1 /** 2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 5 * Copyright (c) 2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/buffer_head.h> 24 #include <linux/slab.h> 25 #include <linux/swap.h> 26 #include <linux/bio.h> 27 28 #include "attrib.h" 29 #include "aops.h" 30 #include "bitmap.h" 31 #include "debug.h" 32 #include "dir.h" 33 #include "lcnalloc.h" 34 #include "malloc.h" 35 #include "mft.h" 36 #include "ntfs.h" 37 38 #define MAX_BHS (PAGE_SIZE / NTFS_BLOCK_SIZE) 39 40 /** 41 * map_mft_record_page - map the page in which a specific mft record resides 42 * @ni: ntfs inode whose mft record page to map 43 * 44 * This maps the page in which the mft record of the ntfs inode @ni is situated 45 * and returns a pointer to the mft record within the mapped page. 46 * 47 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() 48 * contains the negative error code returned. 49 */ 50 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) 51 { 52 loff_t i_size; 53 ntfs_volume *vol = ni->vol; 54 struct inode *mft_vi = vol->mft_ino; 55 struct page *page; 56 unsigned long index, end_index; 57 unsigned ofs; 58 59 BUG_ON(ni->page); 60 /* 61 * The index into the page cache and the offset within the page cache 62 * page of the wanted mft record. FIXME: We need to check for 63 * overflowing the unsigned long, but I don't think we would ever get 64 * here if the volume was that big... 65 */ 66 index = (u64)ni->mft_no << vol->mft_record_size_bits >> 67 PAGE_SHIFT; 68 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 69 70 i_size = i_size_read(mft_vi); 71 /* The maximum valid index into the page cache for $MFT's data. */ 72 end_index = i_size >> PAGE_SHIFT; 73 74 /* If the wanted index is out of bounds the mft record doesn't exist. */ 75 if (unlikely(index >= end_index)) { 76 if (index > end_index || (i_size & ~PAGE_MASK) < ofs + 77 vol->mft_record_size) { 78 page = ERR_PTR(-ENOENT); 79 ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, " 80 "which is beyond the end of the mft. " 81 "This is probably a bug in the ntfs " 82 "driver.", ni->mft_no); 83 goto err_out; 84 } 85 } 86 /* Read, map, and pin the page. */ 87 page = ntfs_map_page(mft_vi->i_mapping, index); 88 if (likely(!IS_ERR(page))) { 89 /* Catch multi sector transfer fixup errors. */ 90 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + 91 ofs)))) { 92 ni->page = page; 93 ni->page_ofs = ofs; 94 return page_address(page) + ofs; 95 } 96 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. " 97 "Run chkdsk.", ni->mft_no); 98 ntfs_unmap_page(page); 99 page = ERR_PTR(-EIO); 100 NVolSetErrors(vol); 101 } 102 err_out: 103 ni->page = NULL; 104 ni->page_ofs = 0; 105 return (void*)page; 106 } 107 108 /** 109 * map_mft_record - map, pin and lock an mft record 110 * @ni: ntfs inode whose MFT record to map 111 * 112 * First, take the mrec_lock mutex. We might now be sleeping, while waiting 113 * for the mutex if it was already locked by someone else. 114 * 115 * The page of the record is mapped using map_mft_record_page() before being 116 * returned to the caller. 117 * 118 * This in turn uses ntfs_map_page() to get the page containing the wanted mft 119 * record (it in turn calls read_cache_page() which reads it in from disk if 120 * necessary, increments the use count on the page so that it cannot disappear 121 * under us and returns a reference to the page cache page). 122 * 123 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it 124 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed 125 * and the post-read mst fixups on each mft record in the page have been 126 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done 127 * in our asynchronous I/O completion handler end_buffer_read_mft_async()). 128 * ntfs_map_page() waits for PG_locked to become clear and checks if 129 * PG_uptodate is set and returns an error code if not. This provides 130 * sufficient protection against races when reading/using the page. 131 * 132 * However there is the write mapping to think about. Doing the above described 133 * checking here will be fine, because when initiating the write we will set 134 * PG_locked and clear PG_uptodate making sure nobody is touching the page 135 * contents. Doing the locking this way means that the commit to disk code in 136 * the page cache code paths is automatically sufficiently locked with us as 137 * we will not touch a page that has been locked or is not uptodate. The only 138 * locking problem then is them locking the page while we are accessing it. 139 * 140 * So that code will end up having to own the mrec_lock of all mft 141 * records/inodes present in the page before I/O can proceed. In that case we 142 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be 143 * accessing anything without owning the mrec_lock mutex. But we do need to 144 * use them because of the read_cache_page() invocation and the code becomes so 145 * much simpler this way that it is well worth it. 146 * 147 * The mft record is now ours and we return a pointer to it. You need to check 148 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return 149 * the error code. 150 * 151 * NOTE: Caller is responsible for setting the mft record dirty before calling 152 * unmap_mft_record(). This is obviously only necessary if the caller really 153 * modified the mft record... 154 * Q: Do we want to recycle one of the VFS inode state bits instead? 155 * A: No, the inode ones mean we want to change the mft record, not we want to 156 * write it out. 157 */ 158 MFT_RECORD *map_mft_record(ntfs_inode *ni) 159 { 160 MFT_RECORD *m; 161 162 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 163 164 /* Make sure the ntfs inode doesn't go away. */ 165 atomic_inc(&ni->count); 166 167 /* Serialize access to this mft record. */ 168 mutex_lock(&ni->mrec_lock); 169 170 m = map_mft_record_page(ni); 171 if (likely(!IS_ERR(m))) 172 return m; 173 174 mutex_unlock(&ni->mrec_lock); 175 atomic_dec(&ni->count); 176 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); 177 return m; 178 } 179 180 /** 181 * unmap_mft_record_page - unmap the page in which a specific mft record resides 182 * @ni: ntfs inode whose mft record page to unmap 183 * 184 * This unmaps the page in which the mft record of the ntfs inode @ni is 185 * situated and returns. This is a NOOP if highmem is not configured. 186 * 187 * The unmap happens via ntfs_unmap_page() which in turn decrements the use 188 * count on the page thus releasing it from the pinned state. 189 * 190 * We do not actually unmap the page from memory of course, as that will be 191 * done by the page cache code itself when memory pressure increases or 192 * whatever. 193 */ 194 static inline void unmap_mft_record_page(ntfs_inode *ni) 195 { 196 BUG_ON(!ni->page); 197 198 // TODO: If dirty, blah... 199 ntfs_unmap_page(ni->page); 200 ni->page = NULL; 201 ni->page_ofs = 0; 202 return; 203 } 204 205 /** 206 * unmap_mft_record - release a mapped mft record 207 * @ni: ntfs inode whose MFT record to unmap 208 * 209 * We release the page mapping and the mrec_lock mutex which unmaps the mft 210 * record and releases it for others to get hold of. We also release the ntfs 211 * inode by decrementing the ntfs inode reference count. 212 * 213 * NOTE: If caller has modified the mft record, it is imperative to set the mft 214 * record dirty BEFORE calling unmap_mft_record(). 215 */ 216 void unmap_mft_record(ntfs_inode *ni) 217 { 218 struct page *page = ni->page; 219 220 BUG_ON(!page); 221 222 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 223 224 unmap_mft_record_page(ni); 225 mutex_unlock(&ni->mrec_lock); 226 atomic_dec(&ni->count); 227 /* 228 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to 229 * ntfs_clear_extent_inode() in the extent inode case, and to the 230 * caller in the non-extent, yet pure ntfs inode case, to do the actual 231 * tear down of all structures and freeing of all allocated memory. 232 */ 233 return; 234 } 235 236 /** 237 * map_extent_mft_record - load an extent inode and attach it to its base 238 * @base_ni: base ntfs inode 239 * @mref: mft reference of the extent inode to load 240 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure 241 * 242 * Load the extent mft record @mref and attach it to its base inode @base_ni. 243 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise 244 * PTR_ERR(result) gives the negative error code. 245 * 246 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode 247 * structure of the mapped extent inode. 248 */ 249 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, 250 ntfs_inode **ntfs_ino) 251 { 252 MFT_RECORD *m; 253 ntfs_inode *ni = NULL; 254 ntfs_inode **extent_nis = NULL; 255 int i; 256 unsigned long mft_no = MREF(mref); 257 u16 seq_no = MSEQNO(mref); 258 bool destroy_ni = false; 259 260 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", 261 mft_no, base_ni->mft_no); 262 /* Make sure the base ntfs inode doesn't go away. */ 263 atomic_inc(&base_ni->count); 264 /* 265 * Check if this extent inode has already been added to the base inode, 266 * in which case just return it. If not found, add it to the base 267 * inode before returning it. 268 */ 269 mutex_lock(&base_ni->extent_lock); 270 if (base_ni->nr_extents > 0) { 271 extent_nis = base_ni->ext.extent_ntfs_inos; 272 for (i = 0; i < base_ni->nr_extents; i++) { 273 if (mft_no != extent_nis[i]->mft_no) 274 continue; 275 ni = extent_nis[i]; 276 /* Make sure the ntfs inode doesn't go away. */ 277 atomic_inc(&ni->count); 278 break; 279 } 280 } 281 if (likely(ni != NULL)) { 282 mutex_unlock(&base_ni->extent_lock); 283 atomic_dec(&base_ni->count); 284 /* We found the record; just have to map and return it. */ 285 m = map_mft_record(ni); 286 /* map_mft_record() has incremented this on success. */ 287 atomic_dec(&ni->count); 288 if (likely(!IS_ERR(m))) { 289 /* Verify the sequence number. */ 290 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { 291 ntfs_debug("Done 1."); 292 *ntfs_ino = ni; 293 return m; 294 } 295 unmap_mft_record(ni); 296 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 297 "reference! Corrupt filesystem. " 298 "Run chkdsk."); 299 return ERR_PTR(-EIO); 300 } 301 map_err_out: 302 ntfs_error(base_ni->vol->sb, "Failed to map extent " 303 "mft record, error code %ld.", -PTR_ERR(m)); 304 return m; 305 } 306 /* Record wasn't there. Get a new ntfs inode and initialize it. */ 307 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); 308 if (unlikely(!ni)) { 309 mutex_unlock(&base_ni->extent_lock); 310 atomic_dec(&base_ni->count); 311 return ERR_PTR(-ENOMEM); 312 } 313 ni->vol = base_ni->vol; 314 ni->seq_no = seq_no; 315 ni->nr_extents = -1; 316 ni->ext.base_ntfs_ino = base_ni; 317 /* Now map the record. */ 318 m = map_mft_record(ni); 319 if (IS_ERR(m)) { 320 mutex_unlock(&base_ni->extent_lock); 321 atomic_dec(&base_ni->count); 322 ntfs_clear_extent_inode(ni); 323 goto map_err_out; 324 } 325 /* Verify the sequence number if it is present. */ 326 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { 327 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 328 "reference! Corrupt filesystem. Run chkdsk."); 329 destroy_ni = true; 330 m = ERR_PTR(-EIO); 331 goto unm_err_out; 332 } 333 /* Attach extent inode to base inode, reallocating memory if needed. */ 334 if (!(base_ni->nr_extents & 3)) { 335 ntfs_inode **tmp; 336 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); 337 338 tmp = kmalloc(new_size, GFP_NOFS); 339 if (unlikely(!tmp)) { 340 ntfs_error(base_ni->vol->sb, "Failed to allocate " 341 "internal buffer."); 342 destroy_ni = true; 343 m = ERR_PTR(-ENOMEM); 344 goto unm_err_out; 345 } 346 if (base_ni->nr_extents) { 347 BUG_ON(!base_ni->ext.extent_ntfs_inos); 348 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - 349 4 * sizeof(ntfs_inode *)); 350 kfree(base_ni->ext.extent_ntfs_inos); 351 } 352 base_ni->ext.extent_ntfs_inos = tmp; 353 } 354 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; 355 mutex_unlock(&base_ni->extent_lock); 356 atomic_dec(&base_ni->count); 357 ntfs_debug("Done 2."); 358 *ntfs_ino = ni; 359 return m; 360 unm_err_out: 361 unmap_mft_record(ni); 362 mutex_unlock(&base_ni->extent_lock); 363 atomic_dec(&base_ni->count); 364 /* 365 * If the extent inode was not attached to the base inode we need to 366 * release it or we will leak memory. 367 */ 368 if (destroy_ni) 369 ntfs_clear_extent_inode(ni); 370 return m; 371 } 372 373 #ifdef NTFS_RW 374 375 /** 376 * __mark_mft_record_dirty - set the mft record and the page containing it dirty 377 * @ni: ntfs inode describing the mapped mft record 378 * 379 * Internal function. Users should call mark_mft_record_dirty() instead. 380 * 381 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, 382 * as well as the page containing the mft record, dirty. Also, mark the base 383 * vfs inode dirty. This ensures that any changes to the mft record are 384 * written out to disk. 385 * 386 * NOTE: We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) 387 * on the base vfs inode, because even though file data may have been modified, 388 * it is dirty in the inode meta data rather than the data page cache of the 389 * inode, and thus there are no data pages that need writing out. Therefore, a 390 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the 391 * other hand, is not sufficient, because ->write_inode needs to be called even 392 * in case of fdatasync. This needs to happen or the file data would not 393 * necessarily hit the device synchronously, even though the vfs inode has the 394 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just 395 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, 396 * which is not what I_DIRTY_SYNC on its own would suggest. 