xref: /openbmc/linux/fs/ntfs/mft.c (revision 1c2dd16a)
1 /**
2  * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5  * Copyright (c) 2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/buffer_head.h>
24 #include <linux/slab.h>
25 #include <linux/swap.h>
26 #include <linux/bio.h>
27 
28 #include "attrib.h"
29 #include "aops.h"
30 #include "bitmap.h"
31 #include "debug.h"
32 #include "dir.h"
33 #include "lcnalloc.h"
34 #include "malloc.h"
35 #include "mft.h"
36 #include "ntfs.h"
37 
38 /**
39  * map_mft_record_page - map the page in which a specific mft record resides
40  * @ni:		ntfs inode whose mft record page to map
41  *
42  * This maps the page in which the mft record of the ntfs inode @ni is situated
43  * and returns a pointer to the mft record within the mapped page.
44  *
45  * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
46  * contains the negative error code returned.
47  */
48 static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
49 {
50 	loff_t i_size;
51 	ntfs_volume *vol = ni->vol;
52 	struct inode *mft_vi = vol->mft_ino;
53 	struct page *page;
54 	unsigned long index, end_index;
55 	unsigned ofs;
56 
57 	BUG_ON(ni->page);
58 	/*
59 	 * The index into the page cache and the offset within the page cache
60 	 * page of the wanted mft record. FIXME: We need to check for
61 	 * overflowing the unsigned long, but I don't think we would ever get
62 	 * here if the volume was that big...
63 	 */
64 	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
65 			PAGE_SHIFT;
66 	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
67 
68 	i_size = i_size_read(mft_vi);
69 	/* The maximum valid index into the page cache for $MFT's data. */
70 	end_index = i_size >> PAGE_SHIFT;
71 
72 	/* If the wanted index is out of bounds the mft record doesn't exist. */
73 	if (unlikely(index >= end_index)) {
74 		if (index > end_index || (i_size & ~PAGE_MASK) < ofs +
75 				vol->mft_record_size) {
76 			page = ERR_PTR(-ENOENT);
77 			ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
78 					"which is beyond the end of the mft.  "
79 					"This is probably a bug in the ntfs "
80 					"driver.", ni->mft_no);
81 			goto err_out;
82 		}
83 	}
84 	/* Read, map, and pin the page. */
85 	page = ntfs_map_page(mft_vi->i_mapping, index);
86 	if (likely(!IS_ERR(page))) {
87 		/* Catch multi sector transfer fixup errors. */
88 		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
89 				ofs)))) {
90 			ni->page = page;
91 			ni->page_ofs = ofs;
92 			return page_address(page) + ofs;
93 		}
94 		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
95 				"Run chkdsk.", ni->mft_no);
96 		ntfs_unmap_page(page);
97 		page = ERR_PTR(-EIO);
98 		NVolSetErrors(vol);
99 	}
100 err_out:
101 	ni->page = NULL;
102 	ni->page_ofs = 0;
103 	return (void*)page;
104 }
105 
106 /**
107  * map_mft_record - map, pin and lock an mft record
108  * @ni:		ntfs inode whose MFT record to map
109  *
110  * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
111  * for the mutex if it was already locked by someone else.
112  *
113  * The page of the record is mapped using map_mft_record_page() before being
114  * returned to the caller.
115  *
116  * This in turn uses ntfs_map_page() to get the page containing the wanted mft
117  * record (it in turn calls read_cache_page() which reads it in from disk if
118  * necessary, increments the use count on the page so that it cannot disappear
119  * under us and returns a reference to the page cache page).
120  *
121  * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
122  * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
123  * and the post-read mst fixups on each mft record in the page have been
124  * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
125  * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
126  * ntfs_map_page() waits for PG_locked to become clear and checks if
127  * PG_uptodate is set and returns an error code if not. This provides
128  * sufficient protection against races when reading/using the page.
129  *
130  * However there is the write mapping to think about. Doing the above described
131  * checking here will be fine, because when initiating the write we will set
132  * PG_locked and clear PG_uptodate making sure nobody is touching the page
133  * contents. Doing the locking this way means that the commit to disk code in
134  * the page cache code paths is automatically sufficiently locked with us as
135  * we will not touch a page that has been locked or is not uptodate. The only
136  * locking problem then is them locking the page while we are accessing it.
137  *
138  * So that code will end up having to own the mrec_lock of all mft
139  * records/inodes present in the page before I/O can proceed. In that case we
140  * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
141  * accessing anything without owning the mrec_lock mutex.  But we do need to
142  * use them because of the read_cache_page() invocation and the code becomes so
143  * much simpler this way that it is well worth it.
144  *
145  * The mft record is now ours and we return a pointer to it. You need to check
146  * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
147  * the error code.
148  *
149  * NOTE: Caller is responsible for setting the mft record dirty before calling
150  * unmap_mft_record(). This is obviously only necessary if the caller really
151  * modified the mft record...
152  * Q: Do we want to recycle one of the VFS inode state bits instead?
153  * A: No, the inode ones mean we want to change the mft record, not we want to
154  * write it out.
155  */
156 MFT_RECORD *map_mft_record(ntfs_inode *ni)
157 {
158 	MFT_RECORD *m;
159 
160 	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
161 
162 	/* Make sure the ntfs inode doesn't go away. */
163 	atomic_inc(&ni->count);
164 
165 	/* Serialize access to this mft record. */
166 	mutex_lock(&ni->mrec_lock);
167 
168 	m = map_mft_record_page(ni);
169 	if (likely(!IS_ERR(m)))
170 		return m;
171 
172 	mutex_unlock(&ni->mrec_lock);
173 	atomic_dec(&ni->count);
174 	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
175 	return m;
176 }
177 
178 /**
179  * unmap_mft_record_page - unmap the page in which a specific mft record resides
180  * @ni:		ntfs inode whose mft record page to unmap
181  *
182  * This unmaps the page in which the mft record of the ntfs inode @ni is
183  * situated and returns. This is a NOOP if highmem is not configured.
184  *
185  * The unmap happens via ntfs_unmap_page() which in turn decrements the use
186  * count on the page thus releasing it from the pinned state.
187  *
188  * We do not actually unmap the page from memory of course, as that will be
189  * done by the page cache code itself when memory pressure increases or
190  * whatever.
191  */
192 static inline void unmap_mft_record_page(ntfs_inode *ni)
193 {
194 	BUG_ON(!ni->page);
195 
196 	// TODO: If dirty, blah...
197 	ntfs_unmap_page(ni->page);
198 	ni->page = NULL;
199 	ni->page_ofs = 0;
200 	return;
201 }
202 
203 /**
204  * unmap_mft_record - release a mapped mft record
205  * @ni:		ntfs inode whose MFT record to unmap
206  *
207  * We release the page mapping and the mrec_lock mutex which unmaps the mft
208  * record and releases it for others to get hold of. We also release the ntfs
209  * inode by decrementing the ntfs inode reference count.
210  *
211  * NOTE: If caller has modified the mft record, it is imperative to set the mft
212  * record dirty BEFORE calling unmap_mft_record().
213  */
214 void unmap_mft_record(ntfs_inode *ni)
215 {
216 	struct page *page = ni->page;
217 
218 	BUG_ON(!page);
219 
220 	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
221 
222 	unmap_mft_record_page(ni);
223 	mutex_unlock(&ni->mrec_lock);
224 	atomic_dec(&ni->count);
225 	/*
226 	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
227 	 * ntfs_clear_extent_inode() in the extent inode case, and to the
228 	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
229 	 * tear down of all structures and freeing of all allocated memory.
230 	 */
231 	return;
232 }
233 
234 /**
235  * map_extent_mft_record - load an extent inode and attach it to its base
236  * @base_ni:	base ntfs inode
237  * @mref:	mft reference of the extent inode to load
238  * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
239  *
240  * Load the extent mft record @mref and attach it to its base inode @base_ni.
241  * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
242  * PTR_ERR(result) gives the negative error code.
243  *
244  * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
245  * structure of the mapped extent inode.
246  */
247 MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
248 		ntfs_inode **ntfs_ino)
249 {
250 	MFT_RECORD *m;
251 	ntfs_inode *ni = NULL;
252 	ntfs_inode **extent_nis = NULL;
253 	int i;
254 	unsigned long mft_no = MREF(mref);
255 	u16 seq_no = MSEQNO(mref);
256 	bool destroy_ni = false;
257 
258 	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
259 			mft_no, base_ni->mft_no);
260 	/* Make sure the base ntfs inode doesn't go away. */
261 	atomic_inc(&base_ni->count);
262 	/*
263 	 * Check if this extent inode has already been added to the base inode,
264 	 * in which case just return it. If not found, add it to the base
265 	 * inode before returning it.
266 	 */
267 	mutex_lock(&base_ni->extent_lock);
268 	if (base_ni->nr_extents > 0) {
269 		extent_nis = base_ni->ext.extent_ntfs_inos;
270 		for (i = 0; i < base_ni->nr_extents; i++) {
271 			if (mft_no != extent_nis[i]->mft_no)
272 				continue;
273 			ni = extent_nis[i];
274 			/* Make sure the ntfs inode doesn't go away. */
275 			atomic_inc(&ni->count);
276 			break;
277 		}
278 	}
279 	if (likely(ni != NULL)) {
280 		mutex_unlock(&base_ni->extent_lock);
281 		atomic_dec(&base_ni->count);
282 		/* We found the record; just have to map and return it. */
283 		m = map_mft_record(ni);
284 		/* map_mft_record() has incremented this on success. */
285 		atomic_dec(&ni->count);
286 		if (likely(!IS_ERR(m))) {
287 			/* Verify the sequence number. */
288 			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
289 				ntfs_debug("Done 1.");
290 				*ntfs_ino = ni;
291 				return m;
292 			}
293 			unmap_mft_record(ni);
294 			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
295 					"reference! Corrupt filesystem. "
296 					"Run chkdsk.");
297 			return ERR_PTR(-EIO);
298 		}
299 map_err_out:
300 		ntfs_error(base_ni->vol->sb, "Failed to map extent "
301 				"mft record, error code %ld.", -PTR_ERR(m));
302 		return m;
303 	}
304 	/* Record wasn't there. Get a new ntfs inode and initialize it. */
305 	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
306 	if (unlikely(!ni)) {
307 		mutex_unlock(&base_ni->extent_lock);
308 		atomic_dec(&base_ni->count);
309 		return ERR_PTR(-ENOMEM);
310 	}
311 	ni->vol = base_ni->vol;
312 	ni->seq_no = seq_no;
313 	ni->nr_extents = -1;
314 	ni->ext.base_ntfs_ino = base_ni;
315 	/* Now map the record. */
316 	m = map_mft_record(ni);
317 	if (IS_ERR(m)) {
318 		mutex_unlock(&base_ni->extent_lock);
319 		atomic_dec(&base_ni->count);
320 		ntfs_clear_extent_inode(ni);
321 		goto map_err_out;
322 	}
323 	/* Verify the sequence number if it is present. */
324 	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
325 		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
326 				"reference! Corrupt filesystem. Run chkdsk.");
327 		destroy_ni = true;
328 		m = ERR_PTR(-EIO);
329 		goto unm_err_out;
330 	}
331 	/* Attach extent inode to base inode, reallocating memory if needed. */
332 	if (!(base_ni->nr_extents & 3)) {
333 		ntfs_inode **tmp;
334 		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
335 
336 		tmp = kmalloc(new_size, GFP_NOFS);
337 		if (unlikely(!tmp)) {
338 			ntfs_error(base_ni->vol->sb, "Failed to allocate "
339 					"internal buffer.");
340 			destroy_ni = true;
341 			m = ERR_PTR(-ENOMEM);
342 			goto unm_err_out;
343 		}
344 		if (base_ni->nr_extents) {
345 			BUG_ON(!base_ni->ext.extent_ntfs_inos);
346 			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
347 					4 * sizeof(ntfs_inode *));
348 			kfree(base_ni->ext.extent_ntfs_inos);
349 		}
350 		base_ni->ext.extent_ntfs_inos = tmp;
351 	}
352 	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
353 	mutex_unlock(&base_ni->extent_lock);
354 	atomic_dec(&base_ni->count);
355 	ntfs_debug("Done 2.");
356 	*ntfs_ino = ni;
357 	return m;
358 unm_err_out:
359 	unmap_mft_record(ni);
360 	mutex_unlock(&base_ni->extent_lock);
361 	atomic_dec(&base_ni->count);
362 	/*
363 	 * If the extent inode was not attached to the base inode we need to
364 	 * release it or we will leak memory.
