1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2002 Richard Russon 7 */ 8 9 #include <linux/buffer_head.h> 10 #include <linux/slab.h> 11 #include <linux/swap.h> 12 #include <linux/bio.h> 13 14 #include "attrib.h" 15 #include "aops.h" 16 #include "bitmap.h" 17 #include "debug.h" 18 #include "dir.h" 19 #include "lcnalloc.h" 20 #include "malloc.h" 21 #include "mft.h" 22 #include "ntfs.h" 23 24 #define MAX_BHS (PAGE_SIZE / NTFS_BLOCK_SIZE) 25 26 /** 27 * map_mft_record_page - map the page in which a specific mft record resides 28 * @ni: ntfs inode whose mft record page to map 29 * 30 * This maps the page in which the mft record of the ntfs inode @ni is situated 31 * and returns a pointer to the mft record within the mapped page. 32 * 33 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() 34 * contains the negative error code returned. 35 */ 36 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) 37 { 38 loff_t i_size; 39 ntfs_volume *vol = ni->vol; 40 struct inode *mft_vi = vol->mft_ino; 41 struct page *page; 42 unsigned long index, end_index; 43 unsigned ofs; 44 45 BUG_ON(ni->page); 46 /* 47 * The index into the page cache and the offset within the page cache 48 * page of the wanted mft record. FIXME: We need to check for 49 * overflowing the unsigned long, but I don't think we would ever get 50 * here if the volume was that big... 51 */ 52 index = (u64)ni->mft_no << vol->mft_record_size_bits >> 53 PAGE_SHIFT; 54 ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 55 56 i_size = i_size_read(mft_vi); 57 /* The maximum valid index into the page cache for $MFT's data. */ 58 end_index = i_size >> PAGE_SHIFT; 59 60 /* If the wanted index is out of bounds the mft record doesn't exist. */ 61 if (unlikely(index >= end_index)) { 62 if (index > end_index || (i_size & ~PAGE_MASK) < ofs + 63 vol->mft_record_size) { 64 page = ERR_PTR(-ENOENT); 65 ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, " 66 "which is beyond the end of the mft. " 67 "This is probably a bug in the ntfs " 68 "driver.", ni->mft_no); 69 goto err_out; 70 } 71 } 72 /* Read, map, and pin the page. */ 73 page = ntfs_map_page(mft_vi->i_mapping, index); 74 if (!IS_ERR(page)) { 75 /* Catch multi sector transfer fixup errors. */ 76 if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + 77 ofs)))) { 78 ni->page = page; 79 ni->page_ofs = ofs; 80 return page_address(page) + ofs; 81 } 82 ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. " 83 "Run chkdsk.", ni->mft_no); 84 ntfs_unmap_page(page); 85 page = ERR_PTR(-EIO); 86 NVolSetErrors(vol); 87 } 88 err_out: 89 ni->page = NULL; 90 ni->page_ofs = 0; 91 return (void*)page; 92 } 93 94 /** 95 * map_mft_record - map, pin and lock an mft record 96 * @ni: ntfs inode whose MFT record to map 97 * 98 * First, take the mrec_lock mutex. We might now be sleeping, while waiting 99 * for the mutex if it was already locked by someone else. 100 * 101 * The page of the record is mapped using map_mft_record_page() before being 102 * returned to the caller. 103 * 104 * This in turn uses ntfs_map_page() to get the page containing the wanted mft 105 * record (it in turn calls read_cache_page() which reads it in from disk if 106 * necessary, increments the use count on the page so that it cannot disappear 107 * under us and returns a reference to the page cache page). 108 * 109 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it 110 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed 111 * and the post-read mst fixups on each mft record in the page have been 112 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done 113 * in our asynchronous I/O completion handler end_buffer_read_mft_async()). 114 * ntfs_map_page() waits for PG_locked to become clear and checks if 115 * PG_uptodate is set and returns an error code if not. This provides 116 * sufficient protection against races when reading/using the page. 117 * 118 * However there is the write mapping to think about. Doing the above described 119 * checking here will be fine, because when initiating the write we will set 120 * PG_locked and clear PG_uptodate making sure nobody is touching the page 121 * contents. Doing the locking this way means that the commit to disk code in 122 * the page cache code paths is automatically sufficiently locked with us as 123 * we will not touch a page that has been locked or is not uptodate. The only 124 * locking problem then is them locking the page while we are accessing it. 125 * 126 * So that code will end up having to own the mrec_lock of all mft 127 * records/inodes present in the page before I/O can proceed. In that case we 128 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be 129 * accessing anything without owning the mrec_lock mutex. But we do need to 130 * use them because of the read_cache_page() invocation and the code becomes so 131 * much simpler this way that it is well worth it. 132 * 133 * The mft record is now ours and we return a pointer to it. You need to check 134 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return 135 * the error code. 136 * 137 * NOTE: Caller is responsible for setting the mft record dirty before calling 138 * unmap_mft_record(). This is obviously only necessary if the caller really 139 * modified the mft record... 140 * Q: Do we want to recycle one of the VFS inode state bits instead? 141 * A: No, the inode ones mean we want to change the mft record, not we want to 142 * write it out. 143 */ 144 MFT_RECORD *map_mft_record(ntfs_inode *ni) 145 { 146 MFT_RECORD *m; 147 148 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 149 150 /* Make sure the ntfs inode doesn't go away. */ 151 atomic_inc(&ni->count); 152 153 /* Serialize access to this mft record. */ 154 mutex_lock(&ni->mrec_lock); 155 156 m = map_mft_record_page(ni); 157 if (!IS_ERR(m)) 158 return m; 159 160 mutex_unlock(&ni->mrec_lock); 161 atomic_dec(&ni->count); 162 ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); 163 return m; 164 } 165 166 /** 167 * unmap_mft_record_page - unmap the page in which a specific mft record resides 168 * @ni: ntfs inode whose mft record page to unmap 169 * 170 * This unmaps the page in which the mft record of the ntfs inode @ni is 171 * situated and returns. This is a NOOP if highmem is not configured. 172 * 173 * The unmap happens via ntfs_unmap_page() which in turn decrements the use 174 * count on the page thus releasing it from the pinned state. 175 * 176 * We do not actually unmap the page from memory of course, as that will be 177 * done by the page cache code itself when memory pressure increases or 178 * whatever. 179 */ 180 static inline void unmap_mft_record_page(ntfs_inode *ni) 181 { 182 BUG_ON(!ni->page); 183 184 // TODO: If dirty, blah... 185 ntfs_unmap_page(ni->page); 186 ni->page = NULL; 187 ni->page_ofs = 0; 188 return; 189 } 190 191 /** 192 * unmap_mft_record - release a mapped mft record 193 * @ni: ntfs inode whose MFT record to unmap 194 * 195 * We release the page mapping and the mrec_lock mutex which unmaps the mft 196 * record and releases it for others to get hold of. We also release the ntfs 197 * inode by decrementing the ntfs inode reference count. 198 * 199 * NOTE: If caller has modified the mft record, it is imperative to set the mft 200 * record dirty BEFORE calling unmap_mft_record(). 201 */ 202 void unmap_mft_record(ntfs_inode *ni) 203 { 204 struct page *page = ni->page; 205 206 BUG_ON(!page); 207 208 ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); 209 210 unmap_mft_record_page(ni); 211 mutex_unlock(&ni->mrec_lock); 212 atomic_dec(&ni->count); 213 /* 214 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to 215 * ntfs_clear_extent_inode() in the extent inode case, and to the 216 * caller in the non-extent, yet pure ntfs inode case, to do the actual 217 * tear down of all structures and freeing of all allocated memory. 218 */ 219 return; 220 } 221 222 /** 223 * map_extent_mft_record - load an extent inode and attach it to its base 224 * @base_ni: base ntfs inode 225 * @mref: mft reference of the extent inode to load 226 * @ntfs_ino: on successful return, pointer to the ntfs_inode structure 227 * 228 * Load the extent mft record @mref and attach it to its base inode @base_ni. 229 * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise 230 * PTR_ERR(result) gives the negative error code. 231 * 232 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode 233 * structure of the mapped extent inode. 234 */ 235 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, 236 ntfs_inode **ntfs_ino) 237 { 238 MFT_RECORD *m; 239 ntfs_inode *ni = NULL; 240 ntfs_inode **extent_nis = NULL; 241 int i; 242 unsigned long mft_no = MREF(mref); 243 u16 seq_no = MSEQNO(mref); 244 bool destroy_ni = false; 245 246 ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", 247 mft_no, base_ni->mft_no); 248 /* Make sure the base ntfs inode doesn't go away. */ 249 atomic_inc(&base_ni->count); 250 /* 251 * Check if this extent inode has already been added to the base inode, 252 * in which case just return it. If not found, add it to the base 253 * inode before returning it. 254 */ 255 mutex_lock(&base_ni->extent_lock); 256 if (base_ni->nr_extents > 0) { 257 extent_nis = base_ni->ext.extent_ntfs_inos; 258 for (i = 0; i < base_ni->nr_extents; i++) { 259 if (mft_no != extent_nis[i]->mft_no) 260 continue; 261 ni = extent_nis[i]; 262 /* Make sure the ntfs inode doesn't go away. */ 263 atomic_inc(&ni->count); 264 break; 265 } 266 } 267 if (likely(ni != NULL)) { 268 mutex_unlock(&base_ni->extent_lock); 269 atomic_dec(&base_ni->count); 270 /* We found the record; just have to map and return it. */ 271 m = map_mft_record(ni); 272 /* map_mft_record() has incremented this on success. */ 273 atomic_dec(&ni->count); 274 if (!IS_ERR(m)) { 275 /* Verify the sequence number. */ 276 if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { 277 ntfs_debug("Done 1."); 278 *ntfs_ino = ni; 279 return m; 280 } 281 unmap_mft_record(ni); 282 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 283 "reference! Corrupt filesystem. " 284 "Run chkdsk."); 285 return ERR_PTR(-EIO); 286 } 287 map_err_out: 288 ntfs_error(base_ni->vol->sb, "Failed to map extent " 289 "mft record, error code %ld.", -PTR_ERR(m)); 290 return m; 291 } 292 /* Record wasn't there. Get a new ntfs inode and initialize it. */ 293 ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); 294 if (unlikely(!ni)) { 295 mutex_unlock(&base_ni->extent_lock); 296 atomic_dec(&base_ni->count); 297 return ERR_PTR(-ENOMEM); 298 } 299 ni->vol = base_ni->vol; 300 ni->seq_no = seq_no; 301 ni->nr_extents = -1; 302 ni->ext.base_ntfs_ino = base_ni; 303 /* Now map the record. */ 304 m = map_mft_record(ni); 305 if (IS_ERR(m)) { 306 mutex_unlock(&base_ni->extent_lock); 307 atomic_dec(&base_ni->count); 308 ntfs_clear_extent_inode(ni); 309 goto map_err_out; 310 } 311 /* Verify the sequence number if it is present. */ 312 if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { 313 ntfs_error(base_ni->vol->sb, "Found stale extent mft " 314 "reference! Corrupt filesystem. Run chkdsk."); 315 destroy_ni = true; 316 m = ERR_PTR(-EIO); 317 goto unm_err_out; 318 } 319 /* Attach extent inode to base inode, reallocating memory if needed. */ 320 if (!(base_ni->nr_extents & 3)) { 321 ntfs_inode **tmp; 322 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); 323 324 tmp = kmalloc(new_size, GFP_NOFS); 325 if (unlikely(!tmp)) { 326 ntfs_error(base_ni->vol->sb, "Failed to allocate " 327 "internal buffer."); 328 destroy_ni = true; 329 m = ERR_PTR(-ENOMEM); 330 goto unm_err_out; 331 } 332 if (base_ni->nr_extents) { 333 BUG_ON(!base_ni->ext.extent_ntfs_inos); 334 memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - 335 4 * sizeof(ntfs_inode *)); 336 kfree(base_ni->ext.extent_ntfs_inos); 337 } 338 base_ni->ext.extent_ntfs_inos = tmp; 339 } 340 base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; 341 mutex_unlock(&base_ni->extent_lock); 342 atomic_dec(&base_ni->count); 343 ntfs_debug("Done 2."); 344 *ntfs_ino = ni; 345 return m; 346 unm_err_out: 347 unmap_mft_record(ni); 348 mutex_unlock(&base_ni->extent_lock); 349 atomic_dec(&base_ni->count); 350 /* 351 * If the extent inode was not attached to the base inode we need to 352 * release it or we will leak memory. 353 */ 354 if (destroy_ni) 355 ntfs_clear_extent_inode(ni); 356 return m; 357 } 358 359 #ifdef NTFS_RW 360 361 /** 362 * __mark_mft_record_dirty - set the mft record and the page containing it dirty 363 * @ni: ntfs inode describing the mapped mft record 364 * 365 * Internal function. Users should call mark_mft_record_dirty() instead. 366 * 367 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, 368 * as well as the page containing the mft record, dirty. Also, mark the base 369 * vfs inode dirty. This ensures that any changes to the mft record are 370 * written out to disk. 371 * 372 * NOTE: We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) 373 * on the base vfs inode, because even though file data may have been modified, 374 * it is dirty in the inode meta data rather than the data page cache of the 375 * inode, and thus there are no data pages that need writing out. Therefore, a 376 * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the 377 * other hand, is not sufficient, because ->write_inode needs to be called even 378 * in case of fdatasync. This needs to happen or the file data would not 379 * necessarily hit the device synchronously, even though the vfs inode has the 380 * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just 381 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, 382 * which is not what I_DIRTY_SYNC on its own would suggest. 