397 */ 398 void __mark_mft_record_dirty(ntfs_inode *ni) 399 { 400 ntfs_inode *base_ni; 401 402 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 403 BUG_ON(NInoAttr(ni)); 404 mark_ntfs_record_dirty(ni->page, ni->page_ofs); 405 /* Determine the base vfs inode and mark it dirty, too. */ 406 mutex_lock(&ni->extent_lock); 407 if (likely(ni->nr_extents >= 0)) 408 base_ni = ni; 409 else 410 base_ni = ni->ext.base_ntfs_ino; 411 mutex_unlock(&ni->extent_lock); 412 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC); 413 } 414 415 static const char *ntfs_please_email = "Please email " 416 "linux-ntfs-dev@lists.sourceforge.net and say that you saw " 417 "this message. Thank you."; 418 419 /** 420 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror 421 * @vol: ntfs volume on which the mft record to synchronize resides 422 * @mft_no: mft record number of mft record to synchronize 423 * @m: mapped, mst protected (extent) mft record to synchronize 424 * 425 * Write the mapped, mst protected (extent) mft record @m with mft record 426 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, 427 * bypassing the page cache and the $MFTMirr inode itself. 428 * 429 * This function is only for use at umount time when the mft mirror inode has 430 * already been disposed off. We BUG() if we are called while the mft mirror 431 * inode is still attached to the volume. 432 * 433 * On success return 0. On error return -errno. 434 * 435 * NOTE: This function is not implemented yet as I am not convinced it can 436 * actually be triggered considering the sequence of commits we do in super.c:: 437 * ntfs_put_super(). But just in case we provide this place holder as the 438 * alternative would be either to BUG() or to get a NULL pointer dereference 439 * and Oops. 440 */ 441 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, 442 const unsigned long mft_no, MFT_RECORD *m) 443 { 444 BUG_ON(vol->mftmirr_ino); 445 ntfs_error(vol->sb, "Umount time mft mirror syncing is not " 446 "implemented yet. %s", ntfs_please_email); 447 return -EOPNOTSUPP; 448 } 449 450 /** 451 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror 452 * @vol: ntfs volume on which the mft record to synchronize resides 453 * @mft_no: mft record number of mft record to synchronize 454 * @m: mapped, mst protected (extent) mft record to synchronize 455 * @sync: if true, wait for i/o completion 456 * 457 * Write the mapped, mst protected (extent) mft record @m with mft record 458 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. 459 * 460 * On success return 0. On error return -errno and set the volume errors flag 461 * in the ntfs volume @vol. 462 * 463 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 464 * 465 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 466 * schedule i/o via ->writepage or do it via kntfsd or whatever. 467 */ 468 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, 469 MFT_RECORD *m, int sync) 470 { 471 struct page *page; 472 unsigned int blocksize = vol->sb->s_blocksize; 473 int max_bhs = vol->mft_record_size / blocksize; 474 struct buffer_head *bhs[MAX_BHS]; 475 struct buffer_head *bh, *head; 476 u8 *kmirr; 477 runlist_element *rl; 478 unsigned int block_start, block_end, m_start, m_end, page_ofs; 479 int i_bhs, nr_bhs, err = 0; 480 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 481 482 ntfs_debug("Entering for inode 0x%lx.", mft_no); 483 BUG_ON(!max_bhs); 484 if (WARN_ON(max_bhs > MAX_BHS)) 485 return -EINVAL; 486 if (unlikely(!vol->mftmirr_ino)) { 487 /* This could happen during umount... */ 488 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); 489 if (likely(!err)) 490 return err; 491 goto err_out; 492 } 493 /* Get the page containing the mirror copy of the mft record @m. */ 494 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> 495 (PAGE_SHIFT - vol->mft_record_size_bits)); 496 if (IS_ERR(page)) { 497 ntfs_error(vol->sb, "Failed to map mft mirror page."); 498 err = PTR_ERR(page); 499 goto err_out; 500 } 501 lock_page(page); 502 BUG_ON(!PageUptodate(page)); 503 ClearPageUptodate(page); 504 /* Offset of the mft mirror record inside the page. */ 505 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 506 /* The address in the page of the mirror copy of the mft record @m. */ 507 kmirr = page_address(page) + page_ofs; 508 /* Copy the mst protected mft record to the mirror. */ 509 memcpy(kmirr, m, vol->mft_record_size); 510 /* Create uptodate buffers if not present. */ 511 if (unlikely(!page_has_buffers(page))) { 512 struct buffer_head *tail; 513 514 bh = head = alloc_page_buffers(page, blocksize, true); 515 do { 516 set_buffer_uptodate(bh); 517 tail = bh; 518 bh = bh->b_this_page; 519 } while (bh); 520 tail->b_this_page = head; 521 attach_page_buffers(page, head); 522 } 523 bh = head = page_buffers(page); 524 BUG_ON(!bh); 525 rl = NULL; 526 nr_bhs = 0; 527 block_start = 0; 528 m_start = kmirr - (u8*)page_address(page); 529 m_end = m_start + vol->mft_record_size; 530 do { 531 block_end = block_start + blocksize; 532 /* If the buffer is outside the mft record, skip it. */ 533 if (block_end <= m_start) 534 continue; 535 if (unlikely(block_start >= m_end)) 536 break; 537 /* Need to map the buffer if it is not mapped already. */ 538 if (unlikely(!buffer_mapped(bh))) { 539 VCN vcn; 540 LCN lcn; 541 unsigned int vcn_ofs; 542 543 bh->b_bdev = vol->sb->s_bdev; 544 /* Obtain the vcn and offset of the current block. */ 545 vcn = ((VCN)mft_no << vol->mft_record_size_bits) + 546 (block_start - m_start); 547 vcn_ofs = vcn & vol->cluster_size_mask; 548 vcn >>= vol->cluster_size_bits; 549 if (!rl) { 550 down_read(&NTFS_I(vol->mftmirr_ino)-> 551 runlist.lock); 552 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; 553 /* 554 * $MFTMirr always has the whole of its runlist 555 * in memory. 556 */ 557 BUG_ON(!rl); 558 } 559 /* Seek to element containing target vcn. */ 560 while (rl->length && rl[1].vcn <= vcn) 561 rl++; 562 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 563 /* For $MFTMirr, only lcn >= 0 is a successful remap. */ 564 if (likely(lcn >= 0)) { 565 /* Setup buffer head to correct block. */ 566 bh->b_blocknr = ((lcn << 567 vol->cluster_size_bits) + 568 vcn_ofs) >> blocksize_bits; 569 set_buffer_mapped(bh); 570 } else { 571 bh->b_blocknr = -1; 572 ntfs_error(vol->sb, "Cannot write mft mirror " 573 "record 0x%lx because its " 574 "location on disk could not " 575 "be determined (error code " 576 "%lli).", mft_no, 577 (long long)lcn); 578 err = -EIO; 579 } 580 } 581 BUG_ON(!buffer_uptodate(bh)); 582 BUG_ON(!nr_bhs && (m_start != block_start)); 583 BUG_ON(nr_bhs >= max_bhs); 584 bhs[nr_bhs++] = bh; 585 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 586 } while (block_start = block_end, (bh = bh->b_this_page) != head); 587 if (unlikely(rl)) 588 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); 589 if (likely(!err)) { 590 /* Lock buffers and start synchronous write i/o on them. */ 591 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 592 struct buffer_head *tbh = bhs[i_bhs]; 593 594 if (!trylock_buffer(tbh)) 595 BUG(); 596 BUG_ON(!buffer_uptodate(tbh)); 597 clear_buffer_dirty(tbh); 598 get_bh(tbh); 599 tbh->b_end_io = end_buffer_write_sync; 600 submit_bh(REQ_OP_WRITE, 0, tbh); 601 } 602 /* Wait on i/o completion of buffers. */ 603 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 604 struct buffer_head *tbh = bhs[i_bhs]; 605 606 wait_on_buffer(tbh); 607 if (unlikely(!buffer_uptodate(tbh))) { 608 err = -EIO; 609 /* 610 * Set the buffer uptodate so the page and 611 * buffer states do not become out of sync. 612 */ 613 set_buffer_uptodate(tbh); 614 } 615 } 616 } else /* if (unlikely(err)) */ { 617 /* Clean the buffers. */ 618 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 619 clear_buffer_dirty(bhs[i_bhs]); 620 } 621 /* Current state: all buffers are clean, unlocked, and uptodate. */ 622 /* Remove the mst protection fixups again. */ 623 post_write_mst_fixup((NTFS_RECORD*)kmirr); 624 flush_dcache_page(page); 625 SetPageUptodate(page); 626 unlock_page(page); 627 ntfs_unmap_page(page); 628 if (likely(!err)) { 629 ntfs_debug("Done."); 630 } else { 631 ntfs_error(vol->sb, "I/O error while writing mft mirror " 632 "record 0x%lx!", mft_no); 633 err_out: 634 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " 635 "code %i). Volume will be left marked dirty " 636 "on umount. Run ntfsfix on the partition " 637 "after umounting to correct this.", -err); 638 NVolSetErrors(vol); 639 } 640 return err; 641 } 642 643 /** 644 * write_mft_record_nolock - write out a mapped (extent) mft record 645 * @ni: ntfs inode describing the mapped (extent) mft record 646 * @m: mapped (extent) mft record to write 647 * @sync: if true, wait for i/o completion 648 * 649 * Write the mapped (extent) mft record @m described by the (regular or extent) 650 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in 651 * the mft mirror, that is also updated. 652 * 653 * We only write the mft record if the ntfs inode @ni is dirty and the first 654 * buffer belonging to its mft record is dirty, too. We ignore the dirty state 655 * of subsequent buffers because we could have raced with 656 * fs/ntfs/aops.c::mark_ntfs_record_dirty(). 657 * 658 * On success, clean the mft record and return 0. On error, leave the mft 659 * record dirty and return -errno. 660 * 661 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 662 * However, if the mft record has a counterpart in the mft mirror and @sync is 663 * true, we write the mft record, wait for i/o completion, and only then write 664 * the mft mirror copy. This ensures that if the system crashes either the mft 665 * or the mft mirror will contain a self-consistent mft record @m. If @sync is 666 * false on the other hand, we start i/o on both and then wait for completion 667 * on them. This provides a speedup but no longer guarantees that you will end 668 * up with a self-consistent mft record in the case of a crash but if you asked 669 * for asynchronous writing you probably do not care about that anyway. 670 * 671 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 672 * schedule i/o via ->writepage or do it via kntfsd or whatever. 673 */ 674 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) 675 { 676 ntfs_volume *vol = ni->vol; 677 struct page *page = ni->page; 678 unsigned int blocksize = vol->sb->s_blocksize; 679 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 680 int max_bhs = vol->mft_record_size / blocksize; 681 struct buffer_head *bhs[MAX_BHS]; 682 struct buffer_head *bh, *head; 683 runlist_element *rl; 684 unsigned int block_start, block_end, m_start, m_end; 685 int i_bhs, nr_bhs, err = 0; 686 687 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 688 BUG_ON(NInoAttr(ni)); 689 BUG_ON(!max_bhs); 690 BUG_ON(!PageLocked(page)); 691 if (WARN_ON(max_bhs > MAX_BHS)) { 692 err = -EINVAL; 693 goto err_out; 694 } 695 /* 696 * If the ntfs_inode is clean no need to do anything. If it is dirty, 697 * mark it as clean now so that it can be redirtied later on if needed. 698 * There is no danger of races since the caller is holding the locks 699 * for the mft record @m and the page it is in. 700 */ 701 if (!NInoTestClearDirty(ni)) 702 goto done; 703 bh = head = page_buffers(page); 704 BUG_ON(!bh); 705 rl = NULL; 706 nr_bhs = 0; 707 block_start = 0; 708 m_start = ni->page_ofs; 709 m_end = m_start + vol->mft_record_size; 710 do { 711 block_end = block_start + blocksize; 712 /* If the buffer is outside the mft record, skip it. */ 713 if (block_end <= m_start) 714 continue; 715 if (unlikely(block_start >= m_end)) 716 break; 717 /* 718 * If this block is not the first one in the record, we ignore 719 * the buffer's dirty state because we could have raced with a 720 * parallel mark_ntfs_record_dirty(). 