1 /** 2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2006 Anton Altaparmakov 5 * Copyright (c) 2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/buffer_head.h> 24 #include <linux/swap.h> 25 26 #include "attrib.h" 27 #include "aops.h" 28 #include "bitmap.h" 29 #include "debug.h" 30 #include "dir.h" 31 #include "lcnalloc.h" 32 #include "malloc.h" 33 #include "mft.h" 34 #include "ntfs.h" 35 36 /** 37 * map_mft_record_page - map the page in which a specific mft record resides 38 * @ni: ntfs inode whose mft record page to map 39 * 40 * This maps the page in which the mft record of the ntfs inode @ni is situated 41 * and returns a pointer to the mft record within the mapped page. 42 * 43 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() 44 * contains the negative error code returned. 45 */ 46 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) 47 { 48 loff_t i_size; 49 ntfs_volume *vol = ni->vol; 50 struct inode *mft_vi = vol->mft_ino; 51 struct page *page; 52 unsigned long index, end_index; 53 unsigned ofs; 54 55 BUG_ON(ni->page); 56 /* 57 * The index into the page cache and the offset within the page cache 58 * page of the wanted mft record. FIXME: We need to check for 59 * overflowing the unsigned long, but I don't think we would ever get 60 * here if the volume was that big... 61 */ 62 index = (u64)ni->mft_no << vol->mft_record_size_bits >> 63 PAGE_CACHE_SHIFT; 64 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; 65 66 i_size = i_size_read(mft_vi); 67 /* The maximum valid index into the page cache for $MFT's data. */ 68 end_index = i_size >> PAGE_CACHE_SHIFT; 69 70 /* If the wanted index is out of bounds the mft record doesn't exist. */ 71 if (unlikely(index >= end_index)) { 72 if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs + 73 vol->mft_record_size) { 74 page = ERR_PTR(-ENOENT); 75 ntfs_error(vol->sb, "Attemt to read mft record 0x%lx, " 76 "which is beyond the end of the mft. " 77 "This is probably a bug in the ntfs " 78 "driver.", ni->mft_no); 79 goto err_out; 80 } 81 } 82 /* Read, map, and pin the page. */ 83 page = ntfs_map_page(mft_vi->i_mapping, index); 84 if (likely(!IS_ERR(page))) { 85 /* Catch multi sector transfer fixup errors. */ 86 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + 87 ofs)))) { 88 ni->page = page; 89 ni->page_ofs = ofs; 90 return page_address(page) + ofs; 91 } 92 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. " 93 "Run chkdsk.", ni->mft_no); 94 ntfs_unmap_page(page); 95 page = ERR_PTR(-EIO); 96 NVolSetErrors(vol); 97 } 98 err_out: 99 ni->page = NULL; 100 ni->page_ofs = 0; 101 return (void*)page; 102 } 103 104 /** 105 * map_mft_record - map, pin and lock an mft record 106 * @ni: ntfs inode whose MFT record to map 107 * 108 * First, take the mrec_lock mutex. We might now be sleeping, while waiting 109 * for the mutex if it was already locked by someone else. 110 * 111 * The page of the record is mapped using map_mft_record_page() before being 112 * returned to the caller. 113 * 114 * This in turn uses ntfs_map_page() to get the page containing the wanted mft 115 * record (it in turn calls read_cache_page() which reads it in from disk if 116 * necessary, increments the use count on the page so that it cannot disappear 117 * under us and returns a reference to the page cache page). 118 * 119 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it 120 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed 121 * and the post-read mst fixups on each mft record in the page have been 122 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done 123 * in our asynchronous I/O completion handler end_buffer_read_mft_async()). 124 * ntfs_map_page() waits for PG_locked to become clear and checks if 125 * PG_uptodate is set and returns an error code if not. This provides 126 * sufficient protection against races when reading/using the page. 127 * 128 * However there is the write mapping to think about. Doing the above described 129 * checking here will be fine, because when initiating the write we will set 130 * PG_locked and clear PG_uptodate making sure nobody is touching the page 131 * contents. Doing the locking this way means that the commit to disk code in 132 * the page cache code paths is automatically sufficiently locked with us as 133 * we will not touch a page that has been locked or is not uptodate. The only 134 * locking problem then is them locking the page while we are accessing it. 135 * 136 * So that code will end up having to own the mrec_lock of all mft 137 * records/inodes present in the page before I/O can proceed. In that case we 138 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be 139 * accessing anything without owning the mrec_lock mutex. But we do need to 140 * use them because of the read_cache_page() invocation and the code becomes so 141 * much simpler this way that it is well worth it. 142 * 143 * The mft record is now ours and we return a pointer to it. You need to check 144 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return 145 * the error code. 146 * 147 * NOTE: Caller is responsible for setting the mft record dirty before calling 148 * unmap_mft_record(). This is obviously only necessary if the caller really 149 * modified the mft record... 150 * Q: Do we want to recycle one of the VFS inode state bits instead? 151 * A: No, the inode ones mean we want to change the mft record, not we want to 152 * write it out. 153 */ 154 MFT_RECORD *map_mft_record(ntfs_inode *ni) 155 { 156 MFT_RECORD *m; 157 158 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 159 160 /* Make sure the ntfs inode doesn't go away. */ 161 atomic_inc(&ni->count); 162 163 /* Serialize access to this mft record. */ 164 mutex_lock(&ni->mrec_lock); 165 166 m = map_mft_record_page(ni); 167 if (likely(!IS_ERR(m))) 168 return m; 169 170 mutex_unlock(&ni->mrec_lock); 171 atomic_dec(&ni->count); 172 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); 173 return m; 174 } 175 176 /** 177 * unmap_mft_record_page - unmap the page in which a specific mft record resides 178 * @ni: ntfs inode whose mft record page to unmap 179 * 180 * This unmaps the page in which the mft record of the ntfs inode @ni is 181 * situated and returns. This is a NOOP if highmem is not configured. 182 * 183 * The unmap happens via ntfs_unmap_page() which in turn decrements the use 184 * count on the page thus releasing it from the pinned state. 185 * 186 * We do not actually unmap the page from memory of course, as that will be 187 * done by the page cache code itself when memory pressure increases or 188 * whatever. 189 */ 190 static inline void unmap_mft_record_page(ntfs_inode *ni) 191 { 192 BUG_ON(!ni->page); 193 194 // TODO: If dirty, blah... 195 ntfs_unmap_page(ni->page); 196 ni->page = NULL; 197 ni->page_ofs = 0; 198 return; 199 } 200 201 /** 202 * unmap_mft_record - release a mapped mft record 203 * @ni: ntfs inode whose MFT record to unmap 204 * 205 * We release the page mapping and the mrec_lock mutex which unmaps the mft 206 * record and releases it for others to get hold of. We also release the ntfs 207 * inode by decrementing the ntfs inode reference count. 208 * 209 * NOTE: If caller has modified the mft record, it is imperative to set the mft 210 * record dirty BEFORE calling unmap_mft_record(). 211 */ 212 void unmap_mft_record(ntfs_inode *ni) 213 { 214 struct page *page = ni->page; 215 216 BUG_ON(!page); 217 218 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 219 220 unmap_mft_record_page(ni); 221 mutex_unlock(&ni->mrec_lock); 222 atomic_dec(&ni->count); 223 /* 224 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to 225 * ntfs_clear_extent_inode() in the extent inode case, and to the 226 * caller in the non-extent, yet pure ntfs inode case, to do the actual 227 * tear down of all structures and freeing of all allocated memory. 228 */ 229 return; 230 } 231 232 /** 233 * map_extent_mft_record - load an extent inode and attach it to its base 234 * @base_ni: base ntfs inode 235 * @mref: mft reference of the extent inode to load 236 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure 237 * 238 * Load the extent mft record @mref and attach it to its base inode @base_ni. 239 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise 240 * PTR_ERR(result) gives the negative error code. 241 * 242 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode 243 * structure of the mapped extent inode. 244 */ 245 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, 246 ntfs_inode **ntfs_ino) 247 { 248 MFT_RECORD *m; 249 ntfs_inode *ni = NULL; 250 ntfs_inode **extent_nis = NULL; 251 int i; 252 unsigned long mft_no = MREF(mref); 253 u16 seq_no = MSEQNO(mref); 254 bool destroy_ni = false; 255 256 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", 257 mft_no, base_ni->mft_no); 258 /* Make sure the base ntfs inode doesn't go away. */ 259 atomic_inc(&base_ni->count); 260 /* 261 * Check if this extent inode has already been added to the base inode, 262 * in which case just return it. If not found, add it to the base 263 * inode before returning it. 264 */ 265 mutex_lock(&base_ni->extent_lock); 266 if (base_ni->nr_extents > 0) { 267 extent_nis = base_ni->ext.extent_ntfs_inos; 268 for (i = 0; i < base_ni->nr_extents; i++) { 269 if (mft_no != extent_nis[i]->mft_no) 270 continue; 271 ni = extent_nis[i]; 272 /* Make sure the ntfs inode doesn't go away. */ 273 atomic_inc(&ni->count); 274 break; 275 } 276 } 277 if (likely(ni != NULL)) { 278 mutex_unlock(&base_ni->extent_lock); 279 atomic_dec(&base_ni->count); 280 /* We found the record; just have to map and return it. */ 281 m = map_mft_record(ni); 282 /* map_mft_record() has incremented this on success. */ 283 atomic_dec(&ni->count); 284 if (likely(!IS_ERR(m))) { 285 /* Verify the sequence number. */ 286 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { 287 ntfs_debug("Done 1."); 288 *ntfs_ino = ni; 289 return m; 290 } 291 unmap_mft_record(ni); 292 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 293 "reference! Corrupt filesystem. " 294 "Run chkdsk."); 295 return ERR_PTR(-EIO); 296 } 297 map_err_out: 298 ntfs_error(base_ni->vol->sb, "Failed to map extent " 299 "mft record, error code %ld.", -PTR_ERR(m)); 300 return m; 301 } 302 /* Record wasn't there. Get a new ntfs inode and initialize it. */ 303 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); 304 if (unlikely(!ni)) { 305 mutex_unlock(&base_ni->extent_lock); 306 atomic_dec(&base_ni->count); 307 return ERR_PTR(-ENOMEM); 308 } 309 ni->vol = base_ni->vol; 310 ni->seq_no = seq_no; 311 ni->nr_extents = -1; 312 ni->ext.base_ntfs_ino = base_ni; 313 /* Now map the record. */ 314 m = map_mft_record(ni); 315 if (IS_ERR(m)) { 316 mutex_unlock(&base_ni->extent_lock); 317 atomic_dec(&base_ni->count); 318 ntfs_clear_extent_inode(ni); 319 goto map_err_out; 320 } 321 /* Verify the sequence number if it is present. */ 322 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { 323 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 324 "reference! Corrupt filesystem. Run chkdsk."); 325 destroy_ni = true; 326 m = ERR_PTR(-EIO); 327 goto unm_err_out; 328 } 329 /* Attach extent inode to base inode, reallocating memory if needed. */ 330 if (!(base_ni->nr_extents & 3)) { 331 ntfs_inode **tmp; 332 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); 333 334 tmp = kmalloc(new_size, GFP_NOFS); 335 if (unlikely(!tmp)) { 336 ntfs_error(base_ni->vol->sb, "Failed to allocate " 337 "internal buffer."); 338 destroy_ni = true; 339 m = ERR_PTR(-ENOMEM); 340 goto unm_err_out; 341 } 342 if (base_ni->nr_extents) { 343 BUG_ON(!base_ni->ext.extent_ntfs_inos); 344 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - 345 4 * sizeof(ntfs_inode *)); 346 kfree(base_ni->ext.extent_ntfs_inos); 347 } 348 base_ni->ext.extent_ntfs_inos = tmp; 349 } 350 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; 351 mutex_unlock(&base_ni->extent_lock); 352 atomic_dec(&base_ni->count); 353 ntfs_debug("Done 2."); 354 *ntfs_ino = ni; 355 return m; 356 unm_err_out: 357 unmap_mft_record(ni); 358 mutex_unlock(&base_ni->extent_lock); 359 atomic_dec(&base_ni->count); 360 /* 361 * If the extent inode was not attached to the base inode we need to 362 * release it or we will leak memory. 363 */ 364 if (destroy_ni) 365 ntfs_clear_extent_inode(ni); 366 return m; 367 } 368 369 #ifdef NTFS_RW 370 371 /** 372 * __mark_mft_record_dirty - set the mft record and the page containing it dirty 373 * @ni: ntfs inode describing the mapped mft record 374 * 375 * Internal function. Users should call mark_mft_record_dirty() instead. 376 * 377 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, 378 * as well as the page containing the mft record, dirty. Also, mark the base 379 * vfs inode dirty. This ensures that any changes to the mft record are 380 * written out to disk. 381 * 382 * NOTE: We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) 383 * on the base vfs inode, because even though file data may have been modified, 384 * it is dirty in the inode meta data rather than the data page cache of the 385 * inode, and thus there are no data pages that need writing out. Therefore, a 386 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the 387 * other hand, is not sufficient, because ->write_inode needs to be called even 388 * in case of fdatasync. This needs to happen or the file data would not 389 * necessarily hit the device synchronously, even though the vfs inode has the 390 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just 391 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, 392 * which is not what I_DIRTY_SYNC on its own would suggest. 