383 */ 384 void __mark_mft_record_dirty(ntfs_inode *ni) 385 { 386 ntfs_inode *base_ni; 387 388 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 389 BUG_ON(NInoAttr(ni)); 390 mark_ntfs_record_dirty(ni->page, ni->page_ofs); 391 /* Determine the base vfs inode and mark it dirty, too. */ 392 mutex_lock(&ni->extent_lock); 393 if (likely(ni->nr_extents >= 0)) 394 base_ni = ni; 395 else 396 base_ni = ni->ext.base_ntfs_ino; 397 mutex_unlock(&ni->extent_lock); 398 __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC); 399 } 400 401 static const char *ntfs_please_email = "Please email " 402 "linux-ntfs-dev@lists.sourceforge.net and say that you saw " 403 "this message. Thank you."; 404 405 /** 406 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror 407 * @vol: ntfs volume on which the mft record to synchronize resides 408 * @mft_no: mft record number of mft record to synchronize 409 * @m: mapped, mst protected (extent) mft record to synchronize 410 * 411 * Write the mapped, mst protected (extent) mft record @m with mft record 412 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, 413 * bypassing the page cache and the $MFTMirr inode itself. 414 * 415 * This function is only for use at umount time when the mft mirror inode has 416 * already been disposed off. We BUG() if we are called while the mft mirror 417 * inode is still attached to the volume. 418 * 419 * On success return 0. On error return -errno. 420 * 421 * NOTE: This function is not implemented yet as I am not convinced it can 422 * actually be triggered considering the sequence of commits we do in super.c:: 423 * ntfs_put_super(). But just in case we provide this place holder as the 424 * alternative would be either to BUG() or to get a NULL pointer dereference 425 * and Oops. 426 */ 427 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, 428 const unsigned long mft_no, MFT_RECORD *m) 429 { 430 BUG_ON(vol->mftmirr_ino); 431 ntfs_error(vol->sb, "Umount time mft mirror syncing is not " 432 "implemented yet. %s", ntfs_please_email); 433 return -EOPNOTSUPP; 434 } 435 436 /** 437 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror 438 * @vol: ntfs volume on which the mft record to synchronize resides 439 * @mft_no: mft record number of mft record to synchronize 440 * @m: mapped, mst protected (extent) mft record to synchronize 441 * @sync: if true, wait for i/o completion 442 * 443 * Write the mapped, mst protected (extent) mft record @m with mft record 444 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. 445 * 446 * On success return 0. On error return -errno and set the volume errors flag 447 * in the ntfs volume @vol. 448 * 449 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 450 * 451 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 452 * schedule i/o via ->writepage or do it via kntfsd or whatever. 453 */ 454 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, 455 MFT_RECORD *m, int sync) 456 { 457 struct page *page; 458 unsigned int blocksize = vol->sb->s_blocksize; 459 int max_bhs = vol->mft_record_size / blocksize; 460 struct buffer_head *bhs[MAX_BHS]; 461 struct buffer_head *bh, *head; 462 u8 *kmirr; 463 runlist_element *rl; 464 unsigned int block_start, block_end, m_start, m_end, page_ofs; 465 int i_bhs, nr_bhs, err = 0; 466 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 467 468 ntfs_debug("Entering for inode 0x%lx.", mft_no); 469 BUG_ON(!max_bhs); 470 if (WARN_ON(max_bhs > MAX_BHS)) 471 return -EINVAL; 472 if (unlikely(!vol->mftmirr_ino)) { 473 /* This could happen during umount... */ 474 err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); 475 if (likely(!err)) 476 return err; 477 goto err_out; 478 } 479 /* Get the page containing the mirror copy of the mft record @m. */ 480 page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> 481 (PAGE_SHIFT - vol->mft_record_size_bits)); 482 if (IS_ERR(page)) { 483 ntfs_error(vol->sb, "Failed to map mft mirror page."); 484 err = PTR_ERR(page); 485 goto err_out; 486 } 487 lock_page(page); 488 BUG_ON(!PageUptodate(page)); 489 ClearPageUptodate(page); 490 /* Offset of the mft mirror record inside the page. */ 491 page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 492 /* The address in the page of the mirror copy of the mft record @m. */ 493 kmirr = page_address(page) + page_ofs; 494 /* Copy the mst protected mft record to the mirror. */ 495 memcpy(kmirr, m, vol->mft_record_size); 496 /* Create uptodate buffers if not present. */ 497 if (unlikely(!page_has_buffers(page))) { 498 struct buffer_head *tail; 499 500 bh = head = alloc_page_buffers(page, blocksize, true); 501 do { 502 set_buffer_uptodate(bh); 503 tail = bh; 504 bh = bh->b_this_page; 505 } while (bh); 506 tail->b_this_page = head; 507 attach_page_private(page, head); 508 } 509 bh = head = page_buffers(page); 510 BUG_ON(!bh); 511 rl = NULL; 512 nr_bhs = 0; 513 block_start = 0; 514 m_start = kmirr - (u8*)page_address(page); 515 m_end = m_start + vol->mft_record_size; 516 do { 517 block_end = block_start + blocksize; 518 /* If the buffer is outside the mft record, skip it. */ 519 if (block_end <= m_start) 520 continue; 521 if (unlikely(block_start >= m_end)) 522 break; 523 /* Need to map the buffer if it is not mapped already. */ 524 if (unlikely(!buffer_mapped(bh))) { 525 VCN vcn; 526 LCN lcn; 527 unsigned int vcn_ofs; 528 529 bh->b_bdev = vol->sb->s_bdev; 530 /* Obtain the vcn and offset of the current block. */ 531 vcn = ((VCN)mft_no << vol->mft_record_size_bits) + 532 (block_start - m_start); 533 vcn_ofs = vcn & vol->cluster_size_mask; 534 vcn >>= vol->cluster_size_bits; 535 if (!rl) { 536 down_read(&NTFS_I(vol->mftmirr_ino)-> 537 runlist.lock); 538 rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; 539 /* 540 * $MFTMirr always has the whole of its runlist 541 * in memory. 542 */ 543 BUG_ON(!rl); 544 } 545 /* Seek to element containing target vcn. */ 546 while (rl->length && rl[1].vcn <= vcn) 547 rl++; 548 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 549 /* For $MFTMirr, only lcn >= 0 is a successful remap. */ 550 if (likely(lcn >= 0)) { 551 /* Setup buffer head to correct block. */ 552 bh->b_blocknr = ((lcn << 553 vol->cluster_size_bits) + 554 vcn_ofs) >> blocksize_bits; 555 set_buffer_mapped(bh); 556 } else { 557 bh->b_blocknr = -1; 558 ntfs_error(vol->sb, "Cannot write mft mirror " 559 "record 0x%lx because its " 560 "location on disk could not " 561 "be determined (error code " 562 "%lli).", mft_no, 563 (long long)lcn); 564 err = -EIO; 565 } 566 } 567 BUG_ON(!buffer_uptodate(bh)); 568 BUG_ON(!nr_bhs && (m_start != block_start)); 569 BUG_ON(nr_bhs >= max_bhs); 570 bhs[nr_bhs++] = bh; 571 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 572 } while (block_start = block_end, (bh = bh->b_this_page) != head); 573 if (unlikely(rl)) 574 up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); 575 if (likely(!err)) { 576 /* Lock buffers and start synchronous write i/o on them. */ 577 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 578 struct buffer_head *tbh = bhs[i_bhs]; 579 580 if (!trylock_buffer(tbh)) 581 BUG(); 582 BUG_ON(!buffer_uptodate(tbh)); 583 clear_buffer_dirty(tbh); 584 get_bh(tbh); 585 tbh->b_end_io = end_buffer_write_sync; 586 submit_bh(REQ_OP_WRITE, tbh); 587 } 588 /* Wait on i/o completion of buffers. */ 589 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 590 struct buffer_head *tbh = bhs[i_bhs]; 591 592 wait_on_buffer(tbh); 593 if (unlikely(!buffer_uptodate(tbh))) { 594 err = -EIO; 595 /* 596 * Set the buffer uptodate so the page and 597 * buffer states do not become out of sync. 598 */ 599 set_buffer_uptodate(tbh); 600 } 601 } 602 } else /* if (unlikely(err)) */ { 603 /* Clean the buffers. */ 604 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 605 clear_buffer_dirty(bhs[i_bhs]); 606 } 607 /* Current state: all buffers are clean, unlocked, and uptodate. */ 608 /* Remove the mst protection fixups again. */ 609 post_write_mst_fixup((NTFS_RECORD*)kmirr); 610 flush_dcache_page(page); 611 SetPageUptodate(page); 612 unlock_page(page); 613 ntfs_unmap_page(page); 614 if (likely(!err)) { 615 ntfs_debug("Done."); 616 } else { 617 ntfs_error(vol->sb, "I/O error while writing mft mirror " 618 "record 0x%lx!", mft_no); 619 err_out: 620 ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " 621 "code %i). Volume will be left marked dirty " 622 "on umount. Run ntfsfix on the partition " 623 "after umounting to correct this.", -err); 624 NVolSetErrors(vol); 625 } 626 return err; 627 } 628 629 /** 630 * write_mft_record_nolock - write out a mapped (extent) mft record 631 * @ni: ntfs inode describing the mapped (extent) mft record 632 * @m: mapped (extent) mft record to write 633 * @sync: if true, wait for i/o completion 634 * 635 * Write the mapped (extent) mft record @m described by the (regular or extent) 636 * ntfs inode @ni to backing store. If the mft record @m has a counterpart in 637 * the mft mirror, that is also updated. 638 * 639 * We only write the mft record if the ntfs inode @ni is dirty and the first 640 * buffer belonging to its mft record is dirty, too. We ignore the dirty state 641 * of subsequent buffers because we could have raced with 642 * fs/ntfs/aops.c::mark_ntfs_record_dirty(). 643 * 644 * On success, clean the mft record and return 0. On error, leave the mft 645 * record dirty and return -errno. 646 * 647 * NOTE: We always perform synchronous i/o and ignore the @sync parameter. 648 * However, if the mft record has a counterpart in the mft mirror and @sync is 649 * true, we write the mft record, wait for i/o completion, and only then write 650 * the mft mirror copy. This ensures that if the system crashes either the mft 651 * or the mft mirror will contain a self-consistent mft record @m. If @sync is 652 * false on the other hand, we start i/o on both and then wait for completion 653 * on them. This provides a speedup but no longer guarantees that you will end 654 * up with a self-consistent mft record in the case of a crash but if you asked 655 * for asynchronous writing you probably do not care about that anyway. 656 * 657 * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just 658 * schedule i/o via ->writepage or do it via kntfsd or whatever. 659 */ 660 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) 661 { 662 ntfs_volume *vol = ni->vol; 663 struct page *page = ni->page; 664 unsigned int blocksize = vol->sb->s_blocksize; 665 unsigned char blocksize_bits = vol->sb->s_blocksize_bits; 666 int max_bhs = vol->mft_record_size / blocksize; 667 struct buffer_head *bhs[MAX_BHS]; 668 struct buffer_head *bh, *head; 669 runlist_element *rl; 670 unsigned int block_start, block_end, m_start, m_end; 671 int i_bhs, nr_bhs, err = 0; 672 673 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 674 BUG_ON(NInoAttr(ni)); 675 BUG_ON(!max_bhs); 676 BUG_ON(!PageLocked(page)); 677 if (WARN_ON(max_bhs > MAX_BHS)) { 678 err = -EINVAL; 679 goto err_out; 680 } 681 /* 682 * If the ntfs_inode is clean no need to do anything. If it is dirty, 683 * mark it as clean now so that it can be redirtied later on if needed. 684 * There is no danger of races since the caller is holding the locks 685 * for the mft record @m and the page it is in. 686 */ 687 if (!NInoTestClearDirty(ni)) 688 goto done; 689 bh = head = page_buffers(page); 690 BUG_ON(!bh); 691 rl = NULL; 692 nr_bhs = 0; 693 block_start = 0; 694 m_start = ni->page_ofs; 695 m_end = m_start + vol->mft_record_size; 696 do { 697 block_end = block_start + blocksize; 698 /* If the buffer is outside the mft record, skip it. */ 699 if (block_end <= m_start) 700 continue; 701 if (unlikely(block_start >= m_end)) 702 break; 703 /* 704 * If this block is not the first one in the record, we ignore 705 * the buffer's dirty state because we could have raced with a 706 * parallel mark_ntfs_record_dirty(). 