xref: /openbmc/linux/fs/ntfs/mft.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1  /**
2   * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
3   *
4   * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5   * Copyright (c) 2002 Richard Russon
6   *
7   * This program/include file is free software; you can redistribute it and/or
8   * modify it under the terms of the GNU General Public License as published
9   * by the Free Software Foundation; either version 2 of the License, or
10   * (at your option) any later version.
11   *
12   * This program/include file is distributed in the hope that it will be
13   * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14   * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   * GNU General Public License for more details.
16   *
17   * You should have received a copy of the GNU General Public License
18   * along with this program (in the main directory of the Linux-NTFS
19   * distribution in the file COPYING); if not, write to the Free Software
20   * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21   */
22  
23  #include <linux/buffer_head.h>
24  #include <linux/slab.h>
25  #include <linux/swap.h>
26  
27  #include "attrib.h"
28  #include "aops.h"
29  #include "bitmap.h"
30  #include "debug.h"
31  #include "dir.h"
32  #include "lcnalloc.h"
33  #include "malloc.h"
34  #include "mft.h"
35  #include "ntfs.h"
36  
37  /**
38   * map_mft_record_page - map the page in which a specific mft record resides
39   * @ni:		ntfs inode whose mft record page to map
40   *
41   * This maps the page in which the mft record of the ntfs inode @ni is situated
42   * and returns a pointer to the mft record within the mapped page.
43   *
44   * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
45   * contains the negative error code returned.
46   */
47  static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
48  {
49  	loff_t i_size;
50  	ntfs_volume *vol = ni->vol;
51  	struct inode *mft_vi = vol->mft_ino;
52  	struct page *page;
53  	unsigned long index, end_index;
54  	unsigned ofs;
55  
56  	BUG_ON(ni->page);
57  	/*
58  	 * The index into the page cache and the offset within the page cache
59  	 * page of the wanted mft record. FIXME: We need to check for
60  	 * overflowing the unsigned long, but I don't think we would ever get
61  	 * here if the volume was that big...
62  	 */
63  	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
64  			PAGE_SHIFT;
65  	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
66  
67  	i_size = i_size_read(mft_vi);
68  	/* The maximum valid index into the page cache for $MFT's data. */
69  	end_index = i_size >> PAGE_SHIFT;
70  
71  	/* If the wanted index is out of bounds the mft record doesn't exist. */
72  	if (unlikely(index >= end_index)) {
73  		if (index > end_index || (i_size & ~PAGE_MASK) < ofs +
74  				vol->mft_record_size) {
75  			page = ERR_PTR(-ENOENT);
76  			ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
77  					"which is beyond the end of the mft.  "
78  					"This is probably a bug in the ntfs "
79  					"driver.", ni->mft_no);
80  			goto err_out;
81  		}
82  	}
83  	/* Read, map, and pin the page. */
84  	page = ntfs_map_page(mft_vi->i_mapping, index);
85  	if (likely(!IS_ERR(page))) {
86  		/* Catch multi sector transfer fixup errors. */
87  		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
88  				ofs)))) {
89  			ni->page = page;
90  			ni->page_ofs = ofs;
91  			return page_address(page) + ofs;
92  		}
93  		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
94  				"Run chkdsk.", ni->mft_no);
95  		ntfs_unmap_page(page);
96  		page = ERR_PTR(-EIO);
97  		NVolSetErrors(vol);
98  	}
99  err_out:
100  	ni->page = NULL;
101  	ni->page_ofs = 0;
102  	return (void*)page;
103  }
104  
105  /**
106   * map_mft_record - map, pin and lock an mft record
107   * @ni:		ntfs inode whose MFT record to map
108   *
109   * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
110   * for the mutex if it was already locked by someone else.
111   *
112   * The page of the record is mapped using map_mft_record_page() before being
113   * returned to the caller.
114   *
115   * This in turn uses ntfs_map_page() to get the page containing the wanted mft
116   * record (it in turn calls read_cache_page() which reads it in from disk if
117   * necessary, increments the use count on the page so that it cannot disappear
118   * under us and returns a reference to the page cache page).
119   *
120   * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
121   * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
122   * and the post-read mst fixups on each mft record in the page have been
123   * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
124   * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
125   * ntfs_map_page() waits for PG_locked to become clear and checks if
126   * PG_uptodate is set and returns an error code if not. This provides
127   * sufficient protection against races when reading/using the page.
128   *
129   * However there is the write mapping to think about. Doing the above described
130   * checking here will be fine, because when initiating the write we will set
131   * PG_locked and clear PG_uptodate making sure nobody is touching the page
132   * contents. Doing the locking this way means that the commit to disk code in
133   * the page cache code paths is automatically sufficiently locked with us as
134   * we will not touch a page that has been locked or is not uptodate. The only
135   * locking problem then is them locking the page while we are accessing it.
136   *
137   * So that code will end up having to own the mrec_lock of all mft
138   * records/inodes present in the page before I/O can proceed. In that case we
139   * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
140   * accessing anything without owning the mrec_lock mutex.  But we do need to
141   * use them because of the read_cache_page() invocation and the code becomes so
142   * much simpler this way that it is well worth it.
143   *
144   * The mft record is now ours and we return a pointer to it. You need to check
145   * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
146   * the error code.
147   *
148   * NOTE: Caller is responsible for setting the mft record dirty before calling
149   * unmap_mft_record(). This is obviously only necessary if the caller really
150   * modified the mft record...
151   * Q: Do we want to recycle one of the VFS inode state bits instead?
152   * A: No, the inode ones mean we want to change the mft record, not we want to
153   * write it out.
154   */
155  MFT_RECORD *map_mft_record(ntfs_inode *ni)
156  {
157  	MFT_RECORD *m;
158  
159  	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
160  
161  	/* Make sure the ntfs inode doesn't go away. */
162  	atomic_inc(&ni->count);
163  
164  	/* Serialize access to this mft record. */
165  	mutex_lock(&ni->mrec_lock);
166  
167  	m = map_mft_record_page(ni);
168  	if (likely(!IS_ERR(m)))
169  		return m;
170  
171  	mutex_unlock(&ni->mrec_lock);
172  	atomic_dec(&ni->count);
173  	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
174  	return m;
175  }
176  
177  /**
178   * unmap_mft_record_page - unmap the page in which a specific mft record resides
179   * @ni:		ntfs inode whose mft record page to unmap
180   *
181   * This unmaps the page in which the mft record of the ntfs inode @ni is
182   * situated and returns. This is a NOOP if highmem is not configured.
183   *
184   * The unmap happens via ntfs_unmap_page() which in turn decrements the use
185   * count on the page thus releasing it from the pinned state.
186   *
187   * We do not actually unmap the page from memory of course, as that will be
188   * done by the page cache code itself when memory pressure increases or
189   * whatever.
190   */
191  static inline void unmap_mft_record_page(ntfs_inode *ni)
192  {
193  	BUG_ON(!ni->page);
194  
195  	// TODO: If dirty, blah...
196  	ntfs_unmap_page(ni->page);
197  	ni->page = NULL;
198  	ni->page_ofs = 0;
199  	return;
200  }
201  
202  /**
203   * unmap_mft_record - release a mapped mft record
204   * @ni:		ntfs inode whose MFT record to unmap
205   *
206   * We release the page mapping and the mrec_lock mutex which unmaps the mft
207   * record and releases it for others to get hold of. We also release the ntfs
208   * inode by decrementing the ntfs inode reference count.
209   *
210   * NOTE: If caller has modified the mft record, it is imperative to set the mft
211   * record dirty BEFORE calling unmap_mft_record().
212   */
213  void unmap_mft_record(ntfs_inode *ni)
214  {
215  	struct page *page = ni->page;
216  
217  	BUG_ON(!page);
218  
219  	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
220  
221  	unmap_mft_record_page(ni);
222  	mutex_unlock(&ni->mrec_lock);
223  	atomic_dec(&ni->count);
224  	/*
225  	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
226  	 * ntfs_clear_extent_inode() in the extent inode case, and to the
227  	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
228  	 * tear down of all structures and freeing of all allocated memory.
229  	 */
230  	return;
231  }
232  
233  /**
234   * map_extent_mft_record - load an extent inode and attach it to its base
235   * @base_ni:	base ntfs inode
236   * @mref:	mft reference of the extent inode to load
237   * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
238   *
239   * Load the extent mft record @mref and attach it to its base inode @base_ni.
240   * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
241   * PTR_ERR(result) gives the negative error code.
242   *
243   * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
244   * structure of the mapped extent inode.
245   */
246  MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
247  		ntfs_inode **ntfs_ino)
248  {
249  	MFT_RECORD *m;
250  	ntfs_inode *ni = NULL;
251  	ntfs_inode **extent_nis = NULL;
252  	int i;
253  	unsigned long mft_no = MREF(mref);
254  	u16 seq_no = MSEQNO(mref);
255  	bool destroy_ni = false;
256  
257  	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
258  			mft_no, base_ni->mft_no);
259  	/* Make sure the base ntfs inode doesn't go away. */
260  	atomic_inc(&base_ni->count);
261  	/*
262  	 * Check if this extent inode has already been added to the base inode,
263  	 * in which case just return it. If not found, add it to the base
264  	 * inode before returning it.
265  	 */
266  	mutex_lock(&base_ni->extent_lock);
267  	if (base_ni->nr_extents > 0) {
268  		extent_nis = base_ni->ext.extent_ntfs_inos;
269  		for (i = 0; i < base_ni->nr_extents; i++) {
270  			if (mft_no != extent_nis[i]->mft_no)
271  				continue;
272  			ni = extent_nis[i];
273  			/* Make sure the ntfs inode doesn't go away. */
274  			atomic_inc(&ni->count);
275  			break;
276  		}
277  	}
278  	if (likely(ni != NULL)) {
279  		mutex_unlock(&base_ni->extent_lock);
280  		atomic_dec(&base_ni->count);
281  		/* We found the record; just have to map and return it. */
282  		m = map_mft_record(ni);
283  		/* map_mft_record() has incremented this on success. */
284  		atomic_dec(&ni->count);
285  		if (likely(!IS_ERR(m))) {
286  			/* Verify the sequence number. */
287  			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
288  				ntfs_debug("Done 1.");
289  				*ntfs_ino = ni;
290  				return m;
291  			}
292  			unmap_mft_record(ni);
293  			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
294  					"reference! Corrupt filesystem. "
295  					"Run chkdsk.");
296  			return ERR_PTR(-EIO);
297  		}
298  map_err_out:
299  		ntfs_error(base_ni->vol->sb, "Failed to map extent "
300  				"mft record, error code %ld.", -PTR_ERR(m));
301  		return m;
302  	}
303  	/* Record wasn't there. Get a new ntfs inode and initialize it. */
304  	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
305  	if (unlikely(!ni)) {
306  		mutex_unlock(&base_ni->extent_lock);
307  		atomic_dec(&base_ni->count);
308  		return ERR_PTR(-ENOMEM);
309  	}
310  	ni->vol = base_ni->vol;
311  	ni->seq_no = seq_no;
312  	ni->nr_extents = -1;
313  	ni->ext.base_ntfs_ino = base_ni;
314  	/* Now map the record. */
315  	m = map_mft_record(ni);
316  	if (IS_ERR(m)) {
317  		mutex_unlock(&base_ni->extent_lock);
318  		atomic_dec(&base_ni->count);
319  		ntfs_clear_extent_inode(ni);
320  		goto map_err_out;
321  	}
322  	/* Verify the sequence number if it is present. */
323  	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
324  		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
325  				"reference! Corrupt filesystem. Run chkdsk.");
326  		destroy_ni = true;
327  		m = ERR_PTR(-EIO);
328  		goto unm_err_out;
329  	}
330  	/* Attach extent inode to base inode, reallocating memory if needed. */
331  	if (!(base_ni->nr_extents & 3)) {
332  		ntfs_inode **tmp;
333  		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
334  
335  		tmp = kmalloc(new_size, GFP_NOFS);
336  		if (unlikely(!tmp)) {
337  			ntfs_error(base_ni->vol->sb, "Failed to allocate "
338  					"internal buffer.");
339  			destroy_ni = true;
340  			m = ERR_PTR(-ENOMEM);
341  			goto unm_err_out;
342  		}
343  		if (base_ni->nr_extents) {
344  			BUG_ON(!base_ni->ext.extent_ntfs_inos);
345  			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
346  					4 * sizeof(ntfs_inode *));
347  			kfree(base_ni->ext.extent_ntfs_inos);
348  		}
349  		base_ni->ext.extent_ntfs_inos = tmp;
350  	}
351  	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
352  	mutex_unlock(&base_ni->extent_lock);
353  	atomic_dec(&base_ni->count);
354  	ntfs_debug("Done 2.");
355  	*ntfs_ino = ni;
356  	return m;
357  unm_err_out:
358  	unmap_mft_record(ni);
359  	mutex_unlock(&base_ni->extent_lock);
360  	atomic_dec(&base_ni->count);
361  	/*
362  	 * If the extent inode was not attached to the base inode we need to
363  	 * release it or we will leak memory.
364  	 */
365  	if (destroy_ni)
366  		ntfs_clear_extent_inode(ni);
367  	return m;
368  }
369  
370  #ifdef NTFS_RW
371  
372  /**
373   * __mark_mft_record_dirty - set the mft record and the page containing it dirty
374   * @ni:		ntfs inode describing the mapped mft record
375   *
376   * Internal function.  Users should call mark_mft_record_dirty() instead.
377   *
378   * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
379   * as well as the page containing the mft record, dirty.  Also, mark the base
380   * vfs inode dirty.  This ensures that any changes to the mft record are
381   * written out to disk.
382   *
383   * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
384   * on the base vfs inode, because even though file data may have been modified,
385   * it is dirty in the inode meta data rather than the data page cache of the
386   * inode, and thus there are no data pages that need writing out.  Therefore, a
387   * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
388   * other hand, is not sufficient, because ->write_inode needs to be called even
389   * in case of fdatasync. This needs to happen or the file data would not
390   * necessarily hit the device synchronously, even though the vfs inode has the
391   * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
392   * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
393   * which is not what I_DIRTY_SYNC on its own would suggest.
