1 /** 2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 5 * Copyright (c) 2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/buffer_head.h> 24 #include <linux/slab.h> 25 #include <linux/swap.h> 26 #include <linux/bio.h> 27 28 #include "attrib.h" 29 #include "aops.h" 30 #include "bitmap.h" 31 #include "debug.h" 32 #include "dir.h" 33 #include "lcnalloc.h" 34 #include "malloc.h" 35 #include "mft.h" 36 #include "ntfs.h" 37 38 /** 39 * map_mft_record_page - map the page in which a specific mft record resides 40 * @ni: ntfs inode whose mft record page to map 41 * 42 * This maps the page in which the mft record of the ntfs inode @ni is situated 43 * and returns a pointer to the mft record within the mapped page. 44 * 45 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() 46 * contains the negative error code returned. 47 */ 48 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) 49 { 50 loff_t i_size; 51 ntfs_volume *vol = ni->vol; 52 struct inode *mft_vi = vol->mft_ino; 53 struct page *page; 54 unsigned long index, end_index; 55 unsigned ofs; 56 57 BUG_ON(ni->page); 58 /* 59 * The index into the page cache and the offset within the page cache 60 * page of the wanted mft record. FIXME: We need to check for 61 * overflowing the unsigned long, but I don't think we would ever get 62 * here if the volume was that big... 63 */ 64 index = (u64)ni->mft_no << vol->mft_record_size_bits >> 65 PAGE_SHIFT; 66 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 67 68 i_size = i_size_read(mft_vi); 69 /* The maximum valid index into the page cache for $MFT's data. */ 70 end_index = i_size >> PAGE_SHIFT; 71 72 /* If the wanted index is out of bounds the mft record doesn't exist. */ 73 if (unlikely(index >= end_index)) { 74 if (index > end_index || (i_size & ~PAGE_MASK) < ofs + 75 vol->mft_record_size) { 76 page = ERR_PTR(-ENOENT); 77 ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, " 78 "which is beyond the end of the mft. " 79 "This is probably a bug in the ntfs " 80 "driver.", ni->mft_no); 81 goto err_out; 82 } 83 } 84 /* Read, map, and pin the page. */ 85 page = ntfs_map_page(mft_vi->i_mapping, index); 86 if (likely(!IS_ERR(page))) { 87 /* Catch multi sector transfer fixup errors. */ 88 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + 89 ofs)))) { 90 ni->page = page; 91 ni->page_ofs = ofs; 92 return page_address(page) + ofs; 93 } 94 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. " 95 "Run chkdsk.", ni->mft_no); 96 ntfs_unmap_page(page); 97 page = ERR_PTR(-EIO); 98 NVolSetErrors(vol); 99 } 100 err_out: 101 ni->page = NULL; 102 ni->page_ofs = 0; 103 return (void*)page; 104 } 105 106 /** 107 * map_mft_record - map, pin and lock an mft record 108 * @ni: ntfs inode whose MFT record to map 109 * 110 * First, take the mrec_lock mutex. We might now be sleeping, while waiting 111 * for the mutex if it was already locked by someone else. 112 * 113 * The page of the record is mapped using map_mft_record_page() before being 114 * returned to the caller. 115 * 116 * This in turn uses ntfs_map_page() to get the page containing the wanted mft 117 * record (it in turn calls read_cache_page() which reads it in from disk if 118 * necessary, increments the use count on the page so that it cannot disappear 119 * under us and returns a reference to the page cache page). 120 * 121 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it 122 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed 123 * and the post-read mst fixups on each mft record in the page have been 124 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done 125 * in our asynchronous I/O completion handler end_buffer_read_mft_async()). 126 * ntfs_map_page() waits for PG_locked to become clear and checks if 127 * PG_uptodate is set and returns an error code if not. This provides 128 * sufficient protection against races when reading/using the page. 129 * 130 * However there is the write mapping to think about. Doing the above described 131 * checking here will be fine, because when initiating the write we will set 132 * PG_locked and clear PG_uptodate making sure nobody is touching the page 133 * contents. Doing the locking this way means that the commit to disk code in 134 * the page cache code paths is automatically sufficiently locked with us as 135 * we will not touch a page that has been locked or is not uptodate. The only 136 * locking problem then is them locking the page while we are accessing it. 137 * 138 * So that code will end up having to own the mrec_lock of all mft 139 * records/inodes present in the page before I/O can proceed. In that case we 140 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be 141 * accessing anything without owning the mrec_lock mutex. But we do need to 142 * use them because of the read_cache_page() invocation and the code becomes so 143 * much simpler this way that it is well worth it. 144 * 145 * The mft record is now ours and we return a pointer to it. You need to check 146 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return 147 * the error code. 148 * 149 * NOTE: Caller is responsible for setting the mft record dirty before calling 150 * unmap_mft_record(). This is obviously only necessary if the caller really 151 * modified the mft record... 152 * Q: Do we want to recycle one of the VFS inode state bits instead? 153 * A: No, the inode ones mean we want to change the mft record, not we want to 154 * write it out. 155 */ 156 MFT_RECORD *map_mft_record(ntfs_inode *ni) 157 { 158 MFT_RECORD *m; 159 160 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 161 162 /* Make sure the ntfs inode doesn't go away. */ 163 atomic_inc(&ni->count); 164 165 /* Serialize access to this mft record. */ 166 mutex_lock(&ni->mrec_lock); 167 168 m = map_mft_record_page(ni); 169 if (likely(!IS_ERR(m))) 170 return m; 171 172 mutex_unlock(&ni->mrec_lock); 173 atomic_dec(&ni->count); 174 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); 175 return m; 176 } 177 178 /** 179 * unmap_mft_record_page - unmap the page in which a specific mft record resides 180 * @ni: ntfs inode whose mft record page to unmap 181 * 182 * This unmaps the page in which the mft record of the ntfs inode @ni is 183 * situated and returns. This is a NOOP if highmem is not configured. 184 * 185 * The unmap happens via ntfs_unmap_page() which in turn decrements the use 186 * count on the page thus releasing it from the pinned state. 187 * 188 * We do not actually unmap the page from memory of course, as that will be 189 * done by the page cache code itself when memory pressure increases or 190 * whatever. 191 */ 192 static inline void unmap_mft_record_page(ntfs_inode *ni) 193 { 194 BUG_ON(!ni->page); 195 196 // TODO: If dirty, blah... 197 ntfs_unmap_page(ni->page); 198 ni->page = NULL; 199 ni->page_ofs = 0; 200 return; 201 } 202 203 /** 204 * unmap_mft_record - release a mapped mft record 205 * @ni: ntfs inode whose MFT record to unmap 206 * 207 * We release the page mapping and the mrec_lock mutex which unmaps the mft 208 * record and releases it for others to get hold of. We also release the ntfs 209 * inode by decrementing the ntfs inode reference count. 210 * 211 * NOTE: If caller has modified the mft record, it is imperative to set the mft 212 * record dirty BEFORE calling unmap_mft_record(). 213 */ 214 void unmap_mft_record(ntfs_inode *ni) 215 { 216 struct page *page = ni->page; 217 218 BUG_ON(!page); 219 220 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 221 222 unmap_mft_record_page(ni); 223 mutex_unlock(&ni->mrec_lock); 224 atomic_dec(&ni->count); 225 /* 226 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to 227 * ntfs_clear_extent_inode() in the extent inode case, and to the 228 * caller in the non-extent, yet pure ntfs inode case, to do the actual 229 * tear down of all structures and freeing of all allocated memory. 230 */ 231 return; 232 } 233 234 /** 235 * map_extent_mft_record - load an extent inode and attach it to its base 236 * @base_ni: base ntfs inode 237 * @mref: mft reference of the extent inode to load 238 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure 239 * 240 * Load the extent mft record @mref and attach it to its base inode @base_ni. 241 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise 242 * PTR_ERR(result) gives the negative error code. 243 * 244 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode 245 * structure of the mapped extent inode. 246 */ 247 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, 248 ntfs_inode **ntfs_ino) 249 { 250 MFT_RECORD *m; 251 ntfs_inode *ni = NULL; 252 ntfs_inode **extent_nis = NULL; 253 int i; 254 unsigned long mft_no = MREF(mref); 255 u16 seq_no = MSEQNO(mref); 256 bool destroy_ni = false; 257 258 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", 259 mft_no, base_ni->mft_no); 260 /* Make sure the base ntfs inode doesn't go away. */ 261 atomic_inc(&base_ni->count); 262 /* 263 * Check if this extent inode has already been added to the base inode, 264 * in which case just return it. If not found, add it to the base 265 * inode before returning it. 266 */ 267 mutex_lock(&base_ni->extent_lock); 268 if (base_ni->nr_extents > 0) { 269 extent_nis = base_ni->ext.extent_ntfs_inos; 270 for (i = 0; i < base_ni->nr_extents; i++) { 271 if (mft_no != extent_nis[i]->mft_no) 272 continue; 273 ni = extent_nis[i]; 274 /* Make sure the ntfs inode doesn't go away. */ 275 atomic_inc(&ni->count); 276 break; 277 } 278 } 279 if (likely(ni != NULL)) { 280 mutex_unlock(&base_ni->extent_lock); 281 atomic_dec(&base_ni->count); 282 /* We found the record; just have to map and return it. */ 283 m = map_mft_record(ni); 284 /* map_mft_record() has incremented this on success. */ 285 atomic_dec(&ni->count); 286 if (likely(!IS_ERR(m))) { 287 /* Verify the sequence number. */ 288 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { 289 ntfs_debug("Done 1."); 290 *ntfs_ino = ni; 291 return m; 292 } 293 unmap_mft_record(ni); 294 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 295 "reference! Corrupt filesystem. " 296 "Run chkdsk."); 297 return ERR_PTR(-EIO); 298 } 299 map_err_out: 300 ntfs_error(base_ni->vol->sb, "Failed to map extent " 301 "mft record, error code %ld.", -PTR_ERR(m)); 302 return m; 303 } 304 /* Record wasn't there. Get a new ntfs inode and initialize it. */ 305 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); 306 if (unlikely(!ni)) { 307 mutex_unlock(&base_ni->extent_lock); 308 atomic_dec(&base_ni->count); 309 return ERR_PTR(-ENOMEM); 310 } 311 ni->vol = base_ni->vol; 312 ni->seq_no = seq_no; 313 ni->nr_extents = -1; 314 ni->ext.base_ntfs_ino = base_ni; 315 /* Now map the record. */ 316 m = map_mft_record(ni); 317 if (IS_ERR(m)) { 318 mutex_unlock(&base_ni->extent_lock); 319 atomic_dec(&base_ni->count); 320 ntfs_clear_extent_inode(ni); 321 goto map_err_out; 322 } 323 /* Verify the sequence number if it is present. */ 324 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { 325 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 326 "reference! Corrupt filesystem. Run chkdsk."); 327 destroy_ni = true; 328 m = ERR_PTR(-EIO); 329 goto unm_err_out; 330 } 331 /* Attach extent inode to base inode, reallocating memory if needed. */ 332 if (!(base_ni->nr_extents & 3)) { 333 ntfs_inode **tmp; 334 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); 335 336 tmp = kmalloc(new_size, GFP_NOFS); 337 if (unlikely(!tmp)) { 338 ntfs_error(base_ni->vol->sb, "Failed to allocate " 339 "internal buffer."); 340 destroy_ni = true; 341 m = ERR_PTR(-ENOMEM); 342 goto unm_err_out; 343 } 344 if (base_ni->nr_extents) { 345 BUG_ON(!base_ni->ext.extent_ntfs_inos); 346 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - 347 4 * sizeof(ntfs_inode *)); 348 kfree(base_ni->ext.extent_ntfs_inos); 349 } 350 base_ni->ext.extent_ntfs_inos = tmp; 351 } 352 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; 353 mutex_unlock(&base_ni->extent_lock); 354 atomic_dec(&base_ni->count); 355 ntfs_debug("Done 2."); 356 *ntfs_ino = ni; 357 return m; 358 unm_err_out: 359 unmap_mft_record(ni); 360 mutex_unlock(&base_ni->extent_lock); 361 atomic_dec(&base_ni->count); 362 /* 363 * If the extent inode was not attached to the base inode we need to 364 * release it or we will leak memory. 365 */ 366 if (destroy_ni) 367 ntfs_clear_extent_inode(ni); 368 return m; 369 } 370 371 #ifdef NTFS_RW 372 373 /** 374 * __mark_mft_record_dirty - set the mft record and the page containing it dirty 375 * @ni: ntfs inode describing the mapped mft record 376 * 377 * Internal function. Users should call mark_mft_record_dirty() instead. 378 * 379 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, 380 * as well as the page containing the mft record, dirty. Also, mark the base 381 * vfs inode dirty. This ensures that any changes to the mft record are 382 * written out to disk. 383 * 384 * NOTE: We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) 385 * on the base vfs inode, because even though file data may have been modified, 386 * it is dirty in the inode meta data rather than the data page cache of the 387 * inode, and thus there are no data pages that need writing out. Therefore, a 388 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the 389 * other hand, is not sufficient, because ->write_inode needs to be called even 390 * in case of fdatasync. This needs to happen or the file data would not 391 * necessarily hit the device synchronously, even though the vfs inode has the 392 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just 393 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, 394 * which is not what I_DIRTY_SYNC on its own would suggest. 