xref: /openbmc/linux/fs/ntfs/mft.c (revision ebbbf757)
1 /**
2  * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2006 Anton Altaparmakov
5  * Copyright (c) 2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 
26 #include "attrib.h"
27 #include "aops.h"
28 #include "bitmap.h"
29 #include "debug.h"
30 #include "dir.h"
31 #include "lcnalloc.h"
32 #include "malloc.h"
33 #include "mft.h"
34 #include "ntfs.h"
35 
36 /**
37  * map_mft_record_page - map the page in which a specific mft record resides
38  * @ni:		ntfs inode whose mft record page to map
39  *
40  * This maps the page in which the mft record of the ntfs inode @ni is situated
41  * and returns a pointer to the mft record within the mapped page.
42  *
43  * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
44  * contains the negative error code returned.
45  */
46 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
47 {
48 	loff_t i_size;
49 	ntfs_volume *vol = ni->vol;
50 	struct inode *mft_vi = vol->mft_ino;
51 	struct page *page;
52 	unsigned long index, end_index;
53 	unsigned ofs;
54 
55 	BUG_ON(ni->page);
56 	/*
57 	 * The index into the page cache and the offset within the page cache
58 	 * page of the wanted mft record. FIXME: We need to check for
59 	 * overflowing the unsigned long, but I don't think we would ever get
60 	 * here if the volume was that big...
61 	 */
62 	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
63 			PAGE_CACHE_SHIFT;
64 	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
65 
66 	i_size = i_size_read(mft_vi);
67 	/* The maximum valid index into the page cache for $MFT's data. */
68 	end_index = i_size >> PAGE_CACHE_SHIFT;
69 
70 	/* If the wanted index is out of bounds the mft record doesn't exist. */
71 	if (unlikely(index >= end_index)) {
72 		if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs +
73 				vol->mft_record_size) {
74 			page = ERR_PTR(-ENOENT);
75 			ntfs_error(vol->sb, "Attemt to read mft record 0x%lx, "
76 					"which is beyond the end of the mft.  "
77 					"This is probably a bug in the ntfs "
78 					"driver.", ni->mft_no);
79 			goto err_out;
80 		}
81 	}
82 	/* Read, map, and pin the page. */
83 	page = ntfs_map_page(mft_vi->i_mapping, index);
84 	if (likely(!IS_ERR(page))) {
85 		/* Catch multi sector transfer fixup errors. */
86 		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
87 				ofs)))) {
88 			ni->page = page;
89 			ni->page_ofs = ofs;
90 			return page_address(page) + ofs;
91 		}
92 		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
93 				"Run chkdsk.", ni->mft_no);
94 		ntfs_unmap_page(page);
95 		page = ERR_PTR(-EIO);
96 		NVolSetErrors(vol);
97 	}
98 err_out:
99 	ni->page = NULL;
100 	ni->page_ofs = 0;
101 	return (void*)page;
102 }
103 
104 /**
105  * map_mft_record - map, pin and lock an mft record
106  * @ni:		ntfs inode whose MFT record to map
107  *
108  * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
109  * for the mutex if it was already locked by someone else.
110  *
111  * The page of the record is mapped using map_mft_record_page() before being
112  * returned to the caller.
113  *
114  * This in turn uses ntfs_map_page() to get the page containing the wanted mft
115  * record (it in turn calls read_cache_page() which reads it in from disk if
116  * necessary, increments the use count on the page so that it cannot disappear
117  * under us and returns a reference to the page cache page).
118  *
119  * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
120  * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
121  * and the post-read mst fixups on each mft record in the page have been
122  * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
123  * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
124  * ntfs_map_page() waits for PG_locked to become clear and checks if
125  * PG_uptodate is set and returns an error code if not. This provides
126  * sufficient protection against races when reading/using the page.
127  *
128  * However there is the write mapping to think about. Doing the above described
129  * checking here will be fine, because when initiating the write we will set
130  * PG_locked and clear PG_uptodate making sure nobody is touching the page
131  * contents. Doing the locking this way means that the commit to disk code in
132  * the page cache code paths is automatically sufficiently locked with us as
133  * we will not touch a page that has been locked or is not uptodate. The only
134  * locking problem then is them locking the page while we are accessing it.
135  *
136  * So that code will end up having to own the mrec_lock of all mft
137  * records/inodes present in the page before I/O can proceed. In that case we
138  * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
139  * accessing anything without owning the mrec_lock mutex.  But we do need to
140  * use them because of the read_cache_page() invocation and the code becomes so
141  * much simpler this way that it is well worth it.
142  *
143  * The mft record is now ours and we return a pointer to it. You need to check
144  * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
145  * the error code.
146  *
147  * NOTE: Caller is responsible for setting the mft record dirty before calling
148  * unmap_mft_record(). This is obviously only necessary if the caller really
149  * modified the mft record...
150  * Q: Do we want to recycle one of the VFS inode state bits instead?
151  * A: No, the inode ones mean we want to change the mft record, not we want to
152  * write it out.
153  */
154 MFT_RECORD *map_mft_record(ntfs_inode *ni)
155 {
156 	MFT_RECORD *m;
157 
158 	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
159 
160 	/* Make sure the ntfs inode doesn't go away. */
161 	atomic_inc(&ni->count);
162 
163 	/* Serialize access to this mft record. */
164 	mutex_lock(&ni->mrec_lock);
165 
166 	m = map_mft_record_page(ni);
167 	if (likely(!IS_ERR(m)))
168 		return m;
169 
170 	mutex_unlock(&ni->mrec_lock);
171 	atomic_dec(&ni->count);
172 	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
173 	return m;
174 }
175 
176 /**
177  * unmap_mft_record_page - unmap the page in which a specific mft record resides
178  * @ni:		ntfs inode whose mft record page to unmap
179  *
180  * This unmaps the page in which the mft record of the ntfs inode @ni is
181  * situated and returns. This is a NOOP if highmem is not configured.
182  *
183  * The unmap happens via ntfs_unmap_page() which in turn decrements the use
184  * count on the page thus releasing it from the pinned state.
185  *
186  * We do not actually unmap the page from memory of course, as that will be
187  * done by the page cache code itself when memory pressure increases or
188  * whatever.
189  */
190 static inline void unmap_mft_record_page(ntfs_inode *ni)
191 {
192 	BUG_ON(!ni->page);
193 
194 	// TODO: If dirty, blah...
195 	ntfs_unmap_page(ni->page);
196 	ni->page = NULL;
197 	ni->page_ofs = 0;
198 	return;
199 }
200 
201 /**
202  * unmap_mft_record - release a mapped mft record
203  * @ni:		ntfs inode whose MFT record to unmap
204  *
205  * We release the page mapping and the mrec_lock mutex which unmaps the mft
206  * record and releases it for others to get hold of. We also release the ntfs
207  * inode by decrementing the ntfs inode reference count.
208  *
209  * NOTE: If caller has modified the mft record, it is imperative to set the mft
210  * record dirty BEFORE calling unmap_mft_record().
211  */
212 void unmap_mft_record(ntfs_inode *ni)
213 {
214 	struct page *page = ni->page;
215 
216 	BUG_ON(!page);
217 
218 	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
219 
220 	unmap_mft_record_page(ni);
221 	mutex_unlock(&ni->mrec_lock);
222 	atomic_dec(&ni->count);
223 	/*
224 	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
225 	 * ntfs_clear_extent_inode() in the extent inode case, and to the
226 	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
227 	 * tear down of all structures and freeing of all allocated memory.
228 	 */
229 	return;
230 }
231 
232 /**
233  * map_extent_mft_record - load an extent inode and attach it to its base
234  * @base_ni:	base ntfs inode
235  * @mref:	mft reference of the extent inode to load
236  * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
237  *
238  * Load the extent mft record @mref and attach it to its base inode @base_ni.
239  * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
240  * PTR_ERR(result) gives the negative error code.
241  *
242  * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
243  * structure of the mapped extent inode.
244  */
245 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
246 		ntfs_inode **ntfs_ino)
247 {
248 	MFT_RECORD *m;
249 	ntfs_inode *ni = NULL;
250 	ntfs_inode **extent_nis = NULL;
251 	int i;
252 	unsigned long mft_no = MREF(mref);
253 	u16 seq_no = MSEQNO(mref);
254 	bool destroy_ni = false;
255 
256 	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
257 			mft_no, base_ni->mft_no);
258 	/* Make sure the base ntfs inode doesn't go away. */
259 	atomic_inc(&base_ni->count);
260 	/*
261 	 * Check if this extent inode has already been added to the base inode,
262 	 * in which case just return it. If not found, add it to the base
263 	 * inode before returning it.
264 	 */
265 	mutex_lock(&base_ni->extent_lock);
266 	if (base_ni->nr_extents > 0) {
267 		extent_nis = base_ni->ext.extent_ntfs_inos;
268 		for (i = 0; i < base_ni->nr_extents; i++) {
269 			if (mft_no != extent_nis[i]->mft_no)
270 				continue;
271 			ni = extent_nis[i];
272 			/* Make sure the ntfs inode doesn't go away. */
273 			atomic_inc(&ni->count);
274 			break;
275 		}
276 	}
277 	if (likely(ni != NULL)) {
278 		mutex_unlock(&base_ni->extent_lock);
279 		atomic_dec(&base_ni->count);
280 		/* We found the record; just have to map and return it. */
281 		m = map_mft_record(ni);
282 		/* map_mft_record() has incremented this on success. */
283 		atomic_dec(&ni->count);
284 		if (likely(!IS_ERR(m))) {
285 			/* Verify the sequence number. */
286 			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
287 				ntfs_debug("Done 1.");
288 				*ntfs_ino = ni;
289 				return m;
290 			}
291 			unmap_mft_record(ni);
292 			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
293 					"reference! Corrupt filesystem. "
294 					"Run chkdsk.");
295 			return ERR_PTR(-EIO);
296 		}
297 map_err_out:
298 		ntfs_error(base_ni->vol->sb, "Failed to map extent "
299 				"mft record, error code %ld.", -PTR_ERR(m));
300 		return m;
301 	}
302 	/* Record wasn't there. Get a new ntfs inode and initialize it. */
303 	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
304 	if (unlikely(!ni)) {
305 		mutex_unlock(&base_ni->extent_lock);
306 		atomic_dec(&base_ni->count);
307 		return ERR_PTR(-ENOMEM);
308 	}
309 	ni->vol = base_ni->vol;
310 	ni->seq_no = seq_no;
311 	ni->nr_extents = -1;
312 	ni->ext.base_ntfs_ino = base_ni;
313 	/* Now map the record. */
314 	m = map_mft_record(ni);
315 	if (IS_ERR(m)) {
316 		mutex_unlock(&base_ni->extent_lock);
317 		atomic_dec(&base_ni->count);
318 		ntfs_clear_extent_inode(ni);
319 		goto map_err_out;
320 	}
321 	/* Verify the sequence number if it is present. */
322 	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
323 		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
324 				"reference! Corrupt filesystem. Run chkdsk.");
325 		destroy_ni = true;
326 		m = ERR_PTR(-EIO);
327 		goto unm_err_out;
328 	}
329 	/* Attach extent inode to base inode, reallocating memory if needed. */
330 	if (!(base_ni->nr_extents & 3)) {
331 		ntfs_inode **tmp;
332 		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
333 
334 		tmp = kmalloc(new_size, GFP_NOFS);
335 		if (unlikely(!tmp)) {
336 			ntfs_error(base_ni->vol->sb, "Failed to allocate "
337 					"internal buffer.");
338 			destroy_ni = true;
339 			m = ERR_PTR(-ENOMEM);
340 			goto unm_err_out;
341 		}
342 		if (base_ni->nr_extents) {
343 			BUG_ON(!base_ni->ext.extent_ntfs_inos);
344 			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
345 					4 * sizeof(ntfs_inode *));
346 			kfree(base_ni->ext.extent_ntfs_inos);
347 		}
348 		base_ni->ext.extent_ntfs_inos = tmp;
349 	}
350 	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
351 	mutex_unlock(&base_ni->extent_lock);
352 	atomic_dec(&base_ni->count);
353 	ntfs_debug("Done 2.");
354 	*ntfs_ino = ni;
355 	return m;
356 unm_err_out:
357 	unmap_mft_record(ni);
358 	mutex_unlock(&base_ni->extent_lock);
359 	atomic_dec(&base_ni->count);
360 	/*
361 	 * If the extent inode was not attached to the base inode we need to
362 	 * release it or we will leak memory.
363 	 */
364 	if (destroy_ni)
365 		ntfs_clear_extent_inode(ni);
366 	return m;
367 }
368 
369 #ifdef NTFS_RW
370 
371 /**
372  * __mark_mft_record_dirty - set the mft record and the page containing it dirty
373  * @ni:		ntfs inode describing the mapped mft record
374  *
375  * Internal function.  Users should call mark_mft_record_dirty() instead.
376  *
377  * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
378  * as well as the page containing the mft record, dirty.  Also, mark the base
379  * vfs inode dirty.  This ensures that any changes to the mft record are
380  * written out to disk.
381  *
382  * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
383  * on the base vfs inode, because even though file data may have been modified,
384  * it is dirty in the inode meta data rather than the data page cache of the
385  * inode, and thus there are no data pages that need writing out.  Therefore, a
386  * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
387  * other hand, is not sufficient, because ->write_inode needs to be called even
388  * in case of fdatasync. This needs to happen or the file data would not
389  * necessarily hit the device synchronously, even though the vfs inode has the
390  * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
391  * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
392  * which is not what I_DIRTY_SYNC on its own would suggest.
