1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2001,2002 Richard Russon 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/spinlock.h> 15 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 16 #include <linux/backing-dev.h> 17 #include <linux/buffer_head.h> 18 #include <linux/vfs.h> 19 #include <linux/moduleparam.h> 20 #include <linux/bitmap.h> 21 22 #include "sysctl.h" 23 #include "logfile.h" 24 #include "quota.h" 25 #include "usnjrnl.h" 26 #include "dir.h" 27 #include "debug.h" 28 #include "index.h" 29 #include "inode.h" 30 #include "aops.h" 31 #include "layout.h" 32 #include "malloc.h" 33 #include "ntfs.h" 34 35 /* Number of mounted filesystems which have compression enabled. */ 36 static unsigned long ntfs_nr_compression_users; 37 38 /* A global default upcase table and a corresponding reference count. */ 39 static ntfschar *default_upcase; 40 static unsigned long ntfs_nr_upcase_users; 41 42 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 43 typedef enum { 44 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 45 ON_ERRORS_PANIC = 0x01, 46 ON_ERRORS_REMOUNT_RO = 0x02, 47 ON_ERRORS_CONTINUE = 0x04, 48 /* Optional, can be combined with any of the above. */ 49 ON_ERRORS_RECOVER = 0x10, 50 } ON_ERRORS_ACTIONS; 51 52 const option_t on_errors_arr[] = { 53 { ON_ERRORS_PANIC, "panic" }, 54 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 55 { ON_ERRORS_CONTINUE, "continue", }, 56 { ON_ERRORS_RECOVER, "recover" }, 57 { 0, NULL } 58 }; 59 60 /** 61 * simple_getbool - 62 * 63 * Copied from old ntfs driver (which copied from vfat driver). 64 */ 65 static int simple_getbool(char *s, bool *setval) 66 { 67 if (s) { 68 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 69 *setval = true; 70 else if (!strcmp(s, "0") || !strcmp(s, "no") || 71 !strcmp(s, "false")) 72 *setval = false; 73 else 74 return 0; 75 } else 76 *setval = true; 77 return 1; 78 } 79 80 /** 81 * parse_options - parse the (re)mount options 82 * @vol: ntfs volume 83 * @opt: string containing the (re)mount options 84 * 85 * Parse the recognized options in @opt for the ntfs volume described by @vol. 86 */ 87 static bool parse_options(ntfs_volume *vol, char *opt) 88 { 89 char *p, *v, *ov; 90 static char *utf8 = "utf8"; 91 int errors = 0, sloppy = 0; 92 kuid_t uid = INVALID_UID; 93 kgid_t gid = INVALID_GID; 94 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1; 95 int mft_zone_multiplier = -1, on_errors = -1; 96 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 97 struct nls_table *nls_map = NULL, *old_nls; 98 99 /* I am lazy... (-8 */ 100 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 101 if (!strcmp(p, option)) { \ 102 if (!v || !*v) \ 103 variable = default_value; \ 104 else { \ 105 variable = simple_strtoul(ov = v, &v, 0); \ 106 if (*v) \ 107 goto needs_val; \ 108 } \ 109 } 110 #define NTFS_GETOPT(option, variable) \ 111 if (!strcmp(p, option)) { \ 112 if (!v || !*v) \ 113 goto needs_arg; \ 114 variable = simple_strtoul(ov = v, &v, 0); \ 115 if (*v) \ 116 goto needs_val; \ 117 } 118 #define NTFS_GETOPT_UID(option, variable) \ 119 if (!strcmp(p, option)) { \ 120 uid_t uid_value; \ 121 if (!v || !*v) \ 122 goto needs_arg; \ 123 uid_value = simple_strtoul(ov = v, &v, 0); \ 124 if (*v) \ 125 goto needs_val; \ 126 variable = make_kuid(current_user_ns(), uid_value); \ 127 if (!uid_valid(variable)) \ 128 goto needs_val; \ 129 } 130 #define NTFS_GETOPT_GID(option, variable) \ 131 if (!strcmp(p, option)) { \ 132 gid_t gid_value; \ 133 if (!v || !*v) \ 134 goto needs_arg; \ 135 gid_value = simple_strtoul(ov = v, &v, 0); \ 136 if (*v) \ 137 goto needs_val; \ 138 variable = make_kgid(current_user_ns(), gid_value); \ 139 if (!gid_valid(variable)) \ 140 goto needs_val; \ 141 } 142 #define NTFS_GETOPT_OCTAL(option, variable) \ 143 if (!strcmp(p, option)) { \ 144 if (!v || !*v) \ 145 goto needs_arg; \ 146 variable = simple_strtoul(ov = v, &v, 8); \ 147 if (*v) \ 148 goto needs_val; \ 149 } 150 #define NTFS_GETOPT_BOOL(option, variable) \ 151 if (!strcmp(p, option)) { \ 152 bool val; \ 153 if (!simple_getbool(v, &val)) \ 154 goto needs_bool; \ 155 variable = val; \ 156 } 157 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 158 if (!strcmp(p, option)) { \ 159 int _i; \ 160 if (!v || !*v) \ 161 goto needs_arg; \ 162 ov = v; \ 163 if (variable == -1) \ 164 variable = 0; \ 165 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 166 if (!strcmp(opt_array[_i].str, v)) { \ 167 variable |= opt_array[_i].val; \ 168 break; \ 169 } \ 170 if (!opt_array[_i].str || !*opt_array[_i].str) \ 171 goto needs_val; \ 172 } 173 if (!opt || !*opt) 174 goto no_mount_options; 175 ntfs_debug("Entering with mount options string: %s", opt); 176 while ((p = strsep(&opt, ","))) { 177 if ((v = strchr(p, '='))) 178 *v++ = 0; 179 NTFS_GETOPT_UID("uid", uid) 180 else NTFS_GETOPT_GID("gid", gid) 181 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 182 else NTFS_GETOPT_OCTAL("fmask", fmask) 183 else NTFS_GETOPT_OCTAL("dmask", dmask) 184 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 185 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 186 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 187 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 188 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 189 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 190 on_errors_arr) 191 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 192 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 193 p); 194 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 195 if (!strcmp(p, "iocharset")) 196 ntfs_warning(vol->sb, "Option iocharset is " 197 "deprecated. Please use " 198 "option nls=<charsetname> in " 199 "the future."); 200 if (!v || !*v) 201 goto needs_arg; 202 use_utf8: 203 old_nls = nls_map; 204 nls_map = load_nls(v); 205 if (!nls_map) { 206 if (!old_nls) { 207 ntfs_error(vol->sb, "NLS character set " 208 "%s not found.", v); 209 return false; 210 } 211 ntfs_error(vol->sb, "NLS character set %s not " 212 "found. Using previous one %s.", 213 v, old_nls->charset); 214 nls_map = old_nls; 215 } else /* nls_map */ { 216 unload_nls(old_nls); 217 } 218 } else if (!strcmp(p, "utf8")) { 219 bool val = false; 220 ntfs_warning(vol->sb, "Option utf8 is no longer " 221 "supported, using option nls=utf8. Please " 222 "use option nls=utf8 in the future and " 223 "make sure utf8 is compiled either as a " 224 "module or into the kernel."); 225 if (!v || !*v) 226 val = true; 227 else if (!simple_getbool(v, &val)) 228 goto needs_bool; 229 if (val) { 230 v = utf8; 231 goto use_utf8; 232 } 233 } else { 234 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 235 if (errors < INT_MAX) 236 errors++; 237 } 238 #undef NTFS_GETOPT_OPTIONS_ARRAY 239 #undef NTFS_GETOPT_BOOL 240 #undef NTFS_GETOPT 241 #undef NTFS_GETOPT_WITH_DEFAULT 242 } 243 no_mount_options: 244 if (errors && !sloppy) 245 return false; 246 if (sloppy) 247 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 248 "unrecognized mount option(s) and continuing."); 249 /* Keep this first! */ 250 if (on_errors != -1) { 251 if (!on_errors) { 252 ntfs_error(vol->sb, "Invalid errors option argument " 253 "or bug in options parser."); 254 return false; 255 } 256 } 257 if (nls_map) { 258 if (vol->nls_map && vol->nls_map != nls_map) { 259 ntfs_error(vol->sb, "Cannot change NLS character set " 260 "on remount."); 261 return false; 262 } /* else (!vol->nls_map) */ 263 ntfs_debug("Using NLS character set %s.", nls_map->charset); 264 vol->nls_map = nls_map; 265 } else /* (!nls_map) */ { 266 if (!vol->nls_map) { 267 vol->nls_map = load_nls_default(); 268 if (!vol->nls_map) { 269 ntfs_error(vol->sb, "Failed to load default " 270 "NLS character set."); 271 return false; 272 } 273 ntfs_debug("Using default NLS character set (%s).", 274 vol->nls_map->charset); 275 } 276 } 277 if (mft_zone_multiplier != -1) { 278 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 279 mft_zone_multiplier) { 280 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 281 "on remount."); 282 return false; 283 } 284 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 285 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 286 "Using default value, i.e. 1."); 287 mft_zone_multiplier = 1; 288 } 289 vol->mft_zone_multiplier = mft_zone_multiplier; 290 } 291 if (!vol->mft_zone_multiplier) 292 vol->mft_zone_multiplier = 1; 293 if (on_errors != -1) 294 vol->on_errors = on_errors; 295 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 296 vol->on_errors |= ON_ERRORS_CONTINUE; 297 if (uid_valid(uid)) 298 vol->uid = uid; 299 if (gid_valid(gid)) 300 vol->gid = gid; 301 if (fmask != (umode_t)-1) 302 vol->fmask = fmask; 303 if (dmask != (umode_t)-1) 304 vol->dmask = dmask; 305 if (show_sys_files != -1) { 306 if (show_sys_files) 307 NVolSetShowSystemFiles(vol); 308 else 309 NVolClearShowSystemFiles(vol); 310 } 311 if (case_sensitive != -1) { 312 if (case_sensitive) 313 NVolSetCaseSensitive(vol); 314 else 315 NVolClearCaseSensitive(vol); 316 } 317 if (disable_sparse != -1) { 318 if (disable_sparse) 319 NVolClearSparseEnabled(vol); 320 else { 321 if (!NVolSparseEnabled(vol) && 322 vol->major_ver && vol->major_ver < 3) 323 ntfs_warning(vol->sb, "Not enabling sparse " 324 "support due to NTFS volume " 325 "version %i.%i (need at least " 326 "version 3.0).", vol->major_ver, 327 vol->minor_ver); 328 else 329 NVolSetSparseEnabled(vol); 330 } 331 } 332 return true; 333 needs_arg: 334 ntfs_error(vol->sb, "The %s option requires an argument.", p); 335 return false; 336 needs_bool: 337 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 338 return false; 339 needs_val: 340 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 341 return false; 342 } 343 344 #ifdef NTFS_RW 345 346 /** 347 * ntfs_write_volume_flags - write new flags to the volume information flags 348 * @vol: ntfs volume on which to modify the flags 349 * @flags: new flags value for the volume information flags 350 * 351 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 352 * instead (see below). 353 * 354 * Replace the volume information flags on the volume @vol with the value 355 * supplied in @flags. Note, this overwrites the volume information flags, so 356 * make sure to combine the flags you want to modify with the old flags and use 357 * the result when calling ntfs_write_volume_flags(). 358 * 359 * Return 0 on success and -errno on error. 360 */ 361 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 362 { 363 ntfs_inode *ni = NTFS_I(vol->vol_ino); 364 MFT_RECORD *m; 365 VOLUME_INFORMATION *vi; 366 ntfs_attr_search_ctx *ctx; 367 int err; 368 369 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 370 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 371 if (vol->vol_flags == flags) 372 goto done; 373 BUG_ON(!ni); 374 m = map_mft_record(ni); 375 if (IS_ERR(m)) { 376 err = PTR_ERR(m); 377 goto err_out; 378 } 379 ctx = ntfs_attr_get_search_ctx(ni, m); 380 if (!ctx) { 381 err = -ENOMEM; 382 goto put_unm_err_out; 383 } 384 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 385 ctx); 386 if (err) 387 goto put_unm_err_out; 388 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 389 le16_to_cpu(ctx->attr->data.resident.value_offset)); 390 vol->vol_flags = vi->flags = flags; 391 flush_dcache_mft_record_page(ctx->ntfs_ino); 392 mark_mft_record_dirty(ctx->ntfs_ino); 393 ntfs_attr_put_search_ctx(ctx); 394 unmap_mft_record(ni); 395 done: 396 ntfs_debug("Done."); 397 return 0; 398 put_unm_err_out: 399 if (ctx) 400 ntfs_attr_put_search_ctx(ctx); 401 unmap_mft_record(ni); 402 err_out: 403 ntfs_error(vol->sb, "Failed with error code %i.", -err); 404 return err; 405 } 406 407 /** 408 * ntfs_set_volume_flags - set bits in the volume information flags 409 * @vol: ntfs volume on which to modify the flags 410 * @flags: flags to set on the volume 411 * 412 * Set the bits in @flags in the volume information flags on the volume @vol. 413 * 414 * Return 0 on success and -errno on error. 415 */ 416 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 417 { 418 flags &= VOLUME_FLAGS_MASK; 419 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 420 } 421 422 /** 423 * ntfs_clear_volume_flags - clear bits in the volume information flags 424 * @vol: ntfs volume on which to modify the flags 425 * @flags: flags to clear on the volume 426 * 427 * Clear the bits in @flags in the volume information flags on the volume @vol. 428 * 429 * Return 0 on success and -errno on error. 430 */ 431 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 432 { 433 flags &= VOLUME_FLAGS_MASK; 434 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 435 return ntfs_write_volume_flags(vol, flags); 436 } 437 438 #endif /* NTFS_RW */ 439 440 /** 441 * ntfs_remount - change the mount options of a mounted ntfs filesystem 442 * @sb: superblock of mounted ntfs filesystem 443 * @flags: remount flags 444 * @opt: remount options string 445 * 446 * Change the mount options of an already mounted ntfs filesystem. 447 * 448 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 449 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 450 * @sb->s_flags are not changed. 