu_to_le16('U'), const_cpu_to_le16('s'), 1379 const_cpu_to_le16('n'), const_cpu_to_le16('J'), 1380 const_cpu_to_le16('r'), const_cpu_to_le16('n'), 1381 const_cpu_to_le16('l'), 0 }; 1382 static ntfschar Max[5] = { const_cpu_to_le16('$'), 1383 const_cpu_to_le16('M'), const_cpu_to_le16('a'), 1384 const_cpu_to_le16('x'), 0 }; 1385 static ntfschar J[3] = { const_cpu_to_le16('$'), 1386 const_cpu_to_le16('J'), 0 }; 1387 1388 ntfs_debug("Entering."); 1389 /* 1390 * Find the inode number for the transaction log file by looking up the 1391 * filename $UsnJrnl in the extended system files directory $Extend. 1392 */ 1393 mutex_lock(&vol->extend_ino->i_mutex); 1394 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1395 &name); 1396 mutex_unlock(&vol->extend_ino->i_mutex); 1397 if (IS_ERR_MREF(mref)) { 1398 /* 1399 * If the file does not exist, transaction logging is disabled, 1400 * just return success. 1401 */ 1402 if (MREF_ERR(mref) == -ENOENT) { 1403 ntfs_debug("$UsnJrnl not present. Volume does not " 1404 "have transaction logging enabled."); 1405 not_enabled: 1406 /* 1407 * No need to try to stamp the transaction log if 1408 * transaction logging is not enabled. 1409 */ 1410 NVolSetUsnJrnlStamped(vol); 1411 return TRUE; 1412 } 1413 /* A real error occured. */ 1414 ntfs_error(vol->sb, "Failed to find inode number for " 1415 "$UsnJrnl."); 1416 return FALSE; 1417 } 1418 /* We do not care for the type of match that was found. */ 1419 kfree(name); 1420 /* Get the inode. */ 1421 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1422 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) { 1423 if (!IS_ERR(tmp_ino)) 1424 iput(tmp_ino); 1425 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1426 return FALSE; 1427 } 1428 vol->usnjrnl_ino = tmp_ino; 1429 /* 1430 * If the transaction log is in the process of being deleted, we can 1431 * ignore it. 1432 */ 1433 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1434 ntfs_debug("$UsnJrnl in the process of being disabled. " 1435 "Volume does not have transaction logging " 1436 "enabled."); 1437 goto not_enabled; 1438 } 1439 /* Get the $DATA/$Max attribute. */ 1440 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1441 if (IS_ERR(tmp_ino)) { 1442 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1443 "attribute."); 1444 return FALSE; 1445 } 1446 vol->usnjrnl_max_ino = tmp_ino; 1447 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1448 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1449 "attribute (size is 0x%llx but should be at " 1450 "least 0x%zx bytes).", i_size_read(tmp_ino), 1451 sizeof(USN_HEADER)); 1452 return FALSE; 1453 } 1454 /* Get the $DATA/$J attribute. */ 1455 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1456 if (IS_ERR(tmp_ino)) { 1457 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1458 "attribute."); 1459 return FALSE; 1460 } 1461 vol->usnjrnl_j_ino = tmp_ino; 1462 /* Verify $J is non-resident and sparse. */ 1463 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1464 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1465 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1466 "and/or not sparse."); 1467 return FALSE; 1468 } 1469 /* Read the USN_HEADER from $DATA/$Max. */ 1470 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1471 if (IS_ERR(page)) { 1472 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1473 "attribute."); 1474 return FALSE; 1475 } 1476 uh = (USN_HEADER*)page_address(page); 1477 /* Sanity check the $Max. */ 1478 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1479 sle64_to_cpu(uh->maximum_size))) { 1480 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1481 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1482 (long long)sle64_to_cpu(uh->allocation_delta), 1483 (long long)sle64_to_cpu(uh->maximum_size)); 1484 ntfs_unmap_page(page); 1485 return FALSE; 1486 } 1487 /* 1488 * If the transaction log has been stamped and nothing has been written 1489 * to it since, we do not need to stamp it. 1490 */ 1491 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1492 i_size_read(vol->usnjrnl_j_ino))) { 1493 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1494 i_size_read(vol->usnjrnl_j_ino))) { 1495 ntfs_unmap_page(page); 1496 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1497 "logged since it was last stamped. " 1498 "Treating this as if the volume does " 1499 "not have transaction logging " 1500 "enabled."); 1501 goto not_enabled; 1502 } 1503 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1504 "which is out of bounds (0x%llx). $UsnJrnl " 1505 "is corrupt.", 1506 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1507 i_size_read(vol->usnjrnl_j_ino)); 1508 ntfs_unmap_page(page); 1509 return FALSE; 1510 } 1511 ntfs_unmap_page(page); 1512 ntfs_debug("Done."); 1513 return TRUE; 1514 } 1515 1516 /** 1517 * load_and_init_attrdef - load the attribute definitions table for a volume 1518 * @vol: ntfs super block describing device whose attrdef to load 1519 * 1520 * Return TRUE on success or FALSE on error. 1521 */ 1522 static BOOL load_and_init_attrdef(ntfs_volume *vol) 1523 { 1524 loff_t i_size; 1525 struct super_block *sb = vol->sb; 1526 struct inode *ino; 1527 struct page *page; 1528 pgoff_t index, max_index; 1529 unsigned int size; 1530 1531 ntfs_debug("Entering."); 1532 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1533 ino = ntfs_iget(sb, FILE_AttrDef); 1534 if (IS_ERR(ino) || is_bad_inode(ino)) { 1535 if (!IS_ERR(ino)) 1536 iput(ino); 1537 goto failed; 1538 } 1539 NInoSetSparseDisabled(NTFS_I(ino)); 1540 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1541 i_size = i_size_read(ino); 1542 if (i_size <= 0 || i_size > 0x7fffffff) 1543 goto iput_failed; 1544 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1545 if (!vol->attrdef) 1546 goto iput_failed; 1547 index = 0; 1548 max_index = i_size >> PAGE_CACHE_SHIFT; 1549 size = PAGE_CACHE_SIZE; 1550 while (index < max_index) { 1551 /* Read the attrdef table and copy it into the linear buffer. */ 1552 read_partial_attrdef_page: 1553 page = ntfs_map_page(ino->i_mapping, index); 1554 if (IS_ERR(page)) 1555 goto free_iput_failed; 1556 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT), 1557 page_address(page), size); 1558 ntfs_unmap_page(page); 1559 }; 1560 if (size == PAGE_CACHE_SIZE) { 1561 size = i_size & ~PAGE_CACHE_MASK; 1562 if (size) 1563 goto read_partial_attrdef_page; 1564 } 1565 vol->attrdef_size = i_size; 1566 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1567 iput(ino); 1568 return TRUE; 1569 free_iput_failed: 1570 ntfs_free(vol->attrdef); 1571 vol->attrdef = NULL; 1572 iput_failed: 1573 iput(ino); 1574 failed: 1575 ntfs_error(sb, "Failed to initialize attribute definition table."); 1576 return FALSE; 1577 } 1578 1579 #endif /* NTFS_RW */ 1580 1581 /** 1582 * load_and_init_upcase - load the upcase table for an ntfs volume 1583 * @vol: ntfs super block describing device whose upcase to load 1584 * 1585 * Return TRUE on success or FALSE on error. 1586 */ 1587 static BOOL load_and_init_upcase(ntfs_volume *vol) 1588 { 1589 loff_t i_size; 1590 struct super_block *sb = vol->sb; 1591 struct inode *ino; 1592 struct page *page; 1593 pgoff_t index, max_index; 1594 unsigned int size; 1595 int i, max; 1596 1597 ntfs_debug("Entering."); 1598 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1599 ino = ntfs_iget(sb, FILE_UpCase); 1600 if (IS_ERR(ino) || is_bad_inode(ino)) { 1601 if (!IS_ERR(ino)) 1602 iput(ino); 1603 goto upcase_failed; 1604 } 1605 /* 1606 * The upcase size must not be above 64k Unicode characters, must not 1607 * be zero and must be a multiple of sizeof(ntfschar). 