721 */ 722 if (block_start == m_start) { 723 /* This block is the first one in the record. */ 724 if (!buffer_dirty(bh)) { 725 BUG_ON(nr_bhs); 726 /* Clean records are not written out. */ 727 break; 728 } 729 } 730 /* Need to map the buffer if it is not mapped already. */ 731 if (unlikely(!buffer_mapped(bh))) { 732 VCN vcn; 733 LCN lcn; 734 unsigned int vcn_ofs; 735 736 bh->b_bdev = vol->sb->s_bdev; 737 /* Obtain the vcn and offset of the current block. */ 738 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + 739 (block_start - m_start); 740 vcn_ofs = vcn & vol->cluster_size_mask; 741 vcn >>= vol->cluster_size_bits; 742 if (!rl) { 743 down_read(&NTFS_I(vol->mft_ino)->runlist.lock); 744 rl = NTFS_I(vol->mft_ino)->runlist.rl; 745 BUG_ON(!rl); 746 } 747 /* Seek to element containing target vcn. */ 748 while (rl->length && rl[1].vcn <= vcn) 749 rl++; 750 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 751 /* For $MFT, only lcn >= 0 is a successful remap. */ 752 if (likely(lcn >= 0)) { 753 /* Setup buffer head to correct block. */ 754 bh->b_blocknr = ((lcn << 755 vol->cluster_size_bits) + 756 vcn_ofs) >> blocksize_bits; 757 set_buffer_mapped(bh); 758 } else { 759 bh->b_blocknr = -1; 760 ntfs_error(vol->sb, "Cannot write mft record " 761 "0x%lx because its location " 762 "on disk could not be " 763 "determined (error code %lli).", 764 ni->mft_no, (long long)lcn); 765 err = -EIO; 766 } 767 } 768 BUG_ON(!buffer_uptodate(bh)); 769 BUG_ON(!nr_bhs && (m_start != block_start)); 770 BUG_ON(nr_bhs >= max_bhs); 771 bhs[nr_bhs++] = bh; 772 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 773 } while (block_start = block_end, (bh = bh->b_this_page) != head); 774 if (unlikely(rl)) 775 up_read(&NTFS_I(vol->mft_ino)->runlist.lock); 776 if (!nr_bhs) 777 goto done; 778 if (unlikely(err)) 779 goto cleanup_out; 780 /* Apply the mst protection fixups. */ 781 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); 782 if (err) { 783 ntfs_error(vol->sb, "Failed to apply mst fixups!"); 784 goto cleanup_out; 785 } 786 flush_dcache_mft_record_page(ni); 787 /* Lock buffers and start synchronous write i/o on them. */ 788 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 789 struct buffer_head *tbh = bhs[i_bhs]; 790 791 if (!trylock_buffer(tbh)) 792 BUG(); 793 BUG_ON(!buffer_uptodate(tbh)); 794 clear_buffer_dirty(tbh); 795 get_bh(tbh); 796 tbh->b_end_io = end_buffer_write_sync; 797 submit_bh(REQ_OP_WRITE, 0, tbh); 798 } 799 /* Synchronize the mft mirror now if not @sync. */ 800 if (!sync && ni->mft_no < vol->mftmirr_size) 801 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 802 /* Wait on i/o completion of buffers. */ 803 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 804 struct buffer_head *tbh = bhs[i_bhs]; 805 806 wait_on_buffer(tbh); 807 if (unlikely(!buffer_uptodate(tbh))) { 808 err = -EIO; 809 /* 810 * Set the buffer uptodate so the page and buffer 811 * states do not become out of sync. 812 */ 813 if (PageUptodate(page)) 814 set_buffer_uptodate(tbh); 815 } 816 } 817 /* If @sync, now synchronize the mft mirror. */ 818 if (sync && ni->mft_no < vol->mftmirr_size) 819 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 820 /* Remove the mst protection fixups again. */ 821 post_write_mst_fixup((NTFS_RECORD*)m); 822 flush_dcache_mft_record_page(ni); 823 if (unlikely(err)) { 824 /* I/O error during writing. This is really bad! */ 825 ntfs_error(vol->sb, "I/O error while writing mft record " 826 "0x%lx! Marking base inode as bad. You " 827 "should unmount the volume and run chkdsk.", 828 ni->mft_no); 829 goto err_out; 830 } 831 done: 832 ntfs_debug("Done."); 833 return 0; 834 cleanup_out: 835 /* Clean the buffers. */ 836 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 837 clear_buffer_dirty(bhs[i_bhs]); 838 err_out: 839 /* 840 * Current state: all buffers are clean, unlocked, and uptodate. 841 * The caller should mark the base inode as bad so that no more i/o 842 * happens. ->clear_inode() will still be invoked so all extent inodes 843 * and other allocated memory will be freed. 844 */ 845 if (err == -ENOMEM) { 846 ntfs_error(vol->sb, "Not enough memory to write mft record. " 847 "Redirtying so the write is retried later."); 848 mark_mft_record_dirty(ni); 849 err = 0; 850 } else 851 NVolSetErrors(vol); 852 return err; 853 } 854 855 /** 856 * ntfs_may_write_mft_record - check if an mft record may be written out 857 * @vol: [IN] ntfs volume on which the mft record to check resides 858 * @mft_no: [IN] mft record number of the mft record to check 859 * @m: [IN] mapped mft record to check 860 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned 861 * 862 * Check if the mapped (base or extent) mft record @m with mft record number 863 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary 864 * and possible the ntfs inode of the mft record is locked and the base vfs 865 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The 866 * caller is responsible for unlocking the ntfs inode and unpinning the base 867 * vfs inode. 868 * 869 * Return 'true' if the mft record may be written out and 'false' if not. 870 * 871 * The caller has locked the page and cleared the uptodate flag on it which 872 * means that we can safely write out any dirty mft records that do not have 873 * their inodes in icache as determined by ilookup5() as anyone 874 * opening/creating such an inode would block when attempting to map the mft 875 * record in read_cache_page() until we are finished with the write out. 876 * 877 * Here is a description of the tests we perform: 878 * 879 * If the inode is found in icache we know the mft record must be a base mft 880 * record. If it is dirty, we do not write it and return 'false' as the vfs 881 * inode write paths will result in the access times being updated which would 882 * cause the base mft record to be redirtied and written out again. (We know 883 * the access time update will modify the base mft record because Windows 884 * chkdsk complains if the standard information attribute is not in the base 885 * mft record.) 886 * 887 * If the inode is in icache and not dirty, we attempt to lock the mft record 888 * and if we find the lock was already taken, it is not safe to write the mft 889 * record and we return 'false'. 890 * 891 * If we manage to obtain the lock we have exclusive access to the mft record, 892 * which also allows us safe writeout of the mft record. We then set 893 * @locked_ni to the locked ntfs inode and return 'true'. 894 * 895 * Note we cannot just lock the mft record and sleep while waiting for the lock 896 * because this would deadlock due to lock reversal (normally the mft record is 897 * locked before the page is locked but we already have the page locked here 898 * when we try to lock the mft record). 899 * 900 * If the inode is not in icache we need to perform further checks. 901 * 902 * If the mft record is not a FILE record or it is a base mft record, we can 903 * safely write it and return 'true'. 904 * 905 * We now know the mft record is an extent mft record. We check if the inode 906 * corresponding to its base mft record is in icache and obtain a reference to 907 * it if it is. If it is not, we can safely write it and return 'true'. 908 * 909 * We now have the base inode for the extent mft record. We check if it has an 910 * ntfs inode for the extent mft record attached and if not it is safe to write 911 * the extent mft record and we return 'true'. 912 * 913 * The ntfs inode for the extent mft record is attached to the base inode so we 914 * attempt to lock the extent mft record and if we find the lock was already 915 * taken, it is not safe to write the extent mft record and we return 'false'. 916 * 917 * If we manage to obtain the lock we have exclusive access to the extent mft 918 * record, which also allows us safe writeout of the extent mft record. We 919 * set the ntfs inode of the extent mft record clean and then set @locked_ni to 920 * the now locked ntfs inode and return 'true'. 921 * 922 * Note, the reason for actually writing dirty mft records here and not just 923 * relying on the vfs inode dirty code paths is that we can have mft records 924 * modified without them ever having actual inodes in memory. Also we can have 925 * dirty mft records with clean ntfs inodes in memory. None of the described 926 * cases would result in the dirty mft records being written out if we only 927 * relied on the vfs inode dirty code paths. And these cases can really occur 928 * during allocation of new mft records and in particular when the 929 * initialized_size of the $MFT/$DATA attribute is extended and the new space 930 * is initialized using ntfs_mft_record_format(). The clean inode can then 931 * appear if the mft record is reused for a new inode before it got written 932 * out. 933 */ 934 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, 935 const MFT_RECORD *m, ntfs_inode **locked_ni) 936 { 937 struct super_block *sb = vol->sb; 938 struct inode *mft_vi = vol->mft_ino; 939 struct inode *vi; 940 ntfs_inode *ni, *eni, **extent_nis; 941 int i; 942 ntfs_attr na; 943 944 ntfs_debug("Entering for inode 0x%lx.", mft_no); 945 /* 946 * Normally we do not return a locked inode so set @locked_ni to NULL. 947 */ 948 BUG_ON(!locked_ni); 949 *locked_ni = NULL; 950 /* 951 * Check if the inode corresponding to this mft record is in the VFS 952 * inode cache and obtain a reference to it if it is. 953 */ 954 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); 955 na.mft_no = mft_no; 956 na.name = NULL; 957 na.name_len = 0; 958 na.type = AT_UNUSED; 959 /* 960 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and 961 * we get here for it rather often. 962 */ 963 if (!mft_no) { 964 /* Balance the below iput(). */ 965 vi = igrab(mft_vi); 966 BUG_ON(vi != mft_vi); 967 } else { 968 /* 969 * Have to use ilookup5_nowait() since ilookup5() waits for the 970 * inode lock which causes ntfs to deadlock when a concurrent 971 * inode write via the inode dirty code paths and the page 972 * dirty code path of the inode dirty code path when writing 973 * $MFT occurs. 974 */ 975 vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na); 976 } 977 if (vi) { 978 ntfs_debug("Base inode 0x%lx is in icache.", mft_no); 979 /* The inode is in icache. */ 980 ni = NTFS_I(vi); 981 /* Take a reference to the ntfs inode. */ 982 atomic_inc(&ni->count); 983 /* If the inode is dirty, do not write this record. */ 984 if (NInoDirty(ni)) { 985 ntfs_debug("Inode 0x%lx is dirty, do not write it.", 986 mft_no); 987 atomic_dec(&ni->count); 988 iput(vi); 989 return false; 990 } 991 ntfs_debug("Inode 0x%lx is not dirty.", mft_no); 992 /* The inode is not dirty, try to take the mft record lock. */ 993 if (unlikely(!mutex_trylock(&ni->mrec_lock))) { 994 ntfs_debug("Mft record 0x%lx is already locked, do " 995 "not write it.", mft_no); 996 atomic_dec(&ni->count); 997 iput(vi); 998 return false; 999 } 1000 ntfs_debug("Managed to lock mft record 0x%lx, write it.", 1001 mft_no); 1002 /* 1003 * The write has to occur while we hold the mft record lock so 1004 * return the locked ntfs inode. 1005 */ 1006 *locked_ni = ni; 1007 return true; 1008 } 1009 ntfs_debug("Inode 0x%lx is not in icache.", mft_no); 1010 /* The inode is not in icache. */ 1011 /* Write the record if it is not a mft record (type "FILE"). */ 1012 if (!ntfs_is_mft_record(m->magic)) { 1013 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", 1014 mft_no); 1015 return true; 1016 } 1017 /* Write the mft record if it is a base inode. */ 1018 if (!m->base_mft_record) { 1019 ntfs_debug("Mft record 0x%lx is a base record, write it.", 1020 mft_no); 1021 return true; 1022 } 1023 /* 1024 * This is an extent mft record. Check if the inode corresponding to 1025 * its base mft record is in icache and obtain a reference to it if it 1026 * is. 1027 */ 1028 na.mft_no = MREF_LE(m->base_mft_record); 1029 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base " 1030 "inode 0x%lx in icache.", mft_no, na.mft_no); 1031 if (!na.mft_no) { 1032 /* Balance the below iput(). */ 1033 vi = igrab(mft_vi); 1034 BUG_ON(vi != mft_vi); 1035 } else 1036 vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode, 1037 &na); 1038 if (!vi) { 1039 /* 1040 * The base inode is not in icache, write this extent mft 1041 * record. 1042 */ 1043 ntfs_debug("Base inode 0x%lx is not in icache, write the " 1044 "extent record.", na.mft_no); 1045 return true; 1046 } 1047 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); 1048 /* 1049 * The base inode is in icache. Check if it has the extent inode 1050 * corresponding to this extent mft record attached. 1051 */ 1052 ni = NTFS_I(vi); 1053 mutex_lock(&ni->extent_lock); 1054 if (ni->nr_extents <= 0) { 1055 /* 1056 * The base inode has no attached extent inodes, write this 1057 * extent mft record. 1058 */ 1059 mutex_unlock(&ni->extent_lock); 1060 iput(vi); 1061 ntfs_debug("Base inode 0x%lx has no attached extent inodes, " 1062 "write the extent record.", na.mft_no); 1063 return true; 1064 } 1065 /* Iterate over the attached extent inodes. */ 1066 extent_nis = ni->ext.extent_ntfs_inos; 1067 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { 1068 if (mft_no == extent_nis[i]->mft_no) { 1069 /* 1070 * Found the extent inode corresponding to this extent 1071 * mft record. 1072 */ 1073 eni = extent_nis[i]; 1074 break; 1075 } 1076 } 1077 /* 1078 * If the extent inode was not attached to the base inode, write this 1079 * extent mft record. 1080 */ 1081 if (!eni) { 1082 mutex_unlock(&ni->extent_lock); 1083 iput(vi); 1084 ntfs_debug("Extent inode 0x%lx is not attached to its base " 1085 "inode 0x%lx, write the extent record.", 1086 mft_no, na.mft_no); 1087 return true; 1088 } 1089 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", 1090 mft_no, na.mft_no); 1091 /* Take a reference to the extent ntfs inode. */ 1092 atomic_inc(&eni->count); 1093 mutex_unlock(&ni->extent_lock); 1094 /* 1095 * Found the extent inode coresponding to this extent mft record. 1096 * Try to take the mft record lock. 1097 */ 1098 if (unlikely(!mutex_trylock(&eni->mrec_lock))) { 1099 atomic_dec(&eni->count); 1100 iput(vi); 1101 ntfs_debug("Extent mft record 0x%lx is already locked, do " 1102 "not write it.", mft_no); 1103 return false; 1104 } 1105 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", 1106 mft_no); 1107 if (NInoTestClearDirty(eni)) 1108 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", 1109 mft_no); 1110 /* 1111 * The write has to occur while we hold the mft record lock so return 1112 * the locked extent ntfs inode. 1113 */ 1114 *locked_ni = eni; 1115 return true; 1116 } 1117 1118 static const char *es = " Leaving inconsistent metadata. Unmount and run " 1119 "chkdsk."; 1120 1121 /** 1122 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name 1123 * @vol: volume on which to search for a free mft record 1124 * @base_ni: open base inode if allocating an extent mft record or NULL 1125 * 1126 * Search for a free mft record in the mft bitmap attribute on the ntfs volume 1127 * @vol. 1128 * 1129 * If @base_ni is NULL start the search at the default allocator position. 