393  */
394 void __mark_mft_record_dirty(ntfs_inode *ni)
395 {
396 	ntfs_inode *base_ni;
397 
398 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
399 	BUG_ON(NInoAttr(ni));
400 	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
401 	/* Determine the base vfs inode and mark it dirty, too. */
402 	mutex_lock(&ni->extent_lock);
403 	if (likely(ni->nr_extents >= 0))
404 		base_ni = ni;
405 	else
406 		base_ni = ni->ext.base_ntfs_ino;
407 	mutex_unlock(&ni->extent_lock);
408 	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
409 }
410 
411 static const char *ntfs_please_email = "Please email "
412 		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
413 		"this message.  Thank you.";
414 
415 /**
416  * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
417  * @vol:	ntfs volume on which the mft record to synchronize resides
418  * @mft_no:	mft record number of mft record to synchronize
419  * @m:		mapped, mst protected (extent) mft record to synchronize
420  *
421  * Write the mapped, mst protected (extent) mft record @m with mft record
422  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
423  * bypassing the page cache and the $MFTMirr inode itself.
424  *
425  * This function is only for use at umount time when the mft mirror inode has
426  * already been disposed off.  We BUG() if we are called while the mft mirror
427  * inode is still attached to the volume.
428  *
429  * On success return 0.  On error return -errno.
430  *
431  * NOTE:  This function is not implemented yet as I am not convinced it can
432  * actually be triggered considering the sequence of commits we do in super.c::
433  * ntfs_put_super().  But just in case we provide this place holder as the
434  * alternative would be either to BUG() or to get a NULL pointer dereference
435  * and Oops.
436  */
437 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
438 		const unsigned long mft_no, MFT_RECORD *m)
439 {
440 	BUG_ON(vol->mftmirr_ino);
441 	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
442 			"implemented yet.  %s", ntfs_please_email);
443 	return -EOPNOTSUPP;
444 }
445 
446 /**
447  * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
448  * @vol:	ntfs volume on which the mft record to synchronize resides
449  * @mft_no:	mft record number of mft record to synchronize
450  * @m:		mapped, mst protected (extent) mft record to synchronize
451  * @sync:	if true, wait for i/o completion
452  *
453  * Write the mapped, mst protected (extent) mft record @m with mft record
454  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
455  *
456  * On success return 0.  On error return -errno and set the volume errors flag
457  * in the ntfs volume @vol.
458  *
459  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
460  *
461  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
462  * schedule i/o via ->writepage or do it via kntfsd or whatever.
463  */
464 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
465 		MFT_RECORD *m, int sync)
466 {
467 	struct page *page;
468 	unsigned int blocksize = vol->sb->s_blocksize;
469 	int max_bhs = vol->mft_record_size / blocksize;
470 	struct buffer_head *bhs[max_bhs];
471 	struct buffer_head *bh, *head;
472 	u8 *kmirr;
473 	runlist_element *rl;
474 	unsigned int block_start, block_end, m_start, m_end, page_ofs;
475 	int i_bhs, nr_bhs, err = 0;
476 	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
477 
478 	ntfs_debug("Entering for inode 0x%lx.", mft_no);
479 	BUG_ON(!max_bhs);
480 	if (unlikely(!vol->mftmirr_ino)) {
481 		/* This could happen during umount... */
482 		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
483 		if (likely(!err))
484 			return err;
485 		goto err_out;
486 	}
487 	/* Get the page containing the mirror copy of the mft record @m. */
488 	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
489 			(PAGE_CACHE_SHIFT - vol->mft_record_size_bits));
490 	if (IS_ERR(page)) {
491 		ntfs_error(vol->sb, "Failed to map mft mirror page.");
492 		err = PTR_ERR(page);
493 		goto err_out;
494 	}
495 	lock_page(page);
496 	BUG_ON(!PageUptodate(page));
497 	ClearPageUptodate(page);
498 	/* Offset of the mft mirror record inside the page. */
499 	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
500 	/* The address in the page of the mirror copy of the mft record @m. */
501 	kmirr = page_address(page) + page_ofs;
502 	/* Copy the mst protected mft record to the mirror. */
503 	memcpy(kmirr, m, vol->mft_record_size);
504 	/* Create uptodate buffers if not present. */
505 	if (unlikely(!page_has_buffers(page))) {
506 		struct buffer_head *tail;
507 
508 		bh = head = alloc_page_buffers(page, blocksize, 1);
509 		do {
510 			set_buffer_uptodate(bh);
511 			tail = bh;
512 			bh = bh->b_this_page;
513 		} while (bh);
514 		tail->b_this_page = head;
515 		attach_page_buffers(page, head);
516 	}
517 	bh = head = page_buffers(page);
518 	BUG_ON(!bh);
519 	rl = NULL;
520 	nr_bhs = 0;
521 	block_start = 0;
522 	m_start = kmirr - (u8*)page_address(page);
523 	m_end = m_start + vol->mft_record_size;
524 	do {
525 		block_end = block_start + blocksize;
526 		/* If the buffer is outside the mft record, skip it. */
527 		if (block_end <= m_start)
528 			continue;
529 		if (unlikely(block_start >= m_end))
530 			break;
531 		/* Need to map the buffer if it is not mapped already. */
532 		if (unlikely(!buffer_mapped(bh))) {
533 			VCN vcn;
534 			LCN lcn;
535 			unsigned int vcn_ofs;
536 
537 			bh->b_bdev = vol->sb->s_bdev;
538 			/* Obtain the vcn and offset of the current block. */
539 			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
540 					(block_start - m_start);
541 			vcn_ofs = vcn & vol->cluster_size_mask;
542 			vcn >>= vol->cluster_size_bits;
543 			if (!rl) {
544 				down_read(&NTFS_I(vol->mftmirr_ino)->
545 						runlist.lock);
546 				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
547 				/*
548 				 * $MFTMirr always has the whole of its runlist
549 				 * in memory.
550 				 */
551 				BUG_ON(!rl);
552 			}
553 			/* Seek to element containing target vcn. */
554 			while (rl->length && rl[1].vcn <= vcn)
555 				rl++;
556 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
557 			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
558 			if (likely(lcn >= 0)) {
559 				/* Setup buffer head to correct block. */
560 				bh->b_blocknr = ((lcn <<
561 						vol->cluster_size_bits) +
562 						vcn_ofs) >> blocksize_bits;
563 				set_buffer_mapped(bh);
564 			} else {
565 				bh->b_blocknr = -1;
566 				ntfs_error(vol->sb, "Cannot write mft mirror "
567 						"record 0x%lx because its "
568 						"location on disk could not "
569 						"be determined (error code "
570 						"%lli).", mft_no,
571 						(long long)lcn);
572 				err = -EIO;
573 			}
574 		}
575 		BUG_ON(!buffer_uptodate(bh));
576 		BUG_ON(!nr_bhs && (m_start != block_start));
577 		BUG_ON(nr_bhs >= max_bhs);
578 		bhs[nr_bhs++] = bh;
579 		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
580 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
581 	if (unlikely(rl))
582 		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
583 	if (likely(!err)) {
584 		/* Lock buffers and start synchronous write i/o on them. */
585 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
586 			struct buffer_head *tbh = bhs[i_bhs];
587 
588 			if (!trylock_buffer(tbh))
589 				BUG();
590 			BUG_ON(!buffer_uptodate(tbh));
591 			clear_buffer_dirty(tbh);
592 			get_bh(tbh);
593 			tbh->b_end_io = end_buffer_write_sync;
594 			submit_bh(WRITE, tbh);
595 		}
596 		/* Wait on i/o completion of buffers. */
597 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
598 			struct buffer_head *tbh = bhs[i_bhs];
599 
600 			wait_on_buffer(tbh);
601 			if (unlikely(!buffer_uptodate(tbh))) {
602 				err = -EIO;
603 				/*
604 				 * Set the buffer uptodate so the page and
605 				 * buffer states do not become out of sync.
606 				 */
607 				set_buffer_uptodate(tbh);
608 			}
609 		}
610 	} else /* if (unlikely(err)) */ {
611 		/* Clean the buffers. */
612 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
613 			clear_buffer_dirty(bhs[i_bhs]);
614 	}
615 	/* Current state: all buffers are clean, unlocked, and uptodate. */
616 	/* Remove the mst protection fixups again. */
617 	post_write_mst_fixup((NTFS_RECORD*)kmirr);
618 	flush_dcache_page(page);
619 	SetPageUptodate(page);
620 	unlock_page(page);
621 	ntfs_unmap_page(page);
622 	if (likely(!err)) {
623 		ntfs_debug("Done.");
624 	} else {
625 		ntfs_error(vol->sb, "I/O error while writing mft mirror "
626 				"record 0x%lx!", mft_no);
627 err_out:
628 		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
629 				"code %i).  Volume will be left marked dirty "
630 				"on umount.  Run ntfsfix on the partition "
631 				"after umounting to correct this.", -err);
632 		NVolSetErrors(vol);
633 	}
634 	return err;
635 }
636 
637 /**
638  * write_mft_record_nolock - write out a mapped (extent) mft record
639  * @ni:		ntfs inode describing the mapped (extent) mft record
640  * @m:		mapped (extent) mft record to write
641  * @sync:	if true, wait for i/o completion
642  *
643  * Write the mapped (extent) mft record @m described by the (regular or extent)
644  * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
645  * the mft mirror, that is also updated.
646  *
647  * We only write the mft record if the ntfs inode @ni is dirty and the first
648  * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
649  * of subsequent buffers because we could have raced with
650  * fs/ntfs/aops.c::mark_ntfs_record_dirty().
651  *
652  * On success, clean the mft record and return 0.  On error, leave the mft
653  * record dirty and return -errno.
654  *
655  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
656  * However, if the mft record has a counterpart in the mft mirror and @sync is
657  * true, we write the mft record, wait for i/o completion, and only then write
658  * the mft mirror copy.  This ensures that if the system crashes either the mft
659  * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
660  * false on the other hand, we start i/o on both and then wait for completion
661  * on them.  This provides a speedup but no longer guarantees that you will end
662  * up with a self-consistent mft record in the case of a crash but if you asked
663  * for asynchronous writing you probably do not care about that anyway.
664  *
665  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
666  * schedule i/o via ->writepage or do it via kntfsd or whatever.
667  */
668 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
669 {
670 	ntfs_volume *vol = ni->vol;
671 	struct page *page = ni->page;
672 	unsigned int blocksize = vol->sb->s_blocksize;
673 	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
674 	int max_bhs = vol->mft_record_size / blocksize;
675 	struct buffer_head *bhs[max_bhs];
676 	struct buffer_head *bh, *head;
677 	runlist_element *rl;
678 	unsigned int block_start, block_end, m_start, m_end;
679 	int i_bhs, nr_bhs, err = 0;
680 
681 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
682 	BUG_ON(NInoAttr(ni));
683 	BUG_ON(!max_bhs);
684 	BUG_ON(!PageLocked(page));
685 	/*
686 	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
687 	 * mark it as clean now so that it can be redirtied later on if needed.
688 	 * There is no danger of races since the caller is holding the locks
689 	 * for the mft record @m and the page it is in.
690 	 */
691 	if (!NInoTestClearDirty(ni))
692 		goto done;
693 	bh = head = page_buffers(page);
694 	BUG_ON(!bh);
695 	rl = NULL;
696 	nr_bhs = 0;
697 	block_start = 0;
698 	m_start = ni->page_ofs;
699 	m_end = m_start + vol->mft_record_size;
700 	do {
701 		block_end = block_start + blocksize;
702 		/* If the buffer is outside the mft record, skip it. */
703 		if (block_end <= m_start)
704 			continue;
705 		if (unlikely(block_start >= m_end))
706 			break;
707 		/*
708 		 * If this block is not the first one in the record, we ignore
709 		 * the buffer's dirty state because we could have raced with a
710 		 * parallel mark_ntfs_record_dirty().
711 		 */
712 		if (block_start == m_start) {
713 			/* This block is the first one in the record. */
714 			if (!buffer_dirty(bh)) {
715 				BUG_ON(nr_bhs);
716 				/* Clean records are not written out. */
717 				break;
718 			}
719 		}
720 		/* Need to map the buffer if it is not mapped already. */
721 		if (unlikely(!buffer_mapped(bh))) {
722 			VCN vcn;
723 			LCN lcn;
724 			unsigned int vcn_ofs;
725 
726 			bh->b_bdev = vol->sb->s_bdev;
727 			/* Obtain the vcn and offset of the current block. */
728 			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
729 					(block_start - m_start);
730 			vcn_ofs = vcn & vol->cluster_size_mask;
731 			vcn >>= vol->cluster_size_bits;
732 			if (!rl) {
733 				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
734 				rl = NTFS_I(vol->mft_ino)->runlist.rl;
735 				BUG_ON(!rl);
736 			}
737 			/* Seek to element containing target vcn. */
738 			while (rl->length && rl[1].vcn <= vcn)
739 				rl++;
740 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
741 			/* For $MFT, only lcn >= 0 is a successful remap. */
742 			if (likely(lcn >= 0)) {
743 				/* Setup buffer head to correct block. */
744 				bh->b_blocknr = ((lcn <<
745 						vol->cluster_size_bits) +
746 						vcn_ofs) >> blocksize_bits;
747 				set_buffer_mapped(bh);
748 			} else {
749 				bh->b_blocknr = -1;
750 				ntfs_error(vol->sb, "Cannot write mft record "
751 						"0x%lx because its location "
752 						"on disk could not be "
753 						"determined (error code %lli).",
754 						ni->mft_no, (long long)lcn);
755 				err = -EIO;
756 			}
757 		}
758 		BUG_ON(!buffer_uptodate(bh));
759 		BUG_ON(!nr_bhs && (m_start != block_start));
760 		BUG_ON(nr_bhs >= max_bhs);
761 		bhs[nr_bhs++] = bh;
762 		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
763 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
764 	if (unlikely(rl))
765 		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
766 	if (!nr_bhs)
767 		goto done;
768 	if (unlikely(err))
769 		goto cleanup_out;
770 	/* Apply the mst protection fixups. */
771 	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
772 	if (err) {
773 		ntfs_error(vol->sb, "Failed to apply mst fixups!");
774 		goto cleanup_out;
775 	}
776 	flush_dcache_mft_record_page(ni);
777 	/* Lock buffers and start synchronous write i/o on them. */
778 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
779 		struct buffer_head *tbh = bhs[i_bhs];
780 
781 		if (!trylock_buffer(tbh))
782 			BUG();
783 		BUG_ON(!buffer_uptodate(tbh));
784 		clear_buffer_dirty(tbh);
785 		get_bh(tbh);
786 		tbh->b_end_io = end_buffer_write_sync;
787 		submit_bh(WRITE, tbh);
788 	}
789 	/* Synchronize the mft mirror now if not @sync. */
790 	if (!sync && ni->mft_no < vol->mftmirr_size)
791 		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
792 	/* Wait on i/o completion of buffers. */
793 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
794 		struct buffer_head *tbh = bhs[i_bhs];
795 
796 		wait_on_buffer(tbh);
797 		if (unlikely(!buffer_uptodate(tbh))) {
798 			err = -EIO;
799 			/*
800 			 * Set the buffer uptodate so the page and buffer
801 			 * states do not become out of sync.