393 */ 394 void __mark_mft_record_dirty(ntfs_inode *ni) 395 { 396 ntfs_inode *base_ni; 397 398 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 399 BUG_ON(NInoAttr(ni)); 400 mark_ntfs_record_dirty(ni->page, ni->page_ofs); 401 /* Determine the base vfs inode and mark it dirty, too. */ 402 mutex_lock(&ni->extent_lock); 403 if (likely(ni->nr_extents >= 0)) 404 base_ni = ni; 405 else 406 base_ni = ni->ext.base_ntfs_ino; 407 mutex_unlock(&ni->extent_lock); 408 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC); 409 } 410 411 static const char *ntfs_please_email = "Please email " 412 "linux-ntfs-dev@lists.sourceforge.net and say that you saw " 413 "this message. Thank you."; 414 415 /** 416 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror 417 * @vol: ntfs volume on which the mft record to synchronize resides 418 * @mft_no: mft record number of mft record to synchronize 419 * @m: mapped, mst protected (extent) mft record to synchronize 420 * 421 * Write the mapped, mst protected (extent) mft record @m with mft record 422 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, 423 * bypassing the page cache and the $MFTMirr inode itself. 424 * 425 * This function is only for use at umount time when the mft mirror inode has 426 * already been disposed off. We BUG() if we are called while the mft mirror 427 * inode is still attached to the volume. 428 * 429 * On success return 0. On error return -errno. 430 * 431 * NOTE: This function is not implemented yet as I am not convinced it can 432 * actually be triggered considering the sequence of commits we do in super.c:: 433 * ntfs_put_super(). But just in case we provide this place holder as the 434 * alternative would be either to BUG() or to get a NULL pointer dereference 435 * and Oops. 436 */ 437 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, 438 const unsigned long mft_no, MFT_RECORD *m) 439 { 440 BUG_ON(vol->mftmirr_ino); 441 ntfs_error(vol->sb, "Umount time mft mirror syncing is not " 442 "implemented yet. %s", ntfs_please_email); 443 return -EOPNOTSUPP; 444 } 445 446 /** 447 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror 448 * @vol: ntfs volume on which the mft record to synchronize resides 449 * @mft_no: mft record number of mft record to synchronize 450 * @m: mapped, mst protected (extent) mft record to synchronize 451 * @sync: if true, wait for i/o completion 452 * 453 * Write the mapped, mst protected (extent) mft record @m with mft record 454 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. 455 * 456 * On success return 0. On error return -errno and set the volume errors flag 457 * in the ntfs volume @vol. 458 * 459 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 460 * 461 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 462 * schedule i/o via ->writepage or do it via kntfsd or whatever. 463 */ 464 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, 465 MFT_RECORD *m, int sync) 466 { 467 struct page *page; 468 unsigned int blocksize = vol->sb->s_blocksize; 469 int max_bhs = vol->mft_record_size / blocksize; 470 struct buffer_head *bhs[max_bhs]; 471 struct buffer_head *bh, *head; 472 u8 *kmirr; 473 runlist_element *rl; 474 unsigned int block_start, block_end, m_start, m_end, page_ofs; 475 int i_bhs, nr_bhs, err = 0; 476 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 477 478 ntfs_debug("Entering for inode 0x%lx.", mft_no); 479 BUG_ON(!max_bhs); 480 if (unlikely(!vol->mftmirr_ino)) { 481 /* This could happen during umount... */ 482 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); 483 if (likely(!err)) 484 return err; 485 goto err_out; 486 } 487 /* Get the page containing the mirror copy of the mft record @m. */ 488 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> 489 (PAGE_CACHE_SHIFT - vol->mft_record_size_bits)); 490 if (IS_ERR(page)) { 491 ntfs_error(vol->sb, "Failed to map mft mirror page."); 492 err = PTR_ERR(page); 493 goto err_out; 494 } 495 lock_page(page); 496 BUG_ON(!PageUptodate(page)); 497 ClearPageUptodate(page); 498 /* Offset of the mft mirror record inside the page. */ 499 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; 500 /* The address in the page of the mirror copy of the mft record @m. */ 501 kmirr = page_address(page) + page_ofs; 502 /* Copy the mst protected mft record to the mirror. */ 503 memcpy(kmirr, m, vol->mft_record_size); 504 /* Create uptodate buffers if not present. */ 505 if (unlikely(!page_has_buffers(page))) { 506 struct buffer_head *tail; 507 508 bh = head = alloc_page_buffers(page, blocksize, 1); 509 do { 510 set_buffer_uptodate(bh); 511 tail = bh; 512 bh = bh->b_this_page; 513 } while (bh); 514 tail->b_this_page = head; 515 attach_page_buffers(page, head); 516 } 517 bh = head = page_buffers(page); 518 BUG_ON(!bh); 519 rl = NULL; 520 nr_bhs = 0; 521 block_start = 0; 522 m_start = kmirr - (u8*)page_address(page); 523 m_end = m_start + vol->mft_record_size; 524 do { 525 block_end = block_start + blocksize; 526 /* If the buffer is outside the mft record, skip it. */ 527 if (block_end <= m_start) 528 continue; 529 if (unlikely(block_start >= m_end)) 530 break; 531 /* Need to map the buffer if it is not mapped already. */ 532 if (unlikely(!buffer_mapped(bh))) { 533 VCN vcn; 534 LCN lcn; 535 unsigned int vcn_ofs; 536 537 bh->b_bdev = vol->sb->s_bdev; 538 /* Obtain the vcn and offset of the current block. */ 539 vcn = ((VCN)mft_no << vol->mft_record_size_bits) + 540 (block_start - m_start); 541 vcn_ofs = vcn & vol->cluster_size_mask; 542 vcn >>= vol->cluster_size_bits; 543 if (!rl) { 544 down_read(&NTFS_I(vol->mftmirr_ino)-> 545 runlist.lock); 546 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; 547 /* 548 * $MFTMirr always has the whole of its runlist 549 * in memory. 550 */ 551 BUG_ON(!rl); 552 } 553 /* Seek to element containing target vcn. */ 554 while (rl->length && rl[1].vcn <= vcn) 555 rl++; 556 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 557 /* For $MFTMirr, only lcn >= 0 is a successful remap. */ 558 if (likely(lcn >= 0)) { 559 /* Setup buffer head to correct block. */ 560 bh->b_blocknr = ((lcn << 561 vol->cluster_size_bits) + 562 vcn_ofs) >> blocksize_bits; 563 set_buffer_mapped(bh); 564 } else { 565 bh->b_blocknr = -1; 566 ntfs_error(vol->sb, "Cannot write mft mirror " 567 "record 0x%lx because its " 568 "location on disk could not " 569 "be determined (error code " 570 "%lli).", mft_no, 571 (long long)lcn); 572 err = -EIO; 573 } 574 } 575 BUG_ON(!buffer_uptodate(bh)); 576 BUG_ON(!nr_bhs && (m_start != block_start)); 577 BUG_ON(nr_bhs >= max_bhs); 578 bhs[nr_bhs++] = bh; 579 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 580 } while (block_start = block_end, (bh = bh->b_this_page) != head); 581 if (unlikely(rl)) 582 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); 583 if (likely(!err)) { 584 /* Lock buffers and start synchronous write i/o on them. */ 585 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 586 struct buffer_head *tbh = bhs[i_bhs]; 587 588 if (!trylock_buffer(tbh)) 589 BUG(); 590 BUG_ON(!buffer_uptodate(tbh)); 591 clear_buffer_dirty(tbh); 592 get_bh(tbh); 593 tbh->b_end_io = end_buffer_write_sync; 594 submit_bh(WRITE, tbh); 595 } 596 /* Wait on i/o completion of buffers. */ 597 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 598 struct buffer_head *tbh = bhs[i_bhs]; 599 600 wait_on_buffer(tbh); 601 if (unlikely(!buffer_uptodate(tbh))) { 602 err = -EIO; 603 /* 604 * Set the buffer uptodate so the page and 605 * buffer states do not become out of sync. 606 */ 607 set_buffer_uptodate(tbh); 608 } 609 } 610 } else /* if (unlikely(err)) */ { 611 /* Clean the buffers. */ 612 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 613 clear_buffer_dirty(bhs[i_bhs]); 614 } 615 /* Current state: all buffers are clean, unlocked, and uptodate. */ 616 /* Remove the mst protection fixups again. */ 617 post_write_mst_fixup((NTFS_RECORD*)kmirr); 618 flush_dcache_page(page); 619 SetPageUptodate(page); 620 unlock_page(page); 621 ntfs_unmap_page(page); 622 if (likely(!err)) { 623 ntfs_debug("Done."); 624 } else { 625 ntfs_error(vol->sb, "I/O error while writing mft mirror " 626 "record 0x%lx!", mft_no); 627 err_out: 628 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " 629 "code %i). Volume will be left marked dirty " 630 "on umount. Run ntfsfix on the partition " 631 "after umounting to correct this.", -err); 632 NVolSetErrors(vol); 633 } 634 return err; 635 } 636 637 /** 638 * write_mft_record_nolock - write out a mapped (extent) mft record 639 * @ni: ntfs inode describing the mapped (extent) mft record 640 * @m: mapped (extent) mft record to write 641 * @sync: if true, wait for i/o completion 642 * 643 * Write the mapped (extent) mft record @m described by the (regular or extent) 644 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in 645 * the mft mirror, that is also updated. 646 * 647 * We only write the mft record if the ntfs inode @ni is dirty and the first 648 * buffer belonging to its mft record is dirty, too. We ignore the dirty state 649 * of subsequent buffers because we could have raced with 650 * fs/ntfs/aops.c::mark_ntfs_record_dirty(). 651 * 652 * On success, clean the mft record and return 0. On error, leave the mft 653 * record dirty and return -errno. 654 * 655 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 656 * However, if the mft record has a counterpart in the mft mirror and @sync is 657 * true, we write the mft record, wait for i/o completion, and only then write 658 * the mft mirror copy. This ensures that if the system crashes either the mft 659 * or the mft mirror will contain a self-consistent mft record @m. If @sync is 660 * false on the other hand, we start i/o on both and then wait for completion 661 * on them. This provides a speedup but no longer guarantees that you will end 662 * up with a self-consistent mft record in the case of a crash but if you asked 663 * for asynchronous writing you probably do not care about that anyway. 664 * 665 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 666 * schedule i/o via ->writepage or do it via kntfsd or whatever. 667 */ 668 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) 669 { 670 ntfs_volume *vol = ni->vol; 671 struct page *page = ni->page; 672 unsigned int blocksize = vol->sb->s_blocksize; 673 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 674 int max_bhs = vol->mft_record_size / blocksize; 675 struct buffer_head *bhs[max_bhs]; 676 struct buffer_head *bh, *head; 677 runlist_element *rl; 678 unsigned int block_start, block_end, m_start, m_end; 679 int i_bhs, nr_bhs, err = 0; 680 681 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 682 BUG_ON(NInoAttr(ni)); 683 BUG_ON(!max_bhs); 684 BUG_ON(!PageLocked(page)); 685 /* 686 * If the ntfs_inode is clean no need to do anything. If it is dirty, 687 * mark it as clean now so that it can be redirtied later on if needed. 688 * There is no danger of races since the caller is holding the locks 689 * for the mft record @m and the page it is in. 690 */ 691 if (!NInoTestClearDirty(ni)) 692 goto done; 693 bh = head = page_buffers(page); 694 BUG_ON(!bh); 695 rl = NULL; 696 nr_bhs = 0; 697 block_start = 0; 698 m_start = ni->page_ofs; 699 m_end = m_start + vol->mft_record_size; 700 do { 701 block_end = block_start + blocksize; 702 /* If the buffer is outside the mft record, skip it. */ 703 if (block_end <= m_start) 704 continue; 705 if (unlikely(block_start >= m_end)) 706 break; 707 /* 708 * If this block is not the first one in the record, we ignore 709 * the buffer's dirty state because we could have raced with a 710 * parallel mark_ntfs_record_dirty(). 