707 */ 708 if (block_start == m_start) { 709 /* This block is the first one in the record. */ 710 if (!buffer_dirty(bh)) { 711 BUG_ON(nr_bhs); 712 /* Clean records are not written out. */ 713 break; 714 } 715 } 716 /* Need to map the buffer if it is not mapped already. */ 717 if (unlikely(!buffer_mapped(bh))) { 718 VCN vcn; 719 LCN lcn; 720 unsigned int vcn_ofs; 721 722 bh->b_bdev = vol->sb->s_bdev; 723 /* Obtain the vcn and offset of the current block. */ 724 vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + 725 (block_start - m_start); 726 vcn_ofs = vcn & vol->cluster_size_mask; 727 vcn >>= vol->cluster_size_bits; 728 if (!rl) { 729 down_read(&NTFS_I(vol->mft_ino)->runlist.lock); 730 rl = NTFS_I(vol->mft_ino)->runlist.rl; 731 BUG_ON(!rl); 732 } 733 /* Seek to element containing target vcn. */ 734 while (rl->length && rl[1].vcn <= vcn) 735 rl++; 736 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 737 /* For $MFT, only lcn >= 0 is a successful remap. */ 738 if (likely(lcn >= 0)) { 739 /* Setup buffer head to correct block. */ 740 bh->b_blocknr = ((lcn << 741 vol->cluster_size_bits) + 742 vcn_ofs) >> blocksize_bits; 743 set_buffer_mapped(bh); 744 } else { 745 bh->b_blocknr = -1; 746 ntfs_error(vol->sb, "Cannot write mft record " 747 "0x%lx because its location " 748 "on disk could not be " 749 "determined (error code %lli).", 750 ni->mft_no, (long long)lcn); 751 err = -EIO; 752 } 753 } 754 BUG_ON(!buffer_uptodate(bh)); 755 BUG_ON(!nr_bhs && (m_start != block_start)); 756 BUG_ON(nr_bhs >= max_bhs); 757 bhs[nr_bhs++] = bh; 758 BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); 759 } while (block_start = block_end, (bh = bh->b_this_page) != head); 760 if (unlikely(rl)) 761 up_read(&NTFS_I(vol->mft_ino)->runlist.lock); 762 if (!nr_bhs) 763 goto done; 764 if (unlikely(err)) 765 goto cleanup_out; 766 /* Apply the mst protection fixups. */ 767 err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); 768 if (err) { 769 ntfs_error(vol->sb, "Failed to apply mst fixups!"); 770 goto cleanup_out; 771 } 772 flush_dcache_mft_record_page(ni); 773 /* Lock buffers and start synchronous write i/o on them. */ 774 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 775 struct buffer_head *tbh = bhs[i_bhs]; 776 777 if (!trylock_buffer(tbh)) 778 BUG(); 779 BUG_ON(!buffer_uptodate(tbh)); 780 clear_buffer_dirty(tbh); 781 get_bh(tbh); 782 tbh->b_end_io = end_buffer_write_sync; 783 submit_bh(REQ_OP_WRITE, tbh); 784 } 785 /* Synchronize the mft mirror now if not @sync. */ 786 if (!sync && ni->mft_no < vol->mftmirr_size) 787 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 788 /* Wait on i/o completion of buffers. */ 789 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { 790 struct buffer_head *tbh = bhs[i_bhs]; 791 792 wait_on_buffer(tbh); 793 if (unlikely(!buffer_uptodate(tbh))) { 794 err = -EIO; 795 /* 796 * Set the buffer uptodate so the page and buffer 797 * states do not become out of sync. 798 */ 799 if (PageUptodate(page)) 800 set_buffer_uptodate(tbh); 801 } 802 } 803 /* If @sync, now synchronize the mft mirror. */ 804 if (sync && ni->mft_no < vol->mftmirr_size) 805 ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); 806 /* Remove the mst protection fixups again. */ 807 post_write_mst_fixup((NTFS_RECORD*)m); 808 flush_dcache_mft_record_page(ni); 809 if (unlikely(err)) { 810 /* I/O error during writing. This is really bad! */ 811 ntfs_error(vol->sb, "I/O error while writing mft record " 812 "0x%lx! Marking base inode as bad. You " 813 "should unmount the volume and run chkdsk.", 814 ni->mft_no); 815 goto err_out; 816 } 817 done: 818 ntfs_debug("Done."); 819 return 0; 820 cleanup_out: 821 /* Clean the buffers. */ 822 for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) 823 clear_buffer_dirty(bhs[i_bhs]); 824 err_out: 825 /* 826 * Current state: all buffers are clean, unlocked, and uptodate. 827 * The caller should mark the base inode as bad so that no more i/o 828 * happens. ->clear_inode() will still be invoked so all extent inodes 829 * and other allocated memory will be freed. 830 */ 831 if (err == -ENOMEM) { 832 ntfs_error(vol->sb, "Not enough memory to write mft record. " 833 "Redirtying so the write is retried later."); 834 mark_mft_record_dirty(ni); 835 err = 0; 836 } else 837 NVolSetErrors(vol); 838 return err; 839 } 840 841 /** 842 * ntfs_may_write_mft_record - check if an mft record may be written out 843 * @vol: [IN] ntfs volume on which the mft record to check resides 844 * @mft_no: [IN] mft record number of the mft record to check 845 * @m: [IN] mapped mft record to check 846 * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned 847 * 848 * Check if the mapped (base or extent) mft record @m with mft record number 849 * @mft_no belonging to the ntfs volume @vol may be written out. If necessary 850 * and possible the ntfs inode of the mft record is locked and the base vfs 851 * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The 852 * caller is responsible for unlocking the ntfs inode and unpinning the base 853 * vfs inode. 854 * 855 * Return 'true' if the mft record may be written out and 'false' if not. 856 * 857 * The caller has locked the page and cleared the uptodate flag on it which 858 * means that we can safely write out any dirty mft records that do not have 859 * their inodes in icache as determined by ilookup5() as anyone 860 * opening/creating such an inode would block when attempting to map the mft 861 * record in read_cache_page() until we are finished with the write out. 862 * 863 * Here is a description of the tests we perform: 864 * 865 * If the inode is found in icache we know the mft record must be a base mft 866 * record. If it is dirty, we do not write it and return 'false' as the vfs 867 * inode write paths will result in the access times being updated which would 868 * cause the base mft record to be redirtied and written out again. (We know 869 * the access time update will modify the base mft record because Windows 870 * chkdsk complains if the standard information attribute is not in the base 871 * mft record.) 872 * 873 * If the inode is in icache and not dirty, we attempt to lock the mft record 874 * and if we find the lock was already taken, it is not safe to write the mft 875 * record and we return 'false'. 876 * 877 * If we manage to obtain the lock we have exclusive access to the mft record, 878 * which also allows us safe writeout of the mft record. We then set 879 * @locked_ni to the locked ntfs inode and return 'true'. 880 * 881 * Note we cannot just lock the mft record and sleep while waiting for the lock 882 * because this would deadlock due to lock reversal (normally the mft record is 883 * locked before the page is locked but we already have the page locked here 884 * when we try to lock the mft record). 885 * 886 * If the inode is not in icache we need to perform further checks. 887 * 888 * If the mft record is not a FILE record or it is a base mft record, we can 889 * safely write it and return 'true'. 890 * 891 * We now know the mft record is an extent mft record. We check if the inode 892 * corresponding to its base mft record is in icache and obtain a reference to 893 * it if it is. If it is not, we can safely write it and return 'true'. 894 * 895 * We now have the base inode for the extent mft record. We check if it has an 896 * ntfs inode for the extent mft record attached and if not it is safe to write 897 * the extent mft record and we return 'true'. 898 * 899 * The ntfs inode for the extent mft record is attached to the base inode so we 900 * attempt to lock the extent mft record and if we find the lock was already 901 * taken, it is not safe to write the extent mft record and we return 'false'. 902 * 903 * If we manage to obtain the lock we have exclusive access to the extent mft 904 * record, which also allows us safe writeout of the extent mft record. We 905 * set the ntfs inode of the extent mft record clean and then set @locked_ni to 906 * the now locked ntfs inode and return 'true'. 907 * 908 * Note, the reason for actually writing dirty mft records here and not just 909 * relying on the vfs inode dirty code paths is that we can have mft records 910 * modified without them ever having actual inodes in memory. Also we can have 911 * dirty mft records with clean ntfs inodes in memory. None of the described 912 * cases would result in the dirty mft records being written out if we only 913 * relied on the vfs inode dirty code paths. And these cases can really occur 914 * during allocation of new mft records and in particular when the 915 * initialized_size of the $MFT/$DATA attribute is extended and the new space 916 * is initialized using ntfs_mft_record_format(). The clean inode can then 917 * appear if the mft record is reused for a new inode before it got written 918 * out. 919 */ 920 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, 921 const MFT_RECORD *m, ntfs_inode **locked_ni) 922 { 923 struct super_block *sb = vol->sb; 924 struct inode *mft_vi = vol->mft_ino; 925 struct inode *vi; 926 ntfs_inode *ni, *eni, **extent_nis; 927 int i; 928 ntfs_attr na; 929 930 ntfs_debug("Entering for inode 0x%lx.", mft_no); 931 /* 932 * Normally we do not return a locked inode so set @locked_ni to NULL. 933 */ 934 BUG_ON(!locked_ni); 935 *locked_ni = NULL; 936 /* 937 * Check if the inode corresponding to this mft record is in the VFS 938 * inode cache and obtain a reference to it if it is. 939 */ 940 ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); 941 na.mft_no = mft_no; 942 na.name = NULL; 943 na.name_len = 0; 944 na.type = AT_UNUSED; 945 /* 946 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and 947 * we get here for it rather often. 948 */ 949 if (!mft_no) { 950 /* Balance the below iput(). */ 951 vi = igrab(mft_vi); 952 BUG_ON(vi != mft_vi); 953 } else { 954 /* 955 * Have to use ilookup5_nowait() since ilookup5() waits for the 956 * inode lock which causes ntfs to deadlock when a concurrent 957 * inode write via the inode dirty code paths and the page 958 * dirty code path of the inode dirty code path when writing 959 * $MFT occurs. 960 */ 961 vi = ilookup5_nowait(sb, mft_no, ntfs_test_inode, &na); 962 } 963 if (vi) { 964 ntfs_debug("Base inode 0x%lx is in icache.", mft_no); 965 /* The inode is in icache. */ 966 ni = NTFS_I(vi); 967 /* Take a reference to the ntfs inode. */ 968 atomic_inc(&ni->count); 969 /* If the inode is dirty, do not write this record. */ 970 if (NInoDirty(ni)) { 971 ntfs_debug("Inode 0x%lx is dirty, do not write it.", 972 mft_no); 973 atomic_dec(&ni->count); 974 iput(vi); 975 return false; 976 } 977 ntfs_debug("Inode 0x%lx is not dirty.", mft_no); 978 /* The inode is not dirty, try to take the mft record lock. */ 979 if (unlikely(!mutex_trylock(&ni->mrec_lock))) { 980 ntfs_debug("Mft record 0x%lx is already locked, do " 981 "not write it.", mft_no); 982 atomic_dec(&ni->count); 983 iput(vi); 984 return false; 985 } 986 ntfs_debug("Managed to lock mft record 0x%lx, write it.", 987 mft_no); 988 /* 989 * The write has to occur while we hold the mft record lock so 990 * return the locked ntfs inode. 991 */ 992 *locked_ni = ni; 993 return true; 994 } 995 ntfs_debug("Inode 0x%lx is not in icache.", mft_no); 996 /* The inode is not in icache. */ 997 /* Write the record if it is not a mft record (type "FILE"). */ 998 if (!ntfs_is_mft_record(m->magic)) { 999 ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", 1000 mft_no); 1001 return true; 1002 } 1003 /* Write the mft record if it is a base inode. */ 1004 if (!m->base_mft_record) { 1005 ntfs_debug("Mft record 0x%lx is a base record, write it.", 1006 mft_no); 1007 return true; 1008 } 1009 /* 1010 * This is an extent mft record. Check if the inode corresponding to 1011 * its base mft record is in icache and obtain a reference to it if it 1012 * is. 1013 */ 1014 na.mft_no = MREF_LE(m->base_mft_record); 1015 ntfs_debug("Mft record 0x%lx is an extent record. Looking for base " 1016 "inode 0x%lx in icache.", mft_no, na.mft_no); 1017 if (!na.mft_no) { 1018 /* Balance the below iput(). */ 1019 vi = igrab(mft_vi); 1020 BUG_ON(vi != mft_vi); 1021 } else 1022 vi = ilookup5_nowait(sb, na.mft_no, ntfs_test_inode, 1023 &na); 1024 if (!vi) { 1025 /* 1026 * The base inode is not in icache, write this extent mft 1027 * record. 1028 */ 1029 ntfs_debug("Base inode 0x%lx is not in icache, write the " 1030 "extent record.", na.mft_no); 1031 return true; 1032 } 1033 ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); 1034 /* 1035 * The base inode is in icache. Check if it has the extent inode 1036 * corresponding to this extent mft record attached. 1037 */ 1038 ni = NTFS_I(vi); 1039 mutex_lock(&ni->extent_lock); 1040 if (ni->nr_extents <= 0) { 1041 /* 1042 * The base inode has no attached extent inodes, write this 1043 * extent mft record. 1044 */ 1045 mutex_unlock(&ni->extent_lock); 1046 iput(vi); 1047 ntfs_debug("Base inode 0x%lx has no attached extent inodes, " 1048 "write the extent record.", na.mft_no); 1049 return true; 1050 } 1051 /* Iterate over the attached extent inodes. */ 1052 extent_nis = ni->ext.extent_ntfs_inos; 1053 for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { 1054 if (mft_no == extent_nis[i]->mft_no) { 1055 /* 1056 * Found the extent inode corresponding to this extent 1057 * mft record. 1058 */ 1059 eni = extent_nis[i]; 1060 break; 1061 } 1062 } 1063 /* 1064 * If the extent inode was not attached to the base inode, write this 1065 * extent mft record. 1066 */ 1067 if (!eni) { 1068 mutex_unlock(&ni->extent_lock); 1069 iput(vi); 1070 ntfs_debug("Extent inode 0x%lx is not attached to its base " 1071 "inode 0x%lx, write the extent record.", 1072 mft_no, na.mft_no); 1073 return true; 1074 } 1075 ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", 1076 mft_no, na.mft_no); 1077 /* Take a reference to the extent ntfs inode. */ 1078 atomic_inc(&eni->count); 1079 mutex_unlock(&ni->extent_lock); 1080 /* 1081 * Found the extent inode coresponding to this extent mft record. 1082 * Try to take the mft record lock. 1083 */ 1084 if (unlikely(!mutex_trylock(&eni->mrec_lock))) { 1085 atomic_dec(&eni->count); 1086 iput(vi); 1087 ntfs_debug("Extent mft record 0x%lx is already locked, do " 1088 "not write it.", mft_no); 1089 return false; 1090 } 1091 ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", 1092 mft_no); 1093 if (NInoTestClearDirty(eni)) 1094 ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", 1095 mft_no); 1096 /* 1097 * The write has to occur while we hold the mft record lock so return 1098 * the locked extent ntfs inode. 1099 */ 1100 *locked_ni = eni; 1101 return true; 1102 } 1103 1104 static const char *es = " Leaving inconsistent metadata. Unmount and run " 1105 "chkdsk."; 1106 1107 /** 1108 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name 1109 * @vol: volume on which to search for a free mft record 1110 * @base_ni: open base inode if allocating an extent mft record or NULL 1111 * 1112 * Search for a free mft record in the mft bitmap attribute on the ntfs volume 1113 * @vol. 1114 * 1115 * If @base_ni is NULL start the search at the default allocator position. 