1 /* 2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 5 * Copyright (c) 2001,2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/stddef.h> 24 #include <linux/init.h> 25 #include <linux/slab.h> 26 #include <linux/string.h> 27 #include <linux/spinlock.h> 28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ 29 #include <linux/backing-dev.h> 30 #include <linux/buffer_head.h> 31 #include <linux/vfs.h> 32 #include <linux/moduleparam.h> 33 #include <linux/bitmap.h> 34 35 #include "sysctl.h" 36 #include "logfile.h" 37 #include "quota.h" 38 #include "usnjrnl.h" 39 #include "dir.h" 40 #include "debug.h" 41 #include "index.h" 42 #include "inode.h" 43 #include "aops.h" 44 #include "layout.h" 45 #include "malloc.h" 46 #include "ntfs.h" 47 48 /* Number of mounted filesystems which have compression enabled. */ 49 static unsigned long ntfs_nr_compression_users; 50 51 /* A global default upcase table and a corresponding reference count. */ 52 static ntfschar *default_upcase = NULL; 53 static unsigned long ntfs_nr_upcase_users = 0; 54 55 /* Error constants/strings used in inode.c::ntfs_show_options(). */ 56 typedef enum { 57 /* One of these must be present, default is ON_ERRORS_CONTINUE. */ 58 ON_ERRORS_PANIC = 0x01, 59 ON_ERRORS_REMOUNT_RO = 0x02, 60 ON_ERRORS_CONTINUE = 0x04, 61 /* Optional, can be combined with any of the above. */ 62 ON_ERRORS_RECOVER = 0x10, 63 } ON_ERRORS_ACTIONS; 64 65 const option_t on_errors_arr[] = { 66 { ON_ERRORS_PANIC, "panic" }, 67 { ON_ERRORS_REMOUNT_RO, "remount-ro", }, 68 { ON_ERRORS_CONTINUE, "continue", }, 69 { ON_ERRORS_RECOVER, "recover" }, 70 { 0, NULL } 71 }; 72 73 /** 74 * simple_getbool - 75 * 76 * Copied from old ntfs driver (which copied from vfat driver). 77 */ 78 static int simple_getbool(char *s, bool *setval) 79 { 80 if (s) { 81 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) 82 *setval = true; 83 else if (!strcmp(s, "0") || !strcmp(s, "no") || 84 !strcmp(s, "false")) 85 *setval = false; 86 else 87 return 0; 88 } else 89 *setval = true; 90 return 1; 91 } 92 93 /** 94 * parse_options - parse the (re)mount options 95 * @vol: ntfs volume 96 * @opt: string containing the (re)mount options 97 * 98 * Parse the recognized options in @opt for the ntfs volume described by @vol. 99 */ 100 static bool parse_options(ntfs_volume *vol, char *opt) 101 { 102 char *p, *v, *ov; 103 static char *utf8 = "utf8"; 104 int errors = 0, sloppy = 0; 105 kuid_t uid = INVALID_UID; 106 kgid_t gid = INVALID_GID; 107 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1; 108 int mft_zone_multiplier = -1, on_errors = -1; 109 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; 110 struct nls_table *nls_map = NULL, *old_nls; 111 112 /* I am lazy... (-8 */ 113 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ 114 if (!strcmp(p, option)) { \ 115 if (!v || !*v) \ 116 variable = default_value; \ 117 else { \ 118 variable = simple_strtoul(ov = v, &v, 0); \ 119 if (*v) \ 120 goto needs_val; \ 121 } \ 122 } 123 #define NTFS_GETOPT(option, variable) \ 124 if (!strcmp(p, option)) { \ 125 if (!v || !*v) \ 126 goto needs_arg; \ 127 variable = simple_strtoul(ov = v, &v, 0); \ 128 if (*v) \ 129 goto needs_val; \ 130 } 131 #define NTFS_GETOPT_UID(option, variable) \ 132 if (!strcmp(p, option)) { \ 133 uid_t uid_value; \ 134 if (!v || !*v) \ 135 goto needs_arg; \ 136 uid_value = simple_strtoul(ov = v, &v, 0); \ 137 if (*v) \ 138 goto needs_val; \ 139 variable = make_kuid(current_user_ns(), uid_value); \ 140 if (!uid_valid(variable)) \ 141 goto needs_val; \ 142 } 143 #define NTFS_GETOPT_GID(option, variable) \ 144 if (!strcmp(p, option)) { \ 145 gid_t gid_value; \ 146 if (!v || !*v) \ 147 goto needs_arg; \ 148 gid_value = simple_strtoul(ov = v, &v, 0); \ 149 if (*v) \ 150 goto needs_val; \ 151 variable = make_kgid(current_user_ns(), gid_value); \ 152 if (!gid_valid(variable)) \ 153 goto needs_val; \ 154 } 155 #define NTFS_GETOPT_OCTAL(option, variable) \ 156 if (!strcmp(p, option)) { \ 157 if (!v || !*v) \ 158 goto needs_arg; \ 159 variable = simple_strtoul(ov = v, &v, 8); \ 160 if (*v) \ 161 goto needs_val; \ 162 } 163 #define NTFS_GETOPT_BOOL(option, variable) \ 164 if (!strcmp(p, option)) { \ 165 bool val; \ 166 if (!simple_getbool(v, &val)) \ 167 goto needs_bool; \ 168 variable = val; \ 169 } 170 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ 171 if (!strcmp(p, option)) { \ 172 int _i; \ 173 if (!v || !*v) \ 174 goto needs_arg; \ 175 ov = v; \ 176 if (variable == -1) \ 177 variable = 0; \ 178 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ 179 if (!strcmp(opt_array[_i].str, v)) { \ 180 variable |= opt_array[_i].val; \ 181 break; \ 182 } \ 183 if (!opt_array[_i].str || !*opt_array[_i].str) \ 184 goto needs_val; \ 185 } 186 if (!opt || !*opt) 187 goto no_mount_options; 188 ntfs_debug("Entering with mount options string: %s", opt); 189 while ((p = strsep(&opt, ","))) { 190 if ((v = strchr(p, '='))) 191 *v++ = 0; 192 NTFS_GETOPT_UID("uid", uid) 193 else NTFS_GETOPT_GID("gid", gid) 194 else NTFS_GETOPT_OCTAL("umask", fmask = dmask) 195 else NTFS_GETOPT_OCTAL("fmask", fmask) 196 else NTFS_GETOPT_OCTAL("dmask", dmask) 197 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) 198 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) 199 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) 200 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) 201 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) 202 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, 203 on_errors_arr) 204 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) 205 ntfs_warning(vol->sb, "Ignoring obsolete option %s.", 206 p); 207 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { 208 if (!strcmp(p, "iocharset")) 209 ntfs_warning(vol->sb, "Option iocharset is " 210 "deprecated. Please use " 211 "option nls=<charsetname> in " 212 "the future."); 213 if (!v || !*v) 214 goto needs_arg; 215 use_utf8: 216 old_nls = nls_map; 217 nls_map = load_nls(v); 218 if (!nls_map) { 219 if (!old_nls) { 220 ntfs_error(vol->sb, "NLS character set " 221 "%s not found.", v); 222 return false; 223 } 224 ntfs_error(vol->sb, "NLS character set %s not " 225 "found. Using previous one %s.", 226 v, old_nls->charset); 227 nls_map = old_nls; 228 } else /* nls_map */ { 229 unload_nls(old_nls); 230 } 231 } else if (!strcmp(p, "utf8")) { 232 bool val = false; 233 ntfs_warning(vol->sb, "Option utf8 is no longer " 234 "supported, using option nls=utf8. Please " 235 "use option nls=utf8 in the future and " 236 "make sure utf8 is compiled either as a " 237 "module or into the kernel."); 238 if (!v || !*v) 239 val = true; 240 else if (!simple_getbool(v, &val)) 241 goto needs_bool; 242 if (val) { 243 v = utf8; 244 goto use_utf8; 245 } 246 } else { 247 ntfs_error(vol->sb, "Unrecognized mount option %s.", p); 248 if (errors < INT_MAX) 249 errors++; 250 } 251 #undef NTFS_GETOPT_OPTIONS_ARRAY 252 #undef NTFS_GETOPT_BOOL 253 #undef NTFS_GETOPT 254 #undef NTFS_GETOPT_WITH_DEFAULT 255 } 256 no_mount_options: 257 if (errors && !sloppy) 258 return false; 259 if (sloppy) 260 ntfs_warning(vol->sb, "Sloppy option given. Ignoring " 261 "unrecognized mount option(s) and continuing."); 262 /* Keep this first! */ 263 if (on_errors != -1) { 264 if (!on_errors) { 265 ntfs_error(vol->sb, "Invalid errors option argument " 266 "or bug in options parser."); 267 return false; 268 } 269 } 270 if (nls_map) { 271 if (vol->nls_map && vol->nls_map != nls_map) { 272 ntfs_error(vol->sb, "Cannot change NLS character set " 273 "on remount."); 274 return false; 275 } /* else (!vol->nls_map) */ 276 ntfs_debug("Using NLS character set %s.", nls_map->charset); 277 vol->nls_map = nls_map; 278 } else /* (!nls_map) */ { 279 if (!vol->nls_map) { 280 vol->nls_map = load_nls_default(); 281 if (!vol->nls_map) { 282 ntfs_error(vol->sb, "Failed to load default " 283 "NLS character set."); 284 return false; 285 } 286 ntfs_debug("Using default NLS character set (%s).", 287 vol->nls_map->charset); 288 } 289 } 290 if (mft_zone_multiplier != -1) { 291 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != 292 mft_zone_multiplier) { 293 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " 294 "on remount."); 295 return false; 296 } 297 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { 298 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " 299 "Using default value, i.e. 1."); 300 mft_zone_multiplier = 1; 301 } 302 vol->mft_zone_multiplier = mft_zone_multiplier; 303 } 304 if (!vol->mft_zone_multiplier) 305 vol->mft_zone_multiplier = 1; 306 if (on_errors != -1) 307 vol->on_errors = on_errors; 308 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) 309 vol->on_errors |= ON_ERRORS_CONTINUE; 310 if (uid_valid(uid)) 311 vol->uid = uid; 312 if (gid_valid(gid)) 313 vol->gid = gid; 314 if (fmask != (umode_t)-1) 315 vol->fmask = fmask; 316 if (dmask != (umode_t)-1) 317 vol->dmask = dmask; 318 if (show_sys_files != -1) { 319 if (show_sys_files) 320 NVolSetShowSystemFiles(vol); 321 else 322 NVolClearShowSystemFiles(vol); 323 } 324 if (case_sensitive != -1) { 325 if (case_sensitive) 326 NVolSetCaseSensitive(vol); 327 else 328 NVolClearCaseSensitive(vol); 329 } 330 if (disable_sparse != -1) { 331 if (disable_sparse) 332 NVolClearSparseEnabled(vol); 333 else { 334 if (!NVolSparseEnabled(vol) && 335 vol->major_ver && vol->major_ver < 3) 336 ntfs_warning(vol->sb, "Not enabling sparse " 337 "support due to NTFS volume " 338 "version %i.%i (need at least " 339 "version 3.0).", vol->major_ver, 340 vol->minor_ver); 341 else 342 NVolSetSparseEnabled(vol); 343 } 344 } 345 return true; 346 needs_arg: 347 ntfs_error(vol->sb, "The %s option requires an argument.", p); 348 return false; 349 needs_bool: 350 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); 351 return false; 352 needs_val: 353 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); 354 return false; 355 } 356 357 #ifdef NTFS_RW 358 359 /** 360 * ntfs_write_volume_flags - write new flags to the volume information flags 361 * @vol: ntfs volume on which to modify the flags 362 * @flags: new flags value for the volume information flags 363 * 364 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() 365 * instead (see below). 366 * 367 * Replace the volume information flags on the volume @vol with the value 368 * supplied in @flags. Note, this overwrites the volume information flags, so 369 * make sure to combine the flags you want to modify with the old flags and use 370 * the result when calling ntfs_write_volume_flags(). 371 * 372 * Return 0 on success and -errno on error. 373 */ 374 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) 375 { 376 ntfs_inode *ni = NTFS_I(vol->vol_ino); 377 MFT_RECORD *m; 378 VOLUME_INFORMATION *vi; 379 ntfs_attr_search_ctx *ctx; 380 int err; 381 382 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", 383 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); 384 if (vol->vol_flags == flags) 385 goto done; 386 BUG_ON(!ni); 387 m = map_mft_record(ni); 388 if (IS_ERR(m)) { 389 err = PTR_ERR(m); 390 goto err_out; 391 } 392 ctx = ntfs_attr_get_search_ctx(ni, m); 393 if (!ctx) { 394 err = -ENOMEM; 395 goto put_unm_err_out; 396 } 397 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 398 ctx); 399 if (err) 400 goto put_unm_err_out; 401 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + 402 le16_to_cpu(ctx->attr->data.resident.value_offset)); 403 vol->vol_flags = vi->flags = flags; 404 flush_dcache_mft_record_page(ctx->ntfs_ino); 405 mark_mft_record_dirty(ctx->ntfs_ino); 406 ntfs_attr_put_search_ctx(ctx); 407 unmap_mft_record(ni); 408 done: 409 ntfs_debug("Done."); 410 return 0; 411 put_unm_err_out: 412 if (ctx) 413 ntfs_attr_put_search_ctx(ctx); 414 unmap_mft_record(ni); 415 err_out: 416 ntfs_error(vol->sb, "Failed with error code %i.", -err); 417 return err; 418 } 419 420 /** 421 * ntfs_set_volume_flags - set bits in the volume information flags 422 * @vol: ntfs volume on which to modify the flags 423 * @flags: flags to set on the volume 424 * 425 * Set the bits in @flags in the volume information flags on the volume @vol. 426 * 427 * Return 0 on success and -errno on error. 428 */ 429 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 430 { 431 flags &= VOLUME_FLAGS_MASK; 432 return ntfs_write_volume_flags(vol, vol->vol_flags | flags); 433 } 434 435 /** 436 * ntfs_clear_volume_flags - clear bits in the volume information flags 437 * @vol: ntfs volume on which to modify the flags 438 * @flags: flags to clear on the volume 439 * 440 * Clear the bits in @flags in the volume information flags on the volume @vol. 441 * 442 * Return 0 on success and -errno on error. 443 */ 444 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) 445 { 446 flags &= VOLUME_FLAGS_MASK; 447 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); 448 return ntfs_write_volume_flags(vol, flags); 449 } 450 451 #endif /* NTFS_RW */ 452 453 /** 454 * ntfs_remount - change the mount options of a mounted ntfs filesystem 455 * @sb: superblock of mounted ntfs filesystem 456 * @flags: remount flags 457 * @opt: remount options string 458 * 459 * Change the mount options of an already mounted ntfs filesystem. 460 * 461 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after 462 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, 463 * @sb->s_flags are not changed. 