802 			 */
803 			if (PageUptodate(page))
804 				set_buffer_uptodate(tbh);
805 		}
806 	}
807 	/* If @sync, now synchronize the mft mirror. */
808 	if (sync && ni->mft_no < vol->mftmirr_size)
809 		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
810 	/* Remove the mst protection fixups again. */
811 	post_write_mst_fixup((NTFS_RECORD*)m);
812 	flush_dcache_mft_record_page(ni);
813 	if (unlikely(err)) {
814 		/* I/O error during writing.  This is really bad! */
815 		ntfs_error(vol->sb, "I/O error while writing mft record "
816 				"0x%lx!  Marking base inode as bad.  You "
817 				"should unmount the volume and run chkdsk.",
818 				ni->mft_no);
819 		goto err_out;
820 	}
821 done:
822 	ntfs_debug("Done.");
823 	return 0;
824 cleanup_out:
825 	/* Clean the buffers. */
826 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
827 		clear_buffer_dirty(bhs[i_bhs]);
828 err_out:
829 	/*
830 	 * Current state: all buffers are clean, unlocked, and uptodate.
831 	 * The caller should mark the base inode as bad so that no more i/o
832 	 * happens.  ->clear_inode() will still be invoked so all extent inodes
833 	 * and other allocated memory will be freed.
834 	 */
835 	if (err == -ENOMEM) {
836 		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
837 				"Redirtying so the write is retried later.");
838 		mark_mft_record_dirty(ni);
839 		err = 0;
840 	} else
841 		NVolSetErrors(vol);
842 	return err;
843 }
844 
845 /**
846  * ntfs_may_write_mft_record - check if an mft record may be written out
847  * @vol:	[IN]  ntfs volume on which the mft record to check resides
848  * @mft_no:	[IN]  mft record number of the mft record to check
849  * @m:		[IN]  mapped mft record to check
850  * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
851  *
852  * Check if the mapped (base or extent) mft record @m with mft record number
853  * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
854  * and possible the ntfs inode of the mft record is locked and the base vfs
855  * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
856  * caller is responsible for unlocking the ntfs inode and unpinning the base
857  * vfs inode.
858  *
859  * Return 'true' if the mft record may be written out and 'false' if not.
860  *
861  * The caller has locked the page and cleared the uptodate flag on it which
862  * means that we can safely write out any dirty mft records that do not have
863  * their inodes in icache as determined by ilookup5() as anyone
864  * opening/creating such an inode would block when attempting to map the mft
865  * record in read_cache_page() until we are finished with the write out.
866  *
867  * Here is a description of the tests we perform:
868  *
869  * If the inode is found in icache we know the mft record must be a base mft
870  * record.  If it is dirty, we do not write it and return 'false' as the vfs
871  * inode write paths will result in the access times being updated which would
872  * cause the base mft record to be redirtied and written out again.  (We know
873  * the access time update will modify the base mft record because Windows
874  * chkdsk complains if the standard information attribute is not in the base
875  * mft record.)
876  *
877  * If the inode is in icache and not dirty, we attempt to lock the mft record
878  * and if we find the lock was already taken, it is not safe to write the mft
879  * record and we return 'false'.
880  *
881  * If we manage to obtain the lock we have exclusive access to the mft record,
882  * which also allows us safe writeout of the mft record.  We then set
883  * @locked_ni to the locked ntfs inode and return 'true'.
884  *
885  * Note we cannot just lock the mft record and sleep while waiting for the lock
886  * because this would deadlock due to lock reversal (normally the mft record is
887  * locked before the page is locked but we already have the page locked here
888  * when we try to lock the mft record).
889  *
890  * If the inode is not in icache we need to perform further checks.
891  *
892  * If the mft record is not a FILE record or it is a base mft record, we can
893  * safely write it and return 'true'.
894  *
895  * We now know the mft record is an extent mft record.  We check if the inode
896  * corresponding to its base mft record is in icache and obtain a reference to
897  * it if it is.  If it is not, we can safely write it and return 'true'.
898  *
899  * We now have the base inode for the extent mft record.  We check if it has an
900  * ntfs inode for the extent mft record attached and if not it is safe to write
901  * the extent mft record and we return 'true'.
902  *
903  * The ntfs inode for the extent mft record is attached to the base inode so we
904  * attempt to lock the extent mft record and if we find the lock was already
905  * taken, it is not safe to write the extent mft record and we return 'false'.
906  *
907  * If we manage to obtain the lock we have exclusive access to the extent mft
908  * record, which also allows us safe writeout of the extent mft record.  We
909  * set the ntfs inode of the extent mft record clean and then set @locked_ni to
910  * the now locked ntfs inode and return 'true'.
911  *
912  * Note, the reason for actually writing dirty mft records here and not just
913  * relying on the vfs inode dirty code paths is that we can have mft records
914  * modified without them ever having actual inodes in memory.  Also we can have
915  * dirty mft records with clean ntfs inodes in memory.  None of the described
916  * cases would result in the dirty mft records being written out if we only
917  * relied on the vfs inode dirty code paths.  And these cases can really occur
918  * during allocation of new mft records and in particular when the
919  * initialized_size of the $MFT/$DATA attribute is extended and the new space
920  * is initialized using ntfs_mft_record_format().  The clean inode can then
921  * appear if the mft record is reused for a new inode before it got written
922  * out.
923  */
924 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
925 		const MFT_RECORD *m, ntfs_inode **locked_ni)
926 {
927 	struct super_block *sb = vol->sb;
928 	struct inode *mft_vi = vol->mft_ino;
929 	struct inode *vi;
930 	ntfs_inode *ni, *eni, **extent_nis;
931 	int i;
932 	ntfs_attr na;
933 
934 	ntfs_debug("Entering for inode 0x%lx.", mft_no);
935 	/*
936 	 * Normally we do not return a locked inode so set @locked_ni to NULL.
937 	 */
938 	BUG_ON(!locked_ni);
939 	*locked_ni = NULL;
940 	/*
941 	 * Check if the inode corresponding to this mft record is in the VFS
942 	 * inode cache and obtain a reference to it if it is.
943 	 */
944 	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
945 	na.mft_no = mft_no;
946 	na.name = NULL;
947 	na.name_len = 0;
948 	na.type = AT_UNUSED;
949 	/*
950 	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
951 	 * we get here for it rather often.
952 	 */
953 	if (!mft_no) {
954 		/* Balance the below iput(). */
955 		vi = igrab(mft_vi);
956 		BUG_ON(vi != mft_vi);
957 	} else {
958 		/*
959 		 * Have to use ilookup5_nowait() since ilookup5() waits for the
960 		 * inode lock which causes ntfs to deadlock when a concurrent
961 		 * inode write via the inode dirty code paths and the page
962 		 * dirty code path of the inode dirty code path when writing
963 		 * $MFT occurs.
964 		 */
965 		vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
966 	}
967 	if (vi) {
968 		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
969 		/* The inode is in icache. */
970 		ni = NTFS_I(vi);
971 		/* Take a reference to the ntfs inode. */
972 		atomic_inc(&ni->count);
973 		/* If the inode is dirty, do not write this record. */
974 		if (NInoDirty(ni)) {
975 			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
976 					mft_no);
977 			atomic_dec(&ni->count);
978 			iput(vi);
979 			return false;
980 		}
981 		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
982 		/* The inode is not dirty, try to take the mft record lock. */
983 		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
984 			ntfs_debug("Mft record 0x%lx is already locked, do "
985 					"not write it.", mft_no);
986 			atomic_dec(&ni->count);
987 			iput(vi);
988 			return false;
989 		}
990 		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
991 				mft_no);
992 		/*
993 		 * The write has to occur while we hold the mft record lock so
994 		 * return the locked ntfs inode.
995 		 */
996 		*locked_ni = ni;
997 		return true;
998 	}
999 	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1000 	/* The inode is not in icache. */
1001 	/* Write the record if it is not a mft record (type "FILE"). */
1002 	if (!ntfs_is_mft_record(m->magic)) {
1003 		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1004 				mft_no);
1005 		return true;
1006 	}
1007 	/* Write the mft record if it is a base inode. */
1008 	if (!m->base_mft_record) {
1009 		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1010 				mft_no);
1011 		return true;
1012 	}
1013 	/*
1014 	 * This is an extent mft record.  Check if the inode corresponding to
1015 	 * its base mft record is in icache and obtain a reference to it if it
1016 	 * is.
1017 	 */
1018 	na.mft_no = MREF_LE(m->base_mft_record);
1019 	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1020 			"inode 0x%lx in icache.", mft_no, na.mft_no);
1021 	if (!na.mft_no) {
1022 		/* Balance the below iput(). */
1023 		vi = igrab(mft_vi);
1024 		BUG_ON(vi != mft_vi);
1025 	} else
1026 		vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1027 				&na);
1028 	if (!vi) {
1029 		/*
1030 		 * The base inode is not in icache, write this extent mft
1031 		 * record.
1032 		 */
1033 		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1034 				"extent record.", na.mft_no);
1035 		return true;
1036 	}
1037 	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1038 	/*
1039 	 * The base inode is in icache.  Check if it has the extent inode
1040 	 * corresponding to this extent mft record attached.
1041 	 */
1042 	ni = NTFS_I(vi);
1043 	mutex_lock(&ni->extent_lock);
1044 	if (ni->nr_extents <= 0) {
1045 		/*
1046 		 * The base inode has no attached extent inodes, write this
1047 		 * extent mft record.
1048 		 */
1049 		mutex_unlock(&ni->extent_lock);
1050 		iput(vi);
1051 		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1052 				"write the extent record.", na.mft_no);
1053 		return true;
1054 	}
1055 	/* Iterate over the attached extent inodes. */
1056 	extent_nis = ni->ext.extent_ntfs_inos;
1057 	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1058 		if (mft_no == extent_nis[i]->mft_no) {
1059 			/*
1060 			 * Found the extent inode corresponding to this extent
1061 			 * mft record.
1062 			 */
1063 			eni = extent_nis[i];
1064 			break;
1065 		}
1066 	}
1067 	/*
1068 	 * If the extent inode was not attached to the base inode, write this
1069 	 * extent mft record.
1070 	 */
1071 	if (!eni) {
1072 		mutex_unlock(&ni->extent_lock);
1073 		iput(vi);
1074 		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1075 				"inode 0x%lx, write the extent record.",
1076 				mft_no, na.mft_no);
1077 		return true;
1078 	}
1079 	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1080 			mft_no, na.mft_no);
1081 	/* Take a reference to the extent ntfs inode. */
1082 	atomic_inc(&eni->count);
1083 	mutex_unlock(&ni->extent_lock);
1084 	/*
1085 	 * Found the extent inode coresponding to this extent mft record.
1086 	 * Try to take the mft record lock.
1087 	 */
1088 	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1089 		atomic_dec(&eni->count);
1090 		iput(vi);
1091 		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1092 				"not write it.", mft_no);
1093 		return false;
1094 	}
1095 	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1096 			mft_no);
1097 	if (NInoTestClearDirty(eni))
1098 		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1099 				mft_no);
1100 	/*
1101 	 * The write has to occur while we hold the mft record lock so return
1102 	 * the locked extent ntfs inode.
1103 	 */
1104 	*locked_ni = eni;
1105 	return true;
1106 }
1107 
1108 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1109 		"chkdsk.";
1110 
1111 /**
1112  * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1113  * @vol:	volume on which to search for a free mft record
1114  * @base_ni:	open base inode if allocating an extent mft record or NULL
1115  *
1116  * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1117  * @vol.
1118  *
1119  * If @base_ni is NULL start the search at the default allocator position.
1120  *
1121  * If @base_ni is not NULL start the search at the mft record after the base
1122  * mft record @base_ni.
1123  *
1124  * Return the free mft record on success and -errno on error.  An error code of
1125  * -ENOSPC means that there are no free mft records in the currently
1126  * initialized mft bitmap.
1127  *
1128  * Locking: Caller must hold vol->mftbmp_lock for writing.
1129  */
1130 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1131 		ntfs_inode *base_ni)
1132 {
1133 	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1134 	unsigned long flags;
1135 	struct address_space *mftbmp_mapping;
1136 	u8 *buf, *byte;
1137 	struct page *page;
1138 	unsigned int page_ofs, size;
1139 	u8 pass, b;
1140 
1141 	ntfs_debug("Searching for free mft record in the currently "
1142 			"initialized mft bitmap.");
1143 	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1144 	/*
1145 	 * Set the end of the pass making sure we do not overflow the mft
1146 	 * bitmap.