395 */ 396 void __mark_mft_record_dirty(ntfs_inode *ni) 397 { 398 ntfs_inode *base_ni; 399 400 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 401 BUG_ON(NInoAttr(ni)); 402 mark_ntfs_record_dirty(ni->page, ni->page_ofs); 403 /* Determine the base vfs inode and mark it dirty, too. */ 404 mutex_lock(&ni->extent_lock); 405 if (likely(ni->nr_extents >= 0)) 406 base_ni = ni; 407 else 408 base_ni = ni->ext.base_ntfs_ino; 409 mutex_unlock(&ni->extent_lock); 410 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC); 411 } 412 413 static const char *ntfs_please_email = "Please email " 414 "linux-ntfs-dev@lists.sourceforge.net and say that you saw " 415 "this message. Thank you."; 416 417 /** 418 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror 419 * @vol: ntfs volume on which the mft record to synchronize resides 420 * @mft_no: mft record number of mft record to synchronize 421 * @m: mapped, mst protected (extent) mft record to synchronize 422 * 423 * Write the mapped, mst protected (extent) mft record @m with mft record 424 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, 425 * bypassing the page cache and the $MFTMirr inode itself. 426 * 427 * This function is only for use at umount time when the mft mirror inode has 428 * already been disposed off. We BUG() if we are called while the mft mirror 429 * inode is still attached to the volume. 430 * 431 * On success return 0. On error return -errno. 432 * 433 * NOTE: This function is not implemented yet as I am not convinced it can 434 * actually be triggered considering the sequence of commits we do in super.c:: 435 * ntfs_put_super(). But just in case we provide this place holder as the 436 * alternative would be either to BUG() or to get a NULL pointer dereference 437 * and Oops. 438 */ 439 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, 440 const unsigned long mft_no, MFT_RECORD *m) 441 { 442 BUG_ON(vol->mftmirr_ino); 443 ntfs_error(vol->sb, "Umount time mft mirror syncing is not " 444 "implemented yet. %s", ntfs_please_email); 445 return -EOPNOTSUPP; 446 } 447 448 /** 449 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror 450 * @vol: ntfs volume on which the mft record to synchronize resides 451 * @mft_no: mft record number of mft record to synchronize 452 * @m: mapped, mst protected (extent) mft record to synchronize 453 * @sync: if true, wait for i/o completion 454 * 455 * Write the mapped, mst protected (extent) mft record @m with mft record 456 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. 457 * 458 * On success return 0. On error return -errno and set the volume errors flag 459 * in the ntfs volume @vol. 460 * 461 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 462 * 463 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 464 * schedule i/o via ->writepage or do it via kntfsd or whatever. 465 */ 466 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, 467 MFT_RECORD *m, int sync) 468 { 469 struct page *page; 470 unsigned int blocksize = vol->sb->s_blocksize; 471 int max_bhs = vol->mft_record_size / blocksize; 472 struct buffer_head *bhs[max_bhs]; 473 struct buffer_head *bh, *head; 474 u8 *kmirr; 475 runlist_element *rl; 476 unsigned int block_start, block_end, m_start, m_end, page_ofs; 477 int i_bhs, nr_bhs, err = 0; 478 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 479 480 ntfs_debug("Entering for inode 0x%lx.", mft_no); 481 BUG_ON(!max_bhs); 482 if (unlikely(!vol->mftmirr_ino)) { 483 /* This could happen during umount... */ 484 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); 485 if (likely(!err)) 486 return err; 487 goto err_out; 488 } 489 /* Get the page containing the mirror copy of the mft record @m. */ 490 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> 491 (PAGE_SHIFT - vol->mft_record_size_bits)); 492 if (IS_ERR(page)) { 493 ntfs_error(vol->sb, "Failed to map mft mirror page."); 494 err = PTR_ERR(page); 495 goto err_out; 496 } 497 lock_page(page); 498 BUG_ON(!PageUptodate(page)); 499 ClearPageUptodate(page); 500 /* Offset of the mft mirror record inside the page. */ 501 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 502 /* The address in the page of the mirror copy of the mft record @m. */ 503 kmirr = page_address(page) + page_ofs; 504 /* Copy the mst protected mft record to the mirror. */ 505 memcpy(kmirr, m, vol->mft_record_size); 506 /* Create uptodate buffers if not present. */ 507 if (unlikely(!page_has_buffers(page))) { 508 struct buffer_head *tail; 509 510 bh = head = alloc_page_buffers(page, blocksize, true); 511 do { 512 set_buffer_uptodate(bh); 513 tail = bh; 514 bh = bh->b_this_page; 515 } while (bh); 516 tail->b_this_page = head; 517 attach_page_buffers(page, head); 518 } 519 bh = head = page_buffers(page); 520 BUG_ON(!bh); 521 rl = NULL; 522 nr_bhs = 0; 523 block_start = 0; 524 m_start = kmirr - (u8*)page_address(page); 525 m_end = m_start + vol->mft_record_size; 526 do { 527 block_end = block_start + blocksize; 528 /* If the buffer is outside the mft record, skip it. */ 529 if (block_end <= m_start) 530 continue; 531 if (unlikely(block_start >= m_end)) 532 break; 533 /* Need to map the buffer if it is not mapped already. */ 534 if (unlikely(!buffer_mapped(bh))) { 535 VCN vcn; 536 LCN lcn; 537 unsigned int vcn_ofs; 538 539 bh->b_bdev = vol->sb->s_bdev; 540 /* Obtain the vcn and offset of the current block. */ 541 vcn = ((VCN)mft_no << vol->mft_record_size_bits) + 542 (block_start - m_start); 543 vcn_ofs = vcn & vol->cluster_size_mask; 544 vcn >>= vol->cluster_size_bits; 545 if (!rl) { 546 down_read(&NTFS_I(vol->mftmirr_ino)-> 547 runlist.lock); 548 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; 549 /* 550 * $MFTMirr always has the whole of its runlist 551 * in memory. 552 */ 553 BUG_ON(!rl); 554 } 555 /* Seek to element containing target vcn. */ 556 while (rl->length && rl[1].vcn <= vcn) 557 rl++; 558 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 559 /* For $MFTMirr, only lcn >= 0 is a successful remap. */ 560 if (likely(lcn >= 0)) { 561 /* Setup buffer head to correct block. */ 562 bh->b_blocknr = ((lcn << 563 vol->cluster_size_bits) + 564 vcn_ofs) >> blocksize_bits; 565 set_buffer_mapped(bh); 566 } else { 567 bh->b_blocknr = -1; 568 ntfs_error(vol->sb, "Cannot write mft mirror " 569 "record 0x%lx because its " 570 "location on disk could not " 571 "be determined (error code " 572 "%lli).", mft_no, 573 (long long)lcn); 574 err = -EIO; 575 } 576 } 577 BUG_ON(!buffer_uptodate(bh)); 578 BUG_ON(!nr_bhs && (m_start != block_start)); 579 BUG_ON(nr_bhs >= max_bhs); 580 bhs[nr_bhs++] = bh; 581 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 582 } while (block_start = block_end, (bh = bh->b_this_page) != head); 583 if (unlikely(rl)) 584 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); 585 if (likely(!err)) { 586 /* Lock buffers and start synchronous write i/o on them. */ 587 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 588 struct buffer_head *tbh = bhs[i_bhs]; 589 590 if (!trylock_buffer(tbh)) 591 BUG(); 592 BUG_ON(!buffer_uptodate(tbh)); 593 clear_buffer_dirty(tbh); 594 get_bh(tbh); 595 tbh->b_end_io = end_buffer_write_sync; 596 submit_bh(REQ_OP_WRITE, 0, tbh); 597 } 598 /* Wait on i/o completion of buffers. */ 599 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 600 struct buffer_head *tbh = bhs[i_bhs]; 601 602 wait_on_buffer(tbh); 603 if (unlikely(!buffer_uptodate(tbh))) { 604 err = -EIO; 605 /* 606 * Set the buffer uptodate so the page and 607 * buffer states do not become out of sync. 608 */ 609 set_buffer_uptodate(tbh); 610 } 611 } 612 } else /* if (unlikely(err)) */ { 613 /* Clean the buffers. */ 614 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 615 clear_buffer_dirty(bhs[i_bhs]); 616 } 617 /* Current state: all buffers are clean, unlocked, and uptodate. */ 618 /* Remove the mst protection fixups again. */ 619 post_write_mst_fixup((NTFS_RECORD*)kmirr); 620 flush_dcache_page(page); 621 SetPageUptodate(page); 622 unlock_page(page); 623 ntfs_unmap_page(page); 624 if (likely(!err)) { 625 ntfs_debug("Done."); 626 } else { 627 ntfs_error(vol->sb, "I/O error while writing mft mirror " 628 "record 0x%lx!", mft_no); 629 err_out: 630 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " 631 "code %i). Volume will be left marked dirty " 632 "on umount. Run ntfsfix on the partition " 633 "after umounting to correct this.", -err); 634 NVolSetErrors(vol); 635 } 636 return err; 637 } 638 639 /** 640 * write_mft_record_nolock - write out a mapped (extent) mft record 641 * @ni: ntfs inode describing the mapped (extent) mft record 642 * @m: mapped (extent) mft record to write 643 * @sync: if true, wait for i/o completion 644 * 645 * Write the mapped (extent) mft record @m described by the (regular or extent) 646 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in 647 * the mft mirror, that is also updated. 648 * 649 * We only write the mft record if the ntfs inode @ni is dirty and the first 650 * buffer belonging to its mft record is dirty, too. We ignore the dirty state 651 * of subsequent buffers because we could have raced with 652 * fs/ntfs/aops.c::mark_ntfs_record_dirty(). 653 * 654 * On success, clean the mft record and return 0. On error, leave the mft 655 * record dirty and return -errno. 656 * 657 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 658 * However, if the mft record has a counterpart in the mft mirror and @sync is 659 * true, we write the mft record, wait for i/o completion, and only then write 660 * the mft mirror copy. This ensures that if the system crashes either the mft 661 * or the mft mirror will contain a self-consistent mft record @m. If @sync is 662 * false on the other hand, we start i/o on both and then wait for completion 663 * on them. This provides a speedup but no longer guarantees that you will end 664 * up with a self-consistent mft record in the case of a crash but if you asked 665 * for asynchronous writing you probably do not care about that anyway. 666 * 667 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 668 * schedule i/o via ->writepage or do it via kntfsd or whatever. 669 */ 670 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) 671 { 672 ntfs_volume *vol = ni->vol; 673 struct page *page = ni->page; 674 unsigned int blocksize = vol->sb->s_blocksize; 675 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 676 int max_bhs = vol->mft_record_size / blocksize; 677 struct buffer_head *bhs[max_bhs]; 678 struct buffer_head *bh, *head; 679 runlist_element *rl; 680 unsigned int block_start, block_end, m_start, m_end; 681 int i_bhs, nr_bhs, err = 0; 682 683 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 684 BUG_ON(NInoAttr(ni)); 685 BUG_ON(!max_bhs); 686 BUG_ON(!PageLocked(page)); 687 /* 688 * If the ntfs_inode is clean no need to do anything. If it is dirty, 689 * mark it as clean now so that it can be redirtied later on if needed. 690 * There is no danger of races since the caller is holding the locks 691 * for the mft record @m and the page it is in. 692 */ 693 if (!NInoTestClearDirty(ni)) 694 goto done; 695 bh = head = page_buffers(page); 696 BUG_ON(!bh); 697 rl = NULL; 698 nr_bhs = 0; 699 block_start = 0; 700 m_start = ni->page_ofs; 701 m_end = m_start + vol->mft_record_size; 702 do { 703 block_end = block_start + blocksize; 704 /* If the buffer is outside the mft record, skip it. */ 705 if (block_end <= m_start) 706 continue; 707 if (unlikely(block_start >= m_end)) 708 break; 709 /* 710 * If this block is not the first one in the record, we ignore 711 * the buffer's dirty state because we could have raced with a 712 * parallel mark_ntfs_record_dirty(). 