394   */
395  void __mark_mft_record_dirty(ntfs_inode *ni)
396  {
397  	ntfs_inode *base_ni;
398  
399  	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
400  	BUG_ON(NInoAttr(ni));
401  	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
402  	/* Determine the base vfs inode and mark it dirty, too. */
403  	mutex_lock(&ni->extent_lock);
404  	if (likely(ni->nr_extents >= 0))
405  		base_ni = ni;
406  	else
407  		base_ni = ni->ext.base_ntfs_ino;
408  	mutex_unlock(&ni->extent_lock);
409  	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
410  }
411  
412  static const char *ntfs_please_email = "Please email "
413  		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
414  		"this message.  Thank you.";
415  
416  /**
417   * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
418   * @vol:	ntfs volume on which the mft record to synchronize resides
419   * @mft_no:	mft record number of mft record to synchronize
420   * @m:		mapped, mst protected (extent) mft record to synchronize
421   *
422   * Write the mapped, mst protected (extent) mft record @m with mft record
423   * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
424   * bypassing the page cache and the $MFTMirr inode itself.
425   *
426   * This function is only for use at umount time when the mft mirror inode has
427   * already been disposed off.  We BUG() if we are called while the mft mirror
428   * inode is still attached to the volume.
429   *
430   * On success return 0.  On error return -errno.
431   *
432   * NOTE:  This function is not implemented yet as I am not convinced it can
433   * actually be triggered considering the sequence of commits we do in super.c::
434   * ntfs_put_super().  But just in case we provide this place holder as the
435   * alternative would be either to BUG() or to get a NULL pointer dereference
436   * and Oops.
437   */
438  static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
439  		const unsigned long mft_no, MFT_RECORD *m)
440  {
441  	BUG_ON(vol->mftmirr_ino);
442  	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
443  			"implemented yet.  %s", ntfs_please_email);
444  	return -EOPNOTSUPP;
445  }
446  
447  /**
448   * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
449   * @vol:	ntfs volume on which the mft record to synchronize resides
450   * @mft_no:	mft record number of mft record to synchronize
451   * @m:		mapped, mst protected (extent) mft record to synchronize
452   * @sync:	if true, wait for i/o completion
453   *
454   * Write the mapped, mst protected (extent) mft record @m with mft record
455   * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
456   *
457   * On success return 0.  On error return -errno and set the volume errors flag
458   * in the ntfs volume @vol.
459   *
460   * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
461   *
462   * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
463   * schedule i/o via ->writepage or do it via kntfsd or whatever.
464   */
465  int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
466  		MFT_RECORD *m, int sync)
467  {
468  	struct page *page;
469  	unsigned int blocksize = vol->sb->s_blocksize;
470  	int max_bhs = vol->mft_record_size / blocksize;
471  	struct buffer_head *bhs[max_bhs];
472  	struct buffer_head *bh, *head;
473  	u8 *kmirr;
474  	runlist_element *rl;
475  	unsigned int block_start, block_end, m_start, m_end, page_ofs;
476  	int i_bhs, nr_bhs, err = 0;
477  	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
478  
479  	ntfs_debug("Entering for inode 0x%lx.", mft_no);
480  	BUG_ON(!max_bhs);
481  	if (unlikely(!vol->mftmirr_ino)) {
482  		/* This could happen during umount... */
483  		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
484  		if (likely(!err))
485  			return err;
486  		goto err_out;
487  	}
488  	/* Get the page containing the mirror copy of the mft record @m. */
489  	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
490  			(PAGE_SHIFT - vol->mft_record_size_bits));
491  	if (IS_ERR(page)) {
492  		ntfs_error(vol->sb, "Failed to map mft mirror page.");
493  		err = PTR_ERR(page);
494  		goto err_out;
495  	}
496  	lock_page(page);
497  	BUG_ON(!PageUptodate(page));
498  	ClearPageUptodate(page);
499  	/* Offset of the mft mirror record inside the page. */
500  	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
501  	/* The address in the page of the mirror copy of the mft record @m. */
502  	kmirr = page_address(page) + page_ofs;
503  	/* Copy the mst protected mft record to the mirror. */
504  	memcpy(kmirr, m, vol->mft_record_size);
505  	/* Create uptodate buffers if not present. */
506  	if (unlikely(!page_has_buffers(page))) {
507  		struct buffer_head *tail;
508  
509  		bh = head = alloc_page_buffers(page, blocksize, 1);
510  		do {
511  			set_buffer_uptodate(bh);
512  			tail = bh;
513  			bh = bh->b_this_page;
514  		} while (bh);
515  		tail->b_this_page = head;
516  		attach_page_buffers(page, head);
517  	}
518  	bh = head = page_buffers(page);
519  	BUG_ON(!bh);
520  	rl = NULL;
521  	nr_bhs = 0;
522  	block_start = 0;
523  	m_start = kmirr - (u8*)page_address(page);
524  	m_end = m_start + vol->mft_record_size;
525  	do {
526  		block_end = block_start + blocksize;
527  		/* If the buffer is outside the mft record, skip it. */
528  		if (block_end <= m_start)
529  			continue;
530  		if (unlikely(block_start >= m_end))
531  			break;
532  		/* Need to map the buffer if it is not mapped already. */
533  		if (unlikely(!buffer_mapped(bh))) {
534  			VCN vcn;
535  			LCN lcn;
536  			unsigned int vcn_ofs;
537  
538  			bh->b_bdev = vol->sb->s_bdev;
539  			/* Obtain the vcn and offset of the current block. */
540  			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
541  					(block_start - m_start);
542  			vcn_ofs = vcn & vol->cluster_size_mask;
543  			vcn >>= vol->cluster_size_bits;
544  			if (!rl) {
545  				down_read(&NTFS_I(vol->mftmirr_ino)->
546  						runlist.lock);
547  				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
548  				/*
549  				 * $MFTMirr always has the whole of its runlist
550  				 * in memory.
551  				 */
552  				BUG_ON(!rl);
553  			}
554  			/* Seek to element containing target vcn. */
555  			while (rl->length && rl[1].vcn <= vcn)
556  				rl++;
557  			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
558  			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
559  			if (likely(lcn >= 0)) {
560  				/* Setup buffer head to correct block. */
561  				bh->b_blocknr = ((lcn <<
562  						vol->cluster_size_bits) +
563  						vcn_ofs) >> blocksize_bits;
564  				set_buffer_mapped(bh);
565  			} else {
566  				bh->b_blocknr = -1;
567  				ntfs_error(vol->sb, "Cannot write mft mirror "
568  						"record 0x%lx because its "
569  						"location on disk could not "
570  						"be determined (error code "
571  						"%lli).", mft_no,
572  						(long long)lcn);
573  				err = -EIO;
574  			}
575  		}
576  		BUG_ON(!buffer_uptodate(bh));
577  		BUG_ON(!nr_bhs && (m_start != block_start));
578  		BUG_ON(nr_bhs >= max_bhs);
579  		bhs[nr_bhs++] = bh;
580  		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
581  	} while (block_start = block_end, (bh = bh->b_this_page) != head);
582  	if (unlikely(rl))
583  		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
584  	if (likely(!err)) {
585  		/* Lock buffers and start synchronous write i/o on them. */
586  		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
587  			struct buffer_head *tbh = bhs[i_bhs];
588  
589  			if (!trylock_buffer(tbh))
590  				BUG();
591  			BUG_ON(!buffer_uptodate(tbh));
592  			clear_buffer_dirty(tbh);
593  			get_bh(tbh);
594  			tbh->b_end_io = end_buffer_write_sync;
595  			submit_bh(REQ_OP_WRITE, 0, tbh);
596  		}
597  		/* Wait on i/o completion of buffers. */
598  		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
599  			struct buffer_head *tbh = bhs[i_bhs];
600  
601  			wait_on_buffer(tbh);
602  			if (unlikely(!buffer_uptodate(tbh))) {
603  				err = -EIO;
604  				/*
605  				 * Set the buffer uptodate so the page and
606  				 * buffer states do not become out of sync.
607  				 */
608  				set_buffer_uptodate(tbh);
609  			}
610  		}
611  	} else /* if (unlikely(err)) */ {
612  		/* Clean the buffers. */
613  		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
614  			clear_buffer_dirty(bhs[i_bhs]);
615  	}
616  	/* Current state: all buffers are clean, unlocked, and uptodate. */
617  	/* Remove the mst protection fixups again. */
618  	post_write_mst_fixup((NTFS_RECORD*)kmirr);
619  	flush_dcache_page(page);
620  	SetPageUptodate(page);
621  	unlock_page(page);
622  	ntfs_unmap_page(page);
623  	if (likely(!err)) {
624  		ntfs_debug("Done.");
625  	} else {
626  		ntfs_error(vol->sb, "I/O error while writing mft mirror "
627  				"record 0x%lx!", mft_no);
628  err_out:
629  		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
630  				"code %i).  Volume will be left marked dirty "
631  				"on umount.  Run ntfsfix on the partition "
632  				"after umounting to correct this.", -err);
633  		NVolSetErrors(vol);
634  	}
635  	return err;
636  }
637  
638  /**
639   * write_mft_record_nolock - write out a mapped (extent) mft record
640   * @ni:		ntfs inode describing the mapped (extent) mft record
641   * @m:		mapped (extent) mft record to write
642   * @sync:	if true, wait for i/o completion
643   *
644   * Write the mapped (extent) mft record @m described by the (regular or extent)
645   * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
646   * the mft mirror, that is also updated.
647   *
648   * We only write the mft record if the ntfs inode @ni is dirty and the first
649   * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
650   * of subsequent buffers because we could have raced with
651   * fs/ntfs/aops.c::mark_ntfs_record_dirty().
652   *
653   * On success, clean the mft record and return 0.  On error, leave the mft
654   * record dirty and return -errno.
655   *
656   * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
657   * However, if the mft record has a counterpart in the mft mirror and @sync is
658   * true, we write the mft record, wait for i/o completion, and only then write
659   * the mft mirror copy.  This ensures that if the system crashes either the mft
660   * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
661   * false on the other hand, we start i/o on both and then wait for completion
662   * on them.  This provides a speedup but no longer guarantees that you will end
663   * up with a self-consistent mft record in the case of a crash but if you asked
664   * for asynchronous writing you probably do not care about that anyway.
665   *
666   * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
667   * schedule i/o via ->writepage or do it via kntfsd or whatever.
668   */
669  int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
670  {
671  	ntfs_volume *vol = ni->vol;
672  	struct page *page = ni->page;
673  	unsigned int blocksize = vol->sb->s_blocksize;
674  	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
675  	int max_bhs = vol->mft_record_size / blocksize;
676  	struct buffer_head *bhs[max_bhs];
677  	struct buffer_head *bh, *head;
678  	runlist_element *rl;
679  	unsigned int block_start, block_end, m_start, m_end;
680  	int i_bhs, nr_bhs, err = 0;
681  
682  	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
683  	BUG_ON(NInoAttr(ni));
684  	BUG_ON(!max_bhs);
685  	BUG_ON(!PageLocked(page));
686  	/*
687  	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
688  	 * mark it as clean now so that it can be redirtied later on if needed.
689  	 * There is no danger of races since the caller is holding the locks
690  	 * for the mft record @m and the page it is in.
691  	 */
692  	if (!NInoTestClearDirty(ni))
693  		goto done;
694  	bh = head = page_buffers(page);
695  	BUG_ON(!bh);
696  	rl = NULL;
697  	nr_bhs = 0;
698  	block_start = 0;
699  	m_start = ni->page_ofs;
700  	m_end = m_start + vol->mft_record_size;
701  	do {
702  		block_end = block_start + blocksize;
703  		/* If the buffer is outside the mft record, skip it. */
704  		if (block_end <= m_start)
705  			continue;
706  		if (unlikely(block_start >= m_end))
707  			break;
708  		/*
709  		 * If this block is not the first one in the record, we ignore
710  		 * the buffer's dirty state because we could have raced with a
711  		 * parallel mark_ntfs_record_dirty().
712  		 */
713  		if (block_start == m_start) {
714  			/* This block is the first one in the record. */
715  			if (!buffer_dirty(bh)) {
716  				BUG_ON(nr_bhs);
717  				/* Clean records are not written out. */
718  				break;
719  			}
720  		}
721  		/* Need to map the buffer if it is not mapped already. */
722  		if (unlikely(!buffer_mapped(bh))) {
723  			VCN vcn;
724  			LCN lcn;
725  			unsigned int vcn_ofs;
726  
727  			bh->b_bdev = vol->sb->s_bdev;
728  			/* Obtain the vcn and offset of the current block. */
729  			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
730  					(block_start - m_start);
731  			vcn_ofs = vcn & vol->cluster_size_mask;
732  			vcn >>= vol->cluster_size_bits;
733  			if (!rl) {
734  				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
735  				rl = NTFS_I(vol->mft_ino)->runlist.rl;
736  				BUG_ON(!rl);
737  			}
738  			/* Seek to element containing target vcn. */
739  			while (rl->length && rl[1].vcn <= vcn)
740  				rl++;
741  			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
742  			/* For $MFT, only lcn >= 0 is a successful remap. */
743  			if (likely(lcn >= 0)) {
744  				/* Setup buffer head to correct block. */
745  				bh->b_blocknr = ((lcn <<
746  						vol->cluster_size_bits) +
747  						vcn_ofs) >> blocksize_bits;
748  				set_buffer_mapped(bh);
749  			} else {
750  				bh->b_blocknr = -1;
751  				ntfs_error(vol->sb, "Cannot write mft record "
752  						"0x%lx because its location "
753  						"on disk could not be "
754  						"determined (error code %lli).",
755  						ni->mft_no, (long long)lcn);
756  				err = -EIO;
757  			}
758  		}
759  		BUG_ON(!buffer_uptodate(bh));
760  		BUG_ON(!nr_bhs && (m_start != block_start));
761  		BUG_ON(nr_bhs >= max_bhs);
762  		bhs[nr_bhs++] = bh;
763  		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
764  	} while (block_start = block_end, (bh = bh->b_this_page) != head);
765  	if (unlikely(rl))
766  		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
767  	if (!nr_bhs)
768  		goto done;
769  	if (unlikely(err))
770  		goto cleanup_out;
771  	/* Apply the mst protection fixups. */
772  	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
773  	if (err) {
774  		ntfs_error(vol->sb, "Failed to apply mst fixups!");
775  		goto cleanup_out;
776  	}
777  	flush_dcache_mft_record_page(ni);
778  	/* Lock buffers and start synchronous write i/o on them. */
779  	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
780  		struct buffer_head *tbh = bhs[i_bhs];
781  
782  		if (!trylock_buffer(tbh))
783  			BUG();
784  		BUG_ON(!buffer_uptodate(tbh));
785  		clear_buffer_dirty(tbh);
786  		get_bh(tbh);
787  		tbh->b_end_io = end_buffer_write_sync;
788  		submit_bh(REQ_OP_WRITE, 0, tbh);
789  	}
790  	/* Synchronize the mft mirror now if not @sync. */
791  	if (!sync && ni->mft_no < vol->mftmirr_size)
792  		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
793  	/* Wait on i/o completion of buffers. */
794  	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
795  		struct buffer_head *tbh = bhs[i_bhs];
796  
797  		wait_on_buffer(tbh);
798  		if (unlikely(!buffer_uptodate(tbh))) {
799  			err = -EIO;
800  			/*
801  			 * Set the buffer uptodate so the page and buffer
802  			 * states do not become out of sync.