1608 */ 1609 i_size = i_size_read(ino); 1610 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1611 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1612 goto iput_upcase_failed; 1613 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1614 if (!vol->upcase) 1615 goto iput_upcase_failed; 1616 index = 0; 1617 max_index = i_size >> PAGE_CACHE_SHIFT; 1618 size = PAGE_CACHE_SIZE; 1619 while (index < max_index) { 1620 /* Read the upcase table and copy it into the linear buffer. */ 1621 read_partial_upcase_page: 1622 page = ntfs_map_page(ino->i_mapping, index); 1623 if (IS_ERR(page)) 1624 goto iput_upcase_failed; 1625 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT), 1626 page_address(page), size); 1627 ntfs_unmap_page(page); 1628 }; 1629 if (size == PAGE_CACHE_SIZE) { 1630 size = i_size & ~PAGE_CACHE_MASK; 1631 if (size) 1632 goto read_partial_upcase_page; 1633 } 1634 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1635 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1636 i_size, 64 * 1024 * sizeof(ntfschar)); 1637 iput(ino); 1638 down(&ntfs_lock); 1639 if (!default_upcase) { 1640 ntfs_debug("Using volume specified $UpCase since default is " 1641 "not present."); 1642 up(&ntfs_lock); 1643 return TRUE; 1644 } 1645 max = default_upcase_len; 1646 if (max > vol->upcase_len) 1647 max = vol->upcase_len; 1648 for (i = 0; i < max; i++) 1649 if (vol->upcase[i] != default_upcase[i]) 1650 break; 1651 if (i == max) { 1652 ntfs_free(vol->upcase); 1653 vol->upcase = default_upcase; 1654 vol->upcase_len = max; 1655 ntfs_nr_upcase_users++; 1656 up(&ntfs_lock); 1657 ntfs_debug("Volume specified $UpCase matches default. Using " 1658 "default."); 1659 return TRUE; 1660 } 1661 up(&ntfs_lock); 1662 ntfs_debug("Using volume specified $UpCase since it does not match " 1663 "the default."); 1664 return TRUE; 1665 iput_upcase_failed: 1666 iput(ino); 1667 ntfs_free(vol->upcase); 1668 vol->upcase = NULL; 1669 upcase_failed: 1670 down(&ntfs_lock); 1671 if (default_upcase) { 1672 vol->upcase = default_upcase; 1673 vol->upcase_len = default_upcase_len; 1674 ntfs_nr_upcase_users++; 1675 up(&ntfs_lock); 1676 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1677 "default."); 1678 return TRUE; 1679 } 1680 up(&ntfs_lock); 1681 ntfs_error(sb, "Failed to initialize upcase table."); 1682 return FALSE; 1683 } 1684 1685 /** 1686 * load_system_files - open the system files using normal functions 1687 * @vol: ntfs super block describing device whose system files to load 1688 * 1689 * Open the system files with normal access functions and complete setting up 1690 * the ntfs super block @vol. 1691 * 1692 * Return TRUE on success or FALSE on error. 1693 */ 1694 static BOOL load_system_files(ntfs_volume *vol) 1695 { 1696 struct super_block *sb = vol->sb; 1697 MFT_RECORD *m; 1698 VOLUME_INFORMATION *vi; 1699 ntfs_attr_search_ctx *ctx; 1700 #ifdef NTFS_RW 1701 RESTART_PAGE_HEADER *rp; 1702 int err; 1703 #endif /* NTFS_RW */ 1704 1705 ntfs_debug("Entering."); 1706 #ifdef NTFS_RW 1707 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1708 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1709 static const char *es1 = "Failed to load $MFTMirr"; 1710 static const char *es2 = "$MFTMirr does not match $MFT"; 1711 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1712 1713 /* If a read-write mount, convert it to a read-only mount. */ 1714 if (!(sb->s_flags & MS_RDONLY)) { 1715 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1716 ON_ERRORS_CONTINUE))) { 1717 ntfs_error(sb, "%s and neither on_errors=" 1718 "continue nor on_errors=" 1719 "remount-ro was specified%s", 1720 !vol->mftmirr_ino ? es1 : es2, 1721 es3); 1722 goto iput_mirr_err_out; 1723 } 1724 sb->s_flags |= MS_RDONLY; 1725 ntfs_error(sb, "%s. Mounting read-only%s", 1726 !vol->mftmirr_ino ? es1 : es2, es3); 1727 } else 1728 ntfs_warning(sb, "%s. Will not be able to remount " 1729 "read-write%s", 1730 !vol->mftmirr_ino ? es1 : es2, es3); 1731 /* This will prevent a read-write remount. */ 1732 NVolSetErrors(vol); 1733 } 1734 #endif /* NTFS_RW */ 1735 /* Get mft bitmap attribute inode. */ 1736 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1737 if (IS_ERR(vol->mftbmp_ino)) { 1738 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1739 goto iput_mirr_err_out; 1740 } 1741 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1742 if (!load_and_init_upcase(vol)) 1743 goto iput_mftbmp_err_out; 1744 #ifdef NTFS_RW 1745 /* 1746 * Read attribute definitions table and setup @vol->attrdef and 1747 * @vol->attrdef_size. 1748 */ 1749 if (!load_and_init_attrdef(vol)) 1750 goto iput_upcase_err_out; 1751 #endif /* NTFS_RW */ 1752 /* 1753 * Get the cluster allocation bitmap inode and verify the size, no 1754 * need for any locking at this stage as we are already running 1755 * exclusively as we are mount in progress task. 1756 */ 1757 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1758 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1759 if (!IS_ERR(vol->lcnbmp_ino)) 1760 iput(vol->lcnbmp_ino); 1761 goto bitmap_failed; 1762 } 1763 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1764 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1765 iput(vol->lcnbmp_ino); 1766 bitmap_failed: 1767 ntfs_error(sb, "Failed to load $Bitmap."); 1768 goto iput_attrdef_err_out; 1769 } 1770 /* 1771 * Get the volume inode and setup our cache of the volume flags and 1772 * version. 1773 */ 1774 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1775 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1776 if (!IS_ERR(vol->vol_ino)) 1777 iput(vol->vol_ino); 1778 volume_failed: 1779 ntfs_error(sb, "Failed to load $Volume."); 1780 goto iput_lcnbmp_err_out; 1781 } 1782 m = map_mft_record(NTFS_I(vol->vol_ino)); 1783 if (IS_ERR(m)) { 1784 iput_volume_failed: 1785 iput(vol->vol_ino); 1786 goto volume_failed; 1787 } 1788 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1789 ntfs_error(sb, "Failed to get attribute search context."); 1790 goto get_ctx_vol_failed; 1791 } 1792 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1793 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1794 err_put_vol: 1795 ntfs_attr_put_search_ctx(ctx); 1796 get_ctx_vol_failed: 1797 unmap_mft_record(NTFS_I(vol->vol_ino)); 1798 goto iput_volume_failed; 1799 } 1800 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1801 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1802 /* Some bounds checks. */ 1803 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1804 le32_to_cpu(ctx->attr->data.resident.value_length) > 1805 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1806 goto err_put_vol; 1807 /* Copy the volume flags and version to the ntfs_volume structure. */ 1808 vol->vol_flags = vi->flags; 1809 vol->major_ver = vi->major_ver; 1810 vol->minor_ver = vi->minor_ver; 1811 ntfs_attr_put_search_ctx(ctx); 1812 unmap_mft_record(NTFS_I(vol->vol_ino)); 1813 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver, 1814 vol->minor_ver); 1815 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1816 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1817 "volume version %i.%i (need at least version " 1818 "3.0).", vol->major_ver, vol->minor_ver); 1819 NVolClearSparseEnabled(vol); 1820 } 1821 #ifdef NTFS_RW 1822 /* Make sure that no unsupported volume flags are set. */ 1823 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1824 static const char *es1a = "Volume is dirty"; 1825 static const char *es1b = "Volume has unsupported flags set"; 1826 static const char *es2 = ". Run chkdsk and mount in Windows."; 1827 const char *es1; 1828 1829 es1 = vol->vol_flags & VOLUME_IS_DIRTY ? es1a : es1b; 1830 /* If a read-write mount, convert it to a read-only mount. */ 1831 if (!