464 */ 465 static int ntfs_remount(struct super_block *sb, int *flags, char *opt) 466 { 467 ntfs_volume *vol = NTFS_SB(sb); 468 469 ntfs_debug("Entering with remount options string: %s", opt); 470 471 #ifndef NTFS_RW 472 /* For read-only compiled driver, enforce read-only flag. */ 473 *flags |= MS_RDONLY; 474 #else /* NTFS_RW */ 475 /* 476 * For the read-write compiled driver, if we are remounting read-write, 477 * make sure there are no volume errors and that no unsupported volume 478 * flags are set. Also, empty the logfile journal as it would become 479 * stale as soon as something is written to the volume and mark the 480 * volume dirty so that chkdsk is run if the volume is not umounted 481 * cleanly. Finally, mark the quotas out of date so Windows rescans 482 * the volume on boot and updates them. 483 * 484 * When remounting read-only, mark the volume clean if no volume errors 485 * have occurred. 486 */ 487 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 488 static const char *es = ". Cannot remount read-write."; 489 490 /* Remounting read-write. */ 491 if (NVolErrors(vol)) { 492 ntfs_error(sb, "Volume has errors and is read-only%s", 493 es); 494 return -EROFS; 495 } 496 if (vol->vol_flags & VOLUME_IS_DIRTY) { 497 ntfs_error(sb, "Volume is dirty and read-only%s", es); 498 return -EROFS; 499 } 500 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 501 ntfs_error(sb, "Volume has been modified by chkdsk " 502 "and is read-only%s", es); 503 return -EROFS; 504 } 505 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 506 ntfs_error(sb, "Volume has unsupported flags set " 507 "(0x%x) and is read-only%s", 508 (unsigned)le16_to_cpu(vol->vol_flags), 509 es); 510 return -EROFS; 511 } 512 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 513 ntfs_error(sb, "Failed to set dirty bit in volume " 514 "information flags%s", es); 515 return -EROFS; 516 } 517 #if 0 518 // TODO: Enable this code once we start modifying anything that 519 // is different between NTFS 1.2 and 3.x... 520 /* Set NT4 compatibility flag on newer NTFS version volumes. */ 521 if ((vol->major_ver > 1)) { 522 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 523 ntfs_error(sb, "Failed to set NT4 " 524 "compatibility flag%s", es); 525 NVolSetErrors(vol); 526 return -EROFS; 527 } 528 } 529 #endif 530 if (!ntfs_empty_logfile(vol->logfile_ino)) { 531 ntfs_error(sb, "Failed to empty journal $LogFile%s", 532 es); 533 NVolSetErrors(vol); 534 return -EROFS; 535 } 536 if (!ntfs_mark_quotas_out_of_date(vol)) { 537 ntfs_error(sb, "Failed to mark quotas out of date%s", 538 es); 539 NVolSetErrors(vol); 540 return -EROFS; 541 } 542 if (!ntfs_stamp_usnjrnl(vol)) { 543 ntfs_error(sb, "Failed to stamp transation log " 544 "($UsnJrnl)%s", es); 545 NVolSetErrors(vol); 546 return -EROFS; 547 } 548 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 549 /* Remounting read-only. */ 550 if (!NVolErrors(vol)) { 551 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 552 ntfs_warning(sb, "Failed to clear dirty bit " 553 "in volume information " 554 "flags. Run chkdsk."); 555 } 556 } 557 #endif /* NTFS_RW */ 558 559 // TODO: Deal with *flags. 560 561 if (!parse_options(vol, opt)) 562 return -EINVAL; 563 564 ntfs_debug("Done."); 565 return 0; 566 } 567 568 /** 569 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector 570 * @sb: Super block of the device to which @b belongs. 571 * @b: Boot sector of device @sb to check. 572 * @silent: If 'true', all output will be silenced. 573 * 574 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot 575 * sector. Returns 'true' if it is valid and 'false' if not. 576 * 577 * @sb is only needed for warning/error output, i.e. it can be NULL when silent 578 * is 'true'. 579 */ 580 static bool is_boot_sector_ntfs(const struct super_block *sb, 581 const NTFS_BOOT_SECTOR *b, const bool silent) 582 { 583 /* 584 * Check that checksum == sum of u32 values from b to the checksum 585 * field. If checksum is zero, no checking is done. We will work when 586 * the checksum test fails, since some utilities update the boot sector 587 * ignoring the checksum which leaves the checksum out-of-date. We 588 * report a warning if this is the case. 589 */ 590 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { 591 le32 *u; 592 u32 i; 593 594 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) 595 i += le32_to_cpup(u); 596 if (le32_to_cpu(b->checksum) != i) 597 ntfs_warning(sb, "Invalid boot sector checksum."); 598 } 599 /* Check OEMidentifier is "NTFS " */ 600 if (b->oem_id != magicNTFS) 601 goto not_ntfs; 602 /* Check bytes per sector value is between 256 and 4096. */ 603 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || 604 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) 605 goto not_ntfs; 606 /* Check sectors per cluster value is valid. */ 607 switch (b->bpb.sectors_per_cluster) { 608 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: 609 break; 610 default: 611 goto not_ntfs; 612 } 613 /* Check the cluster size is not above the maximum (64kiB). */ 614 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * 615 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) 616 goto not_ntfs; 617 /* Check reserved/unused fields are really zero. */ 618 if (le16_to_cpu(b->bpb.reserved_sectors) || 619 le16_to_cpu(b->bpb.root_entries) || 620 le16_to_cpu(b->bpb.sectors) || 621 le16_to_cpu(b->bpb.sectors_per_fat) || 622 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) 623 goto not_ntfs; 624 /* Check clusters per file mft record value is valid. */ 625 if ((u8)b->clusters_per_mft_record < 0xe1 || 626 (u8)b->clusters_per_mft_record > 0xf7) 627 switch (b->clusters_per_mft_record) { 628 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 629 break; 630 default: 631 goto not_ntfs; 632 } 633 /* Check clusters per index block value is valid. */ 634 if ((u8)b->clusters_per_index_record < 0xe1 || 635 (u8)b->clusters_per_index_record > 0xf7) 636 switch (b->clusters_per_index_record) { 637 case 1: case 2: case 4: case 8: case 16: case 32: case 64: 638 break; 639 default: 640 goto not_ntfs; 641 } 642 /* 643 * Check for valid end of sector marker. We will work without it, but 644 * many BIOSes will refuse to boot from a bootsector if the magic is 645 * incorrect, so we emit a warning. 646 */ 647 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) 648 ntfs_warning(sb, "Invalid end of sector marker."); 649 return true; 650 not_ntfs: 651 return false; 652 } 653 654 /** 655 * read_ntfs_boot_sector - read the NTFS boot sector of a device 656 * @sb: super block of device to read the boot sector from 657 * @silent: if true, suppress all output 658 * 659 * Reads the boot sector from the device and validates it. If that fails, tries 660 * to read the backup boot sector, first from the end of the device a-la NT4 and 661 * later and then from the middle of the device a-la NT3.51 and before. 662 * 663 * If a valid boot sector is found but it is not the primary boot sector, we 664 * repair the primary boot sector silently (unless the device is read-only or 665 * the primary boot sector is not accessible). 666 * 667 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super 668 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized 669 * to their respective values. 670 * 671 * Return the unlocked buffer head containing the boot sector or NULL on error. 672 */ 673 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, 674 const int silent) 675 { 676 const char *read_err_str = "Unable to read %s boot sector."; 677 struct buffer_head *bh_primary, *bh_backup; 678 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; 679 680 /* Try to read primary boot sector. */ 681 if ((bh_primary = sb_bread(sb, 0))) { 682 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 683 bh_primary->b_data, silent)) 684 return bh_primary; 685 if (!silent) 686 ntfs_error(sb, "Primary boot sector is invalid."); 687 } else if (!silent) 688 ntfs_error(sb, read_err_str, "primary"); 689 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { 690 if (bh_primary) 691 brelse(bh_primary); 692 if (!silent) 693 ntfs_error(sb, "Mount option errors=recover not used. " 694 "Aborting without trying to recover."); 695 return NULL; 696 } 697 /* Try to read NT4+ backup boot sector. */ 698 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { 699 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 700 bh_backup->b_data, silent)) 701 goto hotfix_primary_boot_sector; 702 brelse(bh_backup); 703 } else if (!silent) 704 ntfs_error(sb, read_err_str, "backup"); 705 /* Try to read NT3.51- backup boot sector. */ 706 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { 707 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) 708 bh_backup->b_data, silent)) 709 goto hotfix_primary_boot_sector; 710 if (!silent) 711 ntfs_error(sb, "Could not find a valid backup boot " 712 "sector."); 713 brelse(bh_backup); 714 } else if (!silent) 715 ntfs_error(sb, read_err_str, "backup"); 716 /* We failed. Cleanup and return. */ 717 if (bh_primary) 718 brelse(bh_primary); 719 return NULL; 720 hotfix_primary_boot_sector: 721 if (bh_primary) { 722 /* 723 * If we managed to read sector zero and the volume is not 724 * read-only, copy the found, valid backup boot sector to the 725 * primary boot sector. Note we only copy the actual boot 726 * sector structure, not the actual whole device sector as that 727 * may be bigger and would potentially damage the $Boot system 728 * file (FIXME: Would be nice to know if the backup boot sector 729 * on a large sector device contains the whole boot loader or 730 * just the first 512 bytes). 731 */ 732 if (!(sb->s_flags & MS_RDONLY)) { 733 ntfs_warning(sb, "Hot-fix: Recovering invalid primary " 734 "boot sector from backup copy."); 735 memcpy(bh_primary->b_data, bh_backup->b_data, 736 NTFS_BLOCK_SIZE); 737 mark_buffer_dirty(bh_primary); 738 sync_dirty_buffer(bh_primary); 739 if (buffer_uptodate(bh_primary)) { 740 brelse(bh_backup); 741 return bh_primary; 742 } 743 ntfs_error(sb, "Hot-fix: Device write error while " 744 "recovering primary boot sector."); 745 } else { 746 ntfs_warning(sb, "Hot-fix: Recovery of primary boot " 747 "sector failed: Read-only mount."); 748 } 749 brelse(bh_primary); 750 } 751 ntfs_warning(sb, "Using backup boot sector."); 752 return bh_backup; 753 } 754 755 /** 756 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol 757 * @vol: volume structure to initialise with data from boot sector 758 * @b: boot sector to parse 759 * 760 * Parse the ntfs boot sector @b and store all imporant information therein in 761 * the ntfs super block @vol. Return 'true' on success and 'false' on error. 762 */ 763 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) 764 { 765 unsigned int sectors_per_cluster_bits, nr_hidden_sects; 766 int clusters_per_mft_record, clusters_per_index_record; 767 s64 ll; 768 769 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); 770 vol->sector_size_bits = ffs(vol->sector_size) - 1; 771 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, 772 vol->sector_size); 773 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, 774 vol->sector_size_bits); 775 if (vol->sector_size < vol->sb->s_blocksize) { 776 ntfs_error(vol->sb, "Sector size (%i) is smaller than the " 777 "device block size (%lu). This is not " 778 "supported. Sorry.", vol->sector_size, 779 vol->sb->s_blocksize); 780 return false; 781 } 782 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); 783 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; 784 ntfs_debug("sectors_per_cluster_bits = 0x%x", 785 sectors_per_cluster_bits); 786 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); 787 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); 788 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; 789 vol->cluster_size_mask = vol->cluster_size - 1; 790 vol->cluster_size_bits = ffs(vol->cluster_size) - 1; 791 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, 792 vol->cluster_size); 793 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); 794 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); 795 if (vol->cluster_size < vol->sector_size) { 796 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " 797 "sector size (%i). This is not supported. " 798 "Sorry.", vol->cluster_size, vol->sector_size); 799 return false; 800 } 801 clusters_per_mft_record = b->clusters_per_mft_record; 802 ntfs_debug("clusters_per_mft_record = %i (0x%x)", 803 clusters_per_mft_record, clusters_per_mft_record); 804 if (clusters_per_mft_record > 0) 805 vol->mft_record_size = vol->cluster_size << 806 (ffs(clusters_per_mft_record) - 1); 807 else 808 /* 809 * When mft_record_size < cluster_size, clusters_per_mft_record 810 * = -log2(mft_record_size) bytes. mft_record_size normaly is 811 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). 812 */ 813 vol->mft_record_size = 1 << -clusters_per_mft_record; 814 vol->mft_record_size_mask = vol->mft_record_size - 1; 815 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; 816 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, 817 vol->mft_record_size); 818 ntfs_debug("vol->mft_record_size_mask = 0x%x", 819 vol->mft_record_size_mask); 820 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", 821 vol->mft_record_size_bits, vol->mft_record_size_bits); 822 /* 823 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since 824 * we store $MFT/$DATA, the table of mft records in the page cache. 825 */ 826 if (vol->mft_record_size > PAGE_CACHE_SIZE) { 827 ntfs_error(vol->sb, "Mft record size (%i) exceeds the " 828 "PAGE_CACHE_SIZE on your system (%lu). " 829 "This is not supported. Sorry.", 830 vol->mft_record_size, PAGE_CACHE_SIZE); 831 return false; 832 } 833 /* We cannot support mft record sizes below the sector size. */ 834 if (vol->mft_record_size < vol->sector_size) { 835 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " 836 "sector size (%i). This is not supported. " 837 "Sorry.", vol->mft_record_size, 838 vol->sector_size); 839 return false; 840 } 841 clusters_per_index_record = b->clusters_per_index_record; 842 ntfs_debug("clusters_per_index_record = %i (0x%x)", 843 clusters_per_index_record, clusters_per_index_record); 844 if (clusters_per_index_record > 0) 845 vol->index_record_size = vol->cluster_size << 846 (ffs(clusters_per_index_record) - 1); 847 else 848 /* 849 * When index_record_size < cluster_size, 850 * clusters_per_index_record = -log2(index_record_size) bytes. 