711 */ 712 if (block_start == m_start) { 713 /* This block is the first one in the record. */ 714 if (!buffer_dirty(bh)) { 715 BUG_ON(nr_bhs); 716 /* Clean records are not written out. */ 717 break; 718 } 719 } 720 /* Need to map the buffer if it is not mapped already. */ 721 if (unlikely(!buffer_mapped(bh))) { 722 VCN vcn; 723 LCN lcn; 724 unsigned int vcn_ofs; 725 726 bh->b_bdev = vol->sb->s_bdev; 727 /* Obtain the vcn and offset of the current block. */ 728 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + 729 (block_start - m_start); 730 vcn_ofs = vcn & vol->cluster_size_mask; 731 vcn >>= vol->cluster_size_bits; 732 if (!rl) { 733 down_read(&NTFS_I(vol->mft_ino)->runlist.lock); 734 rl = NTFS_I(vol->mft_ino)->runlist.rl; 735 BUG_ON(!rl); 736 } 737 /* Seek to element containing target vcn. */ 738 while (rl->length && rl[1].vcn <= vcn) 739 rl++; 740 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 741 /* For $MFT, only lcn >= 0 is a successful remap. */ 742 if (likely(lcn >= 0)) { 743 /* Setup buffer head to correct block. */ 744 bh->b_blocknr = ((lcn << 745 vol->cluster_size_bits) + 746 vcn_ofs) >> blocksize_bits; 747 set_buffer_mapped(bh); 748 } else { 749 bh->b_blocknr = -1; 750 ntfs_error(vol->sb, "Cannot write mft record " 751 "0x%lx because its location " 752 "on disk could not be " 753 "determined (error code %lli).", 754 ni->mft_no, (long long)lcn); 755 err = -EIO; 756 } 757 } 758 BUG_ON(!buffer_uptodate(bh)); 759 BUG_ON(!nr_bhs && (m_start != block_start)); 760 BUG_ON(nr_bhs >= max_bhs); 761 bhs[nr_bhs++] = bh; 762 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 763 } while (block_start = block_end, (bh = bh->b_this_page) != head); 764 if (unlikely(rl)) 765 up_read(&NTFS_I(vol->mft_ino)->runlist.lock); 766 if (!nr_bhs) 767 goto done; 768 if (unlikely(err)) 769 goto cleanup_out; 770 /* Apply the mst protection fixups. */ 771 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); 772 if (err) { 773 ntfs_error(vol->sb, "Failed to apply mst fixups!"); 774 goto cleanup_out; 775 } 776 flush_dcache_mft_record_page(ni); 777 /* Lock buffers and start synchronous write i/o on them. */ 778 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 779 struct buffer_head *tbh = bhs[i_bhs]; 780 781 if (!trylock_buffer(tbh)) 782 BUG(); 783 BUG_ON(!buffer_uptodate(tbh)); 784 clear_buffer_dirty(tbh); 785 get_bh(tbh); 786 tbh->b_end_io = end_buffer_write_sync; 787 submit_bh(WRITE, tbh); 788 } 789 /* Synchronize the mft mirror now if not @sync. */ 790 if (!sync && ni->mft_no < vol->mftmirr_size) 791 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 792 /* Wait on i/o completion of buffers. */ 793 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 794 struct buffer_head *tbh = bhs[i_bhs]; 795 796 wait_on_buffer(tbh); 797 if (unlikely(!buffer_uptodate(tbh))) { 798 err = -EIO; 799 /* 800 * Set the buffer uptodate so the page and buffer 801 * states do not become out of sync. 802 */ 803 if (PageUptodate(page)) 804 set_buffer_uptodate(tbh); 805 } 806 } 807 /* If @sync, now synchronize the mft mirror. */ 808 if (sync && ni->mft_no < vol->mftmirr_size) 809 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 810 /* Remove the mst protection fixups again. */ 811 post_write_mst_fixup((NTFS_RECORD*)m); 812 flush_dcache_mft_record_page(ni); 813 if (unlikely(err)) { 814 /* I/O error during writing. This is really bad! */ 815 ntfs_error(vol->sb, "I/O error while writing mft record " 816 "0x%lx! Marking base inode as bad. You " 817 "should unmount the volume and run chkdsk.", 818 ni->mft_no); 819 goto err_out; 820 } 821 done: 822 ntfs_debug("Done."); 823 return 0; 824 cleanup_out: 825 /* Clean the buffers. */ 826 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 827 clear_buffer_dirty(bhs[i_bhs]); 828 err_out: 829 /* 830 * Current state: all buffers are clean, unlocked, and uptodate. 831 * The caller should mark the base inode as bad so that no more i/o 832 * happens. ->clear_inode() will still be invoked so all extent inodes 833 * and other allocated memory will be freed. 834 */ 835 if (err == -ENOMEM) { 836 ntfs_error(vol->sb, "Not enough memory to write mft record. " 837 "Redirtying so the write is retried later."); 838 mark_mft_record_dirty(ni); 839 err = 0; 840 } else 841 NVolSetErrors(vol); 842 return err; 843 } 844 845 /** 846 * ntfs_may_write_mft_record - check if an mft record may be written out 847 * @vol: [IN] ntfs volume on which the mft record to check resides 848 * @mft_no: [IN] mft record number of the mft record to check 849 * @m: [IN] mapped mft record to check 850 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned 851 * 852 * Check if the mapped (base or extent) mft record @m with mft record number 853 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary 854 * and possible the ntfs inode of the mft record is locked and the base vfs 855 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The 856 * caller is responsible for unlocking the ntfs inode and unpinning the base 857 * vfs inode. 858 * 859 * Return 'true' if the mft record may be written out and 'false' if not. 860 * 861 * The caller has locked the page and cleared the uptodate flag on it which 862 * means that we can safely write out any dirty mft records that do not have 863 * their inodes in icache as determined by ilookup5() as anyone 864 * opening/creating such an inode would block when attempting to map the mft 865 * record in read_cache_page() until we are finished with the write out. 866 * 867 * Here is a description of the tests we perform: 868 * 869 * If the inode is found in icache we know the mft record must be a base mft 870 * record. If it is dirty, we do not write it and return 'false' as the vfs 871 * inode write paths will result in the access times being updated which would 872 * cause the base mft record to be redirtied and written out again. (We know 873 * the access time update will modify the base mft record because Windows 874 * chkdsk complains if the standard information attribute is not in the base 875 * mft record.) 876 * 877 * If the inode is in icache and not dirty, we attempt to lock the mft record 878 * and if we find the lock was already taken, it is not safe to write the mft 879 * record and we return 'false'. 880 * 881 * If we manage to obtain the lock we have exclusive access to the mft record, 882 * which also allows us safe writeout of the mft record. We then set 883 * @locked_ni to the locked ntfs inode and return 'true'. 884 * 885 * Note we cannot just lock the mft record and sleep while waiting for the lock 886 * because this would deadlock due to lock reversal (normally the mft record is 887 * locked before the page is locked but we already have the page locked here 888 * when we try to lock the mft record). 889 * 890 * If the inode is not in icache we need to perform further checks. 891 * 892 * If the mft record is not a FILE record or it is a base mft record, we can 893 * safely write it and return 'true'. 894 * 895 * We now know the mft record is an extent mft record. We check if the inode 896 * corresponding to its base mft record is in icache and obtain a reference to 897 * it if it is. If it is not, we can safely write it and return 'true'. 898 * 899 * We now have the base inode for the extent mft record. We check if it has an 900 * ntfs inode for the extent mft record attached and if not it is safe to write 901 * the extent mft record and we return 'true'. 902 * 903 * The ntfs inode for the extent mft record is attached to the base inode so we 904 * attempt to lock the extent mft record and if we find the lock was already 905 * taken, it is not safe to write the extent mft record and we return 'false'. 906 * 907 * If we manage to obtain the lock we have exclusive access to the extent mft 908 * record, which also allows us safe writeout of the extent mft record. We 909 * set the ntfs inode of the extent mft record clean and then set @locked_ni to 910 * the now locked ntfs inode and return 'true'. 911 * 912 * Note, the reason for actually writing dirty mft records here and not just 913 * relying on the vfs inode dirty code paths is that we can have mft records 914 * modified without them ever having actual inodes in memory. Also we can have 915 * dirty mft records with clean ntfs inodes in memory. None of the described 916 * cases would result in the dirty mft records being written out if we only 917 * relied on the vfs inode dirty code paths. And these cases can really occur 918 * during allocation of new mft records and in particular when the 919 * initialized_size of the $MFT/$DATA attribute is extended and the new space 920 * is initialized using ntfs_mft_record_format(). The clean inode can then 921 * appear if the mft record is reused for a new inode before it got written 922 * out. 923 */ 924 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, 925 const MFT_RECORD *m, ntfs_inode **locked_ni) 926 { 927 struct super_block *sb = vol->sb; 928 struct inode *mft_vi = vol->mft_ino; 929 struct inode *vi; 930 ntfs_inode *ni, *eni, **extent_nis; 931 int i; 932 ntfs_attr na; 933 934 ntfs_debug("Entering for inode 0x%lx.", mft_no); 935 /* 936 * Normally we do not return a locked inode so set @locked_ni to NULL. 937 */ 938 BUG_ON(!locked_ni); 939 *locked_ni = NULL; 940 /* 941 * Check if the inode corresponding to this mft record is in the VFS 942 * inode cache and obtain a reference to it if it is. 943 */ 944 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); 945 na.mft_no = mft_no; 946 na.name = NULL; 947 na.name_len = 0; 948 na.type = AT_UNUSED; 949 /* 950 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and 951 * we get here for it rather often. 952 */ 953 if (!mft_no) { 954 /* Balance the below iput(). */ 955 vi = igrab(mft_vi); 956 BUG_ON(vi != mft_vi); 957 } else { 958 /* 959 * Have to use ilookup5_nowait() since ilookup5() waits for the 960 * inode lock which causes ntfs to deadlock when a concurrent 961 * inode write via the inode dirty code paths and the page 962 * dirty code path of the inode dirty code path when writing 963 * $MFT occurs. 964 */ 965 vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na); 966 } 967 if (vi) { 968 ntfs_debug("Base inode 0x%lx is in icache.", mft_no); 969 /* The inode is in icache. */ 970 ni = NTFS_I(vi); 971 /* Take a reference to the ntfs inode. */ 972 atomic_inc(&ni->count); 973 /* If the inode is dirty, do not write this record. */ 974 if (NInoDirty(ni)) { 975 ntfs_debug("Inode 0x%lx is dirty, do not write it.", 976 mft_no); 977 atomic_dec(&ni->count); 978 iput(vi); 979 return false; 980 } 981 ntfs_debug("Inode 0x%lx is not dirty.", mft_no); 982 /* The inode is not dirty, try to take the mft record lock. */ 983 if (unlikely(!mutex_trylock(&ni->mrec_lock))) { 984 ntfs_debug("Mft record 0x%lx is already locked, do " 985 "not write it.", mft_no); 986 atomic_dec(&ni->count); 987 iput(vi); 988 return false; 989 } 990 ntfs_debug("Managed to lock mft record 0x%lx, write it.", 991 mft_no); 992 /* 993 * The write has to occur while we hold the mft record lock so 994 * return the locked ntfs inode. 995 */ 996 *locked_ni = ni; 997 return true; 998 } 999 ntfs_debug("Inode 0x%lx is not in icache.", mft_no); 1000 /* The inode is not in icache. */ 1001 /* Write the record if it is not a mft record (type "FILE"). */ 1002 if (!ntfs_is_mft_record(m->magic)) { 1003 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", 1004 mft_no); 1005 return true; 1006 } 1007 /* Write the mft record if it is a base inode. */ 1008 if (!m->base_mft_record) { 1009 ntfs_debug("Mft record 0x%lx is a base record, write it.", 1010 mft_no); 1011 return true; 1012 } 1013 /* 1014 * This is an extent mft record. Check if the inode corresponding to 1015 * its base mft record is in icache and obtain a reference to it if it 1016 * is. 1017 */ 1018 na.mft_no = MREF_LE(m->base_mft_record); 1019 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base " 1020 "inode 0x%lx in icache.", mft_no, na.mft_no); 1021 if (!na.mft_no) { 1022 /* Balance the below iput(). */ 1023 vi = igrab(mft_vi); 1024 BUG_ON(vi != mft_vi); 1025 } else 1026 vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode, 1027 &na); 1028 if (!vi) { 1029 /* 1030 * The base inode is not in icache, write this extent mft 1031 * record. 1032 */ 1033 ntfs_debug("Base inode 0x%lx is not in icache, write the " 1034 "extent record.", na.mft_no); 1035 return true; 1036 } 1037 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); 1038 /* 1039 * The base inode is in icache. Check if it has the extent inode 1040 * corresponding to this extent mft record attached. 1041 */ 1042 ni = NTFS_I(vi); 1043 mutex_lock(&ni->extent_lock); 1044 if (ni->nr_extents <= 0) { 1045 /* 1046 * The base inode has no attached extent inodes, write this 1047 * extent mft record. 1048 */ 1049 mutex_unlock(&ni->extent_lock); 1050 iput(vi); 1051 ntfs_debug("Base inode 0x%lx has no attached extent inodes, " 1052 "write the extent record.", na.mft_no); 1053 return true; 1054 } 1055 /* Iterate over the attached extent inodes. */ 1056 extent_nis = ni->ext.extent_ntfs_inos; 1057 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { 1058 if (mft_no == extent_nis[i]->mft_no) { 1059 /* 1060 * Found the extent inode corresponding to this extent 1061 * mft record. 1062 */ 1063 eni = extent_nis[i]; 1064 break; 1065 } 1066 } 1067 /* 1068 * If the extent inode was not attached to the base inode, write this 1069 * extent mft record. 1070 */ 1071 if (!eni) { 1072 mutex_unlock(&ni->extent_lock); 1073 iput(vi); 1074 ntfs_debug("Extent inode 0x%lx is not attached to its base " 1075 "inode 0x%lx, write the extent record.", 1076 mft_no, na.mft_no); 1077 return true; 1078 } 1079 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", 1080 mft_no, na.mft_no); 1081 /* Take a reference to the extent ntfs inode. */ 1082 atomic_inc(&eni->count); 1083 mutex_unlock(&ni->extent_lock); 1084 /* 1085 * Found the extent inode coresponding to this extent mft record. 1086 * Try to take the mft record lock. 1087 */ 1088 if (unlikely(!mutex_trylock(&eni->mrec_lock))) { 1089 atomic_dec(&eni->count); 1090 iput(vi); 1091 ntfs_debug("Extent mft record 0x%lx is already locked, do " 1092 "not write it.", mft_no); 1093 return false; 1094 } 1095 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", 1096 mft_no); 1097 if (NInoTestClearDirty(eni)) 1098 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", 1099 mft_no); 1100 /* 1101 * The write has to occur while we hold the mft record lock so return 1102 * the locked extent ntfs inode. 1103 */ 1104 *locked_ni = eni; 1105 return true; 1106 } 1107 1108 static const char *es = " Leaving inconsistent metadata. Unmount and run " 1109 "chkdsk."; 1110 1111 /** 1112 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name 1113 * @vol: volume on which to search for a free mft record 1114 * @base_ni: open base inode if allocating an extent mft record or NULL 1115 * 1116 * Search for a free mft record in the mft bitmap attribute on the ntfs volume 1117 * @vol. 1118 * 1119 * If @base_ni is NULL start the search at the default allocator position. 