(sb->s_flags & MS_RDONLY)) { 1832 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1833 ON_ERRORS_CONTINUE))) { 1834 ntfs_error(sb, "%s and neither on_errors=" 1835 "continue nor on_errors=" 1836 "remount-ro was specified%s", 1837 es1, es2); 1838 goto iput_vol_err_out; 1839 } 1840 sb->s_flags |= MS_RDONLY; 1841 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1842 } else 1843 ntfs_warning(sb, "%s. Will not be able to remount " 1844 "read-write%s", es1, es2); 1845 /* 1846 * Do not set NVolErrors() because ntfs_remount() re-checks the 1847 * flags which we need to do in case any flags have changed. 1848 */ 1849 } 1850 /* 1851 * Get the inode for the logfile, check it and determine if the volume 1852 * was shutdown cleanly. 1853 */ 1854 rp = NULL; 1855 if (!load_and_check_logfile(vol, &rp) || 1856 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1857 static const char *es1a = "Failed to load $LogFile"; 1858 static const char *es1b = "$LogFile is not clean"; 1859 static const char *es2 = ". Mount in Windows."; 1860 const char *es1; 1861 1862 es1 = !vol->logfile_ino ? es1a : es1b; 1863 /* If a read-write mount, convert it to a read-only mount. */ 1864 if (!(sb->s_flags & MS_RDONLY)) { 1865 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1866 ON_ERRORS_CONTINUE))) { 1867 ntfs_error(sb, "%s and neither on_errors=" 1868 "continue nor on_errors=" 1869 "remount-ro was specified%s", 1870 es1, es2); 1871 if (vol->logfile_ino) { 1872 BUG_ON(!rp); 1873 ntfs_free(rp); 1874 } 1875 goto iput_logfile_err_out; 1876 } 1877 sb->s_flags |= MS_RDONLY; 1878 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1879 } else 1880 ntfs_warning(sb, "%s. Will not be able to remount " 1881 "read-write%s", es1, es2); 1882 /* This will prevent a read-write remount. */ 1883 NVolSetErrors(vol); 1884 } 1885 ntfs_free(rp); 1886 #endif /* NTFS_RW */ 1887 /* Get the root directory inode so we can do path lookups. */ 1888 vol->root_ino = ntfs_iget(sb, FILE_root); 1889 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1890 if (!IS_ERR(vol->root_ino)) 1891 iput(vol->root_ino); 1892 ntfs_error(sb, "Failed to load root directory."); 1893 goto iput_logfile_err_out; 1894 } 1895 #ifdef NTFS_RW 1896 /* 1897 * Check if Windows is suspended to disk on the target volume. If it 1898 * is hibernated, we must not write *anything* to the disk so set 1899 * NVolErrors() without setting the dirty volume flag and mount 1900 * read-only. This will prevent read-write remounting and it will also 1901 * prevent all writes. 1902 */ 1903 err = check_windows_hibernation_status(vol); 1904 if (unlikely(err)) { 1905 static const char *es1a = "Failed to determine if Windows is " 1906 "hibernated"; 1907 static const char *es1b = "Windows is hibernated"; 1908 static const char *es2 = ". Run chkdsk."; 1909 const char *es1; 1910 1911 es1 = err < 0 ? es1a : es1b; 1912 /* If a read-write mount, convert it to a read-only mount. */ 1913 if (!(sb->s_flags & MS_RDONLY)) { 1914 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1915 ON_ERRORS_CONTINUE))) { 1916 ntfs_error(sb, "%s and neither on_errors=" 1917 "continue nor on_errors=" 1918 "remount-ro was specified%s", 1919 es1, es2); 1920 goto iput_root_err_out; 1921 } 1922 sb->s_flags |= MS_RDONLY; 1923 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1924 } else 1925 ntfs_warning(sb, "%s. Will not be able to remount " 1926 "read-write%s", es1, es2); 1927 /* This will prevent a read-write remount. */ 1928 NVolSetErrors(vol); 1929 } 1930 /* If (still) a read-write mount, mark the volume dirty. */ 1931 if (!(sb->s_flags & MS_RDONLY) && 1932 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 1933 static const char *es1 = "Failed to set dirty bit in volume " 1934 "information flags"; 1935 static const char *es2 = ". Run chkdsk."; 1936 1937 /* Convert to a read-only mount. */ 1938 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1939 ON_ERRORS_CONTINUE))) { 1940 ntfs_error(sb, "%s and neither on_errors=continue nor " 1941 "on_errors=remount-ro was specified%s", 1942 es1, es2); 1943 goto iput_root_err_out; 1944 } 1945 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1946 sb->s_flags |= MS_RDONLY; 1947 /* 1948 * Do not set NVolErrors() because ntfs_remount() might manage 1949 * to set the dirty flag in which case all would be well. 1950 */ 1951 } 1952 #if 0 1953 // TODO: Enable this code once we start modifying anything that is 1954 // different between NTFS 1.2 and 3.x... 1955 /* 1956 * If (still) a read-write mount, set the NT4 compatibility flag on 1957 * newer NTFS version volumes. 1958 */ 1959 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) && 1960 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 1961 static const char *es1 = "Failed to set NT4 compatibility flag"; 1962 static const char *es2 = ". Run chkdsk."; 1963 1964 /* Convert to a read-only mount. */ 1965 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1966 ON_ERRORS_CONTINUE))) { 1967 ntfs_error(sb, "%s and neither on_errors=continue nor " 1968 "on_errors=remount-ro was specified%s", 1969 es1, es2); 1970 goto iput_root_err_out; 1971 } 1972 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1973 sb->s_flags |= MS_RDONLY; 1974 NVolSetErrors(vol); 1975 } 1976 #endif 1977 /* If (still) a read-write mount, empty the logfile. */ 1978 if (!(sb->s_flags & MS_RDONLY) && 1979 !ntfs_empty_logfile(vol->logfile_ino)) { 1980 static const char *es1 = "Failed to empty $LogFile"; 1981 static const char *es2 = ". Mount in Windows."; 1982 1983 /* Convert to a read-only mount. */ 1984 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1985 ON_ERRORS_CONTINUE))) { 1986 ntfs_error(sb, "%s and neither on_errors=continue nor " 1987 "on_errors=remount-ro was specified%s", 1988 es1, es2); 1989 goto iput_root_err_out; 1990 } 1991 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1992 sb->s_flags |= MS_RDONLY; 1993 NVolSetErrors(vol); 1994 } 1995 #endif /* NTFS_RW */ 1996 /* If on NTFS versions before 3.0, we are done. */ 1997 if (unlikely(vol->major_ver < 3)) 1998 return TRUE; 1999 /* NTFS 3.0+ specific initialization. */ 2000 /* Get the security descriptors inode. */ 2001 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2002 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2003 if (!IS_ERR(vol->secure_ino)) 2004 iput(vol->secure_ino); 2005 ntfs_error(sb, "Failed to load $Secure."); 2006 goto iput_root_err_out; 2007 } 2008 // TODO: Initialize security. 2009 /* Get the extended system files' directory inode. */ 2010 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2011 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { 2012 if (!IS_ERR(vol->extend_ino)) 2013 iput(vol->extend_ino); 2014 ntfs_error(sb, "Failed to load $Extend."); 2015 goto iput_sec_err_out; 2016 } 2017 #ifdef NTFS_RW 2018 /* Find the quota file, load it if present, and set it up. */ 2019 if (!load_and_init_quota(vol)) { 2020 static const char *es1 = "Failed to load $Quota"; 2021 static const char *es2 = ". Run chkdsk."; 2022 2023 /* If a read-write mount, convert it to a read-only mount. */ 2024 if (!(sb->s_flags & MS_RDONLY)) { 2025 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2026 ON_ERRORS_CONTINUE))) { 2027 ntfs_error(sb, "%s and neither on_errors=" 2028 "continue nor on_errors=" 2029 "remount-ro was specified%s", 2030 es1, es2); 2031 goto iput_quota_err_out; 2032 } 2033 sb->s_flags |= MS_RDONLY; 2034 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2035 } else 2036 ntfs_warning(sb, "%s. Will not be able to remount " 2037 "read-write%s", es1, es2); 2038 /* This will prevent a read-write remount. */ 2039 NVolSetErrors(vol); 2040 } 2041 /* If (still) a read-write mount, mark the quotas out of date. */ 2042 if (!