1116 * 1117 * If @base_ni is not NULL start the search at the mft record after the base 1118 * mft record @base_ni. 1119 * 1120 * Return the free mft record on success and -errno on error. An error code of 1121 * -ENOSPC means that there are no free mft records in the currently 1122 * initialized mft bitmap. 1123 * 1124 * Locking: Caller must hold vol->mftbmp_lock for writing. 1125 */ 1126 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, 1127 ntfs_inode *base_ni) 1128 { 1129 s64 pass_end, ll, data_pos, pass_start, ofs, bit; 1130 unsigned long flags; 1131 struct address_space *mftbmp_mapping; 1132 u8 *buf, *byte; 1133 struct page *page; 1134 unsigned int page_ofs, size; 1135 u8 pass, b; 1136 1137 ntfs_debug("Searching for free mft record in the currently " 1138 "initialized mft bitmap."); 1139 mftbmp_mapping = vol->mftbmp_ino->i_mapping; 1140 /* 1141 * Set the end of the pass making sure we do not overflow the mft 1142 * bitmap. 1143 */ 1144 read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); 1145 pass_end = NTFS_I(vol->mft_ino)->allocated_size >> 1146 vol->mft_record_size_bits; 1147 read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); 1148 read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1149 ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; 1150 read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); 1151 if (pass_end > ll) 1152 pass_end = ll; 1153 pass = 1; 1154 if (!base_ni) 1155 data_pos = vol->mft_data_pos; 1156 else 1157 data_pos = base_ni->mft_no + 1; 1158 if (data_pos < 24) 1159 data_pos = 24; 1160 if (data_pos >= pass_end) { 1161 data_pos = 24; 1162 pass = 2; 1163 /* This happens on a freshly formatted volume. */ 1164 if (data_pos >= pass_end) 1165 return -ENOSPC; 1166 } 1167 pass_start = data_pos; 1168 ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " 1169 "pass_end 0x%llx, data_pos 0x%llx.", pass, 1170 (long long)pass_start, (long long)pass_end, 1171 (long long)data_pos); 1172 /* Loop until a free mft record is found. */ 1173 for (; pass <= 2;) { 1174 /* Cap size to pass_end. */ 1175 ofs = data_pos >> 3; 1176 page_ofs = ofs & ~PAGE_MASK; 1177 size = PAGE_SIZE - page_ofs; 1178 ll = ((pass_end + 7) >> 3) - ofs; 1179 if (size > ll) 1180 size = ll; 1181 size <<= 3; 1182 /* 1183 * If we are still within the active pass, search the next page 1184 * for a zero bit. 1185 */ 1186 if (size) { 1187 page = ntfs_map_page(mftbmp_mapping, 1188 ofs >> PAGE_SHIFT); 1189 if (IS_ERR(page)) { 1190 ntfs_error(vol->sb, "Failed to read mft " 1191 "bitmap, aborting."); 1192 return PTR_ERR(page); 1193 } 1194 buf = (u8*)page_address(page) + page_ofs; 1195 bit = data_pos & 7; 1196 data_pos &= ~7ull; 1197 ntfs_debug("Before inner for loop: size 0x%x, " 1198 "data_pos 0x%llx, bit 0x%llx", size, 1199 (long long)data_pos, (long long)bit); 1200 for (; bit < size && data_pos + bit < pass_end; 1201 bit &= ~7ull, bit += 8) { 1202 byte = buf + (bit >> 3); 1203 if (*byte == 0xff) 1204 continue; 1205 b = ffz((unsigned long)*byte); 1206 if (b < 8 && b >= (bit & 7)) { 1207 ll = data_pos + (bit & ~7ull) + b; 1208 if (unlikely(ll > (1ll << 32))) { 1209 ntfs_unmap_page(page); 1210 return -ENOSPC; 1211 } 1212 *byte |= 1 << b; 1213 flush_dcache_page(page); 1214 set_page_dirty(page); 1215 ntfs_unmap_page(page); 1216 ntfs_debug("Done. (Found and " 1217 "allocated mft record " 1218 "0x%llx.)", 1219 (long long)ll); 1220 return ll; 1221 } 1222 } 1223 ntfs_debug("After inner for loop: size 0x%x, " 1224 "data_pos 0x%llx, bit 0x%llx", size, 1225 (long long)data_pos, (long long)bit); 1226 data_pos += size; 1227 ntfs_unmap_page(page); 1228 /* 1229 * If the end of the pass has not been reached yet, 1230 * continue searching the mft bitmap for a zero bit. 1231 */ 1232 if (data_pos < pass_end) 1233 continue; 1234 } 1235 /* Do the next pass. */ 1236 if (++pass == 2) { 1237 /* 1238 * Starting the second pass, in which we scan the first 1239 * part of the zone which we omitted earlier. 1240 */ 1241 pass_end = pass_start; 1242 data_pos = pass_start = 24; 1243 ntfs_debug("pass %i, pass_start 0x%llx, pass_end " 1244 "0x%llx.", pass, (long long)pass_start, 1245 (long long)pass_end); 1246 if (data_pos >= pass_end) 1247 break; 1248 } 1249 } 1250 /* No free mft records in currently initialized mft bitmap. */ 1251 ntfs_debug("Done. (No free mft records left in currently initialized " 1252 "mft bitmap.)"); 1253 return -ENOSPC; 1254 } 1255 1256 /** 1257 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster 1258 * @vol: volume on which to extend the mft bitmap attribute 1259 * 1260 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. 1261 * 1262 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1263 * data_size. 1264 * 1265 * Return 0 on success and -errno on error. 1266 * 1267 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1268 * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for 1269 * writing and releases it before returning. 1270 * - This function takes vol->lcnbmp_lock for writing and releases it 1271 * before returning. 1272 */ 1273 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) 1274 { 1275 LCN lcn; 1276 s64 ll; 1277 unsigned long flags; 1278 struct page *page; 1279 ntfs_inode *mft_ni, *mftbmp_ni; 1280 runlist_element *rl, *rl2 = NULL; 1281 ntfs_attr_search_ctx *ctx = NULL; 1282 MFT_RECORD *mrec; 1283 ATTR_RECORD *a = NULL; 1284 int ret, mp_size; 1285 u32 old_alen = 0; 1286 u8 *b, tb; 1287 struct { 1288 u8 added_cluster:1; 1289 u8 added_run:1; 1290 u8 mp_rebuilt:1; 1291 } status = { 0, 0, 0 }; 1292 1293 ntfs_debug("Extending mft bitmap allocation."); 1294 mft_ni = NTFS_I(vol->mft_ino); 1295 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 1296 /* 1297 * Determine the last lcn of the mft bitmap. The allocated size of the 1298 * mft bitmap cannot be zero so we are ok to do this. 1299 */ 1300 down_write(&mftbmp_ni->runlist.lock); 1301 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1302 ll = mftbmp_ni->allocated_size; 1303 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1304 rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, 1305 (ll - 1) >> vol->cluster_size_bits, NULL); 1306 if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) { 1307 up_write(&mftbmp_ni->runlist.lock); 1308 ntfs_error(vol->sb, "Failed to determine last allocated " 1309 "cluster of mft bitmap attribute."); 1310 if (!IS_ERR(rl)) 1311 ret = -EIO; 1312 else 1313 ret = PTR_ERR(rl); 1314 return ret; 1315 } 1316 lcn = rl->lcn + rl->length; 1317 ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", 1318 (long long)lcn); 1319 /* 1320 * Attempt to get the cluster following the last allocated cluster by 1321 * hand as it may be in the MFT zone so the allocator would not give it 1322 * to us. 1323 */ 1324 ll = lcn >> 3; 1325 page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, 1326 ll >> PAGE_SHIFT); 1327 if (IS_ERR(page)) { 1328 up_write(&mftbmp_ni->runlist.lock); 1329 ntfs_error(vol->sb, "Failed to read from lcn bitmap."); 1330 return PTR_ERR(page); 1331 } 1332 b = (u8*)page_address(page) + (ll & ~PAGE_MASK); 1333 tb = 1 << (lcn & 7ull); 1334 down_write(&vol->lcnbmp_lock); 1335 if (*b != 0xff && !(*b & tb)) { 1336 /* Next cluster is free, allocate it. */ 1337 *b |= tb; 1338 flush_dcache_page(page); 1339 set_page_dirty(page); 1340 up_write(&vol->lcnbmp_lock); 1341 ntfs_unmap_page(page); 1342 /* Update the mft bitmap runlist. */ 1343 rl->length++; 1344 rl[1].vcn++; 1345 status.added_cluster = 1; 1346 ntfs_debug("Appending one cluster to mft bitmap."); 1347 } else { 1348 up_write(&vol->lcnbmp_lock); 1349 ntfs_unmap_page(page); 1350 /* Allocate a cluster from the DATA_ZONE. */ 1351 rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, 1352 true); 1353 if (IS_ERR(rl2)) { 1354 up_write(&mftbmp_ni->runlist.lock); 1355 ntfs_error(vol->sb, "Failed to allocate a cluster for " 1356 "the mft bitmap."); 1357 return PTR_ERR(rl2); 1358 } 1359 rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); 1360 if (IS_ERR(rl)) { 1361 up_write(&mftbmp_ni->runlist.lock); 1362 ntfs_error(vol->sb, "Failed to merge runlists for mft " 1363 "bitmap."); 1364 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1365 ntfs_error(vol->sb, "Failed to deallocate " 1366 "allocated cluster.%s", es); 1367 NVolSetErrors(vol); 1368 } 1369 ntfs_free(rl2); 1370 return PTR_ERR(rl); 1371 } 1372 mftbmp_ni->runlist.rl = rl; 1373 status.added_run = 1; 1374 ntfs_debug("Adding one run to mft bitmap."); 1375 /* Find the last run in the new runlist. */ 1376 for (; rl[1].length; rl++) 1377 ; 1378 } 1379 /* 1380 * Update the attribute record as well. Note: @rl is the last 1381 * (non-terminator) runlist element of mft bitmap. 1382 */ 1383 mrec = map_mft_record(mft_ni); 1384 if (IS_ERR(mrec)) { 1385 ntfs_error(vol->sb, "Failed to map mft record."); 1386 ret = PTR_ERR(mrec); 1387 goto undo_alloc; 1388 } 1389 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1390 if (unlikely(!ctx)) { 1391 ntfs_error(vol->sb, "Failed to get search context."); 1392 ret = -ENOMEM; 1393 goto undo_alloc; 1394 } 1395 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1396 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1397 0, ctx); 1398 if (unlikely(ret)) { 1399 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1400 "mft bitmap attribute."); 1401 if (ret == -ENOENT) 1402 ret = -EIO; 1403 goto undo_alloc; 1404 } 1405 a = ctx->attr; 1406 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1407 /* Search back for the previous last allocated cluster of mft bitmap. */ 1408 for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { 1409 if (ll >= rl2->vcn) 1410 break; 1411 } 1412 BUG_ON(ll < rl2->vcn); 1413 BUG_ON(ll >= rl2->vcn + rl2->length); 1414 /* Get the size for the new mapping pairs array for this extent. */ 1415 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1416 if (unlikely(mp_size <= 0)) { 1417 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1418 "mft bitmap attribute extent."); 1419 ret = mp_size; 1420 if (!ret) 1421 ret = -EIO; 1422 goto undo_alloc; 1423 } 1424 /* Expand the attribute record if necessary. */ 1425 old_alen = le32_to_cpu(a->length); 1426 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1427 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1428 if (unlikely(ret)) { 1429 if (ret != -ENOSPC) { 1430 ntfs_error(vol->sb, "Failed to resize attribute " 1431 "record for mft bitmap attribute."); 1432 goto undo_alloc; 1433 } 1434 // TODO: Deal with this by moving this extent to a new mft 1435 // record or by starting a new extent in a new mft record or by 1436 // moving other attributes out of this mft record. 1437 // Note: It will need to be a special mft record and if none of 1438 // those are available it gets rather complicated... 1439 ntfs_error(vol->sb, "Not enough space in this mft record to " 1440 "accommodate extended mft bitmap attribute " 1441 "extent. Cannot handle this yet."); 1442 ret = -EOPNOTSUPP; 1443 goto undo_alloc; 1444 } 1445 status.mp_rebuilt = 1; 1446 /* Generate the mapping pairs array directly into the attr record. */ 1447 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1448 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1449 mp_size, rl2, ll, -1, NULL); 1450 if (unlikely(ret)) { 1451 ntfs_error(vol->sb, "Failed to build mapping pairs array for " 1452 "mft bitmap attribute."); 1453 goto undo_alloc; 1454 } 1455 /* Update the highest_vcn. */ 1456 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1457 /* 1458 * We now have extended the mft bitmap allocated_size by one cluster. 1459 * Reflect this in the ntfs_inode structure and the attribute record. 1460 */ 1461 if (a->data.non_resident.lowest_vcn) { 1462 /* 1463 * We are not in the first attribute extent, switch to it, but 1464 * first ensure the changes will make it to disk later. 1465 */ 1466 flush_dcache_mft_record_page(ctx->ntfs_ino); 1467 mark_mft_record_dirty(ctx->ntfs_ino); 1468 ntfs_attr_reinit_search_ctx(ctx); 1469 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1470 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 1471 0, ctx); 1472 if (unlikely(ret)) { 1473 ntfs_error(vol->sb, "Failed to find first attribute " 1474 "extent of mft bitmap attribute."); 1475 goto restore_undo_alloc; 1476 } 1477 a = ctx->attr; 1478 } 1479 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1480 mftbmp_ni->allocated_size += vol->cluster_size; 1481 a->data.non_resident.allocated_size = 1482 cpu_to_sle64(mftbmp_ni->allocated_size); 1483 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1484 /* Ensure the changes make it to disk. */ 1485 flush_dcache_mft_record_page(ctx->ntfs_ino); 1486 mark_mft_record_dirty(ctx->ntfs_ino); 1487 ntfs_attr_put_search_ctx(ctx); 1488 unmap_mft_record(mft_ni); 1489 up_write(&mftbmp_ni->runlist.lock); 1490 ntfs_debug("Done."); 1491 return 0; 1492 restore_undo_alloc: 1493 ntfs_attr_reinit_search_ctx(ctx); 1494 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1495 mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, 1496 0, ctx)) { 1497 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1498 "mft bitmap attribute.