1 /* 2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc. 5 * Copyright (c) 2001,2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/stddef.h> 24 #include <linux/init.h> 25 #include <linux/slab.h> 26 #include <linux/string.h> 27 #include <linux/spinlock.h> 28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 29 #include <linux/backing-dev.h> 30 #include <linux/buffer_head.h> 31 #include <linux/vfs.h> 32 #include <linux/moduleparam.h> 33 #include <linux/bitmap.h> 34 35 #include "sysctl.h" 36 #include "logfile.h" 37 #include "quota.h" 38 #include "usnjrnl.h" 39 #include "dir.h" 40 #include "debug.h" 41 #include "index.h" 42 #include "inode.h" 43 #include "aops.h" 44 #include "layout.h" 45 #include "malloc.h" 46 #include "ntfs.h" 47 48 /* Number of mounted filesystems which have compression enabled. */ 49 static unsigned long ntfs_nr_compression_users; 50 51 /* A global default upcase table and a corresponding reference count. */ 52 static ntfschar *default_upcase = NULL; 53 static unsigned long ntfs_nr_upcase_users = 0; 54 55 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 56 typedef enum { 57 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 58 ON_ERRORS_PANIC = 0x01, 59 ON_ERRORS_REMOUNT_RO = 0x02, 60 ON_ERRORS_CONTINUE = 0x04, 61 /* Optional, can be combined with any of the above. */ 62 ON_ERRORS_RECOVER = 0x10, 63 } ON_ERRORS_ACTIONS; 64 65 const option_t on_errors_arr[] = { 66 { ON_ERRORS_PANIC, "panic" }, 67 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 68 { ON_ERRORS_CONTINUE, "continue", }, 69 { ON_ERRORS_RECOVER, "recover" }, 70 { 0, NULL } 71 }; 72 73 /** 74 * simple_getbool - 75 * 76 * Copied from old ntfs driver (which copied from vfat driver). 77 */ 78 static int simple_getbool(char *s, bool *setval) 79 { 80 if (s) { 81 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 82 *setval = true; 83 else if (!strcmp(s, "0") || !strcmp(s, "no") || 84 !strcmp(s, "false")) 85 *setval = false; 86 else 87 return 0; 88 } else 89 *setval = true; 90 return 1; 91 } 92 93 /** 94 * parse_options - parse the (re)mount options 95 * @vol: ntfs volume 96 * @opt: string containing the (re)mount options 97 * 98 * Parse the recognized options in @opt for the ntfs volume described by @vol. 99 */ 100 static bool parse_options(ntfs_volume *vol, char *opt) 101 { 102 char *p, *v, *ov; 103 static char *utf8 = "utf8"; 104 int errors = 0, sloppy = 0; 105 uid_t uid = (uid_t)-1; 106 gid_t gid = (gid_t)-1; 107 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1; 108 int mft_zone_multiplier = -1, on_errors = -1; 109 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 110 struct nls_table *nls_map = NULL, *old_nls; 111 112 /* I am lazy... (-8 */ 113 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 114 if (!strcmp(p, option)) { \ 115 if (!v || !*v) \ 116 variable = default_value; \ 117 else { \ 118 variable = simple_strtoul(ov = v, &v, 0); \ 119 if (*v) \ 120 goto needs_val; \ 121 } \ 122 } 123 #define NTFS_GETOPT(option, variable) \ 124 if (!strcmp(p, option)) { \ 125 if (!v || !*v) \ 126 goto needs_arg; \ 127 variable = simple_strtoul(ov = v, &v, 0); \ 128 if (*v) \ 129 goto needs_val; \ 130 } 131 #define NTFS_GETOPT_OCTAL(option, variable) \ 132 if (!strcmp(p, option)) { \ 133 if (!v || !*v) \ 134 goto needs_arg; \ 135 variable = simple_strtoul(ov = v, &v, 8); \ 136 if (*v) \ 137 goto needs_val; \ 138 } 139 #define NTFS_GETOPT_BOOL(option, variable) \ 140 if (!strcmp(p, option)) { \ 141 bool val; \ 142 if (!simple_getbool(v, &val)) \ 143 goto needs_bool; \ 144 variable = val; \ 145 } 146 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 147 if (!strcmp(p, option)) { \ 148 int _i; \ 149 if (!v || !*v) \ 150 goto needs_arg; \ 151 ov = v; \ 152 if (variable == -1) \ 153 variable = 0; \ 154 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 155 if (!strcmp(opt_array[_i].str, v)) { \ 156 variable |= opt_array[_i].val; \ 157 break; \ 158 } \ 159 if (!opt_array[_i].str || !*opt_array[_i].str) \ 160 goto needs_val; \ 161 } 162 if (!opt || !*opt) 163 goto no_mount_options; 164 ntfs_debug("Entering with mount options string: %s", opt); 165 while ((p = strsep(&opt, ","))) { 166 if ((v = strchr(p, '='))) 167 *v++ = 0; 168 NTFS_GETOPT("uid", uid) 169 else NTFS_GETOPT("gid", gid) 170 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 171 else NTFS_GETOPT_OCTAL("fmask", fmask) 172 else NTFS_GETOPT_OCTAL("dmask", dmask) 173 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 174 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 175 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 176 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 177 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 178 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 179 on_errors_arr) 180 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 181 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 182 p); 183 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 184 if (!strcmp(p, "iocharset")) 185 ntfs_warning(vol->sb, "Option iocharset is " 186 "deprecated. Please use " 187 "option nls=<charsetname> in " 188 "the future."); 189 if (!v || !*v) 190 goto needs_arg; 191 use_utf8: 192 old_nls = nls_map; 193 nls_map = load_nls(v); 194 if (!nls_map) { 195 if (!old_nls) { 196 ntfs_error(vol->sb, "NLS character set " 197 "%s not found.", v); 198 return false; 199 } 200 ntfs_error(vol->sb, "NLS character set %s not " 201 "found. Using previous one %s.", 202 v, old_nls->charset); 203 nls_map = old_nls; 204 } else /* nls_map */ { 205 unload_nls(old_nls); 206 } 207 } else if (!strcmp(p, "utf8")) { 208 bool val = false; 209 ntfs_warning(vol->sb, "Option utf8 is no longer " 210 "supported, using option nls=utf8. Please " 211 "use option nls=utf8 in the future and " 212 "make sure utf8 is compiled either as a " 213 "module or into the kernel."); 214 if (!v || !*v) 215 val = true; 216 else if (!simple_getbool(v, &val)) 217 goto needs_bool; 218 if (val) { 219 v = utf8; 220 goto use_utf8; 221 } 222 } else { 223 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 224 if (errors < INT_MAX) 225 errors++; 226 } 227 #undef NTFS_GETOPT_OPTIONS_ARRAY 228 #undef NTFS_GETOPT_BOOL 229 #undef NTFS_GETOPT 230 #undef NTFS_GETOPT_WITH_DEFAULT 231 } 232 no_mount_options: 233 if (errors && !sloppy) 234 return false; 235 if (sloppy) 236 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 237 "unrecognized mount option(s) and continuing."); 238 /* Keep this first! */ 239 if (on_errors != -1) { 240 if (!on_errors) { 241 ntfs_error(vol->sb, "Invalid errors option argument " 242 "or bug in options parser."); 243 return false; 244 } 245 } 246 if (nls_map) { 247 if (vol->nls_map && vol->nls_map != nls_map) { 248 ntfs_error(vol->sb, "Cannot change NLS character set " 249 "on remount."); 250 return false; 251 } /* else (!vol->nls_map) */ 252 ntfs_debug("Using NLS character set %s.", nls_map->charset); 253 vol->nls_map = nls_map; 254 } else /* (!nls_map) */ { 255 if (!vol->nls_map) { 256 vol->nls_map = load_nls_default(); 257 if (!vol->nls_map) { 258 ntfs_error(vol->sb, "Failed to load default " 259 "NLS character set."); 260 return false; 261 } 262 ntfs_debug("Using default NLS character set (%s).", 263 vol->nls_map->charset); 264 } 265 } 266 if (mft_zone_multiplier != -1) { 267 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 268 mft_zone_multiplier) { 269 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 270 "on remount."); 271 return false; 272 } 273 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 274 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 275 "Using default value, i.e. 1."); 276 mft_zone_multiplier = 1; 277 } 278 vol->mft_zone_multiplier = mft_zone_multiplier; 279 } 280 if (!vol->mft_zone_multiplier) 281 vol->mft_zone_multiplier = 1; 282 if (on_errors != -1) 283 vol->on_errors = on_errors; 284 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 285 vol->on_errors |= ON_ERRORS_CONTINUE; 286 if (uid != (uid_t)-1) 287 vol->uid = uid; 288 if (gid != (gid_t)-1) 289 vol->gid = gid; 290 if (fmask != (mode_t)-1) 291 vol->fmask = fmask; 292 if (dmask != (mode_t)-1) 293 vol->dmask = dmask; 294 if (show_sys_files != -1) { 295 if (show_sys_files) 296 NVolSetShowSystemFiles(vol); 297 else 298 NVolClearShowSystemFiles(vol); 299 } 300 if (case_sensitive != -1) { 301 if (case_sensitive) 302 NVolSetCaseSensitive(vol); 303 else 304 NVolClearCaseSensitive(vol); 305 } 306 if (disable_sparse != -1) { 307 if (disable_sparse) 308 NVolClearSparseEnabled(vol); 309 else { 310 if (!NVolSparseEnabled(vol) && 311 vol->major_ver && vol->major_ver < 3) 312 ntfs_warning(vol->sb, "Not enabling sparse " 313 "support due to NTFS volume " 314 "version %i.%i (need at least " 315 "version 3.0).", vol->major_ver, 316 vol->minor_ver); 317 else 318 NVolSetSparseEnabled(vol); 319 } 320 } 321 return true; 322 needs_arg: 323 ntfs_error(vol->sb, "The %s option requires an argument.", p); 324 return false; 325 needs_bool: 326 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 327 return false; 328 needs_val: 329 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 330 return false; 331 } 332 333 #ifdef NTFS_RW 334 335 /** 336 * ntfs_write_volume_flags - write new flags to the volume information flags 337 * @vol: ntfs volume on which to modify the flags 338 * @flags: new flags value for the volume information flags 339 * 340 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 341 * instead (see below). 342 * 343 * Replace the volume information flags on the volume @vol with the value 344 * supplied in @flags. Note, this overwrites the volume information flags, so 345 * make sure to combine the flags you want to modify with the old flags and use 346 * the result when calling ntfs_write_volume_flags(). 347 * 348 * Return 0 on success and -errno on error. 349 */ 350 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 351 { 352 ntfs_inode *ni = NTFS_I(vol->vol_ino); 353 MFT_RECORD *m; 354 VOLUME_INFORMATION *vi; 355 ntfs_attr_search_ctx *ctx; 356 int err; 357 358 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 359 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 360 if (vol->vol_flags == flags) 361 goto done; 362 BUG_ON(!ni); 363 m = map_mft_record(ni); 364 if (IS_ERR(m)) { 365 err = PTR_ERR(m); 366 goto err_out; 367 } 368 ctx = ntfs_attr_get_search_ctx(ni, m); 369 if (!ctx) { 370 err = -ENOMEM; 371 goto put_unm_err_out; 372 } 373 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 374 ctx); 375 if (err) 376 goto put_unm_err_out; 377 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 378 le16_to_cpu(ctx->attr->data.resident.value_offset)); 379 vol->vol_flags = vi->flags = flags; 380 flush_dcache_mft_record_page(ctx->ntfs_ino); 381 mark_mft_record_dirty(ctx->ntfs_ino); 382 ntfs_attr_put_search_ctx(ctx); 383 unmap_mft_record(ni); 384 done: 385 ntfs_debug("Done."); 386 return 0; 387 put_unm_err_out: 388 if (ctx) 389 ntfs_attr_put_search_ctx(ctx); 390 unmap_mft_record(ni); 391 err_out: 392 ntfs_error(vol->sb, "Failed with error code %i.", -err); 393 return err; 394 } 395 396 /** 397 * ntfs_set_volume_flags - set bits in the volume information flags 398 * @vol: ntfs volume on which to modify the flags 399 * @flags: flags to set on the volume 400 * 401 * Set the bits in @flags in the volume information flags on the volume @vol. 402 * 403 * Return 0 on success and -errno on error. 404 */ 405 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 406 { 407 flags &= VOLUME_FLAGS_MASK; 408 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 409 } 410 411 /** 412 * ntfs_clear_volume_flags - clear bits in the volume information flags 413 * @vol: ntfs volume on which to modify the flags 414 * @flags: flags to clear on the volume 415 * 416 * Clear the bits in @flags in the volume information flags on the volume @vol. 417 * 418 * Return 0 on success and -errno on error. 419 */ 420 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 421 { 422 flags &= VOLUME_FLAGS_MASK; 423 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 424 return ntfs_write_volume_flags(vol, flags); 425 } 426 427 #endif /* NTFS_RW */ 428 429 /** 430 * ntfs_remount - change the mount options of a mounted ntfs filesystem 431 * @sb: superblock of mounted ntfs filesystem 432 * @flags: remount flags 433 * @opt: remount options string 434 * 435 * Change the mount options of an already mounted ntfs filesystem. 436 * 437 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 438 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 439 * @sb->s_flags are not changed. 440 */ 441 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 442 { 443 ntfs_volume *vol = NTFS_SB(sb); 444 445 ntfs_debug("Entering with remount options string: %s", opt); 446 447 #ifndef NTFS_RW 448 /* For read-only compiled driver, enforce read-only flag. */ 449 *flags |= MS_RDONLY; 450 #else /* NTFS_RW */ 451 /* 452 * For the read-write compiled driver, if we are remounting read-write, 453 * make sure there are no volume errors and that no unsupported volume 454 * flags are set. Also, empty the logfile journal as it would become 455 * stale as soon as something is written to the volume and mark the 456 * volume dirty so that chkdsk is run if the volume is not umounted 457 * cleanly. Finally, mark the quotas out of date so Windows rescans 458 * the volume on boot and updates them. 459 * 460 * When remounting read-only, mark the volume clean if no volume errors 461 * have occured. 