xref: /openbmc/linux/fs/ntfs/mft.c (revision 3834c3f2)
1 /**
2  * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2004 Anton Altaparmakov
5  * Copyright (c) 2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 
26 #include "attrib.h"
27 #include "aops.h"
28 #include "bitmap.h"
29 #include "debug.h"
30 #include "dir.h"
31 #include "lcnalloc.h"
32 #include "malloc.h"
33 #include "mft.h"
34 #include "ntfs.h"
35 
36 /**
37  * map_mft_record_page - map the page in which a specific mft record resides
38  * @ni:		ntfs inode whose mft record page to map
39  *
40  * This maps the page in which the mft record of the ntfs inode @ni is situated
41  * and returns a pointer to the mft record within the mapped page.
42  *
43  * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
44  * contains the negative error code returned.
45  */
46 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
47 {
48 	loff_t i_size;
49 	ntfs_volume *vol = ni->vol;
50 	struct inode *mft_vi = vol->mft_ino;
51 	struct page *page;
52 	unsigned long index, ofs, end_index;
53 
54 	BUG_ON(ni->page);
55 	/*
56 	 * The index into the page cache and the offset within the page cache
57 	 * page of the wanted mft record. FIXME: We need to check for
58 	 * overflowing the unsigned long, but I don't think we would ever get
59 	 * here if the volume was that big...
60 	 */
61 	index = ni->mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
62 	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
63 
64 	i_size = i_size_read(mft_vi);
65 	/* The maximum valid index into the page cache for $MFT's data. */
66 	end_index = i_size >> PAGE_CACHE_SHIFT;
67 
68 	/* If the wanted index is out of bounds the mft record doesn't exist. */
69 	if (unlikely(index >= end_index)) {
70 		if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs +
71 				vol->mft_record_size) {
72 			page = ERR_PTR(-ENOENT);
73 			ntfs_error(vol->sb, "Attemt to read mft record 0x%lx, "
74 					"which is beyond the end of the mft.  "
75 					"This is probably a bug in the ntfs "
76 					"driver.", ni->mft_no);
77 			goto err_out;
78 		}
79 	}
80 	/* Read, map, and pin the page. */
81 	page = ntfs_map_page(mft_vi->i_mapping, index);
82 	if (likely(!IS_ERR(page))) {
83 		/* Catch multi sector transfer fixup errors. */
84 		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
85 				ofs)))) {
86 			ni->page = page;
87 			ni->page_ofs = ofs;
88 			return page_address(page) + ofs;
89 		}
90 		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
91 				"Run chkdsk.", ni->mft_no);
92 		ntfs_unmap_page(page);
93 		page = ERR_PTR(-EIO);
94 	}
95 err_out:
96 	ni->page = NULL;
97 	ni->page_ofs = 0;
98 	return (void*)page;
99 }
100 
101 /**
102  * map_mft_record - map, pin and lock an mft record
103  * @ni:		ntfs inode whose MFT record to map
104  *
105  * First, take the mrec_lock semaphore. We might now be sleeping, while waiting
106  * for the semaphore if it was already locked by someone else.
107  *
108  * The page of the record is mapped using map_mft_record_page() before being
109  * returned to the caller.
110  *
111  * This in turn uses ntfs_map_page() to get the page containing the wanted mft
112  * record (it in turn calls read_cache_page() which reads it in from disk if
113  * necessary, increments the use count on the page so that it cannot disappear
114  * under us and returns a reference to the page cache page).
115  *
116  * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
117  * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
118  * and the post-read mst fixups on each mft record in the page have been
119  * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
120  * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
121  * ntfs_map_page() waits for PG_locked to become clear and checks if
122  * PG_uptodate is set and returns an error code if not. This provides
123  * sufficient protection against races when reading/using the page.
124  *
125  * However there is the write mapping to think about. Doing the above described
126  * checking here will be fine, because when initiating the write we will set
127  * PG_locked and clear PG_uptodate making sure nobody is touching the page
128  * contents. Doing the locking this way means that the commit to disk code in
129  * the page cache code paths is automatically sufficiently locked with us as
130  * we will not touch a page that has been locked or is not uptodate. The only
131  * locking problem then is them locking the page while we are accessing it.
132  *
133  * So that code will end up having to own the mrec_lock of all mft
134  * records/inodes present in the page before I/O can proceed. In that case we
135  * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
136  * accessing anything without owning the mrec_lock semaphore. But we do need
137  * to use them because of the read_cache_page() invocation and the code becomes
138  * so much simpler this way that it is well worth it.
139  *
140  * The mft record is now ours and we return a pointer to it. You need to check
141  * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
142  * the error code.
143  *
144  * NOTE: Caller is responsible for setting the mft record dirty before calling
145  * unmap_mft_record(). This is obviously only necessary if the caller really
146  * modified the mft record...
147  * Q: Do we want to recycle one of the VFS inode state bits instead?
148  * A: No, the inode ones mean we want to change the mft record, not we want to
149  * write it out.
150  */
151 MFT_RECORD *map_mft_record(ntfs_inode *ni)
152 {
153 	MFT_RECORD *m;
154 
155 	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
156 
157 	/* Make sure the ntfs inode doesn't go away. */
158 	atomic_inc(&ni->count);
159 
160 	/* Serialize access to this mft record. */
161 	down(&ni->mrec_lock);
162 
163 	m = map_mft_record_page(ni);
164 	if (likely(!IS_ERR(m)))
165 		return m;
166 
167 	up(&ni->mrec_lock);
168 	atomic_dec(&ni->count);
169 	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
170 	return m;
171 }
172 
173 /**
174  * unmap_mft_record_page - unmap the page in which a specific mft record resides
175  * @ni:		ntfs inode whose mft record page to unmap
176  *
177  * This unmaps the page in which the mft record of the ntfs inode @ni is
178  * situated and returns. This is a NOOP if highmem is not configured.
179  *
180  * The unmap happens via ntfs_unmap_page() which in turn decrements the use
181  * count on the page thus releasing it from the pinned state.
182  *
183  * We do not actually unmap the page from memory of course, as that will be
184  * done by the page cache code itself when memory pressure increases or
185  * whatever.
186  */
187 static inline void unmap_mft_record_page(ntfs_inode *ni)
188 {
189 	BUG_ON(!ni->page);
190 
191 	// TODO: If dirty, blah...
192 	ntfs_unmap_page(ni->page);
193 	ni->page = NULL;
194 	ni->page_ofs = 0;
195 	return;
196 }
197 
198 /**
199  * unmap_mft_record - release a mapped mft record
200  * @ni:		ntfs inode whose MFT record to unmap
201  *
202  * We release the page mapping and the mrec_lock mutex which unmaps the mft
203  * record and releases it for others to get hold of. We also release the ntfs
204  * inode by decrementing the ntfs inode reference count.
205  *
206  * NOTE: If caller has modified the mft record, it is imperative to set the mft
207  * record dirty BEFORE calling unmap_mft_record().
208  */
209 void unmap_mft_record(ntfs_inode *ni)
210 {
211 	struct page *page = ni->page;
212 
213 	BUG_ON(!page);
214 
215 	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
216 
217 	unmap_mft_record_page(ni);
218 	up(&ni->mrec_lock);
219 	atomic_dec(&ni->count);
220 	/*
221 	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
222 	 * ntfs_clear_extent_inode() in the extent inode case, and to the
223 	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
224 	 * tear down of all structures and freeing of all allocated memory.
225 	 */
226 	return;
227 }
228 
229 /**
230  * map_extent_mft_record - load an extent inode and attach it to its base
231  * @base_ni:	base ntfs inode
232  * @mref:	mft reference of the extent inode to load
233  * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
234  *
235  * Load the extent mft record @mref and attach it to its base inode @base_ni.
236  * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
237  * PTR_ERR(result) gives the negative error code.
238  *
239  * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
240  * structure of the mapped extent inode.
241  */
242 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
243 		ntfs_inode **ntfs_ino)
244 {
245 	MFT_RECORD *m;
246 	ntfs_inode *ni = NULL;
247 	ntfs_inode **extent_nis = NULL;
248 	int i;
249 	unsigned long mft_no = MREF(mref);
250 	u16 seq_no = MSEQNO(mref);
251 	BOOL destroy_ni = FALSE;
252 
253 	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
254 			mft_no, base_ni->mft_no);
255 	/* Make sure the base ntfs inode doesn't go away. */
256 	atomic_inc(&base_ni->count);
257 	/*
258 	 * Check if this extent inode has already been added to the base inode,
259 	 * in which case just return it. If not found, add it to the base
260 	 * inode before returning it.
261 	 */
262 	down(&base_ni->extent_lock);
263 	if (base_ni->nr_extents > 0) {
264 		extent_nis = base_ni->ext.extent_ntfs_inos;
265 		for (i = 0; i < base_ni->nr_extents; i++) {
266 			if (mft_no != extent_nis[i]->mft_no)
267 				continue;
268 			ni = extent_nis[i];
269 			/* Make sure the ntfs inode doesn't go away. */
270 			atomic_inc(&ni->count);
271 			break;
272 		}
273 	}
274 	if (likely(ni != NULL)) {
275 		up(&base_ni->extent_lock);
276 		atomic_dec(&base_ni->count);
277 		/* We found the record; just have to map and return it. */
278 		m = map_mft_record(ni);
279 		/* map_mft_record() has incremented this on success. */
280 		atomic_dec(&ni->count);
281 		if (likely(!IS_ERR(m))) {
282 			/* Verify the sequence number. */
283 			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
284 				ntfs_debug("Done 1.");
285 				*ntfs_ino = ni;
286 				return m;
287 			}
288 			unmap_mft_record(ni);
289 			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
290 					"reference! Corrupt file system. "
291 					"Run chkdsk.");
292 			return ERR_PTR(-EIO);
293 		}
294 map_err_out:
295 		ntfs_error(base_ni->vol->sb, "Failed to map extent "
296 				"mft record, error code %ld.", -PTR_ERR(m));
297 		return m;
298 	}
299 	/* Record wasn't there. Get a new ntfs inode and initialize it. */
300 	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
301 	if (unlikely(!ni)) {
302 		up(&base_ni->extent_lock);
303 		atomic_dec(&base_ni->count);
304 		return ERR_PTR(-ENOMEM);
305 	}
306 	ni->vol = base_ni->vol;
307 	ni->seq_no = seq_no;
308 	ni->nr_extents = -1;
309 	ni->ext.base_ntfs_ino = base_ni;
310 	/* Now map the record. */
311 	m = map_mft_record(ni);
312 	if (IS_ERR(m)) {
313 		up(&base_ni->extent_lock);
314 		atomic_dec(&base_ni->count);
315 		ntfs_clear_extent_inode(ni);
316 		goto map_err_out;
317 	}
318 	/* Verify the sequence number if it is present. */
319 	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
320 		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
321 				"reference! Corrupt file system. Run chkdsk.");
322 		destroy_ni = TRUE;
323 		m = ERR_PTR(-EIO);
324 		goto unm_err_out;
325 	}
326 	/* Attach extent inode to base inode, reallocating memory if needed. */
327 	if (!(base_ni->nr_extents & 3)) {
328 		ntfs_inode **tmp;
329 		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
330 
331 		tmp = (ntfs_inode **)kmalloc(new_size, GFP_NOFS);
332 		if (unlikely(!tmp)) {
333 			ntfs_error(base_ni->vol->sb, "Failed to allocate "
334 					"internal buffer.");
335 			destroy_ni = TRUE;
336 			m = ERR_PTR(-ENOMEM);
337 			goto unm_err_out;
338 		}
339 		if (base_ni->nr_extents) {
340 			BUG_ON(!base_ni->ext.extent_ntfs_inos);
341 			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
342 					4 * sizeof(ntfs_inode *));
343 			kfree(base_ni->ext.extent_ntfs_inos);
344 		}
345 		base_ni->ext.extent_ntfs_inos = tmp;
346 	}
347 	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
348 	up(&base_ni->extent_lock);
349 	atomic_dec(&base_ni->count);
350 	ntfs_debug("Done 2.");
351 	*ntfs_ino = ni;
352 	return m;
353 unm_err_out:
354 	unmap_mft_record(ni);
355 	up(&base_ni->extent_lock);
356 	atomic_dec(&base_ni->count);
357 	/*
358 	 * If the extent inode was not attached to the base inode we need to
359 	 * release it or we will leak memory.
360 	 */
361 	if (destroy_ni)
362 		ntfs_clear_extent_inode(ni);
363 	return m;
364 }
365 
366 #ifdef NTFS_RW
367 
368 /**
369  * __mark_mft_record_dirty - set the mft record and the page containing it dirty
370  * @ni:		ntfs inode describing the mapped mft record
371  *
372  * Internal function.  Users should call mark_mft_record_dirty() instead.
373  *
374  * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
375  * as well as the page containing the mft record, dirty.  Also, mark the base
376  * vfs inode dirty.  This ensures that any changes to the mft record are
377  * written out to disk.
378  *
379  * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
380  * on the base vfs inode, because even though file data may have been modified,
381  * it is dirty in the inode meta data rather than the data page cache of the
382  * inode, and thus there are no data pages that need writing out.  Therefore, a
383  * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
384  * other hand, is not sufficient, because I_DIRTY_DATASYNC needs to be set to
385  * ensure ->write_inode is called from generic_osync_inode() and this needs to
386  * happen or the file data would not necessarily hit the device synchronously,
387  * even though the vfs inode has the O_SYNC flag set.  Also, I_DIRTY_DATASYNC
388  * simply "feels" better than just I_DIRTY_SYNC, since the file data has not
389  * actually hit the block device yet, which is not what I_DIRTY_SYNC on its own
390  * would suggest.