803  			 */
804  			if (PageUptodate(page))
805  				set_buffer_uptodate(tbh);
806  		}
807  	}
808  	/* If @sync, now synchronize the mft mirror. */
809  	if (sync && ni->mft_no < vol->mftmirr_size)
810  		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
811  	/* Remove the mst protection fixups again. */
812  	post_write_mst_fixup((NTFS_RECORD*)m);
813  	flush_dcache_mft_record_page(ni);
814  	if (unlikely(err)) {
815  		/* I/O error during writing.  This is really bad! */
816  		ntfs_error(vol->sb, "I/O error while writing mft record "
817  				"0x%lx!  Marking base inode as bad.  You "
818  				"should unmount the volume and run chkdsk.",
819  				ni->mft_no);
820  		goto err_out;
821  	}
822  done:
823  	ntfs_debug("Done.");
824  	return 0;
825  cleanup_out:
826  	/* Clean the buffers. */
827  	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
828  		clear_buffer_dirty(bhs[i_bhs]);
829  err_out:
830  	/*
831  	 * Current state: all buffers are clean, unlocked, and uptodate.
832  	 * The caller should mark the base inode as bad so that no more i/o
833  	 * happens.  ->clear_inode() will still be invoked so all extent inodes
834  	 * and other allocated memory will be freed.
835  	 */
836  	if (err == -ENOMEM) {
837  		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
838  				"Redirtying so the write is retried later.");
839  		mark_mft_record_dirty(ni);
840  		err = 0;
841  	} else
842  		NVolSetErrors(vol);
843  	return err;
844  }
845  
846  /**
847   * ntfs_may_write_mft_record - check if an mft record may be written out
848   * @vol:	[IN]  ntfs volume on which the mft record to check resides
849   * @mft_no:	[IN]  mft record number of the mft record to check
850   * @m:		[IN]  mapped mft record to check
851   * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
852   *
853   * Check if the mapped (base or extent) mft record @m with mft record number
854   * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
855   * and possible the ntfs inode of the mft record is locked and the base vfs
856   * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
857   * caller is responsible for unlocking the ntfs inode and unpinning the base
858   * vfs inode.
859   *
860   * Return 'true' if the mft record may be written out and 'false' if not.
861   *
862   * The caller has locked the page and cleared the uptodate flag on it which
863   * means that we can safely write out any dirty mft records that do not have
864   * their inodes in icache as determined by ilookup5() as anyone
865   * opening/creating such an inode would block when attempting to map the mft
866   * record in read_cache_page() until we are finished with the write out.
867   *
868   * Here is a description of the tests we perform:
869   *
870   * If the inode is found in icache we know the mft record must be a base mft
871   * record.  If it is dirty, we do not write it and return 'false' as the vfs
872   * inode write paths will result in the access times being updated which would
873   * cause the base mft record to be redirtied and written out again.  (We know
874   * the access time update will modify the base mft record because Windows
875   * chkdsk complains if the standard information attribute is not in the base
876   * mft record.)
877   *
878   * If the inode is in icache and not dirty, we attempt to lock the mft record
879   * and if we find the lock was already taken, it is not safe to write the mft
880   * record and we return 'false'.
881   *
882   * If we manage to obtain the lock we have exclusive access to the mft record,
883   * which also allows us safe writeout of the mft record.  We then set
884   * @locked_ni to the locked ntfs inode and return 'true'.
885   *
886   * Note we cannot just lock the mft record and sleep while waiting for the lock
887   * because this would deadlock due to lock reversal (normally the mft record is
888   * locked before the page is locked but we already have the page locked here
889   * when we try to lock the mft record).
890   *
891   * If the inode is not in icache we need to perform further checks.
892   *
893   * If the mft record is not a FILE record or it is a base mft record, we can
894   * safely write it and return 'true'.
895   *
896   * We now know the mft record is an extent mft record.  We check if the inode
897   * corresponding to its base mft record is in icache and obtain a reference to
898   * it if it is.  If it is not, we can safely write it and return 'true'.
899   *
900   * We now have the base inode for the extent mft record.  We check if it has an
901   * ntfs inode for the extent mft record attached and if not it is safe to write
902   * the extent mft record and we return 'true'.
903   *
904   * The ntfs inode for the extent mft record is attached to the base inode so we
905   * attempt to lock the extent mft record and if we find the lock was already
906   * taken, it is not safe to write the extent mft record and we return 'false'.
907   *
908   * If we manage to obtain the lock we have exclusive access to the extent mft
909   * record, which also allows us safe writeout of the extent mft record.  We
910   * set the ntfs inode of the extent mft record clean and then set @locked_ni to
911   * the now locked ntfs inode and return 'true'.
912   *
913   * Note, the reason for actually writing dirty mft records here and not just
914   * relying on the vfs inode dirty code paths is that we can have mft records
915   * modified without them ever having actual inodes in memory.  Also we can have
916   * dirty mft records with clean ntfs inodes in memory.  None of the described
917   * cases would result in the dirty mft records being written out if we only
918   * relied on the vfs inode dirty code paths.  And these cases can really occur
919   * during allocation of new mft records and in particular when the
920   * initialized_size of the $MFT/$DATA attribute is extended and the new space
921   * is initialized using ntfs_mft_record_format().  The clean inode can then
922   * appear if the mft record is reused for a new inode before it got written
923   * out.
924   */
925  bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
926  		const MFT_RECORD *m, ntfs_inode **locked_ni)
927  {
928  	struct super_block *sb = vol->sb;
929  	struct inode *mft_vi = vol->mft_ino;
930  	struct inode *vi;
931  	ntfs_inode *ni, *eni, **extent_nis;
932  	int i;
933  	ntfs_attr na;
934  
935  	ntfs_debug("Entering for inode 0x%lx.", mft_no);
936  	/*
937  	 * Normally we do not return a locked inode so set @locked_ni to NULL.
938  	 */
939  	BUG_ON(!locked_ni);
940  	*locked_ni = NULL;
941  	/*
942  	 * Check if the inode corresponding to this mft record is in the VFS
943  	 * inode cache and obtain a reference to it if it is.
944  	 */
945  	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
946  	na.mft_no = mft_no;
947  	na.name = NULL;
948  	na.name_len = 0;
949  	na.type = AT_UNUSED;
950  	/*
951  	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
952  	 * we get here for it rather often.
953  	 */
954  	if (!mft_no) {
955  		/* Balance the below iput(). */
956  		vi = igrab(mft_vi);
957  		BUG_ON(vi != mft_vi);
958  	} else {
959  		/*
960  		 * Have to use ilookup5_nowait() since ilookup5() waits for the
961  		 * inode lock which causes ntfs to deadlock when a concurrent
962  		 * inode write via the inode dirty code paths and the page
963  		 * dirty code path of the inode dirty code path when writing
964  		 * $MFT occurs.
965  		 */
966  		vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
967  	}
968  	if (vi) {
969  		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
970  		/* The inode is in icache. */
971  		ni = NTFS_I(vi);
972  		/* Take a reference to the ntfs inode. */
973  		atomic_inc(&ni->count);
974  		/* If the inode is dirty, do not write this record. */
975  		if (NInoDirty(ni)) {
976  			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
977  					mft_no);
978  			atomic_dec(&ni->count);
979  			iput(vi);
980  			return false;
981  		}
982  		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
983  		/* The inode is not dirty, try to take the mft record lock. */
984  		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
985  			ntfs_debug("Mft record 0x%lx is already locked, do "
986  					"not write it.", mft_no);
987  			atomic_dec(&ni->count);
988  			iput(vi);
989  			return false;
990  		}
991  		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
992  				mft_no);
993  		/*
994  		 * The write has to occur while we hold the mft record lock so
995  		 * return the locked ntfs inode.
996  		 */
997  		*locked_ni = ni;
998  		return true;
999  	}
1000  	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1001  	/* The inode is not in icache. */
1002  	/* Write the record if it is not a mft record (type "FILE"). */
1003  	if (!ntfs_is_mft_record(m->magic)) {
1004  		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1005  				mft_no);
1006  		return true;
1007  	}
1008  	/* Write the mft record if it is a base inode. */
1009  	if (!m->base_mft_record) {
1010  		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1011  				mft_no);
1012  		return true;
1013  	}
1014  	/*
1015  	 * This is an extent mft record.  Check if the inode corresponding to
1016  	 * its base mft record is in icache and obtain a reference to it if it
1017  	 * is.
1018  	 */
1019  	na.mft_no = MREF_LE(m->base_mft_record);
1020  	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1021  			"inode 0x%lx in icache.", mft_no, na.mft_no);
1022  	if (!na.mft_no) {
1023  		/* Balance the below iput(). */
1024  		vi = igrab(mft_vi);
1025  		BUG_ON(vi != mft_vi);
1026  	} else
1027  		vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1028  				&na);
1029  	if (!vi) {
1030  		/*
1031  		 * The base inode is not in icache, write this extent mft
1032  		 * record.
1033  		 */
1034  		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1035  				"extent record.", na.mft_no);
1036  		return true;
1037  	}
1038  	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1039  	/*
1040  	 * The base inode is in icache.  Check if it has the extent inode
1041  	 * corresponding to this extent mft record attached.
1042  	 */
1043  	ni = NTFS_I(vi);
1044  	mutex_lock(&ni->extent_lock);
1045  	if (ni->nr_extents <= 0) {
1046  		/*
1047  		 * The base inode has no attached extent inodes, write this
1048  		 * extent mft record.
1049  		 */
1050  		mutex_unlock(&ni->extent_lock);
1051  		iput(vi);
1052  		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1053  				"write the extent record.", na.mft_no);
1054  		return true;
1055  	}
1056  	/* Iterate over the attached extent inodes. */
1057  	extent_nis = ni->ext.extent_ntfs_inos;
1058  	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1059  		if (mft_no == extent_nis[i]->mft_no) {
1060  			/*
1061  			 * Found the extent inode corresponding to this extent
1062  			 * mft record.
1063  			 */
1064  			eni = extent_nis[i];
1065  			break;
1066  		}
1067  	}
1068  	/*
1069  	 * If the extent inode was not attached to the base inode, write this
1070  	 * extent mft record.
1071  	 */
1072  	if (!eni) {
1073  		mutex_unlock(&ni->extent_lock);
1074  		iput(vi);
1075  		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1076  				"inode 0x%lx, write the extent record.",
1077  				mft_no, na.mft_no);
1078  		return true;
1079  	}
1080  	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1081  			mft_no, na.mft_no);
1082  	/* Take a reference to the extent ntfs inode. */
1083  	atomic_inc(&eni->count);
1084  	mutex_unlock(&ni->extent_lock);
1085  	/*
1086  	 * Found the extent inode coresponding to this extent mft record.
1087  	 * Try to take the mft record lock.
1088  	 */
1089  	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1090  		atomic_dec(&eni->count);
1091  		iput(vi);
1092  		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1093  				"not write it.", mft_no);
1094  		return false;
1095  	}
1096  	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1097  			mft_no);
1098  	if (NInoTestClearDirty(eni))
1099  		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1100  				mft_no);
1101  	/*
1102  	 * The write has to occur while we hold the mft record lock so return
1103  	 * the locked extent ntfs inode.
1104  	 */
1105  	*locked_ni = eni;
1106  	return true;
1107  }
1108  
1109  static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1110  		"chkdsk.";
1111  
1112  /**
1113   * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1114   * @vol:	volume on which to search for a free mft record
1115   * @base_ni:	open base inode if allocating an extent mft record or NULL
1116   *
1117   * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1118   * @vol.
1119   *
1120   * If @base_ni is NULL start the search at the default allocator position.
1121   *
1122   * If @base_ni is not NULL start the search at the mft record after the base
1123   * mft record @base_ni.
1124   *
1125   * Return the free mft record on success and -errno on error.  An error code of
1126   * -ENOSPC means that there are no free mft records in the currently
1127   * initialized mft bitmap.
1128   *
1129   * Locking: Caller must hold vol->mftbmp_lock for writing.
1130   */
1131  static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1132  		ntfs_inode *base_ni)
1133  {
1134  	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1135  	unsigned long flags;
1136  	struct address_space *mftbmp_mapping;
1137  	u8 *buf, *byte;
1138  	struct page *page;
1139  	unsigned int page_ofs, size;
1140  	u8 pass, b;
1141  
1142  	ntfs_debug("Searching for free mft record in the currently "
1143  			"initialized mft bitmap.");
1144  	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1145  	/*
1146  	 * Set the end of the pass making sure we do not overflow the mft
1147  	 * bitmap.