713 */ 714 if (block_start == m_start) { 715 /* This block is the first one in the record. */ 716 if (!buffer_dirty(bh)) { 717 BUG_ON(nr_bhs); 718 /* Clean records are not written out. */ 719 break; 720 } 721 } 722 /* Need to map the buffer if it is not mapped already. */ 723 if (unlikely(!buffer_mapped(bh))) { 724 VCN vcn; 725 LCN lcn; 726 unsigned int vcn_ofs; 727 728 bh->b_bdev = vol->sb->s_bdev; 729 /* Obtain the vcn and offset of the current block. */ 730 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + 731 (block_start - m_start); 732 vcn_ofs = vcn & vol->cluster_size_mask; 733 vcn >>= vol->cluster_size_bits; 734 if (!rl) { 735 down_read(&NTFS_I(vol->mft_ino)->runlist.lock); 736 rl = NTFS_I(vol->mft_ino)->runlist.rl; 737 BUG_ON(!rl); 738 } 739 /* Seek to element containing target vcn. */ 740 while (rl->length && rl[1].vcn <= vcn) 741 rl++; 742 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 743 /* For $MFT, only lcn >= 0 is a successful remap. */ 744 if (likely(lcn >= 0)) { 745 /* Setup buffer head to correct block. */ 746 bh->b_blocknr = ((lcn << 747 vol->cluster_size_bits) + 748 vcn_ofs) >> blocksize_bits; 749 set_buffer_mapped(bh); 750 } else { 751 bh->b_blocknr = -1; 752 ntfs_error(vol->sb, "Cannot write mft record " 753 "0x%lx because its location " 754 "on disk could not be " 755 "determined (error code %lli).", 756 ni->mft_no, (long long)lcn); 757 err = -EIO; 758 } 759 } 760 BUG_ON(!buffer_uptodate(bh)); 761 BUG_ON(!nr_bhs && (m_start != block_start)); 762 BUG_ON(nr_bhs >= max_bhs); 763 bhs[nr_bhs++] = bh; 764 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 765 } while (block_start = block_end, (bh = bh->b_this_page) != head); 766 if (unlikely(rl)) 767 up_read(&NTFS_I(vol->mft_ino)->runlist.lock); 768 if (!nr_bhs) 769 goto done; 770 if (unlikely(err)) 771 goto cleanup_out; 772 /* Apply the mst protection fixups. */ 773 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); 774 if (err) { 775 ntfs_error(vol->sb, "Failed to apply mst fixups!"); 776 goto cleanup_out; 777 } 778 flush_dcache_mft_record_page(ni); 779 /* Lock buffers and start synchronous write i/o on them. */ 780 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 781 struct buffer_head *tbh = bhs[i_bhs]; 782 783 if (!trylock_buffer(tbh)) 784 BUG(); 785 BUG_ON(!buffer_uptodate(tbh)); 786 clear_buffer_dirty(tbh); 787 get_bh(tbh); 788 tbh->b_end_io = end_buffer_write_sync; 789 submit_bh(REQ_OP_WRITE, 0, tbh); 790 } 791 /* Synchronize the mft mirror now if not @sync. */ 792 if (!sync && ni->mft_no < vol->mftmirr_size) 793 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 794 /* Wait on i/o completion of buffers. */ 795 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 796 struct buffer_head *tbh = bhs[i_bhs]; 797 798 wait_on_buffer(tbh); 799 if (unlikely(!buffer_uptodate(tbh))) { 800 err = -EIO; 801 /* 802 * Set the buffer uptodate so the page and buffer 803 * states do not become out of sync. 804 */ 805 if (PageUptodate(page)) 806 set_buffer_uptodate(tbh); 807 } 808 } 809 /* If @sync, now synchronize the mft mirror. */ 810 if (sync && ni->mft_no < vol->mftmirr_size) 811 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 812 /* Remove the mst protection fixups again. */ 813 post_write_mst_fixup((NTFS_RECORD*)m); 814 flush_dcache_mft_record_page(ni); 815 if (unlikely(err)) { 816 /* I/O error during writing. This is really bad! */ 817 ntfs_error(vol->sb, "I/O error while writing mft record " 818 "0x%lx! Marking base inode as bad. You " 819 "should unmount the volume and run chkdsk.", 820 ni->mft_no); 821 goto err_out; 822 } 823 done: 824 ntfs_debug("Done."); 825 return 0; 826 cleanup_out: 827 /* Clean the buffers. */ 828 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 829 clear_buffer_dirty(bhs[i_bhs]); 830 err_out: 831 /* 832 * Current state: all buffers are clean, unlocked, and uptodate. 833 * The caller should mark the base inode as bad so that no more i/o 834 * happens. ->clear_inode() will still be invoked so all extent inodes 835 * and other allocated memory will be freed. 836 */ 837 if (err == -ENOMEM) { 838 ntfs_error(vol->sb, "Not enough memory to write mft record. " 839 "Redirtying so the write is retried later."); 840 mark_mft_record_dirty(ni); 841 err = 0; 842 } else 843 NVolSetErrors(vol); 844 return err; 845 } 846 847 /** 848 * ntfs_may_write_mft_record - check if an mft record may be written out 849 * @vol: [IN] ntfs volume on which the mft record to check resides 850 * @mft_no: [IN] mft record number of the mft record to check 851 * @m: [IN] mapped mft record to check 852 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned 853 * 854 * Check if the mapped (base or extent) mft record @m with mft record number 855 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary 856 * and possible the ntfs inode of the mft record is locked and the base vfs 857 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The 858 * caller is responsible for unlocking the ntfs inode and unpinning the base 859 * vfs inode. 860 * 861 * Return 'true' if the mft record may be written out and 'false' if not. 862 * 863 * The caller has locked the page and cleared the uptodate flag on it which 864 * means that we can safely write out any dirty mft records that do not have 865 * their inodes in icache as determined by ilookup5() as anyone 866 * opening/creating such an inode would block when attempting to map the mft 867 * record in read_cache_page() until we are finished with the write out. 868 * 869 * Here is a description of the tests we perform: 870 * 871 * If the inode is found in icache we know the mft record must be a base mft 872 * record. If it is dirty, we do not write it and return 'false' as the vfs 873 * inode write paths will result in the access times being updated which would 874 * cause the base mft record to be redirtied and written out again. (We know 875 * the access time update will modify the base mft record because Windows 876 * chkdsk complains if the standard information attribute is not in the base 877 * mft record.) 878 * 879 * If the inode is in icache and not dirty, we attempt to lock the mft record 880 * and if we find the lock was already taken, it is not safe to write the mft 881 * record and we return 'false'. 882 * 883 * If we manage to obtain the lock we have exclusive access to the mft record, 884 * which also allows us safe writeout of the mft record. We then set 885 * @locked_ni to the locked ntfs inode and return 'true'. 886 * 887 * Note we cannot just lock the mft record and sleep while waiting for the lock 888 * because this would deadlock due to lock reversal (normally the mft record is 889 * locked before the page is locked but we already have the page locked here 890 * when we try to lock the mft record). 891 * 892 * If the inode is not in icache we need to perform further checks. 893 * 894 * If the mft record is not a FILE record or it is a base mft record, we can 895 * safely write it and return 'true'. 896 * 897 * We now know the mft record is an extent mft record. We check if the inode 898 * corresponding to its base mft record is in icache and obtain a reference to 899 * it if it is. If it is not, we can safely write it and return 'true'. 900 * 901 * We now have the base inode for the extent mft record. We check if it has an 902 * ntfs inode for the extent mft record attached and if not it is safe to write 903 * the extent mft record and we return 'true'. 904 * 905 * The ntfs inode for the extent mft record is attached to the base inode so we 906 * attempt to lock the extent mft record and if we find the lock was already 907 * taken, it is not safe to write the extent mft record and we return 'false'. 908 * 909 * If we manage to obtain the lock we have exclusive access to the extent mft 910 * record, which also allows us safe writeout of the extent mft record. We 911 * set the ntfs inode of the extent mft record clean and then set @locked_ni to 912 * the now locked ntfs inode and return 'true'. 913 * 914 * Note, the reason for actually writing dirty mft records here and not just 915 * relying on the vfs inode dirty code paths is that we can have mft records 916 * modified without them ever having actual inodes in memory. Also we can have 917 * dirty mft records with clean ntfs inodes in memory. None of the described 918 * cases would result in the dirty mft records being written out if we only 919 * relied on the vfs inode dirty code paths. And these cases can really occur 920 * during allocation of new mft records and in particular when the 921 * initialized_size of the $MFT/$DATA attribute is extended and the new space 922 * is initialized using ntfs_mft_record_format(). The clean inode can then 923 * appear if the mft record is reused for a new inode before it got written 924 * out. 925 */ 926 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, 927 const MFT_RECORD *m, ntfs_inode **locked_ni) 928 { 929 struct super_block *sb = vol->sb; 930 struct inode *mft_vi = vol->mft_ino; 931 struct inode *vi; 932 ntfs_inode *ni, *eni, **extent_nis; 933 int i; 934 ntfs_attr na; 935 936 ntfs_debug("Entering for inode 0x%lx.", mft_no); 937 /* 938 * Normally we do not return a locked inode so set @locked_ni to NULL. 939 */ 940 BUG_ON(!locked_ni); 941 *locked_ni = NULL; 942 /* 943 * Check if the inode corresponding to this mft record is in the VFS 944 * inode cache and obtain a reference to it if it is. 945 */ 946 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); 947 na.mft_no = mft_no; 948 na.name = NULL; 949 na.name_len = 0; 950 na.type = AT_UNUSED; 951 /* 952 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and 953 * we get here for it rather often. 954 */ 955 if (!mft_no) { 956 /* Balance the below iput(). */ 957 vi = igrab(mft_vi); 958 BUG_ON(vi != mft_vi); 959 } else { 960 /* 961 * Have to use ilookup5_nowait() since ilookup5() waits for the 962 * inode lock which causes ntfs to deadlock when a concurrent 963 * inode write via the inode dirty code paths and the page 964 * dirty code path of the inode dirty code path when writing 965 * $MFT occurs. 966 */ 967 vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na); 968 } 969 if (vi) { 970 ntfs_debug("Base inode 0x%lx is in icache.", mft_no); 971 /* The inode is in icache. */ 972 ni = NTFS_I(vi); 973 /* Take a reference to the ntfs inode. */ 974 atomic_inc(&ni->count); 975 /* If the inode is dirty, do not write this record. */ 976 if (NInoDirty(ni)) { 977 ntfs_debug("Inode 0x%lx is dirty, do not write it.", 978 mft_no); 979 atomic_dec(&ni->count); 980 iput(vi); 981 return false; 982 } 983 ntfs_debug("Inode 0x%lx is not dirty.", mft_no); 984 /* The inode is not dirty, try to take the mft record lock. */ 985 if (unlikely(!mutex_trylock(&ni->mrec_lock))) { 986 ntfs_debug("Mft record 0x%lx is already locked, do " 987 "not write it.", mft_no); 988 atomic_dec(&ni->count); 989 iput(vi); 990 return false; 991 } 992 ntfs_debug("Managed to lock mft record 0x%lx, write it.", 993 mft_no); 994 /* 995 * The write has to occur while we hold the mft record lock so 996 * return the locked ntfs inode. 997 */ 998 *locked_ni = ni; 999 return true; 1000 } 1001 ntfs_debug("Inode 0x%lx is not in icache.", mft_no); 1002 /* The inode is not in icache. */ 1003 /* Write the record if it is not a mft record (type "FILE"). */ 1004 if (!ntfs_is_mft_record(m->magic)) { 1005 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", 1006 mft_no); 1007 return true; 1008 } 1009 /* Write the mft record if it is a base inode. */ 1010 if (!m->base_mft_record) { 1011 ntfs_debug("Mft record 0x%lx is a base record, write it.", 1012 mft_no); 1013 return true; 1014 } 1015 /* 1016 * This is an extent mft record. Check if the inode corresponding to 1017 * its base mft record is in icache and obtain a reference to it if it 1018 * is. 1019 */ 1020 na.mft_no = MREF_LE(m->base_mft_record); 1021 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base " 1022 "inode 0x%lx in icache.", mft_no, na.mft_no); 1023 if (!na.mft_no) { 1024 /* Balance the below iput(). */ 1025 vi = igrab(mft_vi); 1026 BUG_ON(vi != mft_vi); 1027 } else 1028 vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode, 1029 &na); 1030 if (!vi) { 1031 /* 1032 * The base inode is not in icache, write this extent mft 1033 * record. 1034 */ 1035 ntfs_debug("Base inode 0x%lx is not in icache, write the " 1036 "extent record.", na.mft_no); 1037 return true; 1038 } 1039 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); 1040 /* 1041 * The base inode is in icache. Check if it has the extent inode 1042 * corresponding to this extent mft record attached. 1043 */ 1044 ni = NTFS_I(vi); 1045 mutex_lock(&ni->extent_lock); 1046 if (ni->nr_extents <= 0) { 1047 /* 1048 * The base inode has no attached extent inodes, write this 1049 * extent mft record. 1050 */ 1051 mutex_unlock(&ni->extent_lock); 1052 iput(vi); 1053 ntfs_debug("Base inode 0x%lx has no attached extent inodes, " 1054 "write the extent record.", na.mft_no); 1055 return true; 1056 } 1057 /* Iterate over the attached extent inodes. */ 1058 extent_nis = ni->ext.extent_ntfs_inos; 1059 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { 1060 if (mft_no == extent_nis[i]->mft_no) { 1061 /* 1062 * Found the extent inode corresponding to this extent 1063 * mft record. 1064 */ 1065 eni = extent_nis[i]; 1066 break; 1067 } 1068 } 1069 /* 1070 * If the extent inode was not attached to the base inode, write this 1071 * extent mft record. 1072 */ 1073 if (!eni) { 1074 mutex_unlock(&ni->extent_lock); 1075 iput(vi); 1076 ntfs_debug("Extent inode 0x%lx is not attached to its base " 1077 "inode 0x%lx, write the extent record.", 1078 mft_no, na.mft_no); 1079 return true; 1080 } 1081 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", 1082 mft_no, na.mft_no); 1083 /* Take a reference to the extent ntfs inode. */ 1084 atomic_inc(&eni->count); 1085 mutex_unlock(&ni->extent_lock); 1086 /* 1087 * Found the extent inode coresponding to this extent mft record. 1088 * Try to take the mft record lock. 1089 */ 1090 if (unlikely(!mutex_trylock(&eni->mrec_lock))) { 1091 atomic_dec(&eni->count); 1092 iput(vi); 1093 ntfs_debug("Extent mft record 0x%lx is already locked, do " 1094 "not write it.", mft_no); 1095 return false; 1096 } 1097 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", 1098 mft_no); 1099 if (NInoTestClearDirty(eni)) 1100 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", 1101 mft_no); 1102 /* 1103 * The write has to occur while we hold the mft record lock so return 1104 * the locked extent ntfs inode. 1105 */ 1106 *locked_ni = eni; 1107 return true; 1108 } 1109 1110 static const char *es = " Leaving inconsistent metadata. Unmount and run " 1111 "chkdsk."; 1112 1113 /** 1114 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name 1115 * @vol: volume on which to search for a free mft record 1116 * @base_ni: open base inode if allocating an extent mft record or NULL 1117 * 1118 * Search for a free mft record in the mft bitmap attribute on the ntfs volume 1119 * @vol. 1120 * 1121 * If @base_ni is NULL start the search at the default allocator position. 