851 * index_record_size normaly equals 4096 bytes, which is 852 * encoded as 0xF4 (-12 in decimal). 853 */ 854 vol->index_record_size = 1 << -clusters_per_index_record; 855 vol->index_record_size_mask = vol->index_record_size - 1; 856 vol->index_record_size_bits = ffs(vol->index_record_size) - 1; 857 ntfs_debug("vol->index_record_size = %i (0x%x)", 858 vol->index_record_size, vol->index_record_size); 859 ntfs_debug("vol->index_record_size_mask = 0x%x", 860 vol->index_record_size_mask); 861 ntfs_debug("vol->index_record_size_bits = %i (0x%x)", 862 vol->index_record_size_bits, 863 vol->index_record_size_bits); 864 /* We cannot support index record sizes below the sector size. */ 865 if (vol->index_record_size < vol->sector_size) { 866 ntfs_error(vol->sb, "Index record size (%i) is smaller than " 867 "the sector size (%i). This is not " 868 "supported. Sorry.", vol->index_record_size, 869 vol->sector_size); 870 return false; 871 } 872 /* 873 * Get the size of the volume in clusters and check for 64-bit-ness. 874 * Windows currently only uses 32 bits to save the clusters so we do 875 * the same as it is much faster on 32-bit CPUs. 876 */ 877 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; 878 if ((u64)ll >= 1ULL << 32) { 879 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); 880 return false; 881 } 882 vol->nr_clusters = ll; 883 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); 884 /* 885 * On an architecture where unsigned long is 32-bits, we restrict the 886 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler 887 * will hopefully optimize the whole check away. 888 */ 889 if (sizeof(unsigned long) < 8) { 890 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { 891 ntfs_error(vol->sb, "Volume size (%lluTiB) is too " 892 "large for this architecture. " 893 "Maximum supported is 2TiB. Sorry.", 894 (unsigned long long)ll >> (40 - 895 vol->cluster_size_bits)); 896 return false; 897 } 898 } 899 ll = sle64_to_cpu(b->mft_lcn); 900 if (ll >= vol->nr_clusters) { 901 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " 902 "volume. Weird.", (unsigned long long)ll, 903 (unsigned long long)ll); 904 return false; 905 } 906 vol->mft_lcn = ll; 907 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); 908 ll = sle64_to_cpu(b->mftmirr_lcn); 909 if (ll >= vol->nr_clusters) { 910 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " 911 "of volume. Weird.", (unsigned long long)ll, 912 (unsigned long long)ll); 913 return false; 914 } 915 vol->mftmirr_lcn = ll; 916 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); 917 #ifdef NTFS_RW 918 /* 919 * Work out the size of the mft mirror in number of mft records. If the 920 * cluster size is less than or equal to the size taken by four mft 921 * records, the mft mirror stores the first four mft records. If the 922 * cluster size is bigger than the size taken by four mft records, the 923 * mft mirror contains as many mft records as will fit into one 924 * cluster. 925 */ 926 if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) 927 vol->mftmirr_size = 4; 928 else 929 vol->mftmirr_size = vol->cluster_size >> 930 vol->mft_record_size_bits; 931 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); 932 #endif /* NTFS_RW */ 933 vol->serial_no = le64_to_cpu(b->volume_serial_number); 934 ntfs_debug("vol->serial_no = 0x%llx", 935 (unsigned long long)vol->serial_no); 936 return true; 937 } 938 939 /** 940 * ntfs_setup_allocators - initialize the cluster and mft allocators 941 * @vol: volume structure for which to setup the allocators 942 * 943 * Setup the cluster (lcn) and mft allocators to the starting values. 944 */ 945 static void ntfs_setup_allocators(ntfs_volume *vol) 946 { 947 #ifdef NTFS_RW 948 LCN mft_zone_size, mft_lcn; 949 #endif /* NTFS_RW */ 950 951 ntfs_debug("vol->mft_zone_multiplier = 0x%x", 952 vol->mft_zone_multiplier); 953 #ifdef NTFS_RW 954 /* Determine the size of the MFT zone. */ 955 mft_zone_size = vol->nr_clusters; 956 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ 957 case 4: 958 mft_zone_size >>= 1; /* 50% */ 959 break; 960 case 3: 961 mft_zone_size = (mft_zone_size + 962 (mft_zone_size >> 1)) >> 2; /* 37.5% */ 963 break; 964 case 2: 965 mft_zone_size >>= 2; /* 25% */ 966 break; 967 /* case 1: */ 968 default: 969 mft_zone_size >>= 3; /* 12.5% */ 970 break; 971 } 972 /* Setup the mft zone. */ 973 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; 974 ntfs_debug("vol->mft_zone_pos = 0x%llx", 975 (unsigned long long)vol->mft_zone_pos); 976 /* 977 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs 978 * source) and if the actual mft_lcn is in the expected place or even 979 * further to the front of the volume, extend the mft_zone to cover the 980 * beginning of the volume as well. This is in order to protect the 981 * area reserved for the mft bitmap as well within the mft_zone itself. 982 * On non-standard volumes we do not protect it as the overhead would 983 * be higher than the speed increase we would get by doing it. 984 */ 985 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; 986 if (mft_lcn * vol->cluster_size < 16 * 1024) 987 mft_lcn = (16 * 1024 + vol->cluster_size - 1) / 988 vol->cluster_size; 989 if (vol->mft_zone_start <= mft_lcn) 990 vol->mft_zone_start = 0; 991 ntfs_debug("vol->mft_zone_start = 0x%llx", 992 (unsigned long long)vol->mft_zone_start); 993 /* 994 * Need to cap the mft zone on non-standard volumes so that it does 995 * not point outside the boundaries of the volume. We do this by 996 * halving the zone size until we are inside the volume. 997 */ 998 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 999 while (vol->mft_zone_end >= vol->nr_clusters) { 1000 mft_zone_size >>= 1; 1001 vol->mft_zone_end = vol->mft_lcn + mft_zone_size; 1002 } 1003 ntfs_debug("vol->mft_zone_end = 0x%llx", 1004 (unsigned long long)vol->mft_zone_end); 1005 /* 1006 * Set the current position within each data zone to the start of the 1007 * respective zone. 1008 */ 1009 vol->data1_zone_pos = vol->mft_zone_end; 1010 ntfs_debug("vol->data1_zone_pos = 0x%llx", 1011 (unsigned long long)vol->data1_zone_pos); 1012 vol->data2_zone_pos = 0; 1013 ntfs_debug("vol->data2_zone_pos = 0x%llx", 1014 (unsigned long long)vol->data2_zone_pos); 1015 1016 /* Set the mft data allocation position to mft record 24. */ 1017 vol->mft_data_pos = 24; 1018 ntfs_debug("vol->mft_data_pos = 0x%llx", 1019 (unsigned long long)vol->mft_data_pos); 1020 #endif /* NTFS_RW */ 1021 } 1022 1023 #ifdef NTFS_RW 1024 1025 /** 1026 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume 1027 * @vol: ntfs super block describing device whose mft mirror to load 1028 * 1029 * Return 'true' on success or 'false' on error. 1030 */ 1031 static bool load_and_init_mft_mirror(ntfs_volume *vol) 1032 { 1033 struct inode *tmp_ino; 1034 ntfs_inode *tmp_ni; 1035 1036 ntfs_debug("Entering."); 1037 /* Get mft mirror inode. */ 1038 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); 1039 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1040 if (!IS_ERR(tmp_ino)) 1041 iput(tmp_ino); 1042 /* Caller will display error message. */ 1043 return false; 1044 } 1045 /* 1046 * Re-initialize some specifics about $MFTMirr's inode as 1047 * ntfs_read_inode() will have set up the default ones. 1048 */ 1049 /* Set uid and gid to root. */ 1050 tmp_ino->i_uid = GLOBAL_ROOT_UID; 1051 tmp_ino->i_gid = GLOBAL_ROOT_GID; 1052 /* Regular file. No access for anyone. */ 1053 tmp_ino->i_mode = S_IFREG; 1054 /* No VFS initiated operations allowed for $MFTMirr. */ 1055 tmp_ino->i_op = &ntfs_empty_inode_ops; 1056 tmp_ino->i_fop = &ntfs_empty_file_ops; 1057 /* Put in our special address space operations. */ 1058 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; 1059 tmp_ni = NTFS_I(tmp_ino); 1060 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ 1061 NInoSetMstProtected(tmp_ni); 1062 NInoSetSparseDisabled(tmp_ni); 1063 /* 1064 * Set up our little cheat allowing us to reuse the async read io 1065 * completion handler for directories. 1066 */ 1067 tmp_ni->itype.index.block_size = vol->mft_record_size; 1068 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1069 vol->mftmirr_ino = tmp_ino; 1070 ntfs_debug("Done."); 1071 return true; 1072 } 1073 1074 /** 1075 * check_mft_mirror - compare contents of the mft mirror with the mft 1076 * @vol: ntfs super block describing device whose mft mirror to check 1077 * 1078 * Return 'true' on success or 'false' on error. 1079 * 1080 * Note, this function also results in the mft mirror runlist being completely 1081 * mapped into memory. The mft mirror write code requires this and will BUG() 1082 * should it find an unmapped runlist element. 1083 */ 1084 static bool check_mft_mirror(ntfs_volume *vol) 1085 { 1086 struct super_block *sb = vol->sb; 1087 ntfs_inode *mirr_ni; 1088 struct page *mft_page, *mirr_page; 1089 u8 *kmft, *kmirr; 1090 runlist_element *rl, rl2[2]; 1091 pgoff_t index; 1092 int mrecs_per_page, i; 1093 1094 ntfs_debug("Entering."); 1095 /* Compare contents of $MFT and $MFTMirr. */ 1096 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size; 1097 BUG_ON(!mrecs_per_page); 1098 BUG_ON(!vol->mftmirr_size); 1099 mft_page = mirr_page = NULL; 1100 kmft = kmirr = NULL; 1101 index = i = 0; 1102 do { 1103 u32 bytes; 1104 1105 /* Switch pages if necessary. */ 1106 if (!(i % mrecs_per_page)) { 1107 if (index) { 1108 ntfs_unmap_page(mft_page); 1109 ntfs_unmap_page(mirr_page); 1110 } 1111 /* Get the $MFT page. */ 1112 mft_page = ntfs_map_page(vol->mft_ino->i_mapping, 1113 index); 1114 if (IS_ERR(mft_page)) { 1115 ntfs_error(sb, "Failed to read $MFT."); 1116 return false; 1117 } 1118 kmft = page_address(mft_page); 1119 /* Get the $MFTMirr page. */ 1120 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, 1121 index); 1122 if (IS_ERR(mirr_page)) { 1123 ntfs_error(sb, "Failed to read $MFTMirr."); 1124 goto mft_unmap_out; 1125 } 1126 kmirr = page_address(mirr_page); 1127 ++index; 1128 } 1129 /* Do not check the record if it is not in use. */ 1130 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { 1131 /* Make sure the record is ok. */ 1132 if (ntfs_is_baad_recordp((le32*)kmft)) { 1133 ntfs_error(sb, "Incomplete multi sector " 1134 "transfer detected in mft " 1135 "record %i.", i); 1136 mm_unmap_out: 1137 ntfs_unmap_page(mirr_page); 1138 mft_unmap_out: 1139 ntfs_unmap_page(mft_page); 1140 return false; 1141 } 1142 } 1143 /* Do not check the mirror record if it is not in use. */ 1144 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { 1145 if (ntfs_is_baad_recordp((le32*)kmirr)) { 1146 ntfs_error(sb, "Incomplete multi sector " 1147 "transfer detected in mft " 1148 "mirror record %i.", i); 1149 goto mm_unmap_out; 1150 } 1151 } 1152 /* Get the amount of data in the current record. */ 1153 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); 1154 if (bytes < sizeof(MFT_RECORD_OLD) || 1155 bytes > vol->mft_record_size || 1156 ntfs_is_baad_recordp((le32*)kmft)) { 1157 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); 1158 if (bytes < sizeof(MFT_RECORD_OLD) || 1159 bytes > vol->mft_record_size || 1160 ntfs_is_baad_recordp((le32*)kmirr)) 1161 bytes = vol->mft_record_size; 1162 } 1163 /* Compare the two records. */ 1164 if (memcmp(kmft, kmirr, bytes)) { 1165 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " 1166 "match. Run ntfsfix or chkdsk.", i); 1167 goto mm_unmap_out; 1168 } 1169 kmft += vol->mft_record_size; 1170 kmirr += vol->mft_record_size; 1171 } while (++i < vol->mftmirr_size); 1172 /* Release the last pages. */ 1173 ntfs_unmap_page(mft_page); 1174 ntfs_unmap_page(mirr_page); 1175 1176 /* Construct the mft mirror runlist by hand. */ 1177 rl2[0].vcn = 0; 1178 rl2[0].lcn = vol->mftmirr_lcn; 1179 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + 1180 vol->cluster_size - 1) / vol->cluster_size; 1181 rl2[1].vcn = rl2[0].length; 1182 rl2[1].lcn = LCN_ENOENT; 1183 rl2[1].length = 0; 1184 /* 1185 * Because we have just read all of the mft mirror, we know we have 1186 * mapped the full runlist for it. 1187 */ 1188 mirr_ni = NTFS_I(vol->mftmirr_ino); 1189 down_read(&mirr_ni->runlist.lock); 1190 rl = mirr_ni->runlist.rl; 1191 /* Compare the two runlists. They must be identical. */ 1192 i = 0; 1193 do { 1194 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || 1195 rl2[i].length != rl[i].length) { 1196 ntfs_error(sb, "$MFTMirr location mismatch. " 1197 "Run chkdsk."); 1198 up_read(&mirr_ni->runlist.lock); 1199 return false; 1200 } 1201 } while (rl2[i++].length); 1202 up_read(&mirr_ni->runlist.lock); 1203 ntfs_debug("Done."); 1204 return true; 1205 } 1206 1207 /** 1208 * load_and_check_logfile - load and check the logfile inode for a volume 1209 * @vol: ntfs super block describing device whose logfile to load 1210 * 1211 * Return 'true' on success or 'false' on error. 