(sb->s_flags & MS_RDONLY) && 2043 !ntfs_mark_quotas_out_of_date(vol)) { 2044 static const char *es1 = "Failed to mark quotas out of date"; 2045 static const char *es2 = ". Run chkdsk."; 2046 2047 /* Convert to a read-only mount. */ 2048 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2049 ON_ERRORS_CONTINUE))) { 2050 ntfs_error(sb, "%s and neither on_errors=continue nor " 2051 "on_errors=remount-ro was specified%s", 2052 es1, es2); 2053 goto iput_quota_err_out; 2054 } 2055 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2056 sb->s_flags |= MS_RDONLY; 2057 NVolSetErrors(vol); 2058 } 2059 /* 2060 * Find the transaction log file ($UsnJrnl), load it if present, check 2061 * it, and set it up. 2062 */ 2063 if (!load_and_init_usnjrnl(vol)) { 2064 static const char *es1 = "Failed to load $UsnJrnl"; 2065 static const char *es2 = ". Run chkdsk."; 2066 2067 /* If a read-write mount, convert it to a read-only mount. */ 2068 if (!(sb->s_flags & MS_RDONLY)) { 2069 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2070 ON_ERRORS_CONTINUE))) { 2071 ntfs_error(sb, "%s and neither on_errors=" 2072 "continue nor on_errors=" 2073 "remount-ro was specified%s", 2074 es1, es2); 2075 goto iput_usnjrnl_err_out; 2076 } 2077 sb->s_flags |= MS_RDONLY; 2078 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2079 } else 2080 ntfs_warning(sb, "%s. Will not be able to remount " 2081 "read-write%s", es1, es2); 2082 /* This will prevent a read-write remount. */ 2083 NVolSetErrors(vol); 2084 } 2085 /* If (still) a read-write mount, stamp the transaction log. */ 2086 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) { 2087 static const char *es1 = "Failed to stamp transaction log " 2088 "($UsnJrnl)"; 2089 static const char *es2 = ". Run chkdsk."; 2090 2091 /* Convert to a read-only mount. */ 2092 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2093 ON_ERRORS_CONTINUE))) { 2094 ntfs_error(sb, "%s and neither on_errors=continue nor " 2095 "on_errors=remount-ro was specified%s", 2096 es1, es2); 2097 goto iput_usnjrnl_err_out; 2098 } 2099 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2100 sb->s_flags |= MS_RDONLY; 2101 NVolSetErrors(vol); 2102 } 2103 #endif /* NTFS_RW */ 2104 return TRUE; 2105 #ifdef NTFS_RW 2106 iput_usnjrnl_err_out: 2107 if (vol->usnjrnl_j_ino) 2108 iput(vol->usnjrnl_j_ino); 2109 if (vol->usnjrnl_max_ino) 2110 iput(vol->usnjrnl_max_ino); 2111 if (vol->usnjrnl_ino) 2112 iput(vol->usnjrnl_ino); 2113 iput_quota_err_out: 2114 if (vol->quota_q_ino) 2115 iput(vol->quota_q_ino); 2116 if (vol->quota_ino) 2117 iput(vol->quota_ino); 2118 iput(vol->extend_ino); 2119 #endif /* NTFS_RW */ 2120 iput_sec_err_out: 2121 iput(vol->secure_ino); 2122 iput_root_err_out: 2123 iput(vol->root_ino); 2124 iput_logfile_err_out: 2125 #ifdef NTFS_RW 2126 if (vol->logfile_ino) 2127 iput(vol->logfile_ino); 2128 iput_vol_err_out: 2129 #endif /* NTFS_RW */ 2130 iput(vol->vol_ino); 2131 iput_lcnbmp_err_out: 2132 iput(vol->lcnbmp_ino); 2133 iput_attrdef_err_out: 2134 vol->attrdef_size = 0; 2135 if (vol->attrdef) { 2136 ntfs_free(vol->attrdef); 2137 vol->attrdef = NULL; 2138 } 2139 #ifdef NTFS_RW 2140 iput_upcase_err_out: 2141 #endif /* NTFS_RW */ 2142 vol->upcase_len = 0; 2143 down(&ntfs_lock); 2144 if (vol->upcase == default_upcase) { 2145 ntfs_nr_upcase_users--; 2146 vol->upcase = NULL; 2147 } 2148 up(&ntfs_lock); 2149 if (vol->upcase) { 2150 ntfs_free(vol->upcase); 2151 vol->upcase = NULL; 2152 } 2153 iput_mftbmp_err_out: 2154 iput(vol->mftbmp_ino); 2155 iput_mirr_err_out: 2156 #ifdef NTFS_RW 2157 if (vol->mftmirr_ino) 2158 iput(vol->mftmirr_ino); 2159 #endif /* NTFS_RW */ 2160 return FALSE; 2161 } 2162 2163 /** 2164 * ntfs_put_super - called by the vfs to unmount a volume 2165 * @sb: vfs superblock of volume to unmount 2166 * 2167 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2168 * the volume is being unmounted (umount system call has been invoked) and it 2169 * releases all inodes and memory belonging to the NTFS specific part of the 2170 * super block. 2171 */ 2172 static void ntfs_put_super(struct super_block *sb) 2173 { 2174 ntfs_volume *vol = NTFS_SB(sb); 2175 2176 ntfs_debug("Entering."); 2177 #ifdef NTFS_RW 2178 /* 2179 * Commit all inodes while they are still open in case some of them 2180 * cause others to be dirtied. 2181 */ 2182 ntfs_commit_inode(vol->vol_ino); 2183 2184 /* NTFS 3.0+ specific. */ 2185 if (vol->major_ver >= 3) { 2186 if (vol->usnjrnl_j_ino) 2187 ntfs_commit_inode(vol->usnjrnl_j_ino); 2188 if (vol->usnjrnl_max_ino) 2189 ntfs_commit_inode(vol->usnjrnl_max_ino); 2190 if (vol->usnjrnl_ino) 2191 ntfs_commit_inode(vol->usnjrnl_ino); 2192 if (vol->quota_q_ino) 2193 ntfs_commit_inode(vol->quota_q_ino); 2194 if (vol->quota_ino) 2195 ntfs_commit_inode(vol->quota_ino); 2196 if (vol->extend_ino) 2197 ntfs_commit_inode(vol->extend_ino); 2198 if (vol->secure_ino) 2199 ntfs_commit_inode(vol->secure_ino); 2200 } 2201 2202 ntfs_commit_inode(vol->root_ino); 2203 2204 down_write(&vol->lcnbmp_lock); 2205 ntfs_commit_inode(vol->lcnbmp_ino); 2206 up_write(&vol->lcnbmp_lock); 2207 2208 down_write(&vol->mftbmp_lock); 2209 ntfs_commit_inode(vol->mftbmp_ino); 2210 up_write(&vol->mftbmp_lock); 2211 2212 if (vol->logfile_ino) 2213 ntfs_commit_inode(vol->logfile_ino); 2214 2215 if (vol->mftmirr_ino) 2216 ntfs_commit_inode(vol->mftmirr_ino); 2217 ntfs_commit_inode(vol->mft_ino); 2218 2219 /* 2220 * If a read-write mount and no volume errors have occured, mark the 2221 * volume clean. Also, re-commit all affected inodes. 2222 */ 2223 if (!(sb->s_flags & MS_RDONLY)) { 2224 if (!NVolErrors(vol)) { 2225 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2226 ntfs_warning(sb, "Failed to clear dirty bit " 2227 "in volume information " 2228 "flags. Run chkdsk."); 2229 ntfs_commit_inode(vol->vol_ino); 2230 ntfs_commit_inode(vol->root_ino); 2231 if (vol->mftmirr_ino) 2232 ntfs_commit_inode(vol->mftmirr_ino); 2233 ntfs_commit_inode(vol->mft_ino); 2234 } else { 2235 ntfs_warning(sb, "Volume has errors. Leaving volume " 2236 "marked dirty. Run chkdsk."); 2237 } 2238 } 2239 #endif /* NTFS_RW */ 2240 2241 iput(vol->vol_ino); 2242 vol->vol_ino = NULL; 2243 2244 /* NTFS 3.0+ specific clean up. */ 2245 if (vol->major_ver >= 3) { 2246 #ifdef NTFS_RW 2247 if (vol->usnjrnl_j_ino) { 2248 iput(vol->usnjrnl_j_ino); 2249 vol->usnjrnl_j_ino = NULL; 2250 } 2251 if (vol->usnjrnl_max_ino) { 2252 iput(vol->usnjrnl_max_ino); 2253 vol->usnjrnl_max_ino = NULL; 2254 } 2255 if (vol->usnjrnl_ino) { 2256 iput(vol->usnjrnl_ino); 2257 vol->usnjrnl_ino = NULL; 2258 } 2259 if (vol->quota_q_ino) { 2260 iput(vol->quota_q_ino); 2261 vol->quota_q_ino = NULL; 2262 } 2263 if (vol->quota_ino) { 2264 iput(vol->quota_ino); 2265 vol->quota_ino = NULL; 2266 } 2267 #endif /* NTFS_RW */ 2268 if (vol->extend_ino) { 2269 iput(vol->extend_ino); 2270 vol->extend_ino = NULL; 2271 } 2272 if (vol->secure_ino) { 2273 iput(vol->secure_ino); 2274 vol->secure_ino = NULL; 2275 } 2276 } 2277 2278 iput(vol->root_ino); 2279 vol->root_ino = NULL; 2280 2281 down_write(&vol->lcnbmp_lock); 2282 iput(vol->lcnbmp_ino); 2283 vol->lcnbmp_ino = NULL; 2284 up_write(&vol->lcnbmp_lock); 2285 2286 down_write(&vol->mftbmp_lock); 2287 iput(vol->mftbmp_ino); 2288 vol->mftbmp_ino = NULL; 2289 up_write(&vol->mftbmp_lock); 2290 2291 #ifdef NTFS_RW 2292 if (vol->logfile_ino) { 2293 iput(vol->logfile_ino); 2294 vol->logfile_ino = NULL; 2295 } 2296 if (vol->mftmirr_ino) { 2297 /* Re-commit the mft mirror and mft just in case. */ 2298 ntfs_commit_inode(vol->mftmirr_ino); 2299 ntfs_commit_inode(vol->mft_ino); 2300 