391  */
392 void __mark_mft_record_dirty(ntfs_inode *ni)
393 {
394 	ntfs_inode *base_ni;
395 
396 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
397 	BUG_ON(NInoAttr(ni));
398 	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
399 	/* Determine the base vfs inode and mark it dirty, too. */
400 	down(&ni->extent_lock);
401 	if (likely(ni->nr_extents >= 0))
402 		base_ni = ni;
403 	else
404 		base_ni = ni->ext.base_ntfs_ino;
405 	up(&ni->extent_lock);
406 	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
407 }
408 
409 static const char *ntfs_please_email = "Please email "
410 		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
411 		"this message.  Thank you.";
412 
413 /**
414  * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
415  * @vol:	ntfs volume on which the mft record to synchronize resides
416  * @mft_no:	mft record number of mft record to synchronize
417  * @m:		mapped, mst protected (extent) mft record to synchronize
418  *
419  * Write the mapped, mst protected (extent) mft record @m with mft record
420  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
421  * bypassing the page cache and the $MFTMirr inode itself.
422  *
423  * This function is only for use at umount time when the mft mirror inode has
424  * already been disposed off.  We BUG() if we are called while the mft mirror
425  * inode is still attached to the volume.
426  *
427  * On success return 0.  On error return -errno.
428  *
429  * NOTE:  This function is not implemented yet as I am not convinced it can
430  * actually be triggered considering the sequence of commits we do in super.c::
431  * ntfs_put_super().  But just in case we provide this place holder as the
432  * alternative would be either to BUG() or to get a NULL pointer dereference
433  * and Oops.
434  */
435 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
436 		const unsigned long mft_no, MFT_RECORD *m)
437 {
438 	BUG_ON(vol->mftmirr_ino);
439 	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
440 			"implemented yet.  %s", ntfs_please_email);
441 	return -EOPNOTSUPP;
442 }
443 
444 /**
445  * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
446  * @vol:	ntfs volume on which the mft record to synchronize resides
447  * @mft_no:	mft record number of mft record to synchronize
448  * @m:		mapped, mst protected (extent) mft record to synchronize
449  * @sync:	if true, wait for i/o completion
450  *
451  * Write the mapped, mst protected (extent) mft record @m with mft record
452  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
453  *
454  * On success return 0.  On error return -errno and set the volume errors flag
455  * in the ntfs volume @vol.
456  *
457  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
458  *
459  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
460  * schedule i/o via ->writepage or do it via kntfsd or whatever.
461  */
462 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
463 		MFT_RECORD *m, int sync)
464 {
465 	struct page *page;
466 	unsigned int blocksize = vol->sb->s_blocksize;
467 	int max_bhs = vol->mft_record_size / blocksize;
468 	struct buffer_head *bhs[max_bhs];
469 	struct buffer_head *bh, *head;
470 	u8 *kmirr;
471 	runlist_element *rl;
472 	unsigned int block_start, block_end, m_start, m_end, page_ofs;
473 	int i_bhs, nr_bhs, err = 0;
474 	unsigned char blocksize_bits = vol->mftmirr_ino->i_blkbits;
475 
476 	ntfs_debug("Entering for inode 0x%lx.", mft_no);
477 	BUG_ON(!max_bhs);
478 	if (unlikely(!vol->mftmirr_ino)) {
479 		/* This could happen during umount... */
480 		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
481 		if (likely(!err))
482 			return err;
483 		goto err_out;
484 	}
485 	/* Get the page containing the mirror copy of the mft record @m. */
486 	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
487 			(PAGE_CACHE_SHIFT - vol->mft_record_size_bits));
488 	if (IS_ERR(page)) {
489 		ntfs_error(vol->sb, "Failed to map mft mirror page.");
490 		err = PTR_ERR(page);
491 		goto err_out;
492 	}
493 	lock_page(page);
494 	BUG_ON(!PageUptodate(page));
495 	ClearPageUptodate(page);
496 	/* Offset of the mft mirror record inside the page. */
497 	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
498 	/* The address in the page of the mirror copy of the mft record @m. */
499 	kmirr = page_address(page) + page_ofs;
500 	/* Copy the mst protected mft record to the mirror. */
501 	memcpy(kmirr, m, vol->mft_record_size);
502 	/* Create uptodate buffers if not present. */
503 	if (unlikely(!page_has_buffers(page))) {
504 		struct buffer_head *tail;
505 
506 		bh = head = alloc_page_buffers(page, blocksize, 1);
507 		do {
508 			set_buffer_uptodate(bh);
509 			tail = bh;
510 			bh = bh->b_this_page;
511 		} while (bh);
512 		tail->b_this_page = head;
513 		attach_page_buffers(page, head);
514 		BUG_ON(!page_has_buffers(page));
515 	}
516 	bh = head = page_buffers(page);
517 	BUG_ON(!bh);
518 	rl = NULL;
519 	nr_bhs = 0;
520 	block_start = 0;
521 	m_start = kmirr - (u8*)page_address(page);
522 	m_end = m_start + vol->mft_record_size;
523 	do {
524 		block_end = block_start + blocksize;
525 		/* If the buffer is outside the mft record, skip it. */
526 		if (block_end <= m_start)
527 			continue;
528 		if (unlikely(block_start >= m_end))
529 			break;
530 		/* Need to map the buffer if it is not mapped already. */
531 		if (unlikely(!buffer_mapped(bh))) {
532 			VCN vcn;
533 			LCN lcn;
534 			unsigned int vcn_ofs;
535 
536 			/* Obtain the vcn and offset of the current block. */
537 			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
538 					(block_start - m_start);
539 			vcn_ofs = vcn & vol->cluster_size_mask;
540 			vcn >>= vol->cluster_size_bits;
541 			if (!rl) {
542 				down_read(&NTFS_I(vol->mftmirr_ino)->
543 						runlist.lock);
544 				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
545 				/*
546 				 * $MFTMirr always has the whole of its runlist
547 				 * in memory.
548 				 */
549 				BUG_ON(!rl);
550 			}
551 			/* Seek to element containing target vcn. */
552 			while (rl->length && rl[1].vcn <= vcn)
553 				rl++;
554 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
555 			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
556 			if (likely(lcn >= 0)) {
557 				/* Setup buffer head to correct block. */
558 				bh->b_blocknr = ((lcn <<
559 						vol->cluster_size_bits) +
560 						vcn_ofs) >> blocksize_bits;
561 				set_buffer_mapped(bh);
562 			} else {
563 				bh->b_blocknr = -1;
564 				ntfs_error(vol->sb, "Cannot write mft mirror "
565 						"record 0x%lx because its "
566 						"location on disk could not "
567 						"be determined (error code "
568 						"%lli).", mft_no,
569 						(long long)lcn);
570 				err = -EIO;
571 			}
572 		}
573 		BUG_ON(!buffer_uptodate(bh));
574 		BUG_ON(!nr_bhs && (m_start != block_start));
575 		BUG_ON(nr_bhs >= max_bhs);
576 		bhs[nr_bhs++] = bh;
577 		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
578 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
579 	if (unlikely(rl))
580 		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
581 	if (likely(!err)) {
582 		/* Lock buffers and start synchronous write i/o on them. */
583 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
584 			struct buffer_head *tbh = bhs[i_bhs];
585 
586 			if (unlikely(test_set_buffer_locked(tbh)))
587 				BUG();
588 			BUG_ON(!buffer_uptodate(tbh));
589 			clear_buffer_dirty(tbh);
590 			get_bh(tbh);
591 			tbh->b_end_io = end_buffer_write_sync;
592 			submit_bh(WRITE, tbh);
593 		}
594 		/* Wait on i/o completion of buffers. */
595 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
596 			struct buffer_head *tbh = bhs[i_bhs];
597 
598 			wait_on_buffer(tbh);
599 			if (unlikely(!buffer_uptodate(tbh))) {
600 				err = -EIO;
601 				/*
602 				 * Set the buffer uptodate so the page and
603 				 * buffer states do not become out of sync.
604 				 */
605 				set_buffer_uptodate(tbh);
606 			}
607 		}
608 	} else /* if (unlikely(err)) */ {
609 		/* Clean the buffers. */
610 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
611 			clear_buffer_dirty(bhs[i_bhs]);
612 	}
613 	/* Current state: all buffers are clean, unlocked, and uptodate. */
614 	/* Remove the mst protection fixups again. */
615 	post_write_mst_fixup((NTFS_RECORD*)kmirr);
616 	flush_dcache_page(page);
617 	SetPageUptodate(page);
618 	unlock_page(page);
619 	ntfs_unmap_page(page);
620 	if (likely(!err)) {
621 		ntfs_debug("Done.");
622 	} else {
623 		ntfs_error(vol->sb, "I/O error while writing mft mirror "
624 				"record 0x%lx!", mft_no);
625 err_out:
626 		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
627 				"code %i).  Volume will be left marked dirty "
628 				"on umount.  Run ntfsfix on the partition "
629 				"after umounting to correct this.", -err);
630 		NVolSetErrors(vol);
631 	}
632 	return err;
633 }
634 
635 /**
636  * write_mft_record_nolock - write out a mapped (extent) mft record
637  * @ni:		ntfs inode describing the mapped (extent) mft record
638  * @m:		mapped (extent) mft record to write
639  * @sync:	if true, wait for i/o completion
640  *
641  * Write the mapped (extent) mft record @m described by the (regular or extent)
642  * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
643  * the mft mirror, that is also updated.
644  *
645  * We only write the mft record if the ntfs inode @ni is dirty and the first
646  * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
647  * of subsequent buffers because we could have raced with
648  * fs/ntfs/aops.c::mark_ntfs_record_dirty().
649  *
650  * On success, clean the mft record and return 0.  On error, leave the mft
651  * record dirty and return -errno.  The caller should call make_bad_inode() on
652  * the base inode to ensure no more access happens to this inode.  We do not do
653  * it here as the caller may want to finish writing other extent mft records
654  * first to minimize on-disk metadata inconsistencies.
655  *
656  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
657  * However, if the mft record has a counterpart in the mft mirror and @sync is
658  * true, we write the mft record, wait for i/o completion, and only then write
659  * the mft mirror copy.  This ensures that if the system crashes either the mft
660  * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
661  * false on the other hand, we start i/o on both and then wait for completion
662  * on them.  This provides a speedup but no longer guarantees that you will end
663  * up with a self-consistent mft record in the case of a crash but if you asked
664  * for asynchronous writing you probably do not care about that anyway.
665  *
666  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
667  * schedule i/o via ->writepage or do it via kntfsd or whatever.
668  */
669 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
670 {
671 	ntfs_volume *vol = ni->vol;
672 	struct page *page = ni->page;
673 	unsigned char blocksize_bits = vol->mft_ino->i_blkbits;
674 	unsigned int blocksize = 1 << blocksize_bits;
675 	int max_bhs = vol->mft_record_size / blocksize;
676 	struct buffer_head *bhs[max_bhs];
677 	struct buffer_head *bh, *head;
678 	runlist_element *rl;
679 	unsigned int block_start, block_end, m_start, m_end;
680 	int i_bhs, nr_bhs, err = 0;
681 
682 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
683 	BUG_ON(NInoAttr(ni));
684 	BUG_ON(!max_bhs);
685 	BUG_ON(!PageLocked(page));
686 	/*
687 	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
688 	 * mark it as clean now so that it can be redirtied later on if needed.
689 	 * There is no danger of races since the caller is holding the locks
690 	 * for the mft record @m and the page it is in.
691 	 */
692 	if (!NInoTestClearDirty(ni))
693 		goto done;
694 	BUG_ON(!page_has_buffers(page));
695 	bh = head = page_buffers(page);
696 	BUG_ON(!bh);
697 	rl = NULL;
698 	nr_bhs = 0;
699 	block_start = 0;
700 	m_start = ni->page_ofs;
701 	m_end = m_start + vol->mft_record_size;
702 	do {
703 		block_end = block_start + blocksize;
704 		/* If the buffer is outside the mft record, skip it. */
705 		if (block_end <= m_start)
706 			continue;
707 		if (unlikely(block_start >= m_end))
708 			break;
709 		/*
710 		 * If this block is not the first one in the record, we ignore
711 		 * the buffer's dirty state because we could have raced with a
712 		 * parallel mark_ntfs_record_dirty().
713 		 */
714 		if (block_start == m_start) {
715 			/* This block is the first one in the record. */
716 			if (!buffer_dirty(bh)) {
717 				BUG_ON(nr_bhs);
718 				/* Clean records are not written out. */
719 				break;
720 			}
721 		}
722 		/* Need to map the buffer if it is not mapped already. */
723 		if (unlikely(!buffer_mapped(bh))) {
724 			VCN vcn;
725 			LCN lcn;
726 			unsigned int vcn_ofs;
727 
728 			/* Obtain the vcn and offset of the current block. */
729 			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
730 					(block_start - m_start);
731 			vcn_ofs = vcn & vol->cluster_size_mask;
732 			vcn >>= vol->cluster_size_bits;
733 			if (!rl) {
734 				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
735 				rl = NTFS_I(vol->mft_ino)->runlist.rl;
736 				BUG_ON(!rl);
737 			}
738 			/* Seek to element containing target vcn. */
739 			while (rl->length && rl[1].vcn <= vcn)
740 				rl++;
741 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
742 			/* For $MFT, only lcn >= 0 is a successful remap. */
743 			if (likely(lcn >= 0)) {
744 				/* Setup buffer head to correct block. */
745 				bh->b_blocknr = ((lcn <<
746 						vol->cluster_size_bits) +
747 						vcn_ofs) >> blocksize_bits;
748 				set_buffer_mapped(bh);
749 			} else {
750 				bh->b_blocknr = -1;
751 				ntfs_error(vol->sb, "Cannot write mft record "
752 						"0x%lx because its location "
753 						"on disk could not be "
754 						"determined (error code %lli).",
755 						ni->mft_no, (long long)lcn);
756 				err = -EIO;
757 			}
758 		}
759 		BUG_ON(!buffer_uptodate(bh));
760 		BUG_ON(!nr_bhs && (m_start != block_start));
761 		BUG_ON(nr_bhs >= max_bhs);
762 		bhs[nr_bhs++] = bh;
763 		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
764 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
765 	if (unlikely(rl))
766 		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
767 	if (!nr_bhs)
768 		goto done;
769 	if (unlikely(err))
770 		goto cleanup_out;
771 	/* Apply the mst protection fixups. */
772 	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
773 	if (err) {
774 		ntfs_error(vol->sb, "Failed to apply mst fixups!");
775 		goto cleanup_out;
776 	}
777 	flush_dcache_mft_record_page(ni);
778 	/* Lock buffers and start synchronous write i/o on them. */
779 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
780 		struct buffer_head *tbh = bhs[i_bhs];
781 
782 		if (unlikely(test_set_buffer_locked(tbh)))
783 			BUG();
784 		BUG_ON(!buffer_uptodate(tbh));
785 		clear_buffer_dirty(tbh);
786 		get_bh(tbh);
787 		tbh->b_end_io = end_buffer_write_sync;
788 		submit_bh(WRITE, tbh);
789 	}
790 	/* Synchronize the mft mirror now if not @sync. */
791 	if (!sync && ni->mft_no < vol->mftmirr_size)
792 		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
793 	/* Wait on i/o completion of buffers. */
794 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
795 		struct buffer_head *tbh = bhs[i_bhs];
796 
797 		wait_on_buffer(tbh);
798 		if (unlikely(!buffer_uptodate(tbh))) {
799 			err = -EIO;
800 			/*
801 			 * Set the buffer uptodate so the page and buffer
802 			 * states do not become out of sync.