451 */ 452 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 453 { 454 ntfs_volume *vol = NTFS_SB(sb); 455 456 ntfs_debug("Entering with remount options string: %s", opt); 457 458 sync_filesystem(sb); 459 460 #ifndef NTFS_RW 461 /* For read-only compiled driver, enforce read-only flag. */ 462 *flags |= SB_RDONLY; 463 #else /* NTFS_RW */ 464 /* 465 * For the read-write compiled driver, if we are remounting read-write, 466 * make sure there are no volume errors and that no unsupported volume 467 * flags are set. Also, empty the logfile journal as it would become 468 * stale as soon as something is written to the volume and mark the 469 * volume dirty so that chkdsk is run if the volume is not umounted 470 * cleanly. Finally, mark the quotas out of date so Windows rescans 471 * the volume on boot and updates them. 472 * 473 * When remounting read-only, mark the volume clean if no volume errors 474 * have occurred. 475 */ 476 if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) { 477 static const char *es = ". Cannot remount read-write."; 478 479 /* Remounting read-write. */ 480 if (NVolErrors(vol)) { 481 ntfs_error(sb, "Volume has errors and is read-only%s", 482 es); 483 return -EROFS; 484 } 485 if (vol->vol_flags & VOLUME_IS_DIRTY) { 486 ntfs_error(sb, "Volume is dirty and read-only%s", es); 487 return -EROFS; 488 } 489 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 490 ntfs_error(sb, "Volume has been modified by chkdsk " 491 "and is read-only%s", es); 492 return -EROFS; 493 } 494 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 495 ntfs_error(sb, "Volume has unsupported flags set " 496 "(0x%x) and is read-only%s", 497 (unsigned)le16_to_cpu(vol->vol_flags), 498 es); 499 return -EROFS; 500 } 501 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 502 ntfs_error(sb, "Failed to set dirty bit in volume " 503 "information flags%s", es); 504 return -EROFS; 505 } 506 #if 0 507 // TODO: Enable this code once we start modifying anything that 508 // is different between NTFS 1.2 and 3.x... 509 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 510 if ((vol->major_ver > 1)) { 511 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 512 ntfs_error(sb, "Failed to set NT4 " 513 "compatibility flag%s", es); 514 NVolSetErrors(vol); 515 return -EROFS; 516 } 517 } 518 #endif 519 if (!ntfs_empty_logfile(vol->logfile_ino)) { 520 ntfs_error(sb, "Failed to empty journal $LogFile%s", 521 es); 522 NVolSetErrors(vol); 523 return -EROFS; 524 } 525 if (!ntfs_mark_quotas_out_of_date(vol)) { 526 ntfs_error(sb, "Failed to mark quotas out of date%s", 527 es); 528 NVolSetErrors(vol); 529 return -EROFS; 530 } 531 if (!ntfs_stamp_usnjrnl(vol)) { 532 ntfs_error(sb, "Failed to stamp transaction log " 533 "($UsnJrnl)%s", es); 534 NVolSetErrors(vol); 535 return -EROFS; 536 } 537 } else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) { 538 /* Remounting read-only. */ 539 if (!NVolErrors(vol)) { 540 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 541 ntfs_warning(sb, "Failed to clear dirty bit " 542 "in volume information " 543 "flags. Run chkdsk."); 544 } 545 } 546 #endif /* NTFS_RW */ 547 548 // TODO: Deal with *flags. 549 550 if (!parse_options(vol, opt)) 551 return -EINVAL; 552 553 ntfs_debug("Done."); 554 return 0; 555 } 556 557 /** 558 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 559 * @sb: Super block of the device to which @b belongs. 560 * @b: Boot sector of device @sb to check. 561 * @silent: If 'true', all output will be silenced. 562 * 563 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 564 * sector. Returns 'true' if it is valid and 'false' if not. 565 * 566 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 567 * is 'true'. 568 */ 569 static bool is_boot_sector_ntfs(const struct super_block *sb, 570 const NTFS_BOOT_SECTOR *b, const bool silent) 571 { 572 /* 573 * Check that checksum == sum of u32 values from b to the checksum 574 * field. If checksum is zero, no checking is done. We will work when 575 * the checksum test fails, since some utilities update the boot sector 576 * ignoring the checksum which leaves the checksum out-of-date. We 577 * report a warning if this is the case. 578 */ 579 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 580 le32 *u; 581 u32 i; 582 583 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 584 i += le32_to_cpup(u); 585 if (le32_to_cpu(b->checksum) != i) 586 ntfs_warning(sb, "Invalid boot sector checksum."); 587 } 588 /* Check OEMidentifier is "NTFS " */ 589 if (b->oem_id != magicNTFS) 590 goto not_ntfs; 591 /* Check bytes per sector value is between 256 and 4096. */ 592 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 593 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 594 goto not_ntfs; 595 /* Check sectors per cluster value is valid. */ 596 switch (b->bpb.sectors_per_cluster) { 597 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 598 break; 599 default: 600 goto not_ntfs; 601 } 602 /* Check the cluster size is not above the maximum (64kiB). */ 603 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 604 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 605 goto not_ntfs; 606 /* Check reserved/unused fields are really zero. */ 607 if (le16_to_cpu(b->bpb.reserved_sectors) || 608 le16_to_cpu(b->bpb.root_entries) || 609 le16_to_cpu(b->bpb.sectors) || 610 le16_to_cpu(b->bpb.sectors_per_fat) || 611 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 612 goto not_ntfs; 613 /* Check clusters per file mft record value is valid. */ 614 if ((u8)b->clusters_per_mft_record < 0xe1 || 615 (u8)b->clusters_per_mft_record > 0xf7) 616 switch (b->clusters_per_mft_record) { 617 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 618 break; 619 default: 620 goto not_ntfs; 621 } 622 /* Check clusters per index block value is valid. */ 623 if ((u8)b->clusters_per_index_record < 0xe1 || 624 (u8)b->clusters_per_index_record > 0xf7) 625 switch (b->clusters_per_index_record) { 626 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 627 break; 628 default: 629 goto not_ntfs; 630 } 631 /* 632 * Check for valid end of sector marker. We will work without it, but 633 * many BIOSes will refuse to boot from a bootsector if the magic is 634 * incorrect, so we emit a warning. 635 */ 636 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 637 ntfs_warning(sb, "Invalid end of sector marker."); 638 return true; 639 not_ntfs: 640 return false; 641 } 642 643 /** 644 * read_ntfs_boot_sector - read the NTFS boot sector of a device 645 * @sb: super block of device to read the boot sector from 646 * @silent: if true, suppress all output 647 * 648 * Reads the boot sector from the device and validates it. If that fails, tries 649 * to read the backup boot sector, first from the end of the device a-la NT4 and 650 * later and then from the middle of the device a-la NT3.51 and before. 651 * 652 * If a valid boot sector is found but it is not the primary boot sector, we 653 * repair the primary boot sector silently (unless the device is read-only or 654 * the primary boot sector is not accessible). 655 * 656 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 657 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 658 * to their respective values. 659 * 660 * Return the unlocked buffer head containing the boot sector or NULL on error. 661 */ 662 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 663 const int silent) 664 { 665 const char *read_err_str = "Unable to read %s boot sector."; 666 struct buffer_head *bh_primary, *bh_backup; 667 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 668 669 /* Try to read primary boot sector. */ 670 if ((bh_primary = sb_bread(sb, 0))) { 671 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 672 bh_primary->b_data, silent)) 673 return bh_primary; 674 if (!silent) 675 ntfs_error(sb, "Primary boot sector is invalid."); 676 } else if (!silent) 677 ntfs_error(sb, read_err_str, "primary"); 678 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 679 if (bh_primary) 680 brelse(bh_primary); 681 if (!silent) 682 ntfs_error(sb, "Mount option errors=recover not used. " 683 "Aborting without trying to recover."); 684 return NULL; 685 } 686 /* Try to read NT4+ backup boot sector. */ 687 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 688 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 689 bh_backup->b_data, silent)) 690 goto hotfix_primary_boot_sector; 691 brelse(bh_backup); 692 } else if (!silent) 693 ntfs_error(sb, read_err_str, "backup"); 694 /* Try to read NT3.51- backup boot sector. */ 695 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 696 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 697 bh_backup->b_data, silent)) 698 goto hotfix_primary_boot_sector; 699 if (!silent) 700 ntfs_error(sb, "Could not find a valid backup boot " 701 "sector."); 702 brelse(bh_backup); 703 } else if (!silent) 704 ntfs_error(sb, read_err_str, "backup"); 705 /* We failed. Cleanup and return. */ 706 if (bh_primary) 707 brelse(bh_primary); 708 return NULL; 709 hotfix_primary_boot_sector: 710 if (bh_primary) { 711 /* 712 * If we managed to read sector zero and the volume is not 713 * read-only, copy the found, valid backup boot sector to the 714 * primary boot sector. Note we only copy the actual boot 715 * sector structure, not the actual whole device sector as that 716 * may be bigger and would potentially damage the $Boot system 717 * file (FIXME: Would be nice to know if the backup boot sector 718 * on a large sector device contains the whole boot loader or 719 * just the first 512 bytes). 720 */ 721 if (!sb_rdonly(sb)) { 722 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 723 "boot sector from backup copy."); 724 memcpy(bh_primary->b_data, bh_backup->b_data, 725 NTFS_BLOCK_SIZE); 726 mark_buffer_dirty(bh_primary); 727 sync_dirty_buffer(bh_primary); 728 if (buffer_uptodate(bh_primary)) { 729 brelse(bh_backup); 730 return bh_primary; 731 } 732 ntfs_error(sb, "Hot-fix: Device write error while " 733 "recovering primary boot sector."); 734 } else { 735 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 736 "sector failed: Read-only mount."); 737 } 738 brelse(bh_primary); 739 } 740 ntfs_warning(sb, "Using backup boot sector."); 741 return bh_backup; 742 } 743 744 /** 745 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 746 * @vol: volume structure to initialise with data from boot sector 747 * @b: boot sector to parse 748 * 749 * Parse the ntfs boot sector @b and store all imporant information therein in 750 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 751 */ 752 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 753 { 754 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 755 int clusters_per_mft_record, clusters_per_index_record; 756 s64 ll; 757 758 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 759 vol->sector_size_bits = ffs(vol->sector_size) - 1; 760 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 761 vol->sector_size); 762 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 763 vol->sector_size_bits); 764 if (vol->sector_size < vol->sb->s_blocksize) { 765 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 766 "device block size (%lu). This is not " 767 "supported. Sorry.", vol->sector_size, 768 vol->sb->s_blocksize); 769 return false; 770 } 771 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 772 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 773 ntfs_debug("sectors_per_cluster_bits = 0x%x", 774 sectors_per_cluster_bits); 775 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 776 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 777 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 778 vol->cluster_size_mask = vol->cluster_size - 1; 779 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 780 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 781 vol->cluster_size); 782 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 783 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 784 if (vol->cluster_size < vol->sector_size) { 785 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 786 "sector size (%i). This is not supported. " 787 "Sorry.", vol->cluster_size, vol->sector_size); 788 return false; 789 } 790 clusters_per_mft_record = b->clusters_per_mft_record; 791 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 792 clusters_per_mft_record, clusters_per_mft_record); 793 if (clusters_per_mft_record > 0) 794 vol->mft_record_size = vol->cluster_size << 795 (ffs(clusters_per_mft_record) - 1); 796 else 797 /* 798 * When mft_record_size < cluster_size, clusters_per_mft_record 799 * = -log2(mft_record_size) bytes. mft_record_size normaly is 800 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 801 */ 802 vol->mft_record_size = 1 << -clusters_per_mft_record; 803 vol->mft_record_size_mask = vol->mft_record_size - 1; 804 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 805 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 806 vol->mft_record_size); 807 ntfs_debug("vol->mft_record_size_mask = 0x%x", 808 vol->mft_record_size_mask); 809 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 810 vol->mft_record_size_bits, vol->mft_record_size_bits); 811 /* 812 * We cannot support mft record sizes above the PAGE_SIZE since 813 * we store $MFT/$DATA, the table of mft records in the page cache. 814 */ 815 if (vol->mft_record_size > PAGE_SIZE) { 816 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 817 "PAGE_SIZE on your system (%lu). " 818 "This is not supported. Sorry.", 819 vol->mft_record_size, PAGE_SIZE); 820 return false; 821 } 822 /* We cannot support mft record sizes below the sector size. */ 823 if (vol->mft_record_size < vol->sector_size) { 824 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 825 "sector size (%i). This is not supported. " 826 "Sorry.", vol->mft_record_size, 827 vol->sector_size); 828 return false; 829 } 830 clusters_per_index_record = b->clusters_per_index_record; 831 ntfs_debug("clusters_per_index_record = %i (0x%x)", 832 clusters_per_index_record, clusters_per_index_record); 833 if (clusters_per_index_record > 0) 834 vol->index_record_size = vol->cluster_size << 835 (ffs(clusters_per_index_record) - 1); 836 else 837 /* 838 * When index_record_size < cluster_size, 839 * clusters_per_index_record = -log2(index_record_size) bytes. 