iput(vol->mftmirr_ino); 2301 vol->mftmirr_ino = NULL; 2302 } 2303 /* 2304 * If any dirty inodes are left, throw away all mft data page cache 2305 * pages to allow a clean umount. This should never happen any more 2306 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2307 * the underlying mft records are written out and cleaned. If it does, 2308 * happen anyway, we want to know... 2309 */ 2310 ntfs_commit_inode(vol->mft_ino); 2311 write_inode_now(vol->mft_ino, 1); 2312 if (!list_empty(&sb->s_dirty)) { 2313 const char *s1, *s2; 2314 2315 mutex_lock(&vol->mft_ino->i_mutex); 2316 truncate_inode_pages(vol->mft_ino->i_mapping, 0); 2317 mutex_unlock(&vol->mft_ino->i_mutex); 2318 write_inode_now(vol->mft_ino, 1); 2319 if (!list_empty(&sb->s_dirty)) { 2320 static const char *_s1 = "inodes"; 2321 static const char *_s2 = ""; 2322 s1 = _s1; 2323 s2 = _s2; 2324 } else { 2325 static const char *_s1 = "mft pages"; 2326 static const char *_s2 = "They have been thrown " 2327 "away. "; 2328 s1 = _s1; 2329 s2 = _s2; 2330 } 2331 ntfs_error(sb, "Dirty %s found at umount time. %sYou should " 2332 "run chkdsk. Please email " 2333 "linux-ntfs-dev@lists.sourceforge.net and say " 2334 "that you saw this message. Thank you.", s1, 2335 s2); 2336 } 2337 #endif /* NTFS_RW */ 2338 2339 iput(vol->mft_ino); 2340 vol->mft_ino = NULL; 2341 2342 /* Throw away the table of attribute definitions. */ 2343 vol->attrdef_size = 0; 2344 if (vol->attrdef) { 2345 ntfs_free(vol->attrdef); 2346 vol->attrdef = NULL; 2347 } 2348 vol->upcase_len = 0; 2349 /* 2350 * Destroy the global default upcase table if necessary. Also decrease 2351 * the number of upcase users if we are a user. 2352 */ 2353 down(&ntfs_lock); 2354 if (vol->upcase == default_upcase) { 2355 ntfs_nr_upcase_users--; 2356 vol->upcase = NULL; 2357 } 2358 if (!ntfs_nr_upcase_users && default_upcase) { 2359 ntfs_free(default_upcase); 2360 default_upcase = NULL; 2361 } 2362 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2363 free_compression_buffers(); 2364 up(&ntfs_lock); 2365 if (vol->upcase) { 2366 ntfs_free(vol->upcase); 2367 vol->upcase = NULL; 2368 } 2369 if (vol->nls_map) { 2370 unload_nls(vol->nls_map); 2371 vol->nls_map = NULL; 2372 } 2373 sb->s_fs_info = NULL; 2374 kfree(vol); 2375 return; 2376 } 2377 2378 /** 2379 * get_nr_free_clusters - return the number of free clusters on a volume 2380 * @vol: ntfs volume for which to obtain free cluster count 2381 * 2382 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2383 * actually calculate the number of clusters in use instead because this 2384 * allows us to not care about partial pages as these will be just zero filled 2385 * and hence not be counted as allocated clusters. 2386 * 2387 * The only particularity is that clusters beyond the end of the logical ntfs 2388 * volume will be marked as allocated to prevent errors which means we have to 2389 * discount those at the end. This is important as the cluster bitmap always 2390 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2391 * the logical volume and marked in use when they are not as they do not exist. 2392 * 2393 * If any pages cannot be read we assume all clusters in the erroring pages are 2394 * in use. This means we return an underestimate on errors which is better than 2395 * an overestimate. 2396 */ 2397 static s64 get_nr_free_clusters(ntfs_volume *vol) 2398 { 2399 s64 nr_free = vol->nr_clusters; 2400 u32 *kaddr; 2401 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2402 filler_t *readpage = (filler_t*)mapping->a_ops->readpage; 2403 struct page *page; 2404 pgoff_t index, max_index; 2405 2406 ntfs_debug("Entering."); 2407 /* Serialize accesses to the cluster bitmap. */ 2408 down_read(&vol->lcnbmp_lock); 2409 /* 2410 * Convert the number of bits into bytes rounded up, then convert into 2411 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one 2412 * full and one partial page max_index = 2. 2413 */ 2414 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> 2415 PAGE_CACHE_SHIFT; 2416 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2417 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2418 max_index, PAGE_CACHE_SIZE / 4); 2419 for (index = 0; index < max_index; index++) { 2420 unsigned int i; 2421 /* 2422 * Read the page from page cache, getting it from backing store 2423 * if necessary, and increment the use count. 2424 */ 2425 page = read_cache_page(mapping, index, (filler_t*)readpage, 2426 NULL); 2427 /* Ignore pages which errored synchronously. */ 2428 if (IS_ERR(page)) { 2429 ntfs_debug("Sync read_cache_page() error. Skipping " 2430 "page (index 0x%lx).", index); 2431 nr_free -= PAGE_CACHE_SIZE * 8; 2432 continue; 2433 } 2434 wait_on_page_locked(page); 2435 /* Ignore pages which errored asynchronously. */ 2436 if (!PageUptodate(page)) { 2437 ntfs_debug("Async read_cache_page() error. Skipping " 2438 "page (index 0x%lx).", index); 2439 page_cache_release(page); 2440 nr_free -= PAGE_CACHE_SIZE * 8; 2441 continue; 2442 } 2443 kaddr = (u32*)kmap_atomic(page, KM_USER0); 2444 /* 2445 * For each 4 bytes, subtract the number of set bits. If this 2446 * is the last page and it is partial we don't really care as 2447 * it just means we do a little extra work but it won't affect 2448 * the result as all out of range bytes are set to zero by 2449 * ntfs_readpage(). 2450 */ 2451 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++) 2452 nr_free -= (s64)hweight32(kaddr[i]); 2453 kunmap_atomic(kaddr, KM_USER0); 2454 page_cache_release(page); 2455 } 2456 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2457 /* 2458 * Fixup for eventual bits outside logical ntfs volume (see function 2459 * description above). 2460 */ 2461 if (vol->nr_clusters & 63) 2462 nr_free += 64 - (vol->nr_clusters & 63); 2463 up_read(&vol->lcnbmp_lock); 2464 /* If errors occured we may well have gone below zero, fix this. */ 2465 if (nr_free < 0) 2466 nr_free = 0; 2467 ntfs_debug("Exiting."); 2468 return nr_free; 2469 } 2470 2471 /** 2472 * __get_nr_free_mft_records - return the number of free inodes on a volume 2473 * @vol: ntfs volume for which to obtain free inode count 2474 * @nr_free: number of mft records in filesystem 2475 * @max_index: maximum number of pages containing set bits 2476 * 2477 * Calculate the number of free mft records (inodes) on the mounted NTFS 2478 * volume @vol. We actually calculate the number of mft records in use instead 2479 * because this allows us to not care about partial pages as these will be just 2480 * zero filled and hence not be counted as allocated mft record. 2481 * 2482 * If any pages cannot be read we assume all mft records in the erroring pages 2483 * are in use. This means we return an underestimate on errors which is better 2484 * than an overestimate. 2485 * 2486 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2487 */ 2488 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2489 s64 nr_free, const pgoff_t max_index) 2490 { 2491 u32 *kaddr; 2492 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2493 filler_t *readpage = (filler_t*)mapping->a_ops->readpage; 2494 struct page *page; 2495 pgoff_t index; 2496 2497 ntfs_debug("Entering."); 2498 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2499 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2500 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4); 2501 for (index = 0; index < max_index; index++) { 2502 unsigned int i; 2503 /* 2504 * Read the page from page cache, getting it from backing store 2505 * if necessary, and increment the use count. 