%s", es); 1499 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1500 mftbmp_ni->allocated_size += vol->cluster_size; 1501 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1502 ntfs_attr_put_search_ctx(ctx); 1503 unmap_mft_record(mft_ni); 1504 up_write(&mftbmp_ni->runlist.lock); 1505 /* 1506 * The only thing that is now wrong is ->allocated_size of the 1507 * base attribute extent which chkdsk should be able to fix. 1508 */ 1509 NVolSetErrors(vol); 1510 return ret; 1511 } 1512 a = ctx->attr; 1513 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); 1514 undo_alloc: 1515 if (status.added_cluster) { 1516 /* Truncate the last run in the runlist by one cluster. */ 1517 rl->length--; 1518 rl[1].vcn--; 1519 } else if (status.added_run) { 1520 lcn = rl->lcn; 1521 /* Remove the last run from the runlist. */ 1522 rl->lcn = rl[1].lcn; 1523 rl->length = 0; 1524 } 1525 /* Deallocate the cluster. */ 1526 down_write(&vol->lcnbmp_lock); 1527 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1528 ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); 1529 NVolSetErrors(vol); 1530 } 1531 up_write(&vol->lcnbmp_lock); 1532 if (status.mp_rebuilt) { 1533 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1534 a->data.non_resident.mapping_pairs_offset), 1535 old_alen - le16_to_cpu( 1536 a->data.non_resident.mapping_pairs_offset), 1537 rl2, ll, -1, NULL)) { 1538 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1539 "array.%s", es); 1540 NVolSetErrors(vol); 1541 } 1542 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1543 ntfs_error(vol->sb, "Failed to restore attribute " 1544 "record.%s", es); 1545 NVolSetErrors(vol); 1546 } 1547 flush_dcache_mft_record_page(ctx->ntfs_ino); 1548 mark_mft_record_dirty(ctx->ntfs_ino); 1549 } 1550 if (ctx) 1551 ntfs_attr_put_search_ctx(ctx); 1552 if (!IS_ERR(mrec)) 1553 unmap_mft_record(mft_ni); 1554 up_write(&mftbmp_ni->runlist.lock); 1555 return ret; 1556 } 1557 1558 /** 1559 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data 1560 * @vol: volume on which to extend the mft bitmap attribute 1561 * 1562 * Extend the initialized portion of the mft bitmap attribute on the ntfs 1563 * volume @vol by 8 bytes. 1564 * 1565 * Note: Only changes initialized_size and data_size, i.e. requires that 1566 * allocated_size is big enough to fit the new initialized_size. 1567 * 1568 * Return 0 on success and -error on error. 1569 * 1570 * Locking: Caller must hold vol->mftbmp_lock for writing. 1571 */ 1572 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) 1573 { 1574 s64 old_data_size, old_initialized_size; 1575 unsigned long flags; 1576 struct inode *mftbmp_vi; 1577 ntfs_inode *mft_ni, *mftbmp_ni; 1578 ntfs_attr_search_ctx *ctx; 1579 MFT_RECORD *mrec; 1580 ATTR_RECORD *a; 1581 int ret; 1582 1583 ntfs_debug("Extending mft bitmap initiailized (and data) size."); 1584 mft_ni = NTFS_I(vol->mft_ino); 1585 mftbmp_vi = vol->mftbmp_ino; 1586 mftbmp_ni = NTFS_I(mftbmp_vi); 1587 /* Get the attribute record. */ 1588 mrec = map_mft_record(mft_ni); 1589 if (IS_ERR(mrec)) { 1590 ntfs_error(vol->sb, "Failed to map mft record."); 1591 return PTR_ERR(mrec); 1592 } 1593 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1594 if (unlikely(!ctx)) { 1595 ntfs_error(vol->sb, "Failed to get search context."); 1596 ret = -ENOMEM; 1597 goto unm_err_out; 1598 } 1599 ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1600 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); 1601 if (unlikely(ret)) { 1602 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1603 "mft bitmap attribute."); 1604 if (ret == -ENOENT) 1605 ret = -EIO; 1606 goto put_err_out; 1607 } 1608 a = ctx->attr; 1609 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1610 old_data_size = i_size_read(mftbmp_vi); 1611 old_initialized_size = mftbmp_ni->initialized_size; 1612 /* 1613 * We can simply update the initialized_size before filling the space 1614 * with zeroes because the caller is holding the mft bitmap lock for 1615 * writing which ensures that no one else is trying to access the data. 1616 */ 1617 mftbmp_ni->initialized_size += 8; 1618 a->data.non_resident.initialized_size = 1619 cpu_to_sle64(mftbmp_ni->initialized_size); 1620 if (mftbmp_ni->initialized_size > old_data_size) { 1621 i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); 1622 a->data.non_resident.data_size = 1623 cpu_to_sle64(mftbmp_ni->initialized_size); 1624 } 1625 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1626 /* Ensure the changes make it to disk. */ 1627 flush_dcache_mft_record_page(ctx->ntfs_ino); 1628 mark_mft_record_dirty(ctx->ntfs_ino); 1629 ntfs_attr_put_search_ctx(ctx); 1630 unmap_mft_record(mft_ni); 1631 /* Initialize the mft bitmap attribute value with zeroes. */ 1632 ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); 1633 if (likely(!ret)) { 1634 ntfs_debug("Done. (Wrote eight initialized bytes to mft " 1635 "bitmap."); 1636 return 0; 1637 } 1638 ntfs_error(vol->sb, "Failed to write to mft bitmap."); 1639 /* Try to recover from the error. */ 1640 mrec = map_mft_record(mft_ni); 1641 if (IS_ERR(mrec)) { 1642 ntfs_error(vol->sb, "Failed to map mft record.%s", es); 1643 NVolSetErrors(vol); 1644 return ret; 1645 } 1646 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1647 if (unlikely(!ctx)) { 1648 ntfs_error(vol->sb, "Failed to get search context.%s", es); 1649 NVolSetErrors(vol); 1650 goto unm_err_out; 1651 } 1652 if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, 1653 mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { 1654 ntfs_error(vol->sb, "Failed to find first attribute extent of " 1655 "mft bitmap attribute.%s", es); 1656 NVolSetErrors(vol); 1657 put_err_out: 1658 ntfs_attr_put_search_ctx(ctx); 1659 unm_err_out: 1660 unmap_mft_record(mft_ni); 1661 goto err_out; 1662 } 1663 a = ctx->attr; 1664 write_lock_irqsave(&mftbmp_ni->size_lock, flags); 1665 mftbmp_ni->initialized_size = old_initialized_size; 1666 a->data.non_resident.initialized_size = 1667 cpu_to_sle64(old_initialized_size); 1668 if (i_size_read(mftbmp_vi) != old_data_size) { 1669 i_size_write(mftbmp_vi, old_data_size); 1670 a->data.non_resident.data_size = cpu_to_sle64(old_data_size); 1671 } 1672 write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1673 flush_dcache_mft_record_page(ctx->ntfs_ino); 1674 mark_mft_record_dirty(ctx->ntfs_ino); 1675 ntfs_attr_put_search_ctx(ctx); 1676 unmap_mft_record(mft_ni); 1677 #ifdef DEBUG 1678 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 1679 ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " 1680 "data_size 0x%llx, initialized_size 0x%llx.", 1681 (long long)mftbmp_ni->allocated_size, 1682 (long long)i_size_read(mftbmp_vi), 1683 (long long)mftbmp_ni->initialized_size); 1684 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 1685 #endif /* DEBUG */ 1686 err_out: 1687 return ret; 1688 } 1689 1690 /** 1691 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute 1692 * @vol: volume on which to extend the mft data attribute 1693 * 1694 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records 1695 * worth of clusters or if not enough space for this by one mft record worth 1696 * of clusters. 1697 * 1698 * Note: Only changes allocated_size, i.e. does not touch initialized_size or 1699 * data_size. 1700 * 1701 * Return 0 on success and -errno on error. 1702 * 1703 * Locking: - Caller must hold vol->mftbmp_lock for writing. 1704 * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for 1705 * writing and releases it before returning. 1706 * - This function calls functions which take vol->lcnbmp_lock for 1707 * writing and release it before returning. 1708 */ 1709 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) 1710 { 1711 LCN lcn; 1712 VCN old_last_vcn; 1713 s64 min_nr, nr, ll; 1714 unsigned long flags; 1715 ntfs_inode *mft_ni; 1716 runlist_element *rl, *rl2; 1717 ntfs_attr_search_ctx *ctx = NULL; 1718 MFT_RECORD *mrec; 1719 ATTR_RECORD *a = NULL; 1720 int ret, mp_size; 1721 u32 old_alen = 0; 1722 bool mp_rebuilt = false; 1723 1724 ntfs_debug("Extending mft data allocation."); 1725 mft_ni = NTFS_I(vol->mft_ino); 1726 /* 1727 * Determine the preferred allocation location, i.e. the last lcn of 1728 * the mft data attribute. The allocated size of the mft data 1729 * attribute cannot be zero so we are ok to do this. 1730 */ 1731 down_write(&mft_ni->runlist.lock); 1732 read_lock_irqsave(&mft_ni->size_lock, flags); 1733 ll = mft_ni->allocated_size; 1734 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1735 rl = ntfs_attr_find_vcn_nolock(mft_ni, 1736 (ll - 1) >> vol->cluster_size_bits, NULL); 1737 if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) { 1738 up_write(&mft_ni->runlist.lock); 1739 ntfs_error(vol->sb, "Failed to determine last allocated " 1740 "cluster of mft data attribute."); 1741 if (!IS_ERR(rl)) 1742 ret = -EIO; 1743 else 1744 ret = PTR_ERR(rl); 1745 return ret; 1746 } 1747 lcn = rl->lcn + rl->length; 1748 ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); 1749 /* Minimum allocation is one mft record worth of clusters. */ 1750 min_nr = vol->mft_record_size >> vol->cluster_size_bits; 1751 if (!min_nr) 1752 min_nr = 1; 1753 /* Want to allocate 16 mft records worth of clusters. */ 1754 nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; 1755 if (!nr) 1756 nr = min_nr; 1757 /* Ensure we do not go above 2^32-1 mft records. */ 1758 read_lock_irqsave(&mft_ni->size_lock, flags); 1759 ll = mft_ni->allocated_size; 1760 read_unlock_irqrestore(&mft_ni->size_lock, flags); 1761 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1762 vol->mft_record_size_bits >= (1ll << 32))) { 1763 nr = min_nr; 1764 if (unlikely((ll + (nr << vol->cluster_size_bits)) >> 1765 vol->mft_record_size_bits >= (1ll << 32))) { 1766 ntfs_warning(vol->sb, "Cannot allocate mft record " 1767 "because the maximum number of inodes " 1768 "(2^32) has already been reached."); 1769 up_write(&mft_ni->runlist.lock); 1770 return -ENOSPC; 1771 } 1772 } 1773 ntfs_debug("Trying mft data allocation with %s cluster count %lli.", 1774 nr > min_nr ? "default" : "minimal", (long long)nr); 1775 old_last_vcn = rl[1].vcn; 1776 do { 1777 rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, 1778 true); 1779 if (!IS_ERR(rl2)) 1780 break; 1781 if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { 1782 ntfs_error(vol->sb, "Failed to allocate the minimal " 1783 "number of clusters (%lli) for the " 1784 "mft data attribute.", (long long)nr); 1785 up_write(&mft_ni->runlist.lock); 1786 return PTR_ERR(rl2); 1787 } 1788 /* 1789 * There is not enough space to do the allocation, but there 1790 * might be enough space to do a minimal allocation so try that 1791 * before failing. 1792 */ 1793 nr = min_nr; 1794 ntfs_debug("Retrying mft data allocation with minimal cluster " 1795 "count %lli.", (long long)nr); 1796 } while (1); 1797 rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); 1798 if (IS_ERR(rl)) { 1799 up_write(&mft_ni->runlist.lock); 1800 ntfs_error(vol->sb, "Failed to merge runlists for mft data " 1801 "attribute."); 1802 if (ntfs_cluster_free_from_rl(vol, rl2)) { 1803 ntfs_error(vol->sb, "Failed to deallocate clusters " 1804 "from the mft data attribute.%s", es); 1805 NVolSetErrors(vol); 1806 } 1807 ntfs_free(rl2); 1808 return PTR_ERR(rl); 1809 } 1810 mft_ni->runlist.rl = rl; 1811 ntfs_debug("Allocated %lli clusters.", (long long)nr); 1812 /* Find the last run in the new runlist. */ 1813 for (; rl[1].length; rl++) 1814 ; 1815 /* Update the attribute record as well. */ 1816 mrec = map_mft_record(mft_ni); 1817 if (IS_ERR(mrec)) { 1818 ntfs_error(vol->sb, "Failed to map mft record."); 1819 ret = PTR_ERR(mrec); 1820 goto undo_alloc; 1821 } 1822 ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); 1823 if (unlikely(!ctx)) { 1824 ntfs_error(vol->sb, "Failed to get search context."); 1825 ret = -ENOMEM; 1826 goto undo_alloc; 1827 } 1828 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1829 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); 1830 if (unlikely(ret)) { 1831 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1832 "mft data attribute."); 1833 if (ret == -ENOENT) 1834 ret = -EIO; 1835 goto undo_alloc; 1836 } 1837 a = ctx->attr; 1838 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 1839 /* Search back for the previous last allocated cluster of mft bitmap. */ 1840 for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { 1841 if (ll >= rl2->vcn) 1842 break; 1843 } 1844 BUG_ON(ll < rl2->vcn); 1845 BUG_ON(ll >= rl2->vcn + rl2->length); 1846 /* Get the size for the new mapping pairs array for this extent. */ 1847 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 1848 if (unlikely(mp_size <= 0)) { 1849 ntfs_error(vol->sb, "Get size for mapping pairs failed for " 1850 "mft data attribute extent."); 1851 ret = mp_size; 1852 if (!ret) 1853 ret = -EIO; 1854 goto undo_alloc; 1855 } 1856 /* Expand the attribute record if necessary. */ 1857 old_alen = le32_to_cpu(a->length); 1858 ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + 1859 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 1860 if (unlikely(ret)) { 1861 if (ret != -ENOSPC) { 1862 ntfs_error(vol->sb, "Failed to resize attribute " 1863 "record for mft data attribute."); 1864 goto undo_alloc; 1865 } 1866 // TODO: Deal with this by moving this extent to a new mft 1867 // record or by starting a new extent in a new mft record or by 1868 // moving other attributes out of this mft record. 1869 // Note: Use the special reserved mft records and ensure that 1870 // this extent is not required to find the mft record in 1871 // question. If no free special records left we would need to 1872 // move an existing record away, insert ours in its place, and 1873 // then place the moved record into the newly allocated space 1874 // and we would then need to update all references to this mft 1875 // record appropriately. This is rather complicated... 