462 */ 463 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 464 static const char *es = ". Cannot remount read-write."; 465 466 /* Remounting read-write. */ 467 if (NVolErrors(vol)) { 468 ntfs_error(sb, "Volume has errors and is read-only%s", 469 es); 470 return -EROFS; 471 } 472 if (vol->vol_flags & VOLUME_IS_DIRTY) { 473 ntfs_error(sb, "Volume is dirty and read-only%s", es); 474 return -EROFS; 475 } 476 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 477 ntfs_error(sb, "Volume has been modified by chkdsk " 478 "and is read-only%s", es); 479 return -EROFS; 480 } 481 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 482 ntfs_error(sb, "Volume has unsupported flags set " 483 "(0x%x) and is read-only%s", 484 (unsigned)le16_to_cpu(vol->vol_flags), 485 es); 486 return -EROFS; 487 } 488 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 489 ntfs_error(sb, "Failed to set dirty bit in volume " 490 "information flags%s", es); 491 return -EROFS; 492 } 493 #if 0 494 // TODO: Enable this code once we start modifying anything that 495 // is different between NTFS 1.2 and 3.x... 496 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 497 if ((vol->major_ver > 1)) { 498 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 499 ntfs_error(sb, "Failed to set NT4 " 500 "compatibility flag%s", es); 501 NVolSetErrors(vol); 502 return -EROFS; 503 } 504 } 505 #endif 506 if (!ntfs_empty_logfile(vol->logfile_ino)) { 507 ntfs_error(sb, "Failed to empty journal $LogFile%s", 508 es); 509 NVolSetErrors(vol); 510 return -EROFS; 511 } 512 if (!ntfs_mark_quotas_out_of_date(vol)) { 513 ntfs_error(sb, "Failed to mark quotas out of date%s", 514 es); 515 NVolSetErrors(vol); 516 return -EROFS; 517 } 518 if (!ntfs_stamp_usnjrnl(vol)) { 519 ntfs_error(sb, "Failed to stamp transation log " 520 "($UsnJrnl)%s", es); 521 NVolSetErrors(vol); 522 return -EROFS; 523 } 524 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 525 /* Remounting read-only. */ 526 if (!NVolErrors(vol)) { 527 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 528 ntfs_warning(sb, "Failed to clear dirty bit " 529 "in volume information " 530 "flags. Run chkdsk."); 531 } 532 } 533 #endif /* NTFS_RW */ 534 535 // TODO: Deal with *flags. 536 537 if (!parse_options(vol, opt)) 538 return -EINVAL; 539 540 ntfs_debug("Done."); 541 return 0; 542 } 543 544 /** 545 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 546 * @sb: Super block of the device to which @b belongs. 547 * @b: Boot sector of device @sb to check. 548 * @silent: If 'true', all output will be silenced. 549 * 550 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 551 * sector. Returns 'true' if it is valid and 'false' if not. 552 * 553 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 554 * is 'true'. 555 */ 556 static bool is_boot_sector_ntfs(const struct super_block *sb, 557 const NTFS_BOOT_SECTOR *b, const bool silent) 558 { 559 /* 560 * Check that checksum == sum of u32 values from b to the checksum 561 * field. If checksum is zero, no checking is done. We will work when 562 * the checksum test fails, since some utilities update the boot sector 563 * ignoring the checksum which leaves the checksum out-of-date. We 564 * report a warning if this is the case. 565 */ 566 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 567 le32 *u; 568 u32 i; 569 570 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 571 i += le32_to_cpup(u); 572 if (le32_to_cpu(b->checksum) != i) 573 ntfs_warning(sb, "Invalid boot sector checksum."); 574 } 575 /* Check OEMidentifier is "NTFS " */ 576 if (b->oem_id != magicNTFS) 577 goto not_ntfs; 578 /* Check bytes per sector value is between 256 and 4096. */ 579 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 580 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 581 goto not_ntfs; 582 /* Check sectors per cluster value is valid. */ 583 switch (b->bpb.sectors_per_cluster) { 584 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 585 break; 586 default: 587 goto not_ntfs; 588 } 589 /* Check the cluster size is not above the maximum (64kiB). */ 590 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 591 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 592 goto not_ntfs; 593 /* Check reserved/unused fields are really zero. */ 594 if (le16_to_cpu(b->bpb.reserved_sectors) || 595 le16_to_cpu(b->bpb.root_entries) || 596 le16_to_cpu(b->bpb.sectors) || 597 le16_to_cpu(b->bpb.sectors_per_fat) || 598 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 599 goto not_ntfs; 600 /* Check clusters per file mft record value is valid. */ 601 if ((u8)b->clusters_per_mft_record < 0xe1 || 602 (u8)b->clusters_per_mft_record > 0xf7) 603 switch (b->clusters_per_mft_record) { 604 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 605 break; 606 default: 607 goto not_ntfs; 608 } 609 /* Check clusters per index block value is valid. */ 610 if ((u8)b->clusters_per_index_record < 0xe1 || 611 (u8)b->clusters_per_index_record > 0xf7) 612 switch (b->clusters_per_index_record) { 613 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 614 break; 615 default: 616 goto not_ntfs; 617 } 618 /* 619 * Check for valid end of sector marker. We will work without it, but 620 * many BIOSes will refuse to boot from a bootsector if the magic is 621 * incorrect, so we emit a warning. 622 */ 623 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 624 ntfs_warning(sb, "Invalid end of sector marker."); 625 return true; 626 not_ntfs: 627 return false; 628 } 629 630 /** 631 * read_ntfs_boot_sector - read the NTFS boot sector of a device 632 * @sb: super block of device to read the boot sector from 633 * @silent: if true, suppress all output 634 * 635 * Reads the boot sector from the device and validates it. If that fails, tries 636 * to read the backup boot sector, first from the end of the device a-la NT4 and 637 * later and then from the middle of the device a-la NT3.51 and before. 638 * 639 * If a valid boot sector is found but it is not the primary boot sector, we 640 * repair the primary boot sector silently (unless the device is read-only or 641 * the primary boot sector is not accessible). 642 * 643 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 644 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 645 * to their respective values. 646 * 647 * Return the unlocked buffer head containing the boot sector or NULL on error. 648 */ 649 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 650 const int silent) 651 { 652 const char *read_err_str = "Unable to read %s boot sector."; 653 struct buffer_head *bh_primary, *bh_backup; 654 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 655 656 /* Try to read primary boot sector. */ 657 if ((bh_primary = sb_bread(sb, 0))) { 658 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 659 bh_primary->b_data, silent)) 660 return bh_primary; 661 if (!silent) 662 ntfs_error(sb, "Primary boot sector is invalid."); 663 } else if (!silent) 664 ntfs_error(sb, read_err_str, "primary"); 665 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 666 if (bh_primary) 667 brelse(bh_primary); 668 if (!silent) 669 ntfs_error(sb, "Mount option errors=recover not used. " 670 "Aborting without trying to recover."); 671 return NULL; 672 } 673 /* Try to read NT4+ backup boot sector. */ 674 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 675 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 676 bh_backup->b_data, silent)) 677 goto hotfix_primary_boot_sector; 678 brelse(bh_backup); 679 } else if (!silent) 680 ntfs_error(sb, read_err_str, "backup"); 681 /* Try to read NT3.51- backup boot sector. */ 682 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 683 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 684 bh_backup->b_data, silent)) 685 goto hotfix_primary_boot_sector; 686 if (!silent) 687 ntfs_error(sb, "Could not find a valid backup boot " 688 "sector."); 689 brelse(bh_backup); 690 } else if (!silent) 691 ntfs_error(sb, read_err_str, "backup"); 692 /* We failed. Cleanup and return. */ 693 if (bh_primary) 694 brelse(bh_primary); 695 return NULL; 696 hotfix_primary_boot_sector: 697 if (bh_primary) { 698 /* 699 * If we managed to read sector zero and the volume is not 700 * read-only, copy the found, valid backup boot sector to the 701 * primary boot sector. Note we only copy the actual boot 702 * sector structure, not the actual whole device sector as that 703 * may be bigger and would potentially damage the $Boot system 704 * file (FIXME: Would be nice to know if the backup boot sector 705 * on a large sector device contains the whole boot loader or 706 * just the first 512 bytes). 707 */ 708 if (!(sb->s_flags & MS_RDONLY)) { 709 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 710 "boot sector from backup copy."); 711 memcpy(bh_primary->b_data, bh_backup->b_data, 712 NTFS_BLOCK_SIZE); 713 mark_buffer_dirty(bh_primary); 714 sync_dirty_buffer(bh_primary); 715 if (buffer_uptodate(bh_primary)) { 716 brelse(bh_backup); 717 return bh_primary; 718 } 719 ntfs_error(sb, "Hot-fix: Device write error while " 720 "recovering primary boot sector."); 721 } else { 722 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 723 "sector failed: Read-only mount."); 724 } 725 brelse(bh_primary); 726 } 727 ntfs_warning(sb, "Using backup boot sector."); 728 return bh_backup; 729 } 730 731 /** 732 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 733 * @vol: volume structure to initialise with data from boot sector 734 * @b: boot sector to parse 735 * 736 * Parse the ntfs boot sector @b and store all imporant information therein in 737 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 738 */ 739 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 740 { 741 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 742 int clusters_per_mft_record, clusters_per_index_record; 743 s64 ll; 744 745 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 746 vol->sector_size_bits = ffs(vol->sector_size) - 1; 747 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 748 vol->sector_size); 749 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 750 vol->sector_size_bits); 751 if (vol->sector_size < vol->sb->s_blocksize) { 752 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 753 "device block size (%lu). This is not " 754 "supported. Sorry.", vol->sector_size, 755 vol->sb->s_blocksize); 756 return false; 757 } 758 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 759 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 760 ntfs_debug("sectors_per_cluster_bits = 0x%x", 761 sectors_per_cluster_bits); 762 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 763 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 764 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 765 vol->cluster_size_mask = vol->cluster_size - 1; 766 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 767 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 768 vol->cluster_size); 769 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 770 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 771 if (vol->cluster_size < vol->sector_size) { 772 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 773 "sector size (%i). This is not supported. " 774 "Sorry.", vol->cluster_size, vol->sector_size); 775 return false; 776 } 777 clusters_per_mft_record = b->clusters_per_mft_record; 778 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 779 clusters_per_mft_record, clusters_per_mft_record); 780 if (clusters_per_mft_record > 0) 781 vol->mft_record_size = vol->cluster_size << 782 (ffs(clusters_per_mft_record) - 1); 783 else 784 /* 785 * When mft_record_size < cluster_size, clusters_per_mft_record 786 * = -log2(mft_record_size) bytes. mft_record_size normaly is 787 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 788 */ 789 vol->mft_record_size = 1 << -clusters_per_mft_record; 790 vol->mft_record_size_mask = vol->mft_record_size - 1; 791 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 792 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 793 vol->mft_record_size); 794 ntfs_debug("vol->mft_record_size_mask = 0x%x", 795 vol->mft_record_size_mask); 796 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 797 vol->mft_record_size_bits, vol->mft_record_size_bits); 798 /* 799 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since 800 * we store $MFT/$DATA, the table of mft records in the page cache. 801 */ 802 if (vol->mft_record_size > PAGE_CACHE_SIZE) { 803 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 804 "PAGE_CACHE_SIZE on your system (%lu). " 805 "This is not supported. Sorry.", 806 vol->mft_record_size, PAGE_CACHE_SIZE); 807 return false; 808 } 809 /* We cannot support mft record sizes below the sector size. */ 810 if (vol->mft_record_size < vol->sector_size) { 811 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 812 "sector size (%i). This is not supported. " 813 "Sorry.", vol->mft_record_size, 814 vol->sector_size); 815 return false; 816 } 817 clusters_per_index_record = b->clusters_per_index_record; 818 ntfs_debug("clusters_per_index_record = %i (0x%x)", 819 clusters_per_index_record, clusters_per_index_record); 820 if (clusters_per_index_record > 0) 821 vol->index_record_size = vol->cluster_size << 822 (ffs(clusters_per_index_record) - 1); 823 else 824 /* 825 * When index_record_size < cluster_size, 826 * clusters_per_index_record = -log2(index_record_size) bytes. 827 * index_record_size normaly equals 4096 bytes, which is 828 * encoded as 0xF4 (-12 in decimal). 