1147 	 */
1148 	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1149 	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1150 			vol->mft_record_size_bits;
1151 	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1152 	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1153 	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1154 	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1155 	if (pass_end > ll)
1156 		pass_end = ll;
1157 	pass = 1;
1158 	if (!base_ni)
1159 		data_pos = vol->mft_data_pos;
1160 	else
1161 		data_pos = base_ni->mft_no + 1;
1162 	if (data_pos < 24)
1163 		data_pos = 24;
1164 	if (data_pos >= pass_end) {
1165 		data_pos = 24;
1166 		pass = 2;
1167 		/* This happens on a freshly formatted volume. */
1168 		if (data_pos >= pass_end)
1169 			return -ENOSPC;
1170 	}
1171 	pass_start = data_pos;
1172 	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1173 			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1174 			(long long)pass_start, (long long)pass_end,
1175 			(long long)data_pos);
1176 	/* Loop until a free mft record is found. */
1177 	for (; pass <= 2;) {
1178 		/* Cap size to pass_end. */
1179 		ofs = data_pos >> 3;
1180 		page_ofs = ofs & ~PAGE_CACHE_MASK;
1181 		size = PAGE_CACHE_SIZE - page_ofs;
1182 		ll = ((pass_end + 7) >> 3) - ofs;
1183 		if (size > ll)
1184 			size = ll;
1185 		size <<= 3;
1186 		/*
1187 		 * If we are still within the active pass, search the next page
1188 		 * for a zero bit.
1189 		 */
1190 		if (size) {
1191 			page = ntfs_map_page(mftbmp_mapping,
1192 					ofs >> PAGE_CACHE_SHIFT);
1193 			if (IS_ERR(page)) {
1194 				ntfs_error(vol->sb, "Failed to read mft "
1195 						"bitmap, aborting.");
1196 				return PTR_ERR(page);
1197 			}
1198 			buf = (u8*)page_address(page) + page_ofs;
1199 			bit = data_pos & 7;
1200 			data_pos &= ~7ull;
1201 			ntfs_debug("Before inner for loop: size 0x%x, "
1202 					"data_pos 0x%llx, bit 0x%llx", size,
1203 					(long long)data_pos, (long long)bit);
1204 			for (; bit < size && data_pos + bit < pass_end;
1205 					bit &= ~7ull, bit += 8) {
1206 				byte = buf + (bit >> 3);
1207 				if (*byte == 0xff)
1208 					continue;
1209 				b = ffz((unsigned long)*byte);
1210 				if (b < 8 && b >= (bit & 7)) {
1211 					ll = data_pos + (bit & ~7ull) + b;
1212 					if (unlikely(ll > (1ll << 32))) {
1213 						ntfs_unmap_page(page);
1214 						return -ENOSPC;
1215 					}
1216 					*byte |= 1 << b;
1217 					flush_dcache_page(page);
1218 					set_page_dirty(page);
1219 					ntfs_unmap_page(page);
1220 					ntfs_debug("Done.  (Found and "
1221 							"allocated mft record "
1222 							"0x%llx.)",
1223 							(long long)ll);
1224 					return ll;
1225 				}
1226 			}
1227 			ntfs_debug("After inner for loop: size 0x%x, "
1228 					"data_pos 0x%llx, bit 0x%llx", size,
1229 					(long long)data_pos, (long long)bit);
1230 			data_pos += size;
1231 			ntfs_unmap_page(page);
1232 			/*
1233 			 * If the end of the pass has not been reached yet,
1234 			 * continue searching the mft bitmap for a zero bit.
1235 			 */
1236 			if (data_pos < pass_end)
1237 				continue;
1238 		}
1239 		/* Do the next pass. */
1240 		if (++pass == 2) {
1241 			/*
1242 			 * Starting the second pass, in which we scan the first
1243 			 * part of the zone which we omitted earlier.
1244 			 */
1245 			pass_end = pass_start;
1246 			data_pos = pass_start = 24;
1247 			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1248 					"0x%llx.", pass, (long long)pass_start,
1249 					(long long)pass_end);
1250 			if (data_pos >= pass_end)
1251 				break;
1252 		}
1253 	}
1254 	/* No free mft records in currently initialized mft bitmap. */
1255 	ntfs_debug("Done.  (No free mft records left in currently initialized "
1256 			"mft bitmap.)");
1257 	return -ENOSPC;
1258 }
1259 
1260 /**
1261  * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1262  * @vol:	volume on which to extend the mft bitmap attribute
1263  *
1264  * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1265  *
1266  * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1267  * data_size.
1268  *
1269  * Return 0 on success and -errno on error.
1270  *
1271  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1272  *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1273  *	      writing and releases it before returning.
1274  *	    - This function takes vol->lcnbmp_lock for writing and releases it
1275  *	      before returning.
1276  */
1277 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1278 {
1279 	LCN lcn;
1280 	s64 ll;
1281 	unsigned long flags;
1282 	struct page *page;
1283 	ntfs_inode *mft_ni, *mftbmp_ni;
1284 	runlist_element *rl, *rl2 = NULL;
1285 	ntfs_attr_search_ctx *ctx = NULL;
1286 	MFT_RECORD *mrec;
1287 	ATTR_RECORD *a = NULL;
1288 	int ret, mp_size;
1289 	u32 old_alen = 0;
1290 	u8 *b, tb;
1291 	struct {
1292 		u8 added_cluster:1;
1293 		u8 added_run:1;
1294 		u8 mp_rebuilt:1;
1295 	} status = { 0, 0, 0 };
1296 
1297 	ntfs_debug("Extending mft bitmap allocation.");
1298 	mft_ni = NTFS_I(vol->mft_ino);
1299 	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1300 	/*
1301 	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1302 	 * mft bitmap cannot be zero so we are ok to do this.
1303 	 */
1304 	down_write(&mftbmp_ni->runlist.lock);
1305 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1306 	ll = mftbmp_ni->allocated_size;
1307 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1308 	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1309 			(ll - 1) >> vol->cluster_size_bits, NULL);
1310 	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1311 		up_write(&mftbmp_ni->runlist.lock);
1312 		ntfs_error(vol->sb, "Failed to determine last allocated "
1313 				"cluster of mft bitmap attribute.");
1314 		if (!IS_ERR(rl))
1315 			ret = -EIO;
1316 		else
1317 			ret = PTR_ERR(rl);
1318 		return ret;
1319 	}
1320 	lcn = rl->lcn + rl->length;
1321 	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1322 			(long long)lcn);
1323 	/*
1324 	 * Attempt to get the cluster following the last allocated cluster by
1325 	 * hand as it may be in the MFT zone so the allocator would not give it
1326 	 * to us.
1327 	 */
1328 	ll = lcn >> 3;
1329 	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1330 			ll >> PAGE_CACHE_SHIFT);
1331 	if (IS_ERR(page)) {
1332 		up_write(&mftbmp_ni->runlist.lock);
1333 		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1334 		return PTR_ERR(page);
1335 	}
1336 	b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK);
1337 	tb = 1 << (lcn & 7ull);
1338 	down_write(&vol->lcnbmp_lock);
1339 	if (*b != 0xff && !(*b & tb)) {
1340 		/* Next cluster is free, allocate it. */
1341 		*b |= tb;
1342 		flush_dcache_page(page);
1343 		set_page_dirty(page);
1344 		up_write(&vol->lcnbmp_lock);
1345 		ntfs_unmap_page(page);
1346 		/* Update the mft bitmap runlist. */
1347 		rl->length++;
1348 		rl[1].vcn++;
1349 		status.added_cluster = 1;
1350 		ntfs_debug("Appending one cluster to mft bitmap.");
1351 	} else {
1352 		up_write(&vol->lcnbmp_lock);
1353 		ntfs_unmap_page(page);
1354 		/* Allocate a cluster from the DATA_ZONE. */
1355 		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1356 				true);
1357 		if (IS_ERR(rl2)) {
1358 			up_write(&mftbmp_ni->runlist.lock);
1359 			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1360 					"the mft bitmap.");
1361 			return PTR_ERR(rl2);
1362 		}
1363 		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1364 		if (IS_ERR(rl)) {
1365 			up_write(&mftbmp_ni->runlist.lock);
1366 			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1367 					"bitmap.");
1368 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1369 				ntfs_error(vol->sb, "Failed to dealocate "
1370 						"allocated cluster.%s", es);
1371 				NVolSetErrors(vol);
1372 			}
1373 			ntfs_free(rl2);
1374 			return PTR_ERR(rl);
1375 		}
1376 		mftbmp_ni->runlist.rl = rl;
1377 		status.added_run = 1;
1378 		ntfs_debug("Adding one run to mft bitmap.");
1379 		/* Find the last run in the new runlist. */
1380 		for (; rl[1].length; rl++)
1381 			;
1382 	}
1383 	/*
1384 	 * Update the attribute record as well.  Note: @rl is the last
1385 	 * (non-terminator) runlist element of mft bitmap.
1386 	 */
1387 	mrec = map_mft_record(mft_ni);
1388 	if (IS_ERR(mrec)) {
1389 		ntfs_error(vol->sb, "Failed to map mft record.");
1390 		ret = PTR_ERR(mrec);
1391 		goto undo_alloc;
1392 	}
1393 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1394 	if (unlikely(!ctx)) {
1395 		ntfs_error(vol->sb, "Failed to get search context.");
1396 		ret = -ENOMEM;
1397 		goto undo_alloc;
1398 	}
1399 	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1400 			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1401 			0, ctx);
1402 	if (unlikely(ret)) {
1403 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1404 				"mft bitmap attribute.");
1405 		if (ret == -ENOENT)
1406 			ret = -EIO;
1407 		goto undo_alloc;
1408 	}
1409 	a = ctx->attr;
1410 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1411 	/* Search back for the previous last allocated cluster of mft bitmap. */
1412 	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1413 		if (ll >= rl2->vcn)
1414 			break;
1415 	}
1416 	BUG_ON(ll < rl2->vcn);
1417 	BUG_ON(ll >= rl2->vcn + rl2->length);
1418 	/* Get the size for the new mapping pairs array for this extent. */
1419 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1420 	if (unlikely(mp_size <= 0)) {
1421 		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1422 				"mft bitmap attribute extent.");
1423 		ret = mp_size;
1424 		if (!ret)
1425 			ret = -EIO;
1426 		goto undo_alloc;
1427 	}
1428 	/* Expand the attribute record if necessary. */
1429 	old_alen = le32_to_cpu(a->length);
1430 	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1431 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1432 	if (unlikely(ret)) {
1433 		if (ret != -ENOSPC) {
1434 			ntfs_error(vol->sb, "Failed to resize attribute "
1435 					"record for mft bitmap attribute.");
1436 			goto undo_alloc;
1437 		}
1438 		// TODO: Deal with this by moving this extent to a new mft
1439 		// record or by starting a new extent in a new mft record or by
1440 		// moving other attributes out of this mft record.
1441 		// Note: It will need to be a special mft record and if none of
1442 		// those are available it gets rather complicated...
1443 		ntfs_error(vol->sb, "Not enough space in this mft record to "
1444 				"accomodate extended mft bitmap attribute "
1445 				"extent.  Cannot handle this yet.");
1446 		ret = -EOPNOTSUPP;
1447 		goto undo_alloc;
1448 	}
1449 	status.mp_rebuilt = 1;
1450 	/* Generate the mapping pairs array directly into the attr record. */
1451 	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1452 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1453 			mp_size, rl2, ll, -1, NULL);
1454 	if (unlikely(ret)) {
1455 		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1456 				"mft bitmap attribute.");
1457 		goto undo_alloc;
1458 	}
1459 	/* Update the highest_vcn. */
1460 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1461 	/*
1462 	 * We now have extended the mft bitmap allocated_size by one cluster.
1463 	 * Reflect this in the ntfs_inode structure and the attribute record.
1464 	 */
1465 	if (a->data.non_resident.lowest_vcn) {
1466 		/*
1467 		 * We are not in the first attribute extent, switch to it, but
1468 		 * first ensure the changes will make it to disk later.
1469 		 */
1470 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1471 		mark_mft_record_dirty(ctx->ntfs_ino);
1472 		ntfs_attr_reinit_search_ctx(ctx);
1473 		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1474 				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1475 				0, ctx);
1476 		if (unlikely(ret)) {
1477 			ntfs_error(vol->sb, "Failed to find first attribute "
1478 					"extent of mft bitmap attribute.");
1479 			goto restore_undo_alloc;
1480 		}
1481 		a = ctx->attr;
1482 	}
1483 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1484 	mftbmp_ni->allocated_size += vol->cluster_size;
1485 	a->data.non_resident.allocated_size =
1486 			cpu_to_sle64(mftbmp_ni->allocated_size);
1487 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1488 	/* Ensure the changes make it to disk. */
1489 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1490 	mark_mft_record_dirty(ctx->ntfs_ino);
1491 	ntfs_attr_put_search_ctx(ctx);
1492 	unmap_mft_record(mft_ni);
1493 	up_write(&mftbmp_ni->runlist.lock);
1494 	ntfs_debug("Done.");
1495 	return 0;
1496 restore_undo_alloc:
1497 	ntfs_attr_reinit_search_ctx(ctx);
1498 	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1499 			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1500 			0, ctx)) {
1501 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1502 				"mft bitmap attribute.%s", es);
1503 		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1504 		mftbmp_ni->allocated_size += vol->cluster_size;
1505 		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1506 		ntfs_attr_put_search_ctx(ctx);
1507 		unmap_mft_record(mft_ni);
1508 		up_write(&mftbmp_ni->runlist.lock);
1509 		/*
1510 		 * The only thing that is now wrong is ->allocated_size of the
1511 		 * base attribute extent which chkdsk should be able to fix.