1120 * 1121 * If @base_ni is not NULL start the search at the mft record after the base 1122 * mft record @base_ni. 1123 * 1124 * Return the free mft record on success and -errno on error. An error code of 1125 * -ENOSPC means that there are no free mft records in the currently 1126 * initialized mft bitmap. 1127 * 1128 * Locking: Caller must hold vol->mftbmp_lock for writing. 1129 */ 1130 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, 1131 ntfs_inode *base_ni) 1132 { 1133 s64 pass_end, ll, data_pos, pass_start, ofs, bit; 1134 unsigned long flags; 1135 struct address_space *mftbmp_mapping; 1136 u8 *buf, *byte; 1137 struct page *page; 1138 unsigned int page_ofs, size; 1139 u8 pass, b; 1140 1141 ntfs_debug("Searching for free mft record in the currently " 1142 "initialized mft bitmap."); 1143 mftbmp_mapping = vol->mftbmp_ino->i_mapping; 1144 /* 1145 * Set the end of the pass making sure we do not overflow the mft 1146 * bitmap. 1147 */ 1148 read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); 1149 pass_end = NTFS_I(vol->mft_ino)->allocated_size >> 1150 vol->mft_record_size_bits; 1151 read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); 1152 read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1153 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; 1154 read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1155 if (pass_end > ll) 1156 pass_end = ll; 1157 pass = 1; 1158 if (!base_ni) 1159 data_pos = vol->mft_data_pos; 1160 else 1161 data_pos = base_ni->mft_no + 1; 1162 if (data_pos < 24) 1163 data_pos = 24; 1164 if (data_pos >= pass_end) { 1165 data_pos = 24; 1166 pass = 2; 1167 /* This happens on a freshly formatted volume. */ 1168 if (data_pos >= pass_end) 1169 return -ENOSPC; 1170 } 1171 pass_start = data_pos; 1172 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " 1173 "pass_end 0x%llx, data_pos 0x%llx.", pass, 1174 (long long)pass_start, (long long)pass_end, 1175 (long long)data_pos); 1176 /* Loop until a free mft record is found. */ 1177 for (; pass <= 2;) { 1178 /* Cap size to pass_end. */ 1179 ofs = data_pos >> 3; 1180 page_ofs = ofs & ~PAGE_CACHE_MASK; 1181 size = PAGE_CACHE_SIZE - page_ofs; 1182 ll = ((pass_end + 7) >> 3) - ofs; 1183 if (size > ll) 1184 size = ll; 1185 size <<= 3; 1186 /* 1187 * If we are still within the active pass, search the next page 1188 * for a zero bit. 1189 */ 1190 if (size) { 1191 page = ntfs_map_page(mftbmp_mapping, 1192 ofs >> PAGE_CACHE_SHIFT); 1193 if (IS_ERR(page)) { 1194 ntfs_error(vol->sb, "Failed to read mft " 1195 "bitmap, aborting."); 1196 return PTR_ERR(page); 1197 } 1198 buf = (u8*)page_address(page) + page_ofs; 1199 bit = data_pos & 7; 1200 data_pos &= ~7ull; 1201 ntfs_debug("Before inner for loop: size 0x%x, " 1202 "data_pos 0x%llx, bit 0x%llx", size, 1203 (long long)data_pos, (long long)bit); 1204 for (; bit < size && data_pos + bit < pass_end; 1205 bit &= ~7ull, bit += 8) { 1206 byte = buf + (bit >> 3); 1207 if (*byte == 0xff) 1208 continue; 1209 b = ffz((unsigned long)*byte); 1210 if (b < 8 && b >= (bit & 7)) { 1211 ll = data_pos + (bit & ~7ull) + b; 1212 if (unlikely(ll > (1ll << 32))) { 1213 ntfs_unmap_page(page); 1214 return -ENOSPC; 1215 } 1216 *byte |= 1 << b; 1217 flush_dcache_page(page); 1218 set_page_dirty(page); 1219 ntfs_unmap_page(page); 1220 ntfs_debug("Done. (Found and " 1221 "allocated mft record " 1222 "0x%llx.)", 1223 (long long)ll); 1224 return ll; 1225 } 1226 } 1227 ntfs_debug("After inner for loop: size 0x%x, " 1228 "data_pos 0x%llx, bit 0x%llx", size, 1229 (long long)data_pos, (long long)bit); 1230 data_pos += size; 1231 ntfs_unmap_page(page); 1232 /* 1233 * If the end of the pass has not been reached yet, 1234 * continue searching the mft bitmap for a zero bit. 1235 */ 1236 if (data_pos < pass_end) 1237 continue; 1238 } 1239 /* Do the next pass. */ 1240 if (++pass == 2) { 1241 /* 1242 * Starting the second pass, in which we scan the first 1243 * part of the zone which we omitted earlier. 1244 */ 1245 pass_end = pass_start; 1246 data_pos = pass_start = 24; 1247 ntfs_debug("pass %i, pass_start 0x%llx, pass_end " 1248 "0x%llx.", pass, (long long)pass_start, 1249 (long long)pass_end); 1250 if (data_pos >= pass_end) 1251 break; 1252 } 1253 } 1254 /* No free mft records in currently initialized mft bitmap. */ 1255 ntfs_debug("Done. (No free mft records left in currently initialized " 1256 "mft bitmap.)"); 1257 return -ENOSPC; 1258 } 1259 1260 /** 1261 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster 1262 * @vol: volume on which to extend the mft bitmap attribute 1263 * 1264 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. 1265 * 1266 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1267 * data_size. 1268 * 1269 * Return 0 on success and -errno on error. 1270 * 1271 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1272 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for 1273 * writing and releases it before returning. 1274 * - This function takes vol->lcnbmp_lock for writing and releases it 1275 * before returning. 1276 */ 1277 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) 1278 { 1279 LCN lcn; 1280 s64 ll; 1281 unsigned long flags; 1282 struct page *page; 1283 ntfs_inode *mft_ni, *mftbmp_ni; 1284 runlist_element *rl, *rl2 = NULL; 1285 ntfs_attr_search_ctx *ctx = NULL; 1286 MFT_RECORD *mrec; 1287 ATTR_RECORD *a = NULL; 1288 int ret, mp_size; 1289 u32 old_alen = 0; 1290 u8 *b, tb; 1291 struct { 1292 u8 added_cluster:1; 1293 u8 added_run:1; 1294 u8 mp_rebuilt:1; 1295 } status = { 0, 0, 0 }; 1296 1297 ntfs_debug("Extending mft bitmap allocation."); 1298 mft_ni = NTFS_I(vol->mft_ino); 1299 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 1300 /* 1301 * Determine the last lcn of the mft bitmap. The allocated size of the 1302 * mft bitmap cannot be zero so we are ok to do this. 1303 */ 1304 down_write(&mftbmp_ni->runlist.lock); 1305 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1306 ll = mftbmp_ni->allocated_size; 1307 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1308 rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, 1309 (ll - 1) >> vol->cluster_size_bits, NULL); 1310 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { 1311 up_write(&mftbmp_ni->runlist.lock); 1312 ntfs_error(vol->sb, "Failed to determine last allocated " 1313 "cluster of mft bitmap attribute."); 1314 if (!IS_ERR(rl)) 1315 ret = -EIO; 1316 else 1317 ret = PTR_ERR(rl); 1318 return ret; 1319 } 1320 lcn = rl->lcn + rl->length; 1321 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", 1322 (long long)lcn); 1323 /* 1324 * Attempt to get the cluster following the last allocated cluster by 1325 * hand as it may be in the MFT zone so the allocator would not give it 1326 * to us. 1327 */ 1328 ll = lcn >> 3; 1329 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, 1330 ll >> PAGE_CACHE_SHIFT); 1331 if (IS_ERR(page)) { 1332 up_write(&mftbmp_ni->runlist.lock); 1333 ntfs_error(vol->sb, "Failed to read from lcn bitmap."); 1334 return PTR_ERR(page); 1335 } 1336 b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK); 1337 tb = 1 << (lcn & 7ull); 1338 down_write(&vol->lcnbmp_lock); 1339 if (*b != 0xff && !(*b & tb)) { 1340 /* Next cluster is free, allocate it. */ 1341 *b |= tb; 1342 flush_dcache_page(page); 1343 set_page_dirty(page); 1344 up_write(&vol->lcnbmp_lock); 1345 ntfs_unmap_page(page); 1346 /* Update the mft bitmap runlist. */ 1347 rl->length++; 1348 rl[1].vcn++; 1349 status.added_cluster = 1; 1350 ntfs_debug("Appending one cluster to mft bitmap."); 1351 } else { 1352 up_write(&vol->lcnbmp_lock); 1353 ntfs_unmap_page(page); 1354 /* Allocate a cluster from the DATA_ZONE. */ 1355 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, 1356 true); 1357 if (IS_ERR(rl2)) { 1358 up_write(&mftbmp_ni->runlist.lock); 1359 ntfs_error(vol->sb, "Failed to allocate a cluster for " 1360 "the mft bitmap."); 1361 return PTR_ERR(rl2); 1362 } 1363 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); 1364 if (IS_ERR(rl)) { 1365 up_write(&mftbmp_ni->runlist.lock); 1366 ntfs_error(vol->sb, "Failed to merge runlists for mft " 1367 "bitmap."); 1368 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1369 ntfs_error(vol->sb, "Failed to dealocate " 1370 "allocated cluster.%s", es); 1371 NVolSetErrors(vol); 1372 } 1373 ntfs_free(rl2); 1374 return PTR_ERR(rl); 1375 } 1376 mftbmp_ni->runlist.rl = rl; 1377 status.added_run = 1; 1378 ntfs_debug("Adding one run to mft bitmap."); 1379 /* Find the last run in the new runlist. */ 1380 for (; rl[1].length; rl++) 1381 ; 1382 } 1383 /* 1384 * Update the attribute record as well. Note: @rl is the last 1385 * (non-terminator) runlist element of mft bitmap. 1386 */ 1387 mrec = map_mft_record(mft_ni); 1388 if (IS_ERR(mrec)) { 1389 ntfs_error(vol->sb, "Failed to map mft record."); 1390 ret = PTR_ERR(mrec); 1391 goto undo_alloc; 1392 } 1393 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1394 if (unlikely(!ctx)) { 1395 ntfs_error(vol->sb, "Failed to get search context."); 1396 ret = -ENOMEM; 1397 goto undo_alloc; 1398 } 1399 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1400 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1401 0, ctx); 1402 if (unlikely(ret)) { 1403 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1404 "mft bitmap attribute."); 1405 if (ret == -ENOENT) 1406 ret = -EIO; 1407 goto undo_alloc; 1408 } 1409 a = ctx->attr; 1410 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1411 /* Search back for the previous last allocated cluster of mft bitmap. */ 1412 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { 1413 if (ll >= rl2->vcn) 1414 break; 1415 } 1416 BUG_ON(ll < rl2->vcn); 1417 BUG_ON(ll >= rl2->vcn + rl2->length); 1418 /* Get the size for the new mapping pairs array for this extent. */ 1419 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1420 if (unlikely(mp_size <= 0)) { 1421 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1422 "mft bitmap attribute extent."); 1423 ret = mp_size; 1424 if (!ret) 1425 ret = -EIO; 1426 goto undo_alloc; 1427 } 1428 /* Expand the attribute record if necessary. */ 1429 old_alen = le32_to_cpu(a->length); 1430 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1431 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1432 if (unlikely(ret)) { 1433 if (ret != -ENOSPC) { 1434 ntfs_error(vol->sb, "Failed to resize attribute " 1435 "record for mft bitmap attribute."); 1436 goto undo_alloc; 1437 } 1438 // TODO: Deal with this by moving this extent to a new mft 1439 // record or by starting a new extent in a new mft record or by 1440 // moving other attributes out of this mft record. 1441 // Note: It will need to be a special mft record and if none of 1442 // those are available it gets rather complicated... 1443 ntfs_error(vol->sb, "Not enough space in this mft record to " 1444 "accomodate extended mft bitmap attribute " 1445 "extent. Cannot handle this yet."); 1446 ret = -EOPNOTSUPP; 1447 goto undo_alloc; 1448 } 1449 status.mp_rebuilt = 1; 1450 /* Generate the mapping pairs array directly into the attr record. */ 1451 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1452 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1453 mp_size, rl2, ll, -1, NULL); 1454 if (unlikely(ret)) { 1455 ntfs_error(vol->sb, "Failed to build mapping pairs array for " 1456 "mft bitmap attribute."); 1457 goto undo_alloc; 1458 } 1459 /* Update the highest_vcn. */ 1460 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1461 /* 1462 * We now have extended the mft bitmap allocated_size by one cluster. 1463 * Reflect this in the ntfs_inode structure and the attribute record. 1464 */ 1465 if (a->data.non_resident.lowest_vcn) { 1466 /* 1467 * We are not in the first attribute extent, switch to it, but 1468 * first ensure the changes will make it to disk later. 1469 */ 1470 flush_dcache_mft_record_page(ctx->ntfs_ino); 1471 mark_mft_record_dirty(ctx->ntfs_ino); 1472 ntfs_attr_reinit_search_ctx(ctx); 1473 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1474 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 1475 0, ctx); 1476 if (unlikely(ret)) { 1477 ntfs_error(vol->sb, "Failed to find first attribute " 1478 "extent of mft bitmap attribute."); 1479 goto restore_undo_alloc; 1480 } 1481 a = ctx->attr; 1482 } 1483 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1484 mftbmp_ni->allocated_size += vol->cluster_size; 1485 a->data.non_resident.allocated_size = 1486 cpu_to_sle64(mftbmp_ni->allocated_size); 1487 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1488 /* Ensure the changes make it to disk. */ 1489 flush_dcache_mft_record_page(ctx->ntfs_ino); 1490 mark_mft_record_dirty(ctx->ntfs_ino); 1491 ntfs_attr_put_search_ctx(ctx); 1492 unmap_mft_record(mft_ni); 1493 up_write(&mftbmp_ni->runlist.lock); 1494 ntfs_debug("Done."); 1495 return 0; 1496 restore_undo_alloc: 1497 ntfs_attr_reinit_search_ctx(ctx); 1498 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1499 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1500 0, ctx)) { 1501 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1502 "mft bitmap attribute.