1148  	 */
1149  	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1150  	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1151  			vol->mft_record_size_bits;
1152  	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1153  	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1154  	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1155  	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1156  	if (pass_end > ll)
1157  		pass_end = ll;
1158  	pass = 1;
1159  	if (!base_ni)
1160  		data_pos = vol->mft_data_pos;
1161  	else
1162  		data_pos = base_ni->mft_no + 1;
1163  	if (data_pos < 24)
1164  		data_pos = 24;
1165  	if (data_pos >= pass_end) {
1166  		data_pos = 24;
1167  		pass = 2;
1168  		/* This happens on a freshly formatted volume. */
1169  		if (data_pos >= pass_end)
1170  			return -ENOSPC;
1171  	}
1172  	pass_start = data_pos;
1173  	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1174  			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1175  			(long long)pass_start, (long long)pass_end,
1176  			(long long)data_pos);
1177  	/* Loop until a free mft record is found. */
1178  	for (; pass <= 2;) {
1179  		/* Cap size to pass_end. */
1180  		ofs = data_pos >> 3;
1181  		page_ofs = ofs & ~PAGE_MASK;
1182  		size = PAGE_SIZE - page_ofs;
1183  		ll = ((pass_end + 7) >> 3) - ofs;
1184  		if (size > ll)
1185  			size = ll;
1186  		size <<= 3;
1187  		/*
1188  		 * If we are still within the active pass, search the next page
1189  		 * for a zero bit.
1190  		 */
1191  		if (size) {
1192  			page = ntfs_map_page(mftbmp_mapping,
1193  					ofs >> PAGE_SHIFT);
1194  			if (IS_ERR(page)) {
1195  				ntfs_error(vol->sb, "Failed to read mft "
1196  						"bitmap, aborting.");
1197  				return PTR_ERR(page);
1198  			}
1199  			buf = (u8*)page_address(page) + page_ofs;
1200  			bit = data_pos & 7;
1201  			data_pos &= ~7ull;
1202  			ntfs_debug("Before inner for loop: size 0x%x, "
1203  					"data_pos 0x%llx, bit 0x%llx", size,
1204  					(long long)data_pos, (long long)bit);
1205  			for (; bit < size && data_pos + bit < pass_end;
1206  					bit &= ~7ull, bit += 8) {
1207  				byte = buf + (bit >> 3);
1208  				if (*byte == 0xff)
1209  					continue;
1210  				b = ffz((unsigned long)*byte);
1211  				if (b < 8 && b >= (bit & 7)) {
1212  					ll = data_pos + (bit & ~7ull) + b;
1213  					if (unlikely(ll > (1ll << 32))) {
1214  						ntfs_unmap_page(page);
1215  						return -ENOSPC;
1216  					}
1217  					*byte |= 1 << b;
1218  					flush_dcache_page(page);
1219  					set_page_dirty(page);
1220  					ntfs_unmap_page(page);
1221  					ntfs_debug("Done.  (Found and "
1222  							"allocated mft record "
1223  							"0x%llx.)",
1224  							(long long)ll);
1225  					return ll;
1226  				}
1227  			}
1228  			ntfs_debug("After inner for loop: size 0x%x, "
1229  					"data_pos 0x%llx, bit 0x%llx", size,
1230  					(long long)data_pos, (long long)bit);
1231  			data_pos += size;
1232  			ntfs_unmap_page(page);
1233  			/*
1234  			 * If the end of the pass has not been reached yet,
1235  			 * continue searching the mft bitmap for a zero bit.
1236  			 */
1237  			if (data_pos < pass_end)
1238  				continue;
1239  		}
1240  		/* Do the next pass. */
1241  		if (++pass == 2) {
1242  			/*
1243  			 * Starting the second pass, in which we scan the first
1244  			 * part of the zone which we omitted earlier.
1245  			 */
1246  			pass_end = pass_start;
1247  			data_pos = pass_start = 24;
1248  			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1249  					"0x%llx.", pass, (long long)pass_start,
1250  					(long long)pass_end);
1251  			if (data_pos >= pass_end)
1252  				break;
1253  		}
1254  	}
1255  	/* No free mft records in currently initialized mft bitmap. */
1256  	ntfs_debug("Done.  (No free mft records left in currently initialized "
1257  			"mft bitmap.)");
1258  	return -ENOSPC;
1259  }
1260  
1261  /**
1262   * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1263   * @vol:	volume on which to extend the mft bitmap attribute
1264   *
1265   * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1266   *
1267   * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1268   * data_size.
1269   *
1270   * Return 0 on success and -errno on error.
1271   *
1272   * Locking: - Caller must hold vol->mftbmp_lock for writing.
1273   *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1274   *	      writing and releases it before returning.
1275   *	    - This function takes vol->lcnbmp_lock for writing and releases it
1276   *	      before returning.
1277   */
1278  static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1279  {
1280  	LCN lcn;
1281  	s64 ll;
1282  	unsigned long flags;
1283  	struct page *page;
1284  	ntfs_inode *mft_ni, *mftbmp_ni;
1285  	runlist_element *rl, *rl2 = NULL;
1286  	ntfs_attr_search_ctx *ctx = NULL;
1287  	MFT_RECORD *mrec;
1288  	ATTR_RECORD *a = NULL;
1289  	int ret, mp_size;
1290  	u32 old_alen = 0;
1291  	u8 *b, tb;
1292  	struct {
1293  		u8 added_cluster:1;
1294  		u8 added_run:1;
1295  		u8 mp_rebuilt:1;
1296  	} status = { 0, 0, 0 };
1297  
1298  	ntfs_debug("Extending mft bitmap allocation.");
1299  	mft_ni = NTFS_I(vol->mft_ino);
1300  	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1301  	/*
1302  	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1303  	 * mft bitmap cannot be zero so we are ok to do this.
1304  	 */
1305  	down_write(&mftbmp_ni->runlist.lock);
1306  	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1307  	ll = mftbmp_ni->allocated_size;
1308  	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1309  	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1310  			(ll - 1) >> vol->cluster_size_bits, NULL);
1311  	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1312  		up_write(&mftbmp_ni->runlist.lock);
1313  		ntfs_error(vol->sb, "Failed to determine last allocated "
1314  				"cluster of mft bitmap attribute.");
1315  		if (!IS_ERR(rl))
1316  			ret = -EIO;
1317  		else
1318  			ret = PTR_ERR(rl);
1319  		return ret;
1320  	}
1321  	lcn = rl->lcn + rl->length;
1322  	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1323  			(long long)lcn);
1324  	/*
1325  	 * Attempt to get the cluster following the last allocated cluster by
1326  	 * hand as it may be in the MFT zone so the allocator would not give it
1327  	 * to us.
1328  	 */
1329  	ll = lcn >> 3;
1330  	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1331  			ll >> PAGE_SHIFT);
1332  	if (IS_ERR(page)) {
1333  		up_write(&mftbmp_ni->runlist.lock);
1334  		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1335  		return PTR_ERR(page);
1336  	}
1337  	b = (u8*)page_address(page) + (ll & ~PAGE_MASK);
1338  	tb = 1 << (lcn & 7ull);
1339  	down_write(&vol->lcnbmp_lock);
1340  	if (*b != 0xff && !(*b & tb)) {
1341  		/* Next cluster is free, allocate it. */
1342  		*b |= tb;
1343  		flush_dcache_page(page);
1344  		set_page_dirty(page);
1345  		up_write(&vol->lcnbmp_lock);
1346  		ntfs_unmap_page(page);
1347  		/* Update the mft bitmap runlist. */
1348  		rl->length++;
1349  		rl[1].vcn++;
1350  		status.added_cluster = 1;
1351  		ntfs_debug("Appending one cluster to mft bitmap.");
1352  	} else {
1353  		up_write(&vol->lcnbmp_lock);
1354  		ntfs_unmap_page(page);
1355  		/* Allocate a cluster from the DATA_ZONE. */
1356  		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1357  				true);
1358  		if (IS_ERR(rl2)) {
1359  			up_write(&mftbmp_ni->runlist.lock);
1360  			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1361  					"the mft bitmap.");
1362  			return PTR_ERR(rl2);
1363  		}
1364  		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1365  		if (IS_ERR(rl)) {
1366  			up_write(&mftbmp_ni->runlist.lock);
1367  			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1368  					"bitmap.");
1369  			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1370  				ntfs_error(vol->sb, "Failed to deallocate "
1371  						"allocated cluster.%s", es);
1372  				NVolSetErrors(vol);
1373  			}
1374  			ntfs_free(rl2);
1375  			return PTR_ERR(rl);
1376  		}
1377  		mftbmp_ni->runlist.rl = rl;
1378  		status.added_run = 1;
1379  		ntfs_debug("Adding one run to mft bitmap.");
1380  		/* Find the last run in the new runlist. */
1381  		for (; rl[1].length; rl++)
1382  			;
1383  	}
1384  	/*
1385  	 * Update the attribute record as well.  Note: @rl is the last
1386  	 * (non-terminator) runlist element of mft bitmap.
1387  	 */
1388  	mrec = map_mft_record(mft_ni);
1389  	if (IS_ERR(mrec)) {
1390  		ntfs_error(vol->sb, "Failed to map mft record.");
1391  		ret = PTR_ERR(mrec);
1392  		goto undo_alloc;
1393  	}
1394  	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1395  	if (unlikely(!ctx)) {
1396  		ntfs_error(vol->sb, "Failed to get search context.");
1397  		ret = -ENOMEM;
1398  		goto undo_alloc;
1399  	}
1400  	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1401  			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1402  			0, ctx);
1403  	if (unlikely(ret)) {
1404  		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1405  				"mft bitmap attribute.");
1406  		if (ret == -ENOENT)
1407  			ret = -EIO;
1408  		goto undo_alloc;
1409  	}
1410  	a = ctx->attr;
1411  	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1412  	/* Search back for the previous last allocated cluster of mft bitmap. */
1413  	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1414  		if (ll >= rl2->vcn)
1415  			break;
1416  	}
1417  	BUG_ON(ll < rl2->vcn);
1418  	BUG_ON(ll >= rl2->vcn + rl2->length);
1419  	/* Get the size for the new mapping pairs array for this extent. */
1420  	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1421  	if (unlikely(mp_size <= 0)) {
1422  		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1423  				"mft bitmap attribute extent.");
1424  		ret = mp_size;
1425  		if (!ret)
1426  			ret = -EIO;
1427  		goto undo_alloc;
1428  	}
1429  	/* Expand the attribute record if necessary. */
1430  	old_alen = le32_to_cpu(a->length);
1431  	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1432  			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1433  	if (unlikely(ret)) {
1434  		if (ret != -ENOSPC) {
1435  			ntfs_error(vol->sb, "Failed to resize attribute "
1436  					"record for mft bitmap attribute.");
1437  			goto undo_alloc;
1438  		}
1439  		// TODO: Deal with this by moving this extent to a new mft
1440  		// record or by starting a new extent in a new mft record or by
1441  		// moving other attributes out of this mft record.
1442  		// Note: It will need to be a special mft record and if none of
1443  		// those are available it gets rather complicated...
1444  		ntfs_error(vol->sb, "Not enough space in this mft record to "
1445  				"accommodate extended mft bitmap attribute "
1446  				"extent.  Cannot handle this yet.");
1447  		ret = -EOPNOTSUPP;
1448  		goto undo_alloc;
1449  	}
1450  	status.mp_rebuilt = 1;
1451  	/* Generate the mapping pairs array directly into the attr record. */
1452  	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1453  			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1454  			mp_size, rl2, ll, -1, NULL);
1455  	if (unlikely(ret)) {
1456  		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1457  				"mft bitmap attribute.");
1458  		goto undo_alloc;
1459  	}
1460  	/* Update the highest_vcn. */
1461  	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1462  	/*
1463  	 * We now have extended the mft bitmap allocated_size by one cluster.
1464  	 * Reflect this in the ntfs_inode structure and the attribute record.
1465  	 */
1466  	if (a->data.non_resident.lowest_vcn) {
1467  		/*
1468  		 * We are not in the first attribute extent, switch to it, but
1469  		 * first ensure the changes will make it to disk later.
1470  		 */
1471  		flush_dcache_mft_record_page(ctx->ntfs_ino);
1472  		mark_mft_record_dirty(ctx->ntfs_ino);
1473  		ntfs_attr_reinit_search_ctx(ctx);
1474  		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1475  				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1476  				0, ctx);
1477  		if (unlikely(ret)) {
1478  			ntfs_error(vol->sb, "Failed to find first attribute "
1479  					"extent of mft bitmap attribute.");
1480  			goto restore_undo_alloc;
1481  		}
1482  		a = ctx->attr;
1483  	}
1484  	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1485  	mftbmp_ni->allocated_size += vol->cluster_size;
1486  	a->data.non_resident.allocated_size =
1487  			cpu_to_sle64(mftbmp_ni->allocated_size);
1488  	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1489  	/* Ensure the changes make it to disk. */
1490  	flush_dcache_mft_record_page(ctx->ntfs_ino);
1491  	mark_mft_record_dirty(ctx->ntfs_ino);
1492  	ntfs_attr_put_search_ctx(ctx);
1493  	unmap_mft_record(mft_ni);
1494  	up_write(&mftbmp_ni->runlist.lock);
1495  	ntfs_debug("Done.");
1496  	return 0;
1497  restore_undo_alloc:
1498  	ntfs_attr_reinit_search_ctx(ctx);
1499  	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1500  			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1501  			0, ctx)) {
1502  		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1503  				"mft bitmap attribute.%s", es);
1504  		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1505  		mftbmp_ni->allocated_size += vol->cluster_size;
1506  		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1507  		ntfs_attr_put_search_ctx(ctx);
1508  		unmap_mft_record(mft_ni);
1509  		up_write(&mftbmp_ni->runlist.lock);
1510  		/*
1511  		 * The only thing that is now wrong is ->allocated_size of the
1512  		 * base attribute extent which chkdsk should be able to fix.