840 * index_record_size normaly equals 4096 bytes, which is 841 * encoded as 0xF4 (-12 in decimal). 842 */ 843 vol->index_record_size = 1 << -clusters_per_index_record; 844 vol->index_record_size_mask = vol->index_record_size - 1; 845 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 846 ntfs_debug("vol->index_record_size = %i (0x%x)", 847 vol->index_record_size, vol->index_record_size); 848 ntfs_debug("vol->index_record_size_mask = 0x%x", 849 vol->index_record_size_mask); 850 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 851 vol->index_record_size_bits, 852 vol->index_record_size_bits); 853 /* We cannot support index record sizes below the sector size. */ 854 if (vol->index_record_size < vol->sector_size) { 855 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 856 "the sector size (%i). This is not " 857 "supported. Sorry.", vol->index_record_size, 858 vol->sector_size); 859 return false; 860 } 861 /* 862 * Get the size of the volume in clusters and check for 64-bit-ness. 863 * Windows currently only uses 32 bits to save the clusters so we do 864 * the same as it is much faster on 32-bit CPUs. 865 */ 866 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 867 if ((u64)ll >= 1ULL << 32) { 868 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 869 return false; 870 } 871 vol->nr_clusters = ll; 872 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 873 /* 874 * On an architecture where unsigned long is 32-bits, we restrict the 875 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 876 * will hopefully optimize the whole check away. 877 */ 878 if (sizeof(unsigned long) < 8) { 879 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 880 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 881 "large for this architecture. " 882 "Maximum supported is 2TiB. Sorry.", 883 (unsigned long long)ll >> (40 - 884 vol->cluster_size_bits)); 885 return false; 886 } 887 } 888 ll = sle64_to_cpu(b->mft_lcn); 889 if (ll >= vol->nr_clusters) { 890 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 891 "volume. Weird.", (unsigned long long)ll, 892 (unsigned long long)ll); 893 return false; 894 } 895 vol->mft_lcn = ll; 896 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 897 ll = sle64_to_cpu(b->mftmirr_lcn); 898 if (ll >= vol->nr_clusters) { 899 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 900 "of volume. Weird.", (unsigned long long)ll, 901 (unsigned long long)ll); 902 return false; 903 } 904 vol->mftmirr_lcn = ll; 905 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 906 #ifdef NTFS_RW 907 /* 908 * Work out the size of the mft mirror in number of mft records. If the 909 * cluster size is less than or equal to the size taken by four mft 910 * records, the mft mirror stores the first four mft records. If the 911 * cluster size is bigger than the size taken by four mft records, the 912 * mft mirror contains as many mft records as will fit into one 913 * cluster. 914 */ 915 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 916 vol->mftmirr_size = 4; 917 else 918 vol->mftmirr_size = vol->cluster_size >> 919 vol->mft_record_size_bits; 920 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 921 #endif /* NTFS_RW */ 922 vol->serial_no = le64_to_cpu(b->volume_serial_number); 923 ntfs_debug("vol->serial_no = 0x%llx", 924 (unsigned long long)vol->serial_no); 925 return true; 926 } 927 928 /** 929 * ntfs_setup_allocators - initialize the cluster and mft allocators 930 * @vol: volume structure for which to setup the allocators 931 * 932 * Setup the cluster (lcn) and mft allocators to the starting values. 933 */ 934 static void ntfs_setup_allocators(ntfs_volume *vol) 935 { 936 #ifdef NTFS_RW 937 LCN mft_zone_size, mft_lcn; 938 #endif /* NTFS_RW */ 939 940 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 941 vol->mft_zone_multiplier); 942 #ifdef NTFS_RW 943 /* Determine the size of the MFT zone. */ 944 mft_zone_size = vol->nr_clusters; 945 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 946 case 4: 947 mft_zone_size >>= 1; /* 50% */ 948 break; 949 case 3: 950 mft_zone_size = (mft_zone_size + 951 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 952 break; 953 case 2: 954 mft_zone_size >>= 2; /* 25% */ 955 break; 956 /* case 1: */ 957 default: 958 mft_zone_size >>= 3; /* 12.5% */ 959 break; 960 } 961 /* Setup the mft zone. */ 962 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 963 ntfs_debug("vol->mft_zone_pos = 0x%llx", 964 (unsigned long long)vol->mft_zone_pos); 965 /* 966 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 967 * source) and if the actual mft_lcn is in the expected place or even 968 * further to the front of the volume, extend the mft_zone to cover the 969 * beginning of the volume as well. This is in order to protect the 970 * area reserved for the mft bitmap as well within the mft_zone itself. 971 * On non-standard volumes we do not protect it as the overhead would 972 * be higher than the speed increase we would get by doing it. 973 */ 974 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 975 if (mft_lcn * vol->cluster_size < 16 * 1024) 976 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 977 vol->cluster_size; 978 if (vol->mft_zone_start <= mft_lcn) 979 vol->mft_zone_start = 0; 980 ntfs_debug("vol->mft_zone_start = 0x%llx", 981 (unsigned long long)vol->mft_zone_start); 982 /* 983 * Need to cap the mft zone on non-standard volumes so that it does 984 * not point outside the boundaries of the volume. We do this by 985 * halving the zone size until we are inside the volume. 986 */ 987 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 988 while (vol->mft_zone_end >= vol->nr_clusters) { 989 mft_zone_size >>= 1; 990 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 991 } 992 ntfs_debug("vol->mft_zone_end = 0x%llx", 993 (unsigned long long)vol->mft_zone_end); 994 /* 995 * Set the current position within each data zone to the start of the 996 * respective zone. 997 */ 998 vol->data1_zone_pos = vol->mft_zone_end; 999 ntfs_debug("vol->data1_zone_pos = 0x%llx", 1000 (unsigned long long)vol->data1_zone_pos); 1001 vol->data2_zone_pos = 0; 1002 ntfs_debug("vol->data2_zone_pos = 0x%llx", 1003 (unsigned long long)vol->data2_zone_pos); 1004 1005 /* Set the mft data allocation position to mft record 24. */ 1006 vol->mft_data_pos = 24; 1007 ntfs_debug("vol->mft_data_pos = 0x%llx", 1008 (unsigned long long)vol->mft_data_pos); 1009 #endif /* NTFS_RW */ 1010 } 1011 1012 #ifdef NTFS_RW 1013 1014 /** 1015 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1016 * @vol: ntfs super block describing device whose mft mirror to load 1017 * 1018 * Return 'true' on success or 'false' on error. 1019 */ 1020 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1021 { 1022 struct inode *tmp_ino; 1023 ntfs_inode *tmp_ni; 1024 1025 ntfs_debug("Entering."); 1026 /* Get mft mirror inode. */ 1027 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1028 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1029 if (!IS_ERR(tmp_ino)) 1030 iput(tmp_ino); 1031 /* Caller will display error message. */ 1032 return false; 1033 } 1034 /* 1035 * Re-initialize some specifics about $MFTMirr's inode as 1036 * ntfs_read_inode() will have set up the default ones. 1037 */ 1038 /* Set uid and gid to root. */ 1039 tmp_ino->i_uid = GLOBAL_ROOT_UID; 1040 tmp_ino->i_gid = GLOBAL_ROOT_GID; 1041 /* Regular file. No access for anyone. */ 1042 tmp_ino->i_mode = S_IFREG; 1043 /* No VFS initiated operations allowed for $MFTMirr. */ 1044 tmp_ino->i_op = &ntfs_empty_inode_ops; 1045 tmp_ino->i_fop = &ntfs_empty_file_ops; 1046 /* Put in our special address space operations. */ 1047 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1048 tmp_ni = NTFS_I(tmp_ino); 1049 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1050 NInoSetMstProtected(tmp_ni); 1051 NInoSetSparseDisabled(tmp_ni); 1052 /* 1053 * Set up our little cheat allowing us to reuse the async read io 1054 * completion handler for directories. 1055 */ 1056 tmp_ni->itype.index.block_size = vol->mft_record_size; 1057 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1058 vol->mftmirr_ino = tmp_ino; 1059 ntfs_debug("Done."); 1060 return true; 1061 } 1062 1063 /** 1064 * check_mft_mirror - compare contents of the mft mirror with the mft 1065 * @vol: ntfs super block describing device whose mft mirror to check 1066 * 1067 * Return 'true' on success or 'false' on error. 1068 * 1069 * Note, this function also results in the mft mirror runlist being completely 1070 * mapped into memory. The mft mirror write code requires this and will BUG() 1071 * should it find an unmapped runlist element. 1072 */ 1073 static bool check_mft_mirror(ntfs_volume *vol) 1074 { 1075 struct super_block *sb = vol->sb; 1076 ntfs_inode *mirr_ni; 1077 struct page *mft_page, *mirr_page; 1078 u8 *kmft, *kmirr; 1079 runlist_element *rl, rl2[2]; 1080 pgoff_t index; 1081 int mrecs_per_page, i; 1082 1083 ntfs_debug("Entering."); 1084 /* Compare contents of $MFT and $MFTMirr. */ 1085 mrecs_per_page = PAGE_SIZE / vol->mft_record_size; 1086 BUG_ON(!mrecs_per_page); 1087 BUG_ON(!vol->mftmirr_size); 1088 mft_page = mirr_page = NULL; 1089 kmft = kmirr = NULL; 1090 index = i = 0; 1091 do { 1092 u32 bytes; 1093 1094 /* Switch pages if necessary. */ 1095 if (!(i % mrecs_per_page)) { 1096 if (index) { 1097 ntfs_unmap_page(mft_page); 1098 ntfs_unmap_page(mirr_page); 1099 } 1100 /* Get the $MFT page. */ 1101 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1102 index); 1103 if (IS_ERR(mft_page)) { 1104 ntfs_error(sb, "Failed to read $MFT."); 1105 return false; 1106 } 1107 kmft = page_address(mft_page); 1108 /* Get the $MFTMirr page. */ 1109 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1110 index); 1111 if (IS_ERR(mirr_page)) { 1112 ntfs_error(sb, "Failed to read $MFTMirr."); 1113 goto mft_unmap_out; 1114 } 1115 kmirr = page_address(mirr_page); 1116 ++index; 1117 } 1118 /* Do not check the record if it is not in use. */ 1119 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1120 /* Make sure the record is ok. */ 1121 if (ntfs_is_baad_recordp((le32*)kmft)) { 1122 ntfs_error(sb, "Incomplete multi sector " 1123 "transfer detected in mft " 1124 "record %i.", i); 1125 mm_unmap_out: 1126 ntfs_unmap_page(mirr_page); 1127 mft_unmap_out: 1128 ntfs_unmap_page(mft_page); 1129 return false; 1130 } 1131 } 1132 /* Do not check the mirror record if it is not in use. */ 1133 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1134 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1135 ntfs_error(sb, "Incomplete multi sector " 1136 "transfer detected in mft " 1137 "mirror record %i.", i); 1138 goto mm_unmap_out; 1139 } 1140 } 1141 /* Get the amount of data in the current record. */ 1142 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1143 if (bytes < sizeof(MFT_RECORD_OLD) || 1144 bytes > vol->mft_record_size || 1145 ntfs_is_baad_recordp((le32*)kmft)) { 1146 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1147 if (bytes < sizeof(MFT_RECORD_OLD) || 1148 bytes > vol->mft_record_size || 1149 ntfs_is_baad_recordp((le32*)kmirr)) 1150 bytes = vol->mft_record_size; 1151 } 1152 /* Compare the two records. */ 1153 if (memcmp(kmft, kmirr, bytes)) { 1154 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1155 "match. Run ntfsfix or chkdsk.", i); 1156 goto mm_unmap_out; 1157 } 1158 kmft += vol->mft_record_size; 1159 kmirr += vol->mft_record_size; 1160 } while (++i < vol->mftmirr_size); 1161 /* Release the last pages. */ 1162 ntfs_unmap_page(mft_page); 1163 ntfs_unmap_page(mirr_page); 1164 1165 /* Construct the mft mirror runlist by hand. */ 1166 rl2[0].vcn = 0; 1167 rl2[0].lcn = vol->mftmirr_lcn; 1168 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1169 vol->cluster_size - 1) / vol->cluster_size; 1170 rl2[1].vcn = rl2[0].length; 1171 rl2[1].lcn = LCN_ENOENT; 1172 rl2[1].length = 0; 1173 /* 1174 * Because we have just read all of the mft mirror, we know we have 1175 * mapped the full runlist for it. 1176 */ 1177 mirr_ni = NTFS_I(vol->mftmirr_ino); 1178 down_read(&mirr_ni->runlist.lock); 1179 rl = mirr_ni->runlist.rl; 1180 /* Compare the two runlists. They must be identical. */ 1181 i = 0; 1182 do { 1183 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1184 rl2[i].length != rl[i].length) { 1185 ntfs_error(sb, "$MFTMirr location mismatch. " 1186 "Run chkdsk."); 1187 up_read(&mirr_ni->runlist.lock); 1188 return false; 1189 } 1190 } while (rl2[i++].length); 1191 up_read(&mirr_ni->runlist.lock); 1192 ntfs_debug("Done."); 1193 return true; 1194 } 1195 1196 /** 1197 * load_and_check_logfile - load and check the logfile inode for a volume 1198 * @vol: ntfs super block describing device whose logfile to load 1199 * 1200 * Return 'true' on success or 'false' on error. 