1130 * 1131 * If @base_ni is not NULL start the search at the mft record after the base 1132 * mft record @base_ni. 1133 * 1134 * Return the free mft record on success and -errno on error. An error code of 1135 * -ENOSPC means that there are no free mft records in the currently 1136 * initialized mft bitmap. 1137 * 1138 * Locking: Caller must hold vol->mftbmp_lock for writing. 1139 */ 1140 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, 1141 ntfs_inode *base_ni) 1142 { 1143 s64 pass_end, ll, data_pos, pass_start, ofs, bit; 1144 unsigned long flags; 1145 struct address_space *mftbmp_mapping; 1146 u8 *buf, *byte; 1147 struct page *page; 1148 unsigned int page_ofs, size; 1149 u8 pass, b; 1150 1151 ntfs_debug("Searching for free mft record in the currently " 1152 "initialized mft bitmap."); 1153 mftbmp_mapping = vol->mftbmp_ino->i_mapping; 1154 /* 1155 * Set the end of the pass making sure we do not overflow the mft 1156 * bitmap. 1157 */ 1158 read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); 1159 pass_end = NTFS_I(vol->mft_ino)->allocated_size >> 1160 vol->mft_record_size_bits; 1161 read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); 1162 read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1163 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; 1164 read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1165 if (pass_end > ll) 1166 pass_end = ll; 1167 pass = 1; 1168 if (!base_ni) 1169 data_pos = vol->mft_data_pos; 1170 else 1171 data_pos = base_ni->mft_no + 1; 1172 if (data_pos < 24) 1173 data_pos = 24; 1174 if (data_pos >= pass_end) { 1175 data_pos = 24; 1176 pass = 2; 1177 /* This happens on a freshly formatted volume. */ 1178 if (data_pos >= pass_end) 1179 return -ENOSPC; 1180 } 1181 pass_start = data_pos; 1182 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " 1183 "pass_end 0x%llx, data_pos 0x%llx.", pass, 1184 (long long)pass_start, (long long)pass_end, 1185 (long long)data_pos); 1186 /* Loop until a free mft record is found. */ 1187 for (; pass <= 2;) { 1188 /* Cap size to pass_end. */ 1189 ofs = data_pos >> 3; 1190 page_ofs = ofs & ~PAGE_MASK; 1191 size = PAGE_SIZE - page_ofs; 1192 ll = ((pass_end + 7) >> 3) - ofs; 1193 if (size > ll) 1194 size = ll; 1195 size <<= 3; 1196 /* 1197 * If we are still within the active pass, search the next page 1198 * for a zero bit. 1199 */ 1200 if (size) { 1201 page = ntfs_map_page(mftbmp_mapping, 1202 ofs >> PAGE_SHIFT); 1203 if (IS_ERR(page)) { 1204 ntfs_error(vol->sb, "Failed to read mft " 1205 "bitmap, aborting."); 1206 return PTR_ERR(page); 1207 } 1208 buf = (u8*)page_address(page) + page_ofs; 1209 bit = data_pos & 7; 1210 data_pos &= ~7ull; 1211 ntfs_debug("Before inner for loop: size 0x%x, " 1212 "data_pos 0x%llx, bit 0x%llx", size, 1213 (long long)data_pos, (long long)bit); 1214 for (; bit < size && data_pos + bit < pass_end; 1215 bit &= ~7ull, bit += 8) { 1216 byte = buf + (bit >> 3); 1217 if (*byte == 0xff) 1218 continue; 1219 b = ffz((unsigned long)*byte); 1220 if (b < 8 && b >= (bit & 7)) { 1221 ll = data_pos + (bit & ~7ull) + b; 1222 if (unlikely(ll > (1ll << 32))) { 1223 ntfs_unmap_page(page); 1224 return -ENOSPC; 1225 } 1226 *byte |= 1 << b; 1227 flush_dcache_page(page); 1228 set_page_dirty(page); 1229 ntfs_unmap_page(page); 1230 ntfs_debug("Done. (Found and " 1231 "allocated mft record " 1232 "0x%llx.)", 1233 (long long)ll); 1234 return ll; 1235 } 1236 } 1237 ntfs_debug("After inner for loop: size 0x%x, " 1238 "data_pos 0x%llx, bit 0x%llx", size, 1239 (long long)data_pos, (long long)bit); 1240 data_pos += size; 1241 ntfs_unmap_page(page); 1242 /* 1243 * If the end of the pass has not been reached yet, 1244 * continue searching the mft bitmap for a zero bit. 1245 */ 1246 if (data_pos < pass_end) 1247 continue; 1248 } 1249 /* Do the next pass. */ 1250 if (++pass == 2) { 1251 /* 1252 * Starting the second pass, in which we scan the first 1253 * part of the zone which we omitted earlier. 1254 */ 1255 pass_end = pass_start; 1256 data_pos = pass_start = 24; 1257 ntfs_debug("pass %i, pass_start 0x%llx, pass_end " 1258 "0x%llx.", pass, (long long)pass_start, 1259 (long long)pass_end); 1260 if (data_pos >= pass_end) 1261 break; 1262 } 1263 } 1264 /* No free mft records in currently initialized mft bitmap. */ 1265 ntfs_debug("Done. (No free mft records left in currently initialized " 1266 "mft bitmap.)"); 1267 return -ENOSPC; 1268 } 1269 1270 /** 1271 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster 1272 * @vol: volume on which to extend the mft bitmap attribute 1273 * 1274 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. 1275 * 1276 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1277 * data_size. 1278 * 1279 * Return 0 on success and -errno on error. 1280 * 1281 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1282 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for 1283 * writing and releases it before returning. 1284 * - This function takes vol->lcnbmp_lock for writing and releases it 1285 * before returning. 1286 */ 1287 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) 1288 { 1289 LCN lcn; 1290 s64 ll; 1291 unsigned long flags; 1292 struct page *page; 1293 ntfs_inode *mft_ni, *mftbmp_ni; 1294 runlist_element *rl, *rl2 = NULL; 1295 ntfs_attr_search_ctx *ctx = NULL; 1296 MFT_RECORD *mrec; 1297 ATTR_RECORD *a = NULL; 1298 int ret, mp_size; 1299 u32 old_alen = 0; 1300 u8 *b, tb; 1301 struct { 1302 u8 added_cluster:1; 1303 u8 added_run:1; 1304 u8 mp_rebuilt:1; 1305 } status = { 0, 0, 0 }; 1306 1307 ntfs_debug("Extending mft bitmap allocation."); 1308 mft_ni = NTFS_I(vol->mft_ino); 1309 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 1310 /* 1311 * Determine the last lcn of the mft bitmap. The allocated size of the 1312 * mft bitmap cannot be zero so we are ok to do this. 1313 */ 1314 down_write(&mftbmp_ni->runlist.lock); 1315 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1316 ll = mftbmp_ni->allocated_size; 1317 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1318 rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, 1319 (ll - 1) >> vol->cluster_size_bits, NULL); 1320 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { 1321 up_write(&mftbmp_ni->runlist.lock); 1322 ntfs_error(vol->sb, "Failed to determine last allocated " 1323 "cluster of mft bitmap attribute."); 1324 if (!IS_ERR(rl)) 1325 ret = -EIO; 1326 else 1327 ret = PTR_ERR(rl); 1328 return ret; 1329 } 1330 lcn = rl->lcn + rl->length; 1331 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", 1332 (long long)lcn); 1333 /* 1334 * Attempt to get the cluster following the last allocated cluster by 1335 * hand as it may be in the MFT zone so the allocator would not give it 1336 * to us. 1337 */ 1338 ll = lcn >> 3; 1339 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, 1340 ll >> PAGE_SHIFT); 1341 if (IS_ERR(page)) { 1342 up_write(&mftbmp_ni->runlist.lock); 1343 ntfs_error(vol->sb, "Failed to read from lcn bitmap."); 1344 return PTR_ERR(page); 1345 } 1346 b = (u8*)page_address(page) + (ll & ~PAGE_MASK); 1347 tb = 1 << (lcn & 7ull); 1348 down_write(&vol->lcnbmp_lock); 1349 if (*b != 0xff && !(*b & tb)) { 1350 /* Next cluster is free, allocate it. */ 1351 *b |= tb; 1352 flush_dcache_page(page); 1353 set_page_dirty(page); 1354 up_write(&vol->lcnbmp_lock); 1355 ntfs_unmap_page(page); 1356 /* Update the mft bitmap runlist. */ 1357 rl->length++; 1358 rl[1].vcn++; 1359 status.added_cluster = 1; 1360 ntfs_debug("Appending one cluster to mft bitmap."); 1361 } else { 1362 up_write(&vol->lcnbmp_lock); 1363 ntfs_unmap_page(page); 1364 /* Allocate a cluster from the DATA_ZONE. */ 1365 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, 1366 true); 1367 if (IS_ERR(rl2)) { 1368 up_write(&mftbmp_ni->runlist.lock); 1369 ntfs_error(vol->sb, "Failed to allocate a cluster for " 1370 "the mft bitmap."); 1371 return PTR_ERR(rl2); 1372 } 1373 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); 1374 if (IS_ERR(rl)) { 1375 up_write(&mftbmp_ni->runlist.lock); 1376 ntfs_error(vol->sb, "Failed to merge runlists for mft " 1377 "bitmap."); 1378 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1379 ntfs_error(vol->sb, "Failed to deallocate " 1380 "allocated cluster.%s", es); 1381 NVolSetErrors(vol); 1382 } 1383 ntfs_free(rl2); 1384 return PTR_ERR(rl); 1385 } 1386 mftbmp_ni->runlist.rl = rl; 1387 status.added_run = 1; 1388 ntfs_debug("Adding one run to mft bitmap."); 1389 /* Find the last run in the new runlist. */ 1390 for (; rl[1].length; rl++) 1391 ; 1392 } 1393 /* 1394 * Update the attribute record as well. Note: @rl is the last 1395 * (non-terminator) runlist element of mft bitmap. 1396 */ 1397 mrec = map_mft_record(mft_ni); 1398 if (IS_ERR(mrec)) { 1399 ntfs_error(vol->sb, "Failed to map mft record."); 1400 ret = PTR_ERR(mrec); 1401 goto undo_alloc; 1402 } 1403 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1404 if (unlikely(!ctx)) { 1405 ntfs_error(vol->sb, "Failed to get search context."); 1406 ret = -ENOMEM; 1407 goto undo_alloc; 1408 } 1409 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1410 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1411 0, ctx); 1412 if (unlikely(ret)) { 1413 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1414 "mft bitmap attribute."); 1415 if (ret == -ENOENT) 1416 ret = -EIO; 1417 goto undo_alloc; 1418 } 1419 a = ctx->attr; 1420 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1421 /* Search back for the previous last allocated cluster of mft bitmap. */ 1422 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { 1423 if (ll >= rl2->vcn) 1424 break; 1425 } 1426 BUG_ON(ll < rl2->vcn); 1427 BUG_ON(ll >= rl2->vcn + rl2->length); 1428 /* Get the size for the new mapping pairs array for this extent. */ 1429 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1430 if (unlikely(mp_size <= 0)) { 1431 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1432 "mft bitmap attribute extent."); 1433 ret = mp_size; 1434 if (!ret) 1435 ret = -EIO; 1436 goto undo_alloc; 1437 } 1438 /* Expand the attribute record if necessary. */ 1439 old_alen = le32_to_cpu(a->length); 1440 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1441 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1442 if (unlikely(ret)) { 1443 if (ret != -ENOSPC) { 1444 ntfs_error(vol->sb, "Failed to resize attribute " 1445 "record for mft bitmap attribute."); 1446 goto undo_alloc; 1447 } 1448 // TODO: Deal with this by moving this extent to a new mft 1449 // record or by starting a new extent in a new mft record or by 1450 // moving other attributes out of this mft record. 1451 // Note: It will need to be a special mft record and if none of 1452 // those are available it gets rather complicated... 1453 ntfs_error(vol->sb, "Not enough space in this mft record to " 1454 "accommodate extended mft bitmap attribute " 1455 "extent. Cannot handle this yet."); 1456 ret = -EOPNOTSUPP; 1457 goto undo_alloc; 1458 } 1459 status.mp_rebuilt = 1; 1460 /* Generate the mapping pairs array directly into the attr record. */ 1461 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1462 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1463 mp_size, rl2, ll, -1, NULL); 1464 if (unlikely(ret)) { 1465 ntfs_error(vol->sb, "Failed to build mapping pairs array for " 1466 "mft bitmap attribute."); 1467 goto undo_alloc; 1468 } 1469 /* Update the highest_vcn. */ 1470 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1471 /* 1472 * We now have extended the mft bitmap allocated_size by one cluster. 1473 * Reflect this in the ntfs_inode structure and the attribute record. 1474 */ 1475 if (a->data.non_resident.lowest_vcn) { 1476 /* 1477 * We are not in the first attribute extent, switch to it, but 1478 * first ensure the changes will make it to disk later. 1479 */ 1480 flush_dcache_mft_record_page(ctx->ntfs_ino); 1481 mark_mft_record_dirty(ctx->ntfs_ino); 1482 ntfs_attr_reinit_search_ctx(ctx); 1483 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1484 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 1485 0, ctx); 1486 if (unlikely(ret)) { 1487 ntfs_error(vol->sb, "Failed to find first attribute " 1488 "extent of mft bitmap attribute."); 1489 goto restore_undo_alloc; 1490 } 1491 a = ctx->attr; 1492 } 1493 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1494 mftbmp_ni->allocated_size += vol->cluster_size; 1495 a->data.non_resident.allocated_size = 1496 cpu_to_sle64(mftbmp_ni->allocated_size); 1497 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1498 /* Ensure the changes make it to disk. */ 1499 flush_dcache_mft_record_page(ctx->ntfs_ino); 1500 mark_mft_record_dirty(ctx->ntfs_ino); 1501 ntfs_attr_put_search_ctx(ctx); 1502 unmap_mft_record(mft_ni); 1503 up_write(&mftbmp_ni->runlist.lock); 1504 ntfs_debug("Done."); 1505 return 0; 1506 restore_undo_alloc: 1507 ntfs_attr_reinit_search_ctx(ctx); 1508 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1509 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1510 0, ctx)) { 1511 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1512 "mft bitmap attribute.