365 	 */
366 	if (destroy_ni)
367 		ntfs_clear_extent_inode(ni);
368 	return m;
369 }
370 
371 #ifdef NTFS_RW
372 
373 /**
374  * __mark_mft_record_dirty - set the mft record and the page containing it dirty
375  * @ni:		ntfs inode describing the mapped mft record
376  *
377  * Internal function.  Users should call mark_mft_record_dirty() instead.
378  *
379  * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
380  * as well as the page containing the mft record, dirty.  Also, mark the base
381  * vfs inode dirty.  This ensures that any changes to the mft record are
382  * written out to disk.
383  *
384  * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
385  * on the base vfs inode, because even though file data may have been modified,
386  * it is dirty in the inode meta data rather than the data page cache of the
387  * inode, and thus there are no data pages that need writing out.  Therefore, a
388  * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
389  * other hand, is not sufficient, because ->write_inode needs to be called even
390  * in case of fdatasync. This needs to happen or the file data would not
391  * necessarily hit the device synchronously, even though the vfs inode has the
392  * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
393  * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
394  * which is not what I_DIRTY_SYNC on its own would suggest.
395  */
396 void __mark_mft_record_dirty(ntfs_inode *ni)
397 {
398 	ntfs_inode *base_ni;
399 
400 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
401 	BUG_ON(NInoAttr(ni));
402 	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
403 	/* Determine the base vfs inode and mark it dirty, too. */
404 	mutex_lock(&ni->extent_lock);
405 	if (likely(ni->nr_extents >= 0))
406 		base_ni = ni;
407 	else
408 		base_ni = ni->ext.base_ntfs_ino;
409 	mutex_unlock(&ni->extent_lock);
410 	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
411 }
412 
413 static const char *ntfs_please_email = "Please email "
414 		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
415 		"this message.  Thank you.";
416 
417 /**
418  * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
419  * @vol:	ntfs volume on which the mft record to synchronize resides
420  * @mft_no:	mft record number of mft record to synchronize
421  * @m:		mapped, mst protected (extent) mft record to synchronize
422  *
423  * Write the mapped, mst protected (extent) mft record @m with mft record
424  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
425  * bypassing the page cache and the $MFTMirr inode itself.
426  *
427  * This function is only for use at umount time when the mft mirror inode has
428  * already been disposed off.  We BUG() if we are called while the mft mirror
429  * inode is still attached to the volume.
430  *
431  * On success return 0.  On error return -errno.
432  *
433  * NOTE:  This function is not implemented yet as I am not convinced it can
434  * actually be triggered considering the sequence of commits we do in super.c::
435  * ntfs_put_super().  But just in case we provide this place holder as the
436  * alternative would be either to BUG() or to get a NULL pointer dereference
437  * and Oops.
438  */
439 static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
440 		const unsigned long mft_no, MFT_RECORD *m)
441 {
442 	BUG_ON(vol->mftmirr_ino);
443 	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
444 			"implemented yet.  %s", ntfs_please_email);
445 	return -EOPNOTSUPP;
446 }
447 
448 /**
449  * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
450  * @vol:	ntfs volume on which the mft record to synchronize resides
451  * @mft_no:	mft record number of mft record to synchronize
452  * @m:		mapped, mst protected (extent) mft record to synchronize
453  * @sync:	if true, wait for i/o completion
454  *
455  * Write the mapped, mst protected (extent) mft record @m with mft record
456  * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
457  *
458  * On success return 0.  On error return -errno and set the volume errors flag
459  * in the ntfs volume @vol.
460  *
461  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
462  *
463  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
464  * schedule i/o via ->writepage or do it via kntfsd or whatever.
465  */
466 int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
467 		MFT_RECORD *m, int sync)
468 {
469 	struct page *page;
470 	unsigned int blocksize = vol->sb->s_blocksize;
471 	int max_bhs = vol->mft_record_size / blocksize;
472 	struct buffer_head *bhs[max_bhs];
473 	struct buffer_head *bh, *head;
474 	u8 *kmirr;
475 	runlist_element *rl;
476 	unsigned int block_start, block_end, m_start, m_end, page_ofs;
477 	int i_bhs, nr_bhs, err = 0;
478 	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
479 
480 	ntfs_debug("Entering for inode 0x%lx.", mft_no);
481 	BUG_ON(!max_bhs);
482 	if (unlikely(!vol->mftmirr_ino)) {
483 		/* This could happen during umount... */
484 		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
485 		if (likely(!err))
486 			return err;
487 		goto err_out;
488 	}
489 	/* Get the page containing the mirror copy of the mft record @m. */
490 	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
491 			(PAGE_SHIFT - vol->mft_record_size_bits));
492 	if (IS_ERR(page)) {
493 		ntfs_error(vol->sb, "Failed to map mft mirror page.");
494 		err = PTR_ERR(page);
495 		goto err_out;
496 	}
497 	lock_page(page);
498 	BUG_ON(!PageUptodate(page));
499 	ClearPageUptodate(page);
500 	/* Offset of the mft mirror record inside the page. */
501 	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
502 	/* The address in the page of the mirror copy of the mft record @m. */
503 	kmirr = page_address(page) + page_ofs;
504 	/* Copy the mst protected mft record to the mirror. */
505 	memcpy(kmirr, m, vol->mft_record_size);
506 	/* Create uptodate buffers if not present. */
507 	if (unlikely(!page_has_buffers(page))) {
508 		struct buffer_head *tail;
509 
510 		bh = head = alloc_page_buffers(page, blocksize, 1);
511 		do {
512 			set_buffer_uptodate(bh);
513 			tail = bh;
514 			bh = bh->b_this_page;
515 		} while (bh);
516 		tail->b_this_page = head;
517 		attach_page_buffers(page, head);
518 	}
519 	bh = head = page_buffers(page);
520 	BUG_ON(!bh);
521 	rl = NULL;
522 	nr_bhs = 0;
523 	block_start = 0;
524 	m_start = kmirr - (u8*)page_address(page);
525 	m_end = m_start + vol->mft_record_size;
526 	do {
527 		block_end = block_start + blocksize;
528 		/* If the buffer is outside the mft record, skip it. */
529 		if (block_end <= m_start)
530 			continue;
531 		if (unlikely(block_start >= m_end))
532 			break;
533 		/* Need to map the buffer if it is not mapped already. */
534 		if (unlikely(!buffer_mapped(bh))) {
535 			VCN vcn;
536 			LCN lcn;
537 			unsigned int vcn_ofs;
538 
539 			bh->b_bdev = vol->sb->s_bdev;
540 			/* Obtain the vcn and offset of the current block. */
541 			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
542 					(block_start - m_start);
543 			vcn_ofs = vcn & vol->cluster_size_mask;
544 			vcn >>= vol->cluster_size_bits;
545 			if (!rl) {
546 				down_read(&NTFS_I(vol->mftmirr_ino)->
547 						runlist.lock);
548 				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
549 				/*
550 				 * $MFTMirr always has the whole of its runlist
551 				 * in memory.
552 				 */
553 				BUG_ON(!rl);
554 			}
555 			/* Seek to element containing target vcn. */
556 			while (rl->length && rl[1].vcn <= vcn)
557 				rl++;
558 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
559 			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
560 			if (likely(lcn >= 0)) {
561 				/* Setup buffer head to correct block. */
562 				bh->b_blocknr = ((lcn <<
563 						vol->cluster_size_bits) +
564 						vcn_ofs) >> blocksize_bits;
565 				set_buffer_mapped(bh);
566 			} else {
567 				bh->b_blocknr = -1;
568 				ntfs_error(vol->sb, "Cannot write mft mirror "
569 						"record 0x%lx because its "
570 						"location on disk could not "
571 						"be determined (error code "
572 						"%lli).", mft_no,
573 						(long long)lcn);
574 				err = -EIO;
575 			}
576 		}
577 		BUG_ON(!buffer_uptodate(bh));
578 		BUG_ON(!nr_bhs && (m_start != block_start));
579 		BUG_ON(nr_bhs >= max_bhs);
580 		bhs[nr_bhs++] = bh;
581 		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
582 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
583 	if (unlikely(rl))
584 		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
585 	if (likely(!err)) {
586 		/* Lock buffers and start synchronous write i/o on them. */
587 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
588 			struct buffer_head *tbh = bhs[i_bhs];
589 
590 			if (!trylock_buffer(tbh))
591 				BUG();
592 			BUG_ON(!buffer_uptodate(tbh));
593 			clear_buffer_dirty(tbh);
594 			get_bh(tbh);
595 			tbh->b_end_io = end_buffer_write_sync;
596 			submit_bh(REQ_OP_WRITE, 0, tbh);
597 		}
598 		/* Wait on i/o completion of buffers. */
599 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
600 			struct buffer_head *tbh = bhs[i_bhs];
601 
602 			wait_on_buffer(tbh);
603 			if (unlikely(!buffer_uptodate(tbh))) {
604 				err = -EIO;
605 				/*
606 				 * Set the buffer uptodate so the page and
607 				 * buffer states do not become out of sync.
608 				 */
609 				set_buffer_uptodate(tbh);
610 			}
611 		}
612 	} else /* if (unlikely(err)) */ {
613 		/* Clean the buffers. */
614 		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
615 			clear_buffer_dirty(bhs[i_bhs]);
616 	}
617 	/* Current state: all buffers are clean, unlocked, and uptodate. */
618 	/* Remove the mst protection fixups again. */
619 	post_write_mst_fixup((NTFS_RECORD*)kmirr);
620 	flush_dcache_page(page);
621 	SetPageUptodate(page);
622 	unlock_page(page);
623 	ntfs_unmap_page(page);
624 	if (likely(!err)) {
625 		ntfs_debug("Done.");
626 	} else {
627 		ntfs_error(vol->sb, "I/O error while writing mft mirror "
628 				"record 0x%lx!", mft_no);
629 err_out:
630 		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
631 				"code %i).  Volume will be left marked dirty "
632 				"on umount.  Run ntfsfix on the partition "
633 				"after umounting to correct this.", -err);
634 		NVolSetErrors(vol);
635 	}
636 	return err;
637 }
638 
639 /**
640  * write_mft_record_nolock - write out a mapped (extent) mft record
641  * @ni:		ntfs inode describing the mapped (extent) mft record
642  * @m:		mapped (extent) mft record to write
643  * @sync:	if true, wait for i/o completion
644  *
645  * Write the mapped (extent) mft record @m described by the (regular or extent)
646  * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
647  * the mft mirror, that is also updated.
648  *
649  * We only write the mft record if the ntfs inode @ni is dirty and the first
650  * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
651  * of subsequent buffers because we could have raced with
652  * fs/ntfs/aops.c::mark_ntfs_record_dirty().
653  *
654  * On success, clean the mft record and return 0.  On error, leave the mft
655  * record dirty and return -errno.