1201 */ 1202 static bool load_and_check_logfile(ntfs_volume *vol, 1203 RESTART_PAGE_HEADER **rp) 1204 { 1205 struct inode *tmp_ino; 1206 1207 ntfs_debug("Entering."); 1208 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1209 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1210 if (!IS_ERR(tmp_ino)) 1211 iput(tmp_ino); 1212 /* Caller will display error message. */ 1213 return false; 1214 } 1215 if (!ntfs_check_logfile(tmp_ino, rp)) { 1216 iput(tmp_ino); 1217 /* ntfs_check_logfile() will have displayed error output. */ 1218 return false; 1219 } 1220 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1221 vol->logfile_ino = tmp_ino; 1222 ntfs_debug("Done."); 1223 return true; 1224 } 1225 1226 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1227 1228 /** 1229 * check_windows_hibernation_status - check if Windows is suspended on a volume 1230 * @vol: ntfs super block of device to check 1231 * 1232 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1233 * looking for the file hiberfil.sys in the root directory of the volume. If 1234 * the file is not present Windows is definitely not suspended. 1235 * 1236 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1237 * definitely suspended (this volume is not the system volume). Caveat: on a 1238 * system with many volumes it is possible that the < 4kiB check is bogus but 1239 * for now this should do fine. 1240 * 1241 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1242 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1243 * Windows is definitely suspended. If it is completely full of zeroes, 1244 * Windows is definitely not hibernated. Any other case is treated as if 1245 * Windows is suspended. This caters for the above mentioned caveat of a 1246 * system with many volumes where no "hibr" magic would be present and there is 1247 * no zero header. 1248 * 1249 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1250 * hibernated on the volume, and -errno on error. 1251 */ 1252 static int check_windows_hibernation_status(ntfs_volume *vol) 1253 { 1254 MFT_REF mref; 1255 struct inode *vi; 1256 struct page *page; 1257 u32 *kaddr, *kend; 1258 ntfs_name *name = NULL; 1259 int ret = 1; 1260 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1261 cpu_to_le16('i'), cpu_to_le16('b'), 1262 cpu_to_le16('e'), cpu_to_le16('r'), 1263 cpu_to_le16('f'), cpu_to_le16('i'), 1264 cpu_to_le16('l'), cpu_to_le16('.'), 1265 cpu_to_le16('s'), cpu_to_le16('y'), 1266 cpu_to_le16('s'), 0 }; 1267 1268 ntfs_debug("Entering."); 1269 /* 1270 * Find the inode number for the hibernation file by looking up the 1271 * filename hiberfil.sys in the root directory. 1272 */ 1273 inode_lock(vol->root_ino); 1274 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1275 &name); 1276 inode_unlock(vol->root_ino); 1277 if (IS_ERR_MREF(mref)) { 1278 ret = MREF_ERR(mref); 1279 /* If the file does not exist, Windows is not hibernated. */ 1280 if (ret == -ENOENT) { 1281 ntfs_debug("hiberfil.sys not present. Windows is not " 1282 "hibernated on the volume."); 1283 return 0; 1284 } 1285 /* A real error occurred. */ 1286 ntfs_error(vol->sb, "Failed to find inode number for " 1287 "hiberfil.sys."); 1288 return ret; 1289 } 1290 /* We do not care for the type of match that was found. */ 1291 kfree(name); 1292 /* Get the inode. */ 1293 vi = ntfs_iget(vol->sb, MREF(mref)); 1294 if (IS_ERR(vi) || is_bad_inode(vi)) { 1295 if (!IS_ERR(vi)) 1296 iput(vi); 1297 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1298 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1299 } 1300 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1301 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1302 "Windows is hibernated on the volume. This " 1303 "is not the system volume.", i_size_read(vi)); 1304 goto iput_out; 1305 } 1306 page = ntfs_map_page(vi->i_mapping, 0); 1307 if (IS_ERR(page)) { 1308 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1309 ret = PTR_ERR(page); 1310 goto iput_out; 1311 } 1312 kaddr = (u32*)page_address(page); 1313 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1314 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1315 "hibernated on the volume. This is the " 1316 "system volume."); 1317 goto unm_iput_out; 1318 } 1319 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1320 do { 1321 if (unlikely(*kaddr)) { 1322 ntfs_debug("hiberfil.sys is larger than 4kiB " 1323 "(0x%llx), does not contain the " 1324 "\"hibr\" magic, and does not have a " 1325 "zero header. Windows is hibernated " 1326 "on the volume. This is not the " 1327 "system volume.", i_size_read(vi)); 1328 goto unm_iput_out; 1329 } 1330 } while (++kaddr < kend); 1331 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1332 "hibernated on the volume. This is the system " 1333 "volume."); 1334 ret = 0; 1335 unm_iput_out: 1336 ntfs_unmap_page(page); 1337 iput_out: 1338 iput(vi); 1339 return ret; 1340 } 1341 1342 /** 1343 * load_and_init_quota - load and setup the quota file for a volume if present 1344 * @vol: ntfs super block describing device whose quota file to load 1345 * 1346 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1347 * leave vol->quota_ino as NULL and return success. 1348 */ 1349 static bool load_and_init_quota(ntfs_volume *vol) 1350 { 1351 MFT_REF mref; 1352 struct inode *tmp_ino; 1353 ntfs_name *name = NULL; 1354 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1355 cpu_to_le16('Q'), cpu_to_le16('u'), 1356 cpu_to_le16('o'), cpu_to_le16('t'), 1357 cpu_to_le16('a'), 0 }; 1358 static ntfschar Q[3] = { cpu_to_le16('$'), 1359 cpu_to_le16('Q'), 0 }; 1360 1361 ntfs_debug("Entering."); 1362 /* 1363 * Find the inode number for the quota file by looking up the filename 1364 * $Quota in the extended system files directory $Extend. 1365 */ 1366 inode_lock(vol->extend_ino); 1367 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1368 &name); 1369 inode_unlock(vol->extend_ino); 1370 if (IS_ERR_MREF(mref)) { 1371 /* 1372 * If the file does not exist, quotas are disabled and have 1373 * never been enabled on this volume, just return success. 1374 */ 1375 if (MREF_ERR(mref) == -ENOENT) { 1376 ntfs_debug("$Quota not present. Volume does not have " 1377 "quotas enabled."); 1378 /* 1379 * No need to try to set quotas out of date if they are 1380 * not enabled. 1381 */ 1382 NVolSetQuotaOutOfDate(vol); 1383 return true; 1384 } 1385 /* A real error occurred. */ 1386 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1387 return false; 1388 } 1389 /* We do not care for the type of match that was found. */ 1390 kfree(name); 1391 /* Get the inode. */ 1392 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1393 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1394 if (!IS_ERR(tmp_ino)) 1395 iput(tmp_ino); 1396 ntfs_error(vol->sb, "Failed to load $Quota."); 1397 return false; 1398 } 1399 vol->quota_ino = tmp_ino; 1400 /* Get the $Q index allocation attribute. */ 1401 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1402 if (IS_ERR(tmp_ino)) { 1403 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1404 return false; 1405 } 1406 vol->quota_q_ino = tmp_ino; 1407 ntfs_debug("Done."); 1408 return true; 1409 } 1410 1411 /** 1412 * load_and_init_usnjrnl - load and setup the transaction log if present 1413 * @vol: ntfs super block describing device whose usnjrnl file to load 1414 * 1415 * Return 'true' on success or 'false' on error. 1416 * 1417 * If $UsnJrnl is not present or in the process of being disabled, we set 1418 * NVolUsnJrnlStamped() and return success. 1419 * 1420 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1421 * i.e. transaction logging has only just been enabled or the journal has been 1422 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1423 * and return success. 1424 */ 1425 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1426 { 1427 MFT_REF mref; 1428 struct inode *tmp_ino; 1429 ntfs_inode *tmp_ni; 1430 struct page *page; 1431 ntfs_name *name = NULL; 1432 USN_HEADER *uh; 1433 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1434 cpu_to_le16('U'), cpu_to_le16('s'), 1435 cpu_to_le16('n'), cpu_to_le16('J'), 1436 cpu_to_le16('r'), cpu_to_le16('n'), 1437 cpu_to_le16('l'), 0 }; 1438 static ntfschar Max[5] = { cpu_to_le16('$'), 1439 cpu_to_le16('M'), cpu_to_le16('a'), 1440 cpu_to_le16('x'), 0 }; 1441 static ntfschar J[3] = { cpu_to_le16('$'), 1442 cpu_to_le16('J'), 0 }; 1443 1444 ntfs_debug("Entering."); 1445 /* 1446 * Find the inode number for the transaction log file by looking up the 1447 * filename $UsnJrnl in the extended system files directory $Extend. 1448 */ 1449 inode_lock(vol->extend_ino); 1450 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1451 &name); 1452 inode_unlock(vol->extend_ino); 1453 if (IS_ERR_MREF(mref)) { 1454 /* 1455 * If the file does not exist, transaction logging is disabled, 1456 * just return success. 1457 */ 1458 if (MREF_ERR(mref) == -ENOENT) { 1459 ntfs_debug("$UsnJrnl not present. Volume does not " 1460 "have transaction logging enabled."); 1461 not_enabled: 1462 /* 1463 * No need to try to stamp the transaction log if 1464 * transaction logging is not enabled. 1465 */ 1466 NVolSetUsnJrnlStamped(vol); 1467 return true; 1468 } 1469 /* A real error occurred. */ 1470 ntfs_error(vol->sb, "Failed to find inode number for " 1471 "$UsnJrnl."); 1472 return false; 1473 } 1474 /* We do not care for the type of match that was found. */ 1475 kfree(name); 1476 /* Get the inode. */ 1477 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1478 if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) { 1479 if (!IS_ERR(tmp_ino)) 1480 iput(tmp_ino); 1481 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1482 return false; 1483 } 1484 vol->usnjrnl_ino = tmp_ino; 1485 /* 1486 * If the transaction log is in the process of being deleted, we can 1487 * ignore it. 1488 */ 1489 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1490 ntfs_debug("$UsnJrnl in the process of being disabled. " 1491 "Volume does not have transaction logging " 1492 "enabled."); 1493 goto not_enabled; 1494 } 1495 /* Get the $DATA/$Max attribute. */ 1496 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1497 if (IS_ERR(tmp_ino)) { 1498 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1499 "attribute."); 1500 return false; 1501 } 1502 vol->usnjrnl_max_ino = tmp_ino; 1503 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1504 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1505 "attribute (size is 0x%llx but should be at " 1506 "least 0x%zx bytes).", i_size_read(tmp_ino), 1507 sizeof(USN_HEADER)); 1508 return false; 1509 } 1510 /* Get the $DATA/$J attribute. */ 1511 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1512 if (IS_ERR(tmp_ino)) { 1513 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1514 "attribute."); 1515 return false; 1516 } 1517 vol->usnjrnl_j_ino = tmp_ino; 1518 /* Verify $J is non-resident and sparse. */ 1519 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1520 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1521 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1522 "and/or not sparse."); 1523 return false; 1524 } 1525 /* Read the USN_HEADER from $DATA/$Max. */ 1526 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1527 if (IS_ERR(page)) { 1528 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1529 "attribute."); 1530 return false; 1531 } 1532 uh = (USN_HEADER*)page_address(page); 1533 /* Sanity check the $Max. */ 1534 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1535 sle64_to_cpu(uh->maximum_size))) { 1536 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1537 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1538 (long long)sle64_to_cpu(uh->allocation_delta), 1539 (long long)sle64_to_cpu(uh->maximum_size)); 1540 ntfs_unmap_page(page); 1541 return false; 1542 } 1543 /* 1544 * If the transaction log has been stamped and nothing has been written 1545 * to it since, we do not need to stamp it. 1546 */ 1547 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1548 i_size_read(vol->usnjrnl_j_ino))) { 1549 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1550 i_size_read(vol->usnjrnl_j_ino))) { 1551 ntfs_unmap_page(page); 1552 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1553 "logged since it was last stamped. " 1554 "Treating this as if the volume does " 1555 "not have transaction logging " 1556 "enabled."); 1557 goto not_enabled; 1558 } 1559 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1560 "which is out of bounds (0x%llx). $UsnJrnl " 1561 "is corrupt.", 1562 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1563 i_size_read(vol->usnjrnl_j_ino)); 1564 ntfs_unmap_page(page); 1565 return false; 1566 } 1567 ntfs_unmap_page(page); 1568 ntfs_debug("Done."); 1569 return true; 1570 } 1571 1572 /** 1573 * load_and_init_attrdef - load the attribute definitions table for a volume 1574 * @vol: ntfs super block describing device whose attrdef to load 1575 * 1576 * Return 'true' on success or 'false' on error. 