803 			 */
804 			if (PageUptodate(page))
805 				set_buffer_uptodate(tbh);
806 		}
807 	}
808 	/* If @sync, now synchronize the mft mirror. */
809 	if (sync && ni->mft_no < vol->mftmirr_size)
810 		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
811 	/* Remove the mst protection fixups again. */
812 	post_write_mst_fixup((NTFS_RECORD*)m);
813 	flush_dcache_mft_record_page(ni);
814 	if (unlikely(err)) {
815 		/* I/O error during writing.  This is really bad! */
816 		ntfs_error(vol->sb, "I/O error while writing mft record "
817 				"0x%lx!  Marking base inode as bad.  You "
818 				"should unmount the volume and run chkdsk.",
819 				ni->mft_no);
820 		goto err_out;
821 	}
822 done:
823 	ntfs_debug("Done.");
824 	return 0;
825 cleanup_out:
826 	/* Clean the buffers. */
827 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
828 		clear_buffer_dirty(bhs[i_bhs]);
829 err_out:
830 	/*
831 	 * Current state: all buffers are clean, unlocked, and uptodate.
832 	 * The caller should mark the base inode as bad so that no more i/o
833 	 * happens.  ->clear_inode() will still be invoked so all extent inodes
834 	 * and other allocated memory will be freed.
835 	 */
836 	if (err == -ENOMEM) {
837 		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
838 				"Redirtying so the write is retried later.");
839 		mark_mft_record_dirty(ni);
840 		err = 0;
841 	} else
842 		NVolSetErrors(vol);
843 	return err;
844 }
845 
846 /**
847  * ntfs_may_write_mft_record - check if an mft record may be written out
848  * @vol:	[IN]  ntfs volume on which the mft record to check resides
849  * @mft_no:	[IN]  mft record number of the mft record to check
850  * @m:		[IN]  mapped mft record to check
851  * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
852  *
853  * Check if the mapped (base or extent) mft record @m with mft record number
854  * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
855  * and possible the ntfs inode of the mft record is locked and the base vfs
856  * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
857  * caller is responsible for unlocking the ntfs inode and unpinning the base
858  * vfs inode.
859  *
860  * Return TRUE if the mft record may be written out and FALSE if not.
861  *
862  * The caller has locked the page and cleared the uptodate flag on it which
863  * means that we can safely write out any dirty mft records that do not have
864  * their inodes in icache as determined by ilookup5() as anyone
865  * opening/creating such an inode would block when attempting to map the mft
866  * record in read_cache_page() until we are finished with the write out.
867  *
868  * Here is a description of the tests we perform:
869  *
870  * If the inode is found in icache we know the mft record must be a base mft
871  * record.  If it is dirty, we do not write it and return FALSE as the vfs
872  * inode write paths will result in the access times being updated which would
873  * cause the base mft record to be redirtied and written out again.  (We know
874  * the access time update will modify the base mft record because Windows
875  * chkdsk complains if the standard information attribute is not in the base
876  * mft record.)
877  *
878  * If the inode is in icache and not dirty, we attempt to lock the mft record
879  * and if we find the lock was already taken, it is not safe to write the mft
880  * record and we return FALSE.
881  *
882  * If we manage to obtain the lock we have exclusive access to the mft record,
883  * which also allows us safe writeout of the mft record.  We then set
884  * @locked_ni to the locked ntfs inode and return TRUE.
885  *
886  * Note we cannot just lock the mft record and sleep while waiting for the lock
887  * because this would deadlock due to lock reversal (normally the mft record is
888  * locked before the page is locked but we already have the page locked here
889  * when we try to lock the mft record).
890  *
891  * If the inode is not in icache we need to perform further checks.
892  *
893  * If the mft record is not a FILE record or it is a base mft record, we can
894  * safely write it and return TRUE.
895  *
896  * We now know the mft record is an extent mft record.  We check if the inode
897  * corresponding to its base mft record is in icache and obtain a reference to
898  * it if it is.  If it is not, we can safely write it and return TRUE.
899  *
900  * We now have the base inode for the extent mft record.  We check if it has an
901  * ntfs inode for the extent mft record attached and if not it is safe to write
902  * the extent mft record and we return TRUE.
903  *
904  * The ntfs inode for the extent mft record is attached to the base inode so we
905  * attempt to lock the extent mft record and if we find the lock was already
906  * taken, it is not safe to write the extent mft record and we return FALSE.
907  *
908  * If we manage to obtain the lock we have exclusive access to the extent mft
909  * record, which also allows us safe writeout of the extent mft record.  We
910  * set the ntfs inode of the extent mft record clean and then set @locked_ni to
911  * the now locked ntfs inode and return TRUE.
912  *
913  * Note, the reason for actually writing dirty mft records here and not just
914  * relying on the vfs inode dirty code paths is that we can have mft records
915  * modified without them ever having actual inodes in memory.  Also we can have
916  * dirty mft records with clean ntfs inodes in memory.  None of the described
917  * cases would result in the dirty mft records being written out if we only
918  * relied on the vfs inode dirty code paths.  And these cases can really occur
919  * during allocation of new mft records and in particular when the
920  * initialized_size of the $MFT/$DATA attribute is extended and the new space
921  * is initialized using ntfs_mft_record_format().  The clean inode can then
922  * appear if the mft record is reused for a new inode before it got written
923  * out.
924  */
925 BOOL ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
926 		const MFT_RECORD *m, ntfs_inode **locked_ni)
927 {
928 	struct super_block *sb = vol->sb;
929 	struct inode *mft_vi = vol->mft_ino;
930 	struct inode *vi;
931 	ntfs_inode *ni, *eni, **extent_nis;
932 	int i;
933 	ntfs_attr na;
934 
935 	ntfs_debug("Entering for inode 0x%lx.", mft_no);
936 	/*
937 	 * Normally we do not return a locked inode so set @locked_ni to NULL.
938 	 */
939 	BUG_ON(!locked_ni);
940 	*locked_ni = NULL;
941 	/*
942 	 * Check if the inode corresponding to this mft record is in the VFS
943 	 * inode cache and obtain a reference to it if it is.
944 	 */
945 	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
946 	na.mft_no = mft_no;
947 	na.name = NULL;
948 	na.name_len = 0;
949 	na.type = AT_UNUSED;
950 	/*
951 	 * For inode 0, i.e. $MFT itself, we cannot use ilookup5() from here or
952 	 * we deadlock because the inode is already locked by the kernel
953 	 * (fs/fs-writeback.c::__sync_single_inode()) and ilookup5() waits
954 	 * until the inode is unlocked before returning it and it never gets
955 	 * unlocked because ntfs_should_write_mft_record() never returns.  )-:
956 	 * Fortunately, we have inode 0 pinned in icache for the duration of
957 	 * the mount so we can access it directly.
958 	 */
959 	if (!mft_no) {
960 		/* Balance the below iput(). */
961 		vi = igrab(mft_vi);
962 		BUG_ON(vi != mft_vi);
963 	} else
964 		vi = ilookup5(sb, mft_no, (test_t)ntfs_test_inode, &na);
965 	if (vi) {
966 		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
967 		/* The inode is in icache. */
968 		ni = NTFS_I(vi);
969 		/* Take a reference to the ntfs inode. */
970 		atomic_inc(&ni->count);
971 		/* If the inode is dirty, do not write this record. */
972 		if (NInoDirty(ni)) {
973 			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
974 					mft_no);
975 			atomic_dec(&ni->count);
976 			iput(vi);
977 			return FALSE;
978 		}
979 		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
980 		/* The inode is not dirty, try to take the mft record lock. */
981 		if (unlikely(down_trylock(&ni->mrec_lock))) {
982 			ntfs_debug("Mft record 0x%lx is already locked, do "
983 					"not write it.", mft_no);
984 			atomic_dec(&ni->count);
985 			iput(vi);
986 			return FALSE;
987 		}
988 		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
989 				mft_no);
990 		/*
991 		 * The write has to occur while we hold the mft record lock so
992 		 * return the locked ntfs inode.
993 		 */
994 		*locked_ni = ni;
995 		return TRUE;
996 	}
997 	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
998 	/* The inode is not in icache. */
999 	/* Write the record if it is not a mft record (type "FILE"). */
1000 	if (!ntfs_is_mft_record(m->magic)) {
1001 		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1002 				mft_no);
1003 		return TRUE;
1004 	}
1005 	/* Write the mft record if it is a base inode. */
1006 	if (!m->base_mft_record) {
1007 		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1008 				mft_no);
1009 		return TRUE;
1010 	}
1011 	/*
1012 	 * This is an extent mft record.  Check if the inode corresponding to
1013 	 * its base mft record is in icache and obtain a reference to it if it
1014 	 * is.
1015 	 */
1016 	na.mft_no = MREF_LE(m->base_mft_record);
1017 	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1018 			"inode 0x%lx in icache.", mft_no, na.mft_no);
1019 	vi = ilookup5(sb, na.mft_no, (test_t)ntfs_test_inode, &na);
1020 	if (!vi) {
1021 		/*
1022 		 * The base inode is not in icache, write this extent mft
1023 		 * record.
1024 		 */
1025 		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1026 				"extent record.", na.mft_no);
1027 		return TRUE;
1028 	}
1029 	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1030 	/*
1031 	 * The base inode is in icache.  Check if it has the extent inode
1032 	 * corresponding to this extent mft record attached.
1033 	 */
1034 	ni = NTFS_I(vi);
1035 	down(&ni->extent_lock);
1036 	if (ni->nr_extents <= 0) {
1037 		/*
1038 		 * The base inode has no attached extent inodes, write this
1039 		 * extent mft record.
1040 		 */
1041 		up(&ni->extent_lock);
1042 		iput(vi);
1043 		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1044 				"write the extent record.", na.mft_no);
1045 		return TRUE;
1046 	}
1047 	/* Iterate over the attached extent inodes. */
1048 	extent_nis = ni->ext.extent_ntfs_inos;
1049 	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1050 		if (mft_no == extent_nis[i]->mft_no) {
1051 			/*
1052 			 * Found the extent inode corresponding to this extent
1053 			 * mft record.
1054 			 */
1055 			eni = extent_nis[i];
1056 			break;
1057 		}
1058 	}
1059 	/*
1060 	 * If the extent inode was not attached to the base inode, write this
1061 	 * extent mft record.
1062 	 */
1063 	if (!eni) {
1064 		up(&ni->extent_lock);
1065 		iput(vi);
1066 		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1067 				"inode 0x%lx, write the extent record.",
1068 				mft_no, na.mft_no);
1069 		return TRUE;
1070 	}
1071 	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1072 			mft_no, na.mft_no);
1073 	/* Take a reference to the extent ntfs inode. */
1074 	atomic_inc(&eni->count);
1075 	up(&ni->extent_lock);
1076 	/*
1077 	 * Found the extent inode coresponding to this extent mft record.
1078 	 * Try to take the mft record lock.
1079 	 */
1080 	if (unlikely(down_trylock(&eni->mrec_lock))) {
1081 		atomic_dec(&eni->count);
1082 		iput(vi);
1083 		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1084 				"not write it.", mft_no);
1085 		return FALSE;
1086 	}
1087 	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1088 			mft_no);
1089 	if (NInoTestClearDirty(eni))
1090 		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1091 				mft_no);
1092 	/*
1093 	 * The write has to occur while we hold the mft record lock so return
1094 	 * the locked extent ntfs inode.
1095 	 */
1096 	*locked_ni = eni;
1097 	return TRUE;
1098 }
1099 
1100 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1101 		"chkdsk.";
1102 
1103 /**
1104  * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1105  * @vol:	volume on which to search for a free mft record
1106  * @base_ni:	open base inode if allocating an extent mft record or NULL
1107  *
1108  * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1109  * @vol.
1110  *
1111  * If @base_ni is NULL start the search at the default allocator position.
1112  *
1113  * If @base_ni is not NULL start the search at the mft record after the base
1114  * mft record @base_ni.
1115  *
1116  * Return the free mft record on success and -errno on error.  An error code of
1117  * -ENOSPC means that there are no free mft records in the currently
1118  * initialized mft bitmap.
1119  *
1120  * Locking: Caller must hold vol->mftbmp_lock for writing.