656  *
657  * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
658  * However, if the mft record has a counterpart in the mft mirror and @sync is
659  * true, we write the mft record, wait for i/o completion, and only then write
660  * the mft mirror copy.  This ensures that if the system crashes either the mft
661  * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
662  * false on the other hand, we start i/o on both and then wait for completion
663  * on them.  This provides a speedup but no longer guarantees that you will end
664  * up with a self-consistent mft record in the case of a crash but if you asked
665  * for asynchronous writing you probably do not care about that anyway.
666  *
667  * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
668  * schedule i/o via ->writepage or do it via kntfsd or whatever.
669  */
670 int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
671 {
672 	ntfs_volume *vol = ni->vol;
673 	struct page *page = ni->page;
674 	unsigned int blocksize = vol->sb->s_blocksize;
675 	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
676 	int max_bhs = vol->mft_record_size / blocksize;
677 	struct buffer_head *bhs[max_bhs];
678 	struct buffer_head *bh, *head;
679 	runlist_element *rl;
680 	unsigned int block_start, block_end, m_start, m_end;
681 	int i_bhs, nr_bhs, err = 0;
682 
683 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
684 	BUG_ON(NInoAttr(ni));
685 	BUG_ON(!max_bhs);
686 	BUG_ON(!PageLocked(page));
687 	/*
688 	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
689 	 * mark it as clean now so that it can be redirtied later on if needed.
690 	 * There is no danger of races since the caller is holding the locks
691 	 * for the mft record @m and the page it is in.
692 	 */
693 	if (!NInoTestClearDirty(ni))
694 		goto done;
695 	bh = head = page_buffers(page);
696 	BUG_ON(!bh);
697 	rl = NULL;
698 	nr_bhs = 0;
699 	block_start = 0;
700 	m_start = ni->page_ofs;
701 	m_end = m_start + vol->mft_record_size;
702 	do {
703 		block_end = block_start + blocksize;
704 		/* If the buffer is outside the mft record, skip it. */
705 		if (block_end <= m_start)
706 			continue;
707 		if (unlikely(block_start >= m_end))
708 			break;
709 		/*
710 		 * If this block is not the first one in the record, we ignore
711 		 * the buffer's dirty state because we could have raced with a
712 		 * parallel mark_ntfs_record_dirty().
713 		 */
714 		if (block_start == m_start) {
715 			/* This block is the first one in the record. */
716 			if (!buffer_dirty(bh)) {
717 				BUG_ON(nr_bhs);
718 				/* Clean records are not written out. */
719 				break;
720 			}
721 		}
722 		/* Need to map the buffer if it is not mapped already. */
723 		if (unlikely(!buffer_mapped(bh))) {
724 			VCN vcn;
725 			LCN lcn;
726 			unsigned int vcn_ofs;
727 
728 			bh->b_bdev = vol->sb->s_bdev;
729 			/* Obtain the vcn and offset of the current block. */
730 			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
731 					(block_start - m_start);
732 			vcn_ofs = vcn & vol->cluster_size_mask;
733 			vcn >>= vol->cluster_size_bits;
734 			if (!rl) {
735 				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
736 				rl = NTFS_I(vol->mft_ino)->runlist.rl;
737 				BUG_ON(!rl);
738 			}
739 			/* Seek to element containing target vcn. */
740 			while (rl->length && rl[1].vcn <= vcn)
741 				rl++;
742 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
743 			/* For $MFT, only lcn >= 0 is a successful remap. */
744 			if (likely(lcn >= 0)) {
745 				/* Setup buffer head to correct block. */
746 				bh->b_blocknr = ((lcn <<
747 						vol->cluster_size_bits) +
748 						vcn_ofs) >> blocksize_bits;
749 				set_buffer_mapped(bh);
750 			} else {
751 				bh->b_blocknr = -1;
752 				ntfs_error(vol->sb, "Cannot write mft record "
753 						"0x%lx because its location "
754 						"on disk could not be "
755 						"determined (error code %lli).",
756 						ni->mft_no, (long long)lcn);
757 				err = -EIO;
758 			}
759 		}
760 		BUG_ON(!buffer_uptodate(bh));
761 		BUG_ON(!nr_bhs && (m_start != block_start));
762 		BUG_ON(nr_bhs >= max_bhs);
763 		bhs[nr_bhs++] = bh;
764 		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
765 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
766 	if (unlikely(rl))
767 		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
768 	if (!nr_bhs)
769 		goto done;
770 	if (unlikely(err))
771 		goto cleanup_out;
772 	/* Apply the mst protection fixups. */
773 	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
774 	if (err) {
775 		ntfs_error(vol->sb, "Failed to apply mst fixups!");
776 		goto cleanup_out;
777 	}
778 	flush_dcache_mft_record_page(ni);
779 	/* Lock buffers and start synchronous write i/o on them. */
780 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
781 		struct buffer_head *tbh = bhs[i_bhs];
782 
783 		if (!trylock_buffer(tbh))
784 			BUG();
785 		BUG_ON(!buffer_uptodate(tbh));
786 		clear_buffer_dirty(tbh);
787 		get_bh(tbh);
788 		tbh->b_end_io = end_buffer_write_sync;
789 		submit_bh(REQ_OP_WRITE, 0, tbh);
790 	}
791 	/* Synchronize the mft mirror now if not @sync. */
792 	if (!sync && ni->mft_no < vol->mftmirr_size)
793 		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
794 	/* Wait on i/o completion of buffers. */
795 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
796 		struct buffer_head *tbh = bhs[i_bhs];
797 
798 		wait_on_buffer(tbh);
799 		if (unlikely(!buffer_uptodate(tbh))) {
800 			err = -EIO;
801 			/*
802 			 * Set the buffer uptodate so the page and buffer
803 			 * states do not become out of sync.
804 			 */
805 			if (PageUptodate(page))
806 				set_buffer_uptodate(tbh);
807 		}
808 	}
809 	/* If @sync, now synchronize the mft mirror. */
810 	if (sync && ni->mft_no < vol->mftmirr_size)
811 		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
812 	/* Remove the mst protection fixups again. */
813 	post_write_mst_fixup((NTFS_RECORD*)m);
814 	flush_dcache_mft_record_page(ni);
815 	if (unlikely(err)) {
816 		/* I/O error during writing.  This is really bad! */
817 		ntfs_error(vol->sb, "I/O error while writing mft record "
818 				"0x%lx!  Marking base inode as bad.  You "
819 				"should unmount the volume and run chkdsk.",
820 				ni->mft_no);
821 		goto err_out;
822 	}
823 done:
824 	ntfs_debug("Done.");
825 	return 0;
826 cleanup_out:
827 	/* Clean the buffers. */
828 	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
829 		clear_buffer_dirty(bhs[i_bhs]);
830 err_out:
831 	/*
832 	 * Current state: all buffers are clean, unlocked, and uptodate.
833 	 * The caller should mark the base inode as bad so that no more i/o
834 	 * happens.  ->clear_inode() will still be invoked so all extent inodes
835 	 * and other allocated memory will be freed.
836 	 */
837 	if (err == -ENOMEM) {
838 		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
839 				"Redirtying so the write is retried later.");
840 		mark_mft_record_dirty(ni);
841 		err = 0;
842 	} else
843 		NVolSetErrors(vol);
844 	return err;
845 }
846 
847 /**
848  * ntfs_may_write_mft_record - check if an mft record may be written out
849  * @vol:	[IN]  ntfs volume on which the mft record to check resides
850  * @mft_no:	[IN]  mft record number of the mft record to check
851  * @m:		[IN]  mapped mft record to check
852  * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
853  *
854  * Check if the mapped (base or extent) mft record @m with mft record number
855  * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
856  * and possible the ntfs inode of the mft record is locked and the base vfs
857  * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
858  * caller is responsible for unlocking the ntfs inode and unpinning the base
859  * vfs inode.
860  *
861  * Return 'true' if the mft record may be written out and 'false' if not.
862  *
863  * The caller has locked the page and cleared the uptodate flag on it which
864  * means that we can safely write out any dirty mft records that do not have
865  * their inodes in icache as determined by ilookup5() as anyone
866  * opening/creating such an inode would block when attempting to map the mft
867  * record in read_cache_page() until we are finished with the write out.
868  *
869  * Here is a description of the tests we perform:
870  *
871  * If the inode is found in icache we know the mft record must be a base mft
872  * record.  If it is dirty, we do not write it and return 'false' as the vfs
873  * inode write paths will result in the access times being updated which would
874  * cause the base mft record to be redirtied and written out again.  (We know
875  * the access time update will modify the base mft record because Windows
876  * chkdsk complains if the standard information attribute is not in the base
877  * mft record.)
878  *
879  * If the inode is in icache and not dirty, we attempt to lock the mft record
880  * and if we find the lock was already taken, it is not safe to write the mft
881  * record and we return 'false'.
882  *
883  * If we manage to obtain the lock we have exclusive access to the mft record,
884  * which also allows us safe writeout of the mft record.  We then set
885  * @locked_ni to the locked ntfs inode and return 'true'.
886  *
887  * Note we cannot just lock the mft record and sleep while waiting for the lock
888  * because this would deadlock due to lock reversal (normally the mft record is
889  * locked before the page is locked but we already have the page locked here
890  * when we try to lock the mft record).
891  *
892  * If the inode is not in icache we need to perform further checks.
893  *
894  * If the mft record is not a FILE record or it is a base mft record, we can
895  * safely write it and return 'true'.
896  *
897  * We now know the mft record is an extent mft record.  We check if the inode
898  * corresponding to its base mft record is in icache and obtain a reference to
899  * it if it is.  If it is not, we can safely write it and return 'true'.
900  *
901  * We now have the base inode for the extent mft record.  We check if it has an
902  * ntfs inode for the extent mft record attached and if not it is safe to write
903  * the extent mft record and we return 'true'.
904  *
905  * The ntfs inode for the extent mft record is attached to the base inode so we
906  * attempt to lock the extent mft record and if we find the lock was already
907  * taken, it is not safe to write the extent mft record and we return 'false'.
908  *
909  * If we manage to obtain the lock we have exclusive access to the extent mft
910  * record, which also allows us safe writeout of the extent mft record.  We
911  * set the ntfs inode of the extent mft record clean and then set @locked_ni to
912  * the now locked ntfs inode and return 'true'.
913  *
914  * Note, the reason for actually writing dirty mft records here and not just
915  * relying on the vfs inode dirty code paths is that we can have mft records
916  * modified without them ever having actual inodes in memory.  Also we can have
917  * dirty mft records with clean ntfs inodes in memory.  None of the described
918  * cases would result in the dirty mft records being written out if we only
919  * relied on the vfs inode dirty code paths.  And these cases can really occur
920  * during allocation of new mft records and in particular when the
921  * initialized_size of the $MFT/$DATA attribute is extended and the new space
922  * is initialized using ntfs_mft_record_format().  The clean inode can then
923  * appear if the mft record is reused for a new inode before it got written
924  * out.
925  */
926 bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
927 		const MFT_RECORD *m, ntfs_inode **locked_ni)
928 {
929 	struct super_block *sb = vol->sb;
930 	struct inode *mft_vi = vol->mft_ino;
931 	struct inode *vi;
932 	ntfs_inode *ni, *eni, **extent_nis;
933 	int i;
934 	ntfs_attr na;
935 
936 	ntfs_debug("Entering for inode 0x%lx.", mft_no);
937 	/*
938 	 * Normally we do not return a locked inode so set @locked_ni to NULL.
939 	 */
940 	BUG_ON(!locked_ni);
941 	*locked_ni = NULL;
942 	/*
943 	 * Check if the inode corresponding to this mft record is in the VFS
944 	 * inode cache and obtain a reference to it if it is.
945 	 */
946 	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
947 	na.mft_no = mft_no;
948 	na.name = NULL;
949 	na.name_len = 0;
950 	na.type = AT_UNUSED;
951 	/*
952 	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
953 	 * we get here for it rather often.