1577 */ 1578 static bool load_and_init_attrdef(ntfs_volume *vol) 1579 { 1580 loff_t i_size; 1581 struct super_block *sb = vol->sb; 1582 struct inode *ino; 1583 struct page *page; 1584 pgoff_t index, max_index; 1585 unsigned int size; 1586 1587 ntfs_debug("Entering."); 1588 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1589 ino = ntfs_iget(sb, FILE_AttrDef); 1590 if (IS_ERR(ino) || is_bad_inode(ino)) { 1591 if (!IS_ERR(ino)) 1592 iput(ino); 1593 goto failed; 1594 } 1595 NInoSetSparseDisabled(NTFS_I(ino)); 1596 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1597 i_size = i_size_read(ino); 1598 if (i_size <= 0 || i_size > 0x7fffffff) 1599 goto iput_failed; 1600 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1601 if (!vol->attrdef) 1602 goto iput_failed; 1603 index = 0; 1604 max_index = i_size >> PAGE_SHIFT; 1605 size = PAGE_SIZE; 1606 while (index < max_index) { 1607 /* Read the attrdef table and copy it into the linear buffer. */ 1608 read_partial_attrdef_page: 1609 page = ntfs_map_page(ino->i_mapping, index); 1610 if (IS_ERR(page)) 1611 goto free_iput_failed; 1612 memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT), 1613 page_address(page), size); 1614 ntfs_unmap_page(page); 1615 }; 1616 if (size == PAGE_SIZE) { 1617 size = i_size & ~PAGE_MASK; 1618 if (size) 1619 goto read_partial_attrdef_page; 1620 } 1621 vol->attrdef_size = i_size; 1622 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1623 iput(ino); 1624 return true; 1625 free_iput_failed: 1626 ntfs_free(vol->attrdef); 1627 vol->attrdef = NULL; 1628 iput_failed: 1629 iput(ino); 1630 failed: 1631 ntfs_error(sb, "Failed to initialize attribute definition table."); 1632 return false; 1633 } 1634 1635 #endif /* NTFS_RW */ 1636 1637 /** 1638 * load_and_init_upcase - load the upcase table for an ntfs volume 1639 * @vol: ntfs super block describing device whose upcase to load 1640 * 1641 * Return 'true' on success or 'false' on error. 1642 */ 1643 static bool load_and_init_upcase(ntfs_volume *vol) 1644 { 1645 loff_t i_size; 1646 struct super_block *sb = vol->sb; 1647 struct inode *ino; 1648 struct page *page; 1649 pgoff_t index, max_index; 1650 unsigned int size; 1651 int i, max; 1652 1653 ntfs_debug("Entering."); 1654 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1655 ino = ntfs_iget(sb, FILE_UpCase); 1656 if (IS_ERR(ino) || is_bad_inode(ino)) { 1657 if (!IS_ERR(ino)) 1658 iput(ino); 1659 goto upcase_failed; 1660 } 1661 /* 1662 * The upcase size must not be above 64k Unicode characters, must not 1663 * be zero and must be a multiple of sizeof(ntfschar). 1664 */ 1665 i_size = i_size_read(ino); 1666 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1667 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1668 goto iput_upcase_failed; 1669 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1670 if (!vol->upcase) 1671 goto iput_upcase_failed; 1672 index = 0; 1673 max_index = i_size >> PAGE_SHIFT; 1674 size = PAGE_SIZE; 1675 while (index < max_index) { 1676 /* Read the upcase table and copy it into the linear buffer. */ 1677 read_partial_upcase_page: 1678 page = ntfs_map_page(ino->i_mapping, index); 1679 if (IS_ERR(page)) 1680 goto iput_upcase_failed; 1681 memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT), 1682 page_address(page), size); 1683 ntfs_unmap_page(page); 1684 }; 1685 if (size == PAGE_SIZE) { 1686 size = i_size & ~PAGE_MASK; 1687 if (size) 1688 goto read_partial_upcase_page; 1689 } 1690 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1691 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1692 i_size, 64 * 1024 * sizeof(ntfschar)); 1693 iput(ino); 1694 mutex_lock(&ntfs_lock); 1695 if (!default_upcase) { 1696 ntfs_debug("Using volume specified $UpCase since default is " 1697 "not present."); 1698 mutex_unlock(&ntfs_lock); 1699 return true; 1700 } 1701 max = default_upcase_len; 1702 if (max > vol->upcase_len) 1703 max = vol->upcase_len; 1704 for (i = 0; i < max; i++) 1705 if (vol->upcase[i] != default_upcase[i]) 1706 break; 1707 if (i == max) { 1708 ntfs_free(vol->upcase); 1709 vol->upcase = default_upcase; 1710 vol->upcase_len = max; 1711 ntfs_nr_upcase_users++; 1712 mutex_unlock(&ntfs_lock); 1713 ntfs_debug("Volume specified $UpCase matches default. Using " 1714 "default."); 1715 return true; 1716 } 1717 mutex_unlock(&ntfs_lock); 1718 ntfs_debug("Using volume specified $UpCase since it does not match " 1719 "the default."); 1720 return true; 1721 iput_upcase_failed: 1722 iput(ino); 1723 ntfs_free(vol->upcase); 1724 vol->upcase = NULL; 1725 upcase_failed: 1726 mutex_lock(&ntfs_lock); 1727 if (default_upcase) { 1728 vol->upcase = default_upcase; 1729 vol->upcase_len = default_upcase_len; 1730 ntfs_nr_upcase_users++; 1731 mutex_unlock(&ntfs_lock); 1732 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1733 "default."); 1734 return true; 1735 } 1736 mutex_unlock(&ntfs_lock); 1737 ntfs_error(sb, "Failed to initialize upcase table."); 1738 return false; 1739 } 1740 1741 /* 1742 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1743 * their own special locking rules: 1744 */ 1745 static struct lock_class_key 1746 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1747 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1748 1749 /** 1750 * load_system_files - open the system files using normal functions 1751 * @vol: ntfs super block describing device whose system files to load 1752 * 1753 * Open the system files with normal access functions and complete setting up 1754 * the ntfs super block @vol. 1755 * 1756 * Return 'true' on success or 'false' on error. 1757 */ 1758 static bool load_system_files(ntfs_volume *vol) 1759 { 1760 struct super_block *sb = vol->sb; 1761 MFT_RECORD *m; 1762 VOLUME_INFORMATION *vi; 1763 ntfs_attr_search_ctx *ctx; 1764 #ifdef NTFS_RW 1765 RESTART_PAGE_HEADER *rp; 1766 int err; 1767 #endif /* NTFS_RW */ 1768 1769 ntfs_debug("Entering."); 1770 #ifdef NTFS_RW 1771 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1772 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1773 static const char *es1 = "Failed to load $MFTMirr"; 1774 static const char *es2 = "$MFTMirr does not match $MFT"; 1775 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1776 1777 /* If a read-write mount, convert it to a read-only mount. */ 1778 if (!sb_rdonly(sb)) { 1779 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1780 ON_ERRORS_CONTINUE))) { 1781 ntfs_error(sb, "%s and neither on_errors=" 1782 "continue nor on_errors=" 1783 "remount-ro was specified%s", 1784 !vol->mftmirr_ino ? es1 : es2, 1785 es3); 1786 goto iput_mirr_err_out; 1787 } 1788 sb->s_flags |= SB_RDONLY; 1789 ntfs_error(sb, "%s. Mounting read-only%s", 1790 !vol->mftmirr_ino ? es1 : es2, es3); 1791 } else 1792 ntfs_warning(sb, "%s. Will not be able to remount " 1793 "read-write%s", 1794 !vol->mftmirr_ino ? es1 : es2, es3); 1795 /* This will prevent a read-write remount. */ 1796 NVolSetErrors(vol); 1797 } 1798 #endif /* NTFS_RW */ 1799 /* Get mft bitmap attribute inode. */ 1800 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1801 if (IS_ERR(vol->mftbmp_ino)) { 1802 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1803 goto iput_mirr_err_out; 1804 } 1805 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1806 &mftbmp_runlist_lock_key); 1807 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1808 &mftbmp_mrec_lock_key); 1809 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1810 if (!load_and_init_upcase(vol)) 1811 goto iput_mftbmp_err_out; 1812 #ifdef NTFS_RW 1813 /* 1814 * Read attribute definitions table and setup @vol->attrdef and 1815 * @vol->attrdef_size. 1816 */ 1817 if (!load_and_init_attrdef(vol)) 1818 goto iput_upcase_err_out; 1819 #endif /* NTFS_RW */ 1820 /* 1821 * Get the cluster allocation bitmap inode and verify the size, no 1822 * need for any locking at this stage as we are already running 1823 * exclusively as we are mount in progress task. 1824 */ 1825 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1826 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1827 if (!IS_ERR(vol->lcnbmp_ino)) 1828 iput(vol->lcnbmp_ino); 1829 goto bitmap_failed; 1830 } 1831 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1832 &lcnbmp_runlist_lock_key); 1833 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1834 &lcnbmp_mrec_lock_key); 1835 1836 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1837 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1838 iput(vol->lcnbmp_ino); 1839 bitmap_failed: 1840 ntfs_error(sb, "Failed to load $Bitmap."); 1841 goto iput_attrdef_err_out; 1842 } 1843 /* 1844 * Get the volume inode and setup our cache of the volume flags and 1845 * version. 1846 */ 1847 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1848 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1849 if (!IS_ERR(vol->vol_ino)) 1850 iput(vol->vol_ino); 1851 volume_failed: 1852 ntfs_error(sb, "Failed to load $Volume."); 1853 goto iput_lcnbmp_err_out; 1854 } 1855 m = map_mft_record(NTFS_I(vol->vol_ino)); 1856 if (IS_ERR(m)) { 1857 iput_volume_failed: 1858 iput(vol->vol_ino); 1859 goto volume_failed; 1860 } 1861 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1862 ntfs_error(sb, "Failed to get attribute search context."); 1863 goto get_ctx_vol_failed; 1864 } 1865 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1866 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1867 err_put_vol: 1868 ntfs_attr_put_search_ctx(ctx); 1869 get_ctx_vol_failed: 1870 unmap_mft_record(NTFS_I(vol->vol_ino)); 1871 goto iput_volume_failed; 1872 } 1873 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1874 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1875 /* Some bounds checks. */ 1876 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1877 le32_to_cpu(ctx->attr->data.resident.value_length) > 1878 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1879 goto err_put_vol; 1880 /* Copy the volume flags and version to the ntfs_volume structure. */ 1881 vol->vol_flags = vi->flags; 1882 vol->major_ver = vi->major_ver; 1883 vol->minor_ver = vi->minor_ver; 1884 ntfs_attr_put_search_ctx(ctx); 1885 unmap_mft_record(NTFS_I(vol->vol_ino)); 1886 pr_info("volume version %i.%i.\n", vol->major_ver, 1887 vol->minor_ver); 1888 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1889 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1890 "volume version %i.%i (need at least version " 1891 "3.0).", vol->major_ver, vol->minor_ver); 1892 NVolClearSparseEnabled(vol); 1893 } 1894 #ifdef NTFS_RW 1895 /* Make sure that no unsupported volume flags are set. */ 1896 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1897 static const char *es1a = "Volume is dirty"; 1898 static const char *es1b = "Volume has been modified by chkdsk"; 1899 static const char *es1c = "Volume has unsupported flags set"; 1900 static const char *es2a = ". Run chkdsk and mount in Windows."; 1901 static const char *es2b = ". Mount in Windows."; 1902 const char *es1, *es2; 1903 1904 es2 = es2a; 1905 if (vol->vol_flags & VOLUME_IS_DIRTY) 1906 es1 = es1a; 1907 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1908 es1 = es1b; 1909 es2 = es2b; 1910 } else { 1911 es1 = es1c; 1912 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1913 "encountered.", 1914 (unsigned)le16_to_cpu(vol->vol_flags)); 1915 } 1916 /* If a read-write mount, convert it to a read-only mount. */ 1917 if (!sb_rdonly(sb)) { 1918 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1919 ON_ERRORS_CONTINUE))) { 1920 ntfs_error(sb, "%s and neither on_errors=" 1921 "continue nor on_errors=" 1922 "remount-ro was specified%s", 1923 es1, es2); 1924 goto iput_vol_err_out; 1925 } 1926 sb->s_flags |= SB_RDONLY; 1927 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1928 } else 1929 ntfs_warning(sb, "%s. Will not be able to remount " 1930 "read-write%s", es1, es2); 1931 /* 1932 * Do not set NVolErrors() because ntfs_remount() re-checks the 1933 * flags which we need to do in case any flags have changed. 1934 */ 1935 } 1936 /* 1937 * Get the inode for the logfile, check it and determine if the volume 1938 * was shutdown cleanly. 1939 */ 1940 rp = NULL; 1941 if (!load_and_check_logfile(vol, &rp) || 1942 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1943 static const char *es1a = "Failed to load $LogFile"; 1944 static const char *es1b = "$LogFile is not clean"; 1945 static const char *es2 = ". Mount in Windows."; 1946 const char *es1; 1947 1948 es1 = !vol->logfile_ino ? es1a : es1b; 1949 /* If a read-write mount, convert it to a read-only mount. */ 1950 if (!sb_rdonly(sb)) { 1951 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1952 ON_ERRORS_CONTINUE))) { 1953 ntfs_error(sb, "%s and neither on_errors=" 1954 "continue nor on_errors=" 1955 "remount-ro was specified%s", 1956 es1, es2); 1957 if (vol->logfile_ino) { 1958 BUG_ON(!rp); 1959 ntfs_free(rp); 1960 } 1961 goto iput_logfile_err_out; 1962 } 1963 sb->s_flags |= SB_RDONLY; 1964 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1965 } else 1966 ntfs_warning(sb, "%s. Will not be able to remount " 1967 "read-write%s", es1, es2); 1968 /* This will prevent a read-write remount. */ 1969 NVolSetErrors(vol); 1970 } 1971 ntfs_free(rp); 1972 #endif /* NTFS_RW */ 1973 /* Get the root directory inode so we can do path lookups. */ 1974 vol->root_ino = ntfs_iget(sb, FILE_root); 1975 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1976 if (!IS_ERR(vol->root_ino)) 1977 iput(vol->root_ino); 1978 ntfs_error(sb, "Failed to load root directory."); 1979 goto iput_logfile_err_out; 1980 } 1981 #ifdef NTFS_RW 1982 /* 1983 * Check if Windows is suspended to disk on the target volume. If it 1984 * is hibernated, we must not write *anything* to the disk so set 1985 * NVolErrors() without setting the dirty volume flag and mount 1986 * read-only. This will prevent read-write remounting and it will also 1987 * prevent all writes. 