1876 ntfs_error(vol->sb, "Not enough space in this mft record to " 1877 "accommodate extended mft data attribute " 1878 "extent. Cannot handle this yet."); 1879 ret = -EOPNOTSUPP; 1880 goto undo_alloc; 1881 } 1882 mp_rebuilt = true; 1883 /* Generate the mapping pairs array directly into the attr record. */ 1884 ret = ntfs_mapping_pairs_build(vol, (u8*)a + 1885 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 1886 mp_size, rl2, ll, -1, NULL); 1887 if (unlikely(ret)) { 1888 ntfs_error(vol->sb, "Failed to build mapping pairs array of " 1889 "mft data attribute."); 1890 goto undo_alloc; 1891 } 1892 /* Update the highest_vcn. */ 1893 a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); 1894 /* 1895 * We now have extended the mft data allocated_size by nr clusters. 1896 * Reflect this in the ntfs_inode structure and the attribute record. 1897 * @rl is the last (non-terminator) runlist element of mft data 1898 * attribute. 1899 */ 1900 if (a->data.non_resident.lowest_vcn) { 1901 /* 1902 * We are not in the first attribute extent, switch to it, but 1903 * first ensure the changes will make it to disk later. 1904 */ 1905 flush_dcache_mft_record_page(ctx->ntfs_ino); 1906 mark_mft_record_dirty(ctx->ntfs_ino); 1907 ntfs_attr_reinit_search_ctx(ctx); 1908 ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, 1909 mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, 1910 ctx); 1911 if (unlikely(ret)) { 1912 ntfs_error(vol->sb, "Failed to find first attribute " 1913 "extent of mft data attribute."); 1914 goto restore_undo_alloc; 1915 } 1916 a = ctx->attr; 1917 } 1918 write_lock_irqsave(&mft_ni->size_lock, flags); 1919 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1920 a->data.non_resident.allocated_size = 1921 cpu_to_sle64(mft_ni->allocated_size); 1922 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1923 /* Ensure the changes make it to disk. */ 1924 flush_dcache_mft_record_page(ctx->ntfs_ino); 1925 mark_mft_record_dirty(ctx->ntfs_ino); 1926 ntfs_attr_put_search_ctx(ctx); 1927 unmap_mft_record(mft_ni); 1928 up_write(&mft_ni->runlist.lock); 1929 ntfs_debug("Done."); 1930 return 0; 1931 restore_undo_alloc: 1932 ntfs_attr_reinit_search_ctx(ctx); 1933 if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 1934 CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { 1935 ntfs_error(vol->sb, "Failed to find last attribute extent of " 1936 "mft data attribute.%s", es); 1937 write_lock_irqsave(&mft_ni->size_lock, flags); 1938 mft_ni->allocated_size += nr << vol->cluster_size_bits; 1939 write_unlock_irqrestore(&mft_ni->size_lock, flags); 1940 ntfs_attr_put_search_ctx(ctx); 1941 unmap_mft_record(mft_ni); 1942 up_write(&mft_ni->runlist.lock); 1943 /* 1944 * The only thing that is now wrong is ->allocated_size of the 1945 * base attribute extent which chkdsk should be able to fix. 1946 */ 1947 NVolSetErrors(vol); 1948 return ret; 1949 } 1950 ctx->attr->data.non_resident.highest_vcn = 1951 cpu_to_sle64(old_last_vcn - 1); 1952 undo_alloc: 1953 if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { 1954 ntfs_error(vol->sb, "Failed to free clusters from mft data " 1955 "attribute.%s", es); 1956 NVolSetErrors(vol); 1957 } 1958 1959 if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { 1960 ntfs_error(vol->sb, "Failed to truncate mft data attribute " 1961 "runlist.%s", es); 1962 NVolSetErrors(vol); 1963 } 1964 if (ctx) { 1965 a = ctx->attr; 1966 if (mp_rebuilt && !IS_ERR(ctx->mrec)) { 1967 if (ntfs_mapping_pairs_build(vol, (u8 *)a + le16_to_cpu( 1968 a->data.non_resident.mapping_pairs_offset), 1969 old_alen - le16_to_cpu( 1970 a->data.non_resident.mapping_pairs_offset), 1971 rl2, ll, -1, NULL)) { 1972 ntfs_error(vol->sb, "Failed to restore mapping pairs " 1973 "array.%s", es); 1974 NVolSetErrors(vol); 1975 } 1976 if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { 1977 ntfs_error(vol->sb, "Failed to restore attribute " 1978 "record.%s", es); 1979 NVolSetErrors(vol); 1980 } 1981 flush_dcache_mft_record_page(ctx->ntfs_ino); 1982 mark_mft_record_dirty(ctx->ntfs_ino); 1983 } else if (IS_ERR(ctx->mrec)) { 1984 ntfs_error(vol->sb, "Failed to restore attribute search " 1985 "context.%s", es); 1986 NVolSetErrors(vol); 1987 } 1988 ntfs_attr_put_search_ctx(ctx); 1989 } 1990 if (!IS_ERR(mrec)) 1991 unmap_mft_record(mft_ni); 1992 up_write(&mft_ni->runlist.lock); 1993 return ret; 1994 } 1995 1996 /** 1997 * ntfs_mft_record_layout - layout an mft record into a memory buffer 1998 * @vol: volume to which the mft record will belong 1999 * @mft_no: mft reference specifying the mft record number 2000 * @m: destination buffer of size >= @vol->mft_record_size bytes 2001 * 2002 * Layout an empty, unused mft record with the mft record number @mft_no into 2003 * the buffer @m. The volume @vol is needed because the mft record structure 2004 * was modified in NTFS 3.1 so we need to know which volume version this mft 2005 * record will be used on. 2006 * 2007 * Return 0 on success and -errno on error. 2008 */ 2009 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, 2010 MFT_RECORD *m) 2011 { 2012 ATTR_RECORD *a; 2013 2014 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2015 if (mft_no >= (1ll << 32)) { 2016 ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " 2017 "maximum of 2^32.", (long long)mft_no); 2018 return -ERANGE; 2019 } 2020 /* Start by clearing the whole mft record to gives us a clean slate. */ 2021 memset(m, 0, vol->mft_record_size); 2022 /* Aligned to 2-byte boundary. */ 2023 if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) 2024 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); 2025 else { 2026 m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); 2027 /* 2028 * Set the NTFS 3.1+ specific fields while we know that the 2029 * volume version is 3.1+. 2030 */ 2031 m->reserved = 0; 2032 m->mft_record_number = cpu_to_le32((u32)mft_no); 2033 } 2034 m->magic = magic_FILE; 2035 if (vol->mft_record_size >= NTFS_BLOCK_SIZE) 2036 m->usa_count = cpu_to_le16(vol->mft_record_size / 2037 NTFS_BLOCK_SIZE + 1); 2038 else { 2039 m->usa_count = cpu_to_le16(1); 2040 ntfs_warning(vol->sb, "Sector size is bigger than mft record " 2041 "size. Setting usa_count to 1. If chkdsk " 2042 "reports this as corruption, please email " 2043 "linux-ntfs-dev@lists.sourceforge.net stating " 2044 "that you saw this message and that the " 2045 "modified filesystem created was corrupt. " 2046 "Thank you."); 2047 } 2048 /* Set the update sequence number to 1. */ 2049 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); 2050 m->lsn = 0; 2051 m->sequence_number = cpu_to_le16(1); 2052 m->link_count = 0; 2053 /* 2054 * Place the attributes straight after the update sequence array, 2055 * aligned to 8-byte boundary. 2056 */ 2057 m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + 2058 (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); 2059 m->flags = 0; 2060 /* 2061 * Using attrs_offset plus eight bytes (for the termination attribute). 2062 * attrs_offset is already aligned to 8-byte boundary, so no need to 2063 * align again. 2064 */ 2065 m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); 2066 m->bytes_allocated = cpu_to_le32(vol->mft_record_size); 2067 m->base_mft_record = 0; 2068 m->next_attr_instance = 0; 2069 /* Add the termination attribute. */ 2070 a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); 2071 a->type = AT_END; 2072 a->length = 0; 2073 ntfs_debug("Done."); 2074 return 0; 2075 } 2076 2077 /** 2078 * ntfs_mft_record_format - format an mft record on an ntfs volume 2079 * @vol: volume on which to format the mft record 2080 * @mft_no: mft record number to format 2081 * 2082 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused 2083 * mft record into the appropriate place of the mft data attribute. This is 2084 * used when extending the mft data attribute. 2085 * 2086 * Return 0 on success and -errno on error. 2087 */ 2088 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) 2089 { 2090 loff_t i_size; 2091 struct inode *mft_vi = vol->mft_ino; 2092 struct page *page; 2093 MFT_RECORD *m; 2094 pgoff_t index, end_index; 2095 unsigned int ofs; 2096 int err; 2097 2098 ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); 2099 /* 2100 * The index into the page cache and the offset within the page cache 2101 * page of the wanted mft record. 2102 */ 2103 index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT; 2104 ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; 2105 /* The maximum valid index into the page cache for $MFT's data. */ 2106 i_size = i_size_read(mft_vi); 2107 end_index = i_size >> PAGE_SHIFT; 2108 if (unlikely(index >= end_index)) { 2109 if (unlikely(index > end_index || ofs + vol->mft_record_size >= 2110 (i_size & ~PAGE_MASK))) { 2111 ntfs_error(vol->sb, "Tried to format non-existing mft " 2112 "record 0x%llx.", (long long)mft_no); 2113 return -ENOENT; 2114 } 2115 } 2116 /* Read, map, and pin the page containing the mft record. */ 2117 page = ntfs_map_page(mft_vi->i_mapping, index); 2118 if (IS_ERR(page)) { 2119 ntfs_error(vol->sb, "Failed to map page containing mft record " 2120 "to format 0x%llx.", (long long)mft_no); 2121 return PTR_ERR(page); 2122 } 2123 lock_page(page); 2124 BUG_ON(!PageUptodate(page)); 2125 ClearPageUptodate(page); 2126 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2127 err = ntfs_mft_record_layout(vol, mft_no, m); 2128 if (unlikely(err)) { 2129 ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", 2130 (long long)mft_no); 2131 SetPageUptodate(page); 2132 unlock_page(page); 2133 ntfs_unmap_page(page); 2134 return err; 2135 } 2136 flush_dcache_page(page); 2137 SetPageUptodate(page); 2138 unlock_page(page); 2139 /* 2140 * Make sure the mft record is written out to disk. We could use 2141 * ilookup5() to check if an inode is in icache and so on but this is 2142 * unnecessary as ntfs_writepage() will write the dirty record anyway. 2143 */ 2144 mark_ntfs_record_dirty(page, ofs); 2145 ntfs_unmap_page(page); 2146 ntfs_debug("Done."); 2147 return 0; 2148 } 2149 2150 /** 2151 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume 2152 * @vol: [IN] volume on which to allocate the mft record 2153 * @mode: [IN] mode if want a file or directory, i.e. base inode or 0 2154 * @base_ni: [IN] open base inode if allocating an extent mft record or NULL 2155 * @mrec: [OUT] on successful return this is the mapped mft record 2156 * 2157 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. 2158 * 2159 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or 2160 * direvctory inode, and allocate it at the default allocator position. In 2161 * this case @mode is the file mode as given to us by the caller. We in 2162 * particular use @mode to distinguish whether a file or a directory is being 2163 * created (S_IFDIR(mode) and S_IFREG(mode), respectively). 2164 * 2165 * If @base_ni is not NULL make the allocated mft record an extent record, 2166 * allocate it starting at the mft record after the base mft record and attach 2167 * the allocated and opened ntfs inode to the base inode @base_ni. In this 2168 * case @mode must be 0 as it is meaningless for extent inodes. 2169 * 2170 * You need to check the return value with IS_ERR(). If false, the function 2171 * was successful and the return value is the now opened ntfs inode of the 2172 * allocated mft record. *@mrec is then set to the allocated, mapped, pinned, 2173 * and locked mft record. If IS_ERR() is true, the function failed and the 2174 * error code is obtained from PTR_ERR(return value). *@mrec is undefined in 2175 * this case. 2176 * 2177 * Allocation strategy: 2178 * 2179 * To find a free mft record, we scan the mft bitmap for a zero bit. To 2180 * optimize this we start scanning at the place specified by @base_ni or if 2181 * @base_ni is NULL we start where we last stopped and we perform wrap around 2182 * when we reach the end. Note, we do not try to allocate mft records below 2183 * number 24 because numbers 0 to 15 are the defined system files anyway and 16 2184 * to 24 are special in that they are used for storing extension mft records 2185 * for the $DATA attribute of $MFT. This is required to avoid the possibility 2186 * of creating a runlist with a circular dependency which once written to disk 2187 * can never be read in again. Windows will only use records 16 to 24 for 2188 * normal files if the volume is completely out of space. We never use them 2189 * which means that when the volume is really out of space we cannot create any 2190 * more files while Windows can still create up to 8 small files. We can start 2191 * doing this at some later time, it does not matter much for now. 2192 * 2193 * When scanning the mft bitmap, we only search up to the last allocated mft 2194 * record. If there are no free records left in the range 24 to number of 2195 * allocated mft records, then we extend the $MFT/$DATA attribute in order to 2196 * create free mft records. We extend the allocated size of $MFT/$DATA by 16 2197 * records at a time or one cluster, if cluster size is above 16kiB. If there 2198 * is not sufficient space to do this, we try to extend by a single mft record 2199 * or one cluster, if cluster size is above the mft record size. 2200 * 2201 * No matter how many mft records we allocate, we initialize only the first 2202 * allocated mft record, incrementing mft data size and initialized size 2203 * accordingly, open an ntfs_inode for it and return it to the caller, unless 2204 * there are less than 24 mft records, in which case we allocate and initialize 2205 * mft records until we reach record 24 which we consider as the first free mft 2206 * record for use by normal files. 