%s", es); 1513 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1514 mftbmp_ni->allocated_size += vol->cluster_size; 1515 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1516 ntfs_attr_put_search_ctx(ctx); 1517 unmap_mft_record(mft_ni); 1518 up_write(&mftbmp_ni->runlist.lock); 1519 /* 1520 * The only thing that is now wrong is ->allocated_size of the 1521 * base attribute extent which chkdsk should be able to fix. 1522 */ 1523 NVolSetErrors(vol); 1524 return ret; 1525 } 1526 a = ctx->attr; 1527 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); 1528 undo_alloc: 1529 if (status.added_cluster) { 1530 /* Truncate the last run in the runlist by one cluster. */ 1531 rl->length--; 1532 rl[1].vcn--; 1533 } else if (status.added_run) { 1534 lcn = rl->lcn; 1535 /* Remove the last run from the runlist. */ 1536 rl->lcn = rl[1].lcn; 1537 rl->length = 0; 1538 } 1539 /* Deallocate the cluster. */ 1540 down_write(&vol->lcnbmp_lock); 1541 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1542 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); 1543 NVolSetErrors(vol); 1544 } 1545 up_write(&vol->lcnbmp_lock); 1546 if (status.mp_rebuilt) { 1547 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1548 a->data.non_resident.mapping_pairs_offset), 1549 old_alen - le16_to_cpu( 1550 a->data.non_resident.mapping_pairs_offset), 1551 rl2, ll, -1, NULL)) { 1552 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1553 "array.%s", es); 1554 NVolSetErrors(vol); 1555 } 1556 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1557 ntfs_error(vol->sb, "Failed to restore attribute " 1558 "record.%s", es); 1559 NVolSetErrors(vol); 1560 } 1561 flush_dcache_mft_record_page(ctx->ntfs_ino); 1562 mark_mft_record_dirty(ctx->ntfs_ino); 1563 } 1564 if (ctx) 1565 ntfs_attr_put_search_ctx(ctx); 1566 if (!IS_ERR(mrec)) 1567 unmap_mft_record(mft_ni); 1568 up_write(&mftbmp_ni->runlist.lock); 1569 return ret; 1570 } 1571 1572 /** 1573 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data 1574 * @vol: volume on which to extend the mft bitmap attribute 1575 * 1576 * Extend the initialized portion of the mft bitmap attribute on the ntfs 1577 * volume @vol by 8 bytes. 1578 * 1579 * Note: Only changes initialized_size and data_size, i.e. requires that 1580 * allocated_size is big enough to fit the new initialized_size. 1581 * 1582 * Return 0 on success and -error on error. 1583 * 1584 * Locking: Caller must hold vol->mftbmp_lock for writing. 1585 */ 1586 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) 1587 { 1588 s64 old_data_size, old_initialized_size; 1589 unsigned long flags; 1590 struct inode *mftbmp_vi; 1591 ntfs_inode *mft_ni, *mftbmp_ni; 1592 ntfs_attr_search_ctx *ctx; 1593 MFT_RECORD *mrec; 1594 ATTR_RECORD *a; 1595 int ret; 1596 1597 ntfs_debug("Extending mft bitmap initiailized (and data) size."); 1598 mft_ni = NTFS_I(vol->mft_ino); 1599 mftbmp_vi = vol->mftbmp_ino; 1600 mftbmp_ni = NTFS_I(mftbmp_vi); 1601 /* Get the attribute record. */ 1602 mrec = map_mft_record(mft_ni); 1603 if (IS_ERR(mrec)) { 1604 ntfs_error(vol->sb, "Failed to map mft record."); 1605 return PTR_ERR(mrec); 1606 } 1607 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1608 if (unlikely(!ctx)) { 1609 ntfs_error(vol->sb, "Failed to get search context."); 1610 ret = -ENOMEM; 1611 goto unm_err_out; 1612 } 1613 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1614 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); 1615 if (unlikely(ret)) { 1616 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1617 "mft bitmap attribute."); 1618 if (ret == -ENOENT) 1619 ret = -EIO; 1620 goto put_err_out; 1621 } 1622 a = ctx->attr; 1623 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1624 old_data_size = i_size_read(mftbmp_vi); 1625 old_initialized_size = mftbmp_ni->initialized_size; 1626 /* 1627 * We can simply update the initialized_size before filling the space 1628 * with zeroes because the caller is holding the mft bitmap lock for 1629 * writing which ensures that no one else is trying to access the data. 1630 */ 1631 mftbmp_ni->initialized_size += 8; 1632 a->data.non_resident.initialized_size = 1633 cpu_to_sle64(mftbmp_ni->initialized_size); 1634 if (mftbmp_ni->initialized_size > old_data_size) { 1635 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); 1636 a->data.non_resident.data_size = 1637 cpu_to_sle64(mftbmp_ni->initialized_size); 1638 } 1639 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1640 /* Ensure the changes make it to disk. */ 1641 flush_dcache_mft_record_page(ctx->ntfs_ino); 1642 mark_mft_record_dirty(ctx->ntfs_ino); 1643 ntfs_attr_put_search_ctx(ctx); 1644 unmap_mft_record(mft_ni); 1645 /* Initialize the mft bitmap attribute value with zeroes. */ 1646 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); 1647 if (likely(!ret)) { 1648 ntfs_debug("Done. (Wrote eight initialized bytes to mft " 1649 "bitmap."); 1650 return 0; 1651 } 1652 ntfs_error(vol->sb, "Failed to write to mft bitmap."); 1653 /* Try to recover from the error. */ 1654 mrec = map_mft_record(mft_ni); 1655 if (IS_ERR(mrec)) { 1656 ntfs_error(vol->sb, "Failed to map mft record.%s", es); 1657 NVolSetErrors(vol); 1658 return ret; 1659 } 1660 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1661 if (unlikely(!ctx)) { 1662 ntfs_error(vol->sb, "Failed to get search context.%s", es); 1663 NVolSetErrors(vol); 1664 goto unm_err_out; 1665 } 1666 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1667 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { 1668 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1669 "mft bitmap attribute.%s", es); 1670 NVolSetErrors(vol); 1671 put_err_out: 1672 ntfs_attr_put_search_ctx(ctx); 1673 unm_err_out: 1674 unmap_mft_record(mft_ni); 1675 goto err_out; 1676 } 1677 a = ctx->attr; 1678 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1679 mftbmp_ni->initialized_size = old_initialized_size; 1680 a->data.non_resident.initialized_size = 1681 cpu_to_sle64(old_initialized_size); 1682 if (i_size_read(mftbmp_vi) != old_data_size) { 1683 i_size_write(mftbmp_vi, old_data_size); 1684 a->data.non_resident.data_size = cpu_to_sle64(old_data_size); 1685 } 1686 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1687 flush_dcache_mft_record_page(ctx->ntfs_ino); 1688 mark_mft_record_dirty(ctx->ntfs_ino); 1689 ntfs_attr_put_search_ctx(ctx); 1690 unmap_mft_record(mft_ni); 1691 #ifdef DEBUG 1692 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1693 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " 1694 "data_size 0x%llx, initialized_size 0x%llx.", 1695 (long long)mftbmp_ni->allocated_size, 1696 (long long)i_size_read(mftbmp_vi), 1697 (long long)mftbmp_ni->initialized_size); 1698 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1699 #endif /* DEBUG */ 1700 err_out: 1701 return ret; 1702 } 1703 1704 /** 1705 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute 1706 * @vol: volume on which to extend the mft data attribute 1707 * 1708 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records 1709 * worth of clusters or if not enough space for this by one mft record worth 1710 * of clusters. 1711 * 1712 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1713 * data_size. 1714 * 1715 * Return 0 on success and -errno on error. 1716 * 1717 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1718 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for 1719 * writing and releases it before returning. 1720 * - This function calls functions which take vol->lcnbmp_lock for 1721 * writing and release it before returning. 1722 */ 1723 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) 1724 { 1725 LCN lcn; 1726 VCN old_last_vcn; 1727 s64 min_nr, nr, ll; 1728 unsigned long flags; 1729 ntfs_inode *mft_ni; 1730 runlist_element *rl, *rl2; 1731 ntfs_attr_search_ctx *ctx = NULL; 1732 MFT_RECORD *mrec; 1733 ATTR_RECORD *a = NULL; 1734 int ret, mp_size; 1735 u32 old_alen = 0; 1736 bool mp_rebuilt = false; 1737 1738 ntfs_debug("Extending mft data allocation."); 1739 mft_ni = NTFS_I(vol->mft_ino); 1740 /* 1741 * Determine the preferred allocation location, i.e. the last lcn of 1742 * the mft data attribute. The allocated size of the mft data 1743 * attribute cannot be zero so we are ok to do this. 1744 */ 1745 down_write(&mft_ni->runlist.lock); 1746 read_lock_irqsave(&mft_ni->size_lock, flags); 1747 ll = mft_ni->allocated_size; 1748 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1749 rl = ntfs_attr_find_vcn_nolock(mft_ni, 1750 (ll - 1) >> vol->cluster_size_bits, NULL); 1751 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { 1752 up_write(&mft_ni->runlist.lock); 1753 ntfs_error(vol->sb, "Failed to determine last allocated " 1754 "cluster of mft data attribute."); 1755 if (!IS_ERR(rl)) 1756 ret = -EIO; 1757 else 1758 ret = PTR_ERR(rl); 1759 return ret; 1760 } 1761 lcn = rl->lcn + rl->length; 1762 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); 1763 /* Minimum allocation is one mft record worth of clusters. */ 1764 min_nr = vol->mft_record_size >> vol->cluster_size_bits; 1765 if (!min_nr) 1766 min_nr = 1; 1767 /* Want to allocate 16 mft records worth of clusters. */ 1768 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; 1769 if (!nr) 1770 nr = min_nr; 1771 /* Ensure we do not go above 2^32-1 mft records. */ 1772 read_lock_irqsave(&mft_ni->size_lock, flags); 1773 ll = mft_ni->allocated_size; 1774 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1775 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1776 vol->mft_record_size_bits >= (1ll << 32))) { 1777 nr = min_nr; 1778 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1779 vol->mft_record_size_bits >= (1ll << 32))) { 1780 ntfs_warning(vol->sb, "Cannot allocate mft record " 1781 "because the maximum number of inodes " 1782 "(2^32) has already been reached."); 1783 up_write(&mft_ni->runlist.lock); 1784 return -ENOSPC; 1785 } 1786 } 1787 ntfs_debug("Trying mft data allocation with %s cluster count %lli.", 1788 nr > min_nr ? "default" : "minimal", (long long)nr); 1789 old_last_vcn = rl[1].vcn; 1790 do { 1791 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, 1792 true); 1793 if (likely(!IS_ERR(rl2))) 1794 break; 1795 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { 1796 ntfs_error(vol->sb, "Failed to allocate the minimal " 1797 "number of clusters (%lli) for the " 1798 "mft data attribute.", (long long)nr); 1799 up_write(&mft_ni->runlist.lock); 1800 return PTR_ERR(rl2); 1801 } 1802 /* 1803 * There is not enough space to do the allocation, but there 1804 * might be enough space to do a minimal allocation so try that 1805 * before failing. 1806 */ 1807 nr = min_nr; 1808 ntfs_debug("Retrying mft data allocation with minimal cluster " 1809 "count %lli.", (long long)nr); 1810 } while (1); 1811 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); 1812 if (IS_ERR(rl)) { 1813 up_write(&mft_ni->runlist.lock); 1814 ntfs_error(vol->sb, "Failed to merge runlists for mft data " 1815 "attribute."); 1816 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1817 ntfs_error(vol->sb, "Failed to deallocate clusters " 1818 "from the mft data attribute.%s", es); 1819 NVolSetErrors(vol); 1820 } 1821 ntfs_free(rl2); 1822 return PTR_ERR(rl); 1823 } 1824 mft_ni->runlist.rl = rl; 1825 ntfs_debug("Allocated %lli clusters.", (long long)nr); 1826 /* Find the last run in the new runlist. */ 1827 for (; rl[1].length; rl++) 1828 ; 1829 /* Update the attribute record as well. */ 1830 mrec = map_mft_record(mft_ni); 1831 if (IS_ERR(mrec)) { 1832 ntfs_error(vol->sb, "Failed to map mft record."); 1833 ret = PTR_ERR(mrec); 1834 goto undo_alloc; 1835 } 1836 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1837 if (unlikely(!ctx)) { 1838 ntfs_error(vol->sb, "Failed to get search context."); 1839 ret = -ENOMEM; 1840 goto undo_alloc; 1841 } 1842 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1843 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); 1844 if (unlikely(ret)) { 1845 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1846 "mft data attribute."); 1847 if (ret == -ENOENT) 1848 ret = -EIO; 1849 goto undo_alloc; 1850 } 1851 a = ctx->attr; 1852 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1853 /* Search back for the previous last allocated cluster of mft bitmap. */ 1854 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { 1855 if (ll >= rl2->vcn) 1856 break; 1857 } 1858 BUG_ON(ll < rl2->vcn); 1859 BUG_ON(ll >= rl2->vcn + rl2->length); 1860 /* Get the size for the new mapping pairs array for this extent. */ 1861 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1862 if (unlikely(mp_size <= 0)) { 1863 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1864 "mft data attribute extent."); 1865 ret = mp_size; 1866 if (!ret) 1867 ret = -EIO; 1868 goto undo_alloc; 1869 } 1870 /* Expand the attribute record if necessary. */ 1871 old_alen = le32_to_cpu(a->length); 1872 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1873 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1874 if (unlikely(ret)) { 1875 if (ret != -ENOSPC) { 1876 ntfs_error(vol->sb, "Failed to resize attribute " 1877 "record for mft data attribute."); 1878 goto undo_alloc; 1879 } 1880 // TODO: Deal with this by moving this extent to a new mft 1881 // record or by starting a new extent in a new mft record or by 1882 // moving other attributes out of this mft record. 1883 // Note: Use the special reserved mft records and ensure that 1884 // this extent is not required to find the mft record in 1885 // question. If no free special records left we would need to 1886 // move an existing record away, insert ours in its place, and 1887 // then place the moved record into the newly allocated space 1888 // and we would then need to update all references to this mft 1889 // record appropriately. This is rather complicated... 