%s", es); 1503 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1504 mftbmp_ni->allocated_size += vol->cluster_size; 1505 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1506 ntfs_attr_put_search_ctx(ctx); 1507 unmap_mft_record(mft_ni); 1508 up_write(&mftbmp_ni->runlist.lock); 1509 /* 1510 * The only thing that is now wrong is ->allocated_size of the 1511 * base attribute extent which chkdsk should be able to fix. 1512 */ 1513 NVolSetErrors(vol); 1514 return ret; 1515 } 1516 a = ctx->attr; 1517 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); 1518 undo_alloc: 1519 if (status.added_cluster) { 1520 /* Truncate the last run in the runlist by one cluster. */ 1521 rl->length--; 1522 rl[1].vcn--; 1523 } else if (status.added_run) { 1524 lcn = rl->lcn; 1525 /* Remove the last run from the runlist. */ 1526 rl->lcn = rl[1].lcn; 1527 rl->length = 0; 1528 } 1529 /* Deallocate the cluster. */ 1530 down_write(&vol->lcnbmp_lock); 1531 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1532 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); 1533 NVolSetErrors(vol); 1534 } 1535 up_write(&vol->lcnbmp_lock); 1536 if (status.mp_rebuilt) { 1537 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1538 a->data.non_resident.mapping_pairs_offset), 1539 old_alen - le16_to_cpu( 1540 a->data.non_resident.mapping_pairs_offset), 1541 rl2, ll, -1, NULL)) { 1542 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1543 "array.%s", es); 1544 NVolSetErrors(vol); 1545 } 1546 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1547 ntfs_error(vol->sb, "Failed to restore attribute " 1548 "record.%s", es); 1549 NVolSetErrors(vol); 1550 } 1551 flush_dcache_mft_record_page(ctx->ntfs_ino); 1552 mark_mft_record_dirty(ctx->ntfs_ino); 1553 } 1554 if (ctx) 1555 ntfs_attr_put_search_ctx(ctx); 1556 if (!IS_ERR(mrec)) 1557 unmap_mft_record(mft_ni); 1558 up_write(&mftbmp_ni->runlist.lock); 1559 return ret; 1560 } 1561 1562 /** 1563 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data 1564 * @vol: volume on which to extend the mft bitmap attribute 1565 * 1566 * Extend the initialized portion of the mft bitmap attribute on the ntfs 1567 * volume @vol by 8 bytes. 1568 * 1569 * Note: Only changes initialized_size and data_size, i.e. requires that 1570 * allocated_size is big enough to fit the new initialized_size. 1571 * 1572 * Return 0 on success and -error on error. 1573 * 1574 * Locking: Caller must hold vol->mftbmp_lock for writing. 1575 */ 1576 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) 1577 { 1578 s64 old_data_size, old_initialized_size; 1579 unsigned long flags; 1580 struct inode *mftbmp_vi; 1581 ntfs_inode *mft_ni, *mftbmp_ni; 1582 ntfs_attr_search_ctx *ctx; 1583 MFT_RECORD *mrec; 1584 ATTR_RECORD *a; 1585 int ret; 1586 1587 ntfs_debug("Extending mft bitmap initiailized (and data) size."); 1588 mft_ni = NTFS_I(vol->mft_ino); 1589 mftbmp_vi = vol->mftbmp_ino; 1590 mftbmp_ni = NTFS_I(mftbmp_vi); 1591 /* Get the attribute record. */ 1592 mrec = map_mft_record(mft_ni); 1593 if (IS_ERR(mrec)) { 1594 ntfs_error(vol->sb, "Failed to map mft record."); 1595 return PTR_ERR(mrec); 1596 } 1597 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1598 if (unlikely(!ctx)) { 1599 ntfs_error(vol->sb, "Failed to get search context."); 1600 ret = -ENOMEM; 1601 goto unm_err_out; 1602 } 1603 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1604 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); 1605 if (unlikely(ret)) { 1606 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1607 "mft bitmap attribute."); 1608 if (ret == -ENOENT) 1609 ret = -EIO; 1610 goto put_err_out; 1611 } 1612 a = ctx->attr; 1613 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1614 old_data_size = i_size_read(mftbmp_vi); 1615 old_initialized_size = mftbmp_ni->initialized_size; 1616 /* 1617 * We can simply update the initialized_size before filling the space 1618 * with zeroes because the caller is holding the mft bitmap lock for 1619 * writing which ensures that no one else is trying to access the data. 1620 */ 1621 mftbmp_ni->initialized_size += 8; 1622 a->data.non_resident.initialized_size = 1623 cpu_to_sle64(mftbmp_ni->initialized_size); 1624 if (mftbmp_ni->initialized_size > old_data_size) { 1625 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); 1626 a->data.non_resident.data_size = 1627 cpu_to_sle64(mftbmp_ni->initialized_size); 1628 } 1629 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1630 /* Ensure the changes make it to disk. */ 1631 flush_dcache_mft_record_page(ctx->ntfs_ino); 1632 mark_mft_record_dirty(ctx->ntfs_ino); 1633 ntfs_attr_put_search_ctx(ctx); 1634 unmap_mft_record(mft_ni); 1635 /* Initialize the mft bitmap attribute value with zeroes. */ 1636 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); 1637 if (likely(!ret)) { 1638 ntfs_debug("Done. (Wrote eight initialized bytes to mft " 1639 "bitmap."); 1640 return 0; 1641 } 1642 ntfs_error(vol->sb, "Failed to write to mft bitmap."); 1643 /* Try to recover from the error. */ 1644 mrec = map_mft_record(mft_ni); 1645 if (IS_ERR(mrec)) { 1646 ntfs_error(vol->sb, "Failed to map mft record.%s", es); 1647 NVolSetErrors(vol); 1648 return ret; 1649 } 1650 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1651 if (unlikely(!ctx)) { 1652 ntfs_error(vol->sb, "Failed to get search context.%s", es); 1653 NVolSetErrors(vol); 1654 goto unm_err_out; 1655 } 1656 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1657 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { 1658 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1659 "mft bitmap attribute.%s", es); 1660 NVolSetErrors(vol); 1661 put_err_out: 1662 ntfs_attr_put_search_ctx(ctx); 1663 unm_err_out: 1664 unmap_mft_record(mft_ni); 1665 goto err_out; 1666 } 1667 a = ctx->attr; 1668 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1669 mftbmp_ni->initialized_size = old_initialized_size; 1670 a->data.non_resident.initialized_size = 1671 cpu_to_sle64(old_initialized_size); 1672 if (i_size_read(mftbmp_vi) != old_data_size) { 1673 i_size_write(mftbmp_vi, old_data_size); 1674 a->data.non_resident.data_size = cpu_to_sle64(old_data_size); 1675 } 1676 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1677 flush_dcache_mft_record_page(ctx->ntfs_ino); 1678 mark_mft_record_dirty(ctx->ntfs_ino); 1679 ntfs_attr_put_search_ctx(ctx); 1680 unmap_mft_record(mft_ni); 1681 #ifdef DEBUG 1682 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1683 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " 1684 "data_size 0x%llx, initialized_size 0x%llx.", 1685 (long long)mftbmp_ni->allocated_size, 1686 (long long)i_size_read(mftbmp_vi), 1687 (long long)mftbmp_ni->initialized_size); 1688 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1689 #endif /* DEBUG */ 1690 err_out: 1691 return ret; 1692 } 1693 1694 /** 1695 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute 1696 * @vol: volume on which to extend the mft data attribute 1697 * 1698 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records 1699 * worth of clusters or if not enough space for this by one mft record worth 1700 * of clusters. 1701 * 1702 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1703 * data_size. 1704 * 1705 * Return 0 on success and -errno on error. 1706 * 1707 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1708 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for 1709 * writing and releases it before returning. 1710 * - This function calls functions which take vol->lcnbmp_lock for 1711 * writing and release it before returning. 1712 */ 1713 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) 1714 { 1715 LCN lcn; 1716 VCN old_last_vcn; 1717 s64 min_nr, nr, ll; 1718 unsigned long flags; 1719 ntfs_inode *mft_ni; 1720 runlist_element *rl, *rl2; 1721 ntfs_attr_search_ctx *ctx = NULL; 1722 MFT_RECORD *mrec; 1723 ATTR_RECORD *a = NULL; 1724 int ret, mp_size; 1725 u32 old_alen = 0; 1726 bool mp_rebuilt = false; 1727 1728 ntfs_debug("Extending mft data allocation."); 1729 mft_ni = NTFS_I(vol->mft_ino); 1730 /* 1731 * Determine the preferred allocation location, i.e. the last lcn of 1732 * the mft data attribute. The allocated size of the mft data 1733 * attribute cannot be zero so we are ok to do this. 1734 */ 1735 down_write(&mft_ni->runlist.lock); 1736 read_lock_irqsave(&mft_ni->size_lock, flags); 1737 ll = mft_ni->allocated_size; 1738 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1739 rl = ntfs_attr_find_vcn_nolock(mft_ni, 1740 (ll - 1) >> vol->cluster_size_bits, NULL); 1741 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { 1742 up_write(&mft_ni->runlist.lock); 1743 ntfs_error(vol->sb, "Failed to determine last allocated " 1744 "cluster of mft data attribute."); 1745 if (!IS_ERR(rl)) 1746 ret = -EIO; 1747 else 1748 ret = PTR_ERR(rl); 1749 return ret; 1750 } 1751 lcn = rl->lcn + rl->length; 1752 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); 1753 /* Minimum allocation is one mft record worth of clusters. */ 1754 min_nr = vol->mft_record_size >> vol->cluster_size_bits; 1755 if (!min_nr) 1756 min_nr = 1; 1757 /* Want to allocate 16 mft records worth of clusters. */ 1758 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; 1759 if (!nr) 1760 nr = min_nr; 1761 /* Ensure we do not go above 2^32-1 mft records. */ 1762 read_lock_irqsave(&mft_ni->size_lock, flags); 1763 ll = mft_ni->allocated_size; 1764 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1765 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1766 vol->mft_record_size_bits >= (1ll << 32))) { 1767 nr = min_nr; 1768 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1769 vol->mft_record_size_bits >= (1ll << 32))) { 1770 ntfs_warning(vol->sb, "Cannot allocate mft record " 1771 "because the maximum number of inodes " 1772 "(2^32) has already been reached."); 1773 up_write(&mft_ni->runlist.lock); 1774 return -ENOSPC; 1775 } 1776 } 1777 ntfs_debug("Trying mft data allocation with %s cluster count %lli.", 1778 nr > min_nr ? "default" : "minimal", (long long)nr); 1779 old_last_vcn = rl[1].vcn; 1780 do { 1781 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, 1782 true); 1783 if (likely(!IS_ERR(rl2))) 1784 break; 1785 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { 1786 ntfs_error(vol->sb, "Failed to allocate the minimal " 1787 "number of clusters (%lli) for the " 1788 "mft data attribute.", (long long)nr); 1789 up_write(&mft_ni->runlist.lock); 1790 return PTR_ERR(rl2); 1791 } 1792 /* 1793 * There is not enough space to do the allocation, but there 1794 * might be enough space to do a minimal allocation so try that 1795 * before failing. 1796 */ 1797 nr = min_nr; 1798 ntfs_debug("Retrying mft data allocation with minimal cluster " 1799 "count %lli.", (long long)nr); 1800 } while (1); 1801 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); 1802 if (IS_ERR(rl)) { 1803 up_write(&mft_ni->runlist.lock); 1804 ntfs_error(vol->sb, "Failed to merge runlists for mft data " 1805 "attribute."); 1806 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1807 ntfs_error(vol->sb, "Failed to dealocate clusters " 1808 "from the mft data attribute.%s", es); 1809 NVolSetErrors(vol); 1810 } 1811 ntfs_free(rl2); 1812 return PTR_ERR(rl); 1813 } 1814 mft_ni->runlist.rl = rl; 1815 ntfs_debug("Allocated %lli clusters.", (long long)nr); 1816 /* Find the last run in the new runlist. */ 1817 for (; rl[1].length; rl++) 1818 ; 1819 /* Update the attribute record as well. */ 1820 mrec = map_mft_record(mft_ni); 1821 if (IS_ERR(mrec)) { 1822 ntfs_error(vol->sb, "Failed to map mft record."); 1823 ret = PTR_ERR(mrec); 1824 goto undo_alloc; 1825 } 1826 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1827 if (unlikely(!ctx)) { 1828 ntfs_error(vol->sb, "Failed to get search context."); 1829 ret = -ENOMEM; 1830 goto undo_alloc; 1831 } 1832 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1833 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); 1834 if (unlikely(ret)) { 1835 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1836 "mft data attribute."); 1837 if (ret == -ENOENT) 1838 ret = -EIO; 1839 goto undo_alloc; 1840 } 1841 a = ctx->attr; 1842 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1843 /* Search back for the previous last allocated cluster of mft bitmap. */ 1844 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { 1845 if (ll >= rl2->vcn) 1846 break; 1847 } 1848 BUG_ON(ll < rl2->vcn); 1849 BUG_ON(ll >= rl2->vcn + rl2->length); 1850 /* Get the size for the new mapping pairs array for this extent. */ 1851 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1852 if (unlikely(mp_size <= 0)) { 1853 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1854 "mft data attribute extent."); 1855 ret = mp_size; 1856 if (!ret) 1857 ret = -EIO; 1858 goto undo_alloc; 1859 } 1860 /* Expand the attribute record if necessary. */ 1861 old_alen = le32_to_cpu(a->length); 1862 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1863 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1864 if (unlikely(ret)) { 1865 if (ret != -ENOSPC) { 1866 ntfs_error(vol->sb, "Failed to resize attribute " 1867 "record for mft data attribute."); 1868 goto undo_alloc; 1869 } 1870 // TODO: Deal with this by moving this extent to a new mft 1871 // record or by starting a new extent in a new mft record or by 1872 // moving other attributes out of this mft record. 1873 // Note: Use the special reserved mft records and ensure that 1874 // this extent is not required to find the mft record in 1875 // question. If no free special records left we would need to 1876 // move an existing record away, insert ours in its place, and 1877 // then place the moved record into the newly allocated space 1878 // and we would then need to update all references to this mft 1879 // record appropriately. This is rather complicated... 