1513  		 */
1514  		NVolSetErrors(vol);
1515  		return ret;
1516  	}
1517  	a = ctx->attr;
1518  	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1519  undo_alloc:
1520  	if (status.added_cluster) {
1521  		/* Truncate the last run in the runlist by one cluster. */
1522  		rl->length--;
1523  		rl[1].vcn--;
1524  	} else if (status.added_run) {
1525  		lcn = rl->lcn;
1526  		/* Remove the last run from the runlist. */
1527  		rl->lcn = rl[1].lcn;
1528  		rl->length = 0;
1529  	}
1530  	/* Deallocate the cluster. */
1531  	down_write(&vol->lcnbmp_lock);
1532  	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1533  		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1534  		NVolSetErrors(vol);
1535  	}
1536  	up_write(&vol->lcnbmp_lock);
1537  	if (status.mp_rebuilt) {
1538  		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1539  				a->data.non_resident.mapping_pairs_offset),
1540  				old_alen - le16_to_cpu(
1541  				a->data.non_resident.mapping_pairs_offset),
1542  				rl2, ll, -1, NULL)) {
1543  			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1544  					"array.%s", es);
1545  			NVolSetErrors(vol);
1546  		}
1547  		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1548  			ntfs_error(vol->sb, "Failed to restore attribute "
1549  					"record.%s", es);
1550  			NVolSetErrors(vol);
1551  		}
1552  		flush_dcache_mft_record_page(ctx->ntfs_ino);
1553  		mark_mft_record_dirty(ctx->ntfs_ino);
1554  	}
1555  	if (ctx)
1556  		ntfs_attr_put_search_ctx(ctx);
1557  	if (!IS_ERR(mrec))
1558  		unmap_mft_record(mft_ni);
1559  	up_write(&mftbmp_ni->runlist.lock);
1560  	return ret;
1561  }
1562  
1563  /**
1564   * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1565   * @vol:	volume on which to extend the mft bitmap attribute
1566   *
1567   * Extend the initialized portion of the mft bitmap attribute on the ntfs
1568   * volume @vol by 8 bytes.
1569   *
1570   * Note:  Only changes initialized_size and data_size, i.e. requires that
1571   * allocated_size is big enough to fit the new initialized_size.
1572   *
1573   * Return 0 on success and -error on error.
1574   *
1575   * Locking: Caller must hold vol->mftbmp_lock for writing.
1576   */
1577  static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1578  {
1579  	s64 old_data_size, old_initialized_size;
1580  	unsigned long flags;
1581  	struct inode *mftbmp_vi;
1582  	ntfs_inode *mft_ni, *mftbmp_ni;
1583  	ntfs_attr_search_ctx *ctx;
1584  	MFT_RECORD *mrec;
1585  	ATTR_RECORD *a;
1586  	int ret;
1587  
1588  	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1589  	mft_ni = NTFS_I(vol->mft_ino);
1590  	mftbmp_vi = vol->mftbmp_ino;
1591  	mftbmp_ni = NTFS_I(mftbmp_vi);
1592  	/* Get the attribute record. */
1593  	mrec = map_mft_record(mft_ni);
1594  	if (IS_ERR(mrec)) {
1595  		ntfs_error(vol->sb, "Failed to map mft record.");
1596  		return PTR_ERR(mrec);
1597  	}
1598  	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1599  	if (unlikely(!ctx)) {
1600  		ntfs_error(vol->sb, "Failed to get search context.");
1601  		ret = -ENOMEM;
1602  		goto unm_err_out;
1603  	}
1604  	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1605  			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1606  	if (unlikely(ret)) {
1607  		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1608  				"mft bitmap attribute.");
1609  		if (ret == -ENOENT)
1610  			ret = -EIO;
1611  		goto put_err_out;
1612  	}
1613  	a = ctx->attr;
1614  	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1615  	old_data_size = i_size_read(mftbmp_vi);
1616  	old_initialized_size = mftbmp_ni->initialized_size;
1617  	/*
1618  	 * We can simply update the initialized_size before filling the space
1619  	 * with zeroes because the caller is holding the mft bitmap lock for
1620  	 * writing which ensures that no one else is trying to access the data.
1621  	 */
1622  	mftbmp_ni->initialized_size += 8;
1623  	a->data.non_resident.initialized_size =
1624  			cpu_to_sle64(mftbmp_ni->initialized_size);
1625  	if (mftbmp_ni->initialized_size > old_data_size) {
1626  		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1627  		a->data.non_resident.data_size =
1628  				cpu_to_sle64(mftbmp_ni->initialized_size);
1629  	}
1630  	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1631  	/* Ensure the changes make it to disk. */
1632  	flush_dcache_mft_record_page(ctx->ntfs_ino);
1633  	mark_mft_record_dirty(ctx->ntfs_ino);
1634  	ntfs_attr_put_search_ctx(ctx);
1635  	unmap_mft_record(mft_ni);
1636  	/* Initialize the mft bitmap attribute value with zeroes. */
1637  	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1638  	if (likely(!ret)) {
1639  		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1640  				"bitmap.");
1641  		return 0;
1642  	}
1643  	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1644  	/* Try to recover from the error. */
1645  	mrec = map_mft_record(mft_ni);
1646  	if (IS_ERR(mrec)) {
1647  		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1648  		NVolSetErrors(vol);
1649  		return ret;
1650  	}
1651  	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1652  	if (unlikely(!ctx)) {
1653  		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1654  		NVolSetErrors(vol);
1655  		goto unm_err_out;
1656  	}
1657  	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1658  			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1659  		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1660  				"mft bitmap attribute.%s", es);
1661  		NVolSetErrors(vol);
1662  put_err_out:
1663  		ntfs_attr_put_search_ctx(ctx);
1664  unm_err_out:
1665  		unmap_mft_record(mft_ni);
1666  		goto err_out;
1667  	}
1668  	a = ctx->attr;
1669  	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1670  	mftbmp_ni->initialized_size = old_initialized_size;
1671  	a->data.non_resident.initialized_size =
1672  			cpu_to_sle64(old_initialized_size);
1673  	if (i_size_read(mftbmp_vi) != old_data_size) {
1674  		i_size_write(mftbmp_vi, old_data_size);
1675  		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1676  	}
1677  	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1678  	flush_dcache_mft_record_page(ctx->ntfs_ino);
1679  	mark_mft_record_dirty(ctx->ntfs_ino);
1680  	ntfs_attr_put_search_ctx(ctx);
1681  	unmap_mft_record(mft_ni);
1682  #ifdef DEBUG
1683  	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1684  	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1685  			"data_size 0x%llx, initialized_size 0x%llx.",
1686  			(long long)mftbmp_ni->allocated_size,
1687  			(long long)i_size_read(mftbmp_vi),
1688  			(long long)mftbmp_ni->initialized_size);
1689  	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1690  #endif /* DEBUG */
1691  err_out:
1692  	return ret;
1693  }
1694  
1695  /**
1696   * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1697   * @vol:	volume on which to extend the mft data attribute
1698   *
1699   * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1700   * worth of clusters or if not enough space for this by one mft record worth
1701   * of clusters.
1702   *
1703   * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1704   * data_size.
1705   *
1706   * Return 0 on success and -errno on error.
1707   *
1708   * Locking: - Caller must hold vol->mftbmp_lock for writing.
1709   *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1710   *	      writing and releases it before returning.
1711   *	    - This function calls functions which take vol->lcnbmp_lock for
1712   *	      writing and release it before returning.
1713   */
1714  static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1715  {
1716  	LCN lcn;
1717  	VCN old_last_vcn;
1718  	s64 min_nr, nr, ll;
1719  	unsigned long flags;
1720  	ntfs_inode *mft_ni;
1721  	runlist_element *rl, *rl2;
1722  	ntfs_attr_search_ctx *ctx = NULL;
1723  	MFT_RECORD *mrec;
1724  	ATTR_RECORD *a = NULL;
1725  	int ret, mp_size;
1726  	u32 old_alen = 0;
1727  	bool mp_rebuilt = false;
1728  
1729  	ntfs_debug("Extending mft data allocation.");
1730  	mft_ni = NTFS_I(vol->mft_ino);
1731  	/*
1732  	 * Determine the preferred allocation location, i.e. the last lcn of
1733  	 * the mft data attribute.  The allocated size of the mft data
1734  	 * attribute cannot be zero so we are ok to do this.
1735  	 */
1736  	down_write(&mft_ni->runlist.lock);
1737  	read_lock_irqsave(&mft_ni->size_lock, flags);
1738  	ll = mft_ni->allocated_size;
1739  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1740  	rl = ntfs_attr_find_vcn_nolock(mft_ni,
1741  			(ll - 1) >> vol->cluster_size_bits, NULL);
1742  	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1743  		up_write(&mft_ni->runlist.lock);
1744  		ntfs_error(vol->sb, "Failed to determine last allocated "
1745  				"cluster of mft data attribute.");
1746  		if (!IS_ERR(rl))
1747  			ret = -EIO;
1748  		else
1749  			ret = PTR_ERR(rl);
1750  		return ret;
1751  	}
1752  	lcn = rl->lcn + rl->length;
1753  	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1754  	/* Minimum allocation is one mft record worth of clusters. */
1755  	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1756  	if (!min_nr)
1757  		min_nr = 1;
1758  	/* Want to allocate 16 mft records worth of clusters. */
1759  	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1760  	if (!nr)
1761  		nr = min_nr;
1762  	/* Ensure we do not go above 2^32-1 mft records. */
1763  	read_lock_irqsave(&mft_ni->size_lock, flags);
1764  	ll = mft_ni->allocated_size;
1765  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1766  	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1767  			vol->mft_record_size_bits >= (1ll << 32))) {
1768  		nr = min_nr;
1769  		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1770  				vol->mft_record_size_bits >= (1ll << 32))) {
1771  			ntfs_warning(vol->sb, "Cannot allocate mft record "
1772  					"because the maximum number of inodes "
1773  					"(2^32) has already been reached.");
1774  			up_write(&mft_ni->runlist.lock);
1775  			return -ENOSPC;
1776  		}
1777  	}
1778  	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1779  			nr > min_nr ? "default" : "minimal", (long long)nr);
1780  	old_last_vcn = rl[1].vcn;
1781  	do {
1782  		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1783  				true);
1784  		if (likely(!IS_ERR(rl2)))
1785  			break;
1786  		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1787  			ntfs_error(vol->sb, "Failed to allocate the minimal "
1788  					"number of clusters (%lli) for the "
1789  					"mft data attribute.", (long long)nr);
1790  			up_write(&mft_ni->runlist.lock);
1791  			return PTR_ERR(rl2);
1792  		}
1793  		/*
1794  		 * There is not enough space to do the allocation, but there
1795  		 * might be enough space to do a minimal allocation so try that
1796  		 * before failing.
1797  		 */
1798  		nr = min_nr;
1799  		ntfs_debug("Retrying mft data allocation with minimal cluster "
1800  				"count %lli.", (long long)nr);
1801  	} while (1);
1802  	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1803  	if (IS_ERR(rl)) {
1804  		up_write(&mft_ni->runlist.lock);
1805  		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1806  				"attribute.");
1807  		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1808  			ntfs_error(vol->sb, "Failed to deallocate clusters "
1809  					"from the mft data attribute.%s", es);
1810  			NVolSetErrors(vol);
1811  		}
1812  		ntfs_free(rl2);
1813  		return PTR_ERR(rl);
1814  	}
1815  	mft_ni->runlist.rl = rl;
1816  	ntfs_debug("Allocated %lli clusters.", (long long)nr);
1817  	/* Find the last run in the new runlist. */
1818  	for (; rl[1].length; rl++)
1819  		;
1820  	/* Update the attribute record as well. */
1821  	mrec = map_mft_record(mft_ni);
1822  	if (IS_ERR(mrec)) {
1823  		ntfs_error(vol->sb, "Failed to map mft record.");
1824  		ret = PTR_ERR(mrec);
1825  		goto undo_alloc;
1826  	}
1827  	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1828  	if (unlikely(!ctx)) {
1829  		ntfs_error(vol->sb, "Failed to get search context.");
1830  		ret = -ENOMEM;
1831  		goto undo_alloc;
1832  	}
1833  	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1834  			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1835  	if (unlikely(ret)) {
1836  		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1837  				"mft data attribute.");
1838  		if (ret == -ENOENT)
1839  			ret = -EIO;
1840  		goto undo_alloc;
1841  	}
1842  	a = ctx->attr;
1843  	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1844  	/* Search back for the previous last allocated cluster of mft bitmap. */
1845  	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1846  		if (ll >= rl2->vcn)
1847  			break;
1848  	}
1849  	BUG_ON(ll < rl2->vcn);
1850  	BUG_ON(ll >= rl2->vcn + rl2->length);
1851  	/* Get the size for the new mapping pairs array for this extent. */
1852  	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1853  	if (unlikely(mp_size <= 0)) {
1854  		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1855  				"mft data attribute extent.");
1856  		ret = mp_size;
1857  		if (!ret)
1858  			ret = -EIO;
1859  		goto undo_alloc;
1860  	}
1861  	/* Expand the attribute record if necessary. */
1862  	old_alen = le32_to_cpu(a->length);
1863  	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1864  			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1865  	if (unlikely(ret)) {
1866  		if (ret != -ENOSPC) {
1867  			ntfs_error(vol->sb, "Failed to resize attribute "
1868  					"record for mft data attribute.");
1869  			goto undo_alloc;
1870  		}
1871  		// TODO: Deal with this by moving this extent to a new mft
1872  		// record or by starting a new extent in a new mft record or by
1873  		// moving other attributes out of this mft record.
1874  		// Note: Use the special reserved mft records and ensure that
1875  		// this extent is not required to find the mft record in
1876  		// question.  If no free special records left we would need to
1877  		// move an existing record away, insert ours in its place, and
1878  		// then place the moved record into the newly allocated space
1879  		// and we would then need to update all references to this mft
1880  		// record appropriately.  This is rather complicated...