829 */ 830 vol->index_record_size = 1 << -clusters_per_index_record; 831 vol->index_record_size_mask = vol->index_record_size - 1; 832 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 833 ntfs_debug("vol->index_record_size = %i (0x%x)", 834 vol->index_record_size, vol->index_record_size); 835 ntfs_debug("vol->index_record_size_mask = 0x%x", 836 vol->index_record_size_mask); 837 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 838 vol->index_record_size_bits, 839 vol->index_record_size_bits); 840 /* We cannot support index record sizes below the sector size. */ 841 if (vol->index_record_size < vol->sector_size) { 842 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 843 "the sector size (%i). This is not " 844 "supported. Sorry.", vol->index_record_size, 845 vol->sector_size); 846 return false; 847 } 848 /* 849 * Get the size of the volume in clusters and check for 64-bit-ness. 850 * Windows currently only uses 32 bits to save the clusters so we do 851 * the same as it is much faster on 32-bit CPUs. 852 */ 853 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 854 if ((u64)ll >= 1ULL << 32) { 855 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 856 return false; 857 } 858 vol->nr_clusters = ll; 859 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 860 /* 861 * On an architecture where unsigned long is 32-bits, we restrict the 862 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 863 * will hopefully optimize the whole check away. 864 */ 865 if (sizeof(unsigned long) < 8) { 866 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 867 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 868 "large for this architecture. " 869 "Maximum supported is 2TiB. Sorry.", 870 (unsigned long long)ll >> (40 - 871 vol->cluster_size_bits)); 872 return false; 873 } 874 } 875 ll = sle64_to_cpu(b->mft_lcn); 876 if (ll >= vol->nr_clusters) { 877 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 878 "volume. Weird.", (unsigned long long)ll, 879 (unsigned long long)ll); 880 return false; 881 } 882 vol->mft_lcn = ll; 883 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 884 ll = sle64_to_cpu(b->mftmirr_lcn); 885 if (ll >= vol->nr_clusters) { 886 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 887 "of volume. Weird.", (unsigned long long)ll, 888 (unsigned long long)ll); 889 return false; 890 } 891 vol->mftmirr_lcn = ll; 892 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 893 #ifdef NTFS_RW 894 /* 895 * Work out the size of the mft mirror in number of mft records. If the 896 * cluster size is less than or equal to the size taken by four mft 897 * records, the mft mirror stores the first four mft records. If the 898 * cluster size is bigger than the size taken by four mft records, the 899 * mft mirror contains as many mft records as will fit into one 900 * cluster. 901 */ 902 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 903 vol->mftmirr_size = 4; 904 else 905 vol->mftmirr_size = vol->cluster_size >> 906 vol->mft_record_size_bits; 907 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 908 #endif /* NTFS_RW */ 909 vol->serial_no = le64_to_cpu(b->volume_serial_number); 910 ntfs_debug("vol->serial_no = 0x%llx", 911 (unsigned long long)vol->serial_no); 912 return true; 913 } 914 915 /** 916 * ntfs_setup_allocators - initialize the cluster and mft allocators 917 * @vol: volume structure for which to setup the allocators 918 * 919 * Setup the cluster (lcn) and mft allocators to the starting values. 920 */ 921 static void ntfs_setup_allocators(ntfs_volume *vol) 922 { 923 #ifdef NTFS_RW 924 LCN mft_zone_size, mft_lcn; 925 #endif /* NTFS_RW */ 926 927 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 928 vol->mft_zone_multiplier); 929 #ifdef NTFS_RW 930 /* Determine the size of the MFT zone. */ 931 mft_zone_size = vol->nr_clusters; 932 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 933 case 4: 934 mft_zone_size >>= 1; /* 50% */ 935 break; 936 case 3: 937 mft_zone_size = (mft_zone_size + 938 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 939 break; 940 case 2: 941 mft_zone_size >>= 2; /* 25% */ 942 break; 943 /* case 1: */ 944 default: 945 mft_zone_size >>= 3; /* 12.5% */ 946 break; 947 } 948 /* Setup the mft zone. */ 949 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 950 ntfs_debug("vol->mft_zone_pos = 0x%llx", 951 (unsigned long long)vol->mft_zone_pos); 952 /* 953 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 954 * source) and if the actual mft_lcn is in the expected place or even 955 * further to the front of the volume, extend the mft_zone to cover the 956 * beginning of the volume as well. This is in order to protect the 957 * area reserved for the mft bitmap as well within the mft_zone itself. 958 * On non-standard volumes we do not protect it as the overhead would 959 * be higher than the speed increase we would get by doing it. 960 */ 961 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 962 if (mft_lcn * vol->cluster_size < 16 * 1024) 963 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 964 vol->cluster_size; 965 if (vol->mft_zone_start <= mft_lcn) 966 vol->mft_zone_start = 0; 967 ntfs_debug("vol->mft_zone_start = 0x%llx", 968 (unsigned long long)vol->mft_zone_start); 969 /* 970 * Need to cap the mft zone on non-standard volumes so that it does 971 * not point outside the boundaries of the volume. We do this by 972 * halving the zone size until we are inside the volume. 973 */ 974 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 975 while (vol->mft_zone_end >= vol->nr_clusters) { 976 mft_zone_size >>= 1; 977 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 978 } 979 ntfs_debug("vol->mft_zone_end = 0x%llx", 980 (unsigned long long)vol->mft_zone_end); 981 /* 982 * Set the current position within each data zone to the start of the 983 * respective zone. 984 */ 985 vol->data1_zone_pos = vol->mft_zone_end; 986 ntfs_debug("vol->data1_zone_pos = 0x%llx", 987 (unsigned long long)vol->data1_zone_pos); 988 vol->data2_zone_pos = 0; 989 ntfs_debug("vol->data2_zone_pos = 0x%llx", 990 (unsigned long long)vol->data2_zone_pos); 991 992 /* Set the mft data allocation position to mft record 24. */ 993 vol->mft_data_pos = 24; 994 ntfs_debug("vol->mft_data_pos = 0x%llx", 995 (unsigned long long)vol->mft_data_pos); 996 #endif /* NTFS_RW */ 997 } 998 999 #ifdef NTFS_RW 1000 1001 /** 1002 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1003 * @vol: ntfs super block describing device whose mft mirror to load 1004 * 1005 * Return 'true' on success or 'false' on error. 1006 */ 1007 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1008 { 1009 struct inode *tmp_ino; 1010 ntfs_inode *tmp_ni; 1011 1012 ntfs_debug("Entering."); 1013 /* Get mft mirror inode. */ 1014 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1015 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1016 if (!IS_ERR(tmp_ino)) 1017 iput(tmp_ino); 1018 /* Caller will display error message. */ 1019 return false; 1020 } 1021 /* 1022 * Re-initialize some specifics about $MFTMirr's inode as 1023 * ntfs_read_inode() will have set up the default ones. 1024 */ 1025 /* Set uid and gid to root. */ 1026 tmp_ino->i_uid = tmp_ino->i_gid = 0; 1027 /* Regular file. No access for anyone. */ 1028 tmp_ino->i_mode = S_IFREG; 1029 /* No VFS initiated operations allowed for $MFTMirr. */ 1030 tmp_ino->i_op = &ntfs_empty_inode_ops; 1031 tmp_ino->i_fop = &ntfs_empty_file_ops; 1032 /* Put in our special address space operations. */ 1033 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1034 tmp_ni = NTFS_I(tmp_ino); 1035 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1036 NInoSetMstProtected(tmp_ni); 1037 NInoSetSparseDisabled(tmp_ni); 1038 /* 1039 * Set up our little cheat allowing us to reuse the async read io 1040 * completion handler for directories. 1041 */ 1042 tmp_ni->itype.index.block_size = vol->mft_record_size; 1043 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1044 vol->mftmirr_ino = tmp_ino; 1045 ntfs_debug("Done."); 1046 return true; 1047 } 1048 1049 /** 1050 * check_mft_mirror - compare contents of the mft mirror with the mft 1051 * @vol: ntfs super block describing device whose mft mirror to check 1052 * 1053 * Return 'true' on success or 'false' on error. 1054 * 1055 * Note, this function also results in the mft mirror runlist being completely 1056 * mapped into memory. The mft mirror write code requires this and will BUG() 1057 * should it find an unmapped runlist element. 1058 */ 1059 static bool check_mft_mirror(ntfs_volume *vol) 1060 { 1061 struct super_block *sb = vol->sb; 1062 ntfs_inode *mirr_ni; 1063 struct page *mft_page, *mirr_page; 1064 u8 *kmft, *kmirr; 1065 runlist_element *rl, rl2[2]; 1066 pgoff_t index; 1067 int mrecs_per_page, i; 1068 1069 ntfs_debug("Entering."); 1070 /* Compare contents of $MFT and $MFTMirr. */ 1071 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size; 1072 BUG_ON(!mrecs_per_page); 1073 BUG_ON(!vol->mftmirr_size); 1074 mft_page = mirr_page = NULL; 1075 kmft = kmirr = NULL; 1076 index = i = 0; 1077 do { 1078 u32 bytes; 1079 1080 /* Switch pages if necessary. */ 1081 if (!(i % mrecs_per_page)) { 1082 if (index) { 1083 ntfs_unmap_page(mft_page); 1084 ntfs_unmap_page(mirr_page); 1085 } 1086 /* Get the $MFT page. */ 1087 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1088 index); 1089 if (IS_ERR(mft_page)) { 1090 ntfs_error(sb, "Failed to read $MFT."); 1091 return false; 1092 } 1093 kmft = page_address(mft_page); 1094 /* Get the $MFTMirr page. */ 1095 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1096 index); 1097 if (IS_ERR(mirr_page)) { 1098 ntfs_error(sb, "Failed to read $MFTMirr."); 1099 goto mft_unmap_out; 1100 } 1101 kmirr = page_address(mirr_page); 1102 ++index; 1103 } 1104 /* Do not check the record if it is not in use. */ 1105 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1106 /* Make sure the record is ok. */ 1107 if (ntfs_is_baad_recordp((le32*)kmft)) { 1108 ntfs_error(sb, "Incomplete multi sector " 1109 "transfer detected in mft " 1110 "record %i.", i); 1111 mm_unmap_out: 1112 ntfs_unmap_page(mirr_page); 1113 mft_unmap_out: 1114 ntfs_unmap_page(mft_page); 1115 return false; 1116 } 1117 } 1118 /* Do not check the mirror record if it is not in use. */ 1119 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1120 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1121 ntfs_error(sb, "Incomplete multi sector " 1122 "transfer detected in mft " 1123 "mirror record %i.", i); 1124 goto mm_unmap_out; 1125 } 1126 } 1127 /* Get the amount of data in the current record. */ 1128 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1129 if (bytes < sizeof(MFT_RECORD_OLD) || 1130 bytes > vol->mft_record_size || 1131 ntfs_is_baad_recordp((le32*)kmft)) { 1132 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1133 if (bytes < sizeof(MFT_RECORD_OLD) || 1134 bytes > vol->mft_record_size || 1135 ntfs_is_baad_recordp((le32*)kmirr)) 1136 bytes = vol->mft_record_size; 1137 } 1138 /* Compare the two records. */ 1139 if (memcmp(kmft, kmirr, bytes)) { 1140 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1141 "match. Run ntfsfix or chkdsk.", i); 1142 goto mm_unmap_out; 1143 } 1144 kmft += vol->mft_record_size; 1145 kmirr += vol->mft_record_size; 1146 } while (++i < vol->mftmirr_size); 1147 /* Release the last pages. */ 1148 ntfs_unmap_page(mft_page); 1149 ntfs_unmap_page(mirr_page); 1150 1151 /* Construct the mft mirror runlist by hand. */ 1152 rl2[0].vcn = 0; 1153 rl2[0].lcn = vol->mftmirr_lcn; 1154 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1155 vol->cluster_size - 1) / vol->cluster_size; 1156 rl2[1].vcn = rl2[0].length; 1157 rl2[1].lcn = LCN_ENOENT; 1158 rl2[1].length = 0; 1159 /* 1160 * Because we have just read all of the mft mirror, we know we have 1161 * mapped the full runlist for it. 1162 */ 1163 mirr_ni = NTFS_I(vol->mftmirr_ino); 1164 down_read(&mirr_ni->runlist.lock); 1165 rl = mirr_ni->runlist.rl; 1166 /* Compare the two runlists. They must be identical. */ 1167 i = 0; 1168 do { 1169 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1170 rl2[i].length != rl[i].length) { 1171 ntfs_error(sb, "$MFTMirr location mismatch. " 1172 "Run chkdsk."); 1173 up_read(&mirr_ni->runlist.lock); 1174 return false; 1175 } 1176 } while (rl2[i++].length); 1177 up_read(&mirr_ni->runlist.lock); 1178 ntfs_debug("Done."); 1179 return true; 1180 } 1181 1182 /** 1183 * load_and_check_logfile - load and check the logfile inode for a volume 1184 * @vol: ntfs super block describing device whose logfile to load 1185 * 1186 * Return 'true' on success or 'false' on error. 1187 */ 1188 static bool load_and_check_logfile(ntfs_volume *vol, 1189 RESTART_PAGE_HEADER **rp) 1190 { 1191 struct inode *tmp_ino; 1192 1193 ntfs_debug("Entering."); 1194 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1195 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1196 if (!IS_ERR(tmp_ino)) 1197 iput(tmp_ino); 1198 /* Caller will display error message. */ 1199 return false; 1200 } 1201 if (!ntfs_check_logfile(tmp_ino, rp)) { 1202 iput(tmp_ino); 1203 /* ntfs_check_logfile() will have displayed error output. */ 1204 return false; 1205 } 1206 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1207 vol->logfile_ino = tmp_ino; 1208 ntfs_debug("Done."); 1209 return true; 1210 } 1211 1212 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1213 1214 /** 1215 * check_windows_hibernation_status - check if Windows is suspended on a volume 1216 * @vol: ntfs super block of device to check 1217 * 1218 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1219 * looking for the file hiberfil.sys in the root directory of the volume. If 1220 * the file is not present Windows is definitely not suspended. 