1890 ntfs_error(vol->sb, "Not enough space in this mft record to " 1891 "accommodate extended mft data attribute " 1892 "extent. Cannot handle this yet."); 1893 ret = -EOPNOTSUPP; 1894 goto undo_alloc; 1895 } 1896 mp_rebuilt = true; 1897 /* Generate the mapping pairs array directly into the attr record. */ 1898 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1899 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1900 mp_size, rl2, ll, -1, NULL); 1901 if (unlikely(ret)) { 1902 ntfs_error(vol->sb, "Failed to build mapping pairs array of " 1903 "mft data attribute."); 1904 goto undo_alloc; 1905 } 1906 /* Update the highest_vcn. */ 1907 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1908 /* 1909 * We now have extended the mft data allocated_size by nr clusters. 1910 * Reflect this in the ntfs_inode structure and the attribute record. 1911 * @rl is the last (non-terminator) runlist element of mft data 1912 * attribute. 1913 */ 1914 if (a->data.non_resident.lowest_vcn) { 1915 /* 1916 * We are not in the first attribute extent, switch to it, but 1917 * first ensure the changes will make it to disk later. 1918 */ 1919 flush_dcache_mft_record_page(ctx->ntfs_ino); 1920 mark_mft_record_dirty(ctx->ntfs_ino); 1921 ntfs_attr_reinit_search_ctx(ctx); 1922 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, 1923 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, 1924 ctx); 1925 if (unlikely(ret)) { 1926 ntfs_error(vol->sb, "Failed to find first attribute " 1927 "extent of mft data attribute."); 1928 goto restore_undo_alloc; 1929 } 1930 a = ctx->attr; 1931 } 1932 write_lock_irqsave(&mft_ni->size_lock, flags); 1933 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1934 a->data.non_resident.allocated_size = 1935 cpu_to_sle64(mft_ni->allocated_size); 1936 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1937 /* Ensure the changes make it to disk. */ 1938 flush_dcache_mft_record_page(ctx->ntfs_ino); 1939 mark_mft_record_dirty(ctx->ntfs_ino); 1940 ntfs_attr_put_search_ctx(ctx); 1941 unmap_mft_record(mft_ni); 1942 up_write(&mft_ni->runlist.lock); 1943 ntfs_debug("Done."); 1944 return 0; 1945 restore_undo_alloc: 1946 ntfs_attr_reinit_search_ctx(ctx); 1947 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1948 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { 1949 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1950 "mft data attribute.%s", es); 1951 write_lock_irqsave(&mft_ni->size_lock, flags); 1952 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1953 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1954 ntfs_attr_put_search_ctx(ctx); 1955 unmap_mft_record(mft_ni); 1956 up_write(&mft_ni->runlist.lock); 1957 /* 1958 * The only thing that is now wrong is ->allocated_size of the 1959 * base attribute extent which chkdsk should be able to fix. 1960 */ 1961 NVolSetErrors(vol); 1962 return ret; 1963 } 1964 ctx->attr->data.non_resident.highest_vcn = 1965 cpu_to_sle64(old_last_vcn - 1); 1966 undo_alloc: 1967 if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { 1968 ntfs_error(vol->sb, "Failed to free clusters from mft data " 1969 "attribute.%s", es); 1970 NVolSetErrors(vol); 1971 } 1972 a = ctx->attr; 1973 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { 1974 ntfs_error(vol->sb, "Failed to truncate mft data attribute " 1975 "runlist.%s", es); 1976 NVolSetErrors(vol); 1977 } 1978 if (mp_rebuilt && !IS_ERR(ctx->mrec)) { 1979 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1980 a->data.non_resident.mapping_pairs_offset), 1981 old_alen - le16_to_cpu( 1982 a->data.non_resident.mapping_pairs_offset), 1983 rl2, ll, -1, NULL)) { 1984 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1985 "array.%s", es); 1986 NVolSetErrors(vol); 1987 } 1988 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1989 ntfs_error(vol->sb, "Failed to restore attribute " 1990 "record.%s", es); 1991 NVolSetErrors(vol); 1992 } 1993 flush_dcache_mft_record_page(ctx->ntfs_ino); 1994 mark_mft_record_dirty(ctx->ntfs_ino); 1995 } else if (IS_ERR(ctx->mrec)) { 1996 ntfs_error(vol->sb, "Failed to restore attribute search " 1997 "context.%s", es); 1998 NVolSetErrors(vol); 1999 } 2000 if (ctx) 2001 ntfs_attr_put_search_ctx(ctx); 2002 if (!IS_ERR(mrec)) 2003 unmap_mft_record(mft_ni); 2004 up_write(&mft_ni->runlist.lock); 2005 return ret; 2006 } 2007 2008 /** 2009 * ntfs_mft_record_layout - layout an mft record into a memory buffer 2010 * @vol: volume to which the mft record will belong 2011 * @mft_no: mft reference specifying the mft record number 2012 * @m: destination buffer of size >= @vol->mft_record_size bytes 2013 * 2014 * Layout an empty, unused mft record with the mft record number @mft_no into 2015 * the buffer @m. The volume @vol is needed because the mft record structure 2016 * was modified in NTFS 3.1 so we need to know which volume version this mft 2017 * record will be used on. 2018 * 2019 * Return 0 on success and -errno on error. 2020 */ 2021 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, 2022 MFT_RECORD *m) 2023 { 2024 ATTR_RECORD *a; 2025 2026 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2027 if (mft_no >= (1ll << 32)) { 2028 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " 2029 "maximum of 2^32.", (long long)mft_no); 2030 return -ERANGE; 2031 } 2032 /* Start by clearing the whole mft record to gives us a clean slate. */ 2033 memset(m, 0, vol->mft_record_size); 2034 /* Aligned to 2-byte boundary. */ 2035 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) 2036 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); 2037 else { 2038 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); 2039 /* 2040 * Set the NTFS 3.1+ specific fields while we know that the 2041 * volume version is 3.1+. 2042 */ 2043 m->reserved = 0; 2044 m->mft_record_number = cpu_to_le32((u32)mft_no); 2045 } 2046 m->magic = magic_FILE; 2047 if (vol->mft_record_size >= NTFS_BLOCK_SIZE) 2048 m->usa_count = cpu_to_le16(vol->mft_record_size / 2049 NTFS_BLOCK_SIZE + 1); 2050 else { 2051 m->usa_count = cpu_to_le16(1); 2052 ntfs_warning(vol->sb, "Sector size is bigger than mft record " 2053 "size. Setting usa_count to 1. If chkdsk " 2054 "reports this as corruption, please email " 2055 "linux-ntfs-dev@lists.sourceforge.net stating " 2056 "that you saw this message and that the " 2057 "modified filesystem created was corrupt. " 2058 "Thank you."); 2059 } 2060 /* Set the update sequence number to 1. */ 2061 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); 2062 m->lsn = 0; 2063 m->sequence_number = cpu_to_le16(1); 2064 m->link_count = 0; 2065 /* 2066 * Place the attributes straight after the update sequence array, 2067 * aligned to 8-byte boundary. 2068 */ 2069 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + 2070 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); 2071 m->flags = 0; 2072 /* 2073 * Using attrs_offset plus eight bytes (for the termination attribute). 2074 * attrs_offset is already aligned to 8-byte boundary, so no need to 2075 * align again. 2076 */ 2077 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); 2078 m->bytes_allocated = cpu_to_le32(vol->mft_record_size); 2079 m->base_mft_record = 0; 2080 m->next_attr_instance = 0; 2081 /* Add the termination attribute. */ 2082 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); 2083 a->type = AT_END; 2084 a->length = 0; 2085 ntfs_debug("Done."); 2086 return 0; 2087 } 2088 2089 /** 2090 * ntfs_mft_record_format - format an mft record on an ntfs volume 2091 * @vol: volume on which to format the mft record 2092 * @mft_no: mft record number to format 2093 * 2094 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused 2095 * mft record into the appropriate place of the mft data attribute. This is 2096 * used when extending the mft data attribute. 2097 * 2098 * Return 0 on success and -errno on error. 2099 */ 2100 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) 2101 { 2102 loff_t i_size; 2103 struct inode *mft_vi = vol->mft_ino; 2104 struct page *page; 2105 MFT_RECORD *m; 2106 pgoff_t index, end_index; 2107 unsigned int ofs; 2108 int err; 2109 2110 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2111 /* 2112 * The index into the page cache and the offset within the page cache 2113 * page of the wanted mft record. 2114 */ 2115 index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT; 2116 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 2117 /* The maximum valid index into the page cache for $MFT's data. */ 2118 i_size = i_size_read(mft_vi); 2119 end_index = i_size >> PAGE_SHIFT; 2120 if (unlikely(index >= end_index)) { 2121 if (unlikely(index > end_index || ofs + vol->mft_record_size >= 2122 (i_size & ~PAGE_MASK))) { 2123 ntfs_error(vol->sb, "Tried to format non-existing mft " 2124 "record 0x%llx.", (long long)mft_no); 2125 return -ENOENT; 2126 } 2127 } 2128 /* Read, map, and pin the page containing the mft record. */ 2129 page = ntfs_map_page(mft_vi->i_mapping, index); 2130 if (IS_ERR(page)) { 2131 ntfs_error(vol->sb, "Failed to map page containing mft record " 2132 "to format 0x%llx.", (long long)mft_no); 2133 return PTR_ERR(page); 2134 } 2135 lock_page(page); 2136 BUG_ON(!PageUptodate(page)); 2137 ClearPageUptodate(page); 2138 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2139 err = ntfs_mft_record_layout(vol, mft_no, m); 2140 if (unlikely(err)) { 2141 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", 2142 (long long)mft_no); 2143 SetPageUptodate(page); 2144 unlock_page(page); 2145 ntfs_unmap_page(page); 2146 return err; 2147 } 2148 flush_dcache_page(page); 2149 SetPageUptodate(page); 2150 unlock_page(page); 2151 /* 2152 * Make sure the mft record is written out to disk. We could use 2153 * ilookup5() to check if an inode is in icache and so on but this is 2154 * unnecessary as ntfs_writepage() will write the dirty record anyway. 2155 */ 2156 mark_ntfs_record_dirty(page, ofs); 2157 ntfs_unmap_page(page); 2158 ntfs_debug("Done."); 2159 return 0; 2160 } 2161 2162 /** 2163 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume 2164 * @vol: [IN] volume on which to allocate the mft record 2165 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0 2166 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL 2167 * @mrec: [OUT] on successful return this is the mapped mft record 2168 * 2169 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. 2170 * 2171 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or 2172 * direvctory inode, and allocate it at the default allocator position. In 2173 * this case @mode is the file mode as given to us by the caller. We in 2174 * particular use @mode to distinguish whether a file or a directory is being 2175 * created (S_IFDIR(mode) and S_IFREG(mode), respectively). 2176 * 2177 * If @base_ni is not NULL make the allocated mft record an extent record, 2178 * allocate it starting at the mft record after the base mft record and attach 2179 * the allocated and opened ntfs inode to the base inode @base_ni. In this 2180 * case @mode must be 0 as it is meaningless for extent inodes. 2181 * 2182 * You need to check the return value with IS_ERR(). If false, the function 2183 * was successful and the return value is the now opened ntfs inode of the 2184 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned, 2185 * and locked mft record. If IS_ERR() is true, the function failed and the 2186 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in 2187 * this case. 2188 * 2189 * Allocation strategy: 2190 * 2191 * To find a free mft record, we scan the mft bitmap for a zero bit. To 2192 * optimize this we start scanning at the place specified by @base_ni or if 2193 * @base_ni is NULL we start where we last stopped and we perform wrap around 2194 * when we reach the end. Note, we do not try to allocate mft records below 2195 * number 24 because numbers 0 to 15 are the defined system files anyway and 16 2196 * to 24 are special in that they are used for storing extension mft records 2197 * for the $DATA attribute of $MFT. This is required to avoid the possibility 2198 * of creating a runlist with a circular dependency which once written to disk 2199 * can never be read in again. Windows will only use records 16 to 24 for 2200 * normal files if the volume is completely out of space. We never use them 2201 * which means that when the volume is really out of space we cannot create any 2202 * more files while Windows can still create up to 8 small files. We can start 2203 * doing this at some later time, it does not matter much for now. 2204 * 2205 * When scanning the mft bitmap, we only search up to the last allocated mft 2206 * record. If there are no free records left in the range 24 to number of 2207 * allocated mft records, then we extend the $MFT/$DATA attribute in order to 2208 * create free mft records. We extend the allocated size of $MFT/$DATA by 16 2209 * records at a time or one cluster, if cluster size is above 16kiB. If there 2210 * is not sufficient space to do this, we try to extend by a single mft record 2211 * or one cluster, if cluster size is above the mft record size. 2212 * 2213 * No matter how many mft records we allocate, we initialize only the first 2214 * allocated mft record, incrementing mft data size and initialized size 2215 * accordingly, open an ntfs_inode for it and return it to the caller, unless 2216 * there are less than 24 mft records, in which case we allocate and initialize 2217 * mft records until we reach record 24 which we consider as the first free mft 2218 * record for use by normal files. 