1880 ntfs_error(vol->sb, "Not enough space in this mft record to " 1881 "accomodate extended mft data attribute " 1882 "extent. Cannot handle this yet."); 1883 ret = -EOPNOTSUPP; 1884 goto undo_alloc; 1885 } 1886 mp_rebuilt = true; 1887 /* Generate the mapping pairs array directly into the attr record. */ 1888 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1889 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1890 mp_size, rl2, ll, -1, NULL); 1891 if (unlikely(ret)) { 1892 ntfs_error(vol->sb, "Failed to build mapping pairs array of " 1893 "mft data attribute."); 1894 goto undo_alloc; 1895 } 1896 /* Update the highest_vcn. */ 1897 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1898 /* 1899 * We now have extended the mft data allocated_size by nr clusters. 1900 * Reflect this in the ntfs_inode structure and the attribute record. 1901 * @rl is the last (non-terminator) runlist element of mft data 1902 * attribute. 1903 */ 1904 if (a->data.non_resident.lowest_vcn) { 1905 /* 1906 * We are not in the first attribute extent, switch to it, but 1907 * first ensure the changes will make it to disk later. 1908 */ 1909 flush_dcache_mft_record_page(ctx->ntfs_ino); 1910 mark_mft_record_dirty(ctx->ntfs_ino); 1911 ntfs_attr_reinit_search_ctx(ctx); 1912 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, 1913 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, 1914 ctx); 1915 if (unlikely(ret)) { 1916 ntfs_error(vol->sb, "Failed to find first attribute " 1917 "extent of mft data attribute."); 1918 goto restore_undo_alloc; 1919 } 1920 a = ctx->attr; 1921 } 1922 write_lock_irqsave(&mft_ni->size_lock, flags); 1923 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1924 a->data.non_resident.allocated_size = 1925 cpu_to_sle64(mft_ni->allocated_size); 1926 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1927 /* Ensure the changes make it to disk. */ 1928 flush_dcache_mft_record_page(ctx->ntfs_ino); 1929 mark_mft_record_dirty(ctx->ntfs_ino); 1930 ntfs_attr_put_search_ctx(ctx); 1931 unmap_mft_record(mft_ni); 1932 up_write(&mft_ni->runlist.lock); 1933 ntfs_debug("Done."); 1934 return 0; 1935 restore_undo_alloc: 1936 ntfs_attr_reinit_search_ctx(ctx); 1937 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1938 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { 1939 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1940 "mft data attribute.%s", es); 1941 write_lock_irqsave(&mft_ni->size_lock, flags); 1942 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1943 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1944 ntfs_attr_put_search_ctx(ctx); 1945 unmap_mft_record(mft_ni); 1946 up_write(&mft_ni->runlist.lock); 1947 /* 1948 * The only thing that is now wrong is ->allocated_size of the 1949 * base attribute extent which chkdsk should be able to fix. 1950 */ 1951 NVolSetErrors(vol); 1952 return ret; 1953 } 1954 ctx->attr->data.non_resident.highest_vcn = 1955 cpu_to_sle64(old_last_vcn - 1); 1956 undo_alloc: 1957 if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { 1958 ntfs_error(vol->sb, "Failed to free clusters from mft data " 1959 "attribute.%s", es); 1960 NVolSetErrors(vol); 1961 } 1962 a = ctx->attr; 1963 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { 1964 ntfs_error(vol->sb, "Failed to truncate mft data attribute " 1965 "runlist.%s", es); 1966 NVolSetErrors(vol); 1967 } 1968 if (mp_rebuilt && !IS_ERR(ctx->mrec)) { 1969 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1970 a->data.non_resident.mapping_pairs_offset), 1971 old_alen - le16_to_cpu( 1972 a->data.non_resident.mapping_pairs_offset), 1973 rl2, ll, -1, NULL)) { 1974 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1975 "array.%s", es); 1976 NVolSetErrors(vol); 1977 } 1978 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1979 ntfs_error(vol->sb, "Failed to restore attribute " 1980 "record.%s", es); 1981 NVolSetErrors(vol); 1982 } 1983 flush_dcache_mft_record_page(ctx->ntfs_ino); 1984 mark_mft_record_dirty(ctx->ntfs_ino); 1985 } else if (IS_ERR(ctx->mrec)) { 1986 ntfs_error(vol->sb, "Failed to restore attribute search " 1987 "context.%s", es); 1988 NVolSetErrors(vol); 1989 } 1990 if (ctx) 1991 ntfs_attr_put_search_ctx(ctx); 1992 if (!IS_ERR(mrec)) 1993 unmap_mft_record(mft_ni); 1994 up_write(&mft_ni->runlist.lock); 1995 return ret; 1996 } 1997 1998 /** 1999 * ntfs_mft_record_layout - layout an mft record into a memory buffer 2000 * @vol: volume to which the mft record will belong 2001 * @mft_no: mft reference specifying the mft record number 2002 * @m: destination buffer of size >= @vol->mft_record_size bytes 2003 * 2004 * Layout an empty, unused mft record with the mft record number @mft_no into 2005 * the buffer @m. The volume @vol is needed because the mft record structure 2006 * was modified in NTFS 3.1 so we need to know which volume version this mft 2007 * record will be used on. 2008 * 2009 * Return 0 on success and -errno on error. 2010 */ 2011 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, 2012 MFT_RECORD *m) 2013 { 2014 ATTR_RECORD *a; 2015 2016 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2017 if (mft_no >= (1ll << 32)) { 2018 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " 2019 "maximum of 2^32.", (long long)mft_no); 2020 return -ERANGE; 2021 } 2022 /* Start by clearing the whole mft record to gives us a clean slate. */ 2023 memset(m, 0, vol->mft_record_size); 2024 /* Aligned to 2-byte boundary. */ 2025 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) 2026 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); 2027 else { 2028 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); 2029 /* 2030 * Set the NTFS 3.1+ specific fields while we know that the 2031 * volume version is 3.1+. 2032 */ 2033 m->reserved = 0; 2034 m->mft_record_number = cpu_to_le32((u32)mft_no); 2035 } 2036 m->magic = magic_FILE; 2037 if (vol->mft_record_size >= NTFS_BLOCK_SIZE) 2038 m->usa_count = cpu_to_le16(vol->mft_record_size / 2039 NTFS_BLOCK_SIZE + 1); 2040 else { 2041 m->usa_count = cpu_to_le16(1); 2042 ntfs_warning(vol->sb, "Sector size is bigger than mft record " 2043 "size. Setting usa_count to 1. If chkdsk " 2044 "reports this as corruption, please email " 2045 "linux-ntfs-dev@lists.sourceforge.net stating " 2046 "that you saw this message and that the " 2047 "modified filesystem created was corrupt. " 2048 "Thank you."); 2049 } 2050 /* Set the update sequence number to 1. */ 2051 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); 2052 m->lsn = 0; 2053 m->sequence_number = cpu_to_le16(1); 2054 m->link_count = 0; 2055 /* 2056 * Place the attributes straight after the update sequence array, 2057 * aligned to 8-byte boundary. 2058 */ 2059 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + 2060 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); 2061 m->flags = 0; 2062 /* 2063 * Using attrs_offset plus eight bytes (for the termination attribute). 2064 * attrs_offset is already aligned to 8-byte boundary, so no need to 2065 * align again. 2066 */ 2067 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); 2068 m->bytes_allocated = cpu_to_le32(vol->mft_record_size); 2069 m->base_mft_record = 0; 2070 m->next_attr_instance = 0; 2071 /* Add the termination attribute. */ 2072 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); 2073 a->type = AT_END; 2074 a->length = 0; 2075 ntfs_debug("Done."); 2076 return 0; 2077 } 2078 2079 /** 2080 * ntfs_mft_record_format - format an mft record on an ntfs volume 2081 * @vol: volume on which to format the mft record 2082 * @mft_no: mft record number to format 2083 * 2084 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused 2085 * mft record into the appropriate place of the mft data attribute. This is 2086 * used when extending the mft data attribute. 2087 * 2088 * Return 0 on success and -errno on error. 2089 */ 2090 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) 2091 { 2092 loff_t i_size; 2093 struct inode *mft_vi = vol->mft_ino; 2094 struct page *page; 2095 MFT_RECORD *m; 2096 pgoff_t index, end_index; 2097 unsigned int ofs; 2098 int err; 2099 2100 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2101 /* 2102 * The index into the page cache and the offset within the page cache 2103 * page of the wanted mft record. 2104 */ 2105 index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT; 2106 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; 2107 /* The maximum valid index into the page cache for $MFT's data. */ 2108 i_size = i_size_read(mft_vi); 2109 end_index = i_size >> PAGE_CACHE_SHIFT; 2110 if (unlikely(index >= end_index)) { 2111 if (unlikely(index > end_index || ofs + vol->mft_record_size >= 2112 (i_size & ~PAGE_CACHE_MASK))) { 2113 ntfs_error(vol->sb, "Tried to format non-existing mft " 2114 "record 0x%llx.", (long long)mft_no); 2115 return -ENOENT; 2116 } 2117 } 2118 /* Read, map, and pin the page containing the mft record. */ 2119 page = ntfs_map_page(mft_vi->i_mapping, index); 2120 if (IS_ERR(page)) { 2121 ntfs_error(vol->sb, "Failed to map page containing mft record " 2122 "to format 0x%llx.", (long long)mft_no); 2123 return PTR_ERR(page); 2124 } 2125 lock_page(page); 2126 BUG_ON(!PageUptodate(page)); 2127 ClearPageUptodate(page); 2128 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2129 err = ntfs_mft_record_layout(vol, mft_no, m); 2130 if (unlikely(err)) { 2131 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", 2132 (long long)mft_no); 2133 SetPageUptodate(page); 2134 unlock_page(page); 2135 ntfs_unmap_page(page); 2136 return err; 2137 } 2138 flush_dcache_page(page); 2139 SetPageUptodate(page); 2140 unlock_page(page); 2141 /* 2142 * Make sure the mft record is written out to disk. We could use 2143 * ilookup5() to check if an inode is in icache and so on but this is 2144 * unnecessary as ntfs_writepage() will write the dirty record anyway. 2145 */ 2146 mark_ntfs_record_dirty(page, ofs); 2147 ntfs_unmap_page(page); 2148 ntfs_debug("Done."); 2149 return 0; 2150 } 2151 2152 /** 2153 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume 2154 * @vol: [IN] volume on which to allocate the mft record 2155 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0 2156 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL 2157 * @mrec: [OUT] on successful return this is the mapped mft record 2158 * 2159 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. 2160 * 2161 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or 2162 * direvctory inode, and allocate it at the default allocator position. In 2163 * this case @mode is the file mode as given to us by the caller. We in 2164 * particular use @mode to distinguish whether a file or a directory is being 2165 * created (S_IFDIR(mode) and S_IFREG(mode), respectively). 2166 * 2167 * If @base_ni is not NULL make the allocated mft record an extent record, 2168 * allocate it starting at the mft record after the base mft record and attach 2169 * the allocated and opened ntfs inode to the base inode @base_ni. In this 2170 * case @mode must be 0 as it is meaningless for extent inodes. 2171 * 2172 * You need to check the return value with IS_ERR(). If false, the function 2173 * was successful and the return value is the now opened ntfs inode of the 2174 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned, 2175 * and locked mft record. If IS_ERR() is true, the function failed and the 2176 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in 2177 * this case. 2178 * 2179 * Allocation strategy: 2180 * 2181 * To find a free mft record, we scan the mft bitmap for a zero bit. To 2182 * optimize this we start scanning at the place specified by @base_ni or if 2183 * @base_ni is NULL we start where we last stopped and we perform wrap around 2184 * when we reach the end. Note, we do not try to allocate mft records below 2185 * number 24 because numbers 0 to 15 are the defined system files anyway and 16 2186 * to 24 are special in that they are used for storing extension mft records 2187 * for the $DATA attribute of $MFT. This is required to avoid the possibility 2188 * of creating a runlist with a circular dependency which once written to disk 2189 * can never be read in again. Windows will only use records 16 to 24 for 2190 * normal files if the volume is completely out of space. We never use them 2191 * which means that when the volume is really out of space we cannot create any 2192 * more files while Windows can still create up to 8 small files. We can start 2193 * doing this at some later time, it does not matter much for now. 2194 * 2195 * When scanning the mft bitmap, we only search up to the last allocated mft 2196 * record. If there are no free records left in the range 24 to number of 2197 * allocated mft records, then we extend the $MFT/$DATA attribute in order to 2198 * create free mft records. We extend the allocated size of $MFT/$DATA by 16 2199 * records at a time or one cluster, if cluster size is above 16kiB. If there 2200 * is not sufficient space to do this, we try to extend by a single mft record 2201 * or one cluster, if cluster size is above the mft record size. 2202 * 2203 * No matter how many mft records we allocate, we initialize only the first 2204 * allocated mft record, incrementing mft data size and initialized size 2205 * accordingly, open an ntfs_inode for it and return it to the caller, unless 2206 * there are less than 24 mft records, in which case we allocate and initialize 2207 * mft records until we reach record 24 which we consider as the first free mft 2208 * record for use by normal files. 