1122 * 1123 * If @base_ni is not NULL start the search at the mft record after the base 1124 * mft record @base_ni. 1125 * 1126 * Return the free mft record on success and -errno on error. An error code of 1127 * -ENOSPC means that there are no free mft records in the currently 1128 * initialized mft bitmap. 1129 * 1130 * Locking: Caller must hold vol->mftbmp_lock for writing. 1131 */ 1132 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, 1133 ntfs_inode *base_ni) 1134 { 1135 s64 pass_end, ll, data_pos, pass_start, ofs, bit; 1136 unsigned long flags; 1137 struct address_space *mftbmp_mapping; 1138 u8 *buf, *byte; 1139 struct page *page; 1140 unsigned int page_ofs, size; 1141 u8 pass, b; 1142 1143 ntfs_debug("Searching for free mft record in the currently " 1144 "initialized mft bitmap."); 1145 mftbmp_mapping = vol->mftbmp_ino->i_mapping; 1146 /* 1147 * Set the end of the pass making sure we do not overflow the mft 1148 * bitmap. 1149 */ 1150 read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); 1151 pass_end = NTFS_I(vol->mft_ino)->allocated_size >> 1152 vol->mft_record_size_bits; 1153 read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); 1154 read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1155 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; 1156 read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1157 if (pass_end > ll) 1158 pass_end = ll; 1159 pass = 1; 1160 if (!base_ni) 1161 data_pos = vol->mft_data_pos; 1162 else 1163 data_pos = base_ni->mft_no + 1; 1164 if (data_pos < 24) 1165 data_pos = 24; 1166 if (data_pos >= pass_end) { 1167 data_pos = 24; 1168 pass = 2; 1169 /* This happens on a freshly formatted volume. */ 1170 if (data_pos >= pass_end) 1171 return -ENOSPC; 1172 } 1173 pass_start = data_pos; 1174 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " 1175 "pass_end 0x%llx, data_pos 0x%llx.", pass, 1176 (long long)pass_start, (long long)pass_end, 1177 (long long)data_pos); 1178 /* Loop until a free mft record is found. */ 1179 for (; pass <= 2;) { 1180 /* Cap size to pass_end. */ 1181 ofs = data_pos >> 3; 1182 page_ofs = ofs & ~PAGE_MASK; 1183 size = PAGE_SIZE - page_ofs; 1184 ll = ((pass_end + 7) >> 3) - ofs; 1185 if (size > ll) 1186 size = ll; 1187 size <<= 3; 1188 /* 1189 * If we are still within the active pass, search the next page 1190 * for a zero bit. 1191 */ 1192 if (size) { 1193 page = ntfs_map_page(mftbmp_mapping, 1194 ofs >> PAGE_SHIFT); 1195 if (IS_ERR(page)) { 1196 ntfs_error(vol->sb, "Failed to read mft " 1197 "bitmap, aborting."); 1198 return PTR_ERR(page); 1199 } 1200 buf = (u8*)page_address(page) + page_ofs; 1201 bit = data_pos & 7; 1202 data_pos &= ~7ull; 1203 ntfs_debug("Before inner for loop: size 0x%x, " 1204 "data_pos 0x%llx, bit 0x%llx", size, 1205 (long long)data_pos, (long long)bit); 1206 for (; bit < size && data_pos + bit < pass_end; 1207 bit &= ~7ull, bit += 8) { 1208 byte = buf + (bit >> 3); 1209 if (*byte == 0xff) 1210 continue; 1211 b = ffz((unsigned long)*byte); 1212 if (b < 8 && b >= (bit & 7)) { 1213 ll = data_pos + (bit & ~7ull) + b; 1214 if (unlikely(ll > (1ll << 32))) { 1215 ntfs_unmap_page(page); 1216 return -ENOSPC; 1217 } 1218 *byte |= 1 << b; 1219 flush_dcache_page(page); 1220 set_page_dirty(page); 1221 ntfs_unmap_page(page); 1222 ntfs_debug("Done. (Found and " 1223 "allocated mft record " 1224 "0x%llx.)", 1225 (long long)ll); 1226 return ll; 1227 } 1228 } 1229 ntfs_debug("After inner for loop: size 0x%x, " 1230 "data_pos 0x%llx, bit 0x%llx", size, 1231 (long long)data_pos, (long long)bit); 1232 data_pos += size; 1233 ntfs_unmap_page(page); 1234 /* 1235 * If the end of the pass has not been reached yet, 1236 * continue searching the mft bitmap for a zero bit. 1237 */ 1238 if (data_pos < pass_end) 1239 continue; 1240 } 1241 /* Do the next pass. */ 1242 if (++pass == 2) { 1243 /* 1244 * Starting the second pass, in which we scan the first 1245 * part of the zone which we omitted earlier. 1246 */ 1247 pass_end = pass_start; 1248 data_pos = pass_start = 24; 1249 ntfs_debug("pass %i, pass_start 0x%llx, pass_end " 1250 "0x%llx.", pass, (long long)pass_start, 1251 (long long)pass_end); 1252 if (data_pos >= pass_end) 1253 break; 1254 } 1255 } 1256 /* No free mft records in currently initialized mft bitmap. */ 1257 ntfs_debug("Done. (No free mft records left in currently initialized " 1258 "mft bitmap.)"); 1259 return -ENOSPC; 1260 } 1261 1262 /** 1263 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster 1264 * @vol: volume on which to extend the mft bitmap attribute 1265 * 1266 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. 1267 * 1268 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1269 * data_size. 1270 * 1271 * Return 0 on success and -errno on error. 1272 * 1273 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1274 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for 1275 * writing and releases it before returning. 1276 * - This function takes vol->lcnbmp_lock for writing and releases it 1277 * before returning. 1278 */ 1279 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) 1280 { 1281 LCN lcn; 1282 s64 ll; 1283 unsigned long flags; 1284 struct page *page; 1285 ntfs_inode *mft_ni, *mftbmp_ni; 1286 runlist_element *rl, *rl2 = NULL; 1287 ntfs_attr_search_ctx *ctx = NULL; 1288 MFT_RECORD *mrec; 1289 ATTR_RECORD *a = NULL; 1290 int ret, mp_size; 1291 u32 old_alen = 0; 1292 u8 *b, tb; 1293 struct { 1294 u8 added_cluster:1; 1295 u8 added_run:1; 1296 u8 mp_rebuilt:1; 1297 } status = { 0, 0, 0 }; 1298 1299 ntfs_debug("Extending mft bitmap allocation."); 1300 mft_ni = NTFS_I(vol->mft_ino); 1301 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 1302 /* 1303 * Determine the last lcn of the mft bitmap. The allocated size of the 1304 * mft bitmap cannot be zero so we are ok to do this. 1305 */ 1306 down_write(&mftbmp_ni->runlist.lock); 1307 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1308 ll = mftbmp_ni->allocated_size; 1309 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1310 rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, 1311 (ll - 1) >> vol->cluster_size_bits, NULL); 1312 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { 1313 up_write(&mftbmp_ni->runlist.lock); 1314 ntfs_error(vol->sb, "Failed to determine last allocated " 1315 "cluster of mft bitmap attribute."); 1316 if (!IS_ERR(rl)) 1317 ret = -EIO; 1318 else 1319 ret = PTR_ERR(rl); 1320 return ret; 1321 } 1322 lcn = rl->lcn + rl->length; 1323 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", 1324 (long long)lcn); 1325 /* 1326 * Attempt to get the cluster following the last allocated cluster by 1327 * hand as it may be in the MFT zone so the allocator would not give it 1328 * to us. 1329 */ 1330 ll = lcn >> 3; 1331 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, 1332 ll >> PAGE_SHIFT); 1333 if (IS_ERR(page)) { 1334 up_write(&mftbmp_ni->runlist.lock); 1335 ntfs_error(vol->sb, "Failed to read from lcn bitmap."); 1336 return PTR_ERR(page); 1337 } 1338 b = (u8*)page_address(page) + (ll & ~PAGE_MASK); 1339 tb = 1 << (lcn & 7ull); 1340 down_write(&vol->lcnbmp_lock); 1341 if (*b != 0xff && !(*b & tb)) { 1342 /* Next cluster is free, allocate it. */ 1343 *b |= tb; 1344 flush_dcache_page(page); 1345 set_page_dirty(page); 1346 up_write(&vol->lcnbmp_lock); 1347 ntfs_unmap_page(page); 1348 /* Update the mft bitmap runlist. */ 1349 rl->length++; 1350 rl[1].vcn++; 1351 status.added_cluster = 1; 1352 ntfs_debug("Appending one cluster to mft bitmap."); 1353 } else { 1354 up_write(&vol->lcnbmp_lock); 1355 ntfs_unmap_page(page); 1356 /* Allocate a cluster from the DATA_ZONE. */ 1357 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, 1358 true); 1359 if (IS_ERR(rl2)) { 1360 up_write(&mftbmp_ni->runlist.lock); 1361 ntfs_error(vol->sb, "Failed to allocate a cluster for " 1362 "the mft bitmap."); 1363 return PTR_ERR(rl2); 1364 } 1365 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); 1366 if (IS_ERR(rl)) { 1367 up_write(&mftbmp_ni->runlist.lock); 1368 ntfs_error(vol->sb, "Failed to merge runlists for mft " 1369 "bitmap."); 1370 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1371 ntfs_error(vol->sb, "Failed to deallocate " 1372 "allocated cluster.%s", es); 1373 NVolSetErrors(vol); 1374 } 1375 ntfs_free(rl2); 1376 return PTR_ERR(rl); 1377 } 1378 mftbmp_ni->runlist.rl = rl; 1379 status.added_run = 1; 1380 ntfs_debug("Adding one run to mft bitmap."); 1381 /* Find the last run in the new runlist. */ 1382 for (; rl[1].length; rl++) 1383 ; 1384 } 1385 /* 1386 * Update the attribute record as well. Note: @rl is the last 1387 * (non-terminator) runlist element of mft bitmap. 1388 */ 1389 mrec = map_mft_record(mft_ni); 1390 if (IS_ERR(mrec)) { 1391 ntfs_error(vol->sb, "Failed to map mft record."); 1392 ret = PTR_ERR(mrec); 1393 goto undo_alloc; 1394 } 1395 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1396 if (unlikely(!ctx)) { 1397 ntfs_error(vol->sb, "Failed to get search context."); 1398 ret = -ENOMEM; 1399 goto undo_alloc; 1400 } 1401 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1402 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1403 0, ctx); 1404 if (unlikely(ret)) { 1405 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1406 "mft bitmap attribute."); 1407 if (ret == -ENOENT) 1408 ret = -EIO; 1409 goto undo_alloc; 1410 } 1411 a = ctx->attr; 1412 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1413 /* Search back for the previous last allocated cluster of mft bitmap. */ 1414 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { 1415 if (ll >= rl2->vcn) 1416 break; 1417 } 1418 BUG_ON(ll < rl2->vcn); 1419 BUG_ON(ll >= rl2->vcn + rl2->length); 1420 /* Get the size for the new mapping pairs array for this extent. */ 1421 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1422 if (unlikely(mp_size <= 0)) { 1423 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1424 "mft bitmap attribute extent."); 1425 ret = mp_size; 1426 if (!ret) 1427 ret = -EIO; 1428 goto undo_alloc; 1429 } 1430 /* Expand the attribute record if necessary. */ 1431 old_alen = le32_to_cpu(a->length); 1432 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1433 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1434 if (unlikely(ret)) { 1435 if (ret != -ENOSPC) { 1436 ntfs_error(vol->sb, "Failed to resize attribute " 1437 "record for mft bitmap attribute."); 1438 goto undo_alloc; 1439 } 1440 // TODO: Deal with this by moving this extent to a new mft 1441 // record or by starting a new extent in a new mft record or by 1442 // moving other attributes out of this mft record. 1443 // Note: It will need to be a special mft record and if none of 1444 // those are available it gets rather complicated... 1445 ntfs_error(vol->sb, "Not enough space in this mft record to " 1446 "accommodate extended mft bitmap attribute " 1447 "extent. Cannot handle this yet."); 1448 ret = -EOPNOTSUPP; 1449 goto undo_alloc; 1450 } 1451 status.mp_rebuilt = 1; 1452 /* Generate the mapping pairs array directly into the attr record. */ 1453 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1454 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1455 mp_size, rl2, ll, -1, NULL); 1456 if (unlikely(ret)) { 1457 ntfs_error(vol->sb, "Failed to build mapping pairs array for " 1458 "mft bitmap attribute."); 1459 goto undo_alloc; 1460 } 1461 /* Update the highest_vcn. */ 1462 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1463 /* 1464 * We now have extended the mft bitmap allocated_size by one cluster. 1465 * Reflect this in the ntfs_inode structure and the attribute record. 1466 */ 1467 if (a->data.non_resident.lowest_vcn) { 1468 /* 1469 * We are not in the first attribute extent, switch to it, but 1470 * first ensure the changes will make it to disk later. 1471 */ 1472 flush_dcache_mft_record_page(ctx->ntfs_ino); 1473 mark_mft_record_dirty(ctx->ntfs_ino); 1474 ntfs_attr_reinit_search_ctx(ctx); 1475 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1476 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 1477 0, ctx); 1478 if (unlikely(ret)) { 1479 ntfs_error(vol->sb, "Failed to find first attribute " 1480 "extent of mft bitmap attribute."); 1481 goto restore_undo_alloc; 1482 } 1483 a = ctx->attr; 1484 } 1485 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1486 mftbmp_ni->allocated_size += vol->cluster_size; 1487 a->data.non_resident.allocated_size = 1488 cpu_to_sle64(mftbmp_ni->allocated_size); 1489 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1490 /* Ensure the changes make it to disk. */ 1491 flush_dcache_mft_record_page(ctx->ntfs_ino); 1492 mark_mft_record_dirty(ctx->ntfs_ino); 1493 ntfs_attr_put_search_ctx(ctx); 1494 unmap_mft_record(mft_ni); 1495 up_write(&mftbmp_ni->runlist.lock); 1496 ntfs_debug("Done."); 1497 return 0; 1498 restore_undo_alloc: 1499 ntfs_attr_reinit_search_ctx(ctx); 1500 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1501 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1502 0, ctx)) { 1503 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1504 "mft bitmap attribute.