1121  */
1122 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1123 		ntfs_inode *base_ni)
1124 {
1125 	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1126 	unsigned long flags;
1127 	struct address_space *mftbmp_mapping;
1128 	u8 *buf, *byte;
1129 	struct page *page;
1130 	unsigned int page_ofs, size;
1131 	u8 pass, b;
1132 
1133 	ntfs_debug("Searching for free mft record in the currently "
1134 			"initialized mft bitmap.");
1135 	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1136 	/*
1137 	 * Set the end of the pass making sure we do not overflow the mft
1138 	 * bitmap.
1139 	 */
1140 	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1141 	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1142 			vol->mft_record_size_bits;
1143 	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1144 	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1145 	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1146 	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1147 	if (pass_end > ll)
1148 		pass_end = ll;
1149 	pass = 1;
1150 	if (!base_ni)
1151 		data_pos = vol->mft_data_pos;
1152 	else
1153 		data_pos = base_ni->mft_no + 1;
1154 	if (data_pos < 24)
1155 		data_pos = 24;
1156 	if (data_pos >= pass_end) {
1157 		data_pos = 24;
1158 		pass = 2;
1159 		/* This happens on a freshly formatted volume. */
1160 		if (data_pos >= pass_end)
1161 			return -ENOSPC;
1162 	}
1163 	pass_start = data_pos;
1164 	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1165 			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1166 			(long long)pass_start, (long long)pass_end,
1167 			(long long)data_pos);
1168 	/* Loop until a free mft record is found. */
1169 	for (; pass <= 2;) {
1170 		/* Cap size to pass_end. */
1171 		ofs = data_pos >> 3;
1172 		page_ofs = ofs & ~PAGE_CACHE_MASK;
1173 		size = PAGE_CACHE_SIZE - page_ofs;
1174 		ll = ((pass_end + 7) >> 3) - ofs;
1175 		if (size > ll)
1176 			size = ll;
1177 		size <<= 3;
1178 		/*
1179 		 * If we are still within the active pass, search the next page
1180 		 * for a zero bit.
1181 		 */
1182 		if (size) {
1183 			page = ntfs_map_page(mftbmp_mapping,
1184 					ofs >> PAGE_CACHE_SHIFT);
1185 			if (unlikely(IS_ERR(page))) {
1186 				ntfs_error(vol->sb, "Failed to read mft "
1187 						"bitmap, aborting.");
1188 				return PTR_ERR(page);
1189 			}
1190 			buf = (u8*)page_address(page) + page_ofs;
1191 			bit = data_pos & 7;
1192 			data_pos &= ~7ull;
1193 			ntfs_debug("Before inner for loop: size 0x%x, "
1194 					"data_pos 0x%llx, bit 0x%llx", size,
1195 					(long long)data_pos, (long long)bit);
1196 			for (; bit < size && data_pos + bit < pass_end;
1197 					bit &= ~7ull, bit += 8) {
1198 				byte = buf + (bit >> 3);
1199 				if (*byte == 0xff)
1200 					continue;
1201 				b = ffz((unsigned long)*byte);
1202 				if (b < 8 && b >= (bit & 7)) {
1203 					ll = data_pos + (bit & ~7ull) + b;
1204 					if (unlikely(ll > (1ll << 32))) {
1205 						ntfs_unmap_page(page);
1206 						return -ENOSPC;
1207 					}
1208 					*byte |= 1 << b;
1209 					flush_dcache_page(page);
1210 					set_page_dirty(page);
1211 					ntfs_unmap_page(page);
1212 					ntfs_debug("Done.  (Found and "
1213 							"allocated mft record "
1214 							"0x%llx.)",
1215 							(long long)ll);
1216 					return ll;
1217 				}
1218 			}
1219 			ntfs_debug("After inner for loop: size 0x%x, "
1220 					"data_pos 0x%llx, bit 0x%llx", size,
1221 					(long long)data_pos, (long long)bit);
1222 			data_pos += size;
1223 			ntfs_unmap_page(page);
1224 			/*
1225 			 * If the end of the pass has not been reached yet,
1226 			 * continue searching the mft bitmap for a zero bit.
1227 			 */
1228 			if (data_pos < pass_end)
1229 				continue;
1230 		}
1231 		/* Do the next pass. */
1232 		if (++pass == 2) {
1233 			/*
1234 			 * Starting the second pass, in which we scan the first
1235 			 * part of the zone which we omitted earlier.
1236 			 */
1237 			pass_end = pass_start;
1238 			data_pos = pass_start = 24;
1239 			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1240 					"0x%llx.", pass, (long long)pass_start,
1241 					(long long)pass_end);
1242 			if (data_pos >= pass_end)
1243 				break;
1244 		}
1245 	}
1246 	/* No free mft records in currently initialized mft bitmap. */
1247 	ntfs_debug("Done.  (No free mft records left in currently initialized "
1248 			"mft bitmap.)");
1249 	return -ENOSPC;
1250 }
1251 
1252 /**
1253  * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1254  * @vol:	volume on which to extend the mft bitmap attribute
1255  *
1256  * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1257  *
1258  * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1259  * data_size.
1260  *
1261  * Return 0 on success and -errno on error.
1262  *
1263  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1264  *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1265  *	      writing and releases it before returning.
1266  *	    - This function takes vol->lcnbmp_lock for writing and releases it
1267  *	      before returning.
1268  */
1269 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1270 {
1271 	LCN lcn;
1272 	s64 ll;
1273 	unsigned long flags;
1274 	struct page *page;
1275 	ntfs_inode *mft_ni, *mftbmp_ni;
1276 	runlist_element *rl, *rl2 = NULL;
1277 	ntfs_attr_search_ctx *ctx = NULL;
1278 	MFT_RECORD *mrec;
1279 	ATTR_RECORD *a = NULL;
1280 	int ret, mp_size;
1281 	u32 old_alen = 0;
1282 	u8 *b, tb;
1283 	struct {
1284 		u8 added_cluster:1;
1285 		u8 added_run:1;
1286 		u8 mp_rebuilt:1;
1287 	} status = { 0, 0, 0 };
1288 
1289 	ntfs_debug("Extending mft bitmap allocation.");
1290 	mft_ni = NTFS_I(vol->mft_ino);
1291 	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1292 	/*
1293 	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1294 	 * mft bitmap cannot be zero so we are ok to do this.
1295 	 * ntfs_find_vcn() returns the runlist locked on success.
1296 	 */
1297 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1298 	ll = mftbmp_ni->allocated_size;
1299 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1300 	rl = ntfs_find_vcn(mftbmp_ni, (ll - 1) >> vol->cluster_size_bits, TRUE);
1301 	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1302 		ntfs_error(vol->sb, "Failed to determine last allocated "
1303 				"cluster of mft bitmap attribute.");
1304 		if (!IS_ERR(rl)) {
1305 			up_write(&mftbmp_ni->runlist.lock);
1306 			ret = -EIO;
1307 		} else
1308 			ret = PTR_ERR(rl);
1309 		return ret;
1310 	}
1311 	lcn = rl->lcn + rl->length;
1312 	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1313 			(long long)lcn);
1314 	/*
1315 	 * Attempt to get the cluster following the last allocated cluster by
1316 	 * hand as it may be in the MFT zone so the allocator would not give it
1317 	 * to us.
1318 	 */
1319 	ll = lcn >> 3;
1320 	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1321 			ll >> PAGE_CACHE_SHIFT);
1322 	if (IS_ERR(page)) {
1323 		up_write(&mftbmp_ni->runlist.lock);
1324 		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1325 		return PTR_ERR(page);
1326 	}
1327 	b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK);
1328 	tb = 1 << (lcn & 7ull);
1329 	down_write(&vol->lcnbmp_lock);
1330 	if (*b != 0xff && !(*b & tb)) {
1331 		/* Next cluster is free, allocate it. */
1332 		*b |= tb;
1333 		flush_dcache_page(page);
1334 		set_page_dirty(page);
1335 		up_write(&vol->lcnbmp_lock);
1336 		ntfs_unmap_page(page);
1337 		/* Update the mft bitmap runlist. */
1338 		rl->length++;
1339 		rl[1].vcn++;
1340 		status.added_cluster = 1;
1341 		ntfs_debug("Appending one cluster to mft bitmap.");
1342 	} else {
1343 		up_write(&vol->lcnbmp_lock);
1344 		ntfs_unmap_page(page);
1345 		/* Allocate a cluster from the DATA_ZONE. */
1346 		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE);
1347 		if (IS_ERR(rl2)) {
1348 			up_write(&mftbmp_ni->runlist.lock);
1349 			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1350 					"the mft bitmap.");
1351 			return PTR_ERR(rl2);
1352 		}
1353 		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1354 		if (IS_ERR(rl)) {
1355 			up_write(&mftbmp_ni->runlist.lock);
1356 			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1357 					"bitmap.");
1358 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1359 				ntfs_error(vol->sb, "Failed to dealocate "
1360 						"allocated cluster.%s", es);
1361 				NVolSetErrors(vol);
1362 			}
1363 			ntfs_free(rl2);
1364 			return PTR_ERR(rl);
1365 		}
1366 		mftbmp_ni->runlist.rl = rl;
1367 		status.added_run = 1;
1368 		ntfs_debug("Adding one run to mft bitmap.");
1369 		/* Find the last run in the new runlist. */
1370 		for (; rl[1].length; rl++)
1371 			;
1372 	}
1373 	/*
1374 	 * Update the attribute record as well.  Note: @rl is the last
1375 	 * (non-terminator) runlist element of mft bitmap.
1376 	 */
1377 	mrec = map_mft_record(mft_ni);
1378 	if (IS_ERR(mrec)) {
1379 		ntfs_error(vol->sb, "Failed to map mft record.");
1380 		ret = PTR_ERR(mrec);
1381 		goto undo_alloc;
1382 	}
1383 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1384 	if (unlikely(!ctx)) {
1385 		ntfs_error(vol->sb, "Failed to get search context.");
1386 		ret = -ENOMEM;
1387 		goto undo_alloc;
1388 	}
1389 	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1390 			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1391 			0, ctx);
1392 	if (unlikely(ret)) {
1393 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1394 				"mft bitmap attribute.");
1395 		if (ret == -ENOENT)
1396 			ret = -EIO;
1397 		goto undo_alloc;
1398 	}
1399 	a = ctx->attr;
1400 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1401 	/* Search back for the previous last allocated cluster of mft bitmap. */
1402 	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1403 		if (ll >= rl2->vcn)
1404 			break;
1405 	}
1406 	BUG_ON(ll < rl2->vcn);
1407 	BUG_ON(ll >= rl2->vcn + rl2->length);
1408 	/* Get the size for the new mapping pairs array for this extent. */
1409 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll);
1410 	if (unlikely(mp_size <= 0)) {
1411 		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1412 				"mft bitmap attribute extent.");
1413 		ret = mp_size;
1414 		if (!ret)
1415 			ret = -EIO;
1416 		goto undo_alloc;
1417 	}
1418 	/* Expand the attribute record if necessary. */
1419 	old_alen = le32_to_cpu(a->length);
1420 	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1421 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1422 	if (unlikely(ret)) {
1423 		if (ret != -ENOSPC) {
1424 			ntfs_error(vol->sb, "Failed to resize attribute "
1425 					"record for mft bitmap attribute.");
1426 			goto undo_alloc;
1427 		}
1428 		// TODO: Deal with this by moving this extent to a new mft
1429 		// record or by starting a new extent in a new mft record or by
1430 		// moving other attributes out of this mft record.
1431 		ntfs_error(vol->sb, "Not enough space in this mft record to "
1432 				"accomodate extended mft bitmap attribute "
1433 				"extent.  Cannot handle this yet.");
1434 		ret = -EOPNOTSUPP;
1435 		goto undo_alloc;
1436 	}
1437 	status.mp_rebuilt = 1;
1438 	/* Generate the mapping pairs array directly into the attr record. */
1439 	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1440 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1441 			mp_size, rl2, ll, NULL);
1442 	if (unlikely(ret)) {
1443 		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1444 				"mft bitmap attribute.");
1445 		goto undo_alloc;
1446 	}
1447 	/* Update the highest_vcn. */
1448 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1449 	/*
1450 	 * We now have extended the mft bitmap allocated_size by one cluster.
1451 	 * Reflect this in the ntfs_inode structure and the attribute record.
1452 	 */
1453 	if (a->data.non_resident.lowest_vcn) {
1454 		/*
1455 		 * We are not in the first attribute extent, switch to it, but
1456 		 * first ensure the changes will make it to disk later.
1457 		 */
1458 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1459 		mark_mft_record_dirty(ctx->ntfs_ino);
1460 		ntfs_attr_reinit_search_ctx(ctx);
1461 		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1462 				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1463 				0, ctx);
1464 		if (unlikely(ret)) {
1465 			ntfs_error(vol->sb, "Failed to find first attribute "
1466 					"extent of mft bitmap attribute.");
1467 			goto restore_undo_alloc;
1468 		}
1469 		a = ctx->attr;
1470 	}
1471 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1472 	mftbmp_ni->allocated_size += vol->cluster_size;
1473 	a->data.non_resident.allocated_size =
1474 			cpu_to_sle64(mftbmp_ni->allocated_size);
1475 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1476 	/* Ensure the changes make it to disk. */
1477 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1478 	mark_mft_record_dirty(ctx->ntfs_ino);
1479 	ntfs_attr_put_search_ctx(ctx);
1480 	unmap_mft_record(mft_ni);
1481 	up_write(&mftbmp_ni->runlist.lock);
1482 	ntfs_debug("Done.");
1483 	return 0;
1484 restore_undo_alloc:
1485 	ntfs_attr_reinit_search_ctx(ctx);
1486 	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1487 			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1488 			0, ctx)) {
1489 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1490 				"mft bitmap attribute.%s", es);
1491 		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1492 		mftbmp_ni->allocated_size += vol->cluster_size;
1493 		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1494 		ntfs_attr_put_search_ctx(ctx);
1495 		unmap_mft_record(mft_ni);
1496 		up_write(&mftbmp_ni->runlist.lock);
1497 		/*
1498 		 * The only thing that is now wrong is ->allocated_size of the
1499 		 * base attribute extent which chkdsk should be able to fix.