1221 * 1222 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1223 * definitely suspended (this volume is not the system volume). Caveat: on a 1224 * system with many volumes it is possible that the < 4kiB check is bogus but 1225 * for now this should do fine. 1226 * 1227 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1228 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1229 * Windows is definitely suspended. If it is completely full of zeroes, 1230 * Windows is definitely not hibernated. Any other case is treated as if 1231 * Windows is suspended. This caters for the above mentioned caveat of a 1232 * system with many volumes where no "hibr" magic would be present and there is 1233 * no zero header. 1234 * 1235 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1236 * hibernated on the volume, and -errno on error. 1237 */ 1238 static int check_windows_hibernation_status(ntfs_volume *vol) 1239 { 1240 MFT_REF mref; 1241 struct inode *vi; 1242 ntfs_inode *ni; 1243 struct page *page; 1244 u32 *kaddr, *kend; 1245 ntfs_name *name = NULL; 1246 int ret = 1; 1247 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1248 cpu_to_le16('i'), cpu_to_le16('b'), 1249 cpu_to_le16('e'), cpu_to_le16('r'), 1250 cpu_to_le16('f'), cpu_to_le16('i'), 1251 cpu_to_le16('l'), cpu_to_le16('.'), 1252 cpu_to_le16('s'), cpu_to_le16('y'), 1253 cpu_to_le16('s'), 0 }; 1254 1255 ntfs_debug("Entering."); 1256 /* 1257 * Find the inode number for the hibernation file by looking up the 1258 * filename hiberfil.sys in the root directory. 1259 */ 1260 mutex_lock(&vol->root_ino->i_mutex); 1261 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1262 &name); 1263 mutex_unlock(&vol->root_ino->i_mutex); 1264 if (IS_ERR_MREF(mref)) { 1265 ret = MREF_ERR(mref); 1266 /* If the file does not exist, Windows is not hibernated. */ 1267 if (ret == -ENOENT) { 1268 ntfs_debug("hiberfil.sys not present. Windows is not " 1269 "hibernated on the volume."); 1270 return 0; 1271 } 1272 /* A real error occured. */ 1273 ntfs_error(vol->sb, "Failed to find inode number for " 1274 "hiberfil.sys."); 1275 return ret; 1276 } 1277 /* We do not care for the type of match that was found. */ 1278 kfree(name); 1279 /* Get the inode. */ 1280 vi = ntfs_iget(vol->sb, MREF(mref)); 1281 if (IS_ERR(vi) || is_bad_inode(vi)) { 1282 if (!IS_ERR(vi)) 1283 iput(vi); 1284 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1285 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1286 } 1287 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1288 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1289 "Windows is hibernated on the volume. This " 1290 "is not the system volume.", i_size_read(vi)); 1291 goto iput_out; 1292 } 1293 ni = NTFS_I(vi); 1294 page = ntfs_map_page(vi->i_mapping, 0); 1295 if (IS_ERR(page)) { 1296 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1297 ret = PTR_ERR(page); 1298 goto iput_out; 1299 } 1300 kaddr = (u32*)page_address(page); 1301 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1302 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1303 "hibernated on the volume. This is the " 1304 "system volume."); 1305 goto unm_iput_out; 1306 } 1307 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1308 do { 1309 if (unlikely(*kaddr)) { 1310 ntfs_debug("hiberfil.sys is larger than 4kiB " 1311 "(0x%llx), does not contain the " 1312 "\"hibr\" magic, and does not have a " 1313 "zero header. Windows is hibernated " 1314 "on the volume. This is not the " 1315 "system volume.", i_size_read(vi)); 1316 goto unm_iput_out; 1317 } 1318 } while (++kaddr < kend); 1319 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1320 "hibernated on the volume. This is the system " 1321 "volume."); 1322 ret = 0; 1323 unm_iput_out: 1324 ntfs_unmap_page(page); 1325 iput_out: 1326 iput(vi); 1327 return ret; 1328 } 1329 1330 /** 1331 * load_and_init_quota - load and setup the quota file for a volume if present 1332 * @vol: ntfs super block describing device whose quota file to load 1333 * 1334 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1335 * leave vol->quota_ino as NULL and return success. 1336 */ 1337 static bool load_and_init_quota(ntfs_volume *vol) 1338 { 1339 MFT_REF mref; 1340 struct inode *tmp_ino; 1341 ntfs_name *name = NULL; 1342 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1343 cpu_to_le16('Q'), cpu_to_le16('u'), 1344 cpu_to_le16('o'), cpu_to_le16('t'), 1345 cpu_to_le16('a'), 0 }; 1346 static ntfschar Q[3] = { cpu_to_le16('$'), 1347 cpu_to_le16('Q'), 0 }; 1348 1349 ntfs_debug("Entering."); 1350 /* 1351 * Find the inode number for the quota file by looking up the filename 1352 * $Quota in the extended system files directory $Extend. 1353 */ 1354 mutex_lock(&vol->extend_ino->i_mutex); 1355 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1356 &name); 1357 mutex_unlock(&vol->extend_ino->i_mutex); 1358 if (IS_ERR_MREF(mref)) { 1359 /* 1360 * If the file does not exist, quotas are disabled and have 1361 * never been enabled on this volume, just return success. 1362 */ 1363 if (MREF_ERR(mref) == -ENOENT) { 1364 ntfs_debug("$Quota not present. Volume does not have " 1365 "quotas enabled."); 1366 /* 1367 * No need to try to set quotas out of date if they are 1368 * not enabled. 1369 */ 1370 NVolSetQuotaOutOfDate(vol); 1371 return true; 1372 } 1373 /* A real error occured. */ 1374 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1375 return false; 1376 } 1377 /* We do not care for the type of match that was found. */ 1378 kfree(name); 1379 /* Get the inode. */ 1380 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1381 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1382 if (!IS_ERR(tmp_ino)) 1383 iput(tmp_ino); 1384 ntfs_error(vol->sb, "Failed to load $Quota."); 1385 return false; 1386 } 1387 vol->quota_ino = tmp_ino; 1388 /* Get the $Q index allocation attribute. */ 1389 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1390 if (IS_ERR(tmp_ino)) { 1391 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1392 return false; 1393 } 1394 vol->quota_q_ino = tmp_ino; 1395 ntfs_debug("Done."); 1396 return true; 1397 } 1398 1399 /** 1400 * load_and_init_usnjrnl - load and setup the transaction log if present 1401 * @vol: ntfs super block describing device whose usnjrnl file to load 1402 * 1403 * Return 'true' on success or 'false' on error. 1404 * 1405 * If $UsnJrnl is not present or in the process of being disabled, we set 1406 * NVolUsnJrnlStamped() and return success. 1407 * 1408 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1409 * i.e. transaction logging has only just been enabled or the journal has been 1410 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1411 * and return success. 1412 */ 1413 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1414 { 1415 MFT_REF mref; 1416 struct inode *tmp_ino; 1417 ntfs_inode *tmp_ni; 1418 struct page *page; 1419 ntfs_name *name = NULL; 1420 USN_HEADER *uh; 1421 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1422 cpu_to_le16('U'), cpu_to_le16('s'), 1423 cpu_to_le16('n'), cpu_to_le16('J'), 1424 cpu_to_le16('r'), cpu_to_le16('n'), 1425 cpu_to_le16('l'), 0 }; 1426 static ntfschar Max[5] = { cpu_to_le16('$'), 1427 cpu_to_le16('M'), cpu_to_le16('a'), 1428 cpu_to_le16('x'), 0 }; 1429 static ntfschar J[3] = { cpu_to_le16('$'), 1430 cpu_to_le16('J'), 0 }; 1431 1432 ntfs_debug("Entering."); 1433 /* 1434 * Find the inode number for the transaction log file by looking up the 1435 * filename $UsnJrnl in the extended system files directory $Extend. 1436 */ 1437 mutex_lock(&vol->extend_ino->i_mutex); 1438 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1439 &name); 1440 mutex_unlock(&vol->extend_ino->i_mutex); 1441 if (IS_ERR_MREF(mref)) { 1442 /* 1443 * If the file does not exist, transaction logging is disabled, 1444 * just return success. 1445 */ 1446 if (MREF_ERR(mref) == -ENOENT) { 1447 ntfs_debug("$UsnJrnl not present. Volume does not " 1448 "have transaction logging enabled."); 1449 not_enabled: 1450 /* 1451 * No need to try to stamp the transaction log if 1452 * transaction logging is not enabled. 1453 */ 1454 NVolSetUsnJrnlStamped(vol); 1455 return true; 1456 } 1457 /* A real error occured. */ 1458 ntfs_error(vol->sb, "Failed to find inode number for " 1459 "$UsnJrnl."); 1460 return false; 1461 } 1462 /* We do not care for the type of match that was found. */ 1463 kfree(name); 1464 /* Get the inode. */ 1465 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1466 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) { 1467 if (!IS_ERR(tmp_ino)) 1468 iput(tmp_ino); 1469 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1470 return false; 1471 } 1472 vol->usnjrnl_ino = tmp_ino; 1473 /* 1474 * If the transaction log is in the process of being deleted, we can 1475 * ignore it. 1476 */ 1477 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1478 ntfs_debug("$UsnJrnl in the process of being disabled. " 1479 "Volume does not have transaction logging " 1480 "enabled."); 1481 goto not_enabled; 1482 } 1483 /* Get the $DATA/$Max attribute. */ 1484 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1485 if (IS_ERR(tmp_ino)) { 1486 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1487 "attribute."); 1488 return false; 1489 } 1490 vol->usnjrnl_max_ino = tmp_ino; 1491 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1492 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1493 "attribute (size is 0x%llx but should be at " 1494 "least 0x%zx bytes).", i_size_read(tmp_ino), 1495 sizeof(USN_HEADER)); 1496 return false; 1497 } 1498 /* Get the $DATA/$J attribute. */ 1499 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1500 if (IS_ERR(tmp_ino)) { 1501 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1502 "attribute."); 1503 return false; 1504 } 1505 vol->usnjrnl_j_ino = tmp_ino; 1506 /* Verify $J is non-resident and sparse. */ 1507 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1508 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1509 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1510 "and/or not sparse."); 1511 return false; 1512 } 1513 /* Read the USN_HEADER from $DATA/$Max. */ 1514 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1515 if (IS_ERR(page)) { 1516 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1517 "attribute."); 1518 return false; 1519 } 1520 uh = (USN_HEADER*)page_address(page); 1521 /* Sanity check the $Max. */ 1522 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1523 sle64_to_cpu(uh->maximum_size))) { 1524 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1525 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1526 (long long)sle64_to_cpu(uh->allocation_delta), 1527 (long long)sle64_to_cpu(uh->maximum_size)); 1528 ntfs_unmap_page(page); 1529 return false; 1530 } 1531 /* 1532 * If the transaction log has been stamped and nothing has been written 1533 * to it since, we do not need to stamp it. 1534 */ 1535 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1536 i_size_read(vol->usnjrnl_j_ino))) { 1537 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1538 i_size_read(vol->usnjrnl_j_ino))) { 1539 ntfs_unmap_page(page); 1540 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1541 "logged since it was last stamped. " 1542 "Treating this as if the volume does " 1543 "not have transaction logging " 1544 "enabled."); 1545 goto not_enabled; 1546 } 1547 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1548 "which is out of bounds (0x%llx). $UsnJrnl " 1549 "is corrupt.", 1550 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1551 i_size_read(vol->usnjrnl_j_ino)); 1552 ntfs_unmap_page(page); 1553 return false; 1554 } 1555 ntfs_unmap_page(page); 1556 ntfs_debug("Done."); 1557 return true; 1558 } 1559 1560 /** 1561 * load_and_init_attrdef - load the attribute definitions table for a volume 1562 * @vol: ntfs super block describing device whose attrdef to load 1563 * 1564 * Return 'true' on success or 'false' on error. 1565 */ 1566 static bool load_and_init_attrdef(ntfs_volume *vol) 1567 { 1568 loff_t i_size; 1569 struct super_block *sb = vol->sb; 1570 struct inode *ino; 1571 struct page *page; 1572 pgoff_t index, max_index; 1573 unsigned int size; 1574 1575 ntfs_debug("Entering."); 1576 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1577 ino = ntfs_iget(sb, FILE_AttrDef); 1578 if (IS_ERR(ino) || is_bad_inode(ino)) { 1579 if (!IS_ERR(ino)) 1580 iput(ino); 1581 goto failed; 1582 } 1583 NInoSetSparseDisabled(NTFS_I(ino)); 1584 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1585 i_size = i_size_read(ino); 1586 if (i_size <= 0 || i_size > 0x7fffffff) 1587 goto iput_failed; 1588 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1589 if (!vol->attrdef) 1590 goto iput_failed; 1591 index = 0; 1592 max_index = i_size >> PAGE_CACHE_SHIFT; 1593 size = PAGE_CACHE_SIZE; 1594 while (index < max_index) { 1595 /* Read the attrdef table and copy it into the linear buffer. */ 1596 read_partial_attrdef_page: 1597 page = ntfs_map_page(ino->i_mapping, index); 1598 if (IS_ERR(page)) 1599 goto free_iput_failed; 1600 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT), 1601 page_address(page), size); 1602 ntfs_unmap_page(page); 1603 }; 1604 if (size == PAGE_CACHE_SIZE) { 1605 size = i_size & ~PAGE_CACHE_MASK; 1606 if (size) 1607 goto read_partial_attrdef_page; 1608 } 1609 vol->attrdef_size = i_size; 1610 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1611 iput(ino); 1612 return true; 1613 free_iput_failed: 1614 ntfs_free(vol->attrdef); 1615 vol->attrdef = NULL; 1616 iput_failed: 1617 iput(ino); 1618 failed: 1619 ntfs_error(sb, "Failed to initialize attribute definition table."); 1620 return false; 1621 } 1622 1623 #endif /* NTFS_RW */ 1624 1625 /** 1626 * load_and_init_upcase - load the upcase table for an ntfs volume 1627 * @vol: ntfs super block describing device whose upcase to load 1628 * 1629 * Return 'true' on success or 'false' on error. 