1881  		ntfs_error(vol->sb, "Not enough space in this mft record to "
1882  				"accommodate extended mft data attribute "
1883  				"extent.  Cannot handle this yet.");
1884  		ret = -EOPNOTSUPP;
1885  		goto undo_alloc;
1886  	}
1887  	mp_rebuilt = true;
1888  	/* Generate the mapping pairs array directly into the attr record. */
1889  	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1890  			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1891  			mp_size, rl2, ll, -1, NULL);
1892  	if (unlikely(ret)) {
1893  		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1894  				"mft data attribute.");
1895  		goto undo_alloc;
1896  	}
1897  	/* Update the highest_vcn. */
1898  	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1899  	/*
1900  	 * We now have extended the mft data allocated_size by nr clusters.
1901  	 * Reflect this in the ntfs_inode structure and the attribute record.
1902  	 * @rl is the last (non-terminator) runlist element of mft data
1903  	 * attribute.
1904  	 */
1905  	if (a->data.non_resident.lowest_vcn) {
1906  		/*
1907  		 * We are not in the first attribute extent, switch to it, but
1908  		 * first ensure the changes will make it to disk later.
1909  		 */
1910  		flush_dcache_mft_record_page(ctx->ntfs_ino);
1911  		mark_mft_record_dirty(ctx->ntfs_ino);
1912  		ntfs_attr_reinit_search_ctx(ctx);
1913  		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1914  				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1915  				ctx);
1916  		if (unlikely(ret)) {
1917  			ntfs_error(vol->sb, "Failed to find first attribute "
1918  					"extent of mft data attribute.");
1919  			goto restore_undo_alloc;
1920  		}
1921  		a = ctx->attr;
1922  	}
1923  	write_lock_irqsave(&mft_ni->size_lock, flags);
1924  	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1925  	a->data.non_resident.allocated_size =
1926  			cpu_to_sle64(mft_ni->allocated_size);
1927  	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1928  	/* Ensure the changes make it to disk. */
1929  	flush_dcache_mft_record_page(ctx->ntfs_ino);
1930  	mark_mft_record_dirty(ctx->ntfs_ino);
1931  	ntfs_attr_put_search_ctx(ctx);
1932  	unmap_mft_record(mft_ni);
1933  	up_write(&mft_ni->runlist.lock);
1934  	ntfs_debug("Done.");
1935  	return 0;
1936  restore_undo_alloc:
1937  	ntfs_attr_reinit_search_ctx(ctx);
1938  	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1939  			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1940  		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1941  				"mft data attribute.%s", es);
1942  		write_lock_irqsave(&mft_ni->size_lock, flags);
1943  		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1944  		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1945  		ntfs_attr_put_search_ctx(ctx);
1946  		unmap_mft_record(mft_ni);
1947  		up_write(&mft_ni->runlist.lock);
1948  		/*
1949  		 * The only thing that is now wrong is ->allocated_size of the
1950  		 * base attribute extent which chkdsk should be able to fix.
1951  		 */
1952  		NVolSetErrors(vol);
1953  		return ret;
1954  	}
1955  	ctx->attr->data.non_resident.highest_vcn =
1956  			cpu_to_sle64(old_last_vcn - 1);
1957  undo_alloc:
1958  	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1959  		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1960  				"attribute.%s", es);
1961  		NVolSetErrors(vol);
1962  	}
1963  	a = ctx->attr;
1964  	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1965  		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1966  				"runlist.%s", es);
1967  		NVolSetErrors(vol);
1968  	}
1969  	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1970  		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1971  				a->data.non_resident.mapping_pairs_offset),
1972  				old_alen - le16_to_cpu(
1973  				a->data.non_resident.mapping_pairs_offset),
1974  				rl2, ll, -1, NULL)) {
1975  			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1976  					"array.%s", es);
1977  			NVolSetErrors(vol);
1978  		}
1979  		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1980  			ntfs_error(vol->sb, "Failed to restore attribute "
1981  					"record.%s", es);
1982  			NVolSetErrors(vol);
1983  		}
1984  		flush_dcache_mft_record_page(ctx->ntfs_ino);
1985  		mark_mft_record_dirty(ctx->ntfs_ino);
1986  	} else if (IS_ERR(ctx->mrec)) {
1987  		ntfs_error(vol->sb, "Failed to restore attribute search "
1988  				"context.%s", es);
1989  		NVolSetErrors(vol);
1990  	}
1991  	if (ctx)
1992  		ntfs_attr_put_search_ctx(ctx);
1993  	if (!IS_ERR(mrec))
1994  		unmap_mft_record(mft_ni);
1995  	up_write(&mft_ni->runlist.lock);
1996  	return ret;
1997  }
1998  
1999  /**
2000   * ntfs_mft_record_layout - layout an mft record into a memory buffer
2001   * @vol:	volume to which the mft record will belong
2002   * @mft_no:	mft reference specifying the mft record number
2003   * @m:		destination buffer of size >= @vol->mft_record_size bytes
2004   *
2005   * Layout an empty, unused mft record with the mft record number @mft_no into
2006   * the buffer @m.  The volume @vol is needed because the mft record structure
2007   * was modified in NTFS 3.1 so we need to know which volume version this mft
2008   * record will be used on.
2009   *
2010   * Return 0 on success and -errno on error.
2011   */
2012  static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2013  		MFT_RECORD *m)
2014  {
2015  	ATTR_RECORD *a;
2016  
2017  	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2018  	if (mft_no >= (1ll << 32)) {
2019  		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2020  				"maximum of 2^32.", (long long)mft_no);
2021  		return -ERANGE;
2022  	}
2023  	/* Start by clearing the whole mft record to gives us a clean slate. */
2024  	memset(m, 0, vol->mft_record_size);
2025  	/* Aligned to 2-byte boundary. */
2026  	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2027  		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2028  	else {
2029  		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2030  		/*
2031  		 * Set the NTFS 3.1+ specific fields while we know that the
2032  		 * volume version is 3.1+.
2033  		 */
2034  		m->reserved = 0;
2035  		m->mft_record_number = cpu_to_le32((u32)mft_no);
2036  	}
2037  	m->magic = magic_FILE;
2038  	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2039  		m->usa_count = cpu_to_le16(vol->mft_record_size /
2040  				NTFS_BLOCK_SIZE + 1);
2041  	else {
2042  		m->usa_count = cpu_to_le16(1);
2043  		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2044  				"size.  Setting usa_count to 1.  If chkdsk "
2045  				"reports this as corruption, please email "
2046  				"linux-ntfs-dev@lists.sourceforge.net stating "
2047  				"that you saw this message and that the "
2048  				"modified filesystem created was corrupt.  "
2049  				"Thank you.");
2050  	}
2051  	/* Set the update sequence number to 1. */
2052  	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2053  	m->lsn = 0;
2054  	m->sequence_number = cpu_to_le16(1);
2055  	m->link_count = 0;
2056  	/*
2057  	 * Place the attributes straight after the update sequence array,
2058  	 * aligned to 8-byte boundary.
2059  	 */
2060  	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2061  			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2062  	m->flags = 0;
2063  	/*
2064  	 * Using attrs_offset plus eight bytes (for the termination attribute).
2065  	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2066  	 * align again.
2067  	 */
2068  	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2069  	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2070  	m->base_mft_record = 0;
2071  	m->next_attr_instance = 0;
2072  	/* Add the termination attribute. */
2073  	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2074  	a->type = AT_END;
2075  	a->length = 0;
2076  	ntfs_debug("Done.");
2077  	return 0;
2078  }
2079  
2080  /**
2081   * ntfs_mft_record_format - format an mft record on an ntfs volume
2082   * @vol:	volume on which to format the mft record
2083   * @mft_no:	mft record number to format
2084   *
2085   * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2086   * mft record into the appropriate place of the mft data attribute.  This is
2087   * used when extending the mft data attribute.
2088   *
2089   * Return 0 on success and -errno on error.
2090   */
2091  static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2092  {
2093  	loff_t i_size;
2094  	struct inode *mft_vi = vol->mft_ino;
2095  	struct page *page;
2096  	MFT_RECORD *m;
2097  	pgoff_t index, end_index;
2098  	unsigned int ofs;
2099  	int err;
2100  
2101  	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2102  	/*
2103  	 * The index into the page cache and the offset within the page cache
2104  	 * page of the wanted mft record.
2105  	 */
2106  	index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT;
2107  	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
2108  	/* The maximum valid index into the page cache for $MFT's data. */
2109  	i_size = i_size_read(mft_vi);
2110  	end_index = i_size >> PAGE_SHIFT;
2111  	if (unlikely(index >= end_index)) {
2112  		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2113  				(i_size & ~PAGE_MASK))) {
2114  			ntfs_error(vol->sb, "Tried to format non-existing mft "
2115  					"record 0x%llx.", (long long)mft_no);
2116  			return -ENOENT;
2117  		}
2118  	}
2119  	/* Read, map, and pin the page containing the mft record. */
2120  	page = ntfs_map_page(mft_vi->i_mapping, index);
2121  	if (IS_ERR(page)) {
2122  		ntfs_error(vol->sb, "Failed to map page containing mft record "
2123  				"to format 0x%llx.", (long long)mft_no);
2124  		return PTR_ERR(page);
2125  	}
2126  	lock_page(page);
2127  	BUG_ON(!PageUptodate(page));
2128  	ClearPageUptodate(page);
2129  	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2130  	err = ntfs_mft_record_layout(vol, mft_no, m);
2131  	if (unlikely(err)) {
2132  		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2133  				(long long)mft_no);
2134  		SetPageUptodate(page);
2135  		unlock_page(page);
2136  		ntfs_unmap_page(page);
2137  		return err;
2138  	}
2139  	flush_dcache_page(page);
2140  	SetPageUptodate(page);
2141  	unlock_page(page);
2142  	/*
2143  	 * Make sure the mft record is written out to disk.  We could use
2144  	 * ilookup5() to check if an inode is in icache and so on but this is
2145  	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2146  	 */
2147  	mark_ntfs_record_dirty(page, ofs);
2148  	ntfs_unmap_page(page);
2149  	ntfs_debug("Done.");
2150  	return 0;
2151  }
2152  
2153  /**
2154   * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2155   * @vol:	[IN]  volume on which to allocate the mft record
2156   * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2157   * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2158   * @mrec:	[OUT] on successful return this is the mapped mft record
2159   *
2160   * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2161   *
2162   * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2163   * direvctory inode, and allocate it at the default allocator position.  In
2164   * this case @mode is the file mode as given to us by the caller.  We in
2165   * particular use @mode to distinguish whether a file or a directory is being
2166   * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2167   *
2168   * If @base_ni is not NULL make the allocated mft record an extent record,
2169   * allocate it starting at the mft record after the base mft record and attach
2170   * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2171   * case @mode must be 0 as it is meaningless for extent inodes.
2172   *
2173   * You need to check the return value with IS_ERR().  If false, the function
2174   * was successful and the return value is the now opened ntfs inode of the
2175   * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2176   * and locked mft record.  If IS_ERR() is true, the function failed and the
2177   * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2178   * this case.
2179   *
2180   * Allocation strategy:
2181   *
2182   * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2183   * optimize this we start scanning at the place specified by @base_ni or if
2184   * @base_ni is NULL we start where we last stopped and we perform wrap around
2185   * when we reach the end.  Note, we do not try to allocate mft records below
2186   * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2187   * to 24 are special in that they are used for storing extension mft records
2188   * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2189   * of creating a runlist with a circular dependency which once written to disk
2190   * can never be read in again.  Windows will only use records 16 to 24 for
2191   * normal files if the volume is completely out of space.  We never use them
2192   * which means that when the volume is really out of space we cannot create any
2193   * more files while Windows can still create up to 8 small files.  We can start
2194   * doing this at some later time, it does not matter much for now.
2195   *
2196   * When scanning the mft bitmap, we only search up to the last allocated mft
2197   * record.  If there are no free records left in the range 24 to number of
2198   * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2199   * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2200   * records at a time or one cluster, if cluster size is above 16kiB.  If there
2201   * is not sufficient space to do this, we try to extend by a single mft record
2202   * or one cluster, if cluster size is above the mft record size.
2203   *
2204   * No matter how many mft records we allocate, we initialize only the first
2205   * allocated mft record, incrementing mft data size and initialized size
2206   * accordingly, open an ntfs_inode for it and return it to the caller, unless
2207   * there are less than 24 mft records, in which case we allocate and initialize
2208   * mft records until we reach record 24 which we consider as the first free mft
2209   * record for use by normal files.
2210   *
2211   * If during any stage we overflow the initialized data in the mft bitmap, we
2212   * extend the initialized size (and data size) by 8 bytes, allocating another
2213   * cluster if required.  The bitmap data size has to be at least equal to the
2214   * number of mft records in the mft, but it can be bigger, in which case the
2215   * superflous bits are padded with zeroes.
2216   *
2217   * Thus, when we return successfully (IS_ERR() is false), we will have:
2218   *	- initialized / extended the mft bitmap if necessary,
2219   *	- initialized / extended the mft data if necessary,
2220   *	- set the bit corresponding to the mft record being allocated in the
2221   *	  mft bitmap,
2222   *	- opened an ntfs_inode for the allocated mft record, and we will have
2223   *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2224   *	  locked mft record.
2225   *
2226   * On error, the volume will be left in a consistent state and no record will
2227   * be allocated.  If rolling back a partial operation fails, we may leave some
2228   * inconsistent metadata in which case we set NVolErrors() so the volume is
2229   * left dirty when unmounted.
2230   *
2231   * Note, this function cannot make use of most of the normal functions, like
2232   * for example for attribute resizing, etc, because when the run list overflows
2233   * the base mft record and an attribute list is used, it is very important that
2234   * the extension mft records used to store the $DATA attribute of $MFT can be
2235   * reached without having to read the information contained inside them, as
2236   * this would make it impossible to find them in the first place after the
2237   * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2238   * rule because the bitmap is not essential for finding the mft records, but on
2239   * the other hand, handling the bitmap in this special way would make life
2240   * easier because otherwise there might be circular invocations of functions
2241   * when reading the bitmap.