2207 * 2208 * If during any stage we overflow the initialized data in the mft bitmap, we 2209 * extend the initialized size (and data size) by 8 bytes, allocating another 2210 * cluster if required. The bitmap data size has to be at least equal to the 2211 * number of mft records in the mft, but it can be bigger, in which case the 2212 * superflous bits are padded with zeroes. 2213 * 2214 * Thus, when we return successfully (IS_ERR() is false), we will have: 2215 * - initialized / extended the mft bitmap if necessary, 2216 * - initialized / extended the mft data if necessary, 2217 * - set the bit corresponding to the mft record being allocated in the 2218 * mft bitmap, 2219 * - opened an ntfs_inode for the allocated mft record, and we will have 2220 * - returned the ntfs_inode as well as the allocated mapped, pinned, and 2221 * locked mft record. 2222 * 2223 * On error, the volume will be left in a consistent state and no record will 2224 * be allocated. If rolling back a partial operation fails, we may leave some 2225 * inconsistent metadata in which case we set NVolErrors() so the volume is 2226 * left dirty when unmounted. 2227 * 2228 * Note, this function cannot make use of most of the normal functions, like 2229 * for example for attribute resizing, etc, because when the run list overflows 2230 * the base mft record and an attribute list is used, it is very important that 2231 * the extension mft records used to store the $DATA attribute of $MFT can be 2232 * reached without having to read the information contained inside them, as 2233 * this would make it impossible to find them in the first place after the 2234 * volume is unmounted. $MFT/$BITMAP probably does not need to follow this 2235 * rule because the bitmap is not essential for finding the mft records, but on 2236 * the other hand, handling the bitmap in this special way would make life 2237 * easier because otherwise there might be circular invocations of functions 2238 * when reading the bitmap. 2239 */ 2240 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, 2241 ntfs_inode *base_ni, MFT_RECORD **mrec) 2242 { 2243 s64 ll, bit, old_data_initialized, old_data_size; 2244 unsigned long flags; 2245 struct inode *vi; 2246 struct page *page; 2247 ntfs_inode *mft_ni, *mftbmp_ni, *ni; 2248 ntfs_attr_search_ctx *ctx; 2249 MFT_RECORD *m; 2250 ATTR_RECORD *a; 2251 pgoff_t index; 2252 unsigned int ofs; 2253 int err; 2254 le16 seq_no, usn; 2255 bool record_formatted = false; 2256 2257 if (base_ni) { 2258 ntfs_debug("Entering (allocating an extent mft record for " 2259 "base mft record 0x%llx).", 2260 (long long)base_ni->mft_no); 2261 /* @mode and @base_ni are mutually exclusive. */ 2262 BUG_ON(mode); 2263 } else 2264 ntfs_debug("Entering (allocating a base mft record)."); 2265 if (mode) { 2266 /* @mode and @base_ni are mutually exclusive. */ 2267 BUG_ON(base_ni); 2268 /* We only support creation of normal files and directories. */ 2269 if (!S_ISREG(mode) && !S_ISDIR(mode)) 2270 return ERR_PTR(-EOPNOTSUPP); 2271 } 2272 BUG_ON(!mrec); 2273 mft_ni = NTFS_I(vol->mft_ino); 2274 mftbmp_ni = NTFS_I(vol->mftbmp_ino); 2275 down_write(&vol->mftbmp_lock); 2276 bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); 2277 if (bit >= 0) { 2278 ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", 2279 (long long)bit); 2280 goto have_alloc_rec; 2281 } 2282 if (bit != -ENOSPC) { 2283 up_write(&vol->mftbmp_lock); 2284 return ERR_PTR(bit); 2285 } 2286 /* 2287 * No free mft records left. If the mft bitmap already covers more 2288 * than the currently used mft records, the next records are all free, 2289 * so we can simply allocate the first unused mft record. 2290 * Note: We also have to make sure that the mft bitmap at least covers 2291 * the first 24 mft records as they are special and whilst they may not 2292 * be in use, we do not allocate from them. 2293 */ 2294 read_lock_irqsave(&mft_ni->size_lock, flags); 2295 ll = mft_ni->initialized_size >> vol->mft_record_size_bits; 2296 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2297 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2298 old_data_initialized = mftbmp_ni->initialized_size; 2299 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2300 if (old_data_initialized << 3 > ll && old_data_initialized > 3) { 2301 bit = ll; 2302 if (bit < 24) 2303 bit = 24; 2304 if (unlikely(bit >= (1ll << 32))) 2305 goto max_err_out; 2306 ntfs_debug("Found free record (#2), bit 0x%llx.", 2307 (long long)bit); 2308 goto found_free_rec; 2309 } 2310 /* 2311 * The mft bitmap needs to be expanded until it covers the first unused 2312 * mft record that we can allocate. 2313 * Note: The smallest mft record we allocate is mft record 24. 2314 */ 2315 bit = old_data_initialized << 3; 2316 if (unlikely(bit >= (1ll << 32))) 2317 goto max_err_out; 2318 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2319 old_data_size = mftbmp_ni->allocated_size; 2320 ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " 2321 "data_size 0x%llx, initialized_size 0x%llx.", 2322 (long long)old_data_size, 2323 (long long)i_size_read(vol->mftbmp_ino), 2324 (long long)old_data_initialized); 2325 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2326 if (old_data_initialized + 8 > old_data_size) { 2327 /* Need to extend bitmap by one more cluster. */ 2328 ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); 2329 err = ntfs_mft_bitmap_extend_allocation_nolock(vol); 2330 if (unlikely(err)) { 2331 up_write(&vol->mftbmp_lock); 2332 goto err_out; 2333 } 2334 #ifdef DEBUG 2335 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2336 ntfs_debug("Status of mftbmp after allocation extension: " 2337 "allocated_size 0x%llx, data_size 0x%llx, " 2338 "initialized_size 0x%llx.", 2339 (long long)mftbmp_ni->allocated_size, 2340 (long long)i_size_read(vol->mftbmp_ino), 2341 (long long)mftbmp_ni->initialized_size); 2342 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2343 #endif /* DEBUG */ 2344 } 2345 /* 2346 * We now have sufficient allocated space, extend the initialized_size 2347 * as well as the data_size if necessary and fill the new space with 2348 * zeroes. 2349 */ 2350 err = ntfs_mft_bitmap_extend_initialized_nolock(vol); 2351 if (unlikely(err)) { 2352 up_write(&vol->mftbmp_lock); 2353 goto err_out; 2354 } 2355 #ifdef DEBUG 2356 read_lock_irqsave(&mftbmp_ni->size_lock, flags); 2357 ntfs_debug("Status of mftbmp after initialized extension: " 2358 "allocated_size 0x%llx, data_size 0x%llx, " 2359 "initialized_size 0x%llx.", 2360 (long long)mftbmp_ni->allocated_size, 2361 (long long)i_size_read(vol->mftbmp_ino), 2362 (long long)mftbmp_ni->initialized_size); 2363 read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); 2364 #endif /* DEBUG */ 2365 ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); 2366 found_free_rec: 2367 /* @bit is the found free mft record, allocate it in the mft bitmap. */ 2368 ntfs_debug("At found_free_rec."); 2369 err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); 2370 if (unlikely(err)) { 2371 ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); 2372 up_write(&vol->mftbmp_lock); 2373 goto err_out; 2374 } 2375 ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); 2376 have_alloc_rec: 2377 /* 2378 * The mft bitmap is now uptodate. Deal with mft data attribute now. 2379 * Note, we keep hold of the mft bitmap lock for writing until all 2380 * modifications to the mft data attribute are complete, too, as they 2381 * will impact decisions for mft bitmap and mft record allocation done 2382 * by a parallel allocation and if the lock is not maintained a 2383 * parallel allocation could allocate the same mft record as this one. 2384 */ 2385 ll = (bit + 1) << vol->mft_record_size_bits; 2386 read_lock_irqsave(&mft_ni->size_lock, flags); 2387 old_data_initialized = mft_ni->initialized_size; 2388 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2389 if (ll <= old_data_initialized) { 2390 ntfs_debug("Allocated mft record already initialized."); 2391 goto mft_rec_already_initialized; 2392 } 2393 ntfs_debug("Initializing allocated mft record."); 2394 /* 2395 * The mft record is outside the initialized data. Extend the mft data 2396 * attribute until it covers the allocated record. The loop is only 2397 * actually traversed more than once when a freshly formatted volume is 2398 * first written to so it optimizes away nicely in the common case. 2399 */ 2400 read_lock_irqsave(&mft_ni->size_lock, flags); 2401 ntfs_debug("Status of mft data before extension: " 2402 "allocated_size 0x%llx, data_size 0x%llx, " 2403 "initialized_size 0x%llx.", 2404 (long long)mft_ni->allocated_size, 2405 (long long)i_size_read(vol->mft_ino), 2406 (long long)mft_ni->initialized_size); 2407 while (ll > mft_ni->allocated_size) { 2408 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2409 err = ntfs_mft_data_extend_allocation_nolock(vol); 2410 if (unlikely(err)) { 2411 ntfs_error(vol->sb, "Failed to extend mft data " 2412 "allocation."); 2413 goto undo_mftbmp_alloc_nolock; 2414 } 2415 read_lock_irqsave(&mft_ni->size_lock, flags); 2416 ntfs_debug("Status of mft data after allocation extension: " 2417 "allocated_size 0x%llx, data_size 0x%llx, " 2418 "initialized_size 0x%llx.", 2419 (long long)mft_ni->allocated_size, 2420 (long long)i_size_read(vol->mft_ino), 2421 (long long)mft_ni->initialized_size); 2422 } 2423 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2424 /* 2425 * Extend mft data initialized size (and data size of course) to reach 2426 * the allocated mft record, formatting the mft records allong the way. 2427 * Note: We only modify the ntfs_inode structure as that is all that is 2428 * needed by ntfs_mft_record_format(). We will update the attribute 2429 * record itself in one fell swoop later on. 2430 */ 2431 write_lock_irqsave(&mft_ni->size_lock, flags); 2432 old_data_initialized = mft_ni->initialized_size; 2433 old_data_size = vol->mft_ino->i_size; 2434 while (ll > mft_ni->initialized_size) { 2435 s64 new_initialized_size, mft_no; 2436 2437 new_initialized_size = mft_ni->initialized_size + 2438 vol->mft_record_size; 2439 mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; 2440 if (new_initialized_size > i_size_read(vol->mft_ino)) 2441 i_size_write(vol->mft_ino, new_initialized_size); 2442 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2443 ntfs_debug("Initializing mft record 0x%llx.", 2444 (long long)mft_no); 2445 err = ntfs_mft_record_format(vol, mft_no); 2446 if (unlikely(err)) { 2447 ntfs_error(vol->sb, "Failed to format mft record."); 2448 goto undo_data_init; 2449 } 2450 write_lock_irqsave(&mft_ni->size_lock, flags); 2451 mft_ni->initialized_size = new_initialized_size; 2452 } 2453 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2454 record_formatted = true; 2455 /* Update the mft data attribute record to reflect the new sizes. */ 2456 m = map_mft_record(mft_ni); 2457 if (IS_ERR(m)) { 2458 ntfs_error(vol->sb, "Failed to map mft record."); 2459 err = PTR_ERR(m); 2460 goto undo_data_init; 2461 } 2462 ctx = ntfs_attr_get_search_ctx(mft_ni, m); 2463 if (unlikely(!ctx)) { 2464 ntfs_error(vol->sb, "Failed to get search context."); 2465 err = -ENOMEM; 2466 unmap_mft_record(mft_ni); 2467 goto undo_data_init; 2468 } 2469 err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, 2470 CASE_SENSITIVE, 0, NULL, 0, ctx); 2471 if (unlikely(err)) { 2472 ntfs_error(vol->sb, "Failed to find first attribute extent of " 2473 "mft data attribute."); 2474 ntfs_attr_put_search_ctx(ctx); 2475 unmap_mft_record(mft_ni); 2476 goto undo_data_init; 2477 } 2478 a = ctx->attr; 2479 read_lock_irqsave(&mft_ni->size_lock, flags); 2480 a->data.non_resident.initialized_size = 2481 cpu_to_sle64(mft_ni->initialized_size); 2482 a->data.non_resident.data_size = 2483 cpu_to_sle64(i_size_read(vol->mft_ino)); 2484 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2485 /* Ensure the changes make it to disk. */ 2486 flush_dcache_mft_record_page(ctx->ntfs_ino); 2487 mark_mft_record_dirty(ctx->ntfs_ino); 2488 ntfs_attr_put_search_ctx(ctx); 2489 unmap_mft_record(mft_ni); 2490 read_lock_irqsave(&mft_ni->size_lock, flags); 2491 ntfs_debug("Status of mft data after mft record initialization: " 2492 "allocated_size 0x%llx, data_size 0x%llx, " 2493 "initialized_size 0x%llx.", 2494 (long long)mft_ni->allocated_size, 2495 (long long)i_size_read(vol->mft_ino), 2496 (long long)mft_ni->initialized_size); 2497 BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); 2498 BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); 2499 read_unlock_irqrestore(&mft_ni->size_lock, flags); 2500 mft_rec_already_initialized: 2501 /* 2502 * We can finally drop the mft bitmap lock as the mft data attribute 2503 * has been fully updated. The only disparity left is that the 2504 * allocated mft record still needs to be marked as in use to match the 2505 * set bit in the mft bitmap but this is actually not a problem since 2506 * this mft record is not referenced from anywhere yet and the fact 2507 * that it is allocated in the mft bitmap means that no-one will try to 2508 * allocate it either. 