%s", es); 1505 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1506 mftbmp_ni->allocated_size += vol->cluster_size; 1507 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1508 ntfs_attr_put_search_ctx(ctx); 1509 unmap_mft_record(mft_ni); 1510 up_write(&mftbmp_ni->runlist.lock); 1511 /* 1512 * The only thing that is now wrong is ->allocated_size of the 1513 * base attribute extent which chkdsk should be able to fix. 1514 */ 1515 NVolSetErrors(vol); 1516 return ret; 1517 } 1518 a = ctx->attr; 1519 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); 1520 undo_alloc: 1521 if (status.added_cluster) { 1522 /* Truncate the last run in the runlist by one cluster. */ 1523 rl->length--; 1524 rl[1].vcn--; 1525 } else if (status.added_run) { 1526 lcn = rl->lcn; 1527 /* Remove the last run from the runlist. */ 1528 rl->lcn = rl[1].lcn; 1529 rl->length = 0; 1530 } 1531 /* Deallocate the cluster. */ 1532 down_write(&vol->lcnbmp_lock); 1533 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1534 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); 1535 NVolSetErrors(vol); 1536 } 1537 up_write(&vol->lcnbmp_lock); 1538 if (status.mp_rebuilt) { 1539 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1540 a->data.non_resident.mapping_pairs_offset), 1541 old_alen - le16_to_cpu( 1542 a->data.non_resident.mapping_pairs_offset), 1543 rl2, ll, -1, NULL)) { 1544 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1545 "array.%s", es); 1546 NVolSetErrors(vol); 1547 } 1548 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1549 ntfs_error(vol->sb, "Failed to restore attribute " 1550 "record.%s", es); 1551 NVolSetErrors(vol); 1552 } 1553 flush_dcache_mft_record_page(ctx->ntfs_ino); 1554 mark_mft_record_dirty(ctx->ntfs_ino); 1555 } 1556 if (ctx) 1557 ntfs_attr_put_search_ctx(ctx); 1558 if (!IS_ERR(mrec)) 1559 unmap_mft_record(mft_ni); 1560 up_write(&mftbmp_ni->runlist.lock); 1561 return ret; 1562 } 1563 1564 /** 1565 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data 1566 * @vol: volume on which to extend the mft bitmap attribute 1567 * 1568 * Extend the initialized portion of the mft bitmap attribute on the ntfs 1569 * volume @vol by 8 bytes. 1570 * 1571 * Note: Only changes initialized_size and data_size, i.e. requires that 1572 * allocated_size is big enough to fit the new initialized_size. 1573 * 1574 * Return 0 on success and -error on error. 1575 * 1576 * Locking: Caller must hold vol->mftbmp_lock for writing. 1577 */ 1578 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) 1579 { 1580 s64 old_data_size, old_initialized_size; 1581 unsigned long flags; 1582 struct inode *mftbmp_vi; 1583 ntfs_inode *mft_ni, *mftbmp_ni; 1584 ntfs_attr_search_ctx *ctx; 1585 MFT_RECORD *mrec; 1586 ATTR_RECORD *a; 1587 int ret; 1588 1589 ntfs_debug("Extending mft bitmap initiailized (and data) size."); 1590 mft_ni = NTFS_I(vol->mft_ino); 1591 mftbmp_vi = vol->mftbmp_ino; 1592 mftbmp_ni = NTFS_I(mftbmp_vi); 1593 /* Get the attribute record. */ 1594 mrec = map_mft_record(mft_ni); 1595 if (IS_ERR(mrec)) { 1596 ntfs_error(vol->sb, "Failed to map mft record."); 1597 return PTR_ERR(mrec); 1598 } 1599 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1600 if (unlikely(!ctx)) { 1601 ntfs_error(vol->sb, "Failed to get search context."); 1602 ret = -ENOMEM; 1603 goto unm_err_out; 1604 } 1605 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1606 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); 1607 if (unlikely(ret)) { 1608 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1609 "mft bitmap attribute."); 1610 if (ret == -ENOENT) 1611 ret = -EIO; 1612 goto put_err_out; 1613 } 1614 a = ctx->attr; 1615 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1616 old_data_size = i_size_read(mftbmp_vi); 1617 old_initialized_size = mftbmp_ni->initialized_size; 1618 /* 1619 * We can simply update the initialized_size before filling the space 1620 * with zeroes because the caller is holding the mft bitmap lock for 1621 * writing which ensures that no one else is trying to access the data. 1622 */ 1623 mftbmp_ni->initialized_size += 8; 1624 a->data.non_resident.initialized_size = 1625 cpu_to_sle64(mftbmp_ni->initialized_size); 1626 if (mftbmp_ni->initialized_size > old_data_size) { 1627 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); 1628 a->data.non_resident.data_size = 1629 cpu_to_sle64(mftbmp_ni->initialized_size); 1630 } 1631 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1632 /* Ensure the changes make it to disk. */ 1633 flush_dcache_mft_record_page(ctx->ntfs_ino); 1634 mark_mft_record_dirty(ctx->ntfs_ino); 1635 ntfs_attr_put_search_ctx(ctx); 1636 unmap_mft_record(mft_ni); 1637 /* Initialize the mft bitmap attribute value with zeroes. */ 1638 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); 1639 if (likely(!ret)) { 1640 ntfs_debug("Done. (Wrote eight initialized bytes to mft " 1641 "bitmap."); 1642 return 0; 1643 } 1644 ntfs_error(vol->sb, "Failed to write to mft bitmap."); 1645 /* Try to recover from the error. */ 1646 mrec = map_mft_record(mft_ni); 1647 if (IS_ERR(mrec)) { 1648 ntfs_error(vol->sb, "Failed to map mft record.%s", es); 1649 NVolSetErrors(vol); 1650 return ret; 1651 } 1652 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1653 if (unlikely(!ctx)) { 1654 ntfs_error(vol->sb, "Failed to get search context.%s", es); 1655 NVolSetErrors(vol); 1656 goto unm_err_out; 1657 } 1658 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1659 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { 1660 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1661 "mft bitmap attribute.%s", es); 1662 NVolSetErrors(vol); 1663 put_err_out: 1664 ntfs_attr_put_search_ctx(ctx); 1665 unm_err_out: 1666 unmap_mft_record(mft_ni); 1667 goto err_out; 1668 } 1669 a = ctx->attr; 1670 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1671 mftbmp_ni->initialized_size = old_initialized_size; 1672 a->data.non_resident.initialized_size = 1673 cpu_to_sle64(old_initialized_size); 1674 if (i_size_read(mftbmp_vi) != old_data_size) { 1675 i_size_write(mftbmp_vi, old_data_size); 1676 a->data.non_resident.data_size = cpu_to_sle64(old_data_size); 1677 } 1678 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1679 flush_dcache_mft_record_page(ctx->ntfs_ino); 1680 mark_mft_record_dirty(ctx->ntfs_ino); 1681 ntfs_attr_put_search_ctx(ctx); 1682 unmap_mft_record(mft_ni); 1683 #ifdef DEBUG 1684 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1685 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " 1686 "data_size 0x%llx, initialized_size 0x%llx.", 1687 (long long)mftbmp_ni->allocated_size, 1688 (long long)i_size_read(mftbmp_vi), 1689 (long long)mftbmp_ni->initialized_size); 1690 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1691 #endif /* DEBUG */ 1692 err_out: 1693 return ret; 1694 } 1695 1696 /** 1697 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute 1698 * @vol: volume on which to extend the mft data attribute 1699 * 1700 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records 1701 * worth of clusters or if not enough space for this by one mft record worth 1702 * of clusters. 1703 * 1704 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1705 * data_size. 1706 * 1707 * Return 0 on success and -errno on error. 1708 * 1709 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1710 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for 1711 * writing and releases it before returning. 1712 * - This function calls functions which take vol->lcnbmp_lock for 1713 * writing and release it before returning. 1714 */ 1715 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) 1716 { 1717 LCN lcn; 1718 VCN old_last_vcn; 1719 s64 min_nr, nr, ll; 1720 unsigned long flags; 1721 ntfs_inode *mft_ni; 1722 runlist_element *rl, *rl2; 1723 ntfs_attr_search_ctx *ctx = NULL; 1724 MFT_RECORD *mrec; 1725 ATTR_RECORD *a = NULL; 1726 int ret, mp_size; 1727 u32 old_alen = 0; 1728 bool mp_rebuilt = false; 1729 1730 ntfs_debug("Extending mft data allocation."); 1731 mft_ni = NTFS_I(vol->mft_ino); 1732 /* 1733 * Determine the preferred allocation location, i.e. the last lcn of 1734 * the mft data attribute. The allocated size of the mft data 1735 * attribute cannot be zero so we are ok to do this. 1736 */ 1737 down_write(&mft_ni->runlist.lock); 1738 read_lock_irqsave(&mft_ni->size_lock, flags); 1739 ll = mft_ni->allocated_size; 1740 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1741 rl = ntfs_attr_find_vcn_nolock(mft_ni, 1742 (ll - 1) >> vol->cluster_size_bits, NULL); 1743 if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { 1744 up_write(&mft_ni->runlist.lock); 1745 ntfs_error(vol->sb, "Failed to determine last allocated " 1746 "cluster of mft data attribute."); 1747 if (!IS_ERR(rl)) 1748 ret = -EIO; 1749 else 1750 ret = PTR_ERR(rl); 1751 return ret; 1752 } 1753 lcn = rl->lcn + rl->length; 1754 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); 1755 /* Minimum allocation is one mft record worth of clusters. */ 1756 min_nr = vol->mft_record_size >> vol->cluster_size_bits; 1757 if (!min_nr) 1758 min_nr = 1; 1759 /* Want to allocate 16 mft records worth of clusters. */ 1760 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; 1761 if (!nr) 1762 nr = min_nr; 1763 /* Ensure we do not go above 2^32-1 mft records. */ 1764 read_lock_irqsave(&mft_ni->size_lock, flags); 1765 ll = mft_ni->allocated_size; 1766 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1767 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1768 vol->mft_record_size_bits >= (1ll << 32))) { 1769 nr = min_nr; 1770 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1771 vol->mft_record_size_bits >= (1ll << 32))) { 1772 ntfs_warning(vol->sb, "Cannot allocate mft record " 1773 "because the maximum number of inodes " 1774 "(2^32) has already been reached."); 1775 up_write(&mft_ni->runlist.lock); 1776 return -ENOSPC; 1777 } 1778 } 1779 ntfs_debug("Trying mft data allocation with %s cluster count %lli.", 1780 nr > min_nr ? "default" : "minimal", (long long)nr); 1781 old_last_vcn = rl[1].vcn; 1782 do { 1783 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, 1784 true); 1785 if (likely(!IS_ERR(rl2))) 1786 break; 1787 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { 1788 ntfs_error(vol->sb, "Failed to allocate the minimal " 1789 "number of clusters (%lli) for the " 1790 "mft data attribute.", (long long)nr); 1791 up_write(&mft_ni->runlist.lock); 1792 return PTR_ERR(rl2); 1793 } 1794 /* 1795 * There is not enough space to do the allocation, but there 1796 * might be enough space to do a minimal allocation so try that 1797 * before failing. 1798 */ 1799 nr = min_nr; 1800 ntfs_debug("Retrying mft data allocation with minimal cluster " 1801 "count %lli.", (long long)nr); 1802 } while (1); 1803 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); 1804 if (IS_ERR(rl)) { 1805 up_write(&mft_ni->runlist.lock); 1806 ntfs_error(vol->sb, "Failed to merge runlists for mft data " 1807 "attribute."); 1808 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1809 ntfs_error(vol->sb, "Failed to deallocate clusters " 1810 "from the mft data attribute.%s", es); 1811 NVolSetErrors(vol); 1812 } 1813 ntfs_free(rl2); 1814 return PTR_ERR(rl); 1815 } 1816 mft_ni->runlist.rl = rl; 1817 ntfs_debug("Allocated %lli clusters.", (long long)nr); 1818 /* Find the last run in the new runlist. */ 1819 for (; rl[1].length; rl++) 1820 ; 1821 /* Update the attribute record as well. */ 1822 mrec = map_mft_record(mft_ni); 1823 if (IS_ERR(mrec)) { 1824 ntfs_error(vol->sb, "Failed to map mft record."); 1825 ret = PTR_ERR(mrec); 1826 goto undo_alloc; 1827 } 1828 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1829 if (unlikely(!ctx)) { 1830 ntfs_error(vol->sb, "Failed to get search context."); 1831 ret = -ENOMEM; 1832 goto undo_alloc; 1833 } 1834 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1835 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); 1836 if (unlikely(ret)) { 1837 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1838 "mft data attribute."); 1839 if (ret == -ENOENT) 1840 ret = -EIO; 1841 goto undo_alloc; 1842 } 1843 a = ctx->attr; 1844 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1845 /* Search back for the previous last allocated cluster of mft bitmap. */ 1846 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { 1847 if (ll >= rl2->vcn) 1848 break; 1849 } 1850 BUG_ON(ll < rl2->vcn); 1851 BUG_ON(ll >= rl2->vcn + rl2->length); 1852 /* Get the size for the new mapping pairs array for this extent. */ 1853 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1854 if (unlikely(mp_size <= 0)) { 1855 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1856 "mft data attribute extent."); 1857 ret = mp_size; 1858 if (!ret) 1859 ret = -EIO; 1860 goto undo_alloc; 1861 } 1862 /* Expand the attribute record if necessary. */ 1863 old_alen = le32_to_cpu(a->length); 1864 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1865 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1866 if (unlikely(ret)) { 1867 if (ret != -ENOSPC) { 1868 ntfs_error(vol->sb, "Failed to resize attribute " 1869 "record for mft data attribute."); 1870 goto undo_alloc; 1871 } 1872 // TODO: Deal with this by moving this extent to a new mft 1873 // record or by starting a new extent in a new mft record or by 1874 // moving other attributes out of this mft record. 1875 // Note: Use the special reserved mft records and ensure that 1876 // this extent is not required to find the mft record in 1877 // question. If no free special records left we would need to 1878 // move an existing record away, insert ours in its place, and 1879 // then place the moved record into the newly allocated space 1880 // and we would then need to update all references to this mft 1881 // record appropriately. This is rather complicated... 