954 	 */
955 	if (!mft_no) {
956 		/* Balance the below iput(). */
957 		vi = igrab(mft_vi);
958 		BUG_ON(vi != mft_vi);
959 	} else {
960 		/*
961 		 * Have to use ilookup5_nowait() since ilookup5() waits for the
962 		 * inode lock which causes ntfs to deadlock when a concurrent
963 		 * inode write via the inode dirty code paths and the page
964 		 * dirty code path of the inode dirty code path when writing
965 		 * $MFT occurs.
966 		 */
967 		vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
968 	}
969 	if (vi) {
970 		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
971 		/* The inode is in icache. */
972 		ni = NTFS_I(vi);
973 		/* Take a reference to the ntfs inode. */
974 		atomic_inc(&ni->count);
975 		/* If the inode is dirty, do not write this record. */
976 		if (NInoDirty(ni)) {
977 			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
978 					mft_no);
979 			atomic_dec(&ni->count);
980 			iput(vi);
981 			return false;
982 		}
983 		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
984 		/* The inode is not dirty, try to take the mft record lock. */
985 		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
986 			ntfs_debug("Mft record 0x%lx is already locked, do "
987 					"not write it.", mft_no);
988 			atomic_dec(&ni->count);
989 			iput(vi);
990 			return false;
991 		}
992 		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
993 				mft_no);
994 		/*
995 		 * The write has to occur while we hold the mft record lock so
996 		 * return the locked ntfs inode.
997 		 */
998 		*locked_ni = ni;
999 		return true;
1000 	}
1001 	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1002 	/* The inode is not in icache. */
1003 	/* Write the record if it is not a mft record (type "FILE"). */
1004 	if (!ntfs_is_mft_record(m->magic)) {
1005 		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1006 				mft_no);
1007 		return true;
1008 	}
1009 	/* Write the mft record if it is a base inode. */
1010 	if (!m->base_mft_record) {
1011 		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1012 				mft_no);
1013 		return true;
1014 	}
1015 	/*
1016 	 * This is an extent mft record.  Check if the inode corresponding to
1017 	 * its base mft record is in icache and obtain a reference to it if it
1018 	 * is.
1019 	 */
1020 	na.mft_no = MREF_LE(m->base_mft_record);
1021 	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1022 			"inode 0x%lx in icache.", mft_no, na.mft_no);
1023 	if (!na.mft_no) {
1024 		/* Balance the below iput(). */
1025 		vi = igrab(mft_vi);
1026 		BUG_ON(vi != mft_vi);
1027 	} else
1028 		vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1029 				&na);
1030 	if (!vi) {
1031 		/*
1032 		 * The base inode is not in icache, write this extent mft
1033 		 * record.
1034 		 */
1035 		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1036 				"extent record.", na.mft_no);
1037 		return true;
1038 	}
1039 	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1040 	/*
1041 	 * The base inode is in icache.  Check if it has the extent inode
1042 	 * corresponding to this extent mft record attached.
1043 	 */
1044 	ni = NTFS_I(vi);
1045 	mutex_lock(&ni->extent_lock);
1046 	if (ni->nr_extents <= 0) {
1047 		/*
1048 		 * The base inode has no attached extent inodes, write this
1049 		 * extent mft record.
1050 		 */
1051 		mutex_unlock(&ni->extent_lock);
1052 		iput(vi);
1053 		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1054 				"write the extent record.", na.mft_no);
1055 		return true;
1056 	}
1057 	/* Iterate over the attached extent inodes. */
1058 	extent_nis = ni->ext.extent_ntfs_inos;
1059 	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1060 		if (mft_no == extent_nis[i]->mft_no) {
1061 			/*
1062 			 * Found the extent inode corresponding to this extent
1063 			 * mft record.
1064 			 */
1065 			eni = extent_nis[i];
1066 			break;
1067 		}
1068 	}
1069 	/*
1070 	 * If the extent inode was not attached to the base inode, write this
1071 	 * extent mft record.
1072 	 */
1073 	if (!eni) {
1074 		mutex_unlock(&ni->extent_lock);
1075 		iput(vi);
1076 		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1077 				"inode 0x%lx, write the extent record.",
1078 				mft_no, na.mft_no);
1079 		return true;
1080 	}
1081 	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1082 			mft_no, na.mft_no);
1083 	/* Take a reference to the extent ntfs inode. */
1084 	atomic_inc(&eni->count);
1085 	mutex_unlock(&ni->extent_lock);
1086 	/*
1087 	 * Found the extent inode coresponding to this extent mft record.
1088 	 * Try to take the mft record lock.
1089 	 */
1090 	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1091 		atomic_dec(&eni->count);
1092 		iput(vi);
1093 		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1094 				"not write it.", mft_no);
1095 		return false;
1096 	}
1097 	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1098 			mft_no);
1099 	if (NInoTestClearDirty(eni))
1100 		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1101 				mft_no);
1102 	/*
1103 	 * The write has to occur while we hold the mft record lock so return
1104 	 * the locked extent ntfs inode.
1105 	 */
1106 	*locked_ni = eni;
1107 	return true;
1108 }
1109 
1110 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1111 		"chkdsk.";
1112 
1113 /**
1114  * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1115  * @vol:	volume on which to search for a free mft record
1116  * @base_ni:	open base inode if allocating an extent mft record or NULL
1117  *
1118  * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1119  * @vol.
1120  *
1121  * If @base_ni is NULL start the search at the default allocator position.
1122  *
1123  * If @base_ni is not NULL start the search at the mft record after the base
1124  * mft record @base_ni.
1125  *
1126  * Return the free mft record on success and -errno on error.  An error code of
1127  * -ENOSPC means that there are no free mft records in the currently
1128  * initialized mft bitmap.
1129  *
1130  * Locking: Caller must hold vol->mftbmp_lock for writing.
1131  */
1132 static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1133 		ntfs_inode *base_ni)
1134 {
1135 	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1136 	unsigned long flags;
1137 	struct address_space *mftbmp_mapping;
1138 	u8 *buf, *byte;
1139 	struct page *page;
1140 	unsigned int page_ofs, size;
1141 	u8 pass, b;
1142 
1143 	ntfs_debug("Searching for free mft record in the currently "
1144 			"initialized mft bitmap.");
1145 	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1146 	/*
1147 	 * Set the end of the pass making sure we do not overflow the mft
1148 	 * bitmap.
1149 	 */
1150 	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1151 	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1152 			vol->mft_record_size_bits;
1153 	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1154 	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1155 	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1156 	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1157 	if (pass_end > ll)
1158 		pass_end = ll;
1159 	pass = 1;
1160 	if (!base_ni)
1161 		data_pos = vol->mft_data_pos;
1162 	else
1163 		data_pos = base_ni->mft_no + 1;
1164 	if (data_pos < 24)
1165 		data_pos = 24;
1166 	if (data_pos >= pass_end) {
1167 		data_pos = 24;
1168 		pass = 2;
1169 		/* This happens on a freshly formatted volume. */
1170 		if (data_pos >= pass_end)
1171 			return -ENOSPC;
1172 	}
1173 	pass_start = data_pos;
1174 	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1175 			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1176 			(long long)pass_start, (long long)pass_end,
1177 			(long long)data_pos);
1178 	/* Loop until a free mft record is found. */
1179 	for (; pass <= 2;) {
1180 		/* Cap size to pass_end. */
1181 		ofs = data_pos >> 3;
1182 		page_ofs = ofs & ~PAGE_MASK;
1183 		size = PAGE_SIZE - page_ofs;
1184 		ll = ((pass_end + 7) >> 3) - ofs;
1185 		if (size > ll)
1186 			size = ll;
1187 		size <<= 3;
1188 		/*
1189 		 * If we are still within the active pass, search the next page
1190 		 * for a zero bit.
1191 		 */
1192 		if (size) {
1193 			page = ntfs_map_page(mftbmp_mapping,
1194 					ofs >> PAGE_SHIFT);
1195 			if (IS_ERR(page)) {
1196 				ntfs_error(vol->sb, "Failed to read mft "
1197 						"bitmap, aborting.");
1198 				return PTR_ERR(page);
1199 			}
1200 			buf = (u8*)page_address(page) + page_ofs;
1201 			bit = data_pos & 7;
1202 			data_pos &= ~7ull;
1203 			ntfs_debug("Before inner for loop: size 0x%x, "
1204 					"data_pos 0x%llx, bit 0x%llx", size,
1205 					(long long)data_pos, (long long)bit);
1206 			for (; bit < size && data_pos + bit < pass_end;
1207 					bit &= ~7ull, bit += 8) {
1208 				byte = buf + (bit >> 3);
1209 				if (*byte == 0xff)
1210 					continue;
1211 				b = ffz((unsigned long)*byte);
1212 				if (b < 8 && b >= (bit & 7)) {
1213 					ll = data_pos + (bit & ~7ull) + b;
1214 					if (unlikely(ll > (1ll << 32))) {
1215 						ntfs_unmap_page(page);
1216 						return -ENOSPC;
1217 					}
1218 					*byte |= 1 << b;
1219 					flush_dcache_page(page);
1220 					set_page_dirty(page);
1221 					ntfs_unmap_page(page);
1222 					ntfs_debug("Done.  (Found and "
1223 							"allocated mft record "
1224 							"0x%llx.)",
1225 							(long long)ll);
1226 					return ll;
1227 				}
1228 			}
1229 			ntfs_debug("After inner for loop: size 0x%x, "
1230 					"data_pos 0x%llx, bit 0x%llx", size,
1231 					(long long)data_pos, (long long)bit);
1232 			data_pos += size;
1233 			ntfs_unmap_page(page);
1234 			/*
1235 			 * If the end of the pass has not been reached yet,
1236 			 * continue searching the mft bitmap for a zero bit.
1237 			 */
1238 			if (data_pos < pass_end)
1239 				continue;
1240 		}
1241 		/* Do the next pass. */
1242 		if (++pass == 2) {
1243 			/*
1244 			 * Starting the second pass, in which we scan the first
1245 			 * part of the zone which we omitted earlier.
1246 			 */
1247 			pass_end = pass_start;
1248 			data_pos = pass_start = 24;
1249 			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1250 					"0x%llx.", pass, (long long)pass_start,
1251 					(long long)pass_end);
1252 			if (data_pos >= pass_end)
1253 				break;
1254 		}
1255 	}
1256 	/* No free mft records in currently initialized mft bitmap. */
1257 	ntfs_debug("Done.  (No free mft records left in currently initialized "
1258 			"mft bitmap.)");
1259 	return -ENOSPC;
1260 }
1261 
1262 /**
1263  * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1264  * @vol:	volume on which to extend the mft bitmap attribute
1265  *
1266  * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1267  *
1268  * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1269  * data_size.
1270  *
1271  * Return 0 on success and -errno on error.
1272  *
1273  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1274  *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1275  *	      writing and releases it before returning.
1276  *	    - This function takes vol->lcnbmp_lock for writing and releases it
1277  *	      before returning.
1278  */
1279 static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1280 {
1281 	LCN lcn;
1282 	s64 ll;
1283 	unsigned long flags;
1284 	struct page *page;
1285 	ntfs_inode *mft_ni, *mftbmp_ni;
1286 	runlist_element *rl, *rl2 = NULL;
1287 	ntfs_attr_search_ctx *ctx = NULL;
1288 	MFT_RECORD *mrec;
1289 	ATTR_RECORD *a = NULL;
1290 	int ret, mp_size;
1291 	u32 old_alen = 0;
1292 	u8 *b, tb;
1293 	struct {
1294 		u8 added_cluster:1;
1295 		u8 added_run:1;
1296 		u8 mp_rebuilt:1;
1297 	} status = { 0, 0, 0 };
1298 
1299 	ntfs_debug("Extending mft bitmap allocation.");
1300 	mft_ni = NTFS_I(vol->mft_ino);
1301 	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1302 	/*
1303 	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1304 	 * mft bitmap cannot be zero so we are ok to do this.