1630 */ 1631 static bool load_and_init_upcase(ntfs_volume *vol) 1632 { 1633 loff_t i_size; 1634 struct super_block *sb = vol->sb; 1635 struct inode *ino; 1636 struct page *page; 1637 pgoff_t index, max_index; 1638 unsigned int size; 1639 int i, max; 1640 1641 ntfs_debug("Entering."); 1642 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1643 ino = ntfs_iget(sb, FILE_UpCase); 1644 if (IS_ERR(ino) || is_bad_inode(ino)) { 1645 if (!IS_ERR(ino)) 1646 iput(ino); 1647 goto upcase_failed; 1648 } 1649 /* 1650 * The upcase size must not be above 64k Unicode characters, must not 1651 * be zero and must be a multiple of sizeof(ntfschar). 1652 */ 1653 i_size = i_size_read(ino); 1654 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1655 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1656 goto iput_upcase_failed; 1657 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1658 if (!vol->upcase) 1659 goto iput_upcase_failed; 1660 index = 0; 1661 max_index = i_size >> PAGE_CACHE_SHIFT; 1662 size = PAGE_CACHE_SIZE; 1663 while (index < max_index) { 1664 /* Read the upcase table and copy it into the linear buffer. */ 1665 read_partial_upcase_page: 1666 page = ntfs_map_page(ino->i_mapping, index); 1667 if (IS_ERR(page)) 1668 goto iput_upcase_failed; 1669 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT), 1670 page_address(page), size); 1671 ntfs_unmap_page(page); 1672 }; 1673 if (size == PAGE_CACHE_SIZE) { 1674 size = i_size & ~PAGE_CACHE_MASK; 1675 if (size) 1676 goto read_partial_upcase_page; 1677 } 1678 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1679 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1680 i_size, 64 * 1024 * sizeof(ntfschar)); 1681 iput(ino); 1682 mutex_lock(&ntfs_lock); 1683 if (!default_upcase) { 1684 ntfs_debug("Using volume specified $UpCase since default is " 1685 "not present."); 1686 mutex_unlock(&ntfs_lock); 1687 return true; 1688 } 1689 max = default_upcase_len; 1690 if (max > vol->upcase_len) 1691 max = vol->upcase_len; 1692 for (i = 0; i < max; i++) 1693 if (vol->upcase[i] != default_upcase[i]) 1694 break; 1695 if (i == max) { 1696 ntfs_free(vol->upcase); 1697 vol->upcase = default_upcase; 1698 vol->upcase_len = max; 1699 ntfs_nr_upcase_users++; 1700 mutex_unlock(&ntfs_lock); 1701 ntfs_debug("Volume specified $UpCase matches default. Using " 1702 "default."); 1703 return true; 1704 } 1705 mutex_unlock(&ntfs_lock); 1706 ntfs_debug("Using volume specified $UpCase since it does not match " 1707 "the default."); 1708 return true; 1709 iput_upcase_failed: 1710 iput(ino); 1711 ntfs_free(vol->upcase); 1712 vol->upcase = NULL; 1713 upcase_failed: 1714 mutex_lock(&ntfs_lock); 1715 if (default_upcase) { 1716 vol->upcase = default_upcase; 1717 vol->upcase_len = default_upcase_len; 1718 ntfs_nr_upcase_users++; 1719 mutex_unlock(&ntfs_lock); 1720 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1721 "default."); 1722 return true; 1723 } 1724 mutex_unlock(&ntfs_lock); 1725 ntfs_error(sb, "Failed to initialize upcase table."); 1726 return false; 1727 } 1728 1729 /* 1730 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1731 * their own special locking rules: 1732 */ 1733 static struct lock_class_key 1734 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1735 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1736 1737 /** 1738 * load_system_files - open the system files using normal functions 1739 * @vol: ntfs super block describing device whose system files to load 1740 * 1741 * Open the system files with normal access functions and complete setting up 1742 * the ntfs super block @vol. 1743 * 1744 * Return 'true' on success or 'false' on error. 1745 */ 1746 static bool load_system_files(ntfs_volume *vol) 1747 { 1748 struct super_block *sb = vol->sb; 1749 MFT_RECORD *m; 1750 VOLUME_INFORMATION *vi; 1751 ntfs_attr_search_ctx *ctx; 1752 #ifdef NTFS_RW 1753 RESTART_PAGE_HEADER *rp; 1754 int err; 1755 #endif /* NTFS_RW */ 1756 1757 ntfs_debug("Entering."); 1758 #ifdef NTFS_RW 1759 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1760 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1761 static const char *es1 = "Failed to load $MFTMirr"; 1762 static const char *es2 = "$MFTMirr does not match $MFT"; 1763 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1764 1765 /* If a read-write mount, convert it to a read-only mount. */ 1766 if (!(sb->s_flags & MS_RDONLY)) { 1767 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1768 ON_ERRORS_CONTINUE))) { 1769 ntfs_error(sb, "%s and neither on_errors=" 1770 "continue nor on_errors=" 1771 "remount-ro was specified%s", 1772 !vol->mftmirr_ino ? es1 : es2, 1773 es3); 1774 goto iput_mirr_err_out; 1775 } 1776 sb->s_flags |= MS_RDONLY; 1777 ntfs_error(sb, "%s. Mounting read-only%s", 1778 !vol->mftmirr_ino ? es1 : es2, es3); 1779 } else 1780 ntfs_warning(sb, "%s. Will not be able to remount " 1781 "read-write%s", 1782 !vol->mftmirr_ino ? es1 : es2, es3); 1783 /* This will prevent a read-write remount. */ 1784 NVolSetErrors(vol); 1785 } 1786 #endif /* NTFS_RW */ 1787 /* Get mft bitmap attribute inode. */ 1788 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1789 if (IS_ERR(vol->mftbmp_ino)) { 1790 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1791 goto iput_mirr_err_out; 1792 } 1793 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1794 &mftbmp_runlist_lock_key); 1795 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1796 &mftbmp_mrec_lock_key); 1797 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1798 if (!load_and_init_upcase(vol)) 1799 goto iput_mftbmp_err_out; 1800 #ifdef NTFS_RW 1801 /* 1802 * Read attribute definitions table and setup @vol->attrdef and 1803 * @vol->attrdef_size. 1804 */ 1805 if (!load_and_init_attrdef(vol)) 1806 goto iput_upcase_err_out; 1807 #endif /* NTFS_RW */ 1808 /* 1809 * Get the cluster allocation bitmap inode and verify the size, no 1810 * need for any locking at this stage as we are already running 1811 * exclusively as we are mount in progress task. 1812 */ 1813 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1814 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1815 if (!IS_ERR(vol->lcnbmp_ino)) 1816 iput(vol->lcnbmp_ino); 1817 goto bitmap_failed; 1818 } 1819 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1820 &lcnbmp_runlist_lock_key); 1821 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1822 &lcnbmp_mrec_lock_key); 1823 1824 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1825 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1826 iput(vol->lcnbmp_ino); 1827 bitmap_failed: 1828 ntfs_error(sb, "Failed to load $Bitmap."); 1829 goto iput_attrdef_err_out; 1830 } 1831 /* 1832 * Get the volume inode and setup our cache of the volume flags and 1833 * version. 1834 */ 1835 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1836 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1837 if (!IS_ERR(vol->vol_ino)) 1838 iput(vol->vol_ino); 1839 volume_failed: 1840 ntfs_error(sb, "Failed to load $Volume."); 1841 goto iput_lcnbmp_err_out; 1842 } 1843 m = map_mft_record(NTFS_I(vol->vol_ino)); 1844 if (IS_ERR(m)) { 1845 iput_volume_failed: 1846 iput(vol->vol_ino); 1847 goto volume_failed; 1848 } 1849 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1850 ntfs_error(sb, "Failed to get attribute search context."); 1851 goto get_ctx_vol_failed; 1852 } 1853 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1854 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1855 err_put_vol: 1856 ntfs_attr_put_search_ctx(ctx); 1857 get_ctx_vol_failed: 1858 unmap_mft_record(NTFS_I(vol->vol_ino)); 1859 goto iput_volume_failed; 1860 } 1861 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1862 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1863 /* Some bounds checks. */ 1864 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1865 le32_to_cpu(ctx->attr->data.resident.value_length) > 1866 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1867 goto err_put_vol; 1868 /* Copy the volume flags and version to the ntfs_volume structure. */ 1869 vol->vol_flags = vi->flags; 1870 vol->major_ver = vi->major_ver; 1871 vol->minor_ver = vi->minor_ver; 1872 ntfs_attr_put_search_ctx(ctx); 1873 unmap_mft_record(NTFS_I(vol->vol_ino)); 1874 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver, 1875 vol->minor_ver); 1876 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1877 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1878 "volume version %i.%i (need at least version " 1879 "3.0).", vol->major_ver, vol->minor_ver); 1880 NVolClearSparseEnabled(vol); 1881 } 1882 #ifdef NTFS_RW 1883 /* Make sure that no unsupported volume flags are set. */ 1884 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1885 static const char *es1a = "Volume is dirty"; 1886 static const char *es1b = "Volume has been modified by chkdsk"; 1887 static const char *es1c = "Volume has unsupported flags set"; 1888 static const char *es2a = ". Run chkdsk and mount in Windows."; 1889 static const char *es2b = ". Mount in Windows."; 1890 const char *es1, *es2; 1891 1892 es2 = es2a; 1893 if (vol->vol_flags & VOLUME_IS_DIRTY) 1894 es1 = es1a; 1895 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1896 es1 = es1b; 1897 es2 = es2b; 1898 } else { 1899 es1 = es1c; 1900 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1901 "encountered.", 1902 (unsigned)le16_to_cpu(vol->vol_flags)); 1903 } 1904 /* If a read-write mount, convert it to a read-only mount. */ 1905 if (!(sb->s_flags & MS_RDONLY)) { 1906 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1907 ON_ERRORS_CONTINUE))) { 1908 ntfs_error(sb, "%s and neither on_errors=" 1909 "continue nor on_errors=" 1910 "remount-ro was specified%s", 1911 es1, es2); 1912 goto iput_vol_err_out; 1913 } 1914 sb->s_flags |= MS_RDONLY; 1915 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1916 } else 1917 ntfs_warning(sb, "%s. Will not be able to remount " 1918 "read-write%s", es1, es2); 1919 /* 1920 * Do not set NVolErrors() because ntfs_remount() re-checks the 1921 * flags which we need to do in case any flags have changed. 1922 */ 1923 } 1924 /* 1925 * Get the inode for the logfile, check it and determine if the volume 1926 * was shutdown cleanly. 1927 */ 1928 rp = NULL; 1929 if (!load_and_check_logfile(vol, &rp) || 1930 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1931 static const char *es1a = "Failed to load $LogFile"; 1932 static const char *es1b = "$LogFile is not clean"; 1933 static const char *es2 = ". Mount in Windows."; 1934 const char *es1; 1935 1936 es1 = !vol->logfile_ino ? es1a : es1b; 1937 /* If a read-write mount, convert it to a read-only mount. */ 1938 if (!(sb->s_flags & MS_RDONLY)) { 1939 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1940 ON_ERRORS_CONTINUE))) { 1941 ntfs_error(sb, "%s and neither on_errors=" 1942 "continue nor on_errors=" 1943 "remount-ro was specified%s", 1944 es1, es2); 1945 if (vol->logfile_ino) { 1946 BUG_ON(!rp); 1947 ntfs_free(rp); 1948 } 1949 goto iput_logfile_err_out; 1950 } 1951 sb->s_flags |= MS_RDONLY; 1952 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1953 } else 1954 ntfs_warning(sb, "%s. Will not be able to remount " 1955 "read-write%s", es1, es2); 1956 /* This will prevent a read-write remount. */ 1957 NVolSetErrors(vol); 1958 } 1959 ntfs_free(rp); 1960 #endif /* NTFS_RW */ 1961 /* Get the root directory inode so we can do path lookups. */ 1962 vol->root_ino = ntfs_iget(sb, FILE_root); 1963 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1964 if (!IS_ERR(vol->root_ino)) 1965 iput(vol->root_ino); 1966 ntfs_error(sb, "Failed to load root directory."); 1967 goto iput_logfile_err_out; 1968 } 1969 #ifdef NTFS_RW 1970 /* 1971 * Check if Windows is suspended to disk on the target volume. If it 1972 * is hibernated, we must not write *anything* to the disk so set 1973 * NVolErrors() without setting the dirty volume flag and mount 1974 * read-only. This will prevent read-write remounting and it will also 1975 * prevent all writes. 1976 */ 1977 err = check_windows_hibernation_status(vol); 1978 if (unlikely(err)) { 1979 static const char *es1a = "Failed to determine if Windows is " 1980 "hibernated"; 1981 static const char *es1b = "Windows is hibernated"; 1982 static const char *es2 = ". Run chkdsk."; 1983 const char *es1; 1984 1985 es1 = err < 0 ? es1a : es1b; 1986 /* If a read-write mount, convert it to a read-only mount. */ 1987 if (!(sb->s_flags & MS_RDONLY)) { 1988 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1989 ON_ERRORS_CONTINUE))) { 1990 ntfs_error(sb, "%s and neither on_errors=" 1991 "continue nor on_errors=" 1992 "remount-ro was specified%s", 1993 es1, es2); 1994 goto iput_root_err_out; 1995 } 1996 sb->s_flags |= MS_RDONLY; 1997 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1998 } else 1999 ntfs_warning(sb, "%s. Will not be able to remount " 2000 "read-write%s", es1, es2); 2001 /* This will prevent a read-write remount. */ 2002 NVolSetErrors(vol); 2003 } 2004 /* If (still) a read-write mount, mark the volume dirty. */ 2005 if (!