1212 */ 1213 static bool load_and_check_logfile(ntfs_volume *vol, 1214 RESTART_PAGE_HEADER **rp) 1215 { 1216 struct inode *tmp_ino; 1217 1218 ntfs_debug("Entering."); 1219 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); 1220 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1221 if (!IS_ERR(tmp_ino)) 1222 iput(tmp_ino); 1223 /* Caller will display error message. */ 1224 return false; 1225 } 1226 if (!ntfs_check_logfile(tmp_ino, rp)) { 1227 iput(tmp_ino); 1228 /* ntfs_check_logfile() will have displayed error output. */ 1229 return false; 1230 } 1231 NInoSetSparseDisabled(NTFS_I(tmp_ino)); 1232 vol->logfile_ino = tmp_ino; 1233 ntfs_debug("Done."); 1234 return true; 1235 } 1236 1237 #define NTFS_HIBERFIL_HEADER_SIZE 4096 1238 1239 /** 1240 * check_windows_hibernation_status - check if Windows is suspended on a volume 1241 * @vol: ntfs super block of device to check 1242 * 1243 * Check if Windows is hibernated on the ntfs volume @vol. This is done by 1244 * looking for the file hiberfil.sys in the root directory of the volume. If 1245 * the file is not present Windows is definitely not suspended. 1246 * 1247 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is 1248 * definitely suspended (this volume is not the system volume). Caveat: on a 1249 * system with many volumes it is possible that the < 4kiB check is bogus but 1250 * for now this should do fine. 1251 * 1252 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the 1253 * hiberfil header (which is the first 4kiB). If this begins with "hibr", 1254 * Windows is definitely suspended. If it is completely full of zeroes, 1255 * Windows is definitely not hibernated. Any other case is treated as if 1256 * Windows is suspended. This caters for the above mentioned caveat of a 1257 * system with many volumes where no "hibr" magic would be present and there is 1258 * no zero header. 1259 * 1260 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is 1261 * hibernated on the volume, and -errno on error. 1262 */ 1263 static int check_windows_hibernation_status(ntfs_volume *vol) 1264 { 1265 MFT_REF mref; 1266 struct inode *vi; 1267 struct page *page; 1268 u32 *kaddr, *kend; 1269 ntfs_name *name = NULL; 1270 int ret = 1; 1271 static const ntfschar hiberfil[13] = { cpu_to_le16('h'), 1272 cpu_to_le16('i'), cpu_to_le16('b'), 1273 cpu_to_le16('e'), cpu_to_le16('r'), 1274 cpu_to_le16('f'), cpu_to_le16('i'), 1275 cpu_to_le16('l'), cpu_to_le16('.'), 1276 cpu_to_le16('s'), cpu_to_le16('y'), 1277 cpu_to_le16('s'), 0 }; 1278 1279 ntfs_debug("Entering."); 1280 /* 1281 * Find the inode number for the hibernation file by looking up the 1282 * filename hiberfil.sys in the root directory. 1283 */ 1284 mutex_lock(&vol->root_ino->i_mutex); 1285 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, 1286 &name); 1287 mutex_unlock(&vol->root_ino->i_mutex); 1288 if (IS_ERR_MREF(mref)) { 1289 ret = MREF_ERR(mref); 1290 /* If the file does not exist, Windows is not hibernated. */ 1291 if (ret == -ENOENT) { 1292 ntfs_debug("hiberfil.sys not present. Windows is not " 1293 "hibernated on the volume."); 1294 return 0; 1295 } 1296 /* A real error occurred. */ 1297 ntfs_error(vol->sb, "Failed to find inode number for " 1298 "hiberfil.sys."); 1299 return ret; 1300 } 1301 /* We do not care for the type of match that was found. */ 1302 kfree(name); 1303 /* Get the inode. */ 1304 vi = ntfs_iget(vol->sb, MREF(mref)); 1305 if (IS_ERR(vi) || is_bad_inode(vi)) { 1306 if (!IS_ERR(vi)) 1307 iput(vi); 1308 ntfs_error(vol->sb, "Failed to load hiberfil.sys."); 1309 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; 1310 } 1311 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { 1312 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " 1313 "Windows is hibernated on the volume. This " 1314 "is not the system volume.", i_size_read(vi)); 1315 goto iput_out; 1316 } 1317 page = ntfs_map_page(vi->i_mapping, 0); 1318 if (IS_ERR(page)) { 1319 ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); 1320 ret = PTR_ERR(page); 1321 goto iput_out; 1322 } 1323 kaddr = (u32*)page_address(page); 1324 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { 1325 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " 1326 "hibernated on the volume. This is the " 1327 "system volume."); 1328 goto unm_iput_out; 1329 } 1330 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); 1331 do { 1332 if (unlikely(*kaddr)) { 1333 ntfs_debug("hiberfil.sys is larger than 4kiB " 1334 "(0x%llx), does not contain the " 1335 "\"hibr\" magic, and does not have a " 1336 "zero header. Windows is hibernated " 1337 "on the volume. This is not the " 1338 "system volume.", i_size_read(vi)); 1339 goto unm_iput_out; 1340 } 1341 } while (++kaddr < kend); 1342 ntfs_debug("hiberfil.sys contains a zero header. Windows is not " 1343 "hibernated on the volume. This is the system " 1344 "volume."); 1345 ret = 0; 1346 unm_iput_out: 1347 ntfs_unmap_page(page); 1348 iput_out: 1349 iput(vi); 1350 return ret; 1351 } 1352 1353 /** 1354 * load_and_init_quota - load and setup the quota file for a volume if present 1355 * @vol: ntfs super block describing device whose quota file to load 1356 * 1357 * Return 'true' on success or 'false' on error. If $Quota is not present, we 1358 * leave vol->quota_ino as NULL and return success. 1359 */ 1360 static bool load_and_init_quota(ntfs_volume *vol) 1361 { 1362 MFT_REF mref; 1363 struct inode *tmp_ino; 1364 ntfs_name *name = NULL; 1365 static const ntfschar Quota[7] = { cpu_to_le16('$'), 1366 cpu_to_le16('Q'), cpu_to_le16('u'), 1367 cpu_to_le16('o'), cpu_to_le16('t'), 1368 cpu_to_le16('a'), 0 }; 1369 static ntfschar Q[3] = { cpu_to_le16('$'), 1370 cpu_to_le16('Q'), 0 }; 1371 1372 ntfs_debug("Entering."); 1373 /* 1374 * Find the inode number for the quota file by looking up the filename 1375 * $Quota in the extended system files directory $Extend. 1376 */ 1377 mutex_lock(&vol->extend_ino->i_mutex); 1378 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, 1379 &name); 1380 mutex_unlock(&vol->extend_ino->i_mutex); 1381 if (IS_ERR_MREF(mref)) { 1382 /* 1383 * If the file does not exist, quotas are disabled and have 1384 * never been enabled on this volume, just return success. 1385 */ 1386 if (MREF_ERR(mref) == -ENOENT) { 1387 ntfs_debug("$Quota not present. Volume does not have " 1388 "quotas enabled."); 1389 /* 1390 * No need to try to set quotas out of date if they are 1391 * not enabled. 1392 */ 1393 NVolSetQuotaOutOfDate(vol); 1394 return true; 1395 } 1396 /* A real error occurred. */ 1397 ntfs_error(vol->sb, "Failed to find inode number for $Quota."); 1398 return false; 1399 } 1400 /* We do not care for the type of match that was found. */ 1401 kfree(name); 1402 /* Get the inode. */ 1403 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1404 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { 1405 if (!IS_ERR(tmp_ino)) 1406 iput(tmp_ino); 1407 ntfs_error(vol->sb, "Failed to load $Quota."); 1408 return false; 1409 } 1410 vol->quota_ino = tmp_ino; 1411 /* Get the $Q index allocation attribute. */ 1412 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); 1413 if (IS_ERR(tmp_ino)) { 1414 ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); 1415 return false; 1416 } 1417 vol->quota_q_ino = tmp_ino; 1418 ntfs_debug("Done."); 1419 return true; 1420 } 1421 1422 /** 1423 * load_and_init_usnjrnl - load and setup the transaction log if present 1424 * @vol: ntfs super block describing device whose usnjrnl file to load 1425 * 1426 * Return 'true' on success or 'false' on error. 1427 * 1428 * If $UsnJrnl is not present or in the process of being disabled, we set 1429 * NVolUsnJrnlStamped() and return success. 1430 * 1431 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, 1432 * i.e. transaction logging has only just been enabled or the journal has been 1433 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() 1434 * and return success. 1435 */ 1436 static bool load_and_init_usnjrnl(ntfs_volume *vol) 1437 { 1438 MFT_REF mref; 1439 struct inode *tmp_ino; 1440 ntfs_inode *tmp_ni; 1441 struct page *page; 1442 ntfs_name *name = NULL; 1443 USN_HEADER *uh; 1444 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), 1445 cpu_to_le16('U'), cpu_to_le16('s'), 1446 cpu_to_le16('n'), cpu_to_le16('J'), 1447 cpu_to_le16('r'), cpu_to_le16('n'), 1448 cpu_to_le16('l'), 0 }; 1449 static ntfschar Max[5] = { cpu_to_le16('$'), 1450 cpu_to_le16('M'), cpu_to_le16('a'), 1451 cpu_to_le16('x'), 0 }; 1452 static ntfschar J[3] = { cpu_to_le16('$'), 1453 cpu_to_le16('J'), 0 }; 1454 1455 ntfs_debug("Entering."); 1456 /* 1457 * Find the inode number for the transaction log file by looking up the 1458 * filename $UsnJrnl in the extended system files directory $Extend. 1459 */ 1460 mutex_lock(&vol->extend_ino->i_mutex); 1461 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, 1462 &name); 1463 mutex_unlock(&vol->extend_ino->i_mutex); 1464 if (IS_ERR_MREF(mref)) { 1465 /* 1466 * If the file does not exist, transaction logging is disabled, 1467 * just return success. 1468 */ 1469 if (MREF_ERR(mref) == -ENOENT) { 1470 ntfs_debug("$UsnJrnl not present. Volume does not " 1471 "have transaction logging enabled."); 1472 not_enabled: 1473 /* 1474 * No need to try to stamp the transaction log if 1475 * transaction logging is not enabled. 1476 */ 1477 NVolSetUsnJrnlStamped(vol); 1478 return true; 1479 } 1480 /* A real error occurred. */ 1481 ntfs_error(vol->sb, "Failed to find inode number for " 1482 "$UsnJrnl."); 1483 return false; 1484 } 1485 /* We do not care for the type of match that was found. */ 1486 kfree(name); 1487 /* Get the inode. */ 1488 tmp_ino = ntfs_iget(vol->sb, MREF(mref)); 1489 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) { 1490 if (!IS_ERR(tmp_ino)) 1491 iput(tmp_ino); 1492 ntfs_error(vol->sb, "Failed to load $UsnJrnl."); 1493 return false; 1494 } 1495 vol->usnjrnl_ino = tmp_ino; 1496 /* 1497 * If the transaction log is in the process of being deleted, we can 1498 * ignore it. 1499 */ 1500 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { 1501 ntfs_debug("$UsnJrnl in the process of being disabled. " 1502 "Volume does not have transaction logging " 1503 "enabled."); 1504 goto not_enabled; 1505 } 1506 /* Get the $DATA/$Max attribute. */ 1507 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); 1508 if (IS_ERR(tmp_ino)) { 1509 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " 1510 "attribute."); 1511 return false; 1512 } 1513 vol->usnjrnl_max_ino = tmp_ino; 1514 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { 1515 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " 1516 "attribute (size is 0x%llx but should be at " 1517 "least 0x%zx bytes).", i_size_read(tmp_ino), 1518 sizeof(USN_HEADER)); 1519 return false; 1520 } 1521 /* Get the $DATA/$J attribute. */ 1522 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); 1523 if (IS_ERR(tmp_ino)) { 1524 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " 1525 "attribute."); 1526 return false; 1527 } 1528 vol->usnjrnl_j_ino = tmp_ino; 1529 /* Verify $J is non-resident and sparse. */ 1530 tmp_ni = NTFS_I(vol->usnjrnl_j_ino); 1531 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { 1532 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " 1533 "and/or not sparse."); 1534 return false; 1535 } 1536 /* Read the USN_HEADER from $DATA/$Max. */ 1537 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); 1538 if (IS_ERR(page)) { 1539 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " 1540 "attribute."); 1541 return false; 1542 } 1543 uh = (USN_HEADER*)page_address(page); 1544 /* Sanity check the $Max. */ 1545 if (unlikely(sle64_to_cpu(uh->allocation_delta) > 1546 sle64_to_cpu(uh->maximum_size))) { 1547 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " 1548 "maximum size (0x%llx). $UsnJrnl is corrupt.", 1549 (long long)sle64_to_cpu(uh->allocation_delta), 1550 (long long)sle64_to_cpu(uh->maximum_size)); 1551 ntfs_unmap_page(page); 1552 return false; 1553 } 1554 /* 1555 * If the transaction log has been stamped and nothing has been written 1556 * to it since, we do not need to stamp it. 1557 */ 1558 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= 1559 i_size_read(vol->usnjrnl_j_ino))) { 1560 if (likely(sle64_to_cpu(uh->lowest_valid_usn) == 1561 i_size_read(vol->usnjrnl_j_ino))) { 1562 ntfs_unmap_page(page); 1563 ntfs_debug("$UsnJrnl is enabled but nothing has been " 1564 "logged since it was last stamped. " 1565 "Treating this as if the volume does " 1566 "not have transaction logging " 1567 "enabled."); 1568 goto not_enabled; 1569 } 1570 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " 1571 "which is out of bounds (0x%llx). $UsnJrnl " 1572 "is corrupt.", 1573 (long long)sle64_to_cpu(uh->lowest_valid_usn), 1574 i_size_read(vol->usnjrnl_j_ino)); 1575 ntfs_unmap_page(page); 1576 return false; 1577 } 1578 ntfs_unmap_page(page); 1579 ntfs_debug("Done."); 1580 return true; 1581 } 1582 1583 /** 1584 * load_and_init_attrdef - load the attribute definitions table for a volume 1585 * @vol: ntfs super block describing device whose attrdef to load 1586 * 1587 * Return 'true' on success or 'false' on error. 1588 */ 1589 static bool load_and_init_attrdef(ntfs_volume *vol) 1590 { 1591 loff_t i_size; 1592 struct super_block *sb = vol->sb; 1593 struct inode *ino; 1594 struct page *page; 1595 pgoff_t index, max_index; 1596 unsigned int size; 1597 1598 ntfs_debug("Entering."); 1599 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ 1600 ino = ntfs_iget(sb, FILE_AttrDef); 1601 if (IS_ERR(ino) || is_bad_inode(ino)) { 1602 if (!IS_ERR(ino)) 1603 iput(ino); 1604 goto failed; 1605 } 1606 NInoSetSparseDisabled(NTFS_I(ino)); 1607 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ 1608 i_size = i_size_read(ino); 1609 if (i_size <= 0 || i_size > 0x7fffffff) 1610 goto iput_failed; 1611 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); 1612 if (!vol->attrdef) 1613 goto iput_failed; 1614 index = 0; 1615 max_index = i_size >> PAGE_CACHE_SHIFT; 1616 size = PAGE_CACHE_SIZE; 1617 while (index < max_index) { 1618 /* Read the attrdef table and copy it into the linear buffer. */ 1619 read_partial_attrdef_page: 1620 page = ntfs_map_page(ino->i_mapping, index); 1621 if (IS_ERR(page)) 1622 goto free_iput_failed; 1623 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT), 1624 page_address(page), size); 1625 ntfs_unmap_page(page); 1626 }; 1627 if (size == PAGE_CACHE_SIZE) { 1628 size = i_size & ~PAGE_CACHE_MASK; 1629 if (size) 1630 goto read_partial_attrdef_page; 1631 } 1632 vol->attrdef_size = i_size; 1633 ntfs_debug("Read %llu bytes from $AttrDef.", i_size); 1634 iput(ino); 1635 return true; 1636 free_iput_failed: 1637 ntfs_free(vol->attrdef); 1638 vol->attrdef = NULL; 1639 iput_failed: 1640 iput(ino); 1641 failed: 1642 ntfs_error(sb, "Failed to initialize attribute definition table."); 1643 return false; 1644 } 1645 1646 #endif /* NTFS_RW */ 1647 1648 /** 1649 * load_and_init_upcase - load the upcase table for an ntfs volume 1650 * @vol: ntfs super block describing device whose upcase to load 1651 * 1652 * Return 'true' on success or 'false' on error. 