1512 		 */
1513 		NVolSetErrors(vol);
1514 		return ret;
1515 	}
1516 	a = ctx->attr;
1517 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1518 undo_alloc:
1519 	if (status.added_cluster) {
1520 		/* Truncate the last run in the runlist by one cluster. */
1521 		rl->length--;
1522 		rl[1].vcn--;
1523 	} else if (status.added_run) {
1524 		lcn = rl->lcn;
1525 		/* Remove the last run from the runlist. */
1526 		rl->lcn = rl[1].lcn;
1527 		rl->length = 0;
1528 	}
1529 	/* Deallocate the cluster. */
1530 	down_write(&vol->lcnbmp_lock);
1531 	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1532 		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1533 		NVolSetErrors(vol);
1534 	}
1535 	up_write(&vol->lcnbmp_lock);
1536 	if (status.mp_rebuilt) {
1537 		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1538 				a->data.non_resident.mapping_pairs_offset),
1539 				old_alen - le16_to_cpu(
1540 				a->data.non_resident.mapping_pairs_offset),
1541 				rl2, ll, -1, NULL)) {
1542 			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1543 					"array.%s", es);
1544 			NVolSetErrors(vol);
1545 		}
1546 		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1547 			ntfs_error(vol->sb, "Failed to restore attribute "
1548 					"record.%s", es);
1549 			NVolSetErrors(vol);
1550 		}
1551 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1552 		mark_mft_record_dirty(ctx->ntfs_ino);
1553 	}
1554 	if (ctx)
1555 		ntfs_attr_put_search_ctx(ctx);
1556 	if (!IS_ERR(mrec))
1557 		unmap_mft_record(mft_ni);
1558 	up_write(&mftbmp_ni->runlist.lock);
1559 	return ret;
1560 }
1561 
1562 /**
1563  * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1564  * @vol:	volume on which to extend the mft bitmap attribute
1565  *
1566  * Extend the initialized portion of the mft bitmap attribute on the ntfs
1567  * volume @vol by 8 bytes.
1568  *
1569  * Note:  Only changes initialized_size and data_size, i.e. requires that
1570  * allocated_size is big enough to fit the new initialized_size.
1571  *
1572  * Return 0 on success and -error on error.
1573  *
1574  * Locking: Caller must hold vol->mftbmp_lock for writing.
1575  */
1576 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1577 {
1578 	s64 old_data_size, old_initialized_size;
1579 	unsigned long flags;
1580 	struct inode *mftbmp_vi;
1581 	ntfs_inode *mft_ni, *mftbmp_ni;
1582 	ntfs_attr_search_ctx *ctx;
1583 	MFT_RECORD *mrec;
1584 	ATTR_RECORD *a;
1585 	int ret;
1586 
1587 	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1588 	mft_ni = NTFS_I(vol->mft_ino);
1589 	mftbmp_vi = vol->mftbmp_ino;
1590 	mftbmp_ni = NTFS_I(mftbmp_vi);
1591 	/* Get the attribute record. */
1592 	mrec = map_mft_record(mft_ni);
1593 	if (IS_ERR(mrec)) {
1594 		ntfs_error(vol->sb, "Failed to map mft record.");
1595 		return PTR_ERR(mrec);
1596 	}
1597 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1598 	if (unlikely(!ctx)) {
1599 		ntfs_error(vol->sb, "Failed to get search context.");
1600 		ret = -ENOMEM;
1601 		goto unm_err_out;
1602 	}
1603 	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1604 			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1605 	if (unlikely(ret)) {
1606 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1607 				"mft bitmap attribute.");
1608 		if (ret == -ENOENT)
1609 			ret = -EIO;
1610 		goto put_err_out;
1611 	}
1612 	a = ctx->attr;
1613 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1614 	old_data_size = i_size_read(mftbmp_vi);
1615 	old_initialized_size = mftbmp_ni->initialized_size;
1616 	/*
1617 	 * We can simply update the initialized_size before filling the space
1618 	 * with zeroes because the caller is holding the mft bitmap lock for
1619 	 * writing which ensures that no one else is trying to access the data.
1620 	 */
1621 	mftbmp_ni->initialized_size += 8;
1622 	a->data.non_resident.initialized_size =
1623 			cpu_to_sle64(mftbmp_ni->initialized_size);
1624 	if (mftbmp_ni->initialized_size > old_data_size) {
1625 		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1626 		a->data.non_resident.data_size =
1627 				cpu_to_sle64(mftbmp_ni->initialized_size);
1628 	}
1629 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1630 	/* Ensure the changes make it to disk. */
1631 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1632 	mark_mft_record_dirty(ctx->ntfs_ino);
1633 	ntfs_attr_put_search_ctx(ctx);
1634 	unmap_mft_record(mft_ni);
1635 	/* Initialize the mft bitmap attribute value with zeroes. */
1636 	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1637 	if (likely(!ret)) {
1638 		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1639 				"bitmap.");
1640 		return 0;
1641 	}
1642 	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1643 	/* Try to recover from the error. */
1644 	mrec = map_mft_record(mft_ni);
1645 	if (IS_ERR(mrec)) {
1646 		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1647 		NVolSetErrors(vol);
1648 		return ret;
1649 	}
1650 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1651 	if (unlikely(!ctx)) {
1652 		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1653 		NVolSetErrors(vol);
1654 		goto unm_err_out;
1655 	}
1656 	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1657 			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1658 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1659 				"mft bitmap attribute.%s", es);
1660 		NVolSetErrors(vol);
1661 put_err_out:
1662 		ntfs_attr_put_search_ctx(ctx);
1663 unm_err_out:
1664 		unmap_mft_record(mft_ni);
1665 		goto err_out;
1666 	}
1667 	a = ctx->attr;
1668 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1669 	mftbmp_ni->initialized_size = old_initialized_size;
1670 	a->data.non_resident.initialized_size =
1671 			cpu_to_sle64(old_initialized_size);
1672 	if (i_size_read(mftbmp_vi) != old_data_size) {
1673 		i_size_write(mftbmp_vi, old_data_size);
1674 		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1675 	}
1676 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1677 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1678 	mark_mft_record_dirty(ctx->ntfs_ino);
1679 	ntfs_attr_put_search_ctx(ctx);
1680 	unmap_mft_record(mft_ni);
1681 #ifdef DEBUG
1682 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1683 	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1684 			"data_size 0x%llx, initialized_size 0x%llx.",
1685 			(long long)mftbmp_ni->allocated_size,
1686 			(long long)i_size_read(mftbmp_vi),
1687 			(long long)mftbmp_ni->initialized_size);
1688 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1689 #endif /* DEBUG */
1690 err_out:
1691 	return ret;
1692 }
1693 
1694 /**
1695  * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1696  * @vol:	volume on which to extend the mft data attribute
1697  *
1698  * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1699  * worth of clusters or if not enough space for this by one mft record worth
1700  * of clusters.
1701  *
1702  * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1703  * data_size.
1704  *
1705  * Return 0 on success and -errno on error.
1706  *
1707  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1708  *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1709  *	      writing and releases it before returning.
1710  *	    - This function calls functions which take vol->lcnbmp_lock for
1711  *	      writing and release it before returning.
1712  */
1713 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1714 {
1715 	LCN lcn;
1716 	VCN old_last_vcn;
1717 	s64 min_nr, nr, ll;
1718 	unsigned long flags;
1719 	ntfs_inode *mft_ni;
1720 	runlist_element *rl, *rl2;
1721 	ntfs_attr_search_ctx *ctx = NULL;
1722 	MFT_RECORD *mrec;
1723 	ATTR_RECORD *a = NULL;
1724 	int ret, mp_size;
1725 	u32 old_alen = 0;
1726 	bool mp_rebuilt = false;
1727 
1728 	ntfs_debug("Extending mft data allocation.");
1729 	mft_ni = NTFS_I(vol->mft_ino);
1730 	/*
1731 	 * Determine the preferred allocation location, i.e. the last lcn of
1732 	 * the mft data attribute.  The allocated size of the mft data
1733 	 * attribute cannot be zero so we are ok to do this.
1734 	 */
1735 	down_write(&mft_ni->runlist.lock);
1736 	read_lock_irqsave(&mft_ni->size_lock, flags);
1737 	ll = mft_ni->allocated_size;
1738 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1739 	rl = ntfs_attr_find_vcn_nolock(mft_ni,
1740 			(ll - 1) >> vol->cluster_size_bits, NULL);
1741 	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1742 		up_write(&mft_ni->runlist.lock);
1743 		ntfs_error(vol->sb, "Failed to determine last allocated "
1744 				"cluster of mft data attribute.");
1745 		if (!IS_ERR(rl))
1746 			ret = -EIO;
1747 		else
1748 			ret = PTR_ERR(rl);
1749 		return ret;
1750 	}
1751 	lcn = rl->lcn + rl->length;
1752 	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1753 	/* Minimum allocation is one mft record worth of clusters. */
1754 	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1755 	if (!min_nr)
1756 		min_nr = 1;
1757 	/* Want to allocate 16 mft records worth of clusters. */
1758 	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1759 	if (!nr)
1760 		nr = min_nr;
1761 	/* Ensure we do not go above 2^32-1 mft records. */
1762 	read_lock_irqsave(&mft_ni->size_lock, flags);
1763 	ll = mft_ni->allocated_size;
1764 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1765 	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1766 			vol->mft_record_size_bits >= (1ll << 32))) {
1767 		nr = min_nr;
1768 		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1769 				vol->mft_record_size_bits >= (1ll << 32))) {
1770 			ntfs_warning(vol->sb, "Cannot allocate mft record "
1771 					"because the maximum number of inodes "
1772 					"(2^32) has already been reached.");
1773 			up_write(&mft_ni->runlist.lock);
1774 			return -ENOSPC;
1775 		}
1776 	}
1777 	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1778 			nr > min_nr ? "default" : "minimal", (long long)nr);
1779 	old_last_vcn = rl[1].vcn;
1780 	do {
1781 		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1782 				true);
1783 		if (likely(!IS_ERR(rl2)))
1784 			break;
1785 		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1786 			ntfs_error(vol->sb, "Failed to allocate the minimal "
1787 					"number of clusters (%lli) for the "
1788 					"mft data attribute.", (long long)nr);
1789 			up_write(&mft_ni->runlist.lock);
1790 			return PTR_ERR(rl2);
1791 		}
1792 		/*
1793 		 * There is not enough space to do the allocation, but there
1794 		 * might be enough space to do a minimal allocation so try that
1795 		 * before failing.
1796 		 */
1797 		nr = min_nr;
1798 		ntfs_debug("Retrying mft data allocation with minimal cluster "
1799 				"count %lli.", (long long)nr);
1800 	} while (1);
1801 	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1802 	if (IS_ERR(rl)) {
1803 		up_write(&mft_ni->runlist.lock);
1804 		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1805 				"attribute.");
1806 		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1807 			ntfs_error(vol->sb, "Failed to dealocate clusters "
1808 					"from the mft data attribute.%s", es);
1809 			NVolSetErrors(vol);
1810 		}
1811 		ntfs_free(rl2);
1812 		return PTR_ERR(rl);
1813 	}
1814 	mft_ni->runlist.rl = rl;
1815 	ntfs_debug("Allocated %lli clusters.", (long long)nr);
1816 	/* Find the last run in the new runlist. */
1817 	for (; rl[1].length; rl++)
1818 		;
1819 	/* Update the attribute record as well. */
1820 	mrec = map_mft_record(mft_ni);
1821 	if (IS_ERR(mrec)) {
1822 		ntfs_error(vol->sb, "Failed to map mft record.");
1823 		ret = PTR_ERR(mrec);
1824 		goto undo_alloc;
1825 	}
1826 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1827 	if (unlikely(!ctx)) {
1828 		ntfs_error(vol->sb, "Failed to get search context.");
1829 		ret = -ENOMEM;
1830 		goto undo_alloc;
1831 	}
1832 	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1833 			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1834 	if (unlikely(ret)) {
1835 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1836 				"mft data attribute.");
1837 		if (ret == -ENOENT)
1838 			ret = -EIO;
1839 		goto undo_alloc;
1840 	}
1841 	a = ctx->attr;
1842 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1843 	/* Search back for the previous last allocated cluster of mft bitmap. */
1844 	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1845 		if (ll >= rl2->vcn)
1846 			break;
1847 	}
1848 	BUG_ON(ll < rl2->vcn);
1849 	BUG_ON(ll >= rl2->vcn + rl2->length);
1850 	/* Get the size for the new mapping pairs array for this extent. */
1851 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1852 	if (unlikely(mp_size <= 0)) {
1853 		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1854 				"mft data attribute extent.");
1855 		ret = mp_size;
1856 		if (!ret)
1857 			ret = -EIO;
1858 		goto undo_alloc;
1859 	}
1860 	/* Expand the attribute record if necessary. */
1861 	old_alen = le32_to_cpu(a->length);
1862 	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1863 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1864 	if (unlikely(ret)) {
1865 		if (ret != -ENOSPC) {
1866 			ntfs_error(vol->sb, "Failed to resize attribute "
1867 					"record for mft data attribute.");
1868 			goto undo_alloc;
1869 		}
1870 		// TODO: Deal with this by moving this extent to a new mft
1871 		// record or by starting a new extent in a new mft record or by
1872 		// moving other attributes out of this mft record.
1873 		// Note: Use the special reserved mft records and ensure that
1874 		// this extent is not required to find the mft record in
1875 		// question.  If no free special records left we would need to
1876 		// move an existing record away, insert ours in its place, and
1877 		// then place the moved record into the newly allocated space
1878 		// and we would then need to update all references to this mft
1879 		// record appropriately.  This is rather complicated...