1305 	 */
1306 	down_write(&mftbmp_ni->runlist.lock);
1307 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1308 	ll = mftbmp_ni->allocated_size;
1309 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1310 	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1311 			(ll - 1) >> vol->cluster_size_bits, NULL);
1312 	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1313 		up_write(&mftbmp_ni->runlist.lock);
1314 		ntfs_error(vol->sb, "Failed to determine last allocated "
1315 				"cluster of mft bitmap attribute.");
1316 		if (!IS_ERR(rl))
1317 			ret = -EIO;
1318 		else
1319 			ret = PTR_ERR(rl);
1320 		return ret;
1321 	}
1322 	lcn = rl->lcn + rl->length;
1323 	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1324 			(long long)lcn);
1325 	/*
1326 	 * Attempt to get the cluster following the last allocated cluster by
1327 	 * hand as it may be in the MFT zone so the allocator would not give it
1328 	 * to us.
1329 	 */
1330 	ll = lcn >> 3;
1331 	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1332 			ll >> PAGE_SHIFT);
1333 	if (IS_ERR(page)) {
1334 		up_write(&mftbmp_ni->runlist.lock);
1335 		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1336 		return PTR_ERR(page);
1337 	}
1338 	b = (u8*)page_address(page) + (ll & ~PAGE_MASK);
1339 	tb = 1 << (lcn & 7ull);
1340 	down_write(&vol->lcnbmp_lock);
1341 	if (*b != 0xff && !(*b & tb)) {
1342 		/* Next cluster is free, allocate it. */
1343 		*b |= tb;
1344 		flush_dcache_page(page);
1345 		set_page_dirty(page);
1346 		up_write(&vol->lcnbmp_lock);
1347 		ntfs_unmap_page(page);
1348 		/* Update the mft bitmap runlist. */
1349 		rl->length++;
1350 		rl[1].vcn++;
1351 		status.added_cluster = 1;
1352 		ntfs_debug("Appending one cluster to mft bitmap.");
1353 	} else {
1354 		up_write(&vol->lcnbmp_lock);
1355 		ntfs_unmap_page(page);
1356 		/* Allocate a cluster from the DATA_ZONE. */
1357 		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1358 				true);
1359 		if (IS_ERR(rl2)) {
1360 			up_write(&mftbmp_ni->runlist.lock);
1361 			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1362 					"the mft bitmap.");
1363 			return PTR_ERR(rl2);
1364 		}
1365 		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1366 		if (IS_ERR(rl)) {
1367 			up_write(&mftbmp_ni->runlist.lock);
1368 			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1369 					"bitmap.");
1370 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1371 				ntfs_error(vol->sb, "Failed to deallocate "
1372 						"allocated cluster.%s", es);
1373 				NVolSetErrors(vol);
1374 			}
1375 			ntfs_free(rl2);
1376 			return PTR_ERR(rl);
1377 		}
1378 		mftbmp_ni->runlist.rl = rl;
1379 		status.added_run = 1;
1380 		ntfs_debug("Adding one run to mft bitmap.");
1381 		/* Find the last run in the new runlist. */
1382 		for (; rl[1].length; rl++)
1383 			;
1384 	}
1385 	/*
1386 	 * Update the attribute record as well.  Note: @rl is the last
1387 	 * (non-terminator) runlist element of mft bitmap.
1388 	 */
1389 	mrec = map_mft_record(mft_ni);
1390 	if (IS_ERR(mrec)) {
1391 		ntfs_error(vol->sb, "Failed to map mft record.");
1392 		ret = PTR_ERR(mrec);
1393 		goto undo_alloc;
1394 	}
1395 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1396 	if (unlikely(!ctx)) {
1397 		ntfs_error(vol->sb, "Failed to get search context.");
1398 		ret = -ENOMEM;
1399 		goto undo_alloc;
1400 	}
1401 	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1402 			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1403 			0, ctx);
1404 	if (unlikely(ret)) {
1405 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1406 				"mft bitmap attribute.");
1407 		if (ret == -ENOENT)
1408 			ret = -EIO;
1409 		goto undo_alloc;
1410 	}
1411 	a = ctx->attr;
1412 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1413 	/* Search back for the previous last allocated cluster of mft bitmap. */
1414 	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1415 		if (ll >= rl2->vcn)
1416 			break;
1417 	}
1418 	BUG_ON(ll < rl2->vcn);
1419 	BUG_ON(ll >= rl2->vcn + rl2->length);
1420 	/* Get the size for the new mapping pairs array for this extent. */
1421 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1422 	if (unlikely(mp_size <= 0)) {
1423 		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1424 				"mft bitmap attribute extent.");
1425 		ret = mp_size;
1426 		if (!ret)
1427 			ret = -EIO;
1428 		goto undo_alloc;
1429 	}
1430 	/* Expand the attribute record if necessary. */
1431 	old_alen = le32_to_cpu(a->length);
1432 	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1433 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1434 	if (unlikely(ret)) {
1435 		if (ret != -ENOSPC) {
1436 			ntfs_error(vol->sb, "Failed to resize attribute "
1437 					"record for mft bitmap attribute.");
1438 			goto undo_alloc;
1439 		}
1440 		// TODO: Deal with this by moving this extent to a new mft
1441 		// record or by starting a new extent in a new mft record or by
1442 		// moving other attributes out of this mft record.
1443 		// Note: It will need to be a special mft record and if none of
1444 		// those are available it gets rather complicated...
1445 		ntfs_error(vol->sb, "Not enough space in this mft record to "
1446 				"accommodate extended mft bitmap attribute "
1447 				"extent.  Cannot handle this yet.");
1448 		ret = -EOPNOTSUPP;
1449 		goto undo_alloc;
1450 	}
1451 	status.mp_rebuilt = 1;
1452 	/* Generate the mapping pairs array directly into the attr record. */
1453 	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1454 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1455 			mp_size, rl2, ll, -1, NULL);
1456 	if (unlikely(ret)) {
1457 		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1458 				"mft bitmap attribute.");
1459 		goto undo_alloc;
1460 	}
1461 	/* Update the highest_vcn. */
1462 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1463 	/*
1464 	 * We now have extended the mft bitmap allocated_size by one cluster.
1465 	 * Reflect this in the ntfs_inode structure and the attribute record.
1466 	 */
1467 	if (a->data.non_resident.lowest_vcn) {
1468 		/*
1469 		 * We are not in the first attribute extent, switch to it, but
1470 		 * first ensure the changes will make it to disk later.
1471 		 */
1472 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1473 		mark_mft_record_dirty(ctx->ntfs_ino);
1474 		ntfs_attr_reinit_search_ctx(ctx);
1475 		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1476 				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1477 				0, ctx);
1478 		if (unlikely(ret)) {
1479 			ntfs_error(vol->sb, "Failed to find first attribute "
1480 					"extent of mft bitmap attribute.");
1481 			goto restore_undo_alloc;
1482 		}
1483 		a = ctx->attr;
1484 	}
1485 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1486 	mftbmp_ni->allocated_size += vol->cluster_size;
1487 	a->data.non_resident.allocated_size =
1488 			cpu_to_sle64(mftbmp_ni->allocated_size);
1489 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1490 	/* Ensure the changes make it to disk. */
1491 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1492 	mark_mft_record_dirty(ctx->ntfs_ino);
1493 	ntfs_attr_put_search_ctx(ctx);
1494 	unmap_mft_record(mft_ni);
1495 	up_write(&mftbmp_ni->runlist.lock);
1496 	ntfs_debug("Done.");
1497 	return 0;
1498 restore_undo_alloc:
1499 	ntfs_attr_reinit_search_ctx(ctx);
1500 	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1501 			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1502 			0, ctx)) {
1503 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1504 				"mft bitmap attribute.%s", es);
1505 		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1506 		mftbmp_ni->allocated_size += vol->cluster_size;
1507 		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1508 		ntfs_attr_put_search_ctx(ctx);
1509 		unmap_mft_record(mft_ni);
1510 		up_write(&mftbmp_ni->runlist.lock);
1511 		/*
1512 		 * The only thing that is now wrong is ->allocated_size of the
1513 		 * base attribute extent which chkdsk should be able to fix.
1514 		 */
1515 		NVolSetErrors(vol);
1516 		return ret;
1517 	}
1518 	a = ctx->attr;
1519 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1520 undo_alloc:
1521 	if (status.added_cluster) {
1522 		/* Truncate the last run in the runlist by one cluster. */
1523 		rl->length--;
1524 		rl[1].vcn--;
1525 	} else if (status.added_run) {
1526 		lcn = rl->lcn;
1527 		/* Remove the last run from the runlist. */
1528 		rl->lcn = rl[1].lcn;
1529 		rl->length = 0;
1530 	}
1531 	/* Deallocate the cluster. */
1532 	down_write(&vol->lcnbmp_lock);
1533 	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1534 		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1535 		NVolSetErrors(vol);
1536 	}
1537 	up_write(&vol->lcnbmp_lock);
1538 	if (status.mp_rebuilt) {
1539 		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1540 				a->data.non_resident.mapping_pairs_offset),
1541 				old_alen - le16_to_cpu(
1542 				a->data.non_resident.mapping_pairs_offset),
1543 				rl2, ll, -1, NULL)) {
1544 			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1545 					"array.%s", es);
1546 			NVolSetErrors(vol);
1547 		}
1548 		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1549 			ntfs_error(vol->sb, "Failed to restore attribute "
1550 					"record.%s", es);
1551 			NVolSetErrors(vol);
1552 		}
1553 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1554 		mark_mft_record_dirty(ctx->ntfs_ino);
1555 	}
1556 	if (ctx)
1557 		ntfs_attr_put_search_ctx(ctx);
1558 	if (!IS_ERR(mrec))
1559 		unmap_mft_record(mft_ni);
1560 	up_write(&mftbmp_ni->runlist.lock);
1561 	return ret;
1562 }
1563 
1564 /**
1565  * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1566  * @vol:	volume on which to extend the mft bitmap attribute
1567  *
1568  * Extend the initialized portion of the mft bitmap attribute on the ntfs
1569  * volume @vol by 8 bytes.
1570  *
1571  * Note:  Only changes initialized_size and data_size, i.e. requires that
1572  * allocated_size is big enough to fit the new initialized_size.
1573  *
1574  * Return 0 on success and -error on error.
1575  *
1576  * Locking: Caller must hold vol->mftbmp_lock for writing.
1577  */
1578 static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1579 {
1580 	s64 old_data_size, old_initialized_size;
1581 	unsigned long flags;
1582 	struct inode *mftbmp_vi;
1583 	ntfs_inode *mft_ni, *mftbmp_ni;
1584 	ntfs_attr_search_ctx *ctx;
1585 	MFT_RECORD *mrec;
1586 	ATTR_RECORD *a;
1587 	int ret;
1588 
1589 	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1590 	mft_ni = NTFS_I(vol->mft_ino);
1591 	mftbmp_vi = vol->mftbmp_ino;
1592 	mftbmp_ni = NTFS_I(mftbmp_vi);
1593 	/* Get the attribute record. */
1594 	mrec = map_mft_record(mft_ni);
1595 	if (IS_ERR(mrec)) {
1596 		ntfs_error(vol->sb, "Failed to map mft record.");
1597 		return PTR_ERR(mrec);
1598 	}
1599 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1600 	if (unlikely(!ctx)) {
1601 		ntfs_error(vol->sb, "Failed to get search context.");
1602 		ret = -ENOMEM;
1603 		goto unm_err_out;
1604 	}
1605 	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1606 			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1607 	if (unlikely(ret)) {
1608 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1609 				"mft bitmap attribute.");
1610 		if (ret == -ENOENT)
1611 			ret = -EIO;
1612 		goto put_err_out;
1613 	}
1614 	a = ctx->attr;
1615 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1616 	old_data_size = i_size_read(mftbmp_vi);
1617 	old_initialized_size = mftbmp_ni->initialized_size;
1618 	/*
1619 	 * We can simply update the initialized_size before filling the space
1620 	 * with zeroes because the caller is holding the mft bitmap lock for
1621 	 * writing which ensures that no one else is trying to access the data.