1882 ntfs_error(vol->sb, "Not enough space in this mft record to " 1883 "accommodate extended mft data attribute " 1884 "extent. Cannot handle this yet."); 1885 ret = -EOPNOTSUPP; 1886 goto undo_alloc; 1887 } 1888 mp_rebuilt = true; 1889 /* Generate the mapping pairs array directly into the attr record. */ 1890 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1891 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1892 mp_size, rl2, ll, -1, NULL); 1893 if (unlikely(ret)) { 1894 ntfs_error(vol->sb, "Failed to build mapping pairs array of " 1895 "mft data attribute."); 1896 goto undo_alloc; 1897 } 1898 /* Update the highest_vcn. */ 1899 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1900 /* 1901 * We now have extended the mft data allocated_size by nr clusters. 1902 * Reflect this in the ntfs_inode structure and the attribute record. 1903 * @rl is the last (non-terminator) runlist element of mft data 1904 * attribute. 1905 */ 1906 if (a->data.non_resident.lowest_vcn) { 1907 /* 1908 * We are not in the first attribute extent, switch to it, but 1909 * first ensure the changes will make it to disk later. 1910 */ 1911 flush_dcache_mft_record_page(ctx->ntfs_ino); 1912 mark_mft_record_dirty(ctx->ntfs_ino); 1913 ntfs_attr_reinit_search_ctx(ctx); 1914 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, 1915 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, 1916 ctx); 1917 if (unlikely(ret)) { 1918 ntfs_error(vol->sb, "Failed to find first attribute " 1919 "extent of mft data attribute."); 1920 goto restore_undo_alloc; 1921 } 1922 a = ctx->attr; 1923 } 1924 write_lock_irqsave(&mft_ni->size_lock, flags); 1925 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1926 a->data.non_resident.allocated_size = 1927 cpu_to_sle64(mft_ni->allocated_size); 1928 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1929 /* Ensure the changes make it to disk. */ 1930 flush_dcache_mft_record_page(ctx->ntfs_ino); 1931 mark_mft_record_dirty(ctx->ntfs_ino); 1932 ntfs_attr_put_search_ctx(ctx); 1933 unmap_mft_record(mft_ni); 1934 up_write(&mft_ni->runlist.lock); 1935 ntfs_debug("Done."); 1936 return 0; 1937 restore_undo_alloc: 1938 ntfs_attr_reinit_search_ctx(ctx); 1939 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1940 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { 1941 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1942 "mft data attribute.%s", es); 1943 write_lock_irqsave(&mft_ni->size_lock, flags); 1944 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1945 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1946 ntfs_attr_put_search_ctx(ctx); 1947 unmap_mft_record(mft_ni); 1948 up_write(&mft_ni->runlist.lock); 1949 /* 1950 * The only thing that is now wrong is ->allocated_size of the 1951 * base attribute extent which chkdsk should be able to fix. 1952 */ 1953 NVolSetErrors(vol); 1954 return ret; 1955 } 1956 ctx->attr->data.non_resident.highest_vcn = 1957 cpu_to_sle64(old_last_vcn - 1); 1958 undo_alloc: 1959 if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { 1960 ntfs_error(vol->sb, "Failed to free clusters from mft data " 1961 "attribute.%s", es); 1962 NVolSetErrors(vol); 1963 } 1964 a = ctx->attr; 1965 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { 1966 ntfs_error(vol->sb, "Failed to truncate mft data attribute " 1967 "runlist.%s", es); 1968 NVolSetErrors(vol); 1969 } 1970 if (mp_rebuilt && !IS_ERR(ctx->mrec)) { 1971 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1972 a->data.non_resident.mapping_pairs_offset), 1973 old_alen - le16_to_cpu( 1974 a->data.non_resident.mapping_pairs_offset), 1975 rl2, ll, -1, NULL)) { 1976 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1977 "array.%s", es); 1978 NVolSetErrors(vol); 1979 } 1980 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1981 ntfs_error(vol->sb, "Failed to restore attribute " 1982 "record.%s", es); 1983 NVolSetErrors(vol); 1984 } 1985 flush_dcache_mft_record_page(ctx->ntfs_ino); 1986 mark_mft_record_dirty(ctx->ntfs_ino); 1987 } else if (IS_ERR(ctx->mrec)) { 1988 ntfs_error(vol->sb, "Failed to restore attribute search " 1989 "context.%s", es); 1990 NVolSetErrors(vol); 1991 } 1992 if (ctx) 1993 ntfs_attr_put_search_ctx(ctx); 1994 if (!IS_ERR(mrec)) 1995 unmap_mft_record(mft_ni); 1996 up_write(&mft_ni->runlist.lock); 1997 return ret; 1998 } 1999 2000 /** 2001 * ntfs_mft_record_layout - layout an mft record into a memory buffer 2002 * @vol: volume to which the mft record will belong 2003 * @mft_no: mft reference specifying the mft record number 2004 * @m: destination buffer of size >= @vol->mft_record_size bytes 2005 * 2006 * Layout an empty, unused mft record with the mft record number @mft_no into 2007 * the buffer @m. The volume @vol is needed because the mft record structure 2008 * was modified in NTFS 3.1 so we need to know which volume version this mft 2009 * record will be used on. 2010 * 2011 * Return 0 on success and -errno on error. 2012 */ 2013 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, 2014 MFT_RECORD *m) 2015 { 2016 ATTR_RECORD *a; 2017 2018 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2019 if (mft_no >= (1ll << 32)) { 2020 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " 2021 "maximum of 2^32.", (long long)mft_no); 2022 return -ERANGE; 2023 } 2024 /* Start by clearing the whole mft record to gives us a clean slate. */ 2025 memset(m, 0, vol->mft_record_size); 2026 /* Aligned to 2-byte boundary. */ 2027 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) 2028 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); 2029 else { 2030 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); 2031 /* 2032 * Set the NTFS 3.1+ specific fields while we know that the 2033 * volume version is 3.1+. 2034 */ 2035 m->reserved = 0; 2036 m->mft_record_number = cpu_to_le32((u32)mft_no); 2037 } 2038 m->magic = magic_FILE; 2039 if (vol->mft_record_size >= NTFS_BLOCK_SIZE) 2040 m->usa_count = cpu_to_le16(vol->mft_record_size / 2041 NTFS_BLOCK_SIZE + 1); 2042 else { 2043 m->usa_count = cpu_to_le16(1); 2044 ntfs_warning(vol->sb, "Sector size is bigger than mft record " 2045 "size. Setting usa_count to 1. If chkdsk " 2046 "reports this as corruption, please email " 2047 "linux-ntfs-dev@lists.sourceforge.net stating " 2048 "that you saw this message and that the " 2049 "modified filesystem created was corrupt. " 2050 "Thank you."); 2051 } 2052 /* Set the update sequence number to 1. */ 2053 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); 2054 m->lsn = 0; 2055 m->sequence_number = cpu_to_le16(1); 2056 m->link_count = 0; 2057 /* 2058 * Place the attributes straight after the update sequence array, 2059 * aligned to 8-byte boundary. 2060 */ 2061 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + 2062 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); 2063 m->flags = 0; 2064 /* 2065 * Using attrs_offset plus eight bytes (for the termination attribute). 2066 * attrs_offset is already aligned to 8-byte boundary, so no need to 2067 * align again. 2068 */ 2069 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); 2070 m->bytes_allocated = cpu_to_le32(vol->mft_record_size); 2071 m->base_mft_record = 0; 2072 m->next_attr_instance = 0; 2073 /* Add the termination attribute. */ 2074 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); 2075 a->type = AT_END; 2076 a->length = 0; 2077 ntfs_debug("Done."); 2078 return 0; 2079 } 2080 2081 /** 2082 * ntfs_mft_record_format - format an mft record on an ntfs volume 2083 * @vol: volume on which to format the mft record 2084 * @mft_no: mft record number to format 2085 * 2086 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused 2087 * mft record into the appropriate place of the mft data attribute. This is 2088 * used when extending the mft data attribute. 2089 * 2090 * Return 0 on success and -errno on error. 2091 */ 2092 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) 2093 { 2094 loff_t i_size; 2095 struct inode *mft_vi = vol->mft_ino; 2096 struct page *page; 2097 MFT_RECORD *m; 2098 pgoff_t index, end_index; 2099 unsigned int ofs; 2100 int err; 2101 2102 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2103 /* 2104 * The index into the page cache and the offset within the page cache 2105 * page of the wanted mft record. 2106 */ 2107 index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT; 2108 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 2109 /* The maximum valid index into the page cache for $MFT's data. */ 2110 i_size = i_size_read(mft_vi); 2111 end_index = i_size >> PAGE_SHIFT; 2112 if (unlikely(index >= end_index)) { 2113 if (unlikely(index > end_index || ofs + vol->mft_record_size >= 2114 (i_size & ~PAGE_MASK))) { 2115 ntfs_error(vol->sb, "Tried to format non-existing mft " 2116 "record 0x%llx.", (long long)mft_no); 2117 return -ENOENT; 2118 } 2119 } 2120 /* Read, map, and pin the page containing the mft record. */ 2121 page = ntfs_map_page(mft_vi->i_mapping, index); 2122 if (IS_ERR(page)) { 2123 ntfs_error(vol->sb, "Failed to map page containing mft record " 2124 "to format 0x%llx.", (long long)mft_no); 2125 return PTR_ERR(page); 2126 } 2127 lock_page(page); 2128 BUG_ON(!PageUptodate(page)); 2129 ClearPageUptodate(page); 2130 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2131 err = ntfs_mft_record_layout(vol, mft_no, m); 2132 if (unlikely(err)) { 2133 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", 2134 (long long)mft_no); 2135 SetPageUptodate(page); 2136 unlock_page(page); 2137 ntfs_unmap_page(page); 2138 return err; 2139 } 2140 flush_dcache_page(page); 2141 SetPageUptodate(page); 2142 unlock_page(page); 2143 /* 2144 * Make sure the mft record is written out to disk. We could use 2145 * ilookup5() to check if an inode is in icache and so on but this is 2146 * unnecessary as ntfs_writepage() will write the dirty record anyway. 2147 */ 2148 mark_ntfs_record_dirty(page, ofs); 2149 ntfs_unmap_page(page); 2150 ntfs_debug("Done."); 2151 return 0; 2152 } 2153 2154 /** 2155 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume 2156 * @vol: [IN] volume on which to allocate the mft record 2157 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0 2158 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL 2159 * @mrec: [OUT] on successful return this is the mapped mft record 2160 * 2161 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. 2162 * 2163 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or 2164 * direvctory inode, and allocate it at the default allocator position. In 2165 * this case @mode is the file mode as given to us by the caller. We in 2166 * particular use @mode to distinguish whether a file or a directory is being 2167 * created (S_IFDIR(mode) and S_IFREG(mode), respectively). 2168 * 2169 * If @base_ni is not NULL make the allocated mft record an extent record, 2170 * allocate it starting at the mft record after the base mft record and attach 2171 * the allocated and opened ntfs inode to the base inode @base_ni. In this 2172 * case @mode must be 0 as it is meaningless for extent inodes. 2173 * 2174 * You need to check the return value with IS_ERR(). If false, the function 2175 * was successful and the return value is the now opened ntfs inode of the 2176 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned, 2177 * and locked mft record. If IS_ERR() is true, the function failed and the 2178 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in 2179 * this case. 2180 * 2181 * Allocation strategy: 2182 * 2183 * To find a free mft record, we scan the mft bitmap for a zero bit. To 2184 * optimize this we start scanning at the place specified by @base_ni or if 2185 * @base_ni is NULL we start where we last stopped and we perform wrap around 2186 * when we reach the end. Note, we do not try to allocate mft records below 2187 * number 24 because numbers 0 to 15 are the defined system files anyway and 16 2188 * to 24 are special in that they are used for storing extension mft records 2189 * for the $DATA attribute of $MFT. This is required to avoid the possibility 2190 * of creating a runlist with a circular dependency which once written to disk 2191 * can never be read in again. Windows will only use records 16 to 24 for 2192 * normal files if the volume is completely out of space. We never use them 2193 * which means that when the volume is really out of space we cannot create any 2194 * more files while Windows can still create up to 8 small files. We can start 2195 * doing this at some later time, it does not matter much for now. 2196 * 2197 * When scanning the mft bitmap, we only search up to the last allocated mft 2198 * record. If there are no free records left in the range 24 to number of 2199 * allocated mft records, then we extend the $MFT/$DATA attribute in order to 2200 * create free mft records. We extend the allocated size of $MFT/$DATA by 16 2201 * records at a time or one cluster, if cluster size is above 16kiB. If there 2202 * is not sufficient space to do this, we try to extend by a single mft record 2203 * or one cluster, if cluster size is above the mft record size. 2204 * 2205 * No matter how many mft records we allocate, we initialize only the first 2206 * allocated mft record, incrementing mft data size and initialized size 2207 * accordingly, open an ntfs_inode for it and return it to the caller, unless 2208 * there are less than 24 mft records, in which case we allocate and initialize 2209 * mft records until we reach record 24 which we consider as the first free mft 2210 * record for use by normal files. 