1500 		 */
1501 		NVolSetErrors(vol);
1502 		return ret;
1503 	}
1504 	a = ctx->attr;
1505 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1506 undo_alloc:
1507 	if (status.added_cluster) {
1508 		/* Truncate the last run in the runlist by one cluster. */
1509 		rl->length--;
1510 		rl[1].vcn--;
1511 	} else if (status.added_run) {
1512 		lcn = rl->lcn;
1513 		/* Remove the last run from the runlist. */
1514 		rl->lcn = rl[1].lcn;
1515 		rl->length = 0;
1516 	}
1517 	/* Deallocate the cluster. */
1518 	down_write(&vol->lcnbmp_lock);
1519 	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1520 		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1521 		NVolSetErrors(vol);
1522 	}
1523 	up_write(&vol->lcnbmp_lock);
1524 	if (status.mp_rebuilt) {
1525 		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1526 				a->data.non_resident.mapping_pairs_offset),
1527 				old_alen - le16_to_cpu(
1528 				a->data.non_resident.mapping_pairs_offset),
1529 				rl2, ll, NULL)) {
1530 			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1531 					"array.%s", es);
1532 			NVolSetErrors(vol);
1533 		}
1534 		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1535 			ntfs_error(vol->sb, "Failed to restore attribute "
1536 					"record.%s", es);
1537 			NVolSetErrors(vol);
1538 		}
1539 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1540 		mark_mft_record_dirty(ctx->ntfs_ino);
1541 	}
1542 	if (ctx)
1543 		ntfs_attr_put_search_ctx(ctx);
1544 	if (!IS_ERR(mrec))
1545 		unmap_mft_record(mft_ni);
1546 	up_write(&mftbmp_ni->runlist.lock);
1547 	return ret;
1548 }
1549 
1550 /**
1551  * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1552  * @vol:	volume on which to extend the mft bitmap attribute
1553  *
1554  * Extend the initialized portion of the mft bitmap attribute on the ntfs
1555  * volume @vol by 8 bytes.
1556  *
1557  * Note:  Only changes initialized_size and data_size, i.e. requires that
1558  * allocated_size is big enough to fit the new initialized_size.
1559  *
1560  * Return 0 on success and -error on error.
1561  *
1562  * Locking: Caller must hold vol->mftbmp_lock for writing.
1563  */
1564 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1565 {
1566 	s64 old_data_size, old_initialized_size;
1567 	unsigned long flags;
1568 	struct inode *mftbmp_vi;
1569 	ntfs_inode *mft_ni, *mftbmp_ni;
1570 	ntfs_attr_search_ctx *ctx;
1571 	MFT_RECORD *mrec;
1572 	ATTR_RECORD *a;
1573 	int ret;
1574 
1575 	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1576 	mft_ni = NTFS_I(vol->mft_ino);
1577 	mftbmp_vi = vol->mftbmp_ino;
1578 	mftbmp_ni = NTFS_I(mftbmp_vi);
1579 	/* Get the attribute record. */
1580 	mrec = map_mft_record(mft_ni);
1581 	if (IS_ERR(mrec)) {
1582 		ntfs_error(vol->sb, "Failed to map mft record.");
1583 		return PTR_ERR(mrec);
1584 	}
1585 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1586 	if (unlikely(!ctx)) {
1587 		ntfs_error(vol->sb, "Failed to get search context.");
1588 		ret = -ENOMEM;
1589 		goto unm_err_out;
1590 	}
1591 	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1592 			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1593 	if (unlikely(ret)) {
1594 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1595 				"mft bitmap attribute.");
1596 		if (ret == -ENOENT)
1597 			ret = -EIO;
1598 		goto put_err_out;
1599 	}
1600 	a = ctx->attr;
1601 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1602 	old_data_size = i_size_read(mftbmp_vi);
1603 	old_initialized_size = mftbmp_ni->initialized_size;
1604 	/*
1605 	 * We can simply update the initialized_size before filling the space
1606 	 * with zeroes because the caller is holding the mft bitmap lock for
1607 	 * writing which ensures that no one else is trying to access the data.
1608 	 */
1609 	mftbmp_ni->initialized_size += 8;
1610 	a->data.non_resident.initialized_size =
1611 			cpu_to_sle64(mftbmp_ni->initialized_size);
1612 	if (mftbmp_ni->initialized_size > old_data_size) {
1613 		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1614 		a->data.non_resident.data_size =
1615 				cpu_to_sle64(mftbmp_ni->initialized_size);
1616 	}
1617 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1618 	/* Ensure the changes make it to disk. */
1619 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1620 	mark_mft_record_dirty(ctx->ntfs_ino);
1621 	ntfs_attr_put_search_ctx(ctx);
1622 	unmap_mft_record(mft_ni);
1623 	/* Initialize the mft bitmap attribute value with zeroes. */
1624 	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1625 	if (likely(!ret)) {
1626 		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1627 				"bitmap.");
1628 		return 0;
1629 	}
1630 	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1631 	/* Try to recover from the error. */
1632 	mrec = map_mft_record(mft_ni);
1633 	if (IS_ERR(mrec)) {
1634 		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1635 		NVolSetErrors(vol);
1636 		return ret;
1637 	}
1638 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1639 	if (unlikely(!ctx)) {
1640 		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1641 		NVolSetErrors(vol);
1642 		goto unm_err_out;
1643 	}
1644 	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1645 			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1646 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1647 				"mft bitmap attribute.%s", es);
1648 		NVolSetErrors(vol);
1649 put_err_out:
1650 		ntfs_attr_put_search_ctx(ctx);
1651 unm_err_out:
1652 		unmap_mft_record(mft_ni);
1653 		goto err_out;
1654 	}
1655 	a = ctx->attr;
1656 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1657 	mftbmp_ni->initialized_size = old_initialized_size;
1658 	a->data.non_resident.initialized_size =
1659 			cpu_to_sle64(old_initialized_size);
1660 	if (i_size_read(mftbmp_vi) != old_data_size) {
1661 		i_size_write(mftbmp_vi, old_data_size);
1662 		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1663 	}
1664 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1665 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1666 	mark_mft_record_dirty(ctx->ntfs_ino);
1667 	ntfs_attr_put_search_ctx(ctx);
1668 	unmap_mft_record(mft_ni);
1669 #ifdef DEBUG
1670 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1671 	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1672 			"data_size 0x%llx, initialized_size 0x%llx.",
1673 			(long long)mftbmp_ni->allocated_size,
1674 			(long long)i_size_read(mftbmp_vi),
1675 			(long long)mftbmp_ni->initialized_size);
1676 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1677 #endif /* DEBUG */
1678 err_out:
1679 	return ret;
1680 }
1681 
1682 /**
1683  * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1684  * @vol:	volume on which to extend the mft data attribute
1685  *
1686  * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1687  * worth of clusters or if not enough space for this by one mft record worth
1688  * of clusters.
1689  *
1690  * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1691  * data_size.
1692  *
1693  * Return 0 on success and -errno on error.
1694  *
1695  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1696  *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1697  *	      writing and releases it before returning.
1698  *	    - This function calls functions which take vol->lcnbmp_lock for
1699  *	      writing and release it before returning.
1700  */
1701 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1702 {
1703 	LCN lcn;
1704 	VCN old_last_vcn;
1705 	s64 min_nr, nr, ll;
1706 	unsigned long flags;
1707 	ntfs_inode *mft_ni;
1708 	runlist_element *rl, *rl2;
1709 	ntfs_attr_search_ctx *ctx = NULL;
1710 	MFT_RECORD *mrec;
1711 	ATTR_RECORD *a = NULL;
1712 	int ret, mp_size;
1713 	u32 old_alen = 0;
1714 	BOOL mp_rebuilt = FALSE;
1715 
1716 	ntfs_debug("Extending mft data allocation.");
1717 	mft_ni = NTFS_I(vol->mft_ino);
1718 	/*
1719 	 * Determine the preferred allocation location, i.e. the last lcn of
1720 	 * the mft data attribute.  The allocated size of the mft data
1721 	 * attribute cannot be zero so we are ok to do this.
1722 	 * ntfs_find_vcn() returns the runlist locked on success.
1723 	 */
1724 	read_lock_irqsave(&mft_ni->size_lock, flags);
1725 	ll = mft_ni->allocated_size;
1726 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1727 	rl = ntfs_find_vcn(mft_ni, (ll - 1) >> vol->cluster_size_bits, TRUE);
1728 	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1729 		ntfs_error(vol->sb, "Failed to determine last allocated "
1730 				"cluster of mft data attribute.");
1731 		if (!IS_ERR(rl)) {
1732 			up_write(&mft_ni->runlist.lock);
1733 			ret = -EIO;
1734 		} else
1735 			ret = PTR_ERR(rl);
1736 		return ret;
1737 	}
1738 	lcn = rl->lcn + rl->length;
1739 	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1740 	/* Minimum allocation is one mft record worth of clusters. */
1741 	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1742 	if (!min_nr)
1743 		min_nr = 1;
1744 	/* Want to allocate 16 mft records worth of clusters. */
1745 	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1746 	if (!nr)
1747 		nr = min_nr;
1748 	/* Ensure we do not go above 2^32-1 mft records. */
1749 	read_lock_irqsave(&mft_ni->size_lock, flags);
1750 	ll = mft_ni->allocated_size;
1751 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1752 	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1753 			vol->mft_record_size_bits >= (1ll << 32))) {
1754 		nr = min_nr;
1755 		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1756 				vol->mft_record_size_bits >= (1ll << 32))) {
1757 			ntfs_warning(vol->sb, "Cannot allocate mft record "
1758 					"because the maximum number of inodes "
1759 					"(2^32) has already been reached.");
1760 			up_write(&mft_ni->runlist.lock);
1761 			return -ENOSPC;
1762 		}
1763 	}
1764 	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1765 			nr > min_nr ? "default" : "minimal", (long long)nr);
1766 	old_last_vcn = rl[1].vcn;
1767 	do {
1768 		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE);
1769 		if (likely(!IS_ERR(rl2)))
1770 			break;
1771 		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1772 			ntfs_error(vol->sb, "Failed to allocate the minimal "
1773 					"number of clusters (%lli) for the "
1774 					"mft data attribute.", (long long)nr);
1775 			up_write(&mft_ni->runlist.lock);
1776 			return PTR_ERR(rl2);
1777 		}
1778 		/*
1779 		 * There is not enough space to do the allocation, but there
1780 		 * might be enough space to do a minimal allocation so try that
1781 		 * before failing.
1782 		 */
1783 		nr = min_nr;
1784 		ntfs_debug("Retrying mft data allocation with minimal cluster "
1785 				"count %lli.", (long long)nr);
1786 	} while (1);
1787 	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1788 	if (IS_ERR(rl)) {
1789 		up_write(&mft_ni->runlist.lock);
1790 		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1791 				"attribute.");
1792 		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1793 			ntfs_error(vol->sb, "Failed to dealocate clusters "
1794 					"from the mft data attribute.%s", es);
1795 			NVolSetErrors(vol);
1796 		}
1797 		ntfs_free(rl2);
1798 		return PTR_ERR(rl);
1799 	}
1800 	mft_ni->runlist.rl = rl;
1801 	ntfs_debug("Allocated %lli clusters.", nr);
1802 	/* Find the last run in the new runlist. */
1803 	for (; rl[1].length; rl++)
1804 		;
1805 	/* Update the attribute record as well. */
1806 	mrec = map_mft_record(mft_ni);
1807 	if (IS_ERR(mrec)) {
1808 		ntfs_error(vol->sb, "Failed to map mft record.");
1809 		ret = PTR_ERR(mrec);
1810 		goto undo_alloc;
1811 	}
1812 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1813 	if (unlikely(!ctx)) {
1814 		ntfs_error(vol->sb, "Failed to get search context.");
1815 		ret = -ENOMEM;
1816 		goto undo_alloc;
1817 	}
1818 	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1819 			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1820 	if (unlikely(ret)) {
1821 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1822 				"mft data attribute.");
1823 		if (ret == -ENOENT)
1824 			ret = -EIO;
1825 		goto undo_alloc;
1826 	}
1827 	a = ctx->attr;
1828 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1829 	/* Search back for the previous last allocated cluster of mft bitmap. */
1830 	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1831 		if (ll >= rl2->vcn)
1832 			break;
1833 	}
1834 	BUG_ON(ll < rl2->vcn);
1835 	BUG_ON(ll >= rl2->vcn + rl2->length);
1836 	/* Get the size for the new mapping pairs array for this extent. */
1837 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll);
1838 	if (unlikely(mp_size <= 0)) {
1839 		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1840 				"mft data attribute extent.");
1841 		ret = mp_size;
1842 		if (!ret)
1843 			ret = -EIO;
1844 		goto undo_alloc;
1845 	}
1846 	/* Expand the attribute record if necessary. */
1847 	old_alen = le32_to_cpu(a->length);
1848 	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1849 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1850 	if (unlikely(ret)) {
1851 		if (ret != -ENOSPC) {
1852 			ntfs_error(vol->sb, "Failed to resize attribute "
1853 					"record for mft data attribute.");
1854 			goto undo_alloc;
1855 		}
1856 		// TODO: Deal with this by moving this extent to a new mft
1857 		// record or by starting a new extent in a new mft record or by
1858 		// moving other attributes out of this mft record.
1859 		// Note: Use the special reserved mft records and ensure that
1860 		// this extent is not required to find the mft record in
1861 		// question.