(sb->s_flags & MS_RDONLY) && 2006 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2007 static const char *es1 = "Failed to set dirty bit in volume " 2008 "information flags"; 2009 static const char *es2 = ". Run chkdsk."; 2010 2011 /* Convert to a read-only mount. */ 2012 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2013 ON_ERRORS_CONTINUE))) { 2014 ntfs_error(sb, "%s and neither on_errors=continue nor " 2015 "on_errors=remount-ro was specified%s", 2016 es1, es2); 2017 goto iput_root_err_out; 2018 } 2019 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2020 sb->s_flags |= MS_RDONLY; 2021 /* 2022 * Do not set NVolErrors() because ntfs_remount() might manage 2023 * to set the dirty flag in which case all would be well. 2024 */ 2025 } 2026 #if 0 2027 // TODO: Enable this code once we start modifying anything that is 2028 // different between NTFS 1.2 and 3.x... 2029 /* 2030 * If (still) a read-write mount, set the NT4 compatibility flag on 2031 * newer NTFS version volumes. 2032 */ 2033 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) && 2034 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2035 static const char *es1 = "Failed to set NT4 compatibility flag"; 2036 static const char *es2 = ". Run chkdsk."; 2037 2038 /* Convert to a read-only mount. */ 2039 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2040 ON_ERRORS_CONTINUE))) { 2041 ntfs_error(sb, "%s and neither on_errors=continue nor " 2042 "on_errors=remount-ro was specified%s", 2043 es1, es2); 2044 goto iput_root_err_out; 2045 } 2046 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2047 sb->s_flags |= MS_RDONLY; 2048 NVolSetErrors(vol); 2049 } 2050 #endif 2051 /* If (still) a read-write mount, empty the logfile. */ 2052 if (!(sb->s_flags & MS_RDONLY) && 2053 !ntfs_empty_logfile(vol->logfile_ino)) { 2054 static const char *es1 = "Failed to empty $LogFile"; 2055 static const char *es2 = ". Mount in Windows."; 2056 2057 /* Convert to a read-only mount. */ 2058 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2059 ON_ERRORS_CONTINUE))) { 2060 ntfs_error(sb, "%s and neither on_errors=continue nor " 2061 "on_errors=remount-ro was specified%s", 2062 es1, es2); 2063 goto iput_root_err_out; 2064 } 2065 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2066 sb->s_flags |= MS_RDONLY; 2067 NVolSetErrors(vol); 2068 } 2069 #endif /* NTFS_RW */ 2070 /* If on NTFS versions before 3.0, we are done. */ 2071 if (unlikely(vol->major_ver < 3)) 2072 return true; 2073 /* NTFS 3.0+ specific initialization. */ 2074 /* Get the security descriptors inode. */ 2075 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2076 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2077 if (!IS_ERR(vol->secure_ino)) 2078 iput(vol->secure_ino); 2079 ntfs_error(sb, "Failed to load $Secure."); 2080 goto iput_root_err_out; 2081 } 2082 // TODO: Initialize security. 2083 /* Get the extended system files' directory inode. */ 2084 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2085 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { 2086 if (!IS_ERR(vol->extend_ino)) 2087 iput(vol->extend_ino); 2088 ntfs_error(sb, "Failed to load $Extend."); 2089 goto iput_sec_err_out; 2090 } 2091 #ifdef NTFS_RW 2092 /* Find the quota file, load it if present, and set it up. */ 2093 if (!load_and_init_quota(vol)) { 2094 static const char *es1 = "Failed to load $Quota"; 2095 static const char *es2 = ". Run chkdsk."; 2096 2097 /* If a read-write mount, convert it to a read-only mount. */ 2098 if (!(sb->s_flags & MS_RDONLY)) { 2099 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2100 ON_ERRORS_CONTINUE))) { 2101 ntfs_error(sb, "%s and neither on_errors=" 2102 "continue nor on_errors=" 2103 "remount-ro was specified%s", 2104 es1, es2); 2105 goto iput_quota_err_out; 2106 } 2107 sb->s_flags |= MS_RDONLY; 2108 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2109 } else 2110 ntfs_warning(sb, "%s. Will not be able to remount " 2111 "read-write%s", es1, es2); 2112 /* This will prevent a read-write remount. */ 2113 NVolSetErrors(vol); 2114 } 2115 /* If (still) a read-write mount, mark the quotas out of date. */ 2116 if (!(sb->s_flags & MS_RDONLY) && 2117 !ntfs_mark_quotas_out_of_date(vol)) { 2118 static const char *es1 = "Failed to mark quotas out of date"; 2119 static const char *es2 = ". Run chkdsk."; 2120 2121 /* Convert to a read-only mount. */ 2122 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2123 ON_ERRORS_CONTINUE))) { 2124 ntfs_error(sb, "%s and neither on_errors=continue nor " 2125 "on_errors=remount-ro was specified%s", 2126 es1, es2); 2127 goto iput_quota_err_out; 2128 } 2129 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2130 sb->s_flags |= MS_RDONLY; 2131 NVolSetErrors(vol); 2132 } 2133 /* 2134 * Find the transaction log file ($UsnJrnl), load it if present, check 2135 * it, and set it up. 2136 */ 2137 if (!load_and_init_usnjrnl(vol)) { 2138 static const char *es1 = "Failed to load $UsnJrnl"; 2139 static const char *es2 = ". Run chkdsk."; 2140 2141 /* If a read-write mount, convert it to a read-only mount. */ 2142 if (!(sb->s_flags & MS_RDONLY)) { 2143 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2144 ON_ERRORS_CONTINUE))) { 2145 ntfs_error(sb, "%s and neither on_errors=" 2146 "continue nor on_errors=" 2147 "remount-ro was specified%s", 2148 es1, es2); 2149 goto iput_usnjrnl_err_out; 2150 } 2151 sb->s_flags |= MS_RDONLY; 2152 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2153 } else 2154 ntfs_warning(sb, "%s. Will not be able to remount " 2155 "read-write%s", es1, es2); 2156 /* This will prevent a read-write remount. */ 2157 NVolSetErrors(vol); 2158 } 2159 /* If (still) a read-write mount, stamp the transaction log. */ 2160 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) { 2161 static const char *es1 = "Failed to stamp transaction log " 2162 "($UsnJrnl)"; 2163 static const char *es2 = ". Run chkdsk."; 2164 2165 /* Convert to a read-only mount. */ 2166 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2167 ON_ERRORS_CONTINUE))) { 2168 ntfs_error(sb, "%s and neither on_errors=continue nor " 2169 "on_errors=remount-ro was specified%s", 2170 es1, es2); 2171 goto iput_usnjrnl_err_out; 2172 } 2173 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2174 sb->s_flags |= MS_RDONLY; 2175 NVolSetErrors(vol); 2176 } 2177 #endif /* NTFS_RW */ 2178 return true; 2179 #ifdef NTFS_RW 2180 iput_usnjrnl_err_out: 2181 if (vol->usnjrnl_j_ino) 2182 iput(vol->usnjrnl_j_ino); 2183 if (vol->usnjrnl_max_ino) 2184 iput(vol->usnjrnl_max_ino); 2185 if (vol->usnjrnl_ino) 2186 iput(vol->usnjrnl_ino); 2187 iput_quota_err_out: 2188 if (vol->quota_q_ino) 2189 iput(vol->quota_q_ino); 2190 if (vol->quota_ino) 2191 iput(vol->quota_ino); 2192 iput(vol->extend_ino); 2193 #endif /* NTFS_RW */ 2194 iput_sec_err_out: 2195 iput(vol->secure_ino); 2196 iput_root_err_out: 2197 iput(vol->root_ino); 2198 iput_logfile_err_out: 2199 #ifdef NTFS_RW 2200 if (vol->logfile_ino) 2201 iput(vol->logfile_ino); 2202 iput_vol_err_out: 2203 #endif /* NTFS_RW */ 2204 iput(vol->vol_ino); 2205 iput_lcnbmp_err_out: 2206 iput(vol->lcnbmp_ino); 2207 iput_attrdef_err_out: 2208 vol->attrdef_size = 0; 2209 if (vol->attrdef) { 2210 ntfs_free(vol->attrdef); 2211 vol->attrdef = NULL; 2212 } 2213 #ifdef NTFS_RW 2214 iput_upcase_err_out: 2215 #endif /* NTFS_RW */ 2216 vol->upcase_len = 0; 2217 mutex_lock(&ntfs_lock); 2218 if (vol->upcase == default_upcase) { 2219 ntfs_nr_upcase_users--; 2220 vol->upcase = NULL; 2221 } 2222 mutex_unlock(&ntfs_lock); 2223 if (vol->upcase) { 2224 ntfs_free(vol->upcase); 2225 vol->upcase = NULL; 2226 } 2227 iput_mftbmp_err_out: 2228 iput(vol->mftbmp_ino); 2229 iput_mirr_err_out: 2230 #ifdef NTFS_RW 2231 if (vol->mftmirr_ino) 2232 iput(vol->mftmirr_ino); 2233 #endif /* NTFS_RW */ 2234 return false; 2235 } 2236 2237 /** 2238 * ntfs_put_super - called by the vfs to unmount a volume 2239 * @sb: vfs superblock of volume to unmount 2240 * 2241 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2242 * the volume is being unmounted (umount system call has been invoked) and it 2243 * releases all inodes and memory belonging to the NTFS specific part of the 2244 * super block. 2245 */ 2246 static void ntfs_put_super(struct super_block *sb) 2247 { 2248 ntfs_volume *vol = NTFS_SB(sb); 2249 2250 ntfs_debug("Entering."); 2251 2252 #ifdef NTFS_RW 2253 /* 2254 * Commit all inodes while they are still open in case some of them 2255 * cause others to be dirtied. 2256 */ 2257 ntfs_commit_inode(vol->vol_ino); 2258 2259 /* NTFS 3.0+ specific. */ 2260 if (vol->major_ver >= 3) { 2261 if (vol->usnjrnl_j_ino) 2262 ntfs_commit_inode(vol->usnjrnl_j_ino); 2263 if (vol->usnjrnl_max_ino) 2264 ntfs_commit_inode(vol->usnjrnl_max_ino); 2265 if (vol->usnjrnl_ino) 2266 ntfs_commit_inode(vol->usnjrnl_ino); 2267 if (vol->quota_q_ino) 2268 ntfs_commit_inode(vol->quota_q_ino); 2269 if (vol->quota_ino) 2270 ntfs_commit_inode(vol->quota_ino); 2271 if (vol->extend_ino) 2272 ntfs_commit_inode(vol->extend_ino); 2273 if (vol->secure_ino) 2274 ntfs_commit_inode(vol->secure_ino); 2275 } 2276 2277 ntfs_commit_inode(vol->root_ino); 2278 2279 down_write(&vol->lcnbmp_lock); 2280 ntfs_commit_inode(vol->lcnbmp_ino); 2281 up_write(&vol->lcnbmp_lock); 2282 2283 down_write(&vol->mftbmp_lock); 2284 ntfs_commit_inode(vol->mftbmp_ino); 2285 up_write(&vol->mftbmp_lock); 2286 2287 if (vol->logfile_ino) 2288 ntfs_commit_inode(vol->logfile_ino); 2289 2290 if (vol->mftmirr_ino) 2291 ntfs_commit_inode(vol->mftmirr_ino); 2292 ntfs_commit_inode(vol->mft_ino); 2293 2294 /* 2295 * If a read-write mount and no volume errors have occured, mark the 2296 * volume clean. Also, re-commit all affected inodes. 2297 */ 2298 if (!(sb->s_flags & MS_RDONLY)) { 2299 if (!NVolErrors(vol)) { 2300 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2301 ntfs_warning(sb, "Failed to clear dirty bit " 2302 "in volume information " 2303 "flags. Run chkdsk."); 2304 ntfs_commit_inode(vol->vol_ino); 2305 ntfs_commit_inode(vol->root_ino); 2306 if (vol->mftmirr_ino) 2307 ntfs_commit_inode(vol->mftmirr_ino); 2308 ntfs_commit_inode(vol->mft_ino); 2309 } else { 2310 ntfs_warning(sb, "Volume has errors. Leaving volume " 2311 "marked dirty. Run chkdsk."); 2312 } 2313 } 2314 #endif /* NTFS_RW */ 2315 2316 iput(vol->vol_ino); 2317 vol->vol_ino = NULL; 2318 2319 /* NTFS 3.0+ specific clean up. */ 2320 if (vol->major_ver >= 3) { 2321 #ifdef NTFS_RW 2322 if (vol->usnjrnl_j_ino) { 2323 iput(vol->usnjrnl_j_ino); 2324 vol->usnjrnl_j_ino = NULL; 2325 } 2326 if (vol->usnjrnl_max_ino) { 2327 iput(vol->usnjrnl_max_ino); 2328 vol->usnjrnl_max_ino = NULL; 2329 } 2330 if (vol->usnjrnl_ino) { 2331 iput(vol->usnjrnl_ino); 2332 vol->usnjrnl_ino = NULL; 2333 } 2334 if (vol->quota_q_ino) { 2335 iput(vol->quota_q_ino); 2336 vol->quota_q_ino = NULL; 2337 } 2338 if (vol->quota_ino) { 2339 iput(vol->quota_ino); 2340 vol->quota_ino = NULL; 2341 } 2342 #endif /* NTFS_RW */ 2343 if (vol->extend_ino) { 2344 iput(vol->extend_ino); 2345 vol->extend_ino = NULL; 2346 } 2347 if (vol->secure_ino) { 2348 iput(vol->secure_ino); 2349 vol->secure_ino = NULL; 2350 } 2351 } 2352 2353 iput(vol->root_ino); 2354 vol->root_ino = NULL; 2355 2356 down_write(&vol->lcnbmp_lock); 2357 iput(vol->lcnbmp_ino); 2358 vol->lcnbmp_ino = NULL; 2359 up_write(&vol->lcnbmp_lock); 2360 2361 down_write(&vol->mftbmp_lock); 2362 iput(vol->mftbmp_ino); 2363 vol->mftbmp_ino = NULL; 2364 up_write(&vol->mftbmp_lock); 2365 2366 #ifdef NTFS_RW 2367 if (vol->logfile_ino) { 2368 iput(vol->logfile_ino); 2369 vol->logfile_ino = NULL; 2370 } 2371 if (vol->mftmirr_ino) { 2372 /* Re-commit the mft mirror and mft just in case. */ 2373 ntfs_commit_inode(vol->mftmirr_ino); 2374 ntfs_commit_inode(vol->mft_ino); 2375 iput(vol->mftmirr_ino); 2376 vol->mftmirr_ino = NULL; 2377 } 2378 /* 2379 * We should have no dirty inodes left, due to 2380 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2381 * the underlying mft records are written out and cleaned. 2382 */ 2383 ntfs_commit_inode(vol->mft_ino); 2384 write_inode_now(vol->mft_ino, 1); 2385 #endif /* NTFS_RW */ 2386 2387 iput(vol->mft_ino); 2388 vol->mft_ino = NULL; 2389 2390 /* Throw away the table of attribute definitions. */ 2391 vol->attrdef_size = 0; 2392 if (vol->attrdef) { 2393 ntfs_free(vol->attrdef); 2394 vol->attrdef = NULL; 2395 } 2396 vol->upcase_len = 0; 2397 /* 2398 * Destroy the global default upcase table if necessary. Also decrease 2399 * the number of upcase users if we are a user. 2400 */ 2401 mutex_lock(&ntfs_lock); 2402 if (vol->upcase == default_upcase) { 2403 ntfs_nr_upcase_users--; 2404 vol->upcase = NULL; 2405 } 2406 if (!ntfs_nr_upcase_users && default_upcase) { 2407 ntfs_free(default_upcase); 2408 default_upcase = NULL; 2409 } 2410 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2411 free_compression_buffers(); 2412 mutex_unlock(&ntfs_lock); 2413 if (vol->upcase) { 2414 ntfs_free(vol->upcase); 2415 vol->upcase = NULL; 2416 } 2417 2418 unload_nls(vol->nls_map); 2419 2420 sb->s_fs_info = NULL; 2421 kfree(vol); 2422 } 2423 2424 /** 2425 * get_nr_free_clusters - return the number of free clusters on a volume 2426 * @vol: ntfs volume for which to obtain free cluster count 2427 * 2428 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2429 * actually calculate the number of clusters in use instead because this 2430 * allows us to not care about partial pages as these will be just zero filled 2431 * and hence not be counted as allocated clusters. 2432 * 2433 * The only particularity is that clusters beyond the end of the logical ntfs 2434 * volume will be marked as allocated to prevent errors which means we have to 2435 * discount those at the end. This is important as the cluster bitmap always 2436 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2437 * the logical volume and marked in use when they are not as they do not exist. 