1988 */ 1989 err = check_windows_hibernation_status(vol); 1990 if (unlikely(err)) { 1991 static const char *es1a = "Failed to determine if Windows is " 1992 "hibernated"; 1993 static const char *es1b = "Windows is hibernated"; 1994 static const char *es2 = ". Run chkdsk."; 1995 const char *es1; 1996 1997 es1 = err < 0 ? es1a : es1b; 1998 /* If a read-write mount, convert it to a read-only mount. */ 1999 if (!sb_rdonly(sb)) { 2000 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2001 ON_ERRORS_CONTINUE))) { 2002 ntfs_error(sb, "%s and neither on_errors=" 2003 "continue nor on_errors=" 2004 "remount-ro was specified%s", 2005 es1, es2); 2006 goto iput_root_err_out; 2007 } 2008 sb->s_flags |= SB_RDONLY; 2009 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2010 } else 2011 ntfs_warning(sb, "%s. Will not be able to remount " 2012 "read-write%s", es1, es2); 2013 /* This will prevent a read-write remount. */ 2014 NVolSetErrors(vol); 2015 } 2016 /* If (still) a read-write mount, mark the volume dirty. */ 2017 if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2018 static const char *es1 = "Failed to set dirty bit in volume " 2019 "information flags"; 2020 static const char *es2 = ". Run chkdsk."; 2021 2022 /* Convert to a read-only mount. */ 2023 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2024 ON_ERRORS_CONTINUE))) { 2025 ntfs_error(sb, "%s and neither on_errors=continue nor " 2026 "on_errors=remount-ro was specified%s", 2027 es1, es2); 2028 goto iput_root_err_out; 2029 } 2030 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2031 sb->s_flags |= SB_RDONLY; 2032 /* 2033 * Do not set NVolErrors() because ntfs_remount() might manage 2034 * to set the dirty flag in which case all would be well. 2035 */ 2036 } 2037 #if 0 2038 // TODO: Enable this code once we start modifying anything that is 2039 // different between NTFS 1.2 and 3.x... 2040 /* 2041 * If (still) a read-write mount, set the NT4 compatibility flag on 2042 * newer NTFS version volumes. 2043 */ 2044 if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) && 2045 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2046 static const char *es1 = "Failed to set NT4 compatibility flag"; 2047 static const char *es2 = ". Run chkdsk."; 2048 2049 /* Convert to a read-only mount. */ 2050 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2051 ON_ERRORS_CONTINUE))) { 2052 ntfs_error(sb, "%s and neither on_errors=continue nor " 2053 "on_errors=remount-ro was specified%s", 2054 es1, es2); 2055 goto iput_root_err_out; 2056 } 2057 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2058 sb->s_flags |= SB_RDONLY; 2059 NVolSetErrors(vol); 2060 } 2061 #endif 2062 /* If (still) a read-write mount, empty the logfile. */ 2063 if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) { 2064 static const char *es1 = "Failed to empty $LogFile"; 2065 static const char *es2 = ". Mount in Windows."; 2066 2067 /* Convert to a read-only mount. */ 2068 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2069 ON_ERRORS_CONTINUE))) { 2070 ntfs_error(sb, "%s and neither on_errors=continue nor " 2071 "on_errors=remount-ro was specified%s", 2072 es1, es2); 2073 goto iput_root_err_out; 2074 } 2075 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2076 sb->s_flags |= SB_RDONLY; 2077 NVolSetErrors(vol); 2078 } 2079 #endif /* NTFS_RW */ 2080 /* If on NTFS versions before 3.0, we are done. */ 2081 if (unlikely(vol->major_ver < 3)) 2082 return true; 2083 /* NTFS 3.0+ specific initialization. */ 2084 /* Get the security descriptors inode. */ 2085 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2086 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2087 if (!IS_ERR(vol->secure_ino)) 2088 iput(vol->secure_ino); 2089 ntfs_error(sb, "Failed to load $Secure."); 2090 goto iput_root_err_out; 2091 } 2092 // TODO: Initialize security. 2093 /* Get the extended system files' directory inode. */ 2094 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2095 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino) || 2096 !S_ISDIR(vol->extend_ino->i_mode)) { 2097 if (!IS_ERR(vol->extend_ino)) 2098 iput(vol->extend_ino); 2099 ntfs_error(sb, "Failed to load $Extend."); 2100 goto iput_sec_err_out; 2101 } 2102 #ifdef NTFS_RW 2103 /* Find the quota file, load it if present, and set it up. */ 2104 if (!load_and_init_quota(vol)) { 2105 static const char *es1 = "Failed to load $Quota"; 2106 static const char *es2 = ". Run chkdsk."; 2107 2108 /* If a read-write mount, convert it to a read-only mount. */ 2109 if (!sb_rdonly(sb)) { 2110 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2111 ON_ERRORS_CONTINUE))) { 2112 ntfs_error(sb, "%s and neither on_errors=" 2113 "continue nor on_errors=" 2114 "remount-ro was specified%s", 2115 es1, es2); 2116 goto iput_quota_err_out; 2117 } 2118 sb->s_flags |= SB_RDONLY; 2119 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2120 } else 2121 ntfs_warning(sb, "%s. Will not be able to remount " 2122 "read-write%s", es1, es2); 2123 /* This will prevent a read-write remount. */ 2124 NVolSetErrors(vol); 2125 } 2126 /* If (still) a read-write mount, mark the quotas out of date. */ 2127 if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) { 2128 static const char *es1 = "Failed to mark quotas out of date"; 2129 static const char *es2 = ". Run chkdsk."; 2130 2131 /* Convert to a read-only mount. */ 2132 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2133 ON_ERRORS_CONTINUE))) { 2134 ntfs_error(sb, "%s and neither on_errors=continue nor " 2135 "on_errors=remount-ro was specified%s", 2136 es1, es2); 2137 goto iput_quota_err_out; 2138 } 2139 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2140 sb->s_flags |= SB_RDONLY; 2141 NVolSetErrors(vol); 2142 } 2143 /* 2144 * Find the transaction log file ($UsnJrnl), load it if present, check 2145 * it, and set it up. 2146 */ 2147 if (!load_and_init_usnjrnl(vol)) { 2148 static const char *es1 = "Failed to load $UsnJrnl"; 2149 static const char *es2 = ". Run chkdsk."; 2150 2151 /* If a read-write mount, convert it to a read-only mount. */ 2152 if (!sb_rdonly(sb)) { 2153 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2154 ON_ERRORS_CONTINUE))) { 2155 ntfs_error(sb, "%s and neither on_errors=" 2156 "continue nor on_errors=" 2157 "remount-ro was specified%s", 2158 es1, es2); 2159 goto iput_usnjrnl_err_out; 2160 } 2161 sb->s_flags |= SB_RDONLY; 2162 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2163 } else 2164 ntfs_warning(sb, "%s. Will not be able to remount " 2165 "read-write%s", es1, es2); 2166 /* This will prevent a read-write remount. */ 2167 NVolSetErrors(vol); 2168 } 2169 /* If (still) a read-write mount, stamp the transaction log. */ 2170 if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) { 2171 static const char *es1 = "Failed to stamp transaction log " 2172 "($UsnJrnl)"; 2173 static const char *es2 = ". Run chkdsk."; 2174 2175 /* Convert to a read-only mount. */ 2176 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2177 ON_ERRORS_CONTINUE))) { 2178 ntfs_error(sb, "%s and neither on_errors=continue nor " 2179 "on_errors=remount-ro was specified%s", 2180 es1, es2); 2181 goto iput_usnjrnl_err_out; 2182 } 2183 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2184 sb->s_flags |= SB_RDONLY; 2185 NVolSetErrors(vol); 2186 } 2187 #endif /* NTFS_RW */ 2188 return true; 2189 #ifdef NTFS_RW 2190 iput_usnjrnl_err_out: 2191 iput(vol->usnjrnl_j_ino); 2192 iput(vol->usnjrnl_max_ino); 2193 iput(vol->usnjrnl_ino); 2194 iput_quota_err_out: 2195 iput(vol->quota_q_ino); 2196 iput(vol->quota_ino); 2197 iput(vol->extend_ino); 2198 #endif /* NTFS_RW */ 2199 iput_sec_err_out: 2200 iput(vol->secure_ino); 2201 iput_root_err_out: 2202 iput(vol->root_ino); 2203 iput_logfile_err_out: 2204 #ifdef NTFS_RW 2205 iput(vol->logfile_ino); 2206 iput_vol_err_out: 2207 #endif /* NTFS_RW */ 2208 iput(vol->vol_ino); 2209 iput_lcnbmp_err_out: 2210 iput(vol->lcnbmp_ino); 2211 iput_attrdef_err_out: 2212 vol->attrdef_size = 0; 2213 if (vol->attrdef) { 2214 ntfs_free(vol->attrdef); 2215 vol->attrdef = NULL; 2216 } 2217 #ifdef NTFS_RW 2218 iput_upcase_err_out: 2219 #endif /* NTFS_RW */ 2220 vol->upcase_len = 0; 2221 mutex_lock(&ntfs_lock); 2222 if (vol->upcase == default_upcase) { 2223 ntfs_nr_upcase_users--; 2224 vol->upcase = NULL; 2225 } 2226 mutex_unlock(&ntfs_lock); 2227 if (vol->upcase) { 2228 ntfs_free(vol->upcase); 2229 vol->upcase = NULL; 2230 } 2231 iput_mftbmp_err_out: 2232 iput(vol->mftbmp_ino); 2233 iput_mirr_err_out: 2234 #ifdef NTFS_RW 2235 iput(vol->mftmirr_ino); 2236 #endif /* NTFS_RW */ 2237 return false; 2238 } 2239 2240 /** 2241 * ntfs_put_super - called by the vfs to unmount a volume 2242 * @sb: vfs superblock of volume to unmount 2243 * 2244 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2245 * the volume is being unmounted (umount system call has been invoked) and it 2246 * releases all inodes and memory belonging to the NTFS specific part of the 2247 * super block. 2248 */ 2249 static void ntfs_put_super(struct super_block *sb) 2250 { 2251 ntfs_volume *vol = NTFS_SB(sb); 2252 2253 ntfs_debug("Entering."); 2254 2255 #ifdef NTFS_RW 2256 /* 2257 * Commit all inodes while they are still open in case some of them 2258 * cause others to be dirtied. 2259 */ 2260 ntfs_commit_inode(vol->vol_ino); 2261 2262 /* NTFS 3.0+ specific. */ 2263 if (vol->major_ver >= 3) { 2264 if (vol->usnjrnl_j_ino) 2265 ntfs_commit_inode(vol->usnjrnl_j_ino); 2266 if (vol->usnjrnl_max_ino) 2267 ntfs_commit_inode(vol->usnjrnl_max_ino); 2268 if (vol->usnjrnl_ino) 2269 ntfs_commit_inode(vol->usnjrnl_ino); 2270 if (vol->quota_q_ino) 2271 ntfs_commit_inode(vol->quota_q_ino); 2272 if (vol->quota_ino) 2273 ntfs_commit_inode(vol->quota_ino); 2274 if (vol->extend_ino) 2275 ntfs_commit_inode(vol->extend_ino); 2276 if (vol->secure_ino) 2277 ntfs_commit_inode(vol->secure_ino); 2278 } 2279 2280 ntfs_commit_inode(vol->root_ino); 2281 2282 down_write(&vol->lcnbmp_lock); 2283 ntfs_commit_inode(vol->lcnbmp_ino); 2284 up_write(&vol->lcnbmp_lock); 2285 2286 down_write(&vol->mftbmp_lock); 2287 ntfs_commit_inode(vol->mftbmp_ino); 2288 up_write(&vol->mftbmp_lock); 2289 2290 if (vol->logfile_ino) 2291 ntfs_commit_inode(vol->logfile_ino); 2292 2293 if (vol->mftmirr_ino) 2294 ntfs_commit_inode(vol->mftmirr_ino); 2295 ntfs_commit_inode(vol->mft_ino); 2296 2297 /* 2298 * If a read-write mount and no volume errors have occurred, mark the 2299 * volume clean. Also, re-commit all affected inodes. 2300 */ 2301 if (!sb_rdonly(sb)) { 2302 if (!NVolErrors(vol)) { 2303 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2304 ntfs_warning(sb, "Failed to clear dirty bit " 2305 "in volume information " 2306 "flags. Run chkdsk."); 2307 ntfs_commit_inode(vol->vol_ino); 2308 ntfs_commit_inode(vol->root_ino); 2309 if (vol->mftmirr_ino) 2310 ntfs_commit_inode(vol->mftmirr_ino); 2311 ntfs_commit_inode(vol->mft_ino); 2312 } else { 2313 ntfs_warning(sb, "Volume has errors. Leaving volume " 2314 "marked dirty. Run chkdsk."); 2315 } 2316 } 2317 #endif /* NTFS_RW */ 2318 2319 iput(vol->vol_ino); 2320 vol->vol_ino = NULL; 2321 2322 /* NTFS 3.0+ specific clean up. */ 2323 if (vol->major_ver >= 3) { 2324 #ifdef NTFS_RW 2325 if (vol->usnjrnl_j_ino) { 2326 iput(vol->usnjrnl_j_ino); 2327 vol->usnjrnl_j_ino = NULL; 2328 } 2329 if (vol->usnjrnl_max_ino) { 2330 iput(vol->usnjrnl_max_ino); 2331 vol->usnjrnl_max_ino = NULL; 2332 } 2333 if (vol->usnjrnl_ino) { 2334 iput(vol->usnjrnl_ino); 2335 vol->usnjrnl_ino = NULL; 2336 } 2337 if (vol->quota_q_ino) { 2338 iput(vol->quota_q_ino); 2339 vol->quota_q_ino = NULL; 2340 } 2341 if (vol->quota_ino) { 2342 iput(vol->quota_ino); 2343 vol->quota_ino = NULL; 2344 } 2345 #endif /* NTFS_RW */ 2346 if (vol->extend_ino) { 2347 iput(vol->extend_ino); 2348 vol->extend_ino = NULL; 2349 } 2350 if (vol->secure_ino) { 2351 iput(vol->secure_ino); 2352 vol->secure_ino = NULL; 2353 } 2354 } 2355 2356 iput(vol->root_ino); 2357 vol->root_ino = NULL; 2358 2359 down_write(&vol->lcnbmp_lock); 2360 iput(vol->lcnbmp_ino); 2361 vol->lcnbmp_ino = NULL; 2362 up_write(&vol->lcnbmp_lock); 2363 2364 down_write(&vol->mftbmp_lock); 2365 iput(vol->mftbmp_ino); 2366 vol->mftbmp_ino = NULL; 2367 up_write(&vol->mftbmp_lock); 2368 2369 #ifdef NTFS_RW 2370 if (vol->logfile_ino) { 2371 iput(vol->logfile_ino); 2372 vol->logfile_ino = NULL; 2373 } 2374 if (vol->mftmirr_ino) { 2375 /* Re-commit the mft mirror and mft just in case. */ 2376 ntfs_commit_inode(vol->mftmirr_ino); 2377 ntfs_commit_inode(vol->mft_ino); 2378 iput(vol->mftmirr_ino); 2379 vol->mftmirr_ino = NULL; 2380 } 2381 /* 2382 * We should have no dirty inodes left, due to 2383 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2384 * the underlying mft records are written out and cleaned. 2385 */ 2386 ntfs_commit_inode(vol->mft_ino); 2387 write_inode_now(vol->mft_ino, 1); 2388 #endif /* NTFS_RW */ 2389 2390 iput(vol->mft_ino); 2391 vol->mft_ino = NULL; 2392 2393 /* Throw away the table of attribute definitions. */ 2394 vol->attrdef_size = 0; 2395 if (vol->attrdef) { 2396 ntfs_free(vol->attrdef); 2397 vol->attrdef = NULL; 2398 } 2399 vol->upcase_len = 0; 2400 /* 2401 * Destroy the global default upcase table if necessary. Also decrease 2402 * the number of upcase users if we are a user. 2403 */ 2404 mutex_lock(&ntfs_lock); 2405 if (vol->upcase == default_upcase) { 2406 ntfs_nr_upcase_users--; 2407 vol->upcase = NULL; 2408 } 2409 if (!ntfs_nr_upcase_users && default_upcase) { 2410 ntfs_free(default_upcase); 2411 default_upcase = NULL; 2412 } 2413 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2414 free_compression_buffers(); 2415 mutex_unlock(&ntfs_lock); 2416 if (vol->upcase) { 2417 ntfs_free(vol->upcase); 2418 vol->upcase = NULL; 2419 } 2420 2421 unload_nls(vol->nls_map); 2422 2423 sb->s_fs_info = NULL; 2424 kfree(vol); 2425 } 2426 2427 /** 2428 * get_nr_free_clusters - return the number of free clusters on a volume 2429 * @vol: ntfs volume for which to obtain free cluster count 2430 * 2431 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2432 * actually calculate the number of clusters in use instead because this 2433 * allows us to not care about partial pages as these will be just zero filled 2434 * and hence not be counted as allocated clusters. 