2211 * 2212 * If during any stage we overflow the initialized data in the mft bitmap, we 2213 * extend the initialized size (and data size) by 8 bytes, allocating another 2214 * cluster if required. The bitmap data size has to be at least equal to the 2215 * number of mft records in the mft, but it can be bigger, in which case the 2216 * superflous bits are padded with zeroes. 2217 * 2218 * Thus, when we return successfully (IS_ERR() is false), we will have: 2219 * - initialized / extended the mft bitmap if necessary, 2220 * - initialized / extended the mft data if necessary, 2221 * - set the bit corresponding to the mft record being allocated in the 2222 * mft bitmap, 2223 * - opened an ntfs_inode for the allocated mft record, and we will have 2224 * - returned the ntfs_inode as well as the allocated mapped, pinned, and 2225 * locked mft record. 2226 * 2227 * On error, the volume will be left in a consistent state and no record will 2228 * be allocated. If rolling back a partial operation fails, we may leave some 2229 * inconsistent metadata in which case we set NVolErrors() so the volume is 2230 * left dirty when unmounted. 2231 * 2232 * Note, this function cannot make use of most of the normal functions, like 2233 * for example for attribute resizing, etc, because when the run list overflows 2234 * the base mft record and an attribute list is used, it is very important that 2235 * the extension mft records used to store the $DATA attribute of $MFT can be 2236 * reached without having to read the information contained inside them, as 2237 * this would make it impossible to find them in the first place after the 2238 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this 2239 * rule because the bitmap is not essential for finding the mft records, but on 2240 * the other hand, handling the bitmap in this special way would make life 2241 * easier because otherwise there might be circular invocations of functions 2242 * when reading the bitmap. 2243 */ 2244 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, 2245 ntfs_inode *base_ni, MFT_RECORD **mrec) 2246 { 2247 s64 ll, bit, old_data_initialized, old_data_size; 2248 unsigned long flags; 2249 struct inode *vi; 2250 struct page *page; 2251 ntfs_inode *mft_ni, *mftbmp_ni, *ni; 2252 ntfs_attr_search_ctx *ctx; 2253 MFT_RECORD *m; 2254 ATTR_RECORD *a; 2255 pgoff_t index; 2256 unsigned int ofs; 2257 int err; 2258 le16 seq_no, usn; 2259 bool record_formatted = false; 2260 2261 if (base_ni) { 2262 ntfs_debug("Entering (allocating an extent mft record for " 2263 "base mft record 0x%llx).", 2264 (long long)base_ni->mft_no); 2265 /* @mode and @base_ni are mutually exclusive. */ 2266 BUG_ON(mode); 2267 } else 2268 ntfs_debug("Entering (allocating a base mft record)."); 2269 if (mode) { 2270 /* @mode and @base_ni are mutually exclusive. */ 2271 BUG_ON(base_ni); 2272 /* We only support creation of normal files and directories. */ 2273 if (!S_ISREG(mode) && !S_ISDIR(mode)) 2274 return ERR_PTR(-EOPNOTSUPP); 2275 } 2276 BUG_ON(!mrec); 2277 mft_ni = NTFS_I(vol->mft_ino); 2278 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 2279 down_write(&vol->mftbmp_lock); 2280 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); 2281 if (bit >= 0) { 2282 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", 2283 (long long)bit); 2284 goto have_alloc_rec; 2285 } 2286 if (bit != -ENOSPC) { 2287 up_write(&vol->mftbmp_lock); 2288 return ERR_PTR(bit); 2289 } 2290 /* 2291 * No free mft records left. If the mft bitmap already covers more 2292 * than the currently used mft records, the next records are all free, 2293 * so we can simply allocate the first unused mft record. 2294 * Note: We also have to make sure that the mft bitmap at least covers 2295 * the first 24 mft records as they are special and whilst they may not 2296 * be in use, we do not allocate from them. 2297 */ 2298 read_lock_irqsave(&mft_ni->size_lock, flags); 2299 ll = mft_ni->initialized_size >> vol->mft_record_size_bits; 2300 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2301 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2302 old_data_initialized = mftbmp_ni->initialized_size; 2303 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2304 if (old_data_initialized << 3 > ll && old_data_initialized > 3) { 2305 bit = ll; 2306 if (bit < 24) 2307 bit = 24; 2308 if (unlikely(bit >= (1ll << 32))) 2309 goto max_err_out; 2310 ntfs_debug("Found free record (#2), bit 0x%llx.", 2311 (long long)bit); 2312 goto found_free_rec; 2313 } 2314 /* 2315 * The mft bitmap needs to be expanded until it covers the first unused 2316 * mft record that we can allocate. 2317 * Note: The smallest mft record we allocate is mft record 24. 2318 */ 2319 bit = old_data_initialized << 3; 2320 if (unlikely(bit >= (1ll << 32))) 2321 goto max_err_out; 2322 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2323 old_data_size = mftbmp_ni->allocated_size; 2324 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " 2325 "data_size 0x%llx, initialized_size 0x%llx.", 2326 (long long)old_data_size, 2327 (long long)i_size_read(vol->mftbmp_ino), 2328 (long long)old_data_initialized); 2329 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2330 if (old_data_initialized + 8 > old_data_size) { 2331 /* Need to extend bitmap by one more cluster. */ 2332 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); 2333 err = ntfs_mft_bitmap_extend_allocation_nolock(vol); 2334 if (unlikely(err)) { 2335 up_write(&vol->mftbmp_lock); 2336 goto err_out; 2337 } 2338 #ifdef DEBUG 2339 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2340 ntfs_debug("Status of mftbmp after allocation extension: " 2341 "allocated_size 0x%llx, data_size 0x%llx, " 2342 "initialized_size 0x%llx.", 2343 (long long)mftbmp_ni->allocated_size, 2344 (long long)i_size_read(vol->mftbmp_ino), 2345 (long long)mftbmp_ni->initialized_size); 2346 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2347 #endif /* DEBUG */ 2348 } 2349 /* 2350 * We now have sufficient allocated space, extend the initialized_size 2351 * as well as the data_size if necessary and fill the new space with 2352 * zeroes. 2353 */ 2354 err = ntfs_mft_bitmap_extend_initialized_nolock(vol); 2355 if (unlikely(err)) { 2356 up_write(&vol->mftbmp_lock); 2357 goto err_out; 2358 } 2359 #ifdef DEBUG 2360 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2361 ntfs_debug("Status of mftbmp after initialized extension: " 2362 "allocated_size 0x%llx, data_size 0x%llx, " 2363 "initialized_size 0x%llx.", 2364 (long long)mftbmp_ni->allocated_size, 2365 (long long)i_size_read(vol->mftbmp_ino), 2366 (long long)mftbmp_ni->initialized_size); 2367 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2368 #endif /* DEBUG */ 2369 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); 2370 found_free_rec: 2371 /* @bit is the found free mft record, allocate it in the mft bitmap. */ 2372 ntfs_debug("At found_free_rec."); 2373 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); 2374 if (unlikely(err)) { 2375 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); 2376 up_write(&vol->mftbmp_lock); 2377 goto err_out; 2378 } 2379 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); 2380 have_alloc_rec: 2381 /* 2382 * The mft bitmap is now uptodate. Deal with mft data attribute now. 2383 * Note, we keep hold of the mft bitmap lock for writing until all 2384 * modifications to the mft data attribute are complete, too, as they 2385 * will impact decisions for mft bitmap and mft record allocation done 2386 * by a parallel allocation and if the lock is not maintained a 2387 * parallel allocation could allocate the same mft record as this one. 2388 */ 2389 ll = (bit + 1) << vol->mft_record_size_bits; 2390 read_lock_irqsave(&mft_ni->size_lock, flags); 2391 old_data_initialized = mft_ni->initialized_size; 2392 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2393 if (ll <= old_data_initialized) { 2394 ntfs_debug("Allocated mft record already initialized."); 2395 goto mft_rec_already_initialized; 2396 } 2397 ntfs_debug("Initializing allocated mft record."); 2398 /* 2399 * The mft record is outside the initialized data. Extend the mft data 2400 * attribute until it covers the allocated record. The loop is only 2401 * actually traversed more than once when a freshly formatted volume is 2402 * first written to so it optimizes away nicely in the common case. 2403 */ 2404 read_lock_irqsave(&mft_ni->size_lock, flags); 2405 ntfs_debug("Status of mft data before extension: " 2406 "allocated_size 0x%llx, data_size 0x%llx, " 2407 "initialized_size 0x%llx.", 2408 (long long)mft_ni->allocated_size, 2409 (long long)i_size_read(vol->mft_ino), 2410 (long long)mft_ni->initialized_size); 2411 while (ll > mft_ni->allocated_size) { 2412 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2413 err = ntfs_mft_data_extend_allocation_nolock(vol); 2414 if (unlikely(err)) { 2415 ntfs_error(vol->sb, "Failed to extend mft data " 2416 "allocation."); 2417 goto undo_mftbmp_alloc_nolock; 2418 } 2419 read_lock_irqsave(&mft_ni->size_lock, flags); 2420 ntfs_debug("Status of mft data after allocation extension: " 2421 "allocated_size 0x%llx, data_size 0x%llx, " 2422 "initialized_size 0x%llx.", 2423 (long long)mft_ni->allocated_size, 2424 (long long)i_size_read(vol->mft_ino), 2425 (long long)mft_ni->initialized_size); 2426 } 2427 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2428 /* 2429 * Extend mft data initialized size (and data size of course) to reach 2430 * the allocated mft record, formatting the mft records allong the way. 2431 * Note: We only modify the ntfs_inode structure as that is all that is 2432 * needed by ntfs_mft_record_format(). We will update the attribute 2433 * record itself in one fell swoop later on. 2434 */ 2435 write_lock_irqsave(&mft_ni->size_lock, flags); 2436 old_data_initialized = mft_ni->initialized_size; 2437 old_data_size = vol->mft_ino->i_size; 2438 while (ll > mft_ni->initialized_size) { 2439 s64 new_initialized_size, mft_no; 2440 2441 new_initialized_size = mft_ni->initialized_size + 2442 vol->mft_record_size; 2443 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; 2444 if (new_initialized_size > i_size_read(vol->mft_ino)) 2445 i_size_write(vol->mft_ino, new_initialized_size); 2446 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2447 ntfs_debug("Initializing mft record 0x%llx.", 2448 (long long)mft_no); 2449 err = ntfs_mft_record_format(vol, mft_no); 2450 if (unlikely(err)) { 2451 ntfs_error(vol->sb, "Failed to format mft record."); 2452 goto undo_data_init; 2453 } 2454 write_lock_irqsave(&mft_ni->size_lock, flags); 2455 mft_ni->initialized_size = new_initialized_size; 2456 } 2457 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2458 record_formatted = true; 2459 /* Update the mft data attribute record to reflect the new sizes. */ 2460 m = map_mft_record(mft_ni); 2461 if (IS_ERR(m)) { 2462 ntfs_error(vol->sb, "Failed to map mft record."); 2463 err = PTR_ERR(m); 2464 goto undo_data_init; 2465 } 2466 ctx = ntfs_attr_get_search_ctx(mft_ni, m); 2467 if (unlikely(!ctx)) { 2468 ntfs_error(vol->sb, "Failed to get search context."); 2469 err = -ENOMEM; 2470 unmap_mft_record(mft_ni); 2471 goto undo_data_init; 2472 } 2473 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 2474 CASE_SENSITIVE, 0, NULL, 0, ctx); 2475 if (unlikely(err)) { 2476 ntfs_error(vol->sb, "Failed to find first attribute extent of " 2477 "mft data attribute."); 2478 ntfs_attr_put_search_ctx(ctx); 2479 unmap_mft_record(mft_ni); 2480 goto undo_data_init; 2481 } 2482 a = ctx->attr; 2483 read_lock_irqsave(&mft_ni->size_lock, flags); 2484 a->data.non_resident.initialized_size = 2485 cpu_to_sle64(mft_ni->initialized_size); 2486 a->data.non_resident.data_size = 2487 cpu_to_sle64(i_size_read(vol->mft_ino)); 2488 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2489 /* Ensure the changes make it to disk. */ 2490 flush_dcache_mft_record_page(ctx->ntfs_ino); 2491 mark_mft_record_dirty(ctx->ntfs_ino); 2492 ntfs_attr_put_search_ctx(ctx); 2493 unmap_mft_record(mft_ni); 2494 read_lock_irqsave(&mft_ni->size_lock, flags); 2495 ntfs_debug("Status of mft data after mft record initialization: " 2496 "allocated_size 0x%llx, data_size 0x%llx, " 2497 "initialized_size 0x%llx.", 2498 (long long)mft_ni->allocated_size, 2499 (long long)i_size_read(vol->mft_ino), 2500 (long long)mft_ni->initialized_size); 2501 BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); 2502 BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); 2503 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2504 mft_rec_already_initialized: 2505 /* 2506 * We can finally drop the mft bitmap lock as the mft data attribute 2507 * has been fully updated. The only disparity left is that the 2508 * allocated mft record still needs to be marked as in use to match the 2509 * set bit in the mft bitmap but this is actually not a problem since 2510 * this mft record is not referenced from anywhere yet and the fact 2511 * that it is allocated in the mft bitmap means that no-one will try to 2512 * allocate it either. 