1622 	 */
1623 	mftbmp_ni->initialized_size += 8;
1624 	a->data.non_resident.initialized_size =
1625 			cpu_to_sle64(mftbmp_ni->initialized_size);
1626 	if (mftbmp_ni->initialized_size > old_data_size) {
1627 		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1628 		a->data.non_resident.data_size =
1629 				cpu_to_sle64(mftbmp_ni->initialized_size);
1630 	}
1631 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1632 	/* Ensure the changes make it to disk. */
1633 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1634 	mark_mft_record_dirty(ctx->ntfs_ino);
1635 	ntfs_attr_put_search_ctx(ctx);
1636 	unmap_mft_record(mft_ni);
1637 	/* Initialize the mft bitmap attribute value with zeroes. */
1638 	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1639 	if (likely(!ret)) {
1640 		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1641 				"bitmap.");
1642 		return 0;
1643 	}
1644 	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1645 	/* Try to recover from the error. */
1646 	mrec = map_mft_record(mft_ni);
1647 	if (IS_ERR(mrec)) {
1648 		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1649 		NVolSetErrors(vol);
1650 		return ret;
1651 	}
1652 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1653 	if (unlikely(!ctx)) {
1654 		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1655 		NVolSetErrors(vol);
1656 		goto unm_err_out;
1657 	}
1658 	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1659 			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1660 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1661 				"mft bitmap attribute.%s", es);
1662 		NVolSetErrors(vol);
1663 put_err_out:
1664 		ntfs_attr_put_search_ctx(ctx);
1665 unm_err_out:
1666 		unmap_mft_record(mft_ni);
1667 		goto err_out;
1668 	}
1669 	a = ctx->attr;
1670 	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1671 	mftbmp_ni->initialized_size = old_initialized_size;
1672 	a->data.non_resident.initialized_size =
1673 			cpu_to_sle64(old_initialized_size);
1674 	if (i_size_read(mftbmp_vi) != old_data_size) {
1675 		i_size_write(mftbmp_vi, old_data_size);
1676 		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1677 	}
1678 	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1679 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1680 	mark_mft_record_dirty(ctx->ntfs_ino);
1681 	ntfs_attr_put_search_ctx(ctx);
1682 	unmap_mft_record(mft_ni);
1683 #ifdef DEBUG
1684 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1685 	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1686 			"data_size 0x%llx, initialized_size 0x%llx.",
1687 			(long long)mftbmp_ni->allocated_size,
1688 			(long long)i_size_read(mftbmp_vi),
1689 			(long long)mftbmp_ni->initialized_size);
1690 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1691 #endif /* DEBUG */
1692 err_out:
1693 	return ret;
1694 }
1695 
1696 /**
1697  * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1698  * @vol:	volume on which to extend the mft data attribute
1699  *
1700  * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1701  * worth of clusters or if not enough space for this by one mft record worth
1702  * of clusters.
1703  *
1704  * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1705  * data_size.
1706  *
1707  * Return 0 on success and -errno on error.
1708  *
1709  * Locking: - Caller must hold vol->mftbmp_lock for writing.
1710  *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1711  *	      writing and releases it before returning.
1712  *	    - This function calls functions which take vol->lcnbmp_lock for
1713  *	      writing and release it before returning.
1714  */
1715 static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1716 {
1717 	LCN lcn;
1718 	VCN old_last_vcn;
1719 	s64 min_nr, nr, ll;
1720 	unsigned long flags;
1721 	ntfs_inode *mft_ni;
1722 	runlist_element *rl, *rl2;
1723 	ntfs_attr_search_ctx *ctx = NULL;
1724 	MFT_RECORD *mrec;
1725 	ATTR_RECORD *a = NULL;
1726 	int ret, mp_size;
1727 	u32 old_alen = 0;
1728 	bool mp_rebuilt = false;
1729 
1730 	ntfs_debug("Extending mft data allocation.");
1731 	mft_ni = NTFS_I(vol->mft_ino);
1732 	/*
1733 	 * Determine the preferred allocation location, i.e. the last lcn of
1734 	 * the mft data attribute.  The allocated size of the mft data
1735 	 * attribute cannot be zero so we are ok to do this.
1736 	 */
1737 	down_write(&mft_ni->runlist.lock);
1738 	read_lock_irqsave(&mft_ni->size_lock, flags);
1739 	ll = mft_ni->allocated_size;
1740 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1741 	rl = ntfs_attr_find_vcn_nolock(mft_ni,
1742 			(ll - 1) >> vol->cluster_size_bits, NULL);
1743 	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1744 		up_write(&mft_ni->runlist.lock);
1745 		ntfs_error(vol->sb, "Failed to determine last allocated "
1746 				"cluster of mft data attribute.");
1747 		if (!IS_ERR(rl))
1748 			ret = -EIO;
1749 		else
1750 			ret = PTR_ERR(rl);
1751 		return ret;
1752 	}
1753 	lcn = rl->lcn + rl->length;
1754 	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1755 	/* Minimum allocation is one mft record worth of clusters. */
1756 	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1757 	if (!min_nr)
1758 		min_nr = 1;
1759 	/* Want to allocate 16 mft records worth of clusters. */
1760 	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1761 	if (!nr)
1762 		nr = min_nr;
1763 	/* Ensure we do not go above 2^32-1 mft records. */
1764 	read_lock_irqsave(&mft_ni->size_lock, flags);
1765 	ll = mft_ni->allocated_size;
1766 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1767 	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1768 			vol->mft_record_size_bits >= (1ll << 32))) {
1769 		nr = min_nr;
1770 		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1771 				vol->mft_record_size_bits >= (1ll << 32))) {
1772 			ntfs_warning(vol->sb, "Cannot allocate mft record "
1773 					"because the maximum number of inodes "
1774 					"(2^32) has already been reached.");
1775 			up_write(&mft_ni->runlist.lock);
1776 			return -ENOSPC;
1777 		}
1778 	}
1779 	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1780 			nr > min_nr ? "default" : "minimal", (long long)nr);
1781 	old_last_vcn = rl[1].vcn;
1782 	do {
1783 		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1784 				true);
1785 		if (likely(!IS_ERR(rl2)))
1786 			break;
1787 		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1788 			ntfs_error(vol->sb, "Failed to allocate the minimal "
1789 					"number of clusters (%lli) for the "
1790 					"mft data attribute.", (long long)nr);
1791 			up_write(&mft_ni->runlist.lock);
1792 			return PTR_ERR(rl2);
1793 		}
1794 		/*
1795 		 * There is not enough space to do the allocation, but there
1796 		 * might be enough space to do a minimal allocation so try that
1797 		 * before failing.
1798 		 */
1799 		nr = min_nr;
1800 		ntfs_debug("Retrying mft data allocation with minimal cluster "
1801 				"count %lli.", (long long)nr);
1802 	} while (1);
1803 	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1804 	if (IS_ERR(rl)) {
1805 		up_write(&mft_ni->runlist.lock);
1806 		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1807 				"attribute.");
1808 		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1809 			ntfs_error(vol->sb, "Failed to deallocate clusters "
1810 					"from the mft data attribute.%s", es);
1811 			NVolSetErrors(vol);
1812 		}
1813 		ntfs_free(rl2);
1814 		return PTR_ERR(rl);
1815 	}
1816 	mft_ni->runlist.rl = rl;
1817 	ntfs_debug("Allocated %lli clusters.", (long long)nr);
1818 	/* Find the last run in the new runlist. */
1819 	for (; rl[1].length; rl++)
1820 		;
1821 	/* Update the attribute record as well. */
1822 	mrec = map_mft_record(mft_ni);
1823 	if (IS_ERR(mrec)) {
1824 		ntfs_error(vol->sb, "Failed to map mft record.");
1825 		ret = PTR_ERR(mrec);
1826 		goto undo_alloc;
1827 	}
1828 	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1829 	if (unlikely(!ctx)) {
1830 		ntfs_error(vol->sb, "Failed to get search context.");
1831 		ret = -ENOMEM;
1832 		goto undo_alloc;
1833 	}
1834 	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1835 			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1836 	if (unlikely(ret)) {
1837 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1838 				"mft data attribute.");
1839 		if (ret == -ENOENT)
1840 			ret = -EIO;
1841 		goto undo_alloc;
1842 	}
1843 	a = ctx->attr;
1844 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1845 	/* Search back for the previous last allocated cluster of mft bitmap. */
1846 	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1847 		if (ll >= rl2->vcn)
1848 			break;
1849 	}
1850 	BUG_ON(ll < rl2->vcn);
1851 	BUG_ON(ll >= rl2->vcn + rl2->length);
1852 	/* Get the size for the new mapping pairs array for this extent. */
1853 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1854 	if (unlikely(mp_size <= 0)) {
1855 		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1856 				"mft data attribute extent.");
1857 		ret = mp_size;
1858 		if (!ret)
1859 			ret = -EIO;
1860 		goto undo_alloc;
1861 	}
1862 	/* Expand the attribute record if necessary. */
1863 	old_alen = le32_to_cpu(a->length);
1864 	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1865 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1866 	if (unlikely(ret)) {
1867 		if (ret != -ENOSPC) {
1868 			ntfs_error(vol->sb, "Failed to resize attribute "
1869 					"record for mft data attribute.");
1870 			goto undo_alloc;
1871 		}
1872 		// TODO: Deal with this by moving this extent to a new mft
1873 		// record or by starting a new extent in a new mft record or by
1874 		// moving other attributes out of this mft record.
1875 		// Note: Use the special reserved mft records and ensure that
1876 		// this extent is not required to find the mft record in
1877 		// question.  If no free special records left we would need to
1878 		// move an existing record away, insert ours in its place, and
1879 		// then place the moved record into the newly allocated space
1880 		// and we would then need to update all references to this mft
1881 		// record appropriately.  This is rather complicated...
1882 		ntfs_error(vol->sb, "Not enough space in this mft record to "
1883 				"accommodate extended mft data attribute "
1884 				"extent.  Cannot handle this yet.");
1885 		ret = -EOPNOTSUPP;
1886 		goto undo_alloc;
1887 	}
1888 	mp_rebuilt = true;
1889 	/* Generate the mapping pairs array directly into the attr record. */
1890 	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1891 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1892 			mp_size, rl2, ll, -1, NULL);
1893 	if (unlikely(ret)) {
1894 		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1895 				"mft data attribute.");
1896 		goto undo_alloc;
1897 	}
1898 	/* Update the highest_vcn. */
1899 	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1900 	/*
1901 	 * We now have extended the mft data allocated_size by nr clusters.
1902 	 * Reflect this in the ntfs_inode structure and the attribute record.
1903 	 * @rl is the last (non-terminator) runlist element of mft data
1904 	 * attribute.
1905 	 */
1906 	if (a->data.non_resident.lowest_vcn) {
1907 		/*
1908 		 * We are not in the first attribute extent, switch to it, but
1909 		 * first ensure the changes will make it to disk later.