1862 		ntfs_error(vol->sb, "Not enough space in this mft record to "
1863 				"accomodate extended mft data attribute "
1864 				"extent.  Cannot handle this yet.");
1865 		ret = -EOPNOTSUPP;
1866 		goto undo_alloc;
1867 	}
1868 	mp_rebuilt = TRUE;
1869 	/* Generate the mapping pairs array directly into the attr record. */
1870 	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1871 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1872 			mp_size, rl2, ll, NULL);
1873 	if (unlikely(ret)) {
1874 		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1875 				"mft data attribute.");
1876 		goto undo_alloc;
1877 	}
1878 	/* Update the highest_vcn. */
1879 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1880 	/*
1881 	 * We now have extended the mft data allocated_size by nr clusters.
1882 	 * Reflect this in the ntfs_inode structure and the attribute record.
1883 	 * @rl is the last (non-terminator) runlist element of mft data
1884 	 * attribute.
1885 	 */
1886 	if (a->data.non_resident.lowest_vcn) {
1887 		/*
1888 		 * We are not in the first attribute extent, switch to it, but
1889 		 * first ensure the changes will make it to disk later.
1890 		 */
1891 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1892 		mark_mft_record_dirty(ctx->ntfs_ino);
1893 		ntfs_attr_reinit_search_ctx(ctx);
1894 		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1895 				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1896 				ctx);
1897 		if (unlikely(ret)) {
1898 			ntfs_error(vol->sb, "Failed to find first attribute "
1899 					"extent of mft data attribute.");
1900 			goto restore_undo_alloc;
1901 		}
1902 		a = ctx->attr;
1903 	}
1904 	write_lock_irqsave(&mft_ni->size_lock, flags);
1905 	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1906 	a->data.non_resident.allocated_size =
1907 			cpu_to_sle64(mft_ni->allocated_size);
1908 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1909 	/* Ensure the changes make it to disk. */
1910 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1911 	mark_mft_record_dirty(ctx->ntfs_ino);
1912 	ntfs_attr_put_search_ctx(ctx);
1913 	unmap_mft_record(mft_ni);
1914 	up_write(&mft_ni->runlist.lock);
1915 	ntfs_debug("Done.");
1916 	return 0;
1917 restore_undo_alloc:
1918 	ntfs_attr_reinit_search_ctx(ctx);
1919 	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1920 			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1921 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1922 				"mft data attribute.%s", es);
1923 		write_lock_irqsave(&mft_ni->size_lock, flags);
1924 		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1925 		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1926 		ntfs_attr_put_search_ctx(ctx);
1927 		unmap_mft_record(mft_ni);
1928 		up_write(&mft_ni->runlist.lock);
1929 		/*
1930 		 * The only thing that is now wrong is ->allocated_size of the
1931 		 * base attribute extent which chkdsk should be able to fix.
1932 		 */
1933 		NVolSetErrors(vol);
1934 		return ret;
1935 	}
1936 	a = ctx->attr;
1937 	a->data.non_resident.highest_vcn = cpu_to_sle64(old_last_vcn - 1);
1938 undo_alloc:
1939 	if (ntfs_cluster_free(vol->mft_ino, old_last_vcn, -1) < 0) {
1940 		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1941 				"attribute.%s", es);
1942 		NVolSetErrors(vol);
1943 	}
1944 	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1945 		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1946 				"runlist.%s", es);
1947 		NVolSetErrors(vol);
1948 	}
1949 	if (mp_rebuilt) {
1950 		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1951 				a->data.non_resident.mapping_pairs_offset),
1952 				old_alen - le16_to_cpu(
1953 				a->data.non_resident.mapping_pairs_offset),
1954 				rl2, ll, NULL)) {
1955 			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1956 					"array.%s", es);
1957 			NVolSetErrors(vol);
1958 		}
1959 		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1960 			ntfs_error(vol->sb, "Failed to restore attribute "
1961 					"record.%s", es);
1962 			NVolSetErrors(vol);
1963 		}
1964 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1965 		mark_mft_record_dirty(ctx->ntfs_ino);
1966 	}
1967 	if (ctx)
1968 		ntfs_attr_put_search_ctx(ctx);
1969 	if (!IS_ERR(mrec))
1970 		unmap_mft_record(mft_ni);
1971 	up_write(&mft_ni->runlist.lock);
1972 	return ret;
1973 }
1974 
1975 /**
1976  * ntfs_mft_record_layout - layout an mft record into a memory buffer
1977  * @vol:	volume to which the mft record will belong
1978  * @mft_no:	mft reference specifying the mft record number
1979  * @m:		destination buffer of size >= @vol->mft_record_size bytes
1980  *
1981  * Layout an empty, unused mft record with the mft record number @mft_no into
1982  * the buffer @m.  The volume @vol is needed because the mft record structure
1983  * was modified in NTFS 3.1 so we need to know which volume version this mft
1984  * record will be used on.
1985  *
1986  * Return 0 on success and -errno on error.
1987  */
1988 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
1989 		MFT_RECORD *m)
1990 {
1991 	ATTR_RECORD *a;
1992 
1993 	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
1994 	if (mft_no >= (1ll << 32)) {
1995 		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
1996 				"maximum of 2^32.", (long long)mft_no);
1997 		return -ERANGE;
1998 	}
1999 	/* Start by clearing the whole mft record to gives us a clean slate. */
2000 	memset(m, 0, vol->mft_record_size);
2001 	/* Aligned to 2-byte boundary. */
2002 	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2003 		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2004 	else {
2005 		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2006 		/*
2007 		 * Set the NTFS 3.1+ specific fields while we know that the
2008 		 * volume version is 3.1+.
2009 		 */
2010 		m->reserved = 0;
2011 		m->mft_record_number = cpu_to_le32((u32)mft_no);
2012 	}
2013 	m->magic = magic_FILE;
2014 	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2015 		m->usa_count = cpu_to_le16(vol->mft_record_size /
2016 				NTFS_BLOCK_SIZE + 1);
2017 	else {
2018 		m->usa_count = cpu_to_le16(1);
2019 		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2020 				"size.  Setting usa_count to 1.  If chkdsk "
2021 				"reports this as corruption, please email "
2022 				"linux-ntfs-dev@lists.sourceforge.net stating "
2023 				"that you saw this message and that the "
2024 				"modified file system created was corrupt.  "
2025 				"Thank you.");
2026 	}
2027 	/* Set the update sequence number to 1. */
2028 	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2029 	m->lsn = 0;
2030 	m->sequence_number = cpu_to_le16(1);
2031 	m->link_count = 0;
2032 	/*
2033 	 * Place the attributes straight after the update sequence array,
2034 	 * aligned to 8-byte boundary.
2035 	 */
2036 	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2037 			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2038 	m->flags = 0;
2039 	/*
2040 	 * Using attrs_offset plus eight bytes (for the termination attribute).
2041 	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2042 	 * align again.
2043 	 */
2044 	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2045 	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2046 	m->base_mft_record = 0;
2047 	m->next_attr_instance = 0;
2048 	/* Add the termination attribute. */
2049 	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2050 	a->type = AT_END;
2051 	a->length = 0;
2052 	ntfs_debug("Done.");
2053 	return 0;
2054 }
2055 
2056 /**
2057  * ntfs_mft_record_format - format an mft record on an ntfs volume
2058  * @vol:	volume on which to format the mft record
2059  * @mft_no:	mft record number to format
2060  *
2061  * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2062  * mft record into the appropriate place of the mft data attribute.  This is
2063  * used when extending the mft data attribute.
2064  *
2065  * Return 0 on success and -errno on error.
2066  */
2067 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2068 {
2069 	loff_t i_size;
2070 	struct inode *mft_vi = vol->mft_ino;
2071 	struct page *page;
2072 	MFT_RECORD *m;
2073 	pgoff_t index, end_index;
2074 	unsigned int ofs;
2075 	int err;
2076 
2077 	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2078 	/*
2079 	 * The index into the page cache and the offset within the page cache
2080 	 * page of the wanted mft record.
2081 	 */
2082 	index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2083 	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2084 	/* The maximum valid index into the page cache for $MFT's data. */
2085 	i_size = i_size_read(mft_vi);
2086 	end_index = i_size >> PAGE_CACHE_SHIFT;
2087 	if (unlikely(index >= end_index)) {
2088 		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2089 				(i_size & ~PAGE_CACHE_MASK))) {
2090 			ntfs_error(vol->sb, "Tried to format non-existing mft "
2091 					"record 0x%llx.", (long long)mft_no);
2092 			return -ENOENT;
2093 		}
2094 	}
2095 	/* Read, map, and pin the page containing the mft record. */
2096 	page = ntfs_map_page(mft_vi->i_mapping, index);
2097 	if (unlikely(IS_ERR(page))) {
2098 		ntfs_error(vol->sb, "Failed to map page containing mft record "
2099 				"to format 0x%llx.", (long long)mft_no);
2100 		return PTR_ERR(page);
2101 	}
2102 	lock_page(page);
2103 	BUG_ON(!PageUptodate(page));
2104 	ClearPageUptodate(page);
2105 	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2106 	err = ntfs_mft_record_layout(vol, mft_no, m);
2107 	if (unlikely(err)) {
2108 		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2109 				(long long)mft_no);
2110 		SetPageUptodate(page);
2111 		unlock_page(page);
2112 		ntfs_unmap_page(page);
2113 		return err;
2114 	}
2115 	flush_dcache_page(page);
2116 	SetPageUptodate(page);
2117 	unlock_page(page);
2118 	/*
2119 	 * Make sure the mft record is written out to disk.  We could use
2120 	 * ilookup5() to check if an inode is in icache and so on but this is
2121 	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2122 	 */
2123 	mark_ntfs_record_dirty(page, ofs);
2124 	ntfs_unmap_page(page);
2125 	ntfs_debug("Done.");
2126 	return 0;
2127 }
2128 
2129 /**
2130  * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2131  * @vol:	[IN]  volume on which to allocate the mft record
2132  * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2133  * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2134  * @mrec:	[OUT] on successful return this is the mapped mft record
2135  *
2136  * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2137  *
2138  * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2139  * direvctory inode, and allocate it at the default allocator position.  In
2140  * this case @mode is the file mode as given to us by the caller.  We in
2141  * particular use @mode to distinguish whether a file or a directory is being
2142  * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2143  *
2144  * If @base_ni is not NULL make the allocated mft record an extent record,
2145  * allocate it starting at the mft record after the base mft record and attach
2146  * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2147  * case @mode must be 0 as it is meaningless for extent inodes.
2148  *
2149  * You need to check the return value with IS_ERR().  If false, the function
2150  * was successful and the return value is the now opened ntfs inode of the
2151  * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2152  * and locked mft record.  If IS_ERR() is true, the function failed and the
2153  * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2154  * this case.
2155  *
2156  * Allocation strategy:
2157  *
2158  * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2159  * optimize this we start scanning at the place specified by @base_ni or if
2160  * @base_ni is NULL we start where we last stopped and we perform wrap around
2161  * when we reach the end.  Note, we do not try to allocate mft records below
2162  * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2163  * to 24 are special in that they are used for storing extension mft records
2164  * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2165  * of creating a runlist with a circular dependency which once written to disk
2166  * can never be read in again.  Windows will only use records 16 to 24 for
2167  * normal files if the volume is completely out of space.  We never use them
2168  * which means that when the volume is really out of space we cannot create any
2169  * more files while Windows can still create up to 8 small files.  We can start
2170  * doing this at some later time, it does not matter much for now.
2171  *
2172  * When scanning the mft bitmap, we only search up to the last allocated mft
2173  * record.  If there are no free records left in the range 24 to number of
2174  * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2175  * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2176  * records at a time or one cluster, if cluster size is above 16kiB.  If there
2177  * is not sufficient space to do this, we try to extend by a single mft record
2178  * or one cluster, if cluster size is above the mft record size.
2179  *
2180  * No matter how many mft records we allocate, we initialize only the first
2181  * allocated mft record, incrementing mft data size and initialized size
2182  * accordingly, open an ntfs_inode for it and return it to the caller, unless
2183  * there are less than 24 mft records, in which case we allocate and initialize
2184  * mft records until we reach record 24 which we consider as the first free mft
2185  * record for use by normal files.
2186  *
2187  * If during any stage we overflow the initialized data in the mft bitmap, we
2188  * extend the initialized size (and data size) by 8 bytes, allocating another
2189  * cluster if required.  The bitmap data size has to be at least equal to the
2190  * number of mft records in the mft, but it can be bigger, in which case the
2191  * superflous bits are padded with zeroes.
2192  *
2193  * Thus, when we return successfully (IS_ERR() is false), we will have:
2194  *	- initialized / extended the mft bitmap if necessary,
2195  *	- initialized / extended the mft data if necessary,
2196  *	- set the bit corresponding to the mft record being allocated in the
2197  *	  mft bitmap,
2198  *	- opened an ntfs_inode for the allocated mft record, and we will have
2199  *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2200  *	  locked mft record.
2201  *
2202  * On error, the volume will be left in a consistent state and no record will
2203  * be allocated.  If rolling back a partial operation fails, we may leave some
2204  * inconsistent metadata in which case we set NVolErrors() so the volume is
2205  * left dirty when unmounted.
2206  *
2207  * Note, this function cannot make use of most of the normal functions, like
2208  * for example for attribute resizing, etc, because when the run list overflows
2209  * the base mft record and an attribute list is used, it is very important that
2210  * the extension mft records used to store the $DATA attribute of $MFT can be
2211  * reached without having to read the information contained inside them, as
2212  * this would make it impossible to find them in the first place after the
2213  * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2214  * rule because the bitmap is not essential for finding the mft records, but on
2215  * the other hand, handling the bitmap in this special way would make life
2216  * easier because otherwise there might be circular invocations of functions
2217  * when reading the bitmap.