2513 */ 2514 up_write(&vol->mftbmp_lock); 2515 /* 2516 * We now have allocated and initialized the mft record. Calculate the 2517 * index of and the offset within the page cache page the record is in. 2518 */ 2519 index = bit << vol->mft_record_size_bits >> PAGE_SHIFT; 2520 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK; 2521 /* Read, map, and pin the page containing the mft record. */ 2522 page = ntfs_map_page(vol->mft_ino->i_mapping, index); 2523 if (IS_ERR(page)) { 2524 ntfs_error(vol->sb, "Failed to map page containing allocated " 2525 "mft record 0x%llx.", (long long)bit); 2526 err = PTR_ERR(page); 2527 goto undo_mftbmp_alloc; 2528 } 2529 lock_page(page); 2530 BUG_ON(!PageUptodate(page)); 2531 ClearPageUptodate(page); 2532 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2533 /* If we just formatted the mft record no need to do it again. */ 2534 if (!record_formatted) { 2535 /* Sanity check that the mft record is really not in use. */ 2536 if (ntfs_is_file_record(m->magic) && 2537 (m->flags & MFT_RECORD_IN_USE)) { 2538 ntfs_error(vol->sb, "Mft record 0x%llx was marked " 2539 "free in mft bitmap but is marked " 2540 "used itself. Corrupt filesystem. " 2541 "Unmount and run chkdsk.", 2542 (long long)bit); 2543 err = -EIO; 2544 SetPageUptodate(page); 2545 unlock_page(page); 2546 ntfs_unmap_page(page); 2547 NVolSetErrors(vol); 2548 goto undo_mftbmp_alloc; 2549 } 2550 /* 2551 * We need to (re-)format the mft record, preserving the 2552 * sequence number if it is not zero as well as the update 2553 * sequence number if it is not zero or -1 (0xffff). This 2554 * means we do not need to care whether or not something went 2555 * wrong with the previous mft record. 2556 */ 2557 seq_no = m->sequence_number; 2558 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); 2559 err = ntfs_mft_record_layout(vol, bit, m); 2560 if (unlikely(err)) { 2561 ntfs_error(vol->sb, "Failed to layout allocated mft " 2562 "record 0x%llx.", (long long)bit); 2563 SetPageUptodate(page); 2564 unlock_page(page); 2565 ntfs_unmap_page(page); 2566 goto undo_mftbmp_alloc; 2567 } 2568 if (seq_no) 2569 m->sequence_number = seq_no; 2570 if (usn && le16_to_cpu(usn) != 0xffff) 2571 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; 2572 } 2573 /* Set the mft record itself in use. */ 2574 m->flags |= MFT_RECORD_IN_USE; 2575 if (S_ISDIR(mode)) 2576 m->flags |= MFT_RECORD_IS_DIRECTORY; 2577 flush_dcache_page(page); 2578 SetPageUptodate(page); 2579 if (base_ni) { 2580 MFT_RECORD *m_tmp; 2581 2582 /* 2583 * Setup the base mft record in the extent mft record. This 2584 * completes initialization of the allocated extent mft record 2585 * and we can simply use it with map_extent_mft_record(). 2586 */ 2587 m->base_mft_record = MK_LE_MREF(base_ni->mft_no, 2588 base_ni->seq_no); 2589 /* 2590 * Allocate an extent inode structure for the new mft record, 2591 * attach it to the base inode @base_ni and map, pin, and lock 2592 * its, i.e. the allocated, mft record. 2593 */ 2594 m_tmp = map_extent_mft_record(base_ni, bit, &ni); 2595 if (IS_ERR(m_tmp)) { 2596 ntfs_error(vol->sb, "Failed to map allocated extent " 2597 "mft record 0x%llx.", (long long)bit); 2598 err = PTR_ERR(m_tmp); 2599 /* Set the mft record itself not in use. */ 2600 m->flags &= cpu_to_le16( 2601 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2602 flush_dcache_page(page); 2603 /* Make sure the mft record is written out to disk. */ 2604 mark_ntfs_record_dirty(page, ofs); 2605 unlock_page(page); 2606 ntfs_unmap_page(page); 2607 goto undo_mftbmp_alloc; 2608 } 2609 BUG_ON(m != m_tmp); 2610 /* 2611 * Make sure the allocated mft record is written out to disk. 2612 * No need to set the inode dirty because the caller is going 2613 * to do that anyway after finishing with the new extent mft 2614 * record (e.g. at a minimum a new attribute will be added to 2615 * the mft record. 2616 */ 2617 mark_ntfs_record_dirty(page, ofs); 2618 unlock_page(page); 2619 /* 2620 * Need to unmap the page since map_extent_mft_record() mapped 2621 * it as well so we have it mapped twice at the moment. 2622 */ 2623 ntfs_unmap_page(page); 2624 } else { 2625 /* 2626 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink 2627 * is set to 1 but the mft record->link_count is 0. The caller 2628 * needs to bear this in mind. 2629 */ 2630 vi = new_inode(vol->sb); 2631 if (unlikely(!vi)) { 2632 err = -ENOMEM; 2633 /* Set the mft record itself not in use. */ 2634 m->flags &= cpu_to_le16( 2635 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2636 flush_dcache_page(page); 2637 /* Make sure the mft record is written out to disk. */ 2638 mark_ntfs_record_dirty(page, ofs); 2639 unlock_page(page); 2640 ntfs_unmap_page(page); 2641 goto undo_mftbmp_alloc; 2642 } 2643 vi->i_ino = bit; 2644 2645 /* The owner and group come from the ntfs volume. */ 2646 vi->i_uid = vol->uid; 2647 vi->i_gid = vol->gid; 2648 2649 /* Initialize the ntfs specific part of @vi. */ 2650 ntfs_init_big_inode(vi); 2651 ni = NTFS_I(vi); 2652 /* 2653 * Set the appropriate mode, attribute type, and name. For 2654 * directories, also setup the index values to the defaults. 2655 */ 2656 if (S_ISDIR(mode)) { 2657 vi->i_mode = S_IFDIR | S_IRWXUGO; 2658 vi->i_mode &= ~vol->dmask; 2659 2660 NInoSetMstProtected(ni); 2661 ni->type = AT_INDEX_ALLOCATION; 2662 ni->name = I30; 2663 ni->name_len = 4; 2664 2665 ni->itype.index.block_size = 4096; 2666 ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; 2667 ni->itype.index.collation_rule = COLLATION_FILE_NAME; 2668 if (vol->cluster_size <= ni->itype.index.block_size) { 2669 ni->itype.index.vcn_size = vol->cluster_size; 2670 ni->itype.index.vcn_size_bits = 2671 vol->cluster_size_bits; 2672 } else { 2673 ni->itype.index.vcn_size = vol->sector_size; 2674 ni->itype.index.vcn_size_bits = 2675 vol->sector_size_bits; 2676 } 2677 } else { 2678 vi->i_mode = S_IFREG | S_IRWXUGO; 2679 vi->i_mode &= ~vol->fmask; 2680 2681 ni->type = AT_DATA; 2682 ni->name = NULL; 2683 ni->name_len = 0; 2684 } 2685 if (IS_RDONLY(vi)) 2686 vi->i_mode &= ~S_IWUGO; 2687 2688 /* Set the inode times to the current time. */ 2689 vi->i_atime = vi->i_mtime = vi->i_ctime = 2690 current_time(vi); 2691 /* 2692 * Set the file size to 0, the ntfs inode sizes are set to 0 by 2693 * the call to ntfs_init_big_inode() below. 2694 */ 2695 vi->i_size = 0; 2696 vi->i_blocks = 0; 2697 2698 /* Set the sequence number. */ 2699 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 2700 /* 2701 * Manually map, pin, and lock the mft record as we already 2702 * have its page mapped and it is very easy to do. 2703 */ 2704 atomic_inc(&ni->count); 2705 mutex_lock(&ni->mrec_lock); 2706 ni->page = page; 2707 ni->page_ofs = ofs; 2708 /* 2709 * Make sure the allocated mft record is written out to disk. 2710 * NOTE: We do not set the ntfs inode dirty because this would 2711 * fail in ntfs_write_inode() because the inode does not have a 2712 * standard information attribute yet. Also, there is no need 2713 * to set the inode dirty because the caller is going to do 2714 * that anyway after finishing with the new mft record (e.g. at 2715 * a minimum some new attributes will be added to the mft 2716 * record. 2717 */ 2718 mark_ntfs_record_dirty(page, ofs); 2719 unlock_page(page); 2720 2721 /* Add the inode to the inode hash for the superblock. */ 2722 insert_inode_hash(vi); 2723 2724 /* Update the default mft allocation position. */ 2725 vol->mft_data_pos = bit + 1; 2726 } 2727 /* 2728 * Return the opened, allocated inode of the allocated mft record as 2729 * well as the mapped, pinned, and locked mft record. 2730 */ 2731 ntfs_debug("Returning opened, allocated %sinode 0x%llx.", 2732 base_ni ? "extent " : "", (long long)bit); 2733 *mrec = m; 2734 return ni; 2735 undo_data_init: 2736 write_lock_irqsave(&mft_ni->size_lock, flags); 2737 mft_ni->initialized_size = old_data_initialized; 2738 i_size_write(vol->mft_ino, old_data_size); 2739 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2740 goto undo_mftbmp_alloc_nolock; 2741 undo_mftbmp_alloc: 2742 down_write(&vol->mftbmp_lock); 2743 undo_mftbmp_alloc_nolock: 2744 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { 2745 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2746 NVolSetErrors(vol); 2747 } 2748 up_write(&vol->mftbmp_lock); 2749 err_out: 2750 return ERR_PTR(err); 2751 max_err_out: 2752 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " 2753 "number of inodes (2^32) has already been reached."); 2754 up_write(&vol->mftbmp_lock); 2755 return ERR_PTR(-ENOSPC); 2756 } 2757 2758 /** 2759 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume 2760 * @ni: ntfs inode of the mapped extent mft record to free 2761 * @m: mapped extent mft record of the ntfs inode @ni 2762 * 2763 * Free the mapped extent mft record @m of the extent ntfs inode @ni. 2764 * 2765 * Note that this function unmaps the mft record and closes and destroys @ni 2766 * internally and hence you cannot use either @ni nor @m any more after this 2767 * function returns success. 2768 * 2769 * On success return 0 and on error return -errno. @ni and @m are still valid 2770 * in this case and have not been freed. 2771 * 2772 * For some errors an error message is displayed and the success code 0 is 2773 * returned and the volume is then left dirty on umount. This makes sense in 2774 * case we could not rollback the changes that were already done since the 2775 * caller no longer wants to reference this mft record so it does not matter to 2776 * the caller if something is wrong with it as long as it is properly detached 2777 * from the base inode. 2778 */ 2779 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) 2780 { 2781 unsigned long mft_no = ni->mft_no; 2782 ntfs_volume *vol = ni->vol; 2783 ntfs_inode *base_ni; 2784 ntfs_inode **extent_nis; 2785 int i, err; 2786 le16 old_seq_no; 2787 u16 seq_no; 2788 2789 BUG_ON(NInoAttr(ni)); 2790 BUG_ON(ni->nr_extents != -1); 2791 2792 mutex_lock(&ni->extent_lock); 2793 base_ni = ni->ext.base_ntfs_ino; 2794 mutex_unlock(&ni->extent_lock); 2795 2796 BUG_ON(base_ni->nr_extents <= 0); 2797 2798 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", 2799 mft_no, base_ni->mft_no); 2800 2801 mutex_lock(&base_ni->extent_lock); 2802 2803 /* Make sure we are holding the only reference to the extent inode. */ 2804 if (atomic_read(&ni->count) > 2) { 2805 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " 2806 "not freeing.", base_ni->mft_no); 2807 mutex_unlock(&base_ni->extent_lock); 2808 return -EBUSY; 2809 } 2810 2811 /* Dissociate the ntfs inode from the base inode. */ 2812 extent_nis = base_ni->ext.extent_ntfs_inos; 2813 err = -ENOENT; 2814 for (i = 0; i < base_ni->nr_extents; i++) { 2815 if (ni != extent_nis[i]) 2816 continue; 2817 extent_nis += i; 2818 base_ni->nr_extents--; 2819 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * 2820 sizeof(ntfs_inode*)); 2821 err = 0; 2822 break; 2823 } 2824 2825 mutex_unlock(&base_ni->extent_lock); 2826 2827 if (unlikely(err)) { 2828 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " 2829 "its base inode 0x%lx.", mft_no, 2830 base_ni->mft_no); 2831 BUG(); 2832 } 2833 2834 /* 2835 * The extent inode is no longer attached to the base inode so no one 2836 * can get a reference to it any more. 2837 */ 2838 2839 /* Mark the mft record as not in use. */ 2840 m->flags &= ~MFT_RECORD_IN_USE; 2841 2842 /* Increment the sequence number, skipping zero, if it is not zero. */ 2843 old_seq_no = m->sequence_number; 2844 seq_no = le16_to_cpu(old_seq_no); 2845 if (seq_no == 0xffff) 2846 seq_no = 1; 2847 else if (seq_no) 2848 seq_no++; 2849 m->sequence_number = cpu_to_le16(seq_no); 2850 2851 /* 2852 * Set the ntfs inode dirty and write it out. We do not need to worry 2853 * about the base inode here since whatever caused the extent mft 2854 * record to be freed is guaranteed to do it already. 2855 */ 2856 NInoSetDirty(ni); 2857 err = write_mft_record(ni, m, 0); 2858 if (unlikely(err)) { 2859 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " 2860 "freeing.", mft_no); 2861 goto rollback; 2862 } 2863 rollback_error: 2864 /* Unmap and throw away the now freed extent inode. */ 2865 unmap_extent_mft_record(ni); 2866 ntfs_clear_extent_inode(ni); 2867 2868 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ 2869 down_write(&vol->mftbmp_lock); 2870 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); 2871 up_write(&vol->mftbmp_lock); 2872 if (unlikely(err)) { 2873 /* 2874 * The extent inode is gone but we failed to deallocate it in 2875 * the mft bitmap. Just emit a warning and leave the volume 2876 * dirty on umount. 2877 */ 2878 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2879 NVolSetErrors(vol); 2880 } 2881 return 0; 2882 rollback: 2883 /* Rollback what we did... */ 2884 mutex_lock(&base_ni->extent_lock); 2885 extent_nis = base_ni->ext.extent_ntfs_inos; 2886 if (!(base_ni->nr_extents & 3)) { 2887 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); 2888 2889 extent_nis = kmalloc(new_size, GFP_NOFS); 2890 if (unlikely(!extent_nis)) { 2891 ntfs_error(vol->sb, "Failed to allocate internal " 2892 "buffer during rollback.%s", es); 2893 mutex_unlock(&base_ni->extent_lock); 2894 NVolSetErrors(vol); 2895 goto rollback_error; 2896 } 2897 if (base_ni->nr_extents) { 2898 BUG_ON(!base_ni->ext.extent_ntfs_inos); 2899 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, 2900 new_size - 4 * sizeof(ntfs_inode*)); 2901 kfree(base_ni->ext.extent_ntfs_inos); 2902 } 2903 base_ni->ext.extent_ntfs_inos = extent_nis; 2904 } 2905 m->flags |= MFT_RECORD_IN_USE; 2906 m->sequence_number = old_seq_no; 2907 extent_nis[base_ni->nr_extents++] = ni; 2908 mutex_unlock(&base_ni->extent_lock); 2909 mark_mft_record_dirty(ni); 2910 return err; 2911 } 2912 #endif /* NTFS_RW */ 2913