1910 		 */
1911 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1912 		mark_mft_record_dirty(ctx->ntfs_ino);
1913 		ntfs_attr_reinit_search_ctx(ctx);
1914 		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1915 				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1916 				ctx);
1917 		if (unlikely(ret)) {
1918 			ntfs_error(vol->sb, "Failed to find first attribute "
1919 					"extent of mft data attribute.");
1920 			goto restore_undo_alloc;
1921 		}
1922 		a = ctx->attr;
1923 	}
1924 	write_lock_irqsave(&mft_ni->size_lock, flags);
1925 	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1926 	a->data.non_resident.allocated_size =
1927 			cpu_to_sle64(mft_ni->allocated_size);
1928 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1929 	/* Ensure the changes make it to disk. */
1930 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1931 	mark_mft_record_dirty(ctx->ntfs_ino);
1932 	ntfs_attr_put_search_ctx(ctx);
1933 	unmap_mft_record(mft_ni);
1934 	up_write(&mft_ni->runlist.lock);
1935 	ntfs_debug("Done.");
1936 	return 0;
1937 restore_undo_alloc:
1938 	ntfs_attr_reinit_search_ctx(ctx);
1939 	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1940 			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1941 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1942 				"mft data attribute.%s", es);
1943 		write_lock_irqsave(&mft_ni->size_lock, flags);
1944 		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1945 		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1946 		ntfs_attr_put_search_ctx(ctx);
1947 		unmap_mft_record(mft_ni);
1948 		up_write(&mft_ni->runlist.lock);
1949 		/*
1950 		 * The only thing that is now wrong is ->allocated_size of the
1951 		 * base attribute extent which chkdsk should be able to fix.
1952 		 */
1953 		NVolSetErrors(vol);
1954 		return ret;
1955 	}
1956 	ctx->attr->data.non_resident.highest_vcn =
1957 			cpu_to_sle64(old_last_vcn - 1);
1958 undo_alloc:
1959 	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1960 		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1961 				"attribute.%s", es);
1962 		NVolSetErrors(vol);
1963 	}
1964 	a = ctx->attr;
1965 	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1966 		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1967 				"runlist.%s", es);
1968 		NVolSetErrors(vol);
1969 	}
1970 	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1971 		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1972 				a->data.non_resident.mapping_pairs_offset),
1973 				old_alen - le16_to_cpu(
1974 				a->data.non_resident.mapping_pairs_offset),
1975 				rl2, ll, -1, NULL)) {
1976 			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1977 					"array.%s", es);
1978 			NVolSetErrors(vol);
1979 		}
1980 		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1981 			ntfs_error(vol->sb, "Failed to restore attribute "
1982 					"record.%s", es);
1983 			NVolSetErrors(vol);
1984 		}
1985 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1986 		mark_mft_record_dirty(ctx->ntfs_ino);
1987 	} else if (IS_ERR(ctx->mrec)) {
1988 		ntfs_error(vol->sb, "Failed to restore attribute search "
1989 				"context.%s", es);
1990 		NVolSetErrors(vol);
1991 	}
1992 	if (ctx)
1993 		ntfs_attr_put_search_ctx(ctx);
1994 	if (!IS_ERR(mrec))
1995 		unmap_mft_record(mft_ni);
1996 	up_write(&mft_ni->runlist.lock);
1997 	return ret;
1998 }
1999 
2000 /**
2001  * ntfs_mft_record_layout - layout an mft record into a memory buffer
2002  * @vol:	volume to which the mft record will belong
2003  * @mft_no:	mft reference specifying the mft record number
2004  * @m:		destination buffer of size >= @vol->mft_record_size bytes
2005  *
2006  * Layout an empty, unused mft record with the mft record number @mft_no into
2007  * the buffer @m.  The volume @vol is needed because the mft record structure
2008  * was modified in NTFS 3.1 so we need to know which volume version this mft
2009  * record will be used on.
2010  *
2011  * Return 0 on success and -errno on error.
2012  */
2013 static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2014 		MFT_RECORD *m)
2015 {
2016 	ATTR_RECORD *a;
2017 
2018 	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2019 	if (mft_no >= (1ll << 32)) {
2020 		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2021 				"maximum of 2^32.", (long long)mft_no);
2022 		return -ERANGE;
2023 	}
2024 	/* Start by clearing the whole mft record to gives us a clean slate. */
2025 	memset(m, 0, vol->mft_record_size);
2026 	/* Aligned to 2-byte boundary. */
2027 	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2028 		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2029 	else {
2030 		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2031 		/*
2032 		 * Set the NTFS 3.1+ specific fields while we know that the
2033 		 * volume version is 3.1+.
2034 		 */
2035 		m->reserved = 0;
2036 		m->mft_record_number = cpu_to_le32((u32)mft_no);
2037 	}
2038 	m->magic = magic_FILE;
2039 	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2040 		m->usa_count = cpu_to_le16(vol->mft_record_size /
2041 				NTFS_BLOCK_SIZE + 1);
2042 	else {
2043 		m->usa_count = cpu_to_le16(1);
2044 		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2045 				"size.  Setting usa_count to 1.  If chkdsk "
2046 				"reports this as corruption, please email "
2047 				"linux-ntfs-dev@lists.sourceforge.net stating "
2048 				"that you saw this message and that the "
2049 				"modified filesystem created was corrupt.  "
2050 				"Thank you.");
2051 	}
2052 	/* Set the update sequence number to 1. */
2053 	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2054 	m->lsn = 0;
2055 	m->sequence_number = cpu_to_le16(1);
2056 	m->link_count = 0;
2057 	/*
2058 	 * Place the attributes straight after the update sequence array,
2059 	 * aligned to 8-byte boundary.
2060 	 */
2061 	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2062 			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2063 	m->flags = 0;
2064 	/*
2065 	 * Using attrs_offset plus eight bytes (for the termination attribute).
2066 	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2067 	 * align again.
2068 	 */
2069 	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2070 	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2071 	m->base_mft_record = 0;
2072 	m->next_attr_instance = 0;
2073 	/* Add the termination attribute. */
2074 	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2075 	a->type = AT_END;
2076 	a->length = 0;
2077 	ntfs_debug("Done.");
2078 	return 0;
2079 }
2080 
2081 /**
2082  * ntfs_mft_record_format - format an mft record on an ntfs volume
2083  * @vol:	volume on which to format the mft record
2084  * @mft_no:	mft record number to format
2085  *
2086  * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2087  * mft record into the appropriate place of the mft data attribute.  This is
2088  * used when extending the mft data attribute.
2089  *
2090  * Return 0 on success and -errno on error.
2091  */
2092 static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2093 {
2094 	loff_t i_size;
2095 	struct inode *mft_vi = vol->mft_ino;
2096 	struct page *page;
2097 	MFT_RECORD *m;
2098 	pgoff_t index, end_index;
2099 	unsigned int ofs;
2100 	int err;
2101 
2102 	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2103 	/*
2104 	 * The index into the page cache and the offset within the page cache
2105 	 * page of the wanted mft record.
2106 	 */
2107 	index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT;
2108 	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
2109 	/* The maximum valid index into the page cache for $MFT's data. */
2110 	i_size = i_size_read(mft_vi);
2111 	end_index = i_size >> PAGE_SHIFT;
2112 	if (unlikely(index >= end_index)) {
2113 		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2114 				(i_size & ~PAGE_MASK))) {
2115 			ntfs_error(vol->sb, "Tried to format non-existing mft "
2116 					"record 0x%llx.", (long long)mft_no);
2117 			return -ENOENT;
2118 		}
2119 	}
2120 	/* Read, map, and pin the page containing the mft record. */
2121 	page = ntfs_map_page(mft_vi->i_mapping, index);
2122 	if (IS_ERR(page)) {
2123 		ntfs_error(vol->sb, "Failed to map page containing mft record "
2124 				"to format 0x%llx.", (long long)mft_no);
2125 		return PTR_ERR(page);
2126 	}
2127 	lock_page(page);
2128 	BUG_ON(!PageUptodate(page));
2129 	ClearPageUptodate(page);
2130 	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2131 	err = ntfs_mft_record_layout(vol, mft_no, m);
2132 	if (unlikely(err)) {
2133 		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2134 				(long long)mft_no);
2135 		SetPageUptodate(page);
2136 		unlock_page(page);
2137 		ntfs_unmap_page(page);
2138 		return err;
2139 	}
2140 	flush_dcache_page(page);
2141 	SetPageUptodate(page);
2142 	unlock_page(page);
2143 	/*
2144 	 * Make sure the mft record is written out to disk.  We could use
2145 	 * ilookup5() to check if an inode is in icache and so on but this is
2146 	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2147 	 */
2148 	mark_ntfs_record_dirty(page, ofs);
2149 	ntfs_unmap_page(page);
2150 	ntfs_debug("Done.");
2151 	return 0;
2152 }
2153 
2154 /**
2155  * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2156  * @vol:	[IN]  volume on which to allocate the mft record
2157  * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2158  * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2159  * @mrec:	[OUT] on successful return this is the mapped mft record
2160  *
2161  * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2162  *
2163  * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2164  * direvctory inode, and allocate it at the default allocator position.  In
2165  * this case @mode is the file mode as given to us by the caller.  We in
2166  * particular use @mode to distinguish whether a file or a directory is being
2167  * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2168  *
2169  * If @base_ni is not NULL make the allocated mft record an extent record,
2170  * allocate it starting at the mft record after the base mft record and attach
2171  * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2172  * case @mode must be 0 as it is meaningless for extent inodes.
2173  *
2174  * You need to check the return value with IS_ERR().  If false, the function
2175  * was successful and the return value is the now opened ntfs inode of the
2176  * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2177  * and locked mft record.  If IS_ERR() is true, the function failed and the
2178  * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2179  * this case.
2180  *
2181  * Allocation strategy:
2182  *
2183  * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2184  * optimize this we start scanning at the place specified by @base_ni or if
2185  * @base_ni is NULL we start where we last stopped and we perform wrap around
2186  * when we reach the end.  Note, we do not try to allocate mft records below
2187  * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2188  * to 24 are special in that they are used for storing extension mft records
2189  * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2190  * of creating a runlist with a circular dependency which once written to disk
2191  * can never be read in again.  Windows will only use records 16 to 24 for
2192  * normal files if the volume is completely out of space.  We never use them
2193  * which means that when the volume is really out of space we cannot create any
2194  * more files while Windows can still create up to 8 small files.  We can start
2195  * doing this at some later time, it does not matter much for now.
2196  *
2197  * When scanning the mft bitmap, we only search up to the last allocated mft
2198  * record.  If there are no free records left in the range 24 to number of
2199  * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2200  * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2201  * records at a time or one cluster, if cluster size is above 16kiB.  If there
2202  * is not sufficient space to do this, we try to extend by a single mft record
2203  * or one cluster, if cluster size is above the mft record size.
2204  *
2205  * No matter how many mft records we allocate, we initialize only the first
2206  * allocated mft record, incrementing mft data size and initialized size
2207  * accordingly, open an ntfs_inode for it and return it to the caller, unless
2208  * there are less than 24 mft records, in which case we allocate and initialize
2209  * mft records until we reach record 24 which we consider as the first free mft
2210  * record for use by normal files.
2211  *
2212  * If during any stage we overflow the initialized data in the mft bitmap, we
2213  * extend the initialized size (and data size) by 8 bytes, allocating another
2214  * cluster if required.  The bitmap data size has to be at least equal to the
2215  * number of mft records in the mft, but it can be bigger, in which case the
2216  * superflous bits are padded with zeroes.
2217  *
2218  * Thus, when we return successfully (IS_ERR() is false), we will have:
2219  *	- initialized / extended the mft bitmap if necessary,
2220  *	- initialized / extended the mft data if necessary,
2221  *	- set the bit corresponding to the mft record being allocated in the
2222  *	  mft bitmap,
2223  *	- opened an ntfs_inode for the allocated mft record, and we will have
2224  *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2225  *	  locked mft record.