2218  */
2219 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2220 		ntfs_inode *base_ni, MFT_RECORD **mrec)
2221 {
2222 	s64 ll, bit, old_data_initialized, old_data_size;
2223 	unsigned long flags;
2224 	struct inode *vi;
2225 	struct page *page;
2226 	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2227 	ntfs_attr_search_ctx *ctx;
2228 	MFT_RECORD *m;
2229 	ATTR_RECORD *a;
2230 	pgoff_t index;
2231 	unsigned int ofs;
2232 	int err;
2233 	le16 seq_no, usn;
2234 	BOOL record_formatted = FALSE;
2235 
2236 	if (base_ni) {
2237 		ntfs_debug("Entering (allocating an extent mft record for "
2238 				"base mft record 0x%llx).",
2239 				(long long)base_ni->mft_no);
2240 		/* @mode and @base_ni are mutually exclusive. */
2241 		BUG_ON(mode);
2242 	} else
2243 		ntfs_debug("Entering (allocating a base mft record).");
2244 	if (mode) {
2245 		/* @mode and @base_ni are mutually exclusive. */
2246 		BUG_ON(base_ni);
2247 		/* We only support creation of normal files and directories. */
2248 		if (!S_ISREG(mode) && !S_ISDIR(mode))
2249 			return ERR_PTR(-EOPNOTSUPP);
2250 	}
2251 	BUG_ON(!mrec);
2252 	mft_ni = NTFS_I(vol->mft_ino);
2253 	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2254 	down_write(&vol->mftbmp_lock);
2255 	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2256 	if (bit >= 0) {
2257 		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2258 				(long long)bit);
2259 		goto have_alloc_rec;
2260 	}
2261 	if (bit != -ENOSPC) {
2262 		up_write(&vol->mftbmp_lock);
2263 		return ERR_PTR(bit);
2264 	}
2265 	/*
2266 	 * No free mft records left.  If the mft bitmap already covers more
2267 	 * than the currently used mft records, the next records are all free,
2268 	 * so we can simply allocate the first unused mft record.
2269 	 * Note: We also have to make sure that the mft bitmap at least covers
2270 	 * the first 24 mft records as they are special and whilst they may not
2271 	 * be in use, we do not allocate from them.
2272 	 */
2273 	read_lock_irqsave(&mft_ni->size_lock, flags);
2274 	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2275 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2276 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2277 	old_data_initialized = mftbmp_ni->initialized_size;
2278 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2279 	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2280 		bit = ll;
2281 		if (bit < 24)
2282 			bit = 24;
2283 		if (unlikely(bit >= (1ll << 32)))
2284 			goto max_err_out;
2285 		ntfs_debug("Found free record (#2), bit 0x%llx.",
2286 				(long long)bit);
2287 		goto found_free_rec;
2288 	}
2289 	/*
2290 	 * The mft bitmap needs to be expanded until it covers the first unused
2291 	 * mft record that we can allocate.
2292 	 * Note: The smallest mft record we allocate is mft record 24.
2293 	 */
2294 	bit = old_data_initialized << 3;
2295 	if (unlikely(bit >= (1ll << 32)))
2296 		goto max_err_out;
2297 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2298 	old_data_size = mftbmp_ni->allocated_size;
2299 	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2300 			"data_size 0x%llx, initialized_size 0x%llx.",
2301 			(long long)old_data_size,
2302 			(long long)i_size_read(vol->mftbmp_ino),
2303 			(long long)old_data_initialized);
2304 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2305 	if (old_data_initialized + 8 > old_data_size) {
2306 		/* Need to extend bitmap by one more cluster. */
2307 		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2308 		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2309 		if (unlikely(err)) {
2310 			up_write(&vol->mftbmp_lock);
2311 			goto err_out;
2312 		}
2313 #ifdef DEBUG
2314 		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2315 		ntfs_debug("Status of mftbmp after allocation extension: "
2316 				"allocated_size 0x%llx, data_size 0x%llx, "
2317 				"initialized_size 0x%llx.",
2318 				(long long)mftbmp_ni->allocated_size,
2319 				(long long)i_size_read(vol->mftbmp_ino),
2320 				(long long)mftbmp_ni->initialized_size);
2321 		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2322 #endif /* DEBUG */
2323 	}
2324 	/*
2325 	 * We now have sufficient allocated space, extend the initialized_size
2326 	 * as well as the data_size if necessary and fill the new space with
2327 	 * zeroes.
2328 	 */
2329 	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2330 	if (unlikely(err)) {
2331 		up_write(&vol->mftbmp_lock);
2332 		goto err_out;
2333 	}
2334 #ifdef DEBUG
2335 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2336 	ntfs_debug("Status of mftbmp after initialized extention: "
2337 			"allocated_size 0x%llx, data_size 0x%llx, "
2338 			"initialized_size 0x%llx.",
2339 			(long long)mftbmp_ni->allocated_size,
2340 			(long long)i_size_read(vol->mftbmp_ino),
2341 			(long long)mftbmp_ni->initialized_size);
2342 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2343 #endif /* DEBUG */
2344 	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2345 found_free_rec:
2346 	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2347 	ntfs_debug("At found_free_rec.");
2348 	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2349 	if (unlikely(err)) {
2350 		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2351 		up_write(&vol->mftbmp_lock);
2352 		goto err_out;
2353 	}
2354 	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2355 have_alloc_rec:
2356 	/*
2357 	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2358 	 * Note, we keep hold of the mft bitmap lock for writing until all
2359 	 * modifications to the mft data attribute are complete, too, as they
2360 	 * will impact decisions for mft bitmap and mft record allocation done
2361 	 * by a parallel allocation and if the lock is not maintained a
2362 	 * parallel allocation could allocate the same mft record as this one.
2363 	 */
2364 	ll = (bit + 1) << vol->mft_record_size_bits;
2365 	read_lock_irqsave(&mft_ni->size_lock, flags);
2366 	old_data_initialized = mft_ni->initialized_size;
2367 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2368 	if (ll <= old_data_initialized) {
2369 		ntfs_debug("Allocated mft record already initialized.");
2370 		goto mft_rec_already_initialized;
2371 	}
2372 	ntfs_debug("Initializing allocated mft record.");
2373 	/*
2374 	 * The mft record is outside the initialized data.  Extend the mft data
2375 	 * attribute until it covers the allocated record.  The loop is only
2376 	 * actually traversed more than once when a freshly formatted volume is
2377 	 * first written to so it optimizes away nicely in the common case.
2378 	 */
2379 	read_lock_irqsave(&mft_ni->size_lock, flags);
2380 	ntfs_debug("Status of mft data before extension: "
2381 			"allocated_size 0x%llx, data_size 0x%llx, "
2382 			"initialized_size 0x%llx.",
2383 			(long long)mft_ni->allocated_size,
2384 			(long long)i_size_read(vol->mft_ino),
2385 			(long long)mft_ni->initialized_size);
2386 	while (ll > mft_ni->allocated_size) {
2387 		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2388 		err = ntfs_mft_data_extend_allocation_nolock(vol);
2389 		if (unlikely(err)) {
2390 			ntfs_error(vol->sb, "Failed to extend mft data "
2391 					"allocation.");
2392 			goto undo_mftbmp_alloc_nolock;
2393 		}
2394 		read_lock_irqsave(&mft_ni->size_lock, flags);
2395 		ntfs_debug("Status of mft data after allocation extension: "
2396 				"allocated_size 0x%llx, data_size 0x%llx, "
2397 				"initialized_size 0x%llx.",
2398 				(long long)mft_ni->allocated_size,
2399 				(long long)i_size_read(vol->mft_ino),
2400 				(long long)mft_ni->initialized_size);
2401 	}
2402 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2403 	/*
2404 	 * Extend mft data initialized size (and data size of course) to reach
2405 	 * the allocated mft record, formatting the mft records allong the way.
2406 	 * Note: We only modify the ntfs_inode structure as that is all that is
2407 	 * needed by ntfs_mft_record_format().  We will update the attribute
2408 	 * record itself in one fell swoop later on.
2409 	 */
2410 	write_lock_irqsave(&mft_ni->size_lock, flags);
2411 	old_data_initialized = mft_ni->initialized_size;
2412 	old_data_size = vol->mft_ino->i_size;
2413 	while (ll > mft_ni->initialized_size) {
2414 		s64 new_initialized_size, mft_no;
2415 
2416 		new_initialized_size = mft_ni->initialized_size +
2417 				vol->mft_record_size;
2418 		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2419 		if (new_initialized_size > i_size_read(vol->mft_ino))
2420 			i_size_write(vol->mft_ino, new_initialized_size);
2421 		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2422 		ntfs_debug("Initializing mft record 0x%llx.",
2423 				(long long)mft_no);
2424 		err = ntfs_mft_record_format(vol, mft_no);
2425 		if (unlikely(err)) {
2426 			ntfs_error(vol->sb, "Failed to format mft record.");
2427 			goto undo_data_init;
2428 		}
2429 		write_lock_irqsave(&mft_ni->size_lock, flags);
2430 		mft_ni->initialized_size = new_initialized_size;
2431 	}
2432 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2433 	record_formatted = TRUE;
2434 	/* Update the mft data attribute record to reflect the new sizes. */
2435 	m = map_mft_record(mft_ni);
2436 	if (IS_ERR(m)) {
2437 		ntfs_error(vol->sb, "Failed to map mft record.");
2438 		err = PTR_ERR(m);
2439 		goto undo_data_init;
2440 	}
2441 	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2442 	if (unlikely(!ctx)) {
2443 		ntfs_error(vol->sb, "Failed to get search context.");
2444 		err = -ENOMEM;
2445 		unmap_mft_record(mft_ni);
2446 		goto undo_data_init;
2447 	}
2448 	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2449 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2450 	if (unlikely(err)) {
2451 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2452 				"mft data attribute.");
2453 		ntfs_attr_put_search_ctx(ctx);
2454 		unmap_mft_record(mft_ni);
2455 		goto undo_data_init;
2456 	}
2457 	a = ctx->attr;
2458 	read_lock_irqsave(&mft_ni->size_lock, flags);
2459 	a->data.non_resident.initialized_size =
2460 			cpu_to_sle64(mft_ni->initialized_size);
2461 	a->data.non_resident.data_size =
2462 			cpu_to_sle64(i_size_read(vol->mft_ino));
2463 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2464 	/* Ensure the changes make it to disk. */
2465 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2466 	mark_mft_record_dirty(ctx->ntfs_ino);
2467 	ntfs_attr_put_search_ctx(ctx);
2468 	unmap_mft_record(mft_ni);
2469 	read_lock_irqsave(&mft_ni->size_lock, flags);
2470 	ntfs_debug("Status of mft data after mft record initialization: "
2471 			"allocated_size 0x%llx, data_size 0x%llx, "
2472 			"initialized_size 0x%llx.",
2473 			(long long)mft_ni->allocated_size,
2474 			(long long)i_size_read(vol->mft_ino),
2475 			(long long)mft_ni->initialized_size);
2476 	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2477 	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2478 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2479 mft_rec_already_initialized:
2480 	/*
2481 	 * We can finally drop the mft bitmap lock as the mft data attribute
2482 	 * has been fully updated.  The only disparity left is that the
2483 	 * allocated mft record still needs to be marked as in use to match the
2484 	 * set bit in the mft bitmap but this is actually not a problem since
2485 	 * this mft record is not referenced from anywhere yet and the fact
2486 	 * that it is allocated in the mft bitmap means that no-one will try to
2487 	 * allocate it either.
2488 	 */
2489 	up_write(&vol->mftbmp_lock);
2490 	/*
2491 	 * We now have allocated and initialized the mft record.  Calculate the
2492 	 * index of and the offset within the page cache page the record is in.
2493 	 */
2494 	index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2495 	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2496 	/* Read, map, and pin the page containing the mft record. */
2497 	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2498 	if (unlikely(IS_ERR(page))) {
2499 		ntfs_error(vol->sb, "Failed to map page containing allocated "
2500 				"mft record 0x%llx.", (long long)bit);
2501 		err = PTR_ERR(page);
2502 		goto undo_mftbmp_alloc;
2503 	}
2504 	lock_page(page);
2505 	BUG_ON(!PageUptodate(page));
2506 	ClearPageUptodate(page);
2507 	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2508 	/* If we just formatted the mft record no need to do it again. */
2509 	if (!record_formatted) {
2510 		/* Sanity check that the mft record is really not in use. */
2511 		if (ntfs_is_file_record(m->magic) &&
2512 				(m->flags & MFT_RECORD_IN_USE)) {
2513 			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2514 					"free in mft bitmap but is marked "
2515 					"used itself.  Corrupt filesystem.  "
2516 					"Unmount and run chkdsk.",
2517 					(long long)bit);
2518 			err = -EIO;
2519 			SetPageUptodate(page);
2520 			unlock_page(page);
2521 			ntfs_unmap_page(page);
2522 			NVolSetErrors(vol);
2523 			goto undo_mftbmp_alloc;
2524 		}
2525 		/*
2526 		 * We need to (re-)format the mft record, preserving the
2527 		 * sequence number if it is not zero as well as the update
2528 		 * sequence number if it is not zero or -1 (0xffff).  This
2529 		 * means we do not need to care whether or not something went
2530 		 * wrong with the previous mft record.
2531 		 */
2532 		seq_no = m->sequence_number;
2533 		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2534 		err = ntfs_mft_record_layout(vol, bit, m);
2535 		if (unlikely(err)) {
2536 			ntfs_error(vol->sb, "Failed to layout allocated mft "
2537 					"record 0x%llx.", (long long)bit);
2538 			SetPageUptodate(page);
2539 			unlock_page(page);
2540 			ntfs_unmap_page(page);
2541 			goto undo_mftbmp_alloc;
2542 		}
2543 		if (seq_no)
2544 			m->sequence_number = seq_no;
2545 		if (usn && le16_to_cpu(usn) != 0xffff)
2546 			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2547 	}
2548 	/* Set the mft record itself in use. */
2549 	m->flags |= MFT_RECORD_IN_USE;
2550 	if (S_ISDIR(mode))
2551 		m->flags |= MFT_RECORD_IS_DIRECTORY;
2552 	flush_dcache_page(page);
2553 	SetPageUptodate(page);
2554 	if (base_ni) {
2555 		/*
2556 		 * Setup the base mft record in the extent mft record.  This
2557 		 * completes initialization of the allocated extent mft record
2558 		 * and we can simply use it with map_extent_mft_record().