1653 */ 1654 static bool load_and_init_upcase(ntfs_volume *vol) 1655 { 1656 loff_t i_size; 1657 struct super_block *sb = vol->sb; 1658 struct inode *ino; 1659 struct page *page; 1660 pgoff_t index, max_index; 1661 unsigned int size; 1662 int i, max; 1663 1664 ntfs_debug("Entering."); 1665 /* Read upcase table and setup vol->upcase and vol->upcase_len. */ 1666 ino = ntfs_iget(sb, FILE_UpCase); 1667 if (IS_ERR(ino) || is_bad_inode(ino)) { 1668 if (!IS_ERR(ino)) 1669 iput(ino); 1670 goto upcase_failed; 1671 } 1672 /* 1673 * The upcase size must not be above 64k Unicode characters, must not 1674 * be zero and must be a multiple of sizeof(ntfschar). 1675 */ 1676 i_size = i_size_read(ino); 1677 if (!i_size || i_size & (sizeof(ntfschar) - 1) || 1678 i_size > 64ULL * 1024 * sizeof(ntfschar)) 1679 goto iput_upcase_failed; 1680 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); 1681 if (!vol->upcase) 1682 goto iput_upcase_failed; 1683 index = 0; 1684 max_index = i_size >> PAGE_CACHE_SHIFT; 1685 size = PAGE_CACHE_SIZE; 1686 while (index < max_index) { 1687 /* Read the upcase table and copy it into the linear buffer. */ 1688 read_partial_upcase_page: 1689 page = ntfs_map_page(ino->i_mapping, index); 1690 if (IS_ERR(page)) 1691 goto iput_upcase_failed; 1692 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT), 1693 page_address(page), size); 1694 ntfs_unmap_page(page); 1695 }; 1696 if (size == PAGE_CACHE_SIZE) { 1697 size = i_size & ~PAGE_CACHE_MASK; 1698 if (size) 1699 goto read_partial_upcase_page; 1700 } 1701 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; 1702 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", 1703 i_size, 64 * 1024 * sizeof(ntfschar)); 1704 iput(ino); 1705 mutex_lock(&ntfs_lock); 1706 if (!default_upcase) { 1707 ntfs_debug("Using volume specified $UpCase since default is " 1708 "not present."); 1709 mutex_unlock(&ntfs_lock); 1710 return true; 1711 } 1712 max = default_upcase_len; 1713 if (max > vol->upcase_len) 1714 max = vol->upcase_len; 1715 for (i = 0; i < max; i++) 1716 if (vol->upcase[i] != default_upcase[i]) 1717 break; 1718 if (i == max) { 1719 ntfs_free(vol->upcase); 1720 vol->upcase = default_upcase; 1721 vol->upcase_len = max; 1722 ntfs_nr_upcase_users++; 1723 mutex_unlock(&ntfs_lock); 1724 ntfs_debug("Volume specified $UpCase matches default. Using " 1725 "default."); 1726 return true; 1727 } 1728 mutex_unlock(&ntfs_lock); 1729 ntfs_debug("Using volume specified $UpCase since it does not match " 1730 "the default."); 1731 return true; 1732 iput_upcase_failed: 1733 iput(ino); 1734 ntfs_free(vol->upcase); 1735 vol->upcase = NULL; 1736 upcase_failed: 1737 mutex_lock(&ntfs_lock); 1738 if (default_upcase) { 1739 vol->upcase = default_upcase; 1740 vol->upcase_len = default_upcase_len; 1741 ntfs_nr_upcase_users++; 1742 mutex_unlock(&ntfs_lock); 1743 ntfs_error(sb, "Failed to load $UpCase from the volume. Using " 1744 "default."); 1745 return true; 1746 } 1747 mutex_unlock(&ntfs_lock); 1748 ntfs_error(sb, "Failed to initialize upcase table."); 1749 return false; 1750 } 1751 1752 /* 1753 * The lcn and mft bitmap inodes are NTFS-internal inodes with 1754 * their own special locking rules: 1755 */ 1756 static struct lock_class_key 1757 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, 1758 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; 1759 1760 /** 1761 * load_system_files - open the system files using normal functions 1762 * @vol: ntfs super block describing device whose system files to load 1763 * 1764 * Open the system files with normal access functions and complete setting up 1765 * the ntfs super block @vol. 1766 * 1767 * Return 'true' on success or 'false' on error. 1768 */ 1769 static bool load_system_files(ntfs_volume *vol) 1770 { 1771 struct super_block *sb = vol->sb; 1772 MFT_RECORD *m; 1773 VOLUME_INFORMATION *vi; 1774 ntfs_attr_search_ctx *ctx; 1775 #ifdef NTFS_RW 1776 RESTART_PAGE_HEADER *rp; 1777 int err; 1778 #endif /* NTFS_RW */ 1779 1780 ntfs_debug("Entering."); 1781 #ifdef NTFS_RW 1782 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ 1783 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { 1784 static const char *es1 = "Failed to load $MFTMirr"; 1785 static const char *es2 = "$MFTMirr does not match $MFT"; 1786 static const char *es3 = ". Run ntfsfix and/or chkdsk."; 1787 1788 /* If a read-write mount, convert it to a read-only mount. */ 1789 if (!(sb->s_flags & MS_RDONLY)) { 1790 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1791 ON_ERRORS_CONTINUE))) { 1792 ntfs_error(sb, "%s and neither on_errors=" 1793 "continue nor on_errors=" 1794 "remount-ro was specified%s", 1795 !vol->mftmirr_ino ? es1 : es2, 1796 es3); 1797 goto iput_mirr_err_out; 1798 } 1799 sb->s_flags |= MS_RDONLY; 1800 ntfs_error(sb, "%s. Mounting read-only%s", 1801 !vol->mftmirr_ino ? es1 : es2, es3); 1802 } else 1803 ntfs_warning(sb, "%s. Will not be able to remount " 1804 "read-write%s", 1805 !vol->mftmirr_ino ? es1 : es2, es3); 1806 /* This will prevent a read-write remount. */ 1807 NVolSetErrors(vol); 1808 } 1809 #endif /* NTFS_RW */ 1810 /* Get mft bitmap attribute inode. */ 1811 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); 1812 if (IS_ERR(vol->mftbmp_ino)) { 1813 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); 1814 goto iput_mirr_err_out; 1815 } 1816 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, 1817 &mftbmp_runlist_lock_key); 1818 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, 1819 &mftbmp_mrec_lock_key); 1820 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ 1821 if (!load_and_init_upcase(vol)) 1822 goto iput_mftbmp_err_out; 1823 #ifdef NTFS_RW 1824 /* 1825 * Read attribute definitions table and setup @vol->attrdef and 1826 * @vol->attrdef_size. 1827 */ 1828 if (!load_and_init_attrdef(vol)) 1829 goto iput_upcase_err_out; 1830 #endif /* NTFS_RW */ 1831 /* 1832 * Get the cluster allocation bitmap inode and verify the size, no 1833 * need for any locking at this stage as we are already running 1834 * exclusively as we are mount in progress task. 1835 */ 1836 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); 1837 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { 1838 if (!IS_ERR(vol->lcnbmp_ino)) 1839 iput(vol->lcnbmp_ino); 1840 goto bitmap_failed; 1841 } 1842 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, 1843 &lcnbmp_runlist_lock_key); 1844 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, 1845 &lcnbmp_mrec_lock_key); 1846 1847 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); 1848 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { 1849 iput(vol->lcnbmp_ino); 1850 bitmap_failed: 1851 ntfs_error(sb, "Failed to load $Bitmap."); 1852 goto iput_attrdef_err_out; 1853 } 1854 /* 1855 * Get the volume inode and setup our cache of the volume flags and 1856 * version. 1857 */ 1858 vol->vol_ino = ntfs_iget(sb, FILE_Volume); 1859 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { 1860 if (!IS_ERR(vol->vol_ino)) 1861 iput(vol->vol_ino); 1862 volume_failed: 1863 ntfs_error(sb, "Failed to load $Volume."); 1864 goto iput_lcnbmp_err_out; 1865 } 1866 m = map_mft_record(NTFS_I(vol->vol_ino)); 1867 if (IS_ERR(m)) { 1868 iput_volume_failed: 1869 iput(vol->vol_ino); 1870 goto volume_failed; 1871 } 1872 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { 1873 ntfs_error(sb, "Failed to get attribute search context."); 1874 goto get_ctx_vol_failed; 1875 } 1876 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, 1877 ctx) || ctx->attr->non_resident || ctx->attr->flags) { 1878 err_put_vol: 1879 ntfs_attr_put_search_ctx(ctx); 1880 get_ctx_vol_failed: 1881 unmap_mft_record(NTFS_I(vol->vol_ino)); 1882 goto iput_volume_failed; 1883 } 1884 vi = (VOLUME_INFORMATION*)((char*)ctx->attr + 1885 le16_to_cpu(ctx->attr->data.resident.value_offset)); 1886 /* Some bounds checks. */ 1887 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + 1888 le32_to_cpu(ctx->attr->data.resident.value_length) > 1889 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) 1890 goto err_put_vol; 1891 /* Copy the volume flags and version to the ntfs_volume structure. */ 1892 vol->vol_flags = vi->flags; 1893 vol->major_ver = vi->major_ver; 1894 vol->minor_ver = vi->minor_ver; 1895 ntfs_attr_put_search_ctx(ctx); 1896 unmap_mft_record(NTFS_I(vol->vol_ino)); 1897 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver, 1898 vol->minor_ver); 1899 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { 1900 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " 1901 "volume version %i.%i (need at least version " 1902 "3.0).", vol->major_ver, vol->minor_ver); 1903 NVolClearSparseEnabled(vol); 1904 } 1905 #ifdef NTFS_RW 1906 /* Make sure that no unsupported volume flags are set. */ 1907 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { 1908 static const char *es1a = "Volume is dirty"; 1909 static const char *es1b = "Volume has been modified by chkdsk"; 1910 static const char *es1c = "Volume has unsupported flags set"; 1911 static const char *es2a = ". Run chkdsk and mount in Windows."; 1912 static const char *es2b = ". Mount in Windows."; 1913 const char *es1, *es2; 1914 1915 es2 = es2a; 1916 if (vol->vol_flags & VOLUME_IS_DIRTY) 1917 es1 = es1a; 1918 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { 1919 es1 = es1b; 1920 es2 = es2b; 1921 } else { 1922 es1 = es1c; 1923 ntfs_warning(sb, "Unsupported volume flags 0x%x " 1924 "encountered.", 1925 (unsigned)le16_to_cpu(vol->vol_flags)); 1926 } 1927 /* If a read-write mount, convert it to a read-only mount. */ 1928 if (!(sb->s_flags & MS_RDONLY)) { 1929 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1930 ON_ERRORS_CONTINUE))) { 1931 ntfs_error(sb, "%s and neither on_errors=" 1932 "continue nor on_errors=" 1933 "remount-ro was specified%s", 1934 es1, es2); 1935 goto iput_vol_err_out; 1936 } 1937 sb->s_flags |= MS_RDONLY; 1938 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1939 } else 1940 ntfs_warning(sb, "%s. Will not be able to remount " 1941 "read-write%s", es1, es2); 1942 /* 1943 * Do not set NVolErrors() because ntfs_remount() re-checks the 1944 * flags which we need to do in case any flags have changed. 1945 */ 1946 } 1947 /* 1948 * Get the inode for the logfile, check it and determine if the volume 1949 * was shutdown cleanly. 1950 */ 1951 rp = NULL; 1952 if (!load_and_check_logfile(vol, &rp) || 1953 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { 1954 static const char *es1a = "Failed to load $LogFile"; 1955 static const char *es1b = "$LogFile is not clean"; 1956 static const char *es2 = ". Mount in Windows."; 1957 const char *es1; 1958 1959 es1 = !vol->logfile_ino ? es1a : es1b; 1960 /* If a read-write mount, convert it to a read-only mount. */ 1961 if (!(sb->s_flags & MS_RDONLY)) { 1962 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 1963 ON_ERRORS_CONTINUE))) { 1964 ntfs_error(sb, "%s and neither on_errors=" 1965 "continue nor on_errors=" 1966 "remount-ro was specified%s", 1967 es1, es2); 1968 if (vol->logfile_ino) { 1969 BUG_ON(!rp); 1970 ntfs_free(rp); 1971 } 1972 goto iput_logfile_err_out; 1973 } 1974 sb->s_flags |= MS_RDONLY; 1975 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 1976 } else 1977 ntfs_warning(sb, "%s. Will not be able to remount " 1978 "read-write%s", es1, es2); 1979 /* This will prevent a read-write remount. */ 1980 NVolSetErrors(vol); 1981 } 1982 ntfs_free(rp); 1983 #endif /* NTFS_RW */ 1984 /* Get the root directory inode so we can do path lookups. */ 1985 vol->root_ino = ntfs_iget(sb, FILE_root); 1986 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { 1987 if (!IS_ERR(vol->root_ino)) 1988 iput(vol->root_ino); 1989 ntfs_error(sb, "Failed to load root directory."); 1990 goto iput_logfile_err_out; 1991 } 1992 #ifdef NTFS_RW 1993 /* 1994 * Check if Windows is suspended to disk on the target volume. If it 1995 * is hibernated, we must not write *anything* to the disk so set 1996 * NVolErrors() without setting the dirty volume flag and mount 1997 * read-only. This will prevent read-write remounting and it will also 1998 * prevent all writes. 1999 */ 2000 err = check_windows_hibernation_status(vol); 2001 if (unlikely(err)) { 2002 static const char *es1a = "Failed to determine if Windows is " 2003 "hibernated"; 2004 static const char *es1b = "Windows is hibernated"; 2005 static const char *es2 = ". Run chkdsk."; 2006 const char *es1; 2007 2008 es1 = err < 0 ? es1a : es1b; 2009 /* If a read-write mount, convert it to a read-only mount. */ 2010 if (!