2438 * 2439 * If any pages cannot be read we assume all clusters in the erroring pages are 2440 * in use. This means we return an underestimate on errors which is better than 2441 * an overestimate. 2442 */ 2443 static s64 get_nr_free_clusters(ntfs_volume *vol) 2444 { 2445 s64 nr_free = vol->nr_clusters; 2446 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2447 struct page *page; 2448 pgoff_t index, max_index; 2449 2450 ntfs_debug("Entering."); 2451 /* Serialize accesses to the cluster bitmap. */ 2452 down_read(&vol->lcnbmp_lock); 2453 /* 2454 * Convert the number of bits into bytes rounded up, then convert into 2455 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one 2456 * full and one partial page max_index = 2. 2457 */ 2458 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> 2459 PAGE_CACHE_SHIFT; 2460 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2461 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2462 max_index, PAGE_CACHE_SIZE / 4); 2463 for (index = 0; index < max_index; index++) { 2464 unsigned long *kaddr; 2465 2466 /* 2467 * Read the page from page cache, getting it from backing store 2468 * if necessary, and increment the use count. 2469 */ 2470 page = read_mapping_page(mapping, index, NULL); 2471 /* Ignore pages which errored synchronously. */ 2472 if (IS_ERR(page)) { 2473 ntfs_debug("read_mapping_page() error. Skipping " 2474 "page (index 0x%lx).", index); 2475 nr_free -= PAGE_CACHE_SIZE * 8; 2476 continue; 2477 } 2478 kaddr = kmap_atomic(page, KM_USER0); 2479 /* 2480 * Subtract the number of set bits. If this 2481 * is the last page and it is partial we don't really care as 2482 * it just means we do a little extra work but it won't affect 2483 * the result as all out of range bytes are set to zero by 2484 * ntfs_readpage(). 2485 */ 2486 nr_free -= bitmap_weight(kaddr, 2487 PAGE_CACHE_SIZE * BITS_PER_BYTE); 2488 kunmap_atomic(kaddr, KM_USER0); 2489 page_cache_release(page); 2490 } 2491 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2492 /* 2493 * Fixup for eventual bits outside logical ntfs volume (see function 2494 * description above). 2495 */ 2496 if (vol->nr_clusters & 63) 2497 nr_free += 64 - (vol->nr_clusters & 63); 2498 up_read(&vol->lcnbmp_lock); 2499 /* If errors occured we may well have gone below zero, fix this. */ 2500 if (nr_free < 0) 2501 nr_free = 0; 2502 ntfs_debug("Exiting."); 2503 return nr_free; 2504 } 2505 2506 /** 2507 * __get_nr_free_mft_records - return the number of free inodes on a volume 2508 * @vol: ntfs volume for which to obtain free inode count 2509 * @nr_free: number of mft records in filesystem 2510 * @max_index: maximum number of pages containing set bits 2511 * 2512 * Calculate the number of free mft records (inodes) on the mounted NTFS 2513 * volume @vol. We actually calculate the number of mft records in use instead 2514 * because this allows us to not care about partial pages as these will be just 2515 * zero filled and hence not be counted as allocated mft record. 2516 * 2517 * If any pages cannot be read we assume all mft records in the erroring pages 2518 * are in use. This means we return an underestimate on errors which is better 2519 * than an overestimate. 2520 * 2521 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2522 */ 2523 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2524 s64 nr_free, const pgoff_t max_index) 2525 { 2526 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2527 struct page *page; 2528 pgoff_t index; 2529 2530 ntfs_debug("Entering."); 2531 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2532 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2533 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4); 2534 for (index = 0; index < max_index; index++) { 2535 unsigned long *kaddr; 2536 2537 /* 2538 * Read the page from page cache, getting it from backing store 2539 * if necessary, and increment the use count. 2540 */ 2541 page = read_mapping_page(mapping, index, NULL); 2542 /* Ignore pages which errored synchronously. */ 2543 if (IS_ERR(page)) { 2544 ntfs_debug("read_mapping_page() error. Skipping " 2545 "page (index 0x%lx).", index); 2546 nr_free -= PAGE_CACHE_SIZE * 8; 2547 continue; 2548 } 2549 kaddr = kmap_atomic(page, KM_USER0); 2550 /* 2551 * Subtract the number of set bits. If this 2552 * is the last page and it is partial we don't really care as 2553 * it just means we do a little extra work but it won't affect 2554 * the result as all out of range bytes are set to zero by 2555 * ntfs_readpage(). 2556 */ 2557 nr_free -= bitmap_weight(kaddr, 2558 PAGE_CACHE_SIZE * BITS_PER_BYTE); 2559 kunmap_atomic(kaddr, KM_USER0); 2560 page_cache_release(page); 2561 } 2562 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2563 index - 1); 2564 /* If errors occured we may well have gone below zero, fix this. */ 2565 if (nr_free < 0) 2566 nr_free = 0; 2567 ntfs_debug("Exiting."); 2568 return nr_free; 2569 } 2570 2571 /** 2572 * ntfs_statfs - return information about mounted NTFS volume 2573 * @dentry: dentry from mounted volume 2574 * @sfs: statfs structure in which to return the information 2575 * 2576 * Return information about the mounted NTFS volume @dentry in the statfs structure 2577 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2578 * called). We interpret the values to be correct of the moment in time at 2579 * which we are called. Most values are variable otherwise and this isn't just 2580 * the free values but the totals as well. For example we can increase the 2581 * total number of file nodes if we run out and we can keep doing this until 2582 * there is no more space on the volume left at all. 2583 * 2584 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2585 * ustat system calls. 2586 * 2587 * Return 0 on success or -errno on error. 2588 */ 2589 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2590 { 2591 struct super_block *sb = dentry->d_sb; 2592 s64 size; 2593 ntfs_volume *vol = NTFS_SB(sb); 2594 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2595 pgoff_t max_index; 2596 unsigned long flags; 2597 2598 ntfs_debug("Entering."); 2599 /* Type of filesystem. */ 2600 sfs->f_type = NTFS_SB_MAGIC; 2601 /* Optimal transfer block size. */ 2602 sfs->f_bsize = PAGE_CACHE_SIZE; 2603 /* 2604 * Total data blocks in filesystem in units of f_bsize and since 2605 * inodes are also stored in data blocs ($MFT is a file) this is just 2606 * the total clusters. 2607 */ 2608 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2609 PAGE_CACHE_SHIFT; 2610 /* Free data blocks in filesystem in units of f_bsize. */ 2611 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2612 PAGE_CACHE_SHIFT; 2613 if (size < 0LL) 2614 size = 0LL; 2615 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2616 sfs->f_bavail = sfs->f_bfree = size; 2617 /* Serialize accesses to the inode bitmap. */ 2618 down_read(&vol->mftbmp_lock); 2619 read_lock_irqsave(&mft_ni->size_lock, flags); 2620 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2621 /* 2622 * Convert the maximum number of set bits into bytes rounded up, then 2623 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we 2624 * have one full and one partial page max_index = 2. 2625 */ 2626 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2627 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2628 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2629 /* Number of inodes in filesystem (at this point in time). */ 2630 sfs->f_files = size; 2631 /* Free inodes in fs (based on current total count). */ 2632 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2633 up_read(&vol->mftbmp_lock); 2634 /* 2635 * File system id. This is extremely *nix flavour dependent and even 2636 * within Linux itself all fs do their own thing. I interpret this to 2637 * mean a unique id associated with the mounted fs and not the id 2638 * associated with the filesystem driver, the latter is already given 2639 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2640 * volume serial number splitting it into two 32-bit parts. We enter 2641 * the least significant 32-bits in f_fsid[0] and the most significant 2642 * 32-bits in f_fsid[1]. 2643 */ 2644 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff; 2645 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff; 2646 /* Maximum length of filenames. */ 2647 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2648 return 0; 2649 } 2650 2651 #ifdef NTFS_RW 2652 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) 2653 { 2654 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); 2655 } 2656 #endif 2657 2658 /** 2659 * The complete super operations. 2660 */ 2661 static const struct super_operations ntfs_sops = { 2662 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2663 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */ 2664 #ifdef NTFS_RW 2665 //.dirty_inode = NULL, /* VFS: Called from 2666 // __mark_inode_dirty(). */ 2667 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2668 disk. */ 2669 //.drop_inode = NULL, /* VFS: Called just after the 2670 // inode reference count has 2671 // been decreased to zero. 2672 // NOTE: The inode lock is 2673 // held. See fs/inode.c:: 2674 // generic_drop_inode(). */ 2675 //.delete_inode = NULL, /* VFS: Delete inode from disk. 2676 // Called when i_count becomes 2677 // 0 and i_nlink is also 0. */ 2678 //.write_super = NULL, /* Flush dirty super block to 2679 // disk. */ 2680 //.sync_fs = NULL, /* ? */ 2681 //.write_super_lockfs = NULL, /* ? */ 2682 //.unlockfs = NULL, /* ? */ 2683 #endif /* NTFS_RW */ 2684 .put_super = ntfs_put_super, /* Syscall: umount. */ 2685 .statfs = ntfs_statfs, /* Syscall: statfs */ 2686 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2687 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is 2688 removed from memory. */ 2689 //.umount_begin = NULL, /* Forced umount. */ 2690 .show_options = ntfs_show_options, /* Show mount options in 2691 proc. */ 2692 }; 2693 2694 /** 2695 * ntfs_fill_super - mount an ntfs filesystem 2696 * @sb: super block of ntfs filesystem to mount 2697 * @opt: string containing the mount options 2698 * @silent: silence error output 2699 * 2700 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2701 * with the mount otions in @data with the NTFS filesystem. 2702 * 2703 * If @silent is true, remain silent even if errors are detected. This is used 2704 * during bootup, when the kernel tries to mount the root filesystem with all 2705 * registered filesystems one after the other until one succeeds. This implies 2706 * that all filesystems except the correct one will quite correctly and 2707 * expectedly return an error, but nobody wants to see error messages when in 2708 * fact this is what is supposed to happen. 2709 * 2710 * NOTE: @sb->s_flags contains the mount options flags. 2711 */ 2712 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2713 { 2714 ntfs_volume *vol; 2715 struct buffer_head *bh; 2716 struct inode *tmp_ino; 2717 int blocksize, result; 2718 2719 /* 2720 * We do a pretty difficult piece of bootstrap by reading the 2721 * MFT (and other metadata) from disk into memory. We'll only 2722 * release this metadata during umount, so the locking patterns 2723 * observed during bootstrap do not count. So turn off the 2724 * observation of locking patterns (strictly for this context 2725 * only) while mounting NTFS. [The validator is still active 2726 * otherwise, even for this context: it will for example record 2727 * lock class registrations.] 2728 */ 2729 lockdep_off(); 2730 ntfs_debug("Entering."); 2731 #ifndef NTFS_RW 2732 sb->s_flags |= MS_RDONLY; 2733 #endif /* ! NTFS_RW */ 2734 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2735 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2736 vol = NTFS_SB(sb); 2737 if (!vol) { 2738 if (!silent) 2739 ntfs_error(sb, "Allocation of NTFS volume structure " 2740 "failed. Aborting mount..."); 2741 lockdep_on(); 2742 return -ENOMEM; 2743 } 2744 /* Initialize ntfs_volume structure. */ 2745 *vol = (ntfs_volume) { 2746 .sb = sb, 2747 /* 2748 * Default is group and other don't have any access to files or 2749 * directories while owner has full access. Further, files by 2750 * default are not executable but directories are of course 2751 * browseable. 2752 */ 2753 .fmask = 0177, 2754 .dmask = 0077, 2755 }; 2756 init_rwsem(&vol->mftbmp_lock); 2757 init_rwsem(&vol->lcnbmp_lock); 2758 2759 /* By default, enable sparse support. */ 2760 NVolSetSparseEnabled(vol); 2761 2762 /* Important to get the mount options dealt with now. */ 2763 if (!parse_options(vol, (char*)opt)) 2764 goto err_out_now; 2765 2766 /* We support sector sizes up to the PAGE_CACHE_SIZE. */ 2767 if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) { 2768 if (!silent) 2769 ntfs_error(sb, "Device has unsupported sector size " 2770 "(%i). The maximum supported sector " 2771 "size on this architecture is %lu " 2772 "bytes.", 2773 bdev_logical_block_size(sb->s_bdev), 2774 PAGE_CACHE_SIZE); 2775 goto err_out_now; 2776 } 2777 /* 2778 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2779 * sector size, whichever is bigger. 