2559 		 */
2560 		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2561 				base_ni->seq_no);
2562 		/*
2563 		 * Allocate an extent inode structure for the new mft record,
2564 		 * attach it to the base inode @base_ni and map, pin, and lock
2565 		 * its, i.e. the allocated, mft record.
2566 		 */
2567 		m = map_extent_mft_record(base_ni, bit, &ni);
2568 		if (IS_ERR(m)) {
2569 			ntfs_error(vol->sb, "Failed to map allocated extent "
2570 					"mft record 0x%llx.", (long long)bit);
2571 			err = PTR_ERR(m);
2572 			/* Set the mft record itself not in use. */
2573 			m->flags &= cpu_to_le16(
2574 					~le16_to_cpu(MFT_RECORD_IN_USE));
2575 			flush_dcache_page(page);
2576 			/* Make sure the mft record is written out to disk. */
2577 			mark_ntfs_record_dirty(page, ofs);
2578 			unlock_page(page);
2579 			ntfs_unmap_page(page);
2580 			goto undo_mftbmp_alloc;
2581 		}
2582 		/*
2583 		 * Make sure the allocated mft record is written out to disk.
2584 		 * No need to set the inode dirty because the caller is going
2585 		 * to do that anyway after finishing with the new extent mft
2586 		 * record (e.g. at a minimum a new attribute will be added to
2587 		 * the mft record.
2588 		 */
2589 		mark_ntfs_record_dirty(page, ofs);
2590 		unlock_page(page);
2591 		/*
2592 		 * Need to unmap the page since map_extent_mft_record() mapped
2593 		 * it as well so we have it mapped twice at the moment.
2594 		 */
2595 		ntfs_unmap_page(page);
2596 	} else {
2597 		/*
2598 		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2599 		 * is set to 1 but the mft record->link_count is 0.  The caller
2600 		 * needs to bear this in mind.
2601 		 */
2602 		vi = new_inode(vol->sb);
2603 		if (unlikely(!vi)) {
2604 			err = -ENOMEM;
2605 			/* Set the mft record itself not in use. */
2606 			m->flags &= cpu_to_le16(
2607 					~le16_to_cpu(MFT_RECORD_IN_USE));
2608 			flush_dcache_page(page);
2609 			/* Make sure the mft record is written out to disk. */
2610 			mark_ntfs_record_dirty(page, ofs);
2611 			unlock_page(page);
2612 			ntfs_unmap_page(page);
2613 			goto undo_mftbmp_alloc;
2614 		}
2615 		vi->i_ino = bit;
2616 		/*
2617 		 * This is the optimal IO size (for stat), not the fs block
2618 		 * size.
2619 		 */
2620 		vi->i_blksize = PAGE_CACHE_SIZE;
2621 		/*
2622 		 * This is for checking whether an inode has changed w.r.t. a
2623 		 * file so that the file can be updated if necessary (compare
2624 		 * with f_version).
2625 		 */
2626 		vi->i_version = 1;
2627 
2628 		/* The owner and group come from the ntfs volume. */
2629 		vi->i_uid = vol->uid;
2630 		vi->i_gid = vol->gid;
2631 
2632 		/* Initialize the ntfs specific part of @vi. */
2633 		ntfs_init_big_inode(vi);
2634 		ni = NTFS_I(vi);
2635 		/*
2636 		 * Set the appropriate mode, attribute type, and name.  For
2637 		 * directories, also setup the index values to the defaults.
2638 		 */
2639 		if (S_ISDIR(mode)) {
2640 			vi->i_mode = S_IFDIR | S_IRWXUGO;
2641 			vi->i_mode &= ~vol->dmask;
2642 
2643 			NInoSetMstProtected(ni);
2644 			ni->type = AT_INDEX_ALLOCATION;
2645 			ni->name = I30;
2646 			ni->name_len = 4;
2647 
2648 			ni->itype.index.block_size = 4096;
2649 			ni->itype.index.block_size_bits = generic_ffs(4096) - 1;
2650 			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2651 			if (vol->cluster_size <= ni->itype.index.block_size) {
2652 				ni->itype.index.vcn_size = vol->cluster_size;
2653 				ni->itype.index.vcn_size_bits =
2654 						vol->cluster_size_bits;
2655 			} else {
2656 				ni->itype.index.vcn_size = vol->sector_size;
2657 				ni->itype.index.vcn_size_bits =
2658 						vol->sector_size_bits;
2659 			}
2660 		} else {
2661 			vi->i_mode = S_IFREG | S_IRWXUGO;
2662 			vi->i_mode &= ~vol->fmask;
2663 
2664 			ni->type = AT_DATA;
2665 			ni->name = NULL;
2666 			ni->name_len = 0;
2667 		}
2668 		if (IS_RDONLY(vi))
2669 			vi->i_mode &= ~S_IWUGO;
2670 
2671 		/* Set the inode times to the current time. */
2672 		vi->i_atime = vi->i_mtime = vi->i_ctime =
2673 			current_fs_time(vi->i_sb);
2674 		/*
2675 		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2676 		 * the call to ntfs_init_big_inode() below.
2677 		 */
2678 		vi->i_size = 0;
2679 		vi->i_blocks = 0;
2680 
2681 		/* Set the sequence number. */
2682 		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2683 		/*
2684 		 * Manually map, pin, and lock the mft record as we already
2685 		 * have its page mapped and it is very easy to do.
2686 		 */
2687 		atomic_inc(&ni->count);
2688 		down(&ni->mrec_lock);
2689 		ni->page = page;
2690 		ni->page_ofs = ofs;
2691 		/*
2692 		 * Make sure the allocated mft record is written out to disk.
2693 		 * NOTE: We do not set the ntfs inode dirty because this would
2694 		 * fail in ntfs_write_inode() because the inode does not have a
2695 		 * standard information attribute yet.  Also, there is no need
2696 		 * to set the inode dirty because the caller is going to do
2697 		 * that anyway after finishing with the new mft record (e.g. at
2698 		 * a minimum some new attributes will be added to the mft
2699 		 * record.
2700 		 */
2701 		mark_ntfs_record_dirty(page, ofs);
2702 		unlock_page(page);
2703 
2704 		/* Add the inode to the inode hash for the superblock. */
2705 		insert_inode_hash(vi);
2706 
2707 		/* Update the default mft allocation position. */
2708 		vol->mft_data_pos = bit + 1;
2709 	}
2710 	/*
2711 	 * Return the opened, allocated inode of the allocated mft record as
2712 	 * well as the mapped, pinned, and locked mft record.
2713 	 */
2714 	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2715 			base_ni ? "extent " : "", (long long)bit);
2716 	*mrec = m;
2717 	return ni;
2718 undo_data_init:
2719 	write_lock_irqsave(&mft_ni->size_lock, flags);
2720 	mft_ni->initialized_size = old_data_initialized;
2721 	i_size_write(vol->mft_ino, old_data_size);
2722 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2723 	goto undo_mftbmp_alloc_nolock;
2724 undo_mftbmp_alloc:
2725 	down_write(&vol->mftbmp_lock);
2726 undo_mftbmp_alloc_nolock:
2727 	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2728 		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2729 		NVolSetErrors(vol);
2730 	}
2731 	up_write(&vol->mftbmp_lock);
2732 err_out:
2733 	return ERR_PTR(err);
2734 max_err_out:
2735 	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2736 			"number of inodes (2^32) has already been reached.");
2737 	up_write(&vol->mftbmp_lock);
2738 	return ERR_PTR(-ENOSPC);
2739 }
2740 
2741 /**
2742  * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2743  * @ni:		ntfs inode of the mapped extent mft record to free
2744  * @m:		mapped extent mft record of the ntfs inode @ni
2745  *
2746  * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2747  *
2748  * Note that this function unmaps the mft record and closes and destroys @ni
2749  * internally and hence you cannot use either @ni nor @m any more after this
2750  * function returns success.
2751  *
2752  * On success return 0 and on error return -errno.  @ni and @m are still valid
2753  * in this case and have not been freed.
2754  *
2755  * For some errors an error message is displayed and the success code 0 is
2756  * returned and the volume is then left dirty on umount.  This makes sense in
2757  * case we could not rollback the changes that were already done since the
2758  * caller no longer wants to reference this mft record so it does not matter to
2759  * the caller if something is wrong with it as long as it is properly detached
2760  * from the base inode.
2761  */
2762 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2763 {
2764 	unsigned long mft_no = ni->mft_no;
2765 	ntfs_volume *vol = ni->vol;
2766 	ntfs_inode *base_ni;
2767 	ntfs_inode **extent_nis;
2768 	int i, err;
2769 	le16 old_seq_no;
2770 	u16 seq_no;
2771 
2772 	BUG_ON(NInoAttr(ni));
2773 	BUG_ON(ni->nr_extents != -1);
2774 
2775 	down(&ni->extent_lock);
2776 	base_ni = ni->ext.base_ntfs_ino;
2777 	up(&ni->extent_lock);
2778 
2779 	BUG_ON(base_ni->nr_extents <= 0);
2780 
2781 	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2782 			mft_no, base_ni->mft_no);
2783 
2784 	down(&base_ni->extent_lock);
2785 
2786 	/* Make sure we are holding the only reference to the extent inode. */
2787 	if (atomic_read(&ni->count) > 2) {
2788 		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2789 				"not freeing.", base_ni->mft_no);
2790 		up(&base_ni->extent_lock);
2791 		return -EBUSY;
2792 	}
2793 
2794 	/* Dissociate the ntfs inode from the base inode. */
2795 	extent_nis = base_ni->ext.extent_ntfs_inos;
2796 	err = -ENOENT;
2797 	for (i = 0; i < base_ni->nr_extents; i++) {
2798 		if (ni != extent_nis[i])
2799 			continue;
2800 		extent_nis += i;
2801 		base_ni->nr_extents--;
2802 		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2803 				sizeof(ntfs_inode*));
2804 		err = 0;
2805 		break;
2806 	}
2807 
2808 	up(&base_ni->extent_lock);
2809 
2810 	if (unlikely(err)) {
2811 		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2812 				"its base inode 0x%lx.", mft_no,
2813 				base_ni->mft_no);
2814 		BUG();
2815 	}
2816 
2817 	/*
2818 	 * The extent inode is no longer attached to the base inode so no one
2819 	 * can get a reference to it any more.
2820 	 */
2821 
2822 	/* Mark the mft record as not in use. */
2823 	m->flags &= const_cpu_to_le16(~const_le16_to_cpu(MFT_RECORD_IN_USE));
2824 
2825 	/* Increment the sequence number, skipping zero, if it is not zero. */
2826 	old_seq_no = m->sequence_number;
2827 	seq_no = le16_to_cpu(old_seq_no);
2828 	if (seq_no == 0xffff)
2829 		seq_no = 1;
2830 	else if (seq_no)
2831 		seq_no++;
2832 	m->sequence_number = cpu_to_le16(seq_no);
2833 
2834 	/*
2835 	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2836 	 * about the base inode here since whatever caused the extent mft
2837 	 * record to be freed is guaranteed to do it already.
2838 	 */
2839 	NInoSetDirty(ni);
2840 	err = write_mft_record(ni, m, 0);
2841 	if (unlikely(err)) {
2842 		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2843 				"freeing.", mft_no);
2844 		goto rollback;
2845 	}
2846 rollback_error:
2847 	/* Unmap and throw away the now freed extent inode. */
2848 	unmap_extent_mft_record(ni);
2849 	ntfs_clear_extent_inode(ni);
2850 
2851 	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2852 	down_write(&vol->mftbmp_lock);
2853 	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2854 	up_write(&vol->mftbmp_lock);
2855 	if (unlikely(err)) {
2856 		/*
2857 		 * The extent inode is gone but we failed to deallocate it in
2858 		 * the mft bitmap.  Just emit a warning and leave the volume
2859 		 * dirty on umount.
2860 		 */
2861 		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2862 		NVolSetErrors(vol);
2863 	}
2864 	return 0;
2865 rollback:
2866 	/* Rollback what we did... */
2867 	down(&base_ni->extent_lock);
2868 	extent_nis = base_ni->ext.extent_ntfs_inos;
2869 	if (!(base_ni->nr_extents & 3)) {
2870 		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2871 
2872 		extent_nis = (ntfs_inode**)kmalloc(new_size, GFP_NOFS);
2873 		if (unlikely(!extent_nis)) {
2874 			ntfs_error(vol->sb, "Failed to allocate internal "
2875 					"buffer during rollback.%s", es);
2876 			up(&base_ni->extent_lock);
2877 			NVolSetErrors(vol);
2878 			goto rollback_error;
2879 		}
2880 		if (base_ni->nr_extents) {
2881 			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2882 			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2883 					new_size - 4 * sizeof(ntfs_inode*));
2884 			kfree(base_ni->ext.extent_ntfs_inos);
2885 		}
2886 		base_ni->ext.extent_ntfs_inos = extent_nis;
2887 	}
2888 	m->flags |= MFT_RECORD_IN_USE;
2889 	m->sequence_number = old_seq_no;
2890 	extent_nis[base_ni->nr_extents++] = ni;
2891 	up(&base_ni->extent_lock);
2892 	mark_mft_record_dirty(ni);
2893 	return err;
2894 }
2895 #endif /* NTFS_RW */
2896