(sb->s_flags & MS_RDONLY)) { 2011 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2012 ON_ERRORS_CONTINUE))) { 2013 ntfs_error(sb, "%s and neither on_errors=" 2014 "continue nor on_errors=" 2015 "remount-ro was specified%s", 2016 es1, es2); 2017 goto iput_root_err_out; 2018 } 2019 sb->s_flags |= MS_RDONLY; 2020 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2021 } else 2022 ntfs_warning(sb, "%s. Will not be able to remount " 2023 "read-write%s", es1, es2); 2024 /* This will prevent a read-write remount. */ 2025 NVolSetErrors(vol); 2026 } 2027 /* If (still) a read-write mount, mark the volume dirty. */ 2028 if (!(sb->s_flags & MS_RDONLY) && 2029 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { 2030 static const char *es1 = "Failed to set dirty bit in volume " 2031 "information flags"; 2032 static const char *es2 = ". Run chkdsk."; 2033 2034 /* Convert to a read-only mount. */ 2035 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2036 ON_ERRORS_CONTINUE))) { 2037 ntfs_error(sb, "%s and neither on_errors=continue nor " 2038 "on_errors=remount-ro was specified%s", 2039 es1, es2); 2040 goto iput_root_err_out; 2041 } 2042 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2043 sb->s_flags |= MS_RDONLY; 2044 /* 2045 * Do not set NVolErrors() because ntfs_remount() might manage 2046 * to set the dirty flag in which case all would be well. 2047 */ 2048 } 2049 #if 0 2050 // TODO: Enable this code once we start modifying anything that is 2051 // different between NTFS 1.2 and 3.x... 2052 /* 2053 * If (still) a read-write mount, set the NT4 compatibility flag on 2054 * newer NTFS version volumes. 2055 */ 2056 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) && 2057 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { 2058 static const char *es1 = "Failed to set NT4 compatibility flag"; 2059 static const char *es2 = ". Run chkdsk."; 2060 2061 /* Convert to a read-only mount. */ 2062 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2063 ON_ERRORS_CONTINUE))) { 2064 ntfs_error(sb, "%s and neither on_errors=continue nor " 2065 "on_errors=remount-ro was specified%s", 2066 es1, es2); 2067 goto iput_root_err_out; 2068 } 2069 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2070 sb->s_flags |= MS_RDONLY; 2071 NVolSetErrors(vol); 2072 } 2073 #endif 2074 /* If (still) a read-write mount, empty the logfile. */ 2075 if (!(sb->s_flags & MS_RDONLY) && 2076 !ntfs_empty_logfile(vol->logfile_ino)) { 2077 static const char *es1 = "Failed to empty $LogFile"; 2078 static const char *es2 = ". Mount in Windows."; 2079 2080 /* Convert to a read-only mount. */ 2081 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2082 ON_ERRORS_CONTINUE))) { 2083 ntfs_error(sb, "%s and neither on_errors=continue nor " 2084 "on_errors=remount-ro was specified%s", 2085 es1, es2); 2086 goto iput_root_err_out; 2087 } 2088 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2089 sb->s_flags |= MS_RDONLY; 2090 NVolSetErrors(vol); 2091 } 2092 #endif /* NTFS_RW */ 2093 /* If on NTFS versions before 3.0, we are done. */ 2094 if (unlikely(vol->major_ver < 3)) 2095 return true; 2096 /* NTFS 3.0+ specific initialization. */ 2097 /* Get the security descriptors inode. */ 2098 vol->secure_ino = ntfs_iget(sb, FILE_Secure); 2099 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { 2100 if (!IS_ERR(vol->secure_ino)) 2101 iput(vol->secure_ino); 2102 ntfs_error(sb, "Failed to load $Secure."); 2103 goto iput_root_err_out; 2104 } 2105 // TODO: Initialize security. 2106 /* Get the extended system files' directory inode. */ 2107 vol->extend_ino = ntfs_iget(sb, FILE_Extend); 2108 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { 2109 if (!IS_ERR(vol->extend_ino)) 2110 iput(vol->extend_ino); 2111 ntfs_error(sb, "Failed to load $Extend."); 2112 goto iput_sec_err_out; 2113 } 2114 #ifdef NTFS_RW 2115 /* Find the quota file, load it if present, and set it up. */ 2116 if (!load_and_init_quota(vol)) { 2117 static const char *es1 = "Failed to load $Quota"; 2118 static const char *es2 = ". Run chkdsk."; 2119 2120 /* If a read-write mount, convert it to a read-only mount. */ 2121 if (!(sb->s_flags & MS_RDONLY)) { 2122 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2123 ON_ERRORS_CONTINUE))) { 2124 ntfs_error(sb, "%s and neither on_errors=" 2125 "continue nor on_errors=" 2126 "remount-ro was specified%s", 2127 es1, es2); 2128 goto iput_quota_err_out; 2129 } 2130 sb->s_flags |= MS_RDONLY; 2131 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2132 } else 2133 ntfs_warning(sb, "%s. Will not be able to remount " 2134 "read-write%s", es1, es2); 2135 /* This will prevent a read-write remount. */ 2136 NVolSetErrors(vol); 2137 } 2138 /* If (still) a read-write mount, mark the quotas out of date. */ 2139 if (!(sb->s_flags & MS_RDONLY) && 2140 !ntfs_mark_quotas_out_of_date(vol)) { 2141 static const char *es1 = "Failed to mark quotas out of date"; 2142 static const char *es2 = ". Run chkdsk."; 2143 2144 /* Convert to a read-only mount. */ 2145 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2146 ON_ERRORS_CONTINUE))) { 2147 ntfs_error(sb, "%s and neither on_errors=continue nor " 2148 "on_errors=remount-ro was specified%s", 2149 es1, es2); 2150 goto iput_quota_err_out; 2151 } 2152 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2153 sb->s_flags |= MS_RDONLY; 2154 NVolSetErrors(vol); 2155 } 2156 /* 2157 * Find the transaction log file ($UsnJrnl), load it if present, check 2158 * it, and set it up. 2159 */ 2160 if (!load_and_init_usnjrnl(vol)) { 2161 static const char *es1 = "Failed to load $UsnJrnl"; 2162 static const char *es2 = ". Run chkdsk."; 2163 2164 /* If a read-write mount, convert it to a read-only mount. */ 2165 if (!(sb->s_flags & MS_RDONLY)) { 2166 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2167 ON_ERRORS_CONTINUE))) { 2168 ntfs_error(sb, "%s and neither on_errors=" 2169 "continue nor on_errors=" 2170 "remount-ro was specified%s", 2171 es1, es2); 2172 goto iput_usnjrnl_err_out; 2173 } 2174 sb->s_flags |= MS_RDONLY; 2175 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2176 } else 2177 ntfs_warning(sb, "%s. Will not be able to remount " 2178 "read-write%s", es1, es2); 2179 /* This will prevent a read-write remount. */ 2180 NVolSetErrors(vol); 2181 } 2182 /* If (still) a read-write mount, stamp the transaction log. */ 2183 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) { 2184 static const char *es1 = "Failed to stamp transaction log " 2185 "($UsnJrnl)"; 2186 static const char *es2 = ". Run chkdsk."; 2187 2188 /* Convert to a read-only mount. */ 2189 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | 2190 ON_ERRORS_CONTINUE))) { 2191 ntfs_error(sb, "%s and neither on_errors=continue nor " 2192 "on_errors=remount-ro was specified%s", 2193 es1, es2); 2194 goto iput_usnjrnl_err_out; 2195 } 2196 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); 2197 sb->s_flags |= MS_RDONLY; 2198 NVolSetErrors(vol); 2199 } 2200 #endif /* NTFS_RW */ 2201 return true; 2202 #ifdef NTFS_RW 2203 iput_usnjrnl_err_out: 2204 if (vol->usnjrnl_j_ino) 2205 iput(vol->usnjrnl_j_ino); 2206 if (vol->usnjrnl_max_ino) 2207 iput(vol->usnjrnl_max_ino); 2208 if (vol->usnjrnl_ino) 2209 iput(vol->usnjrnl_ino); 2210 iput_quota_err_out: 2211 if (vol->quota_q_ino) 2212 iput(vol->quota_q_ino); 2213 if (vol->quota_ino) 2214 iput(vol->quota_ino); 2215 iput(vol->extend_ino); 2216 #endif /* NTFS_RW */ 2217 iput_sec_err_out: 2218 iput(vol->secure_ino); 2219 iput_root_err_out: 2220 iput(vol->root_ino); 2221 iput_logfile_err_out: 2222 #ifdef NTFS_RW 2223 if (vol->logfile_ino) 2224 iput(vol->logfile_ino); 2225 iput_vol_err_out: 2226 #endif /* NTFS_RW */ 2227 iput(vol->vol_ino); 2228 iput_lcnbmp_err_out: 2229 iput(vol->lcnbmp_ino); 2230 iput_attrdef_err_out: 2231 vol->attrdef_size = 0; 2232 if (vol->attrdef) { 2233 ntfs_free(vol->attrdef); 2234 vol->attrdef = NULL; 2235 } 2236 #ifdef NTFS_RW 2237 iput_upcase_err_out: 2238 #endif /* NTFS_RW */ 2239 vol->upcase_len = 0; 2240 mutex_lock(&ntfs_lock); 2241 if (vol->upcase == default_upcase) { 2242 ntfs_nr_upcase_users--; 2243 vol->upcase = NULL; 2244 } 2245 mutex_unlock(&ntfs_lock); 2246 if (vol->upcase) { 2247 ntfs_free(vol->upcase); 2248 vol->upcase = NULL; 2249 } 2250 iput_mftbmp_err_out: 2251 iput(vol->mftbmp_ino); 2252 iput_mirr_err_out: 2253 #ifdef NTFS_RW 2254 if (vol->mftmirr_ino) 2255 iput(vol->mftmirr_ino); 2256 #endif /* NTFS_RW */ 2257 return false; 2258 } 2259 2260 /** 2261 * ntfs_put_super - called by the vfs to unmount a volume 2262 * @sb: vfs superblock of volume to unmount 2263 * 2264 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when 2265 * the volume is being unmounted (umount system call has been invoked) and it 2266 * releases all inodes and memory belonging to the NTFS specific part of the 2267 * super block. 2268 */ 2269 static void ntfs_put_super(struct super_block *sb) 2270 { 2271 ntfs_volume *vol = NTFS_SB(sb); 2272 2273 ntfs_debug("Entering."); 2274 2275 #ifdef NTFS_RW 2276 /* 2277 * Commit all inodes while they are still open in case some of them 2278 * cause others to be dirtied. 2279 */ 2280 ntfs_commit_inode(vol->vol_ino); 2281 2282 /* NTFS 3.0+ specific. */ 2283 if (vol->major_ver >= 3) { 2284 if (vol->usnjrnl_j_ino) 2285 ntfs_commit_inode(vol->usnjrnl_j_ino); 2286 if (vol->usnjrnl_max_ino) 2287 ntfs_commit_inode(vol->usnjrnl_max_ino); 2288 if (vol->usnjrnl_ino) 2289 ntfs_commit_inode(vol->usnjrnl_ino); 2290 if (vol->quota_q_ino) 2291 ntfs_commit_inode(vol->quota_q_ino); 2292 if (vol->quota_ino) 2293 ntfs_commit_inode(vol->quota_ino); 2294 if (vol->extend_ino) 2295 ntfs_commit_inode(vol->extend_ino); 2296 if (vol->secure_ino) 2297 ntfs_commit_inode(vol->secure_ino); 2298 } 2299 2300 ntfs_commit_inode(vol->root_ino); 2301 2302 down_write(&vol->lcnbmp_lock); 2303 ntfs_commit_inode(vol->lcnbmp_ino); 2304 up_write(&vol->lcnbmp_lock); 2305 2306 down_write(&vol->mftbmp_lock); 2307 ntfs_commit_inode(vol->mftbmp_ino); 2308 up_write(&vol->mftbmp_lock); 2309 2310 if (vol->logfile_ino) 2311 ntfs_commit_inode(vol->logfile_ino); 2312 2313 if (vol->mftmirr_ino) 2314 ntfs_commit_inode(vol->mftmirr_ino); 2315 ntfs_commit_inode(vol->mft_ino); 2316 2317 /* 2318 * If a read-write mount and no volume errors have occurred, mark the 2319 * volume clean. Also, re-commit all affected inodes. 2320 */ 2321 if (!(sb->s_flags & MS_RDONLY)) { 2322 if (!NVolErrors(vol)) { 2323 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) 2324 ntfs_warning(sb, "Failed to clear dirty bit " 2325 "in volume information " 2326 "flags. Run chkdsk."); 2327 ntfs_commit_inode(vol->vol_ino); 2328 ntfs_commit_inode(vol->root_ino); 2329 if (vol->mftmirr_ino) 2330 ntfs_commit_inode(vol->mftmirr_ino); 2331 ntfs_commit_inode(vol->mft_ino); 2332 } else { 2333 ntfs_warning(sb, "Volume has errors. Leaving volume " 2334 "marked dirty. Run chkdsk."); 2335 } 2336 } 2337 #endif /* NTFS_RW */ 2338 2339 iput(vol->vol_ino); 2340 vol->vol_ino = NULL; 2341 2342 /* NTFS 3.0+ specific clean up. */ 2343 if (vol->major_ver >= 3) { 2344 #ifdef NTFS_RW 2345 if (vol->usnjrnl_j_ino) { 2346 iput(vol->usnjrnl_j_ino); 2347 vol->usnjrnl_j_ino = NULL; 2348 } 2349 if (vol->usnjrnl_max_ino) { 2350 iput(vol->usnjrnl_max_ino); 2351 vol->usnjrnl_max_ino = NULL; 2352 } 2353 if (vol->usnjrnl_ino) { 2354 iput(vol->usnjrnl_ino); 2355 vol->usnjrnl_ino = NULL; 2356 } 2357 if (vol->quota_q_ino) { 2358 iput(vol->quota_q_ino); 2359 vol->quota_q_ino = NULL; 2360 } 2361 if (vol->quota_ino) { 2362 iput(vol->quota_ino); 2363 vol->quota_ino = NULL; 2364 } 2365 #endif /* NTFS_RW */ 2366 if (vol->extend_ino) { 2367 iput(vol->extend_ino); 2368 vol->extend_ino = NULL; 2369 } 2370 if (vol->secure_ino) { 2371 iput(vol->secure_ino); 2372 vol->secure_ino = NULL; 2373 } 2374 } 2375 2376 iput(vol->root_ino); 2377 vol->root_ino = NULL; 2378 2379 down_write(&vol->lcnbmp_lock); 2380 iput(vol->lcnbmp_ino); 2381 vol->lcnbmp_ino = NULL; 2382 up_write(&vol->lcnbmp_lock); 2383 2384 down_write(&vol->mftbmp_lock); 2385 iput(vol->mftbmp_ino); 2386 vol->mftbmp_ino = NULL; 2387 up_write(&vol->mftbmp_lock); 2388 2389 #ifdef NTFS_RW 2390 if (vol->logfile_ino) { 2391 iput(vol->logfile_ino); 2392 vol->logfile_ino = NULL; 2393 } 2394 if (vol->mftmirr_ino) { 2395 /* Re-commit the mft mirror and mft just in case. */ 2396 ntfs_commit_inode(vol->mftmirr_ino); 2397 ntfs_commit_inode(vol->mft_ino); 2398 iput(vol->mftmirr_ino); 2399 vol->mftmirr_ino = NULL; 2400 } 2401 /* 2402 * We should have no dirty inodes left, due to 2403 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as 2404 * the underlying mft records are written out and cleaned. 2405 */ 2406 ntfs_commit_inode(vol->mft_ino); 2407 write_inode_now(vol->mft_ino, 1); 2408 #endif /* NTFS_RW */ 2409 2410 iput(vol->mft_ino); 2411 vol->mft_ino = NULL; 2412 2413 /* Throw away the table of attribute definitions. */ 2414 vol->attrdef_size = 0; 2415 if (vol->attrdef) { 2416 ntfs_free(vol->attrdef); 2417 vol->attrdef = NULL; 2418 } 2419 vol->upcase_len = 0; 2420 /* 2421 * Destroy the global default upcase table if necessary. Also decrease 2422 * the number of upcase users if we are a user. 2423 */ 2424 mutex_lock(&ntfs_lock); 2425 if (vol->upcase == default_upcase) { 2426 ntfs_nr_upcase_users--; 2427 vol->upcase = NULL; 2428 } 2429 if (!ntfs_nr_upcase_users && default_upcase) { 2430 ntfs_free(default_upcase); 2431 default_upcase = NULL; 2432 } 2433 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 2434 free_compression_buffers(); 2435 mutex_unlock(&ntfs_lock); 2436 if (vol->upcase) { 2437 ntfs_free(vol->upcase); 2438 vol->upcase = NULL; 2439 } 2440 2441 unload_nls(vol->nls_map); 2442 2443 sb->s_fs_info = NULL; 2444 kfree(vol); 2445 } 2446 2447 /** 2448 * get_nr_free_clusters - return the number of free clusters on a volume 2449 * @vol: ntfs volume for which to obtain free cluster count 2450 * 2451 * Calculate the number of free clusters on the mounted NTFS volume @vol. We 2452 * actually calculate the number of clusters in use instead because this 2453 * allows us to not care about partial pages as these will be just zero filled 2454 * and hence not be counted as allocated clusters. 