2506 */ 2507 page = read_cache_page(mapping, index, (filler_t*)readpage, 2508 NULL); 2509 /* Ignore pages which errored synchronously. */ 2510 if (IS_ERR(page)) { 2511 ntfs_debug("Sync read_cache_page() error. Skipping " 2512 "page (index 0x%lx).", index); 2513 nr_free -= PAGE_CACHE_SIZE * 8; 2514 continue; 2515 } 2516 wait_on_page_locked(page); 2517 /* Ignore pages which errored asynchronously. */ 2518 if (!PageUptodate(page)) { 2519 ntfs_debug("Async read_cache_page() error. Skipping " 2520 "page (index 0x%lx).", index); 2521 page_cache_release(page); 2522 nr_free -= PAGE_CACHE_SIZE * 8; 2523 continue; 2524 } 2525 kaddr = (u32*)kmap_atomic(page, KM_USER0); 2526 /* 2527 * For each 4 bytes, subtract the number of set bits. If this 2528 * is the last page and it is partial we don't really care as 2529 * it just means we do a little extra work but it won't affect 2530 * the result as all out of range bytes are set to zero by 2531 * ntfs_readpage(). 2532 */ 2533 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++) 2534 nr_free -= (s64)hweight32(kaddr[i]); 2535 kunmap_atomic(kaddr, KM_USER0); 2536 page_cache_release(page); 2537 } 2538 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2539 index - 1); 2540 /* If errors occured we may well have gone below zero, fix this. */ 2541 if (nr_free < 0) 2542 nr_free = 0; 2543 ntfs_debug("Exiting."); 2544 return nr_free; 2545 } 2546 2547 /** 2548 * ntfs_statfs - return information about mounted NTFS volume 2549 * @sb: super block of mounted volume 2550 * @sfs: statfs structure in which to return the information 2551 * 2552 * Return information about the mounted NTFS volume @sb in the statfs structure 2553 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2554 * called). We interpret the values to be correct of the moment in time at 2555 * which we are called. Most values are variable otherwise and this isn't just 2556 * the free values but the totals as well. For example we can increase the 2557 * total number of file nodes if we run out and we can keep doing this until 2558 * there is no more space on the volume left at all. 2559 * 2560 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2561 * ustat system calls. 2562 * 2563 * Return 0 on success or -errno on error. 2564 */ 2565 static int ntfs_statfs(struct super_block *sb, struct kstatfs *sfs) 2566 { 2567 s64 size; 2568 ntfs_volume *vol = NTFS_SB(sb); 2569 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2570 pgoff_t max_index; 2571 unsigned long flags; 2572 2573 ntfs_debug("Entering."); 2574 /* Type of filesystem. */ 2575 sfs->f_type = NTFS_SB_MAGIC; 2576 /* Optimal transfer block size. */ 2577 sfs->f_bsize = PAGE_CACHE_SIZE; 2578 /* 2579 * Total data blocks in filesystem in units of f_bsize and since 2580 * inodes are also stored in data blocs ($MFT is a file) this is just 2581 * the total clusters. 2582 */ 2583 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2584 PAGE_CACHE_SHIFT; 2585 /* Free data blocks in filesystem in units of f_bsize. */ 2586 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2587 PAGE_CACHE_SHIFT; 2588 if (size < 0LL) 2589 size = 0LL; 2590 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2591 sfs->f_bavail = sfs->f_bfree = size; 2592 /* Serialize accesses to the inode bitmap. */ 2593 down_read(&vol->mftbmp_lock); 2594 read_lock_irqsave(&mft_ni->size_lock, flags); 2595 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2596 /* 2597 * Convert the maximum number of set bits into bytes rounded up, then 2598 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we 2599 * have one full and one partial page max_index = 2. 2600 */ 2601 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2602 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2603 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2604 /* Number of inodes in filesystem (at this point in time). */ 2605 sfs->f_files = size; 2606 /* Free inodes in fs (based on current total count). */ 2607 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2608 up_read(&vol->mftbmp_lock); 2609 /* 2610 * File system id. This is extremely *nix flavour dependent and even 2611 * within Linux itself all fs do their own thing. I interpret this to 2612 * mean a unique id associated with the mounted fs and not the id 2613 * associated with the filesystem driver, the latter is already given 2614 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2615 * volume serial number splitting it into two 32-bit parts. We enter 2616 * the least significant 32-bits in f_fsid[0] and the most significant 2617 * 32-bits in f_fsid[1]. 2618 */ 2619 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff; 2620 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff; 2621 /* Maximum length of filenames. */ 2622 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2623 return 0; 2624 } 2625 2626 /** 2627 * The complete super operations. 2628 */ 2629 static struct super_operations ntfs_sops = { 2630 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2631 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */ 2632 .put_inode = ntfs_put_inode, /* VFS: Called just before 2633 the inode reference count 2634 is decreased. */ 2635 #ifdef NTFS_RW 2636 //.dirty_inode = NULL, /* VFS: Called from 2637 // __mark_inode_dirty(). */ 2638 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2639 disk. */ 2640 //.drop_inode = NULL, /* VFS: Called just after the 2641 // inode reference count has 2642 // been decreased to zero. 2643 // NOTE: The inode lock is 2644 // held. See fs/inode.c:: 2645 // generic_drop_inode(). */ 2646 //.delete_inode = NULL, /* VFS: Delete inode from disk. 2647 // Called when i_count becomes 2648 // 0 and i_nlink is also 0. */ 2649 //.write_super = NULL, /* Flush dirty super block to 2650 // disk. */ 2651 //.sync_fs = NULL, /* ? */ 2652 //.write_super_lockfs = NULL, /* ? */ 2653 //.unlockfs = NULL, /* ? */ 2654 #endif /* NTFS_RW */ 2655 .put_super = ntfs_put_super, /* Syscall: umount. */ 2656 .statfs = ntfs_statfs, /* Syscall: statfs */ 2657 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2658 .clear_inode = ntfs_clear_big_inode, /* VFS: Called when an inode is 2659 removed from memory. */ 2660 //.umount_begin = NULL, /* Forced umount. */ 2661 .show_options = ntfs_show_options, /* Show mount options in 2662 proc. */ 2663 }; 2664 2665 /** 2666 * ntfs_fill_super - mount an ntfs filesystem 2667 * @sb: super block of ntfs filesystem to mount 2668 * @opt: string containing the mount options 2669 * @silent: silence error output 2670 * 2671 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2672 * with the mount otions in @data with the NTFS filesystem. 2673 * 2674 * If @silent is true, remain silent even if errors are detected. This is used 2675 * during bootup, when the kernel tries to mount the root filesystem with all 2676 * registered filesystems one after the other until one succeeds. This implies 2677 * that all filesystems except the correct one will quite correctly and 2678 * expectedly return an error, but nobody wants to see error messages when in 2679 * fact this is what is supposed to happen. 2680 * 2681 * NOTE: @sb->s_flags contains the mount options flags. 2682 */ 2683 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2684 { 2685 ntfs_volume *vol; 2686 struct buffer_head *bh; 2687 struct inode *tmp_ino; 2688 int result; 2689 2690 ntfs_debug("Entering."); 2691 #ifndef NTFS_RW 2692 sb->s_flags |= MS_RDONLY; 2693 #endif /* ! NTFS_RW */ 2694 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2695 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2696 vol = NTFS_SB(sb); 2697 if (!vol) { 2698 if (!silent) 2699 ntfs_error(sb, "Allocation of NTFS volume structure " 2700 "failed. Aborting mount..."); 2701 return -ENOMEM; 2702 } 2703 /* Initialize ntfs_volume structure. */ 2704 *vol = (ntfs_volume) { 2705 .sb = sb, 2706 /* 2707 * Default is group and other don't have any access to files or 2708 * directories while owner has full access. Further, files by 2709 * default are not executable but directories are of course 2710 * browseable. 