2209 * 2210 * If during any stage we overflow the initialized data in the mft bitmap, we 2211 * extend the initialized size (and data size) by 8 bytes, allocating another 2212 * cluster if required. The bitmap data size has to be at least equal to the 2213 * number of mft records in the mft, but it can be bigger, in which case the 2214 * superflous bits are padded with zeroes. 2215 * 2216 * Thus, when we return successfully (IS_ERR() is false), we will have: 2217 * - initialized / extended the mft bitmap if necessary, 2218 * - initialized / extended the mft data if necessary, 2219 * - set the bit corresponding to the mft record being allocated in the 2220 * mft bitmap, 2221 * - opened an ntfs_inode for the allocated mft record, and we will have 2222 * - returned the ntfs_inode as well as the allocated mapped, pinned, and 2223 * locked mft record. 2224 * 2225 * On error, the volume will be left in a consistent state and no record will 2226 * be allocated. If rolling back a partial operation fails, we may leave some 2227 * inconsistent metadata in which case we set NVolErrors() so the volume is 2228 * left dirty when unmounted. 2229 * 2230 * Note, this function cannot make use of most of the normal functions, like 2231 * for example for attribute resizing, etc, because when the run list overflows 2232 * the base mft record and an attribute list is used, it is very important that 2233 * the extension mft records used to store the $DATA attribute of $MFT can be 2234 * reached without having to read the information contained inside them, as 2235 * this would make it impossible to find them in the first place after the 2236 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this 2237 * rule because the bitmap is not essential for finding the mft records, but on 2238 * the other hand, handling the bitmap in this special way would make life 2239 * easier because otherwise there might be circular invocations of functions 2240 * when reading the bitmap. 2241 */ 2242 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, 2243 ntfs_inode *base_ni, MFT_RECORD **mrec) 2244 { 2245 s64 ll, bit, old_data_initialized, old_data_size; 2246 unsigned long flags; 2247 struct inode *vi; 2248 struct page *page; 2249 ntfs_inode *mft_ni, *mftbmp_ni, *ni; 2250 ntfs_attr_search_ctx *ctx; 2251 MFT_RECORD *m; 2252 ATTR_RECORD *a; 2253 pgoff_t index; 2254 unsigned int ofs; 2255 int err; 2256 le16 seq_no, usn; 2257 bool record_formatted = false; 2258 2259 if (base_ni) { 2260 ntfs_debug("Entering (allocating an extent mft record for " 2261 "base mft record 0x%llx).", 2262 (long long)base_ni->mft_no); 2263 /* @mode and @base_ni are mutually exclusive. */ 2264 BUG_ON(mode); 2265 } else 2266 ntfs_debug("Entering (allocating a base mft record)."); 2267 if (mode) { 2268 /* @mode and @base_ni are mutually exclusive. */ 2269 BUG_ON(base_ni); 2270 /* We only support creation of normal files and directories. */ 2271 if (!S_ISREG(mode) && !S_ISDIR(mode)) 2272 return ERR_PTR(-EOPNOTSUPP); 2273 } 2274 BUG_ON(!mrec); 2275 mft_ni = NTFS_I(vol->mft_ino); 2276 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 2277 down_write(&vol->mftbmp_lock); 2278 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); 2279 if (bit >= 0) { 2280 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", 2281 (long long)bit); 2282 goto have_alloc_rec; 2283 } 2284 if (bit != -ENOSPC) { 2285 up_write(&vol->mftbmp_lock); 2286 return ERR_PTR(bit); 2287 } 2288 /* 2289 * No free mft records left. If the mft bitmap already covers more 2290 * than the currently used mft records, the next records are all free, 2291 * so we can simply allocate the first unused mft record. 2292 * Note: We also have to make sure that the mft bitmap at least covers 2293 * the first 24 mft records as they are special and whilst they may not 2294 * be in use, we do not allocate from them. 2295 */ 2296 read_lock_irqsave(&mft_ni->size_lock, flags); 2297 ll = mft_ni->initialized_size >> vol->mft_record_size_bits; 2298 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2299 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2300 old_data_initialized = mftbmp_ni->initialized_size; 2301 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2302 if (old_data_initialized << 3 > ll && old_data_initialized > 3) { 2303 bit = ll; 2304 if (bit < 24) 2305 bit = 24; 2306 if (unlikely(bit >= (1ll << 32))) 2307 goto max_err_out; 2308 ntfs_debug("Found free record (#2), bit 0x%llx.", 2309 (long long)bit); 2310 goto found_free_rec; 2311 } 2312 /* 2313 * The mft bitmap needs to be expanded until it covers the first unused 2314 * mft record that we can allocate. 2315 * Note: The smallest mft record we allocate is mft record 24. 2316 */ 2317 bit = old_data_initialized << 3; 2318 if (unlikely(bit >= (1ll << 32))) 2319 goto max_err_out; 2320 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2321 old_data_size = mftbmp_ni->allocated_size; 2322 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " 2323 "data_size 0x%llx, initialized_size 0x%llx.", 2324 (long long)old_data_size, 2325 (long long)i_size_read(vol->mftbmp_ino), 2326 (long long)old_data_initialized); 2327 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2328 if (old_data_initialized + 8 > old_data_size) { 2329 /* Need to extend bitmap by one more cluster. */ 2330 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); 2331 err = ntfs_mft_bitmap_extend_allocation_nolock(vol); 2332 if (unlikely(err)) { 2333 up_write(&vol->mftbmp_lock); 2334 goto err_out; 2335 } 2336 #ifdef DEBUG 2337 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2338 ntfs_debug("Status of mftbmp after allocation extension: " 2339 "allocated_size 0x%llx, data_size 0x%llx, " 2340 "initialized_size 0x%llx.", 2341 (long long)mftbmp_ni->allocated_size, 2342 (long long)i_size_read(vol->mftbmp_ino), 2343 (long long)mftbmp_ni->initialized_size); 2344 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2345 #endif /* DEBUG */ 2346 } 2347 /* 2348 * We now have sufficient allocated space, extend the initialized_size 2349 * as well as the data_size if necessary and fill the new space with 2350 * zeroes. 2351 */ 2352 err = ntfs_mft_bitmap_extend_initialized_nolock(vol); 2353 if (unlikely(err)) { 2354 up_write(&vol->mftbmp_lock); 2355 goto err_out; 2356 } 2357 #ifdef DEBUG 2358 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2359 ntfs_debug("Status of mftbmp after initialized extention: " 2360 "allocated_size 0x%llx, data_size 0x%llx, " 2361 "initialized_size 0x%llx.", 2362 (long long)mftbmp_ni->allocated_size, 2363 (long long)i_size_read(vol->mftbmp_ino), 2364 (long long)mftbmp_ni->initialized_size); 2365 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2366 #endif /* DEBUG */ 2367 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); 2368 found_free_rec: 2369 /* @bit is the found free mft record, allocate it in the mft bitmap. */ 2370 ntfs_debug("At found_free_rec."); 2371 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); 2372 if (unlikely(err)) { 2373 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); 2374 up_write(&vol->mftbmp_lock); 2375 goto err_out; 2376 } 2377 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); 2378 have_alloc_rec: 2379 /* 2380 * The mft bitmap is now uptodate. Deal with mft data attribute now. 2381 * Note, we keep hold of the mft bitmap lock for writing until all 2382 * modifications to the mft data attribute are complete, too, as they 2383 * will impact decisions for mft bitmap and mft record allocation done 2384 * by a parallel allocation and if the lock is not maintained a 2385 * parallel allocation could allocate the same mft record as this one. 2386 */ 2387 ll = (bit + 1) << vol->mft_record_size_bits; 2388 read_lock_irqsave(&mft_ni->size_lock, flags); 2389 old_data_initialized = mft_ni->initialized_size; 2390 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2391 if (ll <= old_data_initialized) { 2392 ntfs_debug("Allocated mft record already initialized."); 2393 goto mft_rec_already_initialized; 2394 } 2395 ntfs_debug("Initializing allocated mft record."); 2396 /* 2397 * The mft record is outside the initialized data. Extend the mft data 2398 * attribute until it covers the allocated record. The loop is only 2399 * actually traversed more than once when a freshly formatted volume is 2400 * first written to so it optimizes away nicely in the common case. 2401 */ 2402 read_lock_irqsave(&mft_ni->size_lock, flags); 2403 ntfs_debug("Status of mft data before extension: " 2404 "allocated_size 0x%llx, data_size 0x%llx, " 2405 "initialized_size 0x%llx.", 2406 (long long)mft_ni->allocated_size, 2407 (long long)i_size_read(vol->mft_ino), 2408 (long long)mft_ni->initialized_size); 2409 while (ll > mft_ni->allocated_size) { 2410 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2411 err = ntfs_mft_data_extend_allocation_nolock(vol); 2412 if (unlikely(err)) { 2413 ntfs_error(vol->sb, "Failed to extend mft data " 2414 "allocation."); 2415 goto undo_mftbmp_alloc_nolock; 2416 } 2417 read_lock_irqsave(&mft_ni->size_lock, flags); 2418 ntfs_debug("Status of mft data after allocation extension: " 2419 "allocated_size 0x%llx, data_size 0x%llx, " 2420 "initialized_size 0x%llx.", 2421 (long long)mft_ni->allocated_size, 2422 (long long)i_size_read(vol->mft_ino), 2423 (long long)mft_ni->initialized_size); 2424 } 2425 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2426 /* 2427 * Extend mft data initialized size (and data size of course) to reach 2428 * the allocated mft record, formatting the mft records allong the way. 2429 * Note: We only modify the ntfs_inode structure as that is all that is 2430 * needed by ntfs_mft_record_format(). We will update the attribute 2431 * record itself in one fell swoop later on. 2432 */ 2433 write_lock_irqsave(&mft_ni->size_lock, flags); 2434 old_data_initialized = mft_ni->initialized_size; 2435 old_data_size = vol->mft_ino->i_size; 2436 while (ll > mft_ni->initialized_size) { 2437 s64 new_initialized_size, mft_no; 2438 2439 new_initialized_size = mft_ni->initialized_size + 2440 vol->mft_record_size; 2441 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; 2442 if (new_initialized_size > i_size_read(vol->mft_ino)) 2443 i_size_write(vol->mft_ino, new_initialized_size); 2444 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2445 ntfs_debug("Initializing mft record 0x%llx.", 2446 (long long)mft_no); 2447 err = ntfs_mft_record_format(vol, mft_no); 2448 if (unlikely(err)) { 2449 ntfs_error(vol->sb, "Failed to format mft record."); 2450 goto undo_data_init; 2451 } 2452 write_lock_irqsave(&mft_ni->size_lock, flags); 2453 mft_ni->initialized_size = new_initialized_size; 2454 } 2455 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2456 record_formatted = true; 2457 /* Update the mft data attribute record to reflect the new sizes. */ 2458 m = map_mft_record(mft_ni); 2459 if (IS_ERR(m)) { 2460 ntfs_error(vol->sb, "Failed to map mft record."); 2461 err = PTR_ERR(m); 2462 goto undo_data_init; 2463 } 2464 ctx = ntfs_attr_get_search_ctx(mft_ni, m); 2465 if (unlikely(!ctx)) { 2466 ntfs_error(vol->sb, "Failed to get search context."); 2467 err = -ENOMEM; 2468 unmap_mft_record(mft_ni); 2469 goto undo_data_init; 2470 } 2471 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 2472 CASE_SENSITIVE, 0, NULL, 0, ctx); 2473 if (unlikely(err)) { 2474 ntfs_error(vol->sb, "Failed to find first attribute extent of " 2475 "mft data attribute."); 2476 ntfs_attr_put_search_ctx(ctx); 2477 unmap_mft_record(mft_ni); 2478 goto undo_data_init; 2479 } 2480 a = ctx->attr; 2481 read_lock_irqsave(&mft_ni->size_lock, flags); 2482 a->data.non_resident.initialized_size = 2483 cpu_to_sle64(mft_ni->initialized_size); 2484 a->data.non_resident.data_size = 2485 cpu_to_sle64(i_size_read(vol->mft_ino)); 2486 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2487 /* Ensure the changes make it to disk. */ 2488 flush_dcache_mft_record_page(ctx->ntfs_ino); 2489 mark_mft_record_dirty(ctx->ntfs_ino); 2490 ntfs_attr_put_search_ctx(ctx); 2491 unmap_mft_record(mft_ni); 2492 read_lock_irqsave(&mft_ni->size_lock, flags); 2493 ntfs_debug("Status of mft data after mft record initialization: " 2494 "allocated_size 0x%llx, data_size 0x%llx, " 2495 "initialized_size 0x%llx.", 2496 (long long)mft_ni->allocated_size, 2497 (long long)i_size_read(vol->mft_ino), 2498 (long long)mft_ni->initialized_size); 2499 BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); 2500 BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); 2501 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2502 mft_rec_already_initialized: 2503 /* 2504 * We can finally drop the mft bitmap lock as the mft data attribute 2505 * has been fully updated. The only disparity left is that the 2506 * allocated mft record still needs to be marked as in use to match the 2507 * set bit in the mft bitmap but this is actually not a problem since 2508 * this mft record is not referenced from anywhere yet and the fact 2509 * that it is allocated in the mft bitmap means that no-one will try to 2510 * allocate it either. 