2435 * 2436 * The only particularity is that clusters beyond the end of the logical ntfs 2437 * volume will be marked as allocated to prevent errors which means we have to 2438 * discount those at the end. This is important as the cluster bitmap always 2439 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2440 * the logical volume and marked in use when they are not as they do not exist. 2441 * 2442 * If any pages cannot be read we assume all clusters in the erroring pages are 2443 * in use. This means we return an underestimate on errors which is better than 2444 * an overestimate. 2445 */ 2446 static s64 get_nr_free_clusters(ntfs_volume *vol) 2447 { 2448 s64 nr_free = vol->nr_clusters; 2449 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2450 struct page *page; 2451 pgoff_t index, max_index; 2452 2453 ntfs_debug("Entering."); 2454 /* Serialize accesses to the cluster bitmap. */ 2455 down_read(&vol->lcnbmp_lock); 2456 /* 2457 * Convert the number of bits into bytes rounded up, then convert into 2458 * multiples of PAGE_SIZE, rounding up so that if we have one 2459 * full and one partial page max_index = 2. 2460 */ 2461 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >> 2462 PAGE_SHIFT; 2463 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */ 2464 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2465 max_index, PAGE_SIZE / 4); 2466 for (index = 0; index < max_index; index++) { 2467 unsigned long *kaddr; 2468 2469 /* 2470 * Read the page from page cache, getting it from backing store 2471 * if necessary, and increment the use count. 2472 */ 2473 page = read_mapping_page(mapping, index, NULL); 2474 /* Ignore pages which errored synchronously. */ 2475 if (IS_ERR(page)) { 2476 ntfs_debug("read_mapping_page() error. Skipping " 2477 "page (index 0x%lx).", index); 2478 nr_free -= PAGE_SIZE * 8; 2479 continue; 2480 } 2481 kaddr = kmap_atomic(page); 2482 /* 2483 * Subtract the number of set bits. If this 2484 * is the last page and it is partial we don't really care as 2485 * it just means we do a little extra work but it won't affect 2486 * the result as all out of range bytes are set to zero by 2487 * ntfs_readpage(). 2488 */ 2489 nr_free -= bitmap_weight(kaddr, 2490 PAGE_SIZE * BITS_PER_BYTE); 2491 kunmap_atomic(kaddr); 2492 put_page(page); 2493 } 2494 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2495 /* 2496 * Fixup for eventual bits outside logical ntfs volume (see function 2497 * description above). 2498 */ 2499 if (vol->nr_clusters & 63) 2500 nr_free += 64 - (vol->nr_clusters & 63); 2501 up_read(&vol->lcnbmp_lock); 2502 /* If errors occurred we may well have gone below zero, fix this. */ 2503 if (nr_free < 0) 2504 nr_free = 0; 2505 ntfs_debug("Exiting."); 2506 return nr_free; 2507 } 2508 2509 /** 2510 * __get_nr_free_mft_records - return the number of free inodes on a volume 2511 * @vol: ntfs volume for which to obtain free inode count 2512 * @nr_free: number of mft records in filesystem 2513 * @max_index: maximum number of pages containing set bits 2514 * 2515 * Calculate the number of free mft records (inodes) on the mounted NTFS 2516 * volume @vol. We actually calculate the number of mft records in use instead 2517 * because this allows us to not care about partial pages as these will be just 2518 * zero filled and hence not be counted as allocated mft record. 2519 * 2520 * If any pages cannot be read we assume all mft records in the erroring pages 2521 * are in use. This means we return an underestimate on errors which is better 2522 * than an overestimate. 2523 * 2524 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2525 */ 2526 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2527 s64 nr_free, const pgoff_t max_index) 2528 { 2529 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2530 struct page *page; 2531 pgoff_t index; 2532 2533 ntfs_debug("Entering."); 2534 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */ 2535 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2536 "0x%lx.", max_index, PAGE_SIZE / 4); 2537 for (index = 0; index < max_index; index++) { 2538 unsigned long *kaddr; 2539 2540 /* 2541 * Read the page from page cache, getting it from backing store 2542 * if necessary, and increment the use count. 2543 */ 2544 page = read_mapping_page(mapping, index, NULL); 2545 /* Ignore pages which errored synchronously. */ 2546 if (IS_ERR(page)) { 2547 ntfs_debug("read_mapping_page() error. Skipping " 2548 "page (index 0x%lx).", index); 2549 nr_free -= PAGE_SIZE * 8; 2550 continue; 2551 } 2552 kaddr = kmap_atomic(page); 2553 /* 2554 * Subtract the number of set bits. If this 2555 * is the last page and it is partial we don't really care as 2556 * it just means we do a little extra work but it won't affect 2557 * the result as all out of range bytes are set to zero by 2558 * ntfs_readpage(). 2559 */ 2560 nr_free -= bitmap_weight(kaddr, 2561 PAGE_SIZE * BITS_PER_BYTE); 2562 kunmap_atomic(kaddr); 2563 put_page(page); 2564 } 2565 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2566 index - 1); 2567 /* If errors occurred we may well have gone below zero, fix this. */ 2568 if (nr_free < 0) 2569 nr_free = 0; 2570 ntfs_debug("Exiting."); 2571 return nr_free; 2572 } 2573 2574 /** 2575 * ntfs_statfs - return information about mounted NTFS volume 2576 * @dentry: dentry from mounted volume 2577 * @sfs: statfs structure in which to return the information 2578 * 2579 * Return information about the mounted NTFS volume @dentry in the statfs structure 2580 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2581 * called). We interpret the values to be correct of the moment in time at 2582 * which we are called. Most values are variable otherwise and this isn't just 2583 * the free values but the totals as well. For example we can increase the 2584 * total number of file nodes if we run out and we can keep doing this until 2585 * there is no more space on the volume left at all. 2586 * 2587 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2588 * ustat system calls. 2589 * 2590 * Return 0 on success or -errno on error. 2591 */ 2592 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2593 { 2594 struct super_block *sb = dentry->d_sb; 2595 s64 size; 2596 ntfs_volume *vol = NTFS_SB(sb); 2597 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2598 pgoff_t max_index; 2599 unsigned long flags; 2600 2601 ntfs_debug("Entering."); 2602 /* Type of filesystem. */ 2603 sfs->f_type = NTFS_SB_MAGIC; 2604 /* Optimal transfer block size. */ 2605 sfs->f_bsize = PAGE_SIZE; 2606 /* 2607 * Total data blocks in filesystem in units of f_bsize and since 2608 * inodes are also stored in data blocs ($MFT is a file) this is just 2609 * the total clusters. 2610 */ 2611 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2612 PAGE_SHIFT; 2613 /* Free data blocks in filesystem in units of f_bsize. */ 2614 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2615 PAGE_SHIFT; 2616 if (size < 0LL) 2617 size = 0LL; 2618 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2619 sfs->f_bavail = sfs->f_bfree = size; 2620 /* Serialize accesses to the inode bitmap. */ 2621 down_read(&vol->mftbmp_lock); 2622 read_lock_irqsave(&mft_ni->size_lock, flags); 2623 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2624 /* 2625 * Convert the maximum number of set bits into bytes rounded up, then 2626 * convert into multiples of PAGE_SIZE, rounding up so that if we 2627 * have one full and one partial page max_index = 2. 2628 */ 2629 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2630 + 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT; 2631 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2632 /* Number of inodes in filesystem (at this point in time). */ 2633 sfs->f_files = size; 2634 /* Free inodes in fs (based on current total count). */ 2635 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2636 up_read(&vol->mftbmp_lock); 2637 /* 2638 * File system id. This is extremely *nix flavour dependent and even 2639 * within Linux itself all fs do their own thing. I interpret this to 2640 * mean a unique id associated with the mounted fs and not the id 2641 * associated with the filesystem driver, the latter is already given 2642 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2643 * volume serial number splitting it into two 32-bit parts. We enter 2644 * the least significant 32-bits in f_fsid[0] and the most significant 2645 * 32-bits in f_fsid[1]. 2646 */ 2647 sfs->f_fsid = u64_to_fsid(vol->serial_no); 2648 /* Maximum length of filenames. */ 2649 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2650 return 0; 2651 } 2652 2653 #ifdef NTFS_RW 2654 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) 2655 { 2656 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); 2657 } 2658 #endif 2659 2660 /** 2661 * The complete super operations. 2662 */ 2663 static const struct super_operations ntfs_sops = { 2664 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2665 .free_inode = ntfs_free_big_inode, /* VFS: Deallocate inode. */ 2666 #ifdef NTFS_RW 2667 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2668 disk. */ 2669 #endif /* NTFS_RW */ 2670 .put_super = ntfs_put_super, /* Syscall: umount. */ 2671 .statfs = ntfs_statfs, /* Syscall: statfs */ 2672 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2673 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is 2674 removed from memory. */ 2675 .show_options = ntfs_show_options, /* Show mount options in 2676 proc. */ 2677 }; 2678 2679 /** 2680 * ntfs_fill_super - mount an ntfs filesystem 2681 * @sb: super block of ntfs filesystem to mount 2682 * @opt: string containing the mount options 2683 * @silent: silence error output 2684 * 2685 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2686 * with the mount otions in @data with the NTFS filesystem. 2687 * 2688 * If @silent is true, remain silent even if errors are detected. This is used 2689 * during bootup, when the kernel tries to mount the root filesystem with all 2690 * registered filesystems one after the other until one succeeds. This implies 2691 * that all filesystems except the correct one will quite correctly and 2692 * expectedly return an error, but nobody wants to see error messages when in 2693 * fact this is what is supposed to happen. 2694 * 2695 * NOTE: @sb->s_flags contains the mount options flags. 2696 */ 2697 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2698 { 2699 ntfs_volume *vol; 2700 struct buffer_head *bh; 2701 struct inode *tmp_ino; 2702 int blocksize, result; 2703 2704 /* 2705 * We do a pretty difficult piece of bootstrap by reading the 2706 * MFT (and other metadata) from disk into memory. We'll only 2707 * release this metadata during umount, so the locking patterns 2708 * observed during bootstrap do not count. So turn off the 2709 * observation of locking patterns (strictly for this context 2710 * only) while mounting NTFS. [The validator is still active 2711 * otherwise, even for this context: it will for example record 2712 * lock class registrations.] 2713 */ 2714 lockdep_off(); 2715 ntfs_debug("Entering."); 2716 #ifndef NTFS_RW 2717 sb->s_flags |= SB_RDONLY; 2718 #endif /* ! NTFS_RW */ 2719 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2720 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2721 vol = NTFS_SB(sb); 2722 if (!vol) { 2723 if (!silent) 2724 ntfs_error(sb, "Allocation of NTFS volume structure " 2725 "failed. Aborting mount..."); 2726 lockdep_on(); 2727 return -ENOMEM; 2728 } 2729 /* Initialize ntfs_volume structure. */ 2730 *vol = (ntfs_volume) { 2731 .sb = sb, 2732 /* 2733 * Default is group and other don't have any access to files or 2734 * directories while owner has full access. Further, files by 2735 * default are not executable but directories are of course 2736 * browseable. 2737 */ 2738 .fmask = 0177, 2739 .dmask = 0077, 2740 }; 2741 init_rwsem(&vol->mftbmp_lock); 2742 init_rwsem(&vol->lcnbmp_lock); 2743 2744 /* By default, enable sparse support. */ 2745 NVolSetSparseEnabled(vol); 2746 2747 /* Important to get the mount options dealt with now. */ 2748 if (!parse_options(vol, (char*)opt)) 2749 goto err_out_now; 2750 2751 /* We support sector sizes up to the PAGE_SIZE. */ 2752 if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) { 2753 if (!silent) 2754 ntfs_error(sb, "Device has unsupported sector size " 2755 "(%i). The maximum supported sector " 2756 "size on this architecture is %lu " 2757 "bytes.", 2758 bdev_logical_block_size(sb->s_bdev), 2759 PAGE_SIZE); 2760 goto err_out_now; 2761 } 2762 /* 2763 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2764 * sector size, whichever is bigger. 