2509 */ 2510 up_write(&vol->mftbmp_lock); 2511 /* 2512 * We now have allocated and initialized the mft record. Calculate the 2513 * index of and the offset within the page cache page the record is in. 2514 */ 2515 index = bit << vol->mft_record_size_bits >> PAGE_SHIFT; 2516 ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK; 2517 /* Read, map, and pin the page containing the mft record. */ 2518 page = ntfs_map_page(vol->mft_ino->i_mapping, index); 2519 if (IS_ERR(page)) { 2520 ntfs_error(vol->sb, "Failed to map page containing allocated " 2521 "mft record 0x%llx.", (long long)bit); 2522 err = PTR_ERR(page); 2523 goto undo_mftbmp_alloc; 2524 } 2525 lock_page(page); 2526 BUG_ON(!PageUptodate(page)); 2527 ClearPageUptodate(page); 2528 m = (MFT_RECORD*)((u8*)page_address(page) + ofs); 2529 /* If we just formatted the mft record no need to do it again. */ 2530 if (!record_formatted) { 2531 /* Sanity check that the mft record is really not in use. */ 2532 if (ntfs_is_file_record(m->magic) && 2533 (m->flags & MFT_RECORD_IN_USE)) { 2534 ntfs_error(vol->sb, "Mft record 0x%llx was marked " 2535 "free in mft bitmap but is marked " 2536 "used itself. Corrupt filesystem. " 2537 "Unmount and run chkdsk.", 2538 (long long)bit); 2539 err = -EIO; 2540 SetPageUptodate(page); 2541 unlock_page(page); 2542 ntfs_unmap_page(page); 2543 NVolSetErrors(vol); 2544 goto undo_mftbmp_alloc; 2545 } 2546 /* 2547 * We need to (re-)format the mft record, preserving the 2548 * sequence number if it is not zero as well as the update 2549 * sequence number if it is not zero or -1 (0xffff). This 2550 * means we do not need to care whether or not something went 2551 * wrong with the previous mft record. 2552 */ 2553 seq_no = m->sequence_number; 2554 usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); 2555 err = ntfs_mft_record_layout(vol, bit, m); 2556 if (unlikely(err)) { 2557 ntfs_error(vol->sb, "Failed to layout allocated mft " 2558 "record 0x%llx.", (long long)bit); 2559 SetPageUptodate(page); 2560 unlock_page(page); 2561 ntfs_unmap_page(page); 2562 goto undo_mftbmp_alloc; 2563 } 2564 if (seq_no) 2565 m->sequence_number = seq_no; 2566 if (usn && le16_to_cpu(usn) != 0xffff) 2567 *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; 2568 } 2569 /* Set the mft record itself in use. */ 2570 m->flags |= MFT_RECORD_IN_USE; 2571 if (S_ISDIR(mode)) 2572 m->flags |= MFT_RECORD_IS_DIRECTORY; 2573 flush_dcache_page(page); 2574 SetPageUptodate(page); 2575 if (base_ni) { 2576 MFT_RECORD *m_tmp; 2577 2578 /* 2579 * Setup the base mft record in the extent mft record. This 2580 * completes initialization of the allocated extent mft record 2581 * and we can simply use it with map_extent_mft_record(). 2582 */ 2583 m->base_mft_record = MK_LE_MREF(base_ni->mft_no, 2584 base_ni->seq_no); 2585 /* 2586 * Allocate an extent inode structure for the new mft record, 2587 * attach it to the base inode @base_ni and map, pin, and lock 2588 * its, i.e. the allocated, mft record. 2589 */ 2590 m_tmp = map_extent_mft_record(base_ni, bit, &ni); 2591 if (IS_ERR(m_tmp)) { 2592 ntfs_error(vol->sb, "Failed to map allocated extent " 2593 "mft record 0x%llx.", (long long)bit); 2594 err = PTR_ERR(m_tmp); 2595 /* Set the mft record itself not in use. */ 2596 m->flags &= cpu_to_le16( 2597 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2598 flush_dcache_page(page); 2599 /* Make sure the mft record is written out to disk. */ 2600 mark_ntfs_record_dirty(page, ofs); 2601 unlock_page(page); 2602 ntfs_unmap_page(page); 2603 goto undo_mftbmp_alloc; 2604 } 2605 BUG_ON(m != m_tmp); 2606 /* 2607 * Make sure the allocated mft record is written out to disk. 2608 * No need to set the inode dirty because the caller is going 2609 * to do that anyway after finishing with the new extent mft 2610 * record (e.g. at a minimum a new attribute will be added to 2611 * the mft record. 2612 */ 2613 mark_ntfs_record_dirty(page, ofs); 2614 unlock_page(page); 2615 /* 2616 * Need to unmap the page since map_extent_mft_record() mapped 2617 * it as well so we have it mapped twice at the moment. 2618 */ 2619 ntfs_unmap_page(page); 2620 } else { 2621 /* 2622 * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink 2623 * is set to 1 but the mft record->link_count is 0. The caller 2624 * needs to bear this in mind. 2625 */ 2626 vi = new_inode(vol->sb); 2627 if (unlikely(!vi)) { 2628 err = -ENOMEM; 2629 /* Set the mft record itself not in use. */ 2630 m->flags &= cpu_to_le16( 2631 ~le16_to_cpu(MFT_RECORD_IN_USE)); 2632 flush_dcache_page(page); 2633 /* Make sure the mft record is written out to disk. */ 2634 mark_ntfs_record_dirty(page, ofs); 2635 unlock_page(page); 2636 ntfs_unmap_page(page); 2637 goto undo_mftbmp_alloc; 2638 } 2639 vi->i_ino = bit; 2640 2641 /* The owner and group come from the ntfs volume. */ 2642 vi->i_uid = vol->uid; 2643 vi->i_gid = vol->gid; 2644 2645 /* Initialize the ntfs specific part of @vi. */ 2646 ntfs_init_big_inode(vi); 2647 ni = NTFS_I(vi); 2648 /* 2649 * Set the appropriate mode, attribute type, and name. For 2650 * directories, also setup the index values to the defaults. 2651 */ 2652 if (S_ISDIR(mode)) { 2653 vi->i_mode = S_IFDIR | S_IRWXUGO; 2654 vi->i_mode &= ~vol->dmask; 2655 2656 NInoSetMstProtected(ni); 2657 ni->type = AT_INDEX_ALLOCATION; 2658 ni->name = I30; 2659 ni->name_len = 4; 2660 2661 ni->itype.index.block_size = 4096; 2662 ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; 2663 ni->itype.index.collation_rule = COLLATION_FILE_NAME; 2664 if (vol->cluster_size <= ni->itype.index.block_size) { 2665 ni->itype.index.vcn_size = vol->cluster_size; 2666 ni->itype.index.vcn_size_bits = 2667 vol->cluster_size_bits; 2668 } else { 2669 ni->itype.index.vcn_size = vol->sector_size; 2670 ni->itype.index.vcn_size_bits = 2671 vol->sector_size_bits; 2672 } 2673 } else { 2674 vi->i_mode = S_IFREG | S_IRWXUGO; 2675 vi->i_mode &= ~vol->fmask; 2676 2677 ni->type = AT_DATA; 2678 ni->name = NULL; 2679 ni->name_len = 0; 2680 } 2681 if (IS_RDONLY(vi)) 2682 vi->i_mode &= ~S_IWUGO; 2683 2684 /* Set the inode times to the current time. */ 2685 vi->i_atime = vi->i_mtime = inode_set_ctime_current(vi); 2686 /* 2687 * Set the file size to 0, the ntfs inode sizes are set to 0 by 2688 * the call to ntfs_init_big_inode() below. 2689 */ 2690 vi->i_size = 0; 2691 vi->i_blocks = 0; 2692 2693 /* Set the sequence number. */ 2694 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 2695 /* 2696 * Manually map, pin, and lock the mft record as we already 2697 * have its page mapped and it is very easy to do. 2698 */ 2699 atomic_inc(&ni->count); 2700 mutex_lock(&ni->mrec_lock); 2701 ni->page = page; 2702 ni->page_ofs = ofs; 2703 /* 2704 * Make sure the allocated mft record is written out to disk. 2705 * NOTE: We do not set the ntfs inode dirty because this would 2706 * fail in ntfs_write_inode() because the inode does not have a 2707 * standard information attribute yet. Also, there is no need 2708 * to set the inode dirty because the caller is going to do 2709 * that anyway after finishing with the new mft record (e.g. at 2710 * a minimum some new attributes will be added to the mft 2711 * record. 2712 */ 2713 mark_ntfs_record_dirty(page, ofs); 2714 unlock_page(page); 2715 2716 /* Add the inode to the inode hash for the superblock. */ 2717 insert_inode_hash(vi); 2718 2719 /* Update the default mft allocation position. */ 2720 vol->mft_data_pos = bit + 1; 2721 } 2722 /* 2723 * Return the opened, allocated inode of the allocated mft record as 2724 * well as the mapped, pinned, and locked mft record. 2725 */ 2726 ntfs_debug("Returning opened, allocated %sinode 0x%llx.", 2727 base_ni ? "extent " : "", (long long)bit); 2728 *mrec = m; 2729 return ni; 2730 undo_data_init: 2731 write_lock_irqsave(&mft_ni->size_lock, flags); 2732 mft_ni->initialized_size = old_data_initialized; 2733 i_size_write(vol->mft_ino, old_data_size); 2734 write_unlock_irqrestore(&mft_ni->size_lock, flags); 2735 goto undo_mftbmp_alloc_nolock; 2736 undo_mftbmp_alloc: 2737 down_write(&vol->mftbmp_lock); 2738 undo_mftbmp_alloc_nolock: 2739 if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { 2740 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2741 NVolSetErrors(vol); 2742 } 2743 up_write(&vol->mftbmp_lock); 2744 err_out: 2745 return ERR_PTR(err); 2746 max_err_out: 2747 ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " 2748 "number of inodes (2^32) has already been reached."); 2749 up_write(&vol->mftbmp_lock); 2750 return ERR_PTR(-ENOSPC); 2751 } 2752 2753 /** 2754 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume 2755 * @ni: ntfs inode of the mapped extent mft record to free 2756 * @m: mapped extent mft record of the ntfs inode @ni 2757 * 2758 * Free the mapped extent mft record @m of the extent ntfs inode @ni. 2759 * 2760 * Note that this function unmaps the mft record and closes and destroys @ni 2761 * internally and hence you cannot use either @ni nor @m any more after this 2762 * function returns success. 2763 * 2764 * On success return 0 and on error return -errno. @ni and @m are still valid 2765 * in this case and have not been freed. 2766 * 2767 * For some errors an error message is displayed and the success code 0 is 2768 * returned and the volume is then left dirty on umount. This makes sense in 2769 * case we could not rollback the changes that were already done since the 2770 * caller no longer wants to reference this mft record so it does not matter to 2771 * the caller if something is wrong with it as long as it is properly detached 2772 * from the base inode. 2773 */ 2774 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) 2775 { 2776 unsigned long mft_no = ni->mft_no; 2777 ntfs_volume *vol = ni->vol; 2778 ntfs_inode *base_ni; 2779 ntfs_inode **extent_nis; 2780 int i, err; 2781 le16 old_seq_no; 2782 u16 seq_no; 2783 2784 BUG_ON(NInoAttr(ni)); 2785 BUG_ON(ni->nr_extents != -1); 2786 2787 mutex_lock(&ni->extent_lock); 2788 base_ni = ni->ext.base_ntfs_ino; 2789 mutex_unlock(&ni->extent_lock); 2790 2791 BUG_ON(base_ni->nr_extents <= 0); 2792 2793 ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", 2794 mft_no, base_ni->mft_no); 2795 2796 mutex_lock(&base_ni->extent_lock); 2797 2798 /* Make sure we are holding the only reference to the extent inode. */ 2799 if (atomic_read(&ni->count) > 2) { 2800 ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " 2801 "not freeing.", base_ni->mft_no); 2802 mutex_unlock(&base_ni->extent_lock); 2803 return -EBUSY; 2804 } 2805 2806 /* Dissociate the ntfs inode from the base inode. */ 2807 extent_nis = base_ni->ext.extent_ntfs_inos; 2808 err = -ENOENT; 2809 for (i = 0; i < base_ni->nr_extents; i++) { 2810 if (ni != extent_nis[i]) 2811 continue; 2812 extent_nis += i; 2813 base_ni->nr_extents--; 2814 memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * 2815 sizeof(ntfs_inode*)); 2816 err = 0; 2817 break; 2818 } 2819 2820 mutex_unlock(&base_ni->extent_lock); 2821 2822 if (unlikely(err)) { 2823 ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " 2824 "its base inode 0x%lx.", mft_no, 2825 base_ni->mft_no); 2826 BUG(); 2827 } 2828 2829 /* 2830 * The extent inode is no longer attached to the base inode so no one 2831 * can get a reference to it any more. 2832 */ 2833 2834 /* Mark the mft record as not in use. */ 2835 m->flags &= ~MFT_RECORD_IN_USE; 2836 2837 /* Increment the sequence number, skipping zero, if it is not zero. */ 2838 old_seq_no = m->sequence_number; 2839 seq_no = le16_to_cpu(old_seq_no); 2840 if (seq_no == 0xffff) 2841 seq_no = 1; 2842 else if (seq_no) 2843 seq_no++; 2844 m->sequence_number = cpu_to_le16(seq_no); 2845 2846 /* 2847 * Set the ntfs inode dirty and write it out. We do not need to worry 2848 * about the base inode here since whatever caused the extent mft 2849 * record to be freed is guaranteed to do it already. 2850 */ 2851 NInoSetDirty(ni); 2852 err = write_mft_record(ni, m, 0); 2853 if (unlikely(err)) { 2854 ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " 2855 "freeing.", mft_no); 2856 goto rollback; 2857 } 2858 rollback_error: 2859 /* Unmap and throw away the now freed extent inode. */ 2860 unmap_extent_mft_record(ni); 2861 ntfs_clear_extent_inode(ni); 2862 2863 /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ 2864 down_write(&vol->mftbmp_lock); 2865 err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); 2866 up_write(&vol->mftbmp_lock); 2867 if (unlikely(err)) { 2868 /* 2869 * The extent inode is gone but we failed to deallocate it in 2870 * the mft bitmap. Just emit a warning and leave the volume 2871 * dirty on umount. 2872 */ 2873 ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); 2874 NVolSetErrors(vol); 2875 } 2876 return 0; 2877 rollback: 2878 /* Rollback what we did... */ 2879 mutex_lock(&base_ni->extent_lock); 2880 extent_nis = base_ni->ext.extent_ntfs_inos; 2881 if (!(base_ni->nr_extents & 3)) { 2882 int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); 2883 2884 extent_nis = kmalloc(new_size, GFP_NOFS); 2885 if (unlikely(!extent_nis)) { 2886 ntfs_error(vol->sb, "Failed to allocate internal " 2887 "buffer during rollback.%s", es); 2888 mutex_unlock(&base_ni->extent_lock); 2889 NVolSetErrors(vol); 2890 goto rollback_error; 2891 } 2892 if (base_ni->nr_extents) { 2893 BUG_ON(!base_ni->ext.extent_ntfs_inos); 2894 memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, 2895 new_size - 4 * sizeof(ntfs_inode*)); 2896 kfree(base_ni->ext.extent_ntfs_inos); 2897 } 2898 base_ni->ext.extent_ntfs_inos = extent_nis; 2899 } 2900 m->flags |= MFT_RECORD_IN_USE; 2901 m->sequence_number = old_seq_no; 2902 extent_nis[base_ni->nr_extents++] = ni; 2903 mutex_unlock(&base_ni->extent_lock); 2904 mark_mft_record_dirty(ni); 2905 return err; 2906 } 2907 #endif /* NTFS_RW */ 2908