2511 */ 2512 up_write(&vol->mftbmp_lock); 2513 /* 2514 * We now have allocated and initialized the mft record. Calculate the 2515 * index of and the offset within the page cache page the record is in. 2516 */ 2517 index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT; 2518 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; 2519 /* Read, map, and pin the page containing the mft record. */ 2520 page = ntfs_map_page(vol->mft_ino->i_mapping, index); 2521 if (IS_ERR(page)) { 2522 ntfs_error(vol->sb, "Failed to map page containing allocated " 2523 "mft record 0x%llx.", (long long)bit); 2524 err = PTR_ERR(page); 2525 goto undo_mftbmp_alloc; 2526 } 2527 lock_page(page); 2528 BUG_ON(!PageUptodate(page)); 2529 ClearPageUptodate(page); 2530 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2531 /* If we just formatted the mft record no need to do it again. */ 2532 if (!record_formatted) { 2533 /* Sanity check that the mft record is really not in use. */ 2534 if (ntfs_is_file_record(m->magic) && 2535 (m->flags & MFT_RECORD_IN_USE)) { 2536 ntfs_error(vol->sb, "Mft record 0x%llx was marked " 2537 "free in mft bitmap but is marked " 2538 "used itself. Corrupt filesystem. " 2539 "Unmount and run chkdsk.", 2540 (long long)bit); 2541 err = -EIO; 2542 SetPageUptodate(page); 2543 unlock_page(page); 2544 ntfs_unmap_page(page); 2545 NVolSetErrors(vol); 2546 goto undo_mftbmp_alloc; 2547 } 2548 /* 2549 * We need to (re-)format the mft record, preserving the 2550 * sequence number if it is not zero as well as the update 2551 * sequence number if it is not zero or -1 (0xffff). This 2552 * means we do not need to care whether or not something went 2553 * wrong with the previous mft record. 2554 */ 2555 seq_no = m->sequence_number; 2556 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); 2557 err = ntfs_mft_record_layout(vol, bit, m); 2558 if (unlikely(err)) { 2559 ntfs_error(vol->sb, "Failed to layout allocated mft " 2560 "record 0x%llx.", (long long)bit); 2561 SetPageUptodate(page); 2562 unlock_page(page); 2563 ntfs_unmap_page(page); 2564 goto undo_mftbmp_alloc; 2565 } 2566 if (seq_no) 2567 m->sequence_number = seq_no; 2568 if (usn && le16_to_cpu(usn) != 0xffff) 2569 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; 2570 } 2571 /* Set the mft record itself in use. */ 2572 m->flags |= MFT_RECORD_IN_USE; 2573 if (S_ISDIR(mode)) 2574 m->flags |= MFT_RECORD_IS_DIRECTORY; 2575 flush_dcache_page(page); 2576 SetPageUptodate(page); 2577 if (base_ni) { 2578 /* 2579 * Setup the base mft record in the extent mft record. This 2580 * completes initialization of the allocated extent mft record 2581 * and we can simply use it with map_extent_mft_record(). 2582 */ 2583 m->base_mft_record = MK_LE_MREF(base_ni->mft_no, 2584 base_ni->seq_no); 2585 /* 2586 * Allocate an extent inode structure for the new mft record, 2587 * attach it to the base inode @base_ni and map, pin, and lock 2588 * its, i.e. the allocated, mft record. 2589 */ 2590 m = map_extent_mft_record(base_ni, bit, &ni); 2591 if (IS_ERR(m)) { 2592 ntfs_error(vol->sb, "Failed to map allocated extent " 2593 "mft record 0x%llx.", (long long)bit); 2594 err = PTR_ERR(m); 2595 /* Set the mft record itself not in use. */ 2596 m->flags &= cpu_to_le16( 2597 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2598 flush_dcache_page(page); 2599 /* Make sure the mft record is written out to disk. */ 2600 mark_ntfs_record_dirty(page, ofs); 2601 unlock_page(page); 2602 ntfs_unmap_page(page); 2603 goto undo_mftbmp_alloc; 2604 } 2605 /* 2606 * Make sure the allocated mft record is written out to disk. 2607 * No need to set the inode dirty because the caller is going 2608 * to do that anyway after finishing with the new extent mft 2609 * record (e.g. at a minimum a new attribute will be added to 2610 * the mft record. 2611 */ 2612 mark_ntfs_record_dirty(page, ofs); 2613 unlock_page(page); 2614 /* 2615 * Need to unmap the page since map_extent_mft_record() mapped 2616 * it as well so we have it mapped twice at the moment. 2617 */ 2618 ntfs_unmap_page(page); 2619 } else { 2620 /* 2621 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink 2622 * is set to 1 but the mft record->link_count is 0. The caller 2623 * needs to bear this in mind. 2624 */ 2625 vi = new_inode(vol->sb); 2626 if (unlikely(!vi)) { 2627 err = -ENOMEM; 2628 /* Set the mft record itself not in use. */ 2629 m->flags &= cpu_to_le16( 2630 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2631 flush_dcache_page(page); 2632 /* Make sure the mft record is written out to disk. */ 2633 mark_ntfs_record_dirty(page, ofs); 2634 unlock_page(page); 2635 ntfs_unmap_page(page); 2636 goto undo_mftbmp_alloc; 2637 } 2638 vi->i_ino = bit; 2639 /* 2640 * This is for checking whether an inode has changed w.r.t. a 2641 * file so that the file can be updated if necessary (compare 2642 * with f_version). 2643 */ 2644 vi->i_version = 1; 2645 2646 /* The owner and group come from the ntfs volume. */ 2647 vi->i_uid = vol->uid; 2648 vi->i_gid = vol->gid; 2649 2650 /* Initialize the ntfs specific part of @vi. */ 2651 ntfs_init_big_inode(vi); 2652 ni = NTFS_I(vi); 2653 /* 2654 * Set the appropriate mode, attribute type, and name. For 2655 * directories, also setup the index values to the defaults. 2656 */ 2657 if (S_ISDIR(mode)) { 2658 vi->i_mode = S_IFDIR | S_IRWXUGO; 2659 vi->i_mode &= ~vol->dmask; 2660 2661 NInoSetMstProtected(ni); 2662 ni->type = AT_INDEX_ALLOCATION; 2663 ni->name = I30; 2664 ni->name_len = 4; 2665 2666 ni->itype.index.block_size = 4096; 2667 ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; 2668 ni->itype.index.collation_rule = COLLATION_FILE_NAME; 2669 if (vol->cluster_size <= ni->itype.index.block_size) { 2670 ni->itype.index.vcn_size = vol->cluster_size; 2671 ni->itype.index.vcn_size_bits = 2672 vol->cluster_size_bits; 2673 } else { 2674 ni->itype.index.vcn_size = vol->sector_size; 2675 ni->itype.index.vcn_size_bits = 2676 vol->sector_size_bits; 2677 } 2678 } else { 2679 vi->i_mode = S_IFREG | S_IRWXUGO; 2680 vi->i_mode &= ~vol->fmask; 2681 2682 ni->type = AT_DATA; 2683 ni->name = NULL; 2684 ni->name_len = 0; 2685 } 2686 if (IS_RDONLY(vi)) 2687 vi->i_mode &= ~S_IWUGO; 2688 2689 /* Set the inode times to the current time. */ 2690 vi->i_atime = vi->i_mtime = vi->i_ctime = 2691 current_fs_time(vi->i_sb); 2692 /* 2693 * Set the file size to 0, the ntfs inode sizes are set to 0 by 2694 * the call to ntfs_init_big_inode() below. 2695 */ 2696 vi->i_size = 0; 2697 vi->i_blocks = 0; 2698 2699 /* Set the sequence number. */ 2700 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 2701 /* 2702 * Manually map, pin, and lock the mft record as we already 2703 * have its page mapped and it is very easy to do. 2704 */ 2705 atomic_inc(&ni->count); 2706 mutex_lock(&ni->mrec_lock); 2707 ni->page = page; 2708 ni->page_ofs = ofs; 2709 /* 2710 * Make sure the allocated mft record is written out to disk. 2711 * NOTE: We do not set the ntfs inode dirty because this would 2712 * fail in ntfs_write_inode() because the inode does not have a 2713 * standard information attribute yet. Also, there is no need 2714 * to set the inode dirty because the caller is going to do 2715 * that anyway after finishing with the new mft record (e.g. at 2716 * a minimum some new attributes will be added to the mft 2717 * record. 2718 */ 2719 mark_ntfs_record_dirty(page, ofs); 2720 unlock_page(page); 2721 2722 /* Add the inode to the inode hash for the superblock. */ 2723 insert_inode_hash(vi); 2724 2725 /* Update the default mft allocation position. */ 2726 vol->mft_data_pos = bit + 1; 2727 } 2728 /* 2729 * Return the opened, allocated inode of the allocated mft record as 2730 * well as the mapped, pinned, and locked mft record. 2731 */ 2732 ntfs_debug("Returning opened, allocated %sinode 0x%llx.", 2733 base_ni ? "extent " : "", (long long)bit); 2734 *mrec = m; 2735 return ni; 2736 undo_data_init: 2737 write_lock_irqsave(&mft_ni->size_lock, flags); 2738 mft_ni->initialized_size = old_data_initialized; 2739 i_size_write(vol->mft_ino, old_data_size); 2740 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2741 goto undo_mftbmp_alloc_nolock; 2742 undo_mftbmp_alloc: 2743 down_write(&vol->mftbmp_lock); 2744 undo_mftbmp_alloc_nolock: 2745 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { 2746 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2747 NVolSetErrors(vol); 2748 } 2749 up_write(&vol->mftbmp_lock); 2750 err_out: 2751 return ERR_PTR(err); 2752 max_err_out: 2753 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " 2754 "number of inodes (2^32) has already been reached."); 2755 up_write(&vol->mftbmp_lock); 2756 return ERR_PTR(-ENOSPC); 2757 } 2758 2759 /** 2760 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume 2761 * @ni: ntfs inode of the mapped extent mft record to free 2762 * @m: mapped extent mft record of the ntfs inode @ni 2763 * 2764 * Free the mapped extent mft record @m of the extent ntfs inode @ni. 2765 * 2766 * Note that this function unmaps the mft record and closes and destroys @ni 2767 * internally and hence you cannot use either @ni nor @m any more after this 2768 * function returns success. 2769 * 2770 * On success return 0 and on error return -errno. @ni and @m are still valid 2771 * in this case and have not been freed. 2772 * 2773 * For some errors an error message is displayed and the success code 0 is 2774 * returned and the volume is then left dirty on umount. This makes sense in 2775 * case we could not rollback the changes that were already done since the 2776 * caller no longer wants to reference this mft record so it does not matter to 2777 * the caller if something is wrong with it as long as it is properly detached 2778 * from the base inode. 2779 */ 2780 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) 2781 { 2782 unsigned long mft_no = ni->mft_no; 2783 ntfs_volume *vol = ni->vol; 2784 ntfs_inode *base_ni; 2785 ntfs_inode **extent_nis; 2786 int i, err; 2787 le16 old_seq_no; 2788 u16 seq_no; 2789 2790 BUG_ON(NInoAttr(ni)); 2791 BUG_ON(ni->nr_extents != -1); 2792 2793 mutex_lock(&ni->extent_lock); 2794 base_ni = ni->ext.base_ntfs_ino; 2795 mutex_unlock(&ni->extent_lock); 2796 2797 BUG_ON(base_ni->nr_extents <= 0); 2798 2799 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", 2800 mft_no, base_ni->mft_no); 2801 2802 mutex_lock(&base_ni->extent_lock); 2803 2804 /* Make sure we are holding the only reference to the extent inode. */ 2805 if (atomic_read(&ni->count) > 2) { 2806 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " 2807 "not freeing.", base_ni->mft_no); 2808 mutex_unlock(&base_ni->extent_lock); 2809 return -EBUSY; 2810 } 2811 2812 /* Dissociate the ntfs inode from the base inode. */ 2813 extent_nis = base_ni->ext.extent_ntfs_inos; 2814 err = -ENOENT; 2815 for (i = 0; i < base_ni->nr_extents; i++) { 2816 if (ni != extent_nis[i]) 2817 continue; 2818 extent_nis += i; 2819 base_ni->nr_extents--; 2820 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * 2821 sizeof(ntfs_inode*)); 2822 err = 0; 2823 break; 2824 } 2825 2826 mutex_unlock(&base_ni->extent_lock); 2827 2828 if (unlikely(err)) { 2829 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " 2830 "its base inode 0x%lx.", mft_no, 2831 base_ni->mft_no); 2832 BUG(); 2833 } 2834 2835 /* 2836 * The extent inode is no longer attached to the base inode so no one 2837 * can get a reference to it any more. 2838 */ 2839 2840 /* Mark the mft record as not in use. */ 2841 m->flags &= ~MFT_RECORD_IN_USE; 2842 2843 /* Increment the sequence number, skipping zero, if it is not zero. */ 2844 old_seq_no = m->sequence_number; 2845 seq_no = le16_to_cpu(old_seq_no); 2846 if (seq_no == 0xffff) 2847 seq_no = 1; 2848 else if (seq_no) 2849 seq_no++; 2850 m->sequence_number = cpu_to_le16(seq_no); 2851 2852 /* 2853 * Set the ntfs inode dirty and write it out. We do not need to worry 2854 * about the base inode here since whatever caused the extent mft 2855 * record to be freed is guaranteed to do it already. 2856 */ 2857 NInoSetDirty(ni); 2858 err = write_mft_record(ni, m, 0); 2859 if (unlikely(err)) { 2860 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " 2861 "freeing.", mft_no); 2862 goto rollback; 2863 } 2864 rollback_error: 2865 /* Unmap and throw away the now freed extent inode. */ 2866 unmap_extent_mft_record(ni); 2867 ntfs_clear_extent_inode(ni); 2868 2869 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ 2870 down_write(&vol->mftbmp_lock); 2871 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); 2872 up_write(&vol->mftbmp_lock); 2873 if (unlikely(err)) { 2874 /* 2875 * The extent inode is gone but we failed to deallocate it in 2876 * the mft bitmap. Just emit a warning and leave the volume 2877 * dirty on umount. 2878 */ 2879 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2880 NVolSetErrors(vol); 2881 } 2882 return 0; 2883 rollback: 2884 /* Rollback what we did... */ 2885 mutex_lock(&base_ni->extent_lock); 2886 extent_nis = base_ni->ext.extent_ntfs_inos; 2887 if (!(base_ni->nr_extents & 3)) { 2888 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); 2889 2890 extent_nis = kmalloc(new_size, GFP_NOFS); 2891 if (unlikely(!extent_nis)) { 2892 ntfs_error(vol->sb, "Failed to allocate internal " 2893 "buffer during rollback.%s", es); 2894 mutex_unlock(&base_ni->extent_lock); 2895 NVolSetErrors(vol); 2896 goto rollback_error; 2897 } 2898 if (base_ni->nr_extents) { 2899 BUG_ON(!base_ni->ext.extent_ntfs_inos); 2900 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, 2901 new_size - 4 * sizeof(ntfs_inode*)); 2902 kfree(base_ni->ext.extent_ntfs_inos); 2903 } 2904 base_ni->ext.extent_ntfs_inos = extent_nis; 2905 } 2906 m->flags |= MFT_RECORD_IN_USE; 2907 m->sequence_number = old_seq_no; 2908 extent_nis[base_ni->nr_extents++] = ni; 2909 mutex_unlock(&base_ni->extent_lock); 2910 mark_mft_record_dirty(ni); 2911 return err; 2912 } 2913 #endif /* NTFS_RW */ 2914