2455 * 2456 * The only particularity is that clusters beyond the end of the logical ntfs 2457 * volume will be marked as allocated to prevent errors which means we have to 2458 * discount those at the end. This is important as the cluster bitmap always 2459 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside 2460 * the logical volume and marked in use when they are not as they do not exist. 2461 * 2462 * If any pages cannot be read we assume all clusters in the erroring pages are 2463 * in use. This means we return an underestimate on errors which is better than 2464 * an overestimate. 2465 */ 2466 static s64 get_nr_free_clusters(ntfs_volume *vol) 2467 { 2468 s64 nr_free = vol->nr_clusters; 2469 struct address_space *mapping = vol->lcnbmp_ino->i_mapping; 2470 struct page *page; 2471 pgoff_t index, max_index; 2472 2473 ntfs_debug("Entering."); 2474 /* Serialize accesses to the cluster bitmap. */ 2475 down_read(&vol->lcnbmp_lock); 2476 /* 2477 * Convert the number of bits into bytes rounded up, then convert into 2478 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one 2479 * full and one partial page max_index = 2. 2480 */ 2481 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> 2482 PAGE_CACHE_SHIFT; 2483 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2484 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", 2485 max_index, PAGE_CACHE_SIZE / 4); 2486 for (index = 0; index < max_index; index++) { 2487 unsigned long *kaddr; 2488 2489 /* 2490 * Read the page from page cache, getting it from backing store 2491 * if necessary, and increment the use count. 2492 */ 2493 page = read_mapping_page(mapping, index, NULL); 2494 /* Ignore pages which errored synchronously. */ 2495 if (IS_ERR(page)) { 2496 ntfs_debug("read_mapping_page() error. Skipping " 2497 "page (index 0x%lx).", index); 2498 nr_free -= PAGE_CACHE_SIZE * 8; 2499 continue; 2500 } 2501 kaddr = kmap_atomic(page); 2502 /* 2503 * Subtract the number of set bits. If this 2504 * is the last page and it is partial we don't really care as 2505 * it just means we do a little extra work but it won't affect 2506 * the result as all out of range bytes are set to zero by 2507 * ntfs_readpage(). 2508 */ 2509 nr_free -= bitmap_weight(kaddr, 2510 PAGE_CACHE_SIZE * BITS_PER_BYTE); 2511 kunmap_atomic(kaddr); 2512 page_cache_release(page); 2513 } 2514 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); 2515 /* 2516 * Fixup for eventual bits outside logical ntfs volume (see function 2517 * description above). 2518 */ 2519 if (vol->nr_clusters & 63) 2520 nr_free += 64 - (vol->nr_clusters & 63); 2521 up_read(&vol->lcnbmp_lock); 2522 /* If errors occurred we may well have gone below zero, fix this. */ 2523 if (nr_free < 0) 2524 nr_free = 0; 2525 ntfs_debug("Exiting."); 2526 return nr_free; 2527 } 2528 2529 /** 2530 * __get_nr_free_mft_records - return the number of free inodes on a volume 2531 * @vol: ntfs volume for which to obtain free inode count 2532 * @nr_free: number of mft records in filesystem 2533 * @max_index: maximum number of pages containing set bits 2534 * 2535 * Calculate the number of free mft records (inodes) on the mounted NTFS 2536 * volume @vol. We actually calculate the number of mft records in use instead 2537 * because this allows us to not care about partial pages as these will be just 2538 * zero filled and hence not be counted as allocated mft record. 2539 * 2540 * If any pages cannot be read we assume all mft records in the erroring pages 2541 * are in use. This means we return an underestimate on errors which is better 2542 * than an overestimate. 2543 * 2544 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. 2545 */ 2546 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, 2547 s64 nr_free, const pgoff_t max_index) 2548 { 2549 struct address_space *mapping = vol->mftbmp_ino->i_mapping; 2550 struct page *page; 2551 pgoff_t index; 2552 2553 ntfs_debug("Entering."); 2554 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ 2555 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " 2556 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4); 2557 for (index = 0; index < max_index; index++) { 2558 unsigned long *kaddr; 2559 2560 /* 2561 * Read the page from page cache, getting it from backing store 2562 * if necessary, and increment the use count. 2563 */ 2564 page = read_mapping_page(mapping, index, NULL); 2565 /* Ignore pages which errored synchronously. */ 2566 if (IS_ERR(page)) { 2567 ntfs_debug("read_mapping_page() error. Skipping " 2568 "page (index 0x%lx).", index); 2569 nr_free -= PAGE_CACHE_SIZE * 8; 2570 continue; 2571 } 2572 kaddr = kmap_atomic(page); 2573 /* 2574 * Subtract the number of set bits. If this 2575 * is the last page and it is partial we don't really care as 2576 * it just means we do a little extra work but it won't affect 2577 * the result as all out of range bytes are set to zero by 2578 * ntfs_readpage(). 2579 */ 2580 nr_free -= bitmap_weight(kaddr, 2581 PAGE_CACHE_SIZE * BITS_PER_BYTE); 2582 kunmap_atomic(kaddr); 2583 page_cache_release(page); 2584 } 2585 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", 2586 index - 1); 2587 /* If errors occurred we may well have gone below zero, fix this. */ 2588 if (nr_free < 0) 2589 nr_free = 0; 2590 ntfs_debug("Exiting."); 2591 return nr_free; 2592 } 2593 2594 /** 2595 * ntfs_statfs - return information about mounted NTFS volume 2596 * @dentry: dentry from mounted volume 2597 * @sfs: statfs structure in which to return the information 2598 * 2599 * Return information about the mounted NTFS volume @dentry in the statfs structure 2600 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is 2601 * called). We interpret the values to be correct of the moment in time at 2602 * which we are called. Most values are variable otherwise and this isn't just 2603 * the free values but the totals as well. For example we can increase the 2604 * total number of file nodes if we run out and we can keep doing this until 2605 * there is no more space on the volume left at all. 2606 * 2607 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and 2608 * ustat system calls. 2609 * 2610 * Return 0 on success or -errno on error. 2611 */ 2612 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) 2613 { 2614 struct super_block *sb = dentry->d_sb; 2615 s64 size; 2616 ntfs_volume *vol = NTFS_SB(sb); 2617 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); 2618 pgoff_t max_index; 2619 unsigned long flags; 2620 2621 ntfs_debug("Entering."); 2622 /* Type of filesystem. */ 2623 sfs->f_type = NTFS_SB_MAGIC; 2624 /* Optimal transfer block size. */ 2625 sfs->f_bsize = PAGE_CACHE_SIZE; 2626 /* 2627 * Total data blocks in filesystem in units of f_bsize and since 2628 * inodes are also stored in data blocs ($MFT is a file) this is just 2629 * the total clusters. 2630 */ 2631 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> 2632 PAGE_CACHE_SHIFT; 2633 /* Free data blocks in filesystem in units of f_bsize. */ 2634 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> 2635 PAGE_CACHE_SHIFT; 2636 if (size < 0LL) 2637 size = 0LL; 2638 /* Free blocks avail to non-superuser, same as above on NTFS. */ 2639 sfs->f_bavail = sfs->f_bfree = size; 2640 /* Serialize accesses to the inode bitmap. */ 2641 down_read(&vol->mftbmp_lock); 2642 read_lock_irqsave(&mft_ni->size_lock, flags); 2643 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; 2644 /* 2645 * Convert the maximum number of set bits into bytes rounded up, then 2646 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we 2647 * have one full and one partial page max_index = 2. 2648 */ 2649 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) 2650 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2651 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2652 /* Number of inodes in filesystem (at this point in time). */ 2653 sfs->f_files = size; 2654 /* Free inodes in fs (based on current total count). */ 2655 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); 2656 up_read(&vol->mftbmp_lock); 2657 /* 2658 * File system id. This is extremely *nix flavour dependent and even 2659 * within Linux itself all fs do their own thing. I interpret this to 2660 * mean a unique id associated with the mounted fs and not the id 2661 * associated with the filesystem driver, the latter is already given 2662 * by the filesystem type in sfs->f_type. Thus we use the 64-bit 2663 * volume serial number splitting it into two 32-bit parts. We enter 2664 * the least significant 32-bits in f_fsid[0] and the most significant 2665 * 32-bits in f_fsid[1]. 2666 */ 2667 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff; 2668 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff; 2669 /* Maximum length of filenames. */ 2670 sfs->f_namelen = NTFS_MAX_NAME_LEN; 2671 return 0; 2672 } 2673 2674 #ifdef NTFS_RW 2675 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) 2676 { 2677 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); 2678 } 2679 #endif 2680 2681 /** 2682 * The complete super operations. 2683 */ 2684 static const struct super_operations ntfs_sops = { 2685 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ 2686 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */ 2687 #ifdef NTFS_RW 2688 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to 2689 disk. */ 2690 #endif /* NTFS_RW */ 2691 .put_super = ntfs_put_super, /* Syscall: umount. */ 2692 .statfs = ntfs_statfs, /* Syscall: statfs */ 2693 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ 2694 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is 2695 removed from memory. */ 2696 .show_options = ntfs_show_options, /* Show mount options in 2697 proc. */ 2698 }; 2699 2700 /** 2701 * ntfs_fill_super - mount an ntfs filesystem 2702 * @sb: super block of ntfs filesystem to mount 2703 * @opt: string containing the mount options 2704 * @silent: silence error output 2705 * 2706 * ntfs_fill_super() is called by the VFS to mount the device described by @sb 2707 * with the mount otions in @data with the NTFS filesystem. 2708 * 2709 * If @silent is true, remain silent even if errors are detected. This is used 2710 * during bootup, when the kernel tries to mount the root filesystem with all 2711 * registered filesystems one after the other until one succeeds. This implies 2712 * that all filesystems except the correct one will quite correctly and 2713 * expectedly return an error, but nobody wants to see error messages when in 2714 * fact this is what is supposed to happen. 2715 * 2716 * NOTE: @sb->s_flags contains the mount options flags. 2717 */ 2718 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) 2719 { 2720 ntfs_volume *vol; 2721 struct buffer_head *bh; 2722 struct inode *tmp_ino; 2723 int blocksize, result; 2724 2725 /* 2726 * We do a pretty difficult piece of bootstrap by reading the 2727 * MFT (and other metadata) from disk into memory. We'll only 2728 * release this metadata during umount, so the locking patterns 2729 * observed during bootstrap do not count. So turn off the 2730 * observation of locking patterns (strictly for this context 2731 * only) while mounting NTFS. [The validator is still active 2732 * otherwise, even for this context: it will for example record 2733 * lock class registrations.] 2734 */ 2735 lockdep_off(); 2736 ntfs_debug("Entering."); 2737 #ifndef NTFS_RW 2738 sb->s_flags |= MS_RDONLY; 2739 #endif /* ! NTFS_RW */ 2740 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ 2741 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); 2742 vol = NTFS_SB(sb); 2743 if (!vol) { 2744 if (!silent) 2745 ntfs_error(sb, "Allocation of NTFS volume structure " 2746 "failed. Aborting mount..."); 2747 lockdep_on(); 2748 return -ENOMEM; 2749 } 2750 /* Initialize ntfs_volume structure. */ 2751 *vol = (ntfs_volume) { 2752 .sb = sb, 2753 /* 2754 * Default is group and other don't have any access to files or 2755 * directories while owner has full access. Further, files by 2756 * default are not executable but directories are of course 2757 * browseable. 2758 */ 2759 .fmask = 0177, 2760 .dmask = 0077, 2761 }; 2762 init_rwsem(&vol->mftbmp_lock); 2763 init_rwsem(&vol->lcnbmp_lock); 2764 2765 /* By default, enable sparse support. */ 2766 NVolSetSparseEnabled(vol); 2767 2768 /* Important to get the mount options dealt with now. */ 2769 if (!parse_options(vol, (char*)opt)) 2770 goto err_out_now; 2771 2772 /* We support sector sizes up to the PAGE_CACHE_SIZE. */ 2773 if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) { 2774 if (!silent) 2775 ntfs_error(sb, "Device has unsupported sector size " 2776 "(%i). The maximum supported sector " 2777 "size on this architecture is %lu " 2778 "bytes.", 2779 bdev_logical_block_size(sb->s_bdev), 2780 PAGE_CACHE_SIZE); 2781 goto err_out_now; 2782 } 2783 /* 2784 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard 2785 * sector size, whichever is bigger. 2786 */ 2787 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); 2788 if (blocksize < NTFS_BLOCK_SIZE) { 2789 if (!silent) 2790 ntfs_error(sb, "Unable to set device block size."); 2791 goto err_out_now; 2792 } 2793 BUG_ON(blocksize != sb->s_blocksize); 2794 ntfs_debug("Set device block size to %i bytes (block size bits %i).", 2795 blocksize, sb->s_blocksize_bits); 2796 /* Determine the size of the device in units of block_size bytes. */ 2797 if (!i_size_read(sb->s_bdev->bd_inode)) { 2798 if (!silent) 2799 ntfs_error(sb, "Unable to determine device size."); 2800 goto err_out_now; 2801 } 2802 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2803 sb->s_blocksize_bits; 2804 /* Read the boot sector and return unlocked buffer head to it. */ 2805 if (!