2780 */ 2781 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2782 if (blocksize < NTFS_BLOCK_SIZE) { 2783 if (!silent) 2784 ntfs_error(sb, "Unable to set device block size."); 2785 goto err_out_now; 2786 } 2787 BUG_ON(blocksize != sb->s_blocksize); 2788 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2789 blocksize, sb->s_blocksize_bits); 2790 /* Determine the size of the device in units of block_size bytes. */ 2791 if (!i_size_read(sb->s_bdev->bd_inode)) { 2792 if (!silent) 2793 ntfs_error(sb, "Unable to determine device size."); 2794 goto err_out_now; 2795 } 2796 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2797 sb->s_blocksize_bits; 2798 /* Read the boot sector and return unlocked buffer head to it. */ 2799 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2800 if (!silent) 2801 ntfs_error(sb, "Not an NTFS volume."); 2802 goto err_out_now; 2803 } 2804 /* 2805 * Extract the data from the boot sector and setup the ntfs volume 2806 * using it. 2807 */ 2808 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2809 brelse(bh); 2810 if (!result) { 2811 if (!silent) 2812 ntfs_error(sb, "Unsupported NTFS filesystem."); 2813 goto err_out_now; 2814 } 2815 /* 2816 * If the boot sector indicates a sector size bigger than the current 2817 * device block size, switch the device block size to the sector size. 2818 * TODO: It may be possible to support this case even when the set 2819 * below fails, we would just be breaking up the i/o for each sector 2820 * into multiple blocks for i/o purposes but otherwise it should just 2821 * work. However it is safer to leave disabled until someone hits this 2822 * error message and then we can get them to try it without the setting 2823 * so we know for sure that it works. 2824 */ 2825 if (vol->sector_size > blocksize) { 2826 blocksize = sb_set_blocksize(sb, vol->sector_size); 2827 if (blocksize != vol->sector_size) { 2828 if (!silent) 2829 ntfs_error(sb, "Unable to set device block " 2830 "size to sector size (%i).", 2831 vol->sector_size); 2832 goto err_out_now; 2833 } 2834 BUG_ON(blocksize != sb->s_blocksize); 2835 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2836 sb->s_blocksize_bits; 2837 ntfs_debug("Changed device block size to %i bytes (block size " 2838 "bits %i) to match volume sector size.", 2839 blocksize, sb->s_blocksize_bits); 2840 } 2841 /* Initialize the cluster and mft allocators. */ 2842 ntfs_setup_allocators(vol); 2843 /* Setup remaining fields in the super block. */ 2844 sb->s_magic = NTFS_SB_MAGIC; 2845 /* 2846 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2847 * sb->s_maxbytes = ~0ULL >> 1; 2848 * But the kernel uses a long as the page cache page index which on 2849 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2850 * defined to the maximum the page cache page index can cope with 2851 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2852 */ 2853 sb->s_maxbytes = MAX_LFS_FILESIZE; 2854 /* Ntfs measures time in 100ns intervals. */ 2855 sb->s_time_gran = 100; 2856 /* 2857 * Now load the metadata required for the page cache and our address 2858 * space operations to function. We do this by setting up a specialised 2859 * read_inode method and then just calling the normal iget() to obtain 2860 * the inode for $MFT which is sufficient to allow our normal inode 2861 * operations and associated address space operations to function. 2862 */ 2863 sb->s_op = &ntfs_sops; 2864 tmp_ino = new_inode(sb); 2865 if (!tmp_ino) { 2866 if (!silent) 2867 ntfs_error(sb, "Failed to load essential metadata."); 2868 goto err_out_now; 2869 } 2870 tmp_ino->i_ino = FILE_MFT; 2871 insert_inode_hash(tmp_ino); 2872 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2873 if (!silent) 2874 ntfs_error(sb, "Failed to load essential metadata."); 2875 goto iput_tmp_ino_err_out_now; 2876 } 2877 mutex_lock(&ntfs_lock); 2878 /* 2879 * The current mount is a compression user if the cluster size is 2880 * less than or equal 4kiB. 2881 */ 2882 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2883 result = allocate_compression_buffers(); 2884 if (result) { 2885 ntfs_error(NULL, "Failed to allocate buffers " 2886 "for compression engine."); 2887 ntfs_nr_compression_users--; 2888 mutex_unlock(&ntfs_lock); 2889 goto iput_tmp_ino_err_out_now; 2890 } 2891 } 2892 /* 2893 * Generate the global default upcase table if necessary. Also 2894 * temporarily increment the number of upcase users to avoid race 2895 * conditions with concurrent (u)mounts. 2896 */ 2897 if (!default_upcase) 2898 default_upcase = generate_default_upcase(); 2899 ntfs_nr_upcase_users++; 2900 mutex_unlock(&ntfs_lock); 2901 /* 2902 * From now on, ignore @silent parameter. If we fail below this line, 2903 * it will be due to a corrupt fs or a system error, so we report it. 2904 */ 2905 /* 2906 * Open the system files with normal access functions and complete 2907 * setting up the ntfs super block. 2908 */ 2909 if (!load_system_files(vol)) { 2910 ntfs_error(sb, "Failed to load system files."); 2911 goto unl_upcase_iput_tmp_ino_err_out_now; 2912 } 2913 if ((sb->s_root = d_alloc_root(vol->root_ino))) { 2914 /* We grab a reference, simulating an ntfs_iget(). */ 2915 ihold(vol->root_ino); 2916 ntfs_debug("Exiting, status successful."); 2917 /* Release the default upcase if it has no users. */ 2918 mutex_lock(&ntfs_lock); 2919 if (!--ntfs_nr_upcase_users && default_upcase) { 2920 ntfs_free(default_upcase); 2921 default_upcase = NULL; 2922 } 2923 mutex_unlock(&ntfs_lock); 2924 sb->s_export_op = &ntfs_export_ops; 2925 lockdep_on(); 2926 return 0; 2927 } 2928 ntfs_error(sb, "Failed to allocate root directory."); 2929 /* Clean up after the successful load_system_files() call from above. */ 2930 // TODO: Use ntfs_put_super() instead of repeating all this code... 2931 // FIXME: Should mark the volume clean as the error is most likely 2932 // -ENOMEM. 2933 iput(vol->vol_ino); 2934 vol->vol_ino = NULL; 2935 /* NTFS 3.0+ specific clean up. */ 2936 if (vol->major_ver >= 3) { 2937 #ifdef NTFS_RW 2938 if (vol->usnjrnl_j_ino) { 2939 iput(vol->usnjrnl_j_ino); 2940 vol->usnjrnl_j_ino = NULL; 2941 } 2942 if (vol->usnjrnl_max_ino) { 2943 iput(vol->usnjrnl_max_ino); 2944 vol->usnjrnl_max_ino = NULL; 2945 } 2946 if (vol->usnjrnl_ino) { 2947 iput(vol->usnjrnl_ino); 2948 vol->usnjrnl_ino = NULL; 2949 } 2950 if (vol->quota_q_ino) { 2951 iput(vol->quota_q_ino); 2952 vol->quota_q_ino = NULL; 2953 } 2954 if (vol->quota_ino) { 2955 iput(vol->quota_ino); 2956 vol->quota_ino = NULL; 2957 } 2958 #endif /* NTFS_RW */ 2959 if (vol->extend_ino) { 2960 iput(vol->extend_ino); 2961 vol->extend_ino = NULL; 2962 } 2963 if (vol->secure_ino) { 2964 iput(vol->secure_ino); 2965 vol->secure_ino = NULL; 2966 } 2967 } 2968 iput(vol->root_ino); 2969 vol->root_ino = NULL; 2970 iput(vol->lcnbmp_ino); 2971 vol->lcnbmp_ino = NULL; 2972 iput(vol->mftbmp_ino); 2973 vol->mftbmp_ino = NULL; 2974 #ifdef NTFS_RW 2975 if (vol->logfile_ino) { 2976 iput(vol->logfile_ino); 2977 vol->logfile_ino = NULL; 2978 } 2979 if (vol->mftmirr_ino) { 2980 iput(vol->mftmirr_ino); 2981 vol->mftmirr_ino = NULL; 2982 } 2983 #endif /* NTFS_RW */ 2984 /* Throw away the table of attribute definitions. */ 2985 vol->attrdef_size = 0; 2986 if (vol->attrdef) { 2987 ntfs_free(vol->attrdef); 2988 vol->attrdef = NULL; 2989 } 2990 vol->upcase_len = 0; 2991 mutex_lock(&ntfs_lock); 2992 if (vol->upcase == default_upcase) { 2993 ntfs_nr_upcase_users--; 2994 vol->upcase = NULL; 2995 } 2996 mutex_unlock(&ntfs_lock); 2997 if (vol->upcase) { 2998 ntfs_free(vol->upcase); 2999 vol->upcase = NULL; 3000 } 3001 if (vol->nls_map) { 3002 unload_nls(vol->nls_map); 3003 vol->nls_map = NULL; 3004 } 3005 /* Error exit code path. */ 3006 unl_upcase_iput_tmp_ino_err_out_now: 3007 /* 3008 * Decrease the number of upcase users and destroy the global default 3009 * upcase table if necessary. 3010 */ 3011 mutex_lock(&ntfs_lock); 3012 if (!--ntfs_nr_upcase_users && default_upcase) { 3013 ntfs_free(default_upcase); 3014 default_upcase = NULL; 3015 } 3016 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3017 free_compression_buffers(); 3018 mutex_unlock(&ntfs_lock); 3019 iput_tmp_ino_err_out_now: 3020 iput(tmp_ino); 3021 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3022 iput(vol->mft_ino); 3023 vol->mft_ino = NULL; 3024 /* Errors at this stage are irrelevant. */ 3025 err_out_now: 3026 sb->s_fs_info = NULL; 3027 kfree(vol); 3028 ntfs_debug("Failed, returning -EINVAL."); 3029 lockdep_on(); 3030 return -EINVAL; 3031 } 3032 3033 /* 3034 * This is a slab cache to optimize allocations and deallocations of Unicode 3035 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3036 * (255) Unicode characters + a terminating NULL Unicode character. 3037 */ 3038 struct kmem_cache *ntfs_name_cache; 3039 3040 /* Slab caches for efficient allocation/deallocation of inodes. */ 3041 struct kmem_cache *ntfs_inode_cache; 3042 struct kmem_cache *ntfs_big_inode_cache; 3043 3044 /* Init once constructor for the inode slab cache. */ 3045 static void ntfs_big_inode_init_once(void *foo) 3046 { 3047 ntfs_inode *ni = (ntfs_inode *)foo; 3048 3049 inode_init_once(VFS_I(ni)); 3050 } 3051 3052 /* 3053 * Slab caches to optimize allocations and deallocations of attribute search 3054 * contexts and index contexts, respectively. 3055 */ 3056 struct kmem_cache *ntfs_attr_ctx_cache; 3057 struct kmem_cache *ntfs_index_ctx_cache; 3058 3059 /* Driver wide mutex. */ 3060 DEFINE_MUTEX(ntfs_lock); 3061 3062 static struct dentry *ntfs_mount(struct file_system_type *fs_type, 3063 int flags, const char *dev_name, void *data) 3064 { 3065 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3066 } 3067 3068 static struct file_system_type ntfs_fs_type = { 3069 .owner = THIS_MODULE, 3070 .name = "ntfs", 3071 .mount = ntfs_mount, 3072 .kill_sb = kill_block_super, 3073 .fs_flags = FS_REQUIRES_DEV, 3074 }; 3075 3076 /* Stable names for the slab caches. */ 3077 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3078 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3079 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3080 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3081 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3082 3083 static int __init init_ntfs_fs(void) 3084 { 3085 int err = 0; 3086 3087 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3088 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/" 3089 #ifdef NTFS_RW 3090 "W" 3091 #else 3092 "O" 3093 #endif 3094 #ifdef DEBUG 3095 " DEBUG" 3096 #endif 3097 #ifdef MODULE 3098 " MODULE" 3099 #endif 3100 "].\n"); 3101 3102 ntfs_debug("Debug messages are enabled."); 3103 3104 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3105 sizeof(ntfs_index_context), 0 /* offset */, 3106 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3107 if (!ntfs_index_ctx_cache) { 3108 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3109 ntfs_index_ctx_cache_name); 3110 goto ictx_err_out; 3111 } 3112 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3113 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3114 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3115 if (!ntfs_attr_ctx_cache) { 3116 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3117 ntfs_attr_ctx_cache_name); 3118 goto actx_err_out; 3119 } 3120 3121 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3122 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3123 SLAB_HWCACHE_ALIGN, NULL); 3124 if (!ntfs_name_cache) { 3125 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3126 ntfs_name_cache_name); 3127 goto name_err_out; 3128 } 3129 3130 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3131 sizeof(ntfs_inode), 0, 3132 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3133 if (!ntfs_inode_cache) { 3134 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3135 ntfs_inode_cache_name); 3136 goto inode_err_out; 3137 } 3138 3139 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3140 sizeof(big_ntfs_inode), 0, 3141 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, 3142 ntfs_big_inode_init_once); 3143 if (!ntfs_big_inode_cache) { 3144 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3145 ntfs_big_inode_cache_name); 3146 goto big_inode_err_out; 3147 } 3148 3149 /* Register the ntfs sysctls. */ 3150 err = ntfs_sysctl(1); 3151 if (err) { 3152 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n"); 3153 goto sysctl_err_out; 3154 } 3155 3156 err = register_filesystem(&ntfs_fs_type); 3157 if (!err) { 3158 ntfs_debug("NTFS driver registered successfully."); 3159 return 0; /* Success! */ 3160 } 3161 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n"); 3162 3163 sysctl_err_out: 3164 kmem_cache_destroy(ntfs_big_inode_cache); 3165 big_inode_err_out: 3166 kmem_cache_destroy(ntfs_inode_cache); 3167 inode_err_out: 3168 kmem_cache_destroy(ntfs_name_cache); 3169 name_err_out: 3170 kmem_cache_destroy(ntfs_attr_ctx_cache); 3171 actx_err_out: 3172 kmem_cache_destroy(ntfs_index_ctx_cache); 3173 ictx_err_out: 3174 if (!err) { 3175 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver " 3176 "registration...\n"); 3177 err = -ENOMEM; 3178 } 3179 return err; 3180 } 3181 3182 static void __exit exit_ntfs_fs(void) 3183 { 3184 ntfs_debug("Unregistering NTFS driver."); 3185 3186 unregister_filesystem(&ntfs_fs_type); 3187 kmem_cache_destroy(ntfs_big_inode_cache); 3188 kmem_cache_destroy(ntfs_inode_cache); 3189 kmem_cache_destroy(ntfs_name_cache); 3190 kmem_cache_destroy(ntfs_attr_ctx_cache); 3191 kmem_cache_destroy(ntfs_index_ctx_cache); 3192 /* Unregister the ntfs sysctls. */ 3193 ntfs_sysctl(0); 3194 } 3195 3196 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); 3197 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc."); 3198 MODULE_VERSION(NTFS_VERSION); 3199 MODULE_LICENSE("GPL"); 3200 #ifdef DEBUG 3201 module_param(debug_msgs, bool, 0); 3202 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3203 #endif 3204 3205 module_init(init_ntfs_fs) 3206 module_exit(exit_ntfs_fs) 3207