2242   */
2243  ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2244  		ntfs_inode *base_ni, MFT_RECORD **mrec)
2245  {
2246  	s64 ll, bit, old_data_initialized, old_data_size;
2247  	unsigned long flags;
2248  	struct inode *vi;
2249  	struct page *page;
2250  	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2251  	ntfs_attr_search_ctx *ctx;
2252  	MFT_RECORD *m;
2253  	ATTR_RECORD *a;
2254  	pgoff_t index;
2255  	unsigned int ofs;
2256  	int err;
2257  	le16 seq_no, usn;
2258  	bool record_formatted = false;
2259  
2260  	if (base_ni) {
2261  		ntfs_debug("Entering (allocating an extent mft record for "
2262  				"base mft record 0x%llx).",
2263  				(long long)base_ni->mft_no);
2264  		/* @mode and @base_ni are mutually exclusive. */
2265  		BUG_ON(mode);
2266  	} else
2267  		ntfs_debug("Entering (allocating a base mft record).");
2268  	if (mode) {
2269  		/* @mode and @base_ni are mutually exclusive. */
2270  		BUG_ON(base_ni);
2271  		/* We only support creation of normal files and directories. */
2272  		if (!S_ISREG(mode) && !S_ISDIR(mode))
2273  			return ERR_PTR(-EOPNOTSUPP);
2274  	}
2275  	BUG_ON(!mrec);
2276  	mft_ni = NTFS_I(vol->mft_ino);
2277  	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2278  	down_write(&vol->mftbmp_lock);
2279  	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2280  	if (bit >= 0) {
2281  		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2282  				(long long)bit);
2283  		goto have_alloc_rec;
2284  	}
2285  	if (bit != -ENOSPC) {
2286  		up_write(&vol->mftbmp_lock);
2287  		return ERR_PTR(bit);
2288  	}
2289  	/*
2290  	 * No free mft records left.  If the mft bitmap already covers more
2291  	 * than the currently used mft records, the next records are all free,
2292  	 * so we can simply allocate the first unused mft record.
2293  	 * Note: We also have to make sure that the mft bitmap at least covers
2294  	 * the first 24 mft records as they are special and whilst they may not
2295  	 * be in use, we do not allocate from them.
2296  	 */
2297  	read_lock_irqsave(&mft_ni->size_lock, flags);
2298  	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2299  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2300  	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2301  	old_data_initialized = mftbmp_ni->initialized_size;
2302  	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2303  	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2304  		bit = ll;
2305  		if (bit < 24)
2306  			bit = 24;
2307  		if (unlikely(bit >= (1ll << 32)))
2308  			goto max_err_out;
2309  		ntfs_debug("Found free record (#2), bit 0x%llx.",
2310  				(long long)bit);
2311  		goto found_free_rec;
2312  	}
2313  	/*
2314  	 * The mft bitmap needs to be expanded until it covers the first unused
2315  	 * mft record that we can allocate.
2316  	 * Note: The smallest mft record we allocate is mft record 24.
2317  	 */
2318  	bit = old_data_initialized << 3;
2319  	if (unlikely(bit >= (1ll << 32)))
2320  		goto max_err_out;
2321  	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2322  	old_data_size = mftbmp_ni->allocated_size;
2323  	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2324  			"data_size 0x%llx, initialized_size 0x%llx.",
2325  			(long long)old_data_size,
2326  			(long long)i_size_read(vol->mftbmp_ino),
2327  			(long long)old_data_initialized);
2328  	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2329  	if (old_data_initialized + 8 > old_data_size) {
2330  		/* Need to extend bitmap by one more cluster. */
2331  		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2332  		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2333  		if (unlikely(err)) {
2334  			up_write(&vol->mftbmp_lock);
2335  			goto err_out;
2336  		}
2337  #ifdef DEBUG
2338  		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2339  		ntfs_debug("Status of mftbmp after allocation extension: "
2340  				"allocated_size 0x%llx, data_size 0x%llx, "
2341  				"initialized_size 0x%llx.",
2342  				(long long)mftbmp_ni->allocated_size,
2343  				(long long)i_size_read(vol->mftbmp_ino),
2344  				(long long)mftbmp_ni->initialized_size);
2345  		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2346  #endif /* DEBUG */
2347  	}
2348  	/*
2349  	 * We now have sufficient allocated space, extend the initialized_size
2350  	 * as well as the data_size if necessary and fill the new space with
2351  	 * zeroes.
2352  	 */
2353  	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2354  	if (unlikely(err)) {
2355  		up_write(&vol->mftbmp_lock);
2356  		goto err_out;
2357  	}
2358  #ifdef DEBUG
2359  	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2360  	ntfs_debug("Status of mftbmp after initialized extension: "
2361  			"allocated_size 0x%llx, data_size 0x%llx, "
2362  			"initialized_size 0x%llx.",
2363  			(long long)mftbmp_ni->allocated_size,
2364  			(long long)i_size_read(vol->mftbmp_ino),
2365  			(long long)mftbmp_ni->initialized_size);
2366  	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2367  #endif /* DEBUG */
2368  	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2369  found_free_rec:
2370  	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2371  	ntfs_debug("At found_free_rec.");
2372  	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2373  	if (unlikely(err)) {
2374  		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2375  		up_write(&vol->mftbmp_lock);
2376  		goto err_out;
2377  	}
2378  	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2379  have_alloc_rec:
2380  	/*
2381  	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2382  	 * Note, we keep hold of the mft bitmap lock for writing until all
2383  	 * modifications to the mft data attribute are complete, too, as they
2384  	 * will impact decisions for mft bitmap and mft record allocation done
2385  	 * by a parallel allocation and if the lock is not maintained a
2386  	 * parallel allocation could allocate the same mft record as this one.
2387  	 */
2388  	ll = (bit + 1) << vol->mft_record_size_bits;
2389  	read_lock_irqsave(&mft_ni->size_lock, flags);
2390  	old_data_initialized = mft_ni->initialized_size;
2391  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2392  	if (ll <= old_data_initialized) {
2393  		ntfs_debug("Allocated mft record already initialized.");
2394  		goto mft_rec_already_initialized;
2395  	}
2396  	ntfs_debug("Initializing allocated mft record.");
2397  	/*
2398  	 * The mft record is outside the initialized data.  Extend the mft data
2399  	 * attribute until it covers the allocated record.  The loop is only
2400  	 * actually traversed more than once when a freshly formatted volume is
2401  	 * first written to so it optimizes away nicely in the common case.
2402  	 */
2403  	read_lock_irqsave(&mft_ni->size_lock, flags);
2404  	ntfs_debug("Status of mft data before extension: "
2405  			"allocated_size 0x%llx, data_size 0x%llx, "
2406  			"initialized_size 0x%llx.",
2407  			(long long)mft_ni->allocated_size,
2408  			(long long)i_size_read(vol->mft_ino),
2409  			(long long)mft_ni->initialized_size);
2410  	while (ll > mft_ni->allocated_size) {
2411  		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2412  		err = ntfs_mft_data_extend_allocation_nolock(vol);
2413  		if (unlikely(err)) {
2414  			ntfs_error(vol->sb, "Failed to extend mft data "
2415  					"allocation.");
2416  			goto undo_mftbmp_alloc_nolock;
2417  		}
2418  		read_lock_irqsave(&mft_ni->size_lock, flags);
2419  		ntfs_debug("Status of mft data after allocation extension: "
2420  				"allocated_size 0x%llx, data_size 0x%llx, "
2421  				"initialized_size 0x%llx.",
2422  				(long long)mft_ni->allocated_size,
2423  				(long long)i_size_read(vol->mft_ino),
2424  				(long long)mft_ni->initialized_size);
2425  	}
2426  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2427  	/*
2428  	 * Extend mft data initialized size (and data size of course) to reach
2429  	 * the allocated mft record, formatting the mft records allong the way.
2430  	 * Note: We only modify the ntfs_inode structure as that is all that is
2431  	 * needed by ntfs_mft_record_format().  We will update the attribute
2432  	 * record itself in one fell swoop later on.
2433  	 */
2434  	write_lock_irqsave(&mft_ni->size_lock, flags);
2435  	old_data_initialized = mft_ni->initialized_size;
2436  	old_data_size = vol->mft_ino->i_size;
2437  	while (ll > mft_ni->initialized_size) {
2438  		s64 new_initialized_size, mft_no;
2439  
2440  		new_initialized_size = mft_ni->initialized_size +
2441  				vol->mft_record_size;
2442  		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2443  		if (new_initialized_size > i_size_read(vol->mft_ino))
2444  			i_size_write(vol->mft_ino, new_initialized_size);
2445  		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2446  		ntfs_debug("Initializing mft record 0x%llx.",
2447  				(long long)mft_no);
2448  		err = ntfs_mft_record_format(vol, mft_no);
2449  		if (unlikely(err)) {
2450  			ntfs_error(vol->sb, "Failed to format mft record.");
2451  			goto undo_data_init;
2452  		}
2453  		write_lock_irqsave(&mft_ni->size_lock, flags);
2454  		mft_ni->initialized_size = new_initialized_size;
2455  	}
2456  	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2457  	record_formatted = true;
2458  	/* Update the mft data attribute record to reflect the new sizes. */
2459  	m = map_mft_record(mft_ni);
2460  	if (IS_ERR(m)) {
2461  		ntfs_error(vol->sb, "Failed to map mft record.");
2462  		err = PTR_ERR(m);
2463  		goto undo_data_init;
2464  	}
2465  	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2466  	if (unlikely(!ctx)) {
2467  		ntfs_error(vol->sb, "Failed to get search context.");
2468  		err = -ENOMEM;
2469  		unmap_mft_record(mft_ni);
2470  		goto undo_data_init;
2471  	}
2472  	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2473  			CASE_SENSITIVE, 0, NULL, 0, ctx);
2474  	if (unlikely(err)) {
2475  		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2476  				"mft data attribute.");
2477  		ntfs_attr_put_search_ctx(ctx);
2478  		unmap_mft_record(mft_ni);
2479  		goto undo_data_init;
2480  	}
2481  	a = ctx->attr;
2482  	read_lock_irqsave(&mft_ni->size_lock, flags);
2483  	a->data.non_resident.initialized_size =
2484  			cpu_to_sle64(mft_ni->initialized_size);
2485  	a->data.non_resident.data_size =
2486  			cpu_to_sle64(i_size_read(vol->mft_ino));
2487  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2488  	/* Ensure the changes make it to disk. */
2489  	flush_dcache_mft_record_page(ctx->ntfs_ino);
2490  	mark_mft_record_dirty(ctx->ntfs_ino);
2491  	ntfs_attr_put_search_ctx(ctx);
2492  	unmap_mft_record(mft_ni);
2493  	read_lock_irqsave(&mft_ni->size_lock, flags);
2494  	ntfs_debug("Status of mft data after mft record initialization: "
2495  			"allocated_size 0x%llx, data_size 0x%llx, "
2496  			"initialized_size 0x%llx.",
2497  			(long long)mft_ni->allocated_size,
2498  			(long long)i_size_read(vol->mft_ino),
2499  			(long long)mft_ni->initialized_size);
2500  	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2501  	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2502  	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2503  mft_rec_already_initialized:
2504  	/*
2505  	 * We can finally drop the mft bitmap lock as the mft data attribute
2506  	 * has been fully updated.  The only disparity left is that the
2507  	 * allocated mft record still needs to be marked as in use to match the
2508  	 * set bit in the mft bitmap but this is actually not a problem since
2509  	 * this mft record is not referenced from anywhere yet and the fact
2510  	 * that it is allocated in the mft bitmap means that no-one will try to
2511  	 * allocate it either.
2512  	 */
2513  	up_write(&vol->mftbmp_lock);
2514  	/*
2515  	 * We now have allocated and initialized the mft record.  Calculate the
2516  	 * index of and the offset within the page cache page the record is in.
2517  	 */
2518  	index = bit << vol->mft_record_size_bits >> PAGE_SHIFT;
2519  	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK;
2520  	/* Read, map, and pin the page containing the mft record. */
2521  	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2522  	if (IS_ERR(page)) {
2523  		ntfs_error(vol->sb, "Failed to map page containing allocated "
2524  				"mft record 0x%llx.", (long long)bit);
2525  		err = PTR_ERR(page);
2526  		goto undo_mftbmp_alloc;
2527  	}
2528  	lock_page(page);
2529  	BUG_ON(!PageUptodate(page));
2530  	ClearPageUptodate(page);
2531  	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2532  	/* If we just formatted the mft record no need to do it again. */
2533  	if (!record_formatted) {
2534  		/* Sanity check that the mft record is really not in use. */
2535  		if (ntfs_is_file_record(m->magic) &&
2536  				(m->flags & MFT_RECORD_IN_USE)) {
2537  			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2538  					"free in mft bitmap but is marked "
2539  					"used itself.  Corrupt filesystem.  "
2540  					"Unmount and run chkdsk.",
2541  					(long long)bit);
2542  			err = -EIO;
2543  			SetPageUptodate(page);
2544  			unlock_page(page);
2545  			ntfs_unmap_page(page);
2546  			NVolSetErrors(vol);
2547  			goto undo_mftbmp_alloc;
2548  		}
2549  		/*
2550  		 * We need to (re-)format the mft record, preserving the
2551  		 * sequence number if it is not zero as well as the update
2552  		 * sequence number if it is not zero or -1 (0xffff).  This
2553  		 * means we do not need to care whether or not something went
2554  		 * wrong with the previous mft record.