2219 * 2220 * If during any stage we overflow the initialized data in the mft bitmap, we 2221 * extend the initialized size (and data size) by 8 bytes, allocating another 2222 * cluster if required. The bitmap data size has to be at least equal to the 2223 * number of mft records in the mft, but it can be bigger, in which case the 2224 * superflous bits are padded with zeroes. 2225 * 2226 * Thus, when we return successfully (IS_ERR() is false), we will have: 2227 * - initialized / extended the mft bitmap if necessary, 2228 * - initialized / extended the mft data if necessary, 2229 * - set the bit corresponding to the mft record being allocated in the 2230 * mft bitmap, 2231 * - opened an ntfs_inode for the allocated mft record, and we will have 2232 * - returned the ntfs_inode as well as the allocated mapped, pinned, and 2233 * locked mft record. 2234 * 2235 * On error, the volume will be left in a consistent state and no record will 2236 * be allocated. If rolling back a partial operation fails, we may leave some 2237 * inconsistent metadata in which case we set NVolErrors() so the volume is 2238 * left dirty when unmounted. 2239 * 2240 * Note, this function cannot make use of most of the normal functions, like 2241 * for example for attribute resizing, etc, because when the run list overflows 2242 * the base mft record and an attribute list is used, it is very important that 2243 * the extension mft records used to store the $DATA attribute of $MFT can be 2244 * reached without having to read the information contained inside them, as 2245 * this would make it impossible to find them in the first place after the 2246 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this 2247 * rule because the bitmap is not essential for finding the mft records, but on 2248 * the other hand, handling the bitmap in this special way would make life 2249 * easier because otherwise there might be circular invocations of functions 2250 * when reading the bitmap. 2251 */ 2252 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, 2253 ntfs_inode *base_ni, MFT_RECORD **mrec) 2254 { 2255 s64 ll, bit, old_data_initialized, old_data_size; 2256 unsigned long flags; 2257 struct inode *vi; 2258 struct page *page; 2259 ntfs_inode *mft_ni, *mftbmp_ni, *ni; 2260 ntfs_attr_search_ctx *ctx; 2261 MFT_RECORD *m; 2262 ATTR_RECORD *a; 2263 pgoff_t index; 2264 unsigned int ofs; 2265 int err; 2266 le16 seq_no, usn; 2267 bool record_formatted = false; 2268 2269 if (base_ni) { 2270 ntfs_debug("Entering (allocating an extent mft record for " 2271 "base mft record 0x%llx).", 2272 (long long)base_ni->mft_no); 2273 /* @mode and @base_ni are mutually exclusive. */ 2274 BUG_ON(mode); 2275 } else 2276 ntfs_debug("Entering (allocating a base mft record)."); 2277 if (mode) { 2278 /* @mode and @base_ni are mutually exclusive. */ 2279 BUG_ON(base_ni); 2280 /* We only support creation of normal files and directories. */ 2281 if (!S_ISREG(mode) && !S_ISDIR(mode)) 2282 return ERR_PTR(-EOPNOTSUPP); 2283 } 2284 BUG_ON(!mrec); 2285 mft_ni = NTFS_I(vol->mft_ino); 2286 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 2287 down_write(&vol->mftbmp_lock); 2288 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); 2289 if (bit >= 0) { 2290 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", 2291 (long long)bit); 2292 goto have_alloc_rec; 2293 } 2294 if (bit != -ENOSPC) { 2295 up_write(&vol->mftbmp_lock); 2296 return ERR_PTR(bit); 2297 } 2298 /* 2299 * No free mft records left. If the mft bitmap already covers more 2300 * than the currently used mft records, the next records are all free, 2301 * so we can simply allocate the first unused mft record. 2302 * Note: We also have to make sure that the mft bitmap at least covers 2303 * the first 24 mft records as they are special and whilst they may not 2304 * be in use, we do not allocate from them. 2305 */ 2306 read_lock_irqsave(&mft_ni->size_lock, flags); 2307 ll = mft_ni->initialized_size >> vol->mft_record_size_bits; 2308 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2309 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2310 old_data_initialized = mftbmp_ni->initialized_size; 2311 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2312 if (old_data_initialized << 3 > ll && old_data_initialized > 3) { 2313 bit = ll; 2314 if (bit < 24) 2315 bit = 24; 2316 if (unlikely(bit >= (1ll << 32))) 2317 goto max_err_out; 2318 ntfs_debug("Found free record (#2), bit 0x%llx.", 2319 (long long)bit); 2320 goto found_free_rec; 2321 } 2322 /* 2323 * The mft bitmap needs to be expanded until it covers the first unused 2324 * mft record that we can allocate. 2325 * Note: The smallest mft record we allocate is mft record 24. 2326 */ 2327 bit = old_data_initialized << 3; 2328 if (unlikely(bit >= (1ll << 32))) 2329 goto max_err_out; 2330 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2331 old_data_size = mftbmp_ni->allocated_size; 2332 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " 2333 "data_size 0x%llx, initialized_size 0x%llx.", 2334 (long long)old_data_size, 2335 (long long)i_size_read(vol->mftbmp_ino), 2336 (long long)old_data_initialized); 2337 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2338 if (old_data_initialized + 8 > old_data_size) { 2339 /* Need to extend bitmap by one more cluster. */ 2340 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); 2341 err = ntfs_mft_bitmap_extend_allocation_nolock(vol); 2342 if (unlikely(err)) { 2343 up_write(&vol->mftbmp_lock); 2344 goto err_out; 2345 } 2346 #ifdef DEBUG 2347 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2348 ntfs_debug("Status of mftbmp after allocation extension: " 2349 "allocated_size 0x%llx, data_size 0x%llx, " 2350 "initialized_size 0x%llx.", 2351 (long long)mftbmp_ni->allocated_size, 2352 (long long)i_size_read(vol->mftbmp_ino), 2353 (long long)mftbmp_ni->initialized_size); 2354 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2355 #endif /* DEBUG */ 2356 } 2357 /* 2358 * We now have sufficient allocated space, extend the initialized_size 2359 * as well as the data_size if necessary and fill the new space with 2360 * zeroes. 2361 */ 2362 err = ntfs_mft_bitmap_extend_initialized_nolock(vol); 2363 if (unlikely(err)) { 2364 up_write(&vol->mftbmp_lock); 2365 goto err_out; 2366 } 2367 #ifdef DEBUG 2368 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2369 ntfs_debug("Status of mftbmp after initialized extension: " 2370 "allocated_size 0x%llx, data_size 0x%llx, " 2371 "initialized_size 0x%llx.", 2372 (long long)mftbmp_ni->allocated_size, 2373 (long long)i_size_read(vol->mftbmp_ino), 2374 (long long)mftbmp_ni->initialized_size); 2375 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2376 #endif /* DEBUG */ 2377 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); 2378 found_free_rec: 2379 /* @bit is the found free mft record, allocate it in the mft bitmap. */ 2380 ntfs_debug("At found_free_rec."); 2381 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); 2382 if (unlikely(err)) { 2383 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); 2384 up_write(&vol->mftbmp_lock); 2385 goto err_out; 2386 } 2387 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); 2388 have_alloc_rec: 2389 /* 2390 * The mft bitmap is now uptodate. Deal with mft data attribute now. 2391 * Note, we keep hold of the mft bitmap lock for writing until all 2392 * modifications to the mft data attribute are complete, too, as they 2393 * will impact decisions for mft bitmap and mft record allocation done 2394 * by a parallel allocation and if the lock is not maintained a 2395 * parallel allocation could allocate the same mft record as this one. 2396 */ 2397 ll = (bit + 1) << vol->mft_record_size_bits; 2398 read_lock_irqsave(&mft_ni->size_lock, flags); 2399 old_data_initialized = mft_ni->initialized_size; 2400 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2401 if (ll <= old_data_initialized) { 2402 ntfs_debug("Allocated mft record already initialized."); 2403 goto mft_rec_already_initialized; 2404 } 2405 ntfs_debug("Initializing allocated mft record."); 2406 /* 2407 * The mft record is outside the initialized data. Extend the mft data 2408 * attribute until it covers the allocated record. The loop is only 2409 * actually traversed more than once when a freshly formatted volume is 2410 * first written to so it optimizes away nicely in the common case. 2411 */ 2412 read_lock_irqsave(&mft_ni->size_lock, flags); 2413 ntfs_debug("Status of mft data before extension: " 2414 "allocated_size 0x%llx, data_size 0x%llx, " 2415 "initialized_size 0x%llx.", 2416 (long long)mft_ni->allocated_size, 2417 (long long)i_size_read(vol->mft_ino), 2418 (long long)mft_ni->initialized_size); 2419 while (ll > mft_ni->allocated_size) { 2420 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2421 err = ntfs_mft_data_extend_allocation_nolock(vol); 2422 if (unlikely(err)) { 2423 ntfs_error(vol->sb, "Failed to extend mft data " 2424 "allocation."); 2425 goto undo_mftbmp_alloc_nolock; 2426 } 2427 read_lock_irqsave(&mft_ni->size_lock, flags); 2428 ntfs_debug("Status of mft data after allocation extension: " 2429 "allocated_size 0x%llx, data_size 0x%llx, " 2430 "initialized_size 0x%llx.", 2431 (long long)mft_ni->allocated_size, 2432 (long long)i_size_read(vol->mft_ino), 2433 (long long)mft_ni->initialized_size); 2434 } 2435 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2436 /* 2437 * Extend mft data initialized size (and data size of course) to reach 2438 * the allocated mft record, formatting the mft records allong the way. 2439 * Note: We only modify the ntfs_inode structure as that is all that is 2440 * needed by ntfs_mft_record_format(). We will update the attribute 2441 * record itself in one fell swoop later on. 2442 */ 2443 write_lock_irqsave(&mft_ni->size_lock, flags); 2444 old_data_initialized = mft_ni->initialized_size; 2445 old_data_size = vol->mft_ino->i_size; 2446 while (ll > mft_ni->initialized_size) { 2447 s64 new_initialized_size, mft_no; 2448 2449 new_initialized_size = mft_ni->initialized_size + 2450 vol->mft_record_size; 2451 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; 2452 if (new_initialized_size > i_size_read(vol->mft_ino)) 2453 i_size_write(vol->mft_ino, new_initialized_size); 2454 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2455 ntfs_debug("Initializing mft record 0x%llx.", 2456 (long long)mft_no); 2457 err = ntfs_mft_record_format(vol, mft_no); 2458 if (unlikely(err)) { 2459 ntfs_error(vol->sb, "Failed to format mft record."); 2460 goto undo_data_init; 2461 } 2462 write_lock_irqsave(&mft_ni->size_lock, flags); 2463 mft_ni->initialized_size = new_initialized_size; 2464 } 2465 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2466 record_formatted = true; 2467 /* Update the mft data attribute record to reflect the new sizes. */ 2468 m = map_mft_record(mft_ni); 2469 if (IS_ERR(m)) { 2470 ntfs_error(vol->sb, "Failed to map mft record."); 2471 err = PTR_ERR(m); 2472 goto undo_data_init; 2473 } 2474 ctx = ntfs_attr_get_search_ctx(mft_ni, m); 2475 if (unlikely(!ctx)) { 2476 ntfs_error(vol->sb, "Failed to get search context."); 2477 err = -ENOMEM; 2478 unmap_mft_record(mft_ni); 2479 goto undo_data_init; 2480 } 2481 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 2482 CASE_SENSITIVE, 0, NULL, 0, ctx); 2483 if (unlikely(err)) { 2484 ntfs_error(vol->sb, "Failed to find first attribute extent of " 2485 "mft data attribute."); 2486 ntfs_attr_put_search_ctx(ctx); 2487 unmap_mft_record(mft_ni); 2488 goto undo_data_init; 2489 } 2490 a = ctx->attr; 2491 read_lock_irqsave(&mft_ni->size_lock, flags); 2492 a->data.non_resident.initialized_size = 2493 cpu_to_sle64(mft_ni->initialized_size); 2494 a->data.non_resident.data_size = 2495 cpu_to_sle64(i_size_read(vol->mft_ino)); 2496 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2497 /* Ensure the changes make it to disk. */ 2498 flush_dcache_mft_record_page(ctx->ntfs_ino); 2499 mark_mft_record_dirty(ctx->ntfs_ino); 2500 ntfs_attr_put_search_ctx(ctx); 2501 unmap_mft_record(mft_ni); 2502 read_lock_irqsave(&mft_ni->size_lock, flags); 2503 ntfs_debug("Status of mft data after mft record initialization: " 2504 "allocated_size 0x%llx, data_size 0x%llx, " 2505 "initialized_size 0x%llx.", 2506 (long long)mft_ni->allocated_size, 2507 (long long)i_size_read(vol->mft_ino), 2508 (long long)mft_ni->initialized_size); 2509 BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); 2510 BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); 2511 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2512 mft_rec_already_initialized: 2513 /* 2514 * We can finally drop the mft bitmap lock as the mft data attribute 2515 * has been fully updated. The only disparity left is that the 2516 * allocated mft record still needs to be marked as in use to match the 2517 * set bit in the mft bitmap but this is actually not a problem since 2518 * this mft record is not referenced from anywhere yet and the fact 2519 * that it is allocated in the mft bitmap means that no-one will try to 2520 * allocate it either. 