2765 */ 2766 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2767 if (blocksize < NTFS_BLOCK_SIZE) { 2768 if (!silent) 2769 ntfs_error(sb, "Unable to set device block size."); 2770 goto err_out_now; 2771 } 2772 BUG_ON(blocksize != sb->s_blocksize); 2773 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2774 blocksize, sb->s_blocksize_bits); 2775 /* Determine the size of the device in units of block_size bytes. */ 2776 vol->nr_blocks = sb_bdev_nr_blocks(sb); 2777 if (!vol->nr_blocks) { 2778 if (!silent) 2779 ntfs_error(sb, "Unable to determine device size."); 2780 goto err_out_now; 2781 } 2782 /* Read the boot sector and return unlocked buffer head to it. */ 2783 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2784 if (!silent) 2785 ntfs_error(sb, "Not an NTFS volume."); 2786 goto err_out_now; 2787 } 2788 /* 2789 * Extract the data from the boot sector and setup the ntfs volume 2790 * using it. 2791 */ 2792 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2793 brelse(bh); 2794 if (!result) { 2795 if (!silent) 2796 ntfs_error(sb, "Unsupported NTFS filesystem."); 2797 goto err_out_now; 2798 } 2799 /* 2800 * If the boot sector indicates a sector size bigger than the current 2801 * device block size, switch the device block size to the sector size. 2802 * TODO: It may be possible to support this case even when the set 2803 * below fails, we would just be breaking up the i/o for each sector 2804 * into multiple blocks for i/o purposes but otherwise it should just 2805 * work. However it is safer to leave disabled until someone hits this 2806 * error message and then we can get them to try it without the setting 2807 * so we know for sure that it works. 2808 */ 2809 if (vol->sector_size > blocksize) { 2810 blocksize = sb_set_blocksize(sb, vol->sector_size); 2811 if (blocksize != vol->sector_size) { 2812 if (!silent) 2813 ntfs_error(sb, "Unable to set device block " 2814 "size to sector size (%i).", 2815 vol->sector_size); 2816 goto err_out_now; 2817 } 2818 BUG_ON(blocksize != sb->s_blocksize); 2819 vol->nr_blocks = sb_bdev_nr_blocks(sb); 2820 ntfs_debug("Changed device block size to %i bytes (block size " 2821 "bits %i) to match volume sector size.", 2822 blocksize, sb->s_blocksize_bits); 2823 } 2824 /* Initialize the cluster and mft allocators. */ 2825 ntfs_setup_allocators(vol); 2826 /* Setup remaining fields in the super block. */ 2827 sb->s_magic = NTFS_SB_MAGIC; 2828 /* 2829 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2830 * sb->s_maxbytes = ~0ULL >> 1; 2831 * But the kernel uses a long as the page cache page index which on 2832 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2833 * defined to the maximum the page cache page index can cope with 2834 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2835 */ 2836 sb->s_maxbytes = MAX_LFS_FILESIZE; 2837 /* Ntfs measures time in 100ns intervals. */ 2838 sb->s_time_gran = 100; 2839 /* 2840 * Now load the metadata required for the page cache and our address 2841 * space operations to function. We do this by setting up a specialised 2842 * read_inode method and then just calling the normal iget() to obtain 2843 * the inode for $MFT which is sufficient to allow our normal inode 2844 * operations and associated address space operations to function. 2845 */ 2846 sb->s_op = &ntfs_sops; 2847 tmp_ino = new_inode(sb); 2848 if (!tmp_ino) { 2849 if (!silent) 2850 ntfs_error(sb, "Failed to load essential metadata."); 2851 goto err_out_now; 2852 } 2853 tmp_ino->i_ino = FILE_MFT; 2854 insert_inode_hash(tmp_ino); 2855 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2856 if (!silent) 2857 ntfs_error(sb, "Failed to load essential metadata."); 2858 goto iput_tmp_ino_err_out_now; 2859 } 2860 mutex_lock(&ntfs_lock); 2861 /* 2862 * The current mount is a compression user if the cluster size is 2863 * less than or equal 4kiB. 2864 */ 2865 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2866 result = allocate_compression_buffers(); 2867 if (result) { 2868 ntfs_error(NULL, "Failed to allocate buffers " 2869 "for compression engine."); 2870 ntfs_nr_compression_users--; 2871 mutex_unlock(&ntfs_lock); 2872 goto iput_tmp_ino_err_out_now; 2873 } 2874 } 2875 /* 2876 * Generate the global default upcase table if necessary. Also 2877 * temporarily increment the number of upcase users to avoid race 2878 * conditions with concurrent (u)mounts. 2879 */ 2880 if (!default_upcase) 2881 default_upcase = generate_default_upcase(); 2882 ntfs_nr_upcase_users++; 2883 mutex_unlock(&ntfs_lock); 2884 /* 2885 * From now on, ignore @silent parameter. If we fail below this line, 2886 * it will be due to a corrupt fs or a system error, so we report it. 2887 */ 2888 /* 2889 * Open the system files with normal access functions and complete 2890 * setting up the ntfs super block. 2891 */ 2892 if (!load_system_files(vol)) { 2893 ntfs_error(sb, "Failed to load system files."); 2894 goto unl_upcase_iput_tmp_ino_err_out_now; 2895 } 2896 2897 /* We grab a reference, simulating an ntfs_iget(). */ 2898 ihold(vol->root_ino); 2899 if ((sb->s_root = d_make_root(vol->root_ino))) { 2900 ntfs_debug("Exiting, status successful."); 2901 /* Release the default upcase if it has no users. */ 2902 mutex_lock(&ntfs_lock); 2903 if (!--ntfs_nr_upcase_users && default_upcase) { 2904 ntfs_free(default_upcase); 2905 default_upcase = NULL; 2906 } 2907 mutex_unlock(&ntfs_lock); 2908 sb->s_export_op = &ntfs_export_ops; 2909 lockdep_on(); 2910 return 0; 2911 } 2912 ntfs_error(sb, "Failed to allocate root directory."); 2913 /* Clean up after the successful load_system_files() call from above. */ 2914 // TODO: Use ntfs_put_super() instead of repeating all this code... 2915 // FIXME: Should mark the volume clean as the error is most likely 2916 // -ENOMEM. 2917 iput(vol->vol_ino); 2918 vol->vol_ino = NULL; 2919 /* NTFS 3.0+ specific clean up. */ 2920 if (vol->major_ver >= 3) { 2921 #ifdef NTFS_RW 2922 if (vol->usnjrnl_j_ino) { 2923 iput(vol->usnjrnl_j_ino); 2924 vol->usnjrnl_j_ino = NULL; 2925 } 2926 if (vol->usnjrnl_max_ino) { 2927 iput(vol->usnjrnl_max_ino); 2928 vol->usnjrnl_max_ino = NULL; 2929 } 2930 if (vol->usnjrnl_ino) { 2931 iput(vol->usnjrnl_ino); 2932 vol->usnjrnl_ino = NULL; 2933 } 2934 if (vol->quota_q_ino) { 2935 iput(vol->quota_q_ino); 2936 vol->quota_q_ino = NULL; 2937 } 2938 if (vol->quota_ino) { 2939 iput(vol->quota_ino); 2940 vol->quota_ino = NULL; 2941 } 2942 #endif /* NTFS_RW */ 2943 if (vol->extend_ino) { 2944 iput(vol->extend_ino); 2945 vol->extend_ino = NULL; 2946 } 2947 if (vol->secure_ino) { 2948 iput(vol->secure_ino); 2949 vol->secure_ino = NULL; 2950 } 2951 } 2952 iput(vol->root_ino); 2953 vol->root_ino = NULL; 2954 iput(vol->lcnbmp_ino); 2955 vol->lcnbmp_ino = NULL; 2956 iput(vol->mftbmp_ino); 2957 vol->mftbmp_ino = NULL; 2958 #ifdef NTFS_RW 2959 if (vol->logfile_ino) { 2960 iput(vol->logfile_ino); 2961 vol->logfile_ino = NULL; 2962 } 2963 if (vol->mftmirr_ino) { 2964 iput(vol->mftmirr_ino); 2965 vol->mftmirr_ino = NULL; 2966 } 2967 #endif /* NTFS_RW */ 2968 /* Throw away the table of attribute definitions. */ 2969 vol->attrdef_size = 0; 2970 if (vol->attrdef) { 2971 ntfs_free(vol->attrdef); 2972 vol->attrdef = NULL; 2973 } 2974 vol->upcase_len = 0; 2975 mutex_lock(&ntfs_lock); 2976 if (vol->upcase == default_upcase) { 2977 ntfs_nr_upcase_users--; 2978 vol->upcase = NULL; 2979 } 2980 mutex_unlock(&ntfs_lock); 2981 if (vol->upcase) { 2982 ntfs_free(vol->upcase); 2983 vol->upcase = NULL; 2984 } 2985 if (vol->nls_map) { 2986 unload_nls(vol->nls_map); 2987 vol->nls_map = NULL; 2988 } 2989 /* Error exit code path. */ 2990 unl_upcase_iput_tmp_ino_err_out_now: 2991 /* 2992 * Decrease the number of upcase users and destroy the global default 2993 * upcase table if necessary. 2994 */ 2995 mutex_lock(&ntfs_lock); 2996 if (!--ntfs_nr_upcase_users && default_upcase) { 2997 ntfs_free(default_upcase); 2998 default_upcase = NULL; 2999 } 3000 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3001 free_compression_buffers(); 3002 mutex_unlock(&ntfs_lock); 3003 iput_tmp_ino_err_out_now: 3004 iput(tmp_ino); 3005 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3006 iput(vol->mft_ino); 3007 vol->mft_ino = NULL; 3008 /* Errors at this stage are irrelevant. */ 3009 err_out_now: 3010 sb->s_fs_info = NULL; 3011 kfree(vol); 3012 ntfs_debug("Failed, returning -EINVAL."); 3013 lockdep_on(); 3014 return -EINVAL; 3015 } 3016 3017 /* 3018 * This is a slab cache to optimize allocations and deallocations of Unicode 3019 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3020 * (255) Unicode characters + a terminating NULL Unicode character. 3021 */ 3022 struct kmem_cache *ntfs_name_cache; 3023 3024 /* Slab caches for efficient allocation/deallocation of inodes. */ 3025 struct kmem_cache *ntfs_inode_cache; 3026 struct kmem_cache *ntfs_big_inode_cache; 3027 3028 /* Init once constructor for the inode slab cache. */ 3029 static void ntfs_big_inode_init_once(void *foo) 3030 { 3031 ntfs_inode *ni = (ntfs_inode *)foo; 3032 3033 inode_init_once(VFS_I(ni)); 3034 } 3035 3036 /* 3037 * Slab caches to optimize allocations and deallocations of attribute search 3038 * contexts and index contexts, respectively. 3039 */ 3040 struct kmem_cache *ntfs_attr_ctx_cache; 3041 struct kmem_cache *ntfs_index_ctx_cache; 3042 3043 /* Driver wide mutex. */ 3044 DEFINE_MUTEX(ntfs_lock); 3045 3046 static struct dentry *ntfs_mount(struct file_system_type *fs_type, 3047 int flags, const char *dev_name, void *data) 3048 { 3049 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3050 } 3051 3052 static struct file_system_type ntfs_fs_type = { 3053 .owner = THIS_MODULE, 3054 .name = "ntfs", 3055 .mount = ntfs_mount, 3056 .kill_sb = kill_block_super, 3057 .fs_flags = FS_REQUIRES_DEV, 3058 }; 3059 MODULE_ALIAS_FS("ntfs"); 3060 3061 /* Stable names for the slab caches. */ 3062 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3063 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3064 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3065 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3066 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3067 3068 static int __init init_ntfs_fs(void) 3069 { 3070 int err = 0; 3071 3072 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3073 pr_info("driver " NTFS_VERSION " [Flags: R/" 3074 #ifdef NTFS_RW 3075 "W" 3076 #else 3077 "O" 3078 #endif 3079 #ifdef DEBUG 3080 " DEBUG" 3081 #endif 3082 #ifdef MODULE 3083 " MODULE" 3084 #endif 3085 "].\n"); 3086 3087 ntfs_debug("Debug messages are enabled."); 3088 3089 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3090 sizeof(ntfs_index_context), 0 /* offset */, 3091 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3092 if (!ntfs_index_ctx_cache) { 3093 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name); 3094 goto ictx_err_out; 3095 } 3096 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3097 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3098 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3099 if (!ntfs_attr_ctx_cache) { 3100 pr_crit("NTFS: Failed to create %s!\n", 3101 ntfs_attr_ctx_cache_name); 3102 goto actx_err_out; 3103 } 3104 3105 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3106 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3107 SLAB_HWCACHE_ALIGN, NULL); 3108 if (!ntfs_name_cache) { 3109 pr_crit("Failed to create %s!\n", ntfs_name_cache_name); 3110 goto name_err_out; 3111 } 3112 3113 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3114 sizeof(ntfs_inode), 0, 3115 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3116 if (!ntfs_inode_cache) { 3117 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name); 3118 goto inode_err_out; 3119 } 3120 3121 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3122 sizeof(big_ntfs_inode), 0, 3123 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 3124 SLAB_ACCOUNT, ntfs_big_inode_init_once); 3125 if (!ntfs_big_inode_cache) { 3126 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name); 3127 goto big_inode_err_out; 3128 } 3129 3130 /* Register the ntfs sysctls. */ 3131 err = ntfs_sysctl(1); 3132 if (err) { 3133 pr_crit("Failed to register NTFS sysctls!\n"); 3134 goto sysctl_err_out; 3135 } 3136 3137 err = register_filesystem(&ntfs_fs_type); 3138 if (!err) { 3139 ntfs_debug("NTFS driver registered successfully."); 3140 return 0; /* Success! */ 3141 } 3142 pr_crit("Failed to register NTFS filesystem driver!\n"); 3143 3144 /* Unregister the ntfs sysctls. */ 3145 ntfs_sysctl(0); 3146 sysctl_err_out: 3147 kmem_cache_destroy(ntfs_big_inode_cache); 3148 big_inode_err_out: 3149 kmem_cache_destroy(ntfs_inode_cache); 3150 inode_err_out: 3151 kmem_cache_destroy(ntfs_name_cache); 3152 name_err_out: 3153 kmem_cache_destroy(ntfs_attr_ctx_cache); 3154 actx_err_out: 3155 kmem_cache_destroy(ntfs_index_ctx_cache); 3156 ictx_err_out: 3157 if (!err) { 3158 pr_crit("Aborting NTFS filesystem driver registration...\n"); 3159 err = -ENOMEM; 3160 } 3161 return err; 3162 } 3163 3164 static void __exit exit_ntfs_fs(void) 3165 { 3166 ntfs_debug("Unregistering NTFS driver."); 3167 3168 unregister_filesystem(&ntfs_fs_type); 3169 3170 /* 3171 * Make sure all delayed rcu free inodes are flushed before we 3172 * destroy cache. 3173 */ 3174 rcu_barrier(); 3175 kmem_cache_destroy(ntfs_big_inode_cache); 3176 kmem_cache_destroy(ntfs_inode_cache); 3177 kmem_cache_destroy(ntfs_name_cache); 3178 kmem_cache_destroy(ntfs_attr_ctx_cache); 3179 kmem_cache_destroy(ntfs_index_ctx_cache); 3180 /* Unregister the ntfs sysctls. */ 3181 ntfs_sysctl(0); 3182 } 3183 3184 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); 3185 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc."); 3186 MODULE_VERSION(NTFS_VERSION); 3187 MODULE_LICENSE("GPL"); 3188 #ifdef DEBUG 3189 module_param(debug_msgs, bint, 0); 3190 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3191 #endif 3192 3193 module_init(init_ntfs_fs) 3194 module_exit(exit_ntfs_fs) 3195