1880 		ntfs_error(vol->sb, "Not enough space in this mft record to "
1881 				"accomodate extended mft data attribute "
1882 				"extent.  Cannot handle this yet.");
1883 		ret = -EOPNOTSUPP;
1884 		goto undo_alloc;
1885 	}
1886 	mp_rebuilt = true;
1887 	/* Generate the mapping pairs array directly into the attr record. */
1888 	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1889 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1890 			mp_size, rl2, ll, -1, NULL);
1891 	if (unlikely(ret)) {
1892 		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1893 				"mft data attribute.");
1894 		goto undo_alloc;
1895 	}
1896 	/* Update the highest_vcn. */
1897 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1898 	/*
1899 	 * We now have extended the mft data allocated_size by nr clusters.
1900 	 * Reflect this in the ntfs_inode structure and the attribute record.
1901 	 * @rl is the last (non-terminator) runlist element of mft data
1902 	 * attribute.
1903 	 */
1904 	if (a->data.non_resident.lowest_vcn) {
1905 		/*
1906 		 * We are not in the first attribute extent, switch to it, but
1907 		 * first ensure the changes will make it to disk later.
1908 		 */
1909 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1910 		mark_mft_record_dirty(ctx->ntfs_ino);
1911 		ntfs_attr_reinit_search_ctx(ctx);
1912 		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1913 				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1914 				ctx);
1915 		if (unlikely(ret)) {
1916 			ntfs_error(vol->sb, "Failed to find first attribute "
1917 					"extent of mft data attribute.");
1918 			goto restore_undo_alloc;
1919 		}
1920 		a = ctx->attr;
1921 	}
1922 	write_lock_irqsave(&mft_ni->size_lock, flags);
1923 	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1924 	a->data.non_resident.allocated_size =
1925 			cpu_to_sle64(mft_ni->allocated_size);
1926 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1927 	/* Ensure the changes make it to disk. */
1928 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1929 	mark_mft_record_dirty(ctx->ntfs_ino);
1930 	ntfs_attr_put_search_ctx(ctx);
1931 	unmap_mft_record(mft_ni);
1932 	up_write(&mft_ni->runlist.lock);
1933 	ntfs_debug("Done.");
1934 	return 0;
1935 restore_undo_alloc:
1936 	ntfs_attr_reinit_search_ctx(ctx);
1937 	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1938 			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1939 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1940 				"mft data attribute.%s", es);
1941 		write_lock_irqsave(&mft_ni->size_lock, flags);
1942 		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1943 		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1944 		ntfs_attr_put_search_ctx(ctx);
1945 		unmap_mft_record(mft_ni);
1946 		up_write(&mft_ni->runlist.lock);
1947 		/*
1948 		 * The only thing that is now wrong is ->allocated_size of the
1949 		 * base attribute extent which chkdsk should be able to fix.
1950 		 */
1951 		NVolSetErrors(vol);
1952 		return ret;
1953 	}
1954 	ctx->attr->data.non_resident.highest_vcn =
1955 			cpu_to_sle64(old_last_vcn - 1);
1956 undo_alloc:
1957 	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1958 		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1959 				"attribute.%s", es);
1960 		NVolSetErrors(vol);
1961 	}
1962 	a = ctx->attr;
1963 	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1964 		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1965 				"runlist.%s", es);
1966 		NVolSetErrors(vol);
1967 	}
1968 	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1969 		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1970 				a->data.non_resident.mapping_pairs_offset),
1971 				old_alen - le16_to_cpu(
1972 				a->data.non_resident.mapping_pairs_offset),
1973 				rl2, ll, -1, NULL)) {
1974 			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1975 					"array.%s", es);
1976 			NVolSetErrors(vol);
1977 		}
1978 		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1979 			ntfs_error(vol->sb, "Failed to restore attribute "
1980 					"record.%s", es);
1981 			NVolSetErrors(vol);
1982 		}
1983 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1984 		mark_mft_record_dirty(ctx->ntfs_ino);
1985 	} else if (IS_ERR(ctx->mrec)) {
1986 		ntfs_error(vol->sb, "Failed to restore attribute search "
1987 				"context.%s", es);
1988 		NVolSetErrors(vol);
1989 	}
1990 	if (ctx)
1991 		ntfs_attr_put_search_ctx(ctx);
1992 	if (!IS_ERR(mrec))
1993 		unmap_mft_record(mft_ni);
1994 	up_write(&mft_ni->runlist.lock);
1995 	return ret;
1996 }
1997 
1998 /**
1999  * ntfs_mft_record_layout - layout an mft record into a memory buffer
2000  * @vol:	volume to which the mft record will belong
2001  * @mft_no:	mft reference specifying the mft record number
2002  * @m:		destination buffer of size >= @vol->mft_record_size bytes
2003  *
2004  * Layout an empty, unused mft record with the mft record number @mft_no into
2005  * the buffer @m.  The volume @vol is needed because the mft record structure
2006  * was modified in NTFS 3.1 so we need to know which volume version this mft
2007  * record will be used on.
2008  *
2009  * Return 0 on success and -errno on error.
2010  */
2011 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2012 		MFT_RECORD *m)
2013 {
2014 	ATTR_RECORD *a;
2015 
2016 	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2017 	if (mft_no >= (1ll << 32)) {
2018 		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2019 				"maximum of 2^32.", (long long)mft_no);
2020 		return -ERANGE;
2021 	}
2022 	/* Start by clearing the whole mft record to gives us a clean slate. */
2023 	memset(m, 0, vol->mft_record_size);
2024 	/* Aligned to 2-byte boundary. */
2025 	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2026 		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2027 	else {
2028 		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2029 		/*
2030 		 * Set the NTFS 3.1+ specific fields while we know that the
2031 		 * volume version is 3.1+.
2032 		 */
2033 		m->reserved = 0;
2034 		m->mft_record_number = cpu_to_le32((u32)mft_no);
2035 	}
2036 	m->magic = magic_FILE;
2037 	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2038 		m->usa_count = cpu_to_le16(vol->mft_record_size /
2039 				NTFS_BLOCK_SIZE + 1);
2040 	else {
2041 		m->usa_count = cpu_to_le16(1);
2042 		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2043 				"size.  Setting usa_count to 1.  If chkdsk "
2044 				"reports this as corruption, please email "
2045 				"linux-ntfs-dev@lists.sourceforge.net stating "
2046 				"that you saw this message and that the "
2047 				"modified filesystem created was corrupt.  "
2048 				"Thank you.");
2049 	}
2050 	/* Set the update sequence number to 1. */
2051 	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2052 	m->lsn = 0;
2053 	m->sequence_number = cpu_to_le16(1);
2054 	m->link_count = 0;
2055 	/*
2056 	 * Place the attributes straight after the update sequence array,
2057 	 * aligned to 8-byte boundary.
2058 	 */
2059 	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2060 			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2061 	m->flags = 0;
2062 	/*
2063 	 * Using attrs_offset plus eight bytes (for the termination attribute).
2064 	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2065 	 * align again.
2066 	 */
2067 	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2068 	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2069 	m->base_mft_record = 0;
2070 	m->next_attr_instance = 0;
2071 	/* Add the termination attribute. */
2072 	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2073 	a->type = AT_END;
2074 	a->length = 0;
2075 	ntfs_debug("Done.");
2076 	return 0;
2077 }
2078 
2079 /**
2080  * ntfs_mft_record_format - format an mft record on an ntfs volume
2081  * @vol:	volume on which to format the mft record
2082  * @mft_no:	mft record number to format
2083  *
2084  * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2085  * mft record into the appropriate place of the mft data attribute.  This is
2086  * used when extending the mft data attribute.
2087  *
2088  * Return 0 on success and -errno on error.
2089  */
2090 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2091 {
2092 	loff_t i_size;
2093 	struct inode *mft_vi = vol->mft_ino;
2094 	struct page *page;
2095 	MFT_RECORD *m;
2096 	pgoff_t index, end_index;
2097 	unsigned int ofs;
2098 	int err;
2099 
2100 	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2101 	/*
2102 	 * The index into the page cache and the offset within the page cache
2103 	 * page of the wanted mft record.
2104 	 */
2105 	index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2106 	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2107 	/* The maximum valid index into the page cache for $MFT's data. */
2108 	i_size = i_size_read(mft_vi);
2109 	end_index = i_size >> PAGE_CACHE_SHIFT;
2110 	if (unlikely(index >= end_index)) {
2111 		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2112 				(i_size & ~PAGE_CACHE_MASK))) {
2113 			ntfs_error(vol->sb, "Tried to format non-existing mft "
2114 					"record 0x%llx.", (long long)mft_no);
2115 			return -ENOENT;
2116 		}
2117 	}
2118 	/* Read, map, and pin the page containing the mft record. */
2119 	page = ntfs_map_page(mft_vi->i_mapping, index);
2120 	if (IS_ERR(page)) {
2121 		ntfs_error(vol->sb, "Failed to map page containing mft record "
2122 				"to format 0x%llx.", (long long)mft_no);
2123 		return PTR_ERR(page);
2124 	}
2125 	lock_page(page);
2126 	BUG_ON(!PageUptodate(page));
2127 	ClearPageUptodate(page);
2128 	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2129 	err = ntfs_mft_record_layout(vol, mft_no, m);
2130 	if (unlikely(err)) {
2131 		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2132 				(long long)mft_no);
2133 		SetPageUptodate(page);
2134 		unlock_page(page);
2135 		ntfs_unmap_page(page);
2136 		return err;
2137 	}
2138 	flush_dcache_page(page);
2139 	SetPageUptodate(page);
2140 	unlock_page(page);
2141 	/*
2142 	 * Make sure the mft record is written out to disk.  We could use
2143 	 * ilookup5() to check if an inode is in icache and so on but this is
2144 	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2145 	 */
2146 	mark_ntfs_record_dirty(page, ofs);
2147 	ntfs_unmap_page(page);
2148 	ntfs_debug("Done.");
2149 	return 0;
2150 }
2151 
2152 /**
2153  * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2154  * @vol:	[IN]  volume on which to allocate the mft record
2155  * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2156  * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2157  * @mrec:	[OUT] on successful return this is the mapped mft record
2158  *
2159  * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2160  *
2161  * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2162  * direvctory inode, and allocate it at the default allocator position.  In
2163  * this case @mode is the file mode as given to us by the caller.  We in
2164  * particular use @mode to distinguish whether a file or a directory is being
2165  * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2166  *
2167  * If @base_ni is not NULL make the allocated mft record an extent record,
2168  * allocate it starting at the mft record after the base mft record and attach
2169  * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2170  * case @mode must be 0 as it is meaningless for extent inodes.
2171  *
2172  * You need to check the return value with IS_ERR().  If false, the function
2173  * was successful and the return value is the now opened ntfs inode of the
2174  * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2175  * and locked mft record.  If IS_ERR() is true, the function failed and the
2176  * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2177  * this case.
2178  *
2179  * Allocation strategy:
2180  *
2181  * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2182  * optimize this we start scanning at the place specified by @base_ni or if
2183  * @base_ni is NULL we start where we last stopped and we perform wrap around
2184  * when we reach the end.  Note, we do not try to allocate mft records below
2185  * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2186  * to 24 are special in that they are used for storing extension mft records
2187  * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2188  * of creating a runlist with a circular dependency which once written to disk
2189  * can never be read in again.  Windows will only use records 16 to 24 for
2190  * normal files if the volume is completely out of space.  We never use them
2191  * which means that when the volume is really out of space we cannot create any
2192  * more files while Windows can still create up to 8 small files.  We can start
2193  * doing this at some later time, it does not matter much for now.
2194  *
2195  * When scanning the mft bitmap, we only search up to the last allocated mft
2196  * record.  If there are no free records left in the range 24 to number of
2197  * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2198  * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2199  * records at a time or one cluster, if cluster size is above 16kiB.  If there
2200  * is not sufficient space to do this, we try to extend by a single mft record
2201  * or one cluster, if cluster size is above the mft record size.
2202  *
2203  * No matter how many mft records we allocate, we initialize only the first
2204  * allocated mft record, incrementing mft data size and initialized size
2205  * accordingly, open an ntfs_inode for it and return it to the caller, unless
2206  * there are less than 24 mft records, in which case we allocate and initialize
2207  * mft records until we reach record 24 which we consider as the first free mft
2208  * record for use by normal files.
2209  *
2210  * If during any stage we overflow the initialized data in the mft bitmap, we
2211  * extend the initialized size (and data size) by 8 bytes, allocating another
2212  * cluster if required.  The bitmap data size has to be at least equal to the
2213  * number of mft records in the mft, but it can be bigger, in which case the
2214  * superflous bits are padded with zeroes.
2215  *
2216  * Thus, when we return successfully (IS_ERR() is false), we will have:
2217  *	- initialized / extended the mft bitmap if necessary,
2218  *	- initialized / extended the mft data if necessary,
2219  *	- set the bit corresponding to the mft record being allocated in the
2220  *	  mft bitmap,
2221  *	- opened an ntfs_inode for the allocated mft record, and we will have
2222  *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2223  *	  locked mft record.
2224  *
2225  * On error, the volume will be left in a consistent state and no record will
2226  * be allocated.  If rolling back a partial operation fails, we may leave some
2227  * inconsistent metadata in which case we set NVolErrors() so the volume is
2228  * left dirty when unmounted.
2229  *
2230  * Note, this function cannot make use of most of the normal functions, like
2231  * for example for attribute resizing, etc, because when the run list overflows
2232  * the base mft record and an attribute list is used, it is very important that
2233  * the extension mft records used to store the $DATA attribute of $MFT can be
2234  * reached without having to read the information contained inside them, as
2235  * this would make it impossible to find them in the first place after the
2236  * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2237  * rule because the bitmap is not essential for finding the mft records, but on
2238  * the other hand, handling the bitmap in this special way would make life
2239  * easier because otherwise there might be circular invocations of functions
2240  * when reading the bitmap.