2711 */ 2712 .fmask = 0177, 2713 .dmask = 0077, 2714 }; 2715 init_rwsem(&vol->mftbmp_lock); 2716 init_rwsem(&vol->lcnbmp_lock); 2717 2718 unlock_kernel(); 2719 2720 /* By default, enable sparse support. */ 2721 NVolSetSparseEnabled(vol); 2722 2723 /* Important to get the mount options dealt with now. */ 2724 if (!parse_options(vol, (char*)opt)) 2725 goto err_out_now; 2726 2727 /* 2728 * TODO: Fail safety check. In the future we should really be able to 2729 * cope with this being the case, but for now just bail out. 2730 */ 2731 if (bdev_hardsect_size(sb->s_bdev) > NTFS_BLOCK_SIZE) { 2732 if (!silent) 2733 ntfs_error(sb, "Device has unsupported hardsect_size."); 2734 goto err_out_now; 2735 } 2736 2737 /* Setup the device access block size to NTFS_BLOCK_SIZE. */ 2738 if (sb_set_blocksize(sb, NTFS_BLOCK_SIZE) != NTFS_BLOCK_SIZE) { 2739 if (!silent) 2740 ntfs_error(sb, "Unable to set block size."); 2741 goto err_out_now; 2742 } 2743 2744 /* Get the size of the device in units of NTFS_BLOCK_SIZE bytes. */ 2745 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2746 NTFS_BLOCK_SIZE_BITS; 2747 2748 /* Read the boot sector and return unlocked buffer head to it. */ 2749 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2750 if (!silent) 2751 ntfs_error(sb, "Not an NTFS volume."); 2752 goto err_out_now; 2753 } 2754 2755 /* 2756 * Extract the data from the boot sector and setup the ntfs super block 2757 * using it. 2758 */ 2759 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2760 2761 /* Initialize the cluster and mft allocators. */ 2762 ntfs_setup_allocators(vol); 2763 2764 brelse(bh); 2765 2766 if (!result) { 2767 if (!silent) 2768 ntfs_error(sb, "Unsupported NTFS filesystem."); 2769 goto err_out_now; 2770 } 2771 2772 /* 2773 * TODO: When we start coping with sector sizes different from 2774 * NTFS_BLOCK_SIZE, we now probably need to set the blocksize of the 2775 * device (probably to NTFS_BLOCK_SIZE). 2776 */ 2777 2778 /* Setup remaining fields in the super block. */ 2779 sb->s_magic = NTFS_SB_MAGIC; 2780 2781 /* 2782 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2783 * sb->s_maxbytes = ~0ULL >> 1; 2784 * But the kernel uses a long as the page cache page index which on 2785 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2786 * defined to the maximum the page cache page index can cope with 2787 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2788 */ 2789 sb->s_maxbytes = MAX_LFS_FILESIZE; 2790 2791 sb->s_time_gran = 100; 2792 2793 /* 2794 * Now load the metadata required for the page cache and our address 2795 * space operations to function. We do this by setting up a specialised 2796 * read_inode method and then just calling the normal iget() to obtain 2797 * the inode for $MFT which is sufficient to allow our normal inode 2798 * operations and associated address space operations to function. 2799 */ 2800 sb->s_op = &ntfs_sops; 2801 tmp_ino = new_inode(sb); 2802 if (!tmp_ino) { 2803 if (!silent) 2804 ntfs_error(sb, "Failed to load essential metadata."); 2805 goto err_out_now; 2806 } 2807 tmp_ino->i_ino = FILE_MFT; 2808 insert_inode_hash(tmp_ino); 2809 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2810 if (!silent) 2811 ntfs_error(sb, "Failed to load essential metadata."); 2812 goto iput_tmp_ino_err_out_now; 2813 } 2814 down(&ntfs_lock); 2815 /* 2816 * The current mount is a compression user if the cluster size is 2817 * less than or equal 4kiB. 2818 */ 2819 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2820 result = allocate_compression_buffers(); 2821 if (result) { 2822 ntfs_error(NULL, "Failed to allocate buffers " 2823 "for compression engine."); 2824 ntfs_nr_compression_users--; 2825 up(&ntfs_lock); 2826 goto iput_tmp_ino_err_out_now; 2827 } 2828 } 2829 /* 2830 * Generate the global default upcase table if necessary. Also 2831 * temporarily increment the number of upcase users to avoid race 2832 * conditions with concurrent (u)mounts. 2833 */ 2834 if (!default_upcase) 2835 default_upcase = generate_default_upcase(); 2836 ntfs_nr_upcase_users++; 2837 up(&ntfs_lock); 2838 /* 2839 * From now on, ignore @silent parameter. If we fail below this line, 2840 * it will be due to a corrupt fs or a system error, so we report it. 2841 */ 2842 /* 2843 * Open the system files with normal access functions and complete 2844 * setting up the ntfs super block. 2845 */ 2846 if (!load_system_files(vol)) { 2847 ntfs_error(sb, "Failed to load system files."); 2848 goto unl_upcase_iput_tmp_ino_err_out_now; 2849 } 2850 if ((sb->s_root = d_alloc_root(vol->root_ino))) { 2851 /* We increment i_count simulating an ntfs_iget(). */ 2852 atomic_inc(&vol->root_ino->i_count); 2853 ntfs_debug("Exiting, status successful."); 2854 /* Release the default upcase if it has no users. */ 2855 down(&ntfs_lock); 2856 if (!--ntfs_nr_upcase_users && default_upcase) { 2857 ntfs_free(default_upcase); 2858 default_upcase = NULL; 2859 } 2860 up(&ntfs_lock); 2861 sb->s_export_op = &ntfs_export_ops; 2862 lock_kernel(); 2863 return 0; 2864 } 2865 ntfs_error(sb, "Failed to allocate root directory."); 2866 /* Clean up after the successful load_system_files() call from above. */ 2867 // TODO: Use ntfs_put_super() instead of repeating all this code... 2868 // FIXME: Should mark the volume clean as the error is most likely 2869 // -ENOMEM. 2870 iput(vol->vol_ino); 2871 vol->vol_ino = NULL; 2872 /* NTFS 3.0+ specific clean up. */ 2873 if (vol->major_ver >= 3) { 2874 #ifdef NTFS_RW 2875 if (vol->usnjrnl_j_ino) { 2876 iput(vol->usnjrnl_j_ino); 2877 vol->usnjrnl_j_ino = NULL; 2878 } 2879 if (vol->usnjrnl_max_ino) { 2880 iput(vol->usnjrnl_max_ino); 2881 vol->usnjrnl_max_ino = NULL; 2882 } 2883 if (vol->usnjrnl_ino) { 2884 iput(vol->usnjrnl_ino); 2885 vol->usnjrnl_ino = NULL; 2886 } 2887 if (vol->quota_q_ino) { 2888 iput(vol->quota_q_ino); 2889 vol->quota_q_ino = NULL; 2890 } 2891 if (vol->quota_ino) { 2892 iput(vol->quota_ino); 2893 vol->quota_ino = NULL; 2894 } 2895 #endif /* NTFS_RW */ 2896 if (vol->extend_ino) { 2897 iput(vol->extend_ino); 2898 vol->extend_ino = NULL; 2899 } 2900 if (vol->secure_ino) { 2901 iput(vol->secure_ino); 2902 vol->secure_ino = NULL; 2903 } 2904 } 2905 iput(vol->root_ino); 2906 vol->root_ino = NULL; 2907 iput(vol->lcnbmp_ino); 2908 vol->lcnbmp_ino = NULL; 2909 iput(vol->mftbmp_ino); 2910 vol->mftbmp_ino = NULL; 2911 #ifdef NTFS_RW 2912 if (vol->logfile_ino) { 2913 iput(vol->logfile_ino); 2914 vol->logfile_ino = NULL; 2915 } 2916 if (vol->mftmirr_ino) { 2917 iput(vol->mftmirr_ino); 2918 vol->mftmirr_ino = NULL; 2919 } 2920 #endif /* NTFS_RW */ 2921 /* Throw away the table of attribute definitions. */ 2922 vol->attrdef_size = 0; 2923 if (vol->attrdef) { 2924 ntfs_free(vol->attrdef); 2925 vol->attrdef = NULL; 2926 } 2927 vol->upcase_len = 0; 2928 down(&ntfs_lock); 2929 if (vol->upcase == default_upcase) { 2930 ntfs_nr_upcase_users--; 2931 vol->upcase = NULL; 2932 } 2933 up(&ntfs_lock); 2934 if (vol->upcase) { 2935 ntfs_free(vol->upcase); 2936 vol->upcase = NULL; 2937 } 2938 if (vol->nls_map) { 2939 unload_nls(vol->nls_map); 2940 vol->nls_map = NULL; 2941 } 2942 /* Error exit code path. */ 2943 unl_upcase_iput_tmp_ino_err_out_now: 2944 /* 2945 * Decrease the number of upcase users and destroy the global default 2946 * upcase table if necessary. 2947 */ 2948 down(&ntfs_lock); 2949 if (!