2555  		 */
2556  		seq_no = m->sequence_number;
2557  		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2558  		err = ntfs_mft_record_layout(vol, bit, m);
2559  		if (unlikely(err)) {
2560  			ntfs_error(vol->sb, "Failed to layout allocated mft "
2561  					"record 0x%llx.", (long long)bit);
2562  			SetPageUptodate(page);
2563  			unlock_page(page);
2564  			ntfs_unmap_page(page);
2565  			goto undo_mftbmp_alloc;
2566  		}
2567  		if (seq_no)
2568  			m->sequence_number = seq_no;
2569  		if (usn && le16_to_cpu(usn) != 0xffff)
2570  			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2571  	}
2572  	/* Set the mft record itself in use. */
2573  	m->flags |= MFT_RECORD_IN_USE;
2574  	if (S_ISDIR(mode))
2575  		m->flags |= MFT_RECORD_IS_DIRECTORY;
2576  	flush_dcache_page(page);
2577  	SetPageUptodate(page);
2578  	if (base_ni) {
2579  		MFT_RECORD *m_tmp;
2580  
2581  		/*
2582  		 * Setup the base mft record in the extent mft record.  This
2583  		 * completes initialization of the allocated extent mft record
2584  		 * and we can simply use it with map_extent_mft_record().
2585  		 */
2586  		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2587  				base_ni->seq_no);
2588  		/*
2589  		 * Allocate an extent inode structure for the new mft record,
2590  		 * attach it to the base inode @base_ni and map, pin, and lock
2591  		 * its, i.e. the allocated, mft record.
2592  		 */
2593  		m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2594  		if (IS_ERR(m_tmp)) {
2595  			ntfs_error(vol->sb, "Failed to map allocated extent "
2596  					"mft record 0x%llx.", (long long)bit);
2597  			err = PTR_ERR(m_tmp);
2598  			/* Set the mft record itself not in use. */
2599  			m->flags &= cpu_to_le16(
2600  					~le16_to_cpu(MFT_RECORD_IN_USE));
2601  			flush_dcache_page(page);
2602  			/* Make sure the mft record is written out to disk. */
2603  			mark_ntfs_record_dirty(page, ofs);
2604  			unlock_page(page);
2605  			ntfs_unmap_page(page);
2606  			goto undo_mftbmp_alloc;
2607  		}
2608  		BUG_ON(m != m_tmp);
2609  		/*
2610  		 * Make sure the allocated mft record is written out to disk.
2611  		 * No need to set the inode dirty because the caller is going
2612  		 * to do that anyway after finishing with the new extent mft
2613  		 * record (e.g. at a minimum a new attribute will be added to
2614  		 * the mft record.
2615  		 */
2616  		mark_ntfs_record_dirty(page, ofs);
2617  		unlock_page(page);
2618  		/*
2619  		 * Need to unmap the page since map_extent_mft_record() mapped
2620  		 * it as well so we have it mapped twice at the moment.
2621  		 */
2622  		ntfs_unmap_page(page);
2623  	} else {
2624  		/*
2625  		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2626  		 * is set to 1 but the mft record->link_count is 0.  The caller
2627  		 * needs to bear this in mind.
2628  		 */
2629  		vi = new_inode(vol->sb);
2630  		if (unlikely(!vi)) {
2631  			err = -ENOMEM;
2632  			/* Set the mft record itself not in use. */
2633  			m->flags &= cpu_to_le16(
2634  					~le16_to_cpu(MFT_RECORD_IN_USE));
2635  			flush_dcache_page(page);
2636  			/* Make sure the mft record is written out to disk. */
2637  			mark_ntfs_record_dirty(page, ofs);
2638  			unlock_page(page);
2639  			ntfs_unmap_page(page);
2640  			goto undo_mftbmp_alloc;
2641  		}
2642  		vi->i_ino = bit;
2643  		/*
2644  		 * This is for checking whether an inode has changed w.r.t. a
2645  		 * file so that the file can be updated if necessary (compare
2646  		 * with f_version).
2647  		 */
2648  		vi->i_version = 1;
2649  
2650  		/* The owner and group come from the ntfs volume. */
2651  		vi->i_uid = vol->uid;
2652  		vi->i_gid = vol->gid;
2653  
2654  		/* Initialize the ntfs specific part of @vi. */
2655  		ntfs_init_big_inode(vi);
2656  		ni = NTFS_I(vi);
2657  		/*
2658  		 * Set the appropriate mode, attribute type, and name.  For
2659  		 * directories, also setup the index values to the defaults.
2660  		 */
2661  		if (S_ISDIR(mode)) {
2662  			vi->i_mode = S_IFDIR | S_IRWXUGO;
2663  			vi->i_mode &= ~vol->dmask;
2664  
2665  			NInoSetMstProtected(ni);
2666  			ni->type = AT_INDEX_ALLOCATION;
2667  			ni->name = I30;
2668  			ni->name_len = 4;
2669  
2670  			ni->itype.index.block_size = 4096;
2671  			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2672  			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2673  			if (vol->cluster_size <= ni->itype.index.block_size) {
2674  				ni->itype.index.vcn_size = vol->cluster_size;
2675  				ni->itype.index.vcn_size_bits =
2676  						vol->cluster_size_bits;
2677  			} else {
2678  				ni->itype.index.vcn_size = vol->sector_size;
2679  				ni->itype.index.vcn_size_bits =
2680  						vol->sector_size_bits;
2681  			}
2682  		} else {
2683  			vi->i_mode = S_IFREG | S_IRWXUGO;
2684  			vi->i_mode &= ~vol->fmask;
2685  
2686  			ni->type = AT_DATA;
2687  			ni->name = NULL;
2688  			ni->name_len = 0;
2689  		}
2690  		if (IS_RDONLY(vi))
2691  			vi->i_mode &= ~S_IWUGO;
2692  
2693  		/* Set the inode times to the current time. */
2694  		vi->i_atime = vi->i_mtime = vi->i_ctime =
2695  			current_fs_time(vi->i_sb);
2696  		/*
2697  		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2698  		 * the call to ntfs_init_big_inode() below.
2699  		 */
2700  		vi->i_size = 0;
2701  		vi->i_blocks = 0;
2702  
2703  		/* Set the sequence number. */
2704  		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2705  		/*
2706  		 * Manually map, pin, and lock the mft record as we already
2707  		 * have its page mapped and it is very easy to do.
2708  		 */
2709  		atomic_inc(&ni->count);
2710  		mutex_lock(&ni->mrec_lock);
2711  		ni->page = page;
2712  		ni->page_ofs = ofs;
2713  		/*
2714  		 * Make sure the allocated mft record is written out to disk.
2715  		 * NOTE: We do not set the ntfs inode dirty because this would
2716  		 * fail in ntfs_write_inode() because the inode does not have a
2717  		 * standard information attribute yet.  Also, there is no need
2718  		 * to set the inode dirty because the caller is going to do
2719  		 * that anyway after finishing with the new mft record (e.g. at
2720  		 * a minimum some new attributes will be added to the mft
2721  		 * record.
2722  		 */
2723  		mark_ntfs_record_dirty(page, ofs);
2724  		unlock_page(page);
2725  
2726  		/* Add the inode to the inode hash for the superblock. */
2727  		insert_inode_hash(vi);
2728  
2729  		/* Update the default mft allocation position. */
2730  		vol->mft_data_pos = bit + 1;
2731  	}
2732  	/*
2733  	 * Return the opened, allocated inode of the allocated mft record as
2734  	 * well as the mapped, pinned, and locked mft record.
2735  	 */
2736  	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2737  			base_ni ? "extent " : "", (long long)bit);
2738  	*mrec = m;
2739  	return ni;
2740  undo_data_init:
2741  	write_lock_irqsave(&mft_ni->size_lock, flags);
2742  	mft_ni->initialized_size = old_data_initialized;
2743  	i_size_write(vol->mft_ino, old_data_size);
2744  	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2745  	goto undo_mftbmp_alloc_nolock;
2746  undo_mftbmp_alloc:
2747  	down_write(&vol->mftbmp_lock);
2748  undo_mftbmp_alloc_nolock:
2749  	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2750  		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2751  		NVolSetErrors(vol);
2752  	}
2753  	up_write(&vol->mftbmp_lock);
2754  err_out:
2755  	return ERR_PTR(err);
2756  max_err_out:
2757  	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2758  			"number of inodes (2^32) has already been reached.");
2759  	up_write(&vol->mftbmp_lock);
2760  	return ERR_PTR(-ENOSPC);
2761  }
2762  
2763  /**
2764   * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2765   * @ni:		ntfs inode of the mapped extent mft record to free
2766   * @m:		mapped extent mft record of the ntfs inode @ni
2767   *
2768   * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2769   *
2770   * Note that this function unmaps the mft record and closes and destroys @ni
2771   * internally and hence you cannot use either @ni nor @m any more after this
2772   * function returns success.
2773   *
2774   * On success return 0 and on error return -errno.  @ni and @m are still valid
2775   * in this case and have not been freed.
2776   *
2777   * For some errors an error message is displayed and the success code 0 is
2778   * returned and the volume is then left dirty on umount.  This makes sense in
2779   * case we could not rollback the changes that were already done since the
2780   * caller no longer wants to reference this mft record so it does not matter to
2781   * the caller if something is wrong with it as long as it is properly detached
2782   * from the base inode.
2783   */
2784  int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2785  {
2786  	unsigned long mft_no = ni->mft_no;
2787  	ntfs_volume *vol = ni->vol;
2788  	ntfs_inode *base_ni;
2789  	ntfs_inode **extent_nis;
2790  	int i, err;
2791  	le16 old_seq_no;
2792  	u16 seq_no;
2793  
2794  	BUG_ON(NInoAttr(ni));
2795  	BUG_ON(ni->nr_extents != -1);
2796  
2797  	mutex_lock(&ni->extent_lock);
2798  	base_ni = ni->ext.base_ntfs_ino;
2799  	mutex_unlock(&ni->extent_lock);
2800  
2801  	BUG_ON(base_ni->nr_extents <= 0);
2802  
2803  	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2804  			mft_no, base_ni->mft_no);
2805  
2806  	mutex_lock(&base_ni->extent_lock);
2807  
2808  	/* Make sure we are holding the only reference to the extent inode. */
2809  	if (atomic_read(&ni->count) > 2) {
2810  		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2811  				"not freeing.", base_ni->mft_no);
2812  		mutex_unlock(&base_ni->extent_lock);
2813  		return -EBUSY;
2814  	}
2815  
2816  	/* Dissociate the ntfs inode from the base inode. */
2817  	extent_nis = base_ni->ext.extent_ntfs_inos;
2818  	err = -ENOENT;
2819  	for (i = 0; i < base_ni->nr_extents; i++) {
2820  		if (ni != extent_nis[i])
2821  			continue;
2822  		extent_nis += i;
2823  		base_ni->nr_extents--;
2824  		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2825  				sizeof(ntfs_inode*));
2826  		err = 0;
2827  		break;
2828  	}
2829  
2830  	mutex_unlock(&base_ni->extent_lock);
2831  
2832  	if (unlikely(err)) {
2833  		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2834  				"its base inode 0x%lx.", mft_no,
2835  				base_ni->mft_no);
2836  		BUG();
2837  	}
2838  
2839  	/*
2840  	 * The extent inode is no longer attached to the base inode so no one
2841  	 * can get a reference to it any more.
2842  	 */
2843  
2844  	/* Mark the mft record as not in use. */
2845  	m->flags &= ~MFT_RECORD_IN_USE;
2846  
2847  	/* Increment the sequence number, skipping zero, if it is not zero. */
2848  	old_seq_no = m->sequence_number;
2849  	seq_no = le16_to_cpu(old_seq_no);
2850  	if (seq_no == 0xffff)
2851  		seq_no = 1;
2852  	else if (seq_no)
2853  		seq_no++;
2854  	m->sequence_number = cpu_to_le16(seq_no);
2855  
2856  	/*
2857  	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2858  	 * about the base inode here since whatever caused the extent mft
2859  	 * record to be freed is guaranteed to do it already.
2860  	 */
2861  	NInoSetDirty(ni);
2862  	err = write_mft_record(ni, m, 0);
2863  	if (unlikely(err)) {
2864  		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2865  				"freeing.", mft_no);
2866  		goto rollback;
2867  	}
2868  rollback_error:
2869  	/* Unmap and throw away the now freed extent inode. */
2870  	unmap_extent_mft_record(ni);
2871  	ntfs_clear_extent_inode(ni);
2872  
2873  	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2874  	down_write(&vol->mftbmp_lock);
2875  	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2876  	up_write(&vol->mftbmp_lock);
2877  	if (unlikely(err)) {
2878  		/*
2879  		 * The extent inode is gone but we failed to deallocate it in
2880  		 * the mft bitmap.  Just emit a warning and leave the volume
2881  		 * dirty on umount.
2882  		 */
2883  		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2884  		NVolSetErrors(vol);
2885  	}
2886  	return 0;
2887  rollback:
2888  	/* Rollback what we did... */
2889  	mutex_lock(&base_ni->extent_lock);
2890  	extent_nis = base_ni->ext.extent_ntfs_inos;
2891  	if (!(base_ni->nr_extents & 3)) {
2892  		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2893  
2894  		extent_nis = kmalloc(new_size, GFP_NOFS);
2895  		if (unlikely(!extent_nis)) {
2896  			ntfs_error(vol->sb, "Failed to allocate internal "
2897  					"buffer during rollback.%s", es);
2898  			mutex_unlock(&base_ni->extent_lock);
2899  			NVolSetErrors(vol);
2900  			goto rollback_error;
2901  		}
2902  		if (base_ni->nr_extents) {
2903  			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2904  			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2905  					new_size - 4 * sizeof(ntfs_inode*));
2906  			kfree(base_ni->ext.extent_ntfs_inos);
2907  		}
2908  		base_ni->ext.extent_ntfs_inos = extent_nis;
2909  	}
2910  	m->flags |= MFT_RECORD_IN_USE;
2911  	m->sequence_number = old_seq_no;
2912  	extent_nis[base_ni->nr_extents++] = ni;
2913  	mutex_unlock(&base_ni->extent_lock);
2914  	mark_mft_record_dirty(ni);
2915  	return err;
2916  }
2917  #endif /* NTFS_RW */
2918