2241  */
2242 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2243 		ntfs_inode *base_ni, MFT_RECORD **mrec)
2244 {
2245 	s64 ll, bit, old_data_initialized, old_data_size;
2246 	unsigned long flags;
2247 	struct inode *vi;
2248 	struct page *page;
2249 	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2250 	ntfs_attr_search_ctx *ctx;
2251 	MFT_RECORD *m;
2252 	ATTR_RECORD *a;
2253 	pgoff_t index;
2254 	unsigned int ofs;
2255 	int err;
2256 	le16 seq_no, usn;
2257 	bool record_formatted = false;
2258 
2259 	if (base_ni) {
2260 		ntfs_debug("Entering (allocating an extent mft record for "
2261 				"base mft record 0x%llx).",
2262 				(long long)base_ni->mft_no);
2263 		/* @mode and @base_ni are mutually exclusive. */
2264 		BUG_ON(mode);
2265 	} else
2266 		ntfs_debug("Entering (allocating a base mft record).");
2267 	if (mode) {
2268 		/* @mode and @base_ni are mutually exclusive. */
2269 		BUG_ON(base_ni);
2270 		/* We only support creation of normal files and directories. */
2271 		if (!S_ISREG(mode) && !S_ISDIR(mode))
2272 			return ERR_PTR(-EOPNOTSUPP);
2273 	}
2274 	BUG_ON(!mrec);
2275 	mft_ni = NTFS_I(vol->mft_ino);
2276 	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2277 	down_write(&vol->mftbmp_lock);
2278 	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2279 	if (bit >= 0) {
2280 		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2281 				(long long)bit);
2282 		goto have_alloc_rec;
2283 	}
2284 	if (bit != -ENOSPC) {
2285 		up_write(&vol->mftbmp_lock);
2286 		return ERR_PTR(bit);
2287 	}
2288 	/*
2289 	 * No free mft records left.  If the mft bitmap already covers more
2290 	 * than the currently used mft records, the next records are all free,
2291 	 * so we can simply allocate the first unused mft record.
2292 	 * Note: We also have to make sure that the mft bitmap at least covers
2293 	 * the first 24 mft records as they are special and whilst they may not
2294 	 * be in use, we do not allocate from them.
2295 	 */
2296 	read_lock_irqsave(&mft_ni->size_lock, flags);
2297 	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2298 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2299 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2300 	old_data_initialized = mftbmp_ni->initialized_size;
2301 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2302 	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2303 		bit = ll;
2304 		if (bit < 24)
2305 			bit = 24;
2306 		if (unlikely(bit >= (1ll << 32)))
2307 			goto max_err_out;
2308 		ntfs_debug("Found free record (#2), bit 0x%llx.",
2309 				(long long)bit);
2310 		goto found_free_rec;
2311 	}
2312 	/*
2313 	 * The mft bitmap needs to be expanded until it covers the first unused
2314 	 * mft record that we can allocate.
2315 	 * Note: The smallest mft record we allocate is mft record 24.
2316 	 */
2317 	bit = old_data_initialized << 3;
2318 	if (unlikely(bit >= (1ll << 32)))
2319 		goto max_err_out;
2320 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2321 	old_data_size = mftbmp_ni->allocated_size;
2322 	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2323 			"data_size 0x%llx, initialized_size 0x%llx.",
2324 			(long long)old_data_size,
2325 			(long long)i_size_read(vol->mftbmp_ino),
2326 			(long long)old_data_initialized);
2327 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2328 	if (old_data_initialized + 8 > old_data_size) {
2329 		/* Need to extend bitmap by one more cluster. */
2330 		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2331 		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2332 		if (unlikely(err)) {
2333 			up_write(&vol->mftbmp_lock);
2334 			goto err_out;
2335 		}
2336 #ifdef DEBUG
2337 		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2338 		ntfs_debug("Status of mftbmp after allocation extension: "
2339 				"allocated_size 0x%llx, data_size 0x%llx, "
2340 				"initialized_size 0x%llx.",
2341 				(long long)mftbmp_ni->allocated_size,
2342 				(long long)i_size_read(vol->mftbmp_ino),
2343 				(long long)mftbmp_ni->initialized_size);
2344 		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2345 #endif /* DEBUG */
2346 	}
2347 	/*
2348 	 * We now have sufficient allocated space, extend the initialized_size
2349 	 * as well as the data_size if necessary and fill the new space with
2350 	 * zeroes.
2351 	 */
2352 	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2353 	if (unlikely(err)) {
2354 		up_write(&vol->mftbmp_lock);
2355 		goto err_out;
2356 	}
2357 #ifdef DEBUG
2358 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2359 	ntfs_debug("Status of mftbmp after initialized extention: "
2360 			"allocated_size 0x%llx, data_size 0x%llx, "
2361 			"initialized_size 0x%llx.",
2362 			(long long)mftbmp_ni->allocated_size,
2363 			(long long)i_size_read(vol->mftbmp_ino),
2364 			(long long)mftbmp_ni->initialized_size);
2365 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2366 #endif /* DEBUG */
2367 	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2368 found_free_rec:
2369 	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2370 	ntfs_debug("At found_free_rec.");
2371 	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2372 	if (unlikely(err)) {
2373 		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2374 		up_write(&vol->mftbmp_lock);
2375 		goto err_out;
2376 	}
2377 	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2378 have_alloc_rec:
2379 	/*
2380 	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2381 	 * Note, we keep hold of the mft bitmap lock for writing until all
2382 	 * modifications to the mft data attribute are complete, too, as they
2383 	 * will impact decisions for mft bitmap and mft record allocation done
2384 	 * by a parallel allocation and if the lock is not maintained a
2385 	 * parallel allocation could allocate the same mft record as this one.
2386 	 */
2387 	ll = (bit + 1) << vol->mft_record_size_bits;
2388 	read_lock_irqsave(&mft_ni->size_lock, flags);
2389 	old_data_initialized = mft_ni->initialized_size;
2390 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2391 	if (ll <= old_data_initialized) {
2392 		ntfs_debug("Allocated mft record already initialized.");
2393 		goto mft_rec_already_initialized;
2394 	}
2395 	ntfs_debug("Initializing allocated mft record.");
2396 	/*
2397 	 * The mft record is outside the initialized data.  Extend the mft data
2398 	 * attribute until it covers the allocated record.  The loop is only
2399 	 * actually traversed more than once when a freshly formatted volume is
2400 	 * first written to so it optimizes away nicely in the common case.
2401 	 */
2402 	read_lock_irqsave(&mft_ni->size_lock, flags);
2403 	ntfs_debug("Status of mft data before extension: "
2404 			"allocated_size 0x%llx, data_size 0x%llx, "
2405 			"initialized_size 0x%llx.",
2406 			(long long)mft_ni->allocated_size,
2407 			(long long)i_size_read(vol->mft_ino),
2408 			(long long)mft_ni->initialized_size);
2409 	while (ll > mft_ni->allocated_size) {
2410 		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2411 		err = ntfs_mft_data_extend_allocation_nolock(vol);
2412 		if (unlikely(err)) {
2413 			ntfs_error(vol->sb, "Failed to extend mft data "
2414 					"allocation.");
2415 			goto undo_mftbmp_alloc_nolock;
2416 		}
2417 		read_lock_irqsave(&mft_ni->size_lock, flags);
2418 		ntfs_debug("Status of mft data after allocation extension: "
2419 				"allocated_size 0x%llx, data_size 0x%llx, "
2420 				"initialized_size 0x%llx.",
2421 				(long long)mft_ni->allocated_size,
2422 				(long long)i_size_read(vol->mft_ino),
2423 				(long long)mft_ni->initialized_size);
2424 	}
2425 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2426 	/*
2427 	 * Extend mft data initialized size (and data size of course) to reach
2428 	 * the allocated mft record, formatting the mft records allong the way.
2429 	 * Note: We only modify the ntfs_inode structure as that is all that is
2430 	 * needed by ntfs_mft_record_format().  We will update the attribute
2431 	 * record itself in one fell swoop later on.
2432 	 */
2433 	write_lock_irqsave(&mft_ni->size_lock, flags);
2434 	old_data_initialized = mft_ni->initialized_size;
2435 	old_data_size = vol->mft_ino->i_size;
2436 	while (ll > mft_ni->initialized_size) {
2437 		s64 new_initialized_size, mft_no;
2438 
2439 		new_initialized_size = mft_ni->initialized_size +
2440 				vol->mft_record_size;
2441 		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2442 		if (new_initialized_size > i_size_read(vol->mft_ino))
2443 			i_size_write(vol->mft_ino, new_initialized_size);
2444 		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2445 		ntfs_debug("Initializing mft record 0x%llx.",
2446 				(long long)mft_no);
2447 		err = ntfs_mft_record_format(vol, mft_no);
2448 		if (unlikely(err)) {
2449 			ntfs_error(vol->sb, "Failed to format mft record.");
2450 			goto undo_data_init;
2451 		}
2452 		write_lock_irqsave(&mft_ni->size_lock, flags);
2453 		mft_ni->initialized_size = new_initialized_size;
2454 	}
2455 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2456 	record_formatted = true;
2457 	/* Update the mft data attribute record to reflect the new sizes. */
2458 	m = map_mft_record(mft_ni);
2459 	if (IS_ERR(m)) {
2460 		ntfs_error(vol->sb, "Failed to map mft record.");
2461 		err = PTR_ERR(m);
2462 		goto undo_data_init;
2463 	}
2464 	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2465 	if (unlikely(!ctx)) {
2466 		ntfs_error(vol->sb, "Failed to get search context.");
2467 		err = -ENOMEM;
2468 		unmap_mft_record(mft_ni);
2469 		goto undo_data_init;
2470 	}
2471 	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2472 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2473 	if (unlikely(err)) {
2474 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2475 				"mft data attribute.");
2476 		ntfs_attr_put_search_ctx(ctx);
2477 		unmap_mft_record(mft_ni);
2478 		goto undo_data_init;
2479 	}
2480 	a = ctx->attr;
2481 	read_lock_irqsave(&mft_ni->size_lock, flags);
2482 	a->data.non_resident.initialized_size =
2483 			cpu_to_sle64(mft_ni->initialized_size);
2484 	a->data.non_resident.data_size =
2485 			cpu_to_sle64(i_size_read(vol->mft_ino));
2486 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2487 	/* Ensure the changes make it to disk. */
2488 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2489 	mark_mft_record_dirty(ctx->ntfs_ino);
2490 	ntfs_attr_put_search_ctx(ctx);
2491 	unmap_mft_record(mft_ni);
2492 	read_lock_irqsave(&mft_ni->size_lock, flags);
2493 	ntfs_debug("Status of mft data after mft record initialization: "
2494 			"allocated_size 0x%llx, data_size 0x%llx, "
2495 			"initialized_size 0x%llx.",
2496 			(long long)mft_ni->allocated_size,
2497 			(long long)i_size_read(vol->mft_ino),
2498 			(long long)mft_ni->initialized_size);
2499 	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2500 	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2501 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2502 mft_rec_already_initialized:
2503 	/*
2504 	 * We can finally drop the mft bitmap lock as the mft data attribute
2505 	 * has been fully updated.  The only disparity left is that the
2506 	 * allocated mft record still needs to be marked as in use to match the
2507 	 * set bit in the mft bitmap but this is actually not a problem since
2508 	 * this mft record is not referenced from anywhere yet and the fact
2509 	 * that it is allocated in the mft bitmap means that no-one will try to
2510 	 * allocate it either.
2511 	 */
2512 	up_write(&vol->mftbmp_lock);
2513 	/*
2514 	 * We now have allocated and initialized the mft record.  Calculate the
2515 	 * index of and the offset within the page cache page the record is in.
2516 	 */
2517 	index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2518 	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2519 	/* Read, map, and pin the page containing the mft record. */
2520 	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2521 	if (IS_ERR(page)) {
2522 		ntfs_error(vol->sb, "Failed to map page containing allocated "
2523 				"mft record 0x%llx.", (long long)bit);
2524 		err = PTR_ERR(page);
2525 		goto undo_mftbmp_alloc;
2526 	}
2527 	lock_page(page);
2528 	BUG_ON(!PageUptodate(page));
2529 	ClearPageUptodate(page);
2530 	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2531 	/* If we just formatted the mft record no need to do it again. */
2532 	if (!record_formatted) {
2533 		/* Sanity check that the mft record is really not in use. */
2534 		if (ntfs_is_file_record(m->magic) &&
2535 				(m->flags & MFT_RECORD_IN_USE)) {
2536 			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2537 					"free in mft bitmap but is marked "
2538 					"used itself.  Corrupt filesystem.  "
2539 					"Unmount and run chkdsk.",
2540 					(long long)bit);
2541 			err = -EIO;
2542 			SetPageUptodate(page);
2543 			unlock_page(page);
2544 			ntfs_unmap_page(page);
2545 			NVolSetErrors(vol);
2546 			goto undo_mftbmp_alloc;
2547 		}
2548 		/*
2549 		 * We need to (re-)format the mft record, preserving the
2550 		 * sequence number if it is not zero as well as the update
2551 		 * sequence number if it is not zero or -1 (0xffff).  This
2552 		 * means we do not need to care whether or not something went
2553 		 * wrong with the previous mft record.