--ntfs_nr_upcase_users && default_upcase) { 2950 ntfs_free(default_upcase); 2951 default_upcase = NULL; 2952 } 2953 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2954 free_compression_buffers(); 2955 up(&ntfs_lock); 2956 iput_tmp_ino_err_out_now: 2957 iput(tmp_ino); 2958 if (vol->mft_ino && vol->mft_ino != tmp_ino) 2959 iput(vol->mft_ino); 2960 vol->mft_ino = NULL; 2961 /* 2962 * This is needed to get ntfs_clear_extent_inode() called for each 2963 * inode we have ever called ntfs_iget()/iput() on, otherwise we A) 2964 * leak resources and B) a subsequent mount fails automatically due to 2965 * ntfs_iget() never calling down into our ntfs_read_locked_inode() 2966 * method again... FIXME: Do we need to do this twice now because of 2967 * attribute inodes? I think not, so leave as is for now... (AIA) 2968 */ 2969 if (invalidate_inodes(sb)) { 2970 ntfs_error(sb, "Busy inodes left. This is most likely a NTFS " 2971 "driver bug."); 2972 /* Copied from fs/super.c. I just love this message. (-; */ 2973 printk("NTFS: Busy inodes after umount. Self-destruct in 5 " 2974 "seconds. Have a nice day...\n"); 2975 } 2976 /* Errors at this stage are irrelevant. */ 2977 err_out_now: 2978 lock_kernel(); 2979 sb->s_fs_info = NULL; 2980 kfree(vol); 2981 ntfs_debug("Failed, returning -EINVAL."); 2982 return -EINVAL; 2983 } 2984 2985 /* 2986 * This is a slab cache to optimize allocations and deallocations of Unicode 2987 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 2988 * (255) Unicode characters + a terminating NULL Unicode character. 2989 */ 2990 kmem_cache_t *ntfs_name_cache; 2991 2992 /* Slab caches for efficient allocation/deallocation of inodes. */ 2993 kmem_cache_t *ntfs_inode_cache; 2994 kmem_cache_t *ntfs_big_inode_cache; 2995 2996 /* Init once constructor for the inode slab cache. */ 2997 static void ntfs_big_inode_init_once(void *foo, kmem_cache_t *cachep, 2998 unsigned long flags) 2999 { 3000 ntfs_inode *ni = (ntfs_inode *)foo; 3001 3002 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 3003 SLAB_CTOR_CONSTRUCTOR) 3004 inode_init_once(VFS_I(ni)); 3005 } 3006 3007 /* 3008 * Slab caches to optimize allocations and deallocations of attribute search 3009 * contexts and index contexts, respectively. 3010 */ 3011 kmem_cache_t *ntfs_attr_ctx_cache; 3012 kmem_cache_t *ntfs_index_ctx_cache; 3013 3014 /* Driver wide semaphore. */ 3015 DECLARE_MUTEX(ntfs_lock); 3016 3017 static struct super_block *ntfs_get_sb(struct file_system_type *fs_type, 3018 int flags, const char *dev_name, void *data) 3019 { 3020 return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3021 } 3022 3023 static struct file_system_type ntfs_fs_type = { 3024 .owner = THIS_MODULE, 3025 .name = "ntfs", 3026 .get_sb = ntfs_get_sb, 3027 .kill_sb = kill_block_super, 3028 .fs_flags = FS_REQUIRES_DEV, 3029 }; 3030 3031 /* Stable names for the slab caches. */ 3032 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3033 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3034 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3035 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3036 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3037 3038 static int __init init_ntfs_fs(void) 3039 { 3040 int err = 0; 3041 3042 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3043 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/" 3044 #ifdef NTFS_RW 3045 "W" 3046 #else 3047 "O" 3048 #endif 3049 #ifdef DEBUG 3050 " DEBUG" 3051 #endif 3052 #ifdef MODULE 3053 " MODULE" 3054 #endif 3055 "].\n"); 3056 3057 ntfs_debug("Debug messages are enabled."); 3058 3059 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3060 sizeof(ntfs_index_context), 0 /* offset */, 3061 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */); 3062 if (!ntfs_index_ctx_cache) { 3063 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3064 ntfs_index_ctx_cache_name); 3065 goto ictx_err_out; 3066 } 3067 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3068 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3069 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */); 3070 if (!ntfs_attr_ctx_cache) { 3071 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3072 ntfs_attr_ctx_cache_name); 3073 goto actx_err_out; 3074 } 3075 3076 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3077 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3078 SLAB_HWCACHE_ALIGN, NULL, NULL); 3079 if (!ntfs_name_cache) { 3080 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3081 ntfs_name_cache_name); 3082 goto name_err_out; 3083 } 3084 3085 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3086 sizeof(ntfs_inode), 0, 3087 SLAB_RECLAIM_ACCOUNT, NULL, NULL); 3088 if (!ntfs_inode_cache) { 3089 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3090 ntfs_inode_cache_name); 3091 goto inode_err_out; 3092 } 3093 3094 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3095 sizeof(big_ntfs_inode), 0, 3096 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 3097 ntfs_big_inode_init_once, NULL); 3098 if (!ntfs_big_inode_cache) { 3099 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3100 ntfs_big_inode_cache_name); 3101 goto big_inode_err_out; 3102 } 3103 3104 /* Register the ntfs sysctls. */ 3105 err = ntfs_sysctl(1); 3106 if (err) { 3107 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n"); 3108 goto sysctl_err_out; 3109 } 3110 3111 err = register_filesystem(&ntfs_fs_type); 3112 if (!err) { 3113 ntfs_debug("NTFS driver registered successfully."); 3114 return 0; /* Success! */ 3115 } 3116 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n"); 3117 3118 sysctl_err_out: 3119 kmem_cache_destroy(ntfs_big_inode_cache); 3120 big_inode_err_out: 3121 kmem_cache_destroy(ntfs_inode_cache); 3122 inode_err_out: 3123 kmem_cache_destroy(ntfs_name_cache); 3124 name_err_out: 3125 kmem_cache_destroy(ntfs_attr_ctx_cache); 3126 actx_err_out: 3127 kmem_cache_destroy(ntfs_index_ctx_cache); 3128 ictx_err_out: 3129 if (!err) { 3130 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver " 3131 "registration...\n"); 3132 err = -ENOMEM; 3133 } 3134 return err; 3135 } 3136 3137 static void __exit exit_ntfs_fs(void) 3138 { 3139 int err = 0; 3140 3141 ntfs_debug("Unregistering NTFS driver."); 3142 3143 unregister_filesystem(&ntfs_fs_type); 3144 3145 if (kmem_cache_destroy(ntfs_big_inode_cache) && (err = 1)) 3146 printk(KERN_CRIT "NTFS: Failed to destory %s.\n", 3147 ntfs_big_inode_cache_name); 3148 if (kmem_cache_destroy(ntfs_inode_cache) && (err = 1)) 3149 printk(KERN_CRIT "NTFS: Failed to destory %s.\n", 3150 ntfs_inode_cache_name); 3151 if (kmem_cache_destroy(ntfs_name_cache) && (err = 1)) 3152 printk(KERN_CRIT "NTFS: Failed to destory %s.\n", 3153 ntfs_name_cache_name); 3154 if (kmem_cache_destroy(ntfs_attr_ctx_cache) && (err = 1)) 3155 printk(KERN_CRIT "NTFS: Failed to destory %s.\n", 3156 ntfs_attr_ctx_cache_name); 3157 if (kmem_cache_destroy(ntfs_index_ctx_cache) && (err = 1)) 3158 printk(KERN_CRIT "NTFS: Failed to destory %s.\n", 3159 ntfs_index_ctx_cache_name); 3160 if (err) 3161 printk(KERN_CRIT "NTFS: This causes memory to leak! There is " 3162 "probably a BUG in the driver! Please report " 3163 "you saw this message to " 3164 "linux-ntfs-dev@lists.sourceforge.net\n"); 3165 /* Unregister the ntfs sysctls. */ 3166 ntfs_sysctl(0); 3167 } 3168 3169 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>"); 3170 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2005 Anton Altaparmakov"); 3171 MODULE_VERSION(NTFS_VERSION); 3172 MODULE_LICENSE("GPL"); 3173 #ifdef DEBUG 3174 module_param(debug_msgs, bool, 0); 3175 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3176 #endif 3177 3178 module_init(init_ntfs_fs) 3179 module_exit(exit_ntfs_fs) 3180