(bh = read_ntfs_boot_sector(sb, silent))) { 2806 if (!silent) 2807 ntfs_error(sb, "Not an NTFS volume."); 2808 goto err_out_now; 2809 } 2810 /* 2811 * Extract the data from the boot sector and setup the ntfs volume 2812 * using it. 2813 */ 2814 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); 2815 brelse(bh); 2816 if (!result) { 2817 if (!silent) 2818 ntfs_error(sb, "Unsupported NTFS filesystem."); 2819 goto err_out_now; 2820 } 2821 /* 2822 * If the boot sector indicates a sector size bigger than the current 2823 * device block size, switch the device block size to the sector size. 2824 * TODO: It may be possible to support this case even when the set 2825 * below fails, we would just be breaking up the i/o for each sector 2826 * into multiple blocks for i/o purposes but otherwise it should just 2827 * work. However it is safer to leave disabled until someone hits this 2828 * error message and then we can get them to try it without the setting 2829 * so we know for sure that it works. 2830 */ 2831 if (vol->sector_size > blocksize) { 2832 blocksize = sb_set_blocksize(sb, vol->sector_size); 2833 if (blocksize != vol->sector_size) { 2834 if (!silent) 2835 ntfs_error(sb, "Unable to set device block " 2836 "size to sector size (%i).", 2837 vol->sector_size); 2838 goto err_out_now; 2839 } 2840 BUG_ON(blocksize != sb->s_blocksize); 2841 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> 2842 sb->s_blocksize_bits; 2843 ntfs_debug("Changed device block size to %i bytes (block size " 2844 "bits %i) to match volume sector size.", 2845 blocksize, sb->s_blocksize_bits); 2846 } 2847 /* Initialize the cluster and mft allocators. */ 2848 ntfs_setup_allocators(vol); 2849 /* Setup remaining fields in the super block. */ 2850 sb->s_magic = NTFS_SB_MAGIC; 2851 /* 2852 * Ntfs allows 63 bits for the file size, i.e. correct would be: 2853 * sb->s_maxbytes = ~0ULL >> 1; 2854 * But the kernel uses a long as the page cache page index which on 2855 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel 2856 * defined to the maximum the page cache page index can cope with 2857 * without overflowing the index or to 2^63 - 1, whichever is smaller. 2858 */ 2859 sb->s_maxbytes = MAX_LFS_FILESIZE; 2860 /* Ntfs measures time in 100ns intervals. */ 2861 sb->s_time_gran = 100; 2862 /* 2863 * Now load the metadata required for the page cache and our address 2864 * space operations to function. We do this by setting up a specialised 2865 * read_inode method and then just calling the normal iget() to obtain 2866 * the inode for $MFT which is sufficient to allow our normal inode 2867 * operations and associated address space operations to function. 2868 */ 2869 sb->s_op = &ntfs_sops; 2870 tmp_ino = new_inode(sb); 2871 if (!tmp_ino) { 2872 if (!silent) 2873 ntfs_error(sb, "Failed to load essential metadata."); 2874 goto err_out_now; 2875 } 2876 tmp_ino->i_ino = FILE_MFT; 2877 insert_inode_hash(tmp_ino); 2878 if (ntfs_read_inode_mount(tmp_ino) < 0) { 2879 if (!silent) 2880 ntfs_error(sb, "Failed to load essential metadata."); 2881 goto iput_tmp_ino_err_out_now; 2882 } 2883 mutex_lock(&ntfs_lock); 2884 /* 2885 * The current mount is a compression user if the cluster size is 2886 * less than or equal 4kiB. 2887 */ 2888 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { 2889 result = allocate_compression_buffers(); 2890 if (result) { 2891 ntfs_error(NULL, "Failed to allocate buffers " 2892 "for compression engine."); 2893 ntfs_nr_compression_users--; 2894 mutex_unlock(&ntfs_lock); 2895 goto iput_tmp_ino_err_out_now; 2896 } 2897 } 2898 /* 2899 * Generate the global default upcase table if necessary. Also 2900 * temporarily increment the number of upcase users to avoid race 2901 * conditions with concurrent (u)mounts. 2902 */ 2903 if (!default_upcase) 2904 default_upcase = generate_default_upcase(); 2905 ntfs_nr_upcase_users++; 2906 mutex_unlock(&ntfs_lock); 2907 /* 2908 * From now on, ignore @silent parameter. If we fail below this line, 2909 * it will be due to a corrupt fs or a system error, so we report it. 2910 */ 2911 /* 2912 * Open the system files with normal access functions and complete 2913 * setting up the ntfs super block. 2914 */ 2915 if (!load_system_files(vol)) { 2916 ntfs_error(sb, "Failed to load system files."); 2917 goto unl_upcase_iput_tmp_ino_err_out_now; 2918 } 2919 2920 /* We grab a reference, simulating an ntfs_iget(). */ 2921 ihold(vol->root_ino); 2922 if ((sb->s_root = d_make_root(vol->root_ino))) { 2923 ntfs_debug("Exiting, status successful."); 2924 /* Release the default upcase if it has no users. */ 2925 mutex_lock(&ntfs_lock); 2926 if (!--ntfs_nr_upcase_users && default_upcase) { 2927 ntfs_free(default_upcase); 2928 default_upcase = NULL; 2929 } 2930 mutex_unlock(&ntfs_lock); 2931 sb->s_export_op = &ntfs_export_ops; 2932 lockdep_on(); 2933 return 0; 2934 } 2935 ntfs_error(sb, "Failed to allocate root directory."); 2936 /* Clean up after the successful load_system_files() call from above. */ 2937 // TODO: Use ntfs_put_super() instead of repeating all this code... 2938 // FIXME: Should mark the volume clean as the error is most likely 2939 // -ENOMEM. 2940 iput(vol->vol_ino); 2941 vol->vol_ino = NULL; 2942 /* NTFS 3.0+ specific clean up. */ 2943 if (vol->major_ver >= 3) { 2944 #ifdef NTFS_RW 2945 if (vol->usnjrnl_j_ino) { 2946 iput(vol->usnjrnl_j_ino); 2947 vol->usnjrnl_j_ino = NULL; 2948 } 2949 if (vol->usnjrnl_max_ino) { 2950 iput(vol->usnjrnl_max_ino); 2951 vol->usnjrnl_max_ino = NULL; 2952 } 2953 if (vol->usnjrnl_ino) { 2954 iput(vol->usnjrnl_ino); 2955 vol->usnjrnl_ino = NULL; 2956 } 2957 if (vol->quota_q_ino) { 2958 iput(vol->quota_q_ino); 2959 vol->quota_q_ino = NULL; 2960 } 2961 if (vol->quota_ino) { 2962 iput(vol->quota_ino); 2963 vol->quota_ino = NULL; 2964 } 2965 #endif /* NTFS_RW */ 2966 if (vol->extend_ino) { 2967 iput(vol->extend_ino); 2968 vol->extend_ino = NULL; 2969 } 2970 if (vol->secure_ino) { 2971 iput(vol->secure_ino); 2972 vol->secure_ino = NULL; 2973 } 2974 } 2975 iput(vol->root_ino); 2976 vol->root_ino = NULL; 2977 iput(vol->lcnbmp_ino); 2978 vol->lcnbmp_ino = NULL; 2979 iput(vol->mftbmp_ino); 2980 vol->mftbmp_ino = NULL; 2981 #ifdef NTFS_RW 2982 if (vol->logfile_ino) { 2983 iput(vol->logfile_ino); 2984 vol->logfile_ino = NULL; 2985 } 2986 if (vol->mftmirr_ino) { 2987 iput(vol->mftmirr_ino); 2988 vol->mftmirr_ino = NULL; 2989 } 2990 #endif /* NTFS_RW */ 2991 /* Throw away the table of attribute definitions. */ 2992 vol->attrdef_size = 0; 2993 if (vol->attrdef) { 2994 ntfs_free(vol->attrdef); 2995 vol->attrdef = NULL; 2996 } 2997 vol->upcase_len = 0; 2998 mutex_lock(&ntfs_lock); 2999 if (vol->upcase == default_upcase) { 3000 ntfs_nr_upcase_users--; 3001 vol->upcase = NULL; 3002 } 3003 mutex_unlock(&ntfs_lock); 3004 if (vol->upcase) { 3005 ntfs_free(vol->upcase); 3006 vol->upcase = NULL; 3007 } 3008 if (vol->nls_map) { 3009 unload_nls(vol->nls_map); 3010 vol->nls_map = NULL; 3011 } 3012 /* Error exit code path. */ 3013 unl_upcase_iput_tmp_ino_err_out_now: 3014 /* 3015 * Decrease the number of upcase users and destroy the global default 3016 * upcase table if necessary. 3017 */ 3018 mutex_lock(&ntfs_lock); 3019 if (!--ntfs_nr_upcase_users && default_upcase) { 3020 ntfs_free(default_upcase); 3021 default_upcase = NULL; 3022 } 3023 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) 3024 free_compression_buffers(); 3025 mutex_unlock(&ntfs_lock); 3026 iput_tmp_ino_err_out_now: 3027 iput(tmp_ino); 3028 if (vol->mft_ino && vol->mft_ino != tmp_ino) 3029 iput(vol->mft_ino); 3030 vol->mft_ino = NULL; 3031 /* Errors at this stage are irrelevant. */ 3032 err_out_now: 3033 sb->s_fs_info = NULL; 3034 kfree(vol); 3035 ntfs_debug("Failed, returning -EINVAL."); 3036 lockdep_on(); 3037 return -EINVAL; 3038 } 3039 3040 /* 3041 * This is a slab cache to optimize allocations and deallocations of Unicode 3042 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN 3043 * (255) Unicode characters + a terminating NULL Unicode character. 3044 */ 3045 struct kmem_cache *ntfs_name_cache; 3046 3047 /* Slab caches for efficient allocation/deallocation of inodes. */ 3048 struct kmem_cache *ntfs_inode_cache; 3049 struct kmem_cache *ntfs_big_inode_cache; 3050 3051 /* Init once constructor for the inode slab cache. */ 3052 static void ntfs_big_inode_init_once(void *foo) 3053 { 3054 ntfs_inode *ni = (ntfs_inode *)foo; 3055 3056 inode_init_once(VFS_I(ni)); 3057 } 3058 3059 /* 3060 * Slab caches to optimize allocations and deallocations of attribute search 3061 * contexts and index contexts, respectively. 3062 */ 3063 struct kmem_cache *ntfs_attr_ctx_cache; 3064 struct kmem_cache *ntfs_index_ctx_cache; 3065 3066 /* Driver wide mutex. */ 3067 DEFINE_MUTEX(ntfs_lock); 3068 3069 static struct dentry *ntfs_mount(struct file_system_type *fs_type, 3070 int flags, const char *dev_name, void *data) 3071 { 3072 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); 3073 } 3074 3075 static struct file_system_type ntfs_fs_type = { 3076 .owner = THIS_MODULE, 3077 .name = "ntfs", 3078 .mount = ntfs_mount, 3079 .kill_sb = kill_block_super, 3080 .fs_flags = FS_REQUIRES_DEV, 3081 }; 3082 MODULE_ALIAS_FS("ntfs"); 3083 3084 /* Stable names for the slab caches. */ 3085 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; 3086 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; 3087 static const char ntfs_name_cache_name[] = "ntfs_name_cache"; 3088 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; 3089 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; 3090 3091 static int __init init_ntfs_fs(void) 3092 { 3093 int err = 0; 3094 3095 /* This may be ugly but it results in pretty output so who cares. (-8 */ 3096 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/" 3097 #ifdef NTFS_RW 3098 "W" 3099 #else 3100 "O" 3101 #endif 3102 #ifdef DEBUG 3103 " DEBUG" 3104 #endif 3105 #ifdef MODULE 3106 " MODULE" 3107 #endif 3108 "].\n"); 3109 3110 ntfs_debug("Debug messages are enabled."); 3111 3112 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, 3113 sizeof(ntfs_index_context), 0 /* offset */, 3114 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3115 if (!ntfs_index_ctx_cache) { 3116 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3117 ntfs_index_ctx_cache_name); 3118 goto ictx_err_out; 3119 } 3120 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, 3121 sizeof(ntfs_attr_search_ctx), 0 /* offset */, 3122 SLAB_HWCACHE_ALIGN, NULL /* ctor */); 3123 if (!ntfs_attr_ctx_cache) { 3124 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3125 ntfs_attr_ctx_cache_name); 3126 goto actx_err_out; 3127 } 3128 3129 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, 3130 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, 3131 SLAB_HWCACHE_ALIGN, NULL); 3132 if (!ntfs_name_cache) { 3133 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3134 ntfs_name_cache_name); 3135 goto name_err_out; 3136 } 3137 3138 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, 3139 sizeof(ntfs_inode), 0, 3140 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 3141 if (!ntfs_inode_cache) { 3142 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3143 ntfs_inode_cache_name); 3144 goto inode_err_out; 3145 } 3146 3147 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, 3148 sizeof(big_ntfs_inode), 0, 3149 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, 3150 ntfs_big_inode_init_once); 3151 if (!ntfs_big_inode_cache) { 3152 printk(KERN_CRIT "NTFS: Failed to create %s!\n", 3153 ntfs_big_inode_cache_name); 3154 goto big_inode_err_out; 3155 } 3156 3157 /* Register the ntfs sysctls. */ 3158 err = ntfs_sysctl(1); 3159 if (err) { 3160 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n"); 3161 goto sysctl_err_out; 3162 } 3163 3164 err = register_filesystem(&ntfs_fs_type); 3165 if (!err) { 3166 ntfs_debug("NTFS driver registered successfully."); 3167 return 0; /* Success! */ 3168 } 3169 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n"); 3170 3171 /* Unregister the ntfs sysctls. */ 3172 ntfs_sysctl(0); 3173 sysctl_err_out: 3174 kmem_cache_destroy(ntfs_big_inode_cache); 3175 big_inode_err_out: 3176 kmem_cache_destroy(ntfs_inode_cache); 3177 inode_err_out: 3178 kmem_cache_destroy(ntfs_name_cache); 3179 name_err_out: 3180 kmem_cache_destroy(ntfs_attr_ctx_cache); 3181 actx_err_out: 3182 kmem_cache_destroy(ntfs_index_ctx_cache); 3183 ictx_err_out: 3184 if (!err) { 3185 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver " 3186 "registration...\n"); 3187 err = -ENOMEM; 3188 } 3189 return err; 3190 } 3191 3192 static void __exit exit_ntfs_fs(void) 3193 { 3194 ntfs_debug("Unregistering NTFS driver."); 3195 3196 unregister_filesystem(&ntfs_fs_type); 3197 3198 /* 3199 * Make sure all delayed rcu free inodes are flushed before we 3200 * destroy cache. 3201 */ 3202 rcu_barrier(); 3203 kmem_cache_destroy(ntfs_big_inode_cache); 3204 kmem_cache_destroy(ntfs_inode_cache); 3205 kmem_cache_destroy(ntfs_name_cache); 3206 kmem_cache_destroy(ntfs_attr_ctx_cache); 3207 kmem_cache_destroy(ntfs_index_ctx_cache); 3208 /* Unregister the ntfs sysctls. */ 3209 ntfs_sysctl(0); 3210 } 3211 3212 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); 3213 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc."); 3214 MODULE_VERSION(NTFS_VERSION); 3215 MODULE_LICENSE("GPL"); 3216 #ifdef DEBUG 3217 module_param(debug_msgs, bint, 0); 3218 MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); 3219 #endif 3220 3221 module_init(init_ntfs_fs) 3222 module_exit(exit_ntfs_fs) 3223