2554 		 */
2555 		seq_no = m->sequence_number;
2556 		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2557 		err = ntfs_mft_record_layout(vol, bit, m);
2558 		if (unlikely(err)) {
2559 			ntfs_error(vol->sb, "Failed to layout allocated mft "
2560 					"record 0x%llx.", (long long)bit);
2561 			SetPageUptodate(page);
2562 			unlock_page(page);
2563 			ntfs_unmap_page(page);
2564 			goto undo_mftbmp_alloc;
2565 		}
2566 		if (seq_no)
2567 			m->sequence_number = seq_no;
2568 		if (usn && le16_to_cpu(usn) != 0xffff)
2569 			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2570 	}
2571 	/* Set the mft record itself in use. */
2572 	m->flags |= MFT_RECORD_IN_USE;
2573 	if (S_ISDIR(mode))
2574 		m->flags |= MFT_RECORD_IS_DIRECTORY;
2575 	flush_dcache_page(page);
2576 	SetPageUptodate(page);
2577 	if (base_ni) {
2578 		/*
2579 		 * Setup the base mft record in the extent mft record.  This
2580 		 * completes initialization of the allocated extent mft record
2581 		 * and we can simply use it with map_extent_mft_record().
2582 		 */
2583 		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2584 				base_ni->seq_no);
2585 		/*
2586 		 * Allocate an extent inode structure for the new mft record,
2587 		 * attach it to the base inode @base_ni and map, pin, and lock
2588 		 * its, i.e. the allocated, mft record.
2589 		 */
2590 		m = map_extent_mft_record(base_ni, bit, &ni);
2591 		if (IS_ERR(m)) {
2592 			ntfs_error(vol->sb, "Failed to map allocated extent "
2593 					"mft record 0x%llx.", (long long)bit);
2594 			err = PTR_ERR(m);
2595 			/* Set the mft record itself not in use. */
2596 			m->flags &= cpu_to_le16(
2597 					~le16_to_cpu(MFT_RECORD_IN_USE));
2598 			flush_dcache_page(page);
2599 			/* Make sure the mft record is written out to disk. */
2600 			mark_ntfs_record_dirty(page, ofs);
2601 			unlock_page(page);
2602 			ntfs_unmap_page(page);
2603 			goto undo_mftbmp_alloc;
2604 		}
2605 		/*
2606 		 * Make sure the allocated mft record is written out to disk.
2607 		 * No need to set the inode dirty because the caller is going
2608 		 * to do that anyway after finishing with the new extent mft
2609 		 * record (e.g. at a minimum a new attribute will be added to
2610 		 * the mft record.
2611 		 */
2612 		mark_ntfs_record_dirty(page, ofs);
2613 		unlock_page(page);
2614 		/*
2615 		 * Need to unmap the page since map_extent_mft_record() mapped
2616 		 * it as well so we have it mapped twice at the moment.
2617 		 */
2618 		ntfs_unmap_page(page);
2619 	} else {
2620 		/*
2621 		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2622 		 * is set to 1 but the mft record->link_count is 0.  The caller
2623 		 * needs to bear this in mind.
2624 		 */
2625 		vi = new_inode(vol->sb);
2626 		if (unlikely(!vi)) {
2627 			err = -ENOMEM;
2628 			/* Set the mft record itself not in use. */
2629 			m->flags &= cpu_to_le16(
2630 					~le16_to_cpu(MFT_RECORD_IN_USE));
2631 			flush_dcache_page(page);
2632 			/* Make sure the mft record is written out to disk. */
2633 			mark_ntfs_record_dirty(page, ofs);
2634 			unlock_page(page);
2635 			ntfs_unmap_page(page);
2636 			goto undo_mftbmp_alloc;
2637 		}
2638 		vi->i_ino = bit;
2639 		/*
2640 		 * This is for checking whether an inode has changed w.r.t. a
2641 		 * file so that the file can be updated if necessary (compare
2642 		 * with f_version).
2643 		 */
2644 		vi->i_version = 1;
2645 
2646 		/* The owner and group come from the ntfs volume. */
2647 		vi->i_uid = vol->uid;
2648 		vi->i_gid = vol->gid;
2649 
2650 		/* Initialize the ntfs specific part of @vi. */
2651 		ntfs_init_big_inode(vi);
2652 		ni = NTFS_I(vi);
2653 		/*
2654 		 * Set the appropriate mode, attribute type, and name.  For
2655 		 * directories, also setup the index values to the defaults.
2656 		 */
2657 		if (S_ISDIR(mode)) {
2658 			vi->i_mode = S_IFDIR | S_IRWXUGO;
2659 			vi->i_mode &= ~vol->dmask;
2660 
2661 			NInoSetMstProtected(ni);
2662 			ni->type = AT_INDEX_ALLOCATION;
2663 			ni->name = I30;
2664 			ni->name_len = 4;
2665 
2666 			ni->itype.index.block_size = 4096;
2667 			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2668 			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2669 			if (vol->cluster_size <= ni->itype.index.block_size) {
2670 				ni->itype.index.vcn_size = vol->cluster_size;
2671 				ni->itype.index.vcn_size_bits =
2672 						vol->cluster_size_bits;
2673 			} else {
2674 				ni->itype.index.vcn_size = vol->sector_size;
2675 				ni->itype.index.vcn_size_bits =
2676 						vol->sector_size_bits;
2677 			}
2678 		} else {
2679 			vi->i_mode = S_IFREG | S_IRWXUGO;
2680 			vi->i_mode &= ~vol->fmask;
2681 
2682 			ni->type = AT_DATA;
2683 			ni->name = NULL;
2684 			ni->name_len = 0;
2685 		}
2686 		if (IS_RDONLY(vi))
2687 			vi->i_mode &= ~S_IWUGO;
2688 
2689 		/* Set the inode times to the current time. */
2690 		vi->i_atime = vi->i_mtime = vi->i_ctime =
2691 			current_fs_time(vi->i_sb);
2692 		/*
2693 		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2694 		 * the call to ntfs_init_big_inode() below.
2695 		 */
2696 		vi->i_size = 0;
2697 		vi->i_blocks = 0;
2698 
2699 		/* Set the sequence number. */
2700 		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2701 		/*
2702 		 * Manually map, pin, and lock the mft record as we already
2703 		 * have its page mapped and it is very easy to do.
2704 		 */
2705 		atomic_inc(&ni->count);
2706 		mutex_lock(&ni->mrec_lock);
2707 		ni->page = page;
2708 		ni->page_ofs = ofs;
2709 		/*
2710 		 * Make sure the allocated mft record is written out to disk.
2711 		 * NOTE: We do not set the ntfs inode dirty because this would
2712 		 * fail in ntfs_write_inode() because the inode does not have a
2713 		 * standard information attribute yet.  Also, there is no need
2714 		 * to set the inode dirty because the caller is going to do
2715 		 * that anyway after finishing with the new mft record (e.g. at
2716 		 * a minimum some new attributes will be added to the mft
2717 		 * record.
2718 		 */
2719 		mark_ntfs_record_dirty(page, ofs);
2720 		unlock_page(page);
2721 
2722 		/* Add the inode to the inode hash for the superblock. */
2723 		insert_inode_hash(vi);
2724 
2725 		/* Update the default mft allocation position. */
2726 		vol->mft_data_pos = bit + 1;
2727 	}
2728 	/*
2729 	 * Return the opened, allocated inode of the allocated mft record as
2730 	 * well as the mapped, pinned, and locked mft record.
2731 	 */
2732 	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2733 			base_ni ? "extent " : "", (long long)bit);
2734 	*mrec = m;
2735 	return ni;
2736 undo_data_init:
2737 	write_lock_irqsave(&mft_ni->size_lock, flags);
2738 	mft_ni->initialized_size = old_data_initialized;
2739 	i_size_write(vol->mft_ino, old_data_size);
2740 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2741 	goto undo_mftbmp_alloc_nolock;
2742 undo_mftbmp_alloc:
2743 	down_write(&vol->mftbmp_lock);
2744 undo_mftbmp_alloc_nolock:
2745 	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2746 		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2747 		NVolSetErrors(vol);
2748 	}
2749 	up_write(&vol->mftbmp_lock);
2750 err_out:
2751 	return ERR_PTR(err);
2752 max_err_out:
2753 	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2754 			"number of inodes (2^32) has already been reached.");
2755 	up_write(&vol->mftbmp_lock);
2756 	return ERR_PTR(-ENOSPC);
2757 }
2758 
2759 /**
2760  * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2761  * @ni:		ntfs inode of the mapped extent mft record to free
2762  * @m:		mapped extent mft record of the ntfs inode @ni
2763  *
2764  * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2765  *
2766  * Note that this function unmaps the mft record and closes and destroys @ni
2767  * internally and hence you cannot use either @ni nor @m any more after this
2768  * function returns success.
2769  *
2770  * On success return 0 and on error return -errno.  @ni and @m are still valid
2771  * in this case and have not been freed.
2772  *
2773  * For some errors an error message is displayed and the success code 0 is
2774  * returned and the volume is then left dirty on umount.  This makes sense in
2775  * case we could not rollback the changes that were already done since the
2776  * caller no longer wants to reference this mft record so it does not matter to
2777  * the caller if something is wrong with it as long as it is properly detached
2778  * from the base inode.
2779  */
2780 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2781 {
2782 	unsigned long mft_no = ni->mft_no;
2783 	ntfs_volume *vol = ni->vol;
2784 	ntfs_inode *base_ni;
2785 	ntfs_inode **extent_nis;
2786 	int i, err;
2787 	le16 old_seq_no;
2788 	u16 seq_no;
2789 
2790 	BUG_ON(NInoAttr(ni));
2791 	BUG_ON(ni->nr_extents != -1);
2792 
2793 	mutex_lock(&ni->extent_lock);
2794 	base_ni = ni->ext.base_ntfs_ino;
2795 	mutex_unlock(&ni->extent_lock);
2796 
2797 	BUG_ON(base_ni->nr_extents <= 0);
2798 
2799 	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2800 			mft_no, base_ni->mft_no);
2801 
2802 	mutex_lock(&base_ni->extent_lock);
2803 
2804 	/* Make sure we are holding the only reference to the extent inode. */
2805 	if (atomic_read(&ni->count) > 2) {
2806 		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2807 				"not freeing.", base_ni->mft_no);
2808 		mutex_unlock(&base_ni->extent_lock);
2809 		return -EBUSY;
2810 	}
2811 
2812 	/* Dissociate the ntfs inode from the base inode. */
2813 	extent_nis = base_ni->ext.extent_ntfs_inos;
2814 	err = -ENOENT;
2815 	for (i = 0; i < base_ni->nr_extents; i++) {
2816 		if (ni != extent_nis[i])
2817 			continue;
2818 		extent_nis += i;
2819 		base_ni->nr_extents--;
2820 		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2821 				sizeof(ntfs_inode*));
2822 		err = 0;
2823 		break;
2824 	}
2825 
2826 	mutex_unlock(&base_ni->extent_lock);
2827 
2828 	if (unlikely(err)) {
2829 		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2830 				"its base inode 0x%lx.", mft_no,
2831 				base_ni->mft_no);
2832 		BUG();
2833 	}
2834 
2835 	/*
2836 	 * The extent inode is no longer attached to the base inode so no one
2837 	 * can get a reference to it any more.
2838 	 */
2839 
2840 	/* Mark the mft record as not in use. */
2841 	m->flags &= ~MFT_RECORD_IN_USE;
2842 
2843 	/* Increment the sequence number, skipping zero, if it is not zero. */
2844 	old_seq_no = m->sequence_number;
2845 	seq_no = le16_to_cpu(old_seq_no);
2846 	if (seq_no == 0xffff)
2847 		seq_no = 1;
2848 	else if (seq_no)
2849 		seq_no++;
2850 	m->sequence_number = cpu_to_le16(seq_no);
2851 
2852 	/*
2853 	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2854 	 * about the base inode here since whatever caused the extent mft
2855 	 * record to be freed is guaranteed to do it already.
2856 	 */
2857 	NInoSetDirty(ni);
2858 	err = write_mft_record(ni, m, 0);
2859 	if (unlikely(err)) {
2860 		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2861 				"freeing.", mft_no);
2862 		goto rollback;
2863 	}
2864 rollback_error:
2865 	/* Unmap and throw away the now freed extent inode. */
2866 	unmap_extent_mft_record(ni);
2867 	ntfs_clear_extent_inode(ni);
2868 
2869 	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2870 	down_write(&vol->mftbmp_lock);
2871 	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2872 	up_write(&vol->mftbmp_lock);
2873 	if (unlikely(err)) {
2874 		/*
2875 		 * The extent inode is gone but we failed to deallocate it in
2876 		 * the mft bitmap.  Just emit a warning and leave the volume
2877 		 * dirty on umount.
2878 		 */
2879 		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2880 		NVolSetErrors(vol);
2881 	}
2882 	return 0;
2883 rollback:
2884 	/* Rollback what we did... */
2885 	mutex_lock(&base_ni->extent_lock);
2886 	extent_nis = base_ni->ext.extent_ntfs_inos;
2887 	if (!(base_ni->nr_extents & 3)) {
2888 		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2889 
2890 		extent_nis = kmalloc(new_size, GFP_NOFS);
2891 		if (unlikely(!extent_nis)) {
2892 			ntfs_error(vol->sb, "Failed to allocate internal "
2893 					"buffer during rollback.%s", es);
2894 			mutex_unlock(&base_ni->extent_lock);
2895 			NVolSetErrors(vol);
2896 			goto rollback_error;
2897 		}
2898 		if (base_ni->nr_extents) {
2899 			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2900 			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2901 					new_size - 4 * sizeof(ntfs_inode*));
2902 			kfree(base_ni->ext.extent_ntfs_inos);
2903 		}
2904 		base_ni->ext.extent_ntfs_inos = extent_nis;
2905 	}
2906 	m->flags |= MFT_RECORD_IN_USE;
2907 	m->sequence_number = old_seq_no;
2908 	extent_nis[base_ni->nr_extents++] = ni;
2909 	mutex_unlock(&base_ni->extent_lock);
2910 	mark_mft_record_dirty(ni);
2911 	return err;
2912 }
2913 #endif /* NTFS_RW */
2914