2521 */ 2522 up_write(&vol->mftbmp_lock); 2523 /* 2524 * We now have allocated and initialized the mft record. Calculate the 2525 * index of and the offset within the page cache page the record is in. 2526 */ 2527 index = bit << vol->mft_record_size_bits >> PAGE_SHIFT; 2528 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK; 2529 /* Read, map, and pin the page containing the mft record. */ 2530 page = ntfs_map_page(vol->mft_ino->i_mapping, index); 2531 if (IS_ERR(page)) { 2532 ntfs_error(vol->sb, "Failed to map page containing allocated " 2533 "mft record 0x%llx.", (long long)bit); 2534 err = PTR_ERR(page); 2535 goto undo_mftbmp_alloc; 2536 } 2537 lock_page(page); 2538 BUG_ON(!PageUptodate(page)); 2539 ClearPageUptodate(page); 2540 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2541 /* If we just formatted the mft record no need to do it again. */ 2542 if (!record_formatted) { 2543 /* Sanity check that the mft record is really not in use. */ 2544 if (ntfs_is_file_record(m->magic) && 2545 (m->flags & MFT_RECORD_IN_USE)) { 2546 ntfs_error(vol->sb, "Mft record 0x%llx was marked " 2547 "free in mft bitmap but is marked " 2548 "used itself. Corrupt filesystem. " 2549 "Unmount and run chkdsk.", 2550 (long long)bit); 2551 err = -EIO; 2552 SetPageUptodate(page); 2553 unlock_page(page); 2554 ntfs_unmap_page(page); 2555 NVolSetErrors(vol); 2556 goto undo_mftbmp_alloc; 2557 } 2558 /* 2559 * We need to (re-)format the mft record, preserving the 2560 * sequence number if it is not zero as well as the update 2561 * sequence number if it is not zero or -1 (0xffff). This 2562 * means we do not need to care whether or not something went 2563 * wrong with the previous mft record. 2564 */ 2565 seq_no = m->sequence_number; 2566 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); 2567 err = ntfs_mft_record_layout(vol, bit, m); 2568 if (unlikely(err)) { 2569 ntfs_error(vol->sb, "Failed to layout allocated mft " 2570 "record 0x%llx.", (long long)bit); 2571 SetPageUptodate(page); 2572 unlock_page(page); 2573 ntfs_unmap_page(page); 2574 goto undo_mftbmp_alloc; 2575 } 2576 if (seq_no) 2577 m->sequence_number = seq_no; 2578 if (usn && le16_to_cpu(usn) != 0xffff) 2579 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; 2580 } 2581 /* Set the mft record itself in use. */ 2582 m->flags |= MFT_RECORD_IN_USE; 2583 if (S_ISDIR(mode)) 2584 m->flags |= MFT_RECORD_IS_DIRECTORY; 2585 flush_dcache_page(page); 2586 SetPageUptodate(page); 2587 if (base_ni) { 2588 MFT_RECORD *m_tmp; 2589 2590 /* 2591 * Setup the base mft record in the extent mft record. This 2592 * completes initialization of the allocated extent mft record 2593 * and we can simply use it with map_extent_mft_record(). 2594 */ 2595 m->base_mft_record = MK_LE_MREF(base_ni->mft_no, 2596 base_ni->seq_no); 2597 /* 2598 * Allocate an extent inode structure for the new mft record, 2599 * attach it to the base inode @base_ni and map, pin, and lock 2600 * its, i.e. the allocated, mft record. 2601 */ 2602 m_tmp = map_extent_mft_record(base_ni, bit, &ni); 2603 if (IS_ERR(m_tmp)) { 2604 ntfs_error(vol->sb, "Failed to map allocated extent " 2605 "mft record 0x%llx.", (long long)bit); 2606 err = PTR_ERR(m_tmp); 2607 /* Set the mft record itself not in use. */ 2608 m->flags &= cpu_to_le16( 2609 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2610 flush_dcache_page(page); 2611 /* Make sure the mft record is written out to disk. */ 2612 mark_ntfs_record_dirty(page, ofs); 2613 unlock_page(page); 2614 ntfs_unmap_page(page); 2615 goto undo_mftbmp_alloc; 2616 } 2617 BUG_ON(m != m_tmp); 2618 /* 2619 * Make sure the allocated mft record is written out to disk. 2620 * No need to set the inode dirty because the caller is going 2621 * to do that anyway after finishing with the new extent mft 2622 * record (e.g. at a minimum a new attribute will be added to 2623 * the mft record. 2624 */ 2625 mark_ntfs_record_dirty(page, ofs); 2626 unlock_page(page); 2627 /* 2628 * Need to unmap the page since map_extent_mft_record() mapped 2629 * it as well so we have it mapped twice at the moment. 2630 */ 2631 ntfs_unmap_page(page); 2632 } else { 2633 /* 2634 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink 2635 * is set to 1 but the mft record->link_count is 0. The caller 2636 * needs to bear this in mind. 2637 */ 2638 vi = new_inode(vol->sb); 2639 if (unlikely(!vi)) { 2640 err = -ENOMEM; 2641 /* Set the mft record itself not in use. */ 2642 m->flags &= cpu_to_le16( 2643 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2644 flush_dcache_page(page); 2645 /* Make sure the mft record is written out to disk. */ 2646 mark_ntfs_record_dirty(page, ofs); 2647 unlock_page(page); 2648 ntfs_unmap_page(page); 2649 goto undo_mftbmp_alloc; 2650 } 2651 vi->i_ino = bit; 2652 2653 /* The owner and group come from the ntfs volume. */ 2654 vi->i_uid = vol->uid; 2655 vi->i_gid = vol->gid; 2656 2657 /* Initialize the ntfs specific part of @vi. */ 2658 ntfs_init_big_inode(vi); 2659 ni = NTFS_I(vi); 2660 /* 2661 * Set the appropriate mode, attribute type, and name. For 2662 * directories, also setup the index values to the defaults. 2663 */ 2664 if (S_ISDIR(mode)) { 2665 vi->i_mode = S_IFDIR | S_IRWXUGO; 2666 vi->i_mode &= ~vol->dmask; 2667 2668 NInoSetMstProtected(ni); 2669 ni->type = AT_INDEX_ALLOCATION; 2670 ni->name = I30; 2671 ni->name_len = 4; 2672 2673 ni->itype.index.block_size = 4096; 2674 ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; 2675 ni->itype.index.collation_rule = COLLATION_FILE_NAME; 2676 if (vol->cluster_size <= ni->itype.index.block_size) { 2677 ni->itype.index.vcn_size = vol->cluster_size; 2678 ni->itype.index.vcn_size_bits = 2679 vol->cluster_size_bits; 2680 } else { 2681 ni->itype.index.vcn_size = vol->sector_size; 2682 ni->itype.index.vcn_size_bits = 2683 vol->sector_size_bits; 2684 } 2685 } else { 2686 vi->i_mode = S_IFREG | S_IRWXUGO; 2687 vi->i_mode &= ~vol->fmask; 2688 2689 ni->type = AT_DATA; 2690 ni->name = NULL; 2691 ni->name_len = 0; 2692 } 2693 if (IS_RDONLY(vi)) 2694 vi->i_mode &= ~S_IWUGO; 2695 2696 /* Set the inode times to the current time. */ 2697 vi->i_atime = vi->i_mtime = vi->i_ctime = 2698 current_time(vi); 2699 /* 2700 * Set the file size to 0, the ntfs inode sizes are set to 0 by 2701 * the call to ntfs_init_big_inode() below. 2702 */ 2703 vi->i_size = 0; 2704 vi->i_blocks = 0; 2705 2706 /* Set the sequence number. */ 2707 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 2708 /* 2709 * Manually map, pin, and lock the mft record as we already 2710 * have its page mapped and it is very easy to do. 2711 */ 2712 atomic_inc(&ni->count); 2713 mutex_lock(&ni->mrec_lock); 2714 ni->page = page; 2715 ni->page_ofs = ofs; 2716 /* 2717 * Make sure the allocated mft record is written out to disk. 2718 * NOTE: We do not set the ntfs inode dirty because this would 2719 * fail in ntfs_write_inode() because the inode does not have a 2720 * standard information attribute yet. Also, there is no need 2721 * to set the inode dirty because the caller is going to do 2722 * that anyway after finishing with the new mft record (e.g. at 2723 * a minimum some new attributes will be added to the mft 2724 * record. 2725 */ 2726 mark_ntfs_record_dirty(page, ofs); 2727 unlock_page(page); 2728 2729 /* Add the inode to the inode hash for the superblock. */ 2730 insert_inode_hash(vi); 2731 2732 /* Update the default mft allocation position. */ 2733 vol->mft_data_pos = bit + 1; 2734 } 2735 /* 2736 * Return the opened, allocated inode of the allocated mft record as 2737 * well as the mapped, pinned, and locked mft record. 2738 */ 2739 ntfs_debug("Returning opened, allocated %sinode 0x%llx.", 2740 base_ni ? "extent " : "", (long long)bit); 2741 *mrec = m; 2742 return ni; 2743 undo_data_init: 2744 write_lock_irqsave(&mft_ni->size_lock, flags); 2745 mft_ni->initialized_size = old_data_initialized; 2746 i_size_write(vol->mft_ino, old_data_size); 2747 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2748 goto undo_mftbmp_alloc_nolock; 2749 undo_mftbmp_alloc: 2750 down_write(&vol->mftbmp_lock); 2751 undo_mftbmp_alloc_nolock: 2752 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { 2753 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2754 NVolSetErrors(vol); 2755 } 2756 up_write(&vol->mftbmp_lock); 2757 err_out: 2758 return ERR_PTR(err); 2759 max_err_out: 2760 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " 2761 "number of inodes (2^32) has already been reached."); 2762 up_write(&vol->mftbmp_lock); 2763 return ERR_PTR(-ENOSPC); 2764 } 2765 2766 /** 2767 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume 2768 * @ni: ntfs inode of the mapped extent mft record to free 2769 * @m: mapped extent mft record of the ntfs inode @ni 2770 * 2771 * Free the mapped extent mft record @m of the extent ntfs inode @ni. 2772 * 2773 * Note that this function unmaps the mft record and closes and destroys @ni 2774 * internally and hence you cannot use either @ni nor @m any more after this 2775 * function returns success. 2776 * 2777 * On success return 0 and on error return -errno. @ni and @m are still valid 2778 * in this case and have not been freed. 2779 * 2780 * For some errors an error message is displayed and the success code 0 is 2781 * returned and the volume is then left dirty on umount. This makes sense in 2782 * case we could not rollback the changes that were already done since the 2783 * caller no longer wants to reference this mft record so it does not matter to 2784 * the caller if something is wrong with it as long as it is properly detached 2785 * from the base inode. 2786 */ 2787 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) 2788 { 2789 unsigned long mft_no = ni->mft_no; 2790 ntfs_volume *vol = ni->vol; 2791 ntfs_inode *base_ni; 2792 ntfs_inode **extent_nis; 2793 int i, err; 2794 le16 old_seq_no; 2795 u16 seq_no; 2796 2797 BUG_ON(NInoAttr(ni)); 2798 BUG_ON(ni->nr_extents != -1); 2799 2800 mutex_lock(&ni->extent_lock); 2801 base_ni = ni->ext.base_ntfs_ino; 2802 mutex_unlock(&ni->extent_lock); 2803 2804 BUG_ON(base_ni->nr_extents <= 0); 2805 2806 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", 2807 mft_no, base_ni->mft_no); 2808 2809 mutex_lock(&base_ni->extent_lock); 2810 2811 /* Make sure we are holding the only reference to the extent inode. */ 2812 if (atomic_read(&ni->count) > 2) { 2813 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " 2814 "not freeing.", base_ni->mft_no); 2815 mutex_unlock(&base_ni->extent_lock); 2816 return -EBUSY; 2817 } 2818 2819 /* Dissociate the ntfs inode from the base inode. */ 2820 extent_nis = base_ni->ext.extent_ntfs_inos; 2821 err = -ENOENT; 2822 for (i = 0; i < base_ni->nr_extents; i++) { 2823 if (ni != extent_nis[i]) 2824 continue; 2825 extent_nis += i; 2826 base_ni->nr_extents--; 2827 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * 2828 sizeof(ntfs_inode*)); 2829 err = 0; 2830 break; 2831 } 2832 2833 mutex_unlock(&base_ni->extent_lock); 2834 2835 if (unlikely(err)) { 2836 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " 2837 "its base inode 0x%lx.", mft_no, 2838 base_ni->mft_no); 2839 BUG(); 2840 } 2841 2842 /* 2843 * The extent inode is no longer attached to the base inode so no one 2844 * can get a reference to it any more. 2845 */ 2846 2847 /* Mark the mft record as not in use. */ 2848 m->flags &= ~MFT_RECORD_IN_USE; 2849 2850 /* Increment the sequence number, skipping zero, if it is not zero. */ 2851 old_seq_no = m->sequence_number; 2852 seq_no = le16_to_cpu(old_seq_no); 2853 if (seq_no == 0xffff) 2854 seq_no = 1; 2855 else if (seq_no) 2856 seq_no++; 2857 m->sequence_number = cpu_to_le16(seq_no); 2858 2859 /* 2860 * Set the ntfs inode dirty and write it out. We do not need to worry 2861 * about the base inode here since whatever caused the extent mft 2862 * record to be freed is guaranteed to do it already. 2863 */ 2864 NInoSetDirty(ni); 2865 err = write_mft_record(ni, m, 0); 2866 if (unlikely(err)) { 2867 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " 2868 "freeing.", mft_no); 2869 goto rollback; 2870 } 2871 rollback_error: 2872 /* Unmap and throw away the now freed extent inode. */ 2873 unmap_extent_mft_record(ni); 2874 ntfs_clear_extent_inode(ni); 2875 2876 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ 2877 down_write(&vol->mftbmp_lock); 2878 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); 2879 up_write(&vol->mftbmp_lock); 2880 if (unlikely(err)) { 2881 /* 2882 * The extent inode is gone but we failed to deallocate it in 2883 * the mft bitmap. Just emit a warning and leave the volume 2884 * dirty on umount. 2885 */ 2886 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2887 NVolSetErrors(vol); 2888 } 2889 return 0; 2890 rollback: 2891 /* Rollback what we did... */ 2892 mutex_lock(&base_ni->extent_lock); 2893 extent_nis = base_ni->ext.extent_ntfs_inos; 2894 if (!(base_ni->nr_extents & 3)) { 2895 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); 2896 2897 extent_nis = kmalloc(new_size, GFP_NOFS); 2898 if (unlikely(!extent_nis)) { 2899 ntfs_error(vol->sb, "Failed to allocate internal " 2900 "buffer during rollback.%s", es); 2901 mutex_unlock(&base_ni->extent_lock); 2902 NVolSetErrors(vol); 2903 goto rollback_error; 2904 } 2905 if (base_ni->nr_extents) { 2906 BUG_ON(!base_ni->ext.extent_ntfs_inos); 2907 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, 2908 new_size - 4 * sizeof(ntfs_inode*)); 2909 kfree(base_ni->ext.extent_ntfs_inos); 2910 } 2911 base_ni->ext.extent_ntfs_inos = extent_nis; 2912 } 2913 m->flags |= MFT_RECORD_IN_USE; 2914 m->sequence_number = old_seq_no; 2915 extent_nis[base_ni->nr_extents++] = ni; 2916 mutex_unlock(&base_ni->extent_lock); 2917 mark_mft_record_dirty(ni); 2918 return err; 2919 } 2920 #endif /* NTFS_RW */ 2921