2226  *
2227  * On error, the volume will be left in a consistent state and no record will
2228  * be allocated.  If rolling back a partial operation fails, we may leave some
2229  * inconsistent metadata in which case we set NVolErrors() so the volume is
2230  * left dirty when unmounted.
2231  *
2232  * Note, this function cannot make use of most of the normal functions, like
2233  * for example for attribute resizing, etc, because when the run list overflows
2234  * the base mft record and an attribute list is used, it is very important that
2235  * the extension mft records used to store the $DATA attribute of $MFT can be
2236  * reached without having to read the information contained inside them, as
2237  * this would make it impossible to find them in the first place after the
2238  * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2239  * rule because the bitmap is not essential for finding the mft records, but on
2240  * the other hand, handling the bitmap in this special way would make life
2241  * easier because otherwise there might be circular invocations of functions
2242  * when reading the bitmap.
2243  */
2244 ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2245 		ntfs_inode *base_ni, MFT_RECORD **mrec)
2246 {
2247 	s64 ll, bit, old_data_initialized, old_data_size;
2248 	unsigned long flags;
2249 	struct inode *vi;
2250 	struct page *page;
2251 	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2252 	ntfs_attr_search_ctx *ctx;
2253 	MFT_RECORD *m;
2254 	ATTR_RECORD *a;
2255 	pgoff_t index;
2256 	unsigned int ofs;
2257 	int err;
2258 	le16 seq_no, usn;
2259 	bool record_formatted = false;
2260 
2261 	if (base_ni) {
2262 		ntfs_debug("Entering (allocating an extent mft record for "
2263 				"base mft record 0x%llx).",
2264 				(long long)base_ni->mft_no);
2265 		/* @mode and @base_ni are mutually exclusive. */
2266 		BUG_ON(mode);
2267 	} else
2268 		ntfs_debug("Entering (allocating a base mft record).");
2269 	if (mode) {
2270 		/* @mode and @base_ni are mutually exclusive. */
2271 		BUG_ON(base_ni);
2272 		/* We only support creation of normal files and directories. */
2273 		if (!S_ISREG(mode) && !S_ISDIR(mode))
2274 			return ERR_PTR(-EOPNOTSUPP);
2275 	}
2276 	BUG_ON(!mrec);
2277 	mft_ni = NTFS_I(vol->mft_ino);
2278 	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2279 	down_write(&vol->mftbmp_lock);
2280 	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2281 	if (bit >= 0) {
2282 		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2283 				(long long)bit);
2284 		goto have_alloc_rec;
2285 	}
2286 	if (bit != -ENOSPC) {
2287 		up_write(&vol->mftbmp_lock);
2288 		return ERR_PTR(bit);
2289 	}
2290 	/*
2291 	 * No free mft records left.  If the mft bitmap already covers more
2292 	 * than the currently used mft records, the next records are all free,
2293 	 * so we can simply allocate the first unused mft record.
2294 	 * Note: We also have to make sure that the mft bitmap at least covers
2295 	 * the first 24 mft records as they are special and whilst they may not
2296 	 * be in use, we do not allocate from them.
2297 	 */
2298 	read_lock_irqsave(&mft_ni->size_lock, flags);
2299 	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2300 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2301 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2302 	old_data_initialized = mftbmp_ni->initialized_size;
2303 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2304 	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2305 		bit = ll;
2306 		if (bit < 24)
2307 			bit = 24;
2308 		if (unlikely(bit >= (1ll << 32)))
2309 			goto max_err_out;
2310 		ntfs_debug("Found free record (#2), bit 0x%llx.",
2311 				(long long)bit);
2312 		goto found_free_rec;
2313 	}
2314 	/*
2315 	 * The mft bitmap needs to be expanded until it covers the first unused
2316 	 * mft record that we can allocate.
2317 	 * Note: The smallest mft record we allocate is mft record 24.
2318 	 */
2319 	bit = old_data_initialized << 3;
2320 	if (unlikely(bit >= (1ll << 32)))
2321 		goto max_err_out;
2322 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2323 	old_data_size = mftbmp_ni->allocated_size;
2324 	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2325 			"data_size 0x%llx, initialized_size 0x%llx.",
2326 			(long long)old_data_size,
2327 			(long long)i_size_read(vol->mftbmp_ino),
2328 			(long long)old_data_initialized);
2329 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2330 	if (old_data_initialized + 8 > old_data_size) {
2331 		/* Need to extend bitmap by one more cluster. */
2332 		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2333 		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2334 		if (unlikely(err)) {
2335 			up_write(&vol->mftbmp_lock);
2336 			goto err_out;
2337 		}
2338 #ifdef DEBUG
2339 		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2340 		ntfs_debug("Status of mftbmp after allocation extension: "
2341 				"allocated_size 0x%llx, data_size 0x%llx, "
2342 				"initialized_size 0x%llx.",
2343 				(long long)mftbmp_ni->allocated_size,
2344 				(long long)i_size_read(vol->mftbmp_ino),
2345 				(long long)mftbmp_ni->initialized_size);
2346 		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2347 #endif /* DEBUG */
2348 	}
2349 	/*
2350 	 * We now have sufficient allocated space, extend the initialized_size
2351 	 * as well as the data_size if necessary and fill the new space with
2352 	 * zeroes.
2353 	 */
2354 	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2355 	if (unlikely(err)) {
2356 		up_write(&vol->mftbmp_lock);
2357 		goto err_out;
2358 	}
2359 #ifdef DEBUG
2360 	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2361 	ntfs_debug("Status of mftbmp after initialized extension: "
2362 			"allocated_size 0x%llx, data_size 0x%llx, "
2363 			"initialized_size 0x%llx.",
2364 			(long long)mftbmp_ni->allocated_size,
2365 			(long long)i_size_read(vol->mftbmp_ino),
2366 			(long long)mftbmp_ni->initialized_size);
2367 	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2368 #endif /* DEBUG */
2369 	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2370 found_free_rec:
2371 	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2372 	ntfs_debug("At found_free_rec.");
2373 	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2374 	if (unlikely(err)) {
2375 		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2376 		up_write(&vol->mftbmp_lock);
2377 		goto err_out;
2378 	}
2379 	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2380 have_alloc_rec:
2381 	/*
2382 	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2383 	 * Note, we keep hold of the mft bitmap lock for writing until all
2384 	 * modifications to the mft data attribute are complete, too, as they
2385 	 * will impact decisions for mft bitmap and mft record allocation done
2386 	 * by a parallel allocation and if the lock is not maintained a
2387 	 * parallel allocation could allocate the same mft record as this one.
2388 	 */
2389 	ll = (bit + 1) << vol->mft_record_size_bits;
2390 	read_lock_irqsave(&mft_ni->size_lock, flags);
2391 	old_data_initialized = mft_ni->initialized_size;
2392 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2393 	if (ll <= old_data_initialized) {
2394 		ntfs_debug("Allocated mft record already initialized.");
2395 		goto mft_rec_already_initialized;
2396 	}
2397 	ntfs_debug("Initializing allocated mft record.");
2398 	/*
2399 	 * The mft record is outside the initialized data.  Extend the mft data
2400 	 * attribute until it covers the allocated record.  The loop is only
2401 	 * actually traversed more than once when a freshly formatted volume is
2402 	 * first written to so it optimizes away nicely in the common case.
2403 	 */
2404 	read_lock_irqsave(&mft_ni->size_lock, flags);
2405 	ntfs_debug("Status of mft data before extension: "
2406 			"allocated_size 0x%llx, data_size 0x%llx, "
2407 			"initialized_size 0x%llx.",
2408 			(long long)mft_ni->allocated_size,
2409 			(long long)i_size_read(vol->mft_ino),
2410 			(long long)mft_ni->initialized_size);
2411 	while (ll > mft_ni->allocated_size) {
2412 		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2413 		err = ntfs_mft_data_extend_allocation_nolock(vol);
2414 		if (unlikely(err)) {
2415 			ntfs_error(vol->sb, "Failed to extend mft data "
2416 					"allocation.");
2417 			goto undo_mftbmp_alloc_nolock;
2418 		}
2419 		read_lock_irqsave(&mft_ni->size_lock, flags);
2420 		ntfs_debug("Status of mft data after allocation extension: "
2421 				"allocated_size 0x%llx, data_size 0x%llx, "
2422 				"initialized_size 0x%llx.",
2423 				(long long)mft_ni->allocated_size,
2424 				(long long)i_size_read(vol->mft_ino),
2425 				(long long)mft_ni->initialized_size);
2426 	}
2427 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2428 	/*
2429 	 * Extend mft data initialized size (and data size of course) to reach
2430 	 * the allocated mft record, formatting the mft records allong the way.
2431 	 * Note: We only modify the ntfs_inode structure as that is all that is
2432 	 * needed by ntfs_mft_record_format().  We will update the attribute
2433 	 * record itself in one fell swoop later on.
2434 	 */
2435 	write_lock_irqsave(&mft_ni->size_lock, flags);
2436 	old_data_initialized = mft_ni->initialized_size;
2437 	old_data_size = vol->mft_ino->i_size;
2438 	while (ll > mft_ni->initialized_size) {
2439 		s64 new_initialized_size, mft_no;
2440 
2441 		new_initialized_size = mft_ni->initialized_size +
2442 				vol->mft_record_size;
2443 		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2444 		if (new_initialized_size > i_size_read(vol->mft_ino))
2445 			i_size_write(vol->mft_ino, new_initialized_size);
2446 		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2447 		ntfs_debug("Initializing mft record 0x%llx.",
2448 				(long long)mft_no);
2449 		err = ntfs_mft_record_format(vol, mft_no);
2450 		if (unlikely(err)) {
2451 			ntfs_error(vol->sb, "Failed to format mft record.");
2452 			goto undo_data_init;
2453 		}
2454 		write_lock_irqsave(&mft_ni->size_lock, flags);
2455 		mft_ni->initialized_size = new_initialized_size;
2456 	}
2457 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2458 	record_formatted = true;
2459 	/* Update the mft data attribute record to reflect the new sizes. */
2460 	m = map_mft_record(mft_ni);
2461 	if (IS_ERR(m)) {
2462 		ntfs_error(vol->sb, "Failed to map mft record.");
2463 		err = PTR_ERR(m);
2464 		goto undo_data_init;
2465 	}
2466 	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2467 	if (unlikely(!ctx)) {
2468 		ntfs_error(vol->sb, "Failed to get search context.");
2469 		err = -ENOMEM;
2470 		unmap_mft_record(mft_ni);
2471 		goto undo_data_init;
2472 	}
2473 	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2474 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2475 	if (unlikely(err)) {
2476 		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2477 				"mft data attribute.");
2478 		ntfs_attr_put_search_ctx(ctx);
2479 		unmap_mft_record(mft_ni);
2480 		goto undo_data_init;
2481 	}
2482 	a = ctx->attr;
2483 	read_lock_irqsave(&mft_ni->size_lock, flags);
2484 	a->data.non_resident.initialized_size =
2485 			cpu_to_sle64(mft_ni->initialized_size);
2486 	a->data.non_resident.data_size =
2487 			cpu_to_sle64(i_size_read(vol->mft_ino));
2488 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2489 	/* Ensure the changes make it to disk. */
2490 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2491 	mark_mft_record_dirty(ctx->ntfs_ino);
2492 	ntfs_attr_put_search_ctx(ctx);
2493 	unmap_mft_record(mft_ni);
2494 	read_lock_irqsave(&mft_ni->size_lock, flags);
2495 	ntfs_debug("Status of mft data after mft record initialization: "
2496 			"allocated_size 0x%llx, data_size 0x%llx, "
2497 			"initialized_size 0x%llx.",
2498 			(long long)mft_ni->allocated_size,
2499 			(long long)i_size_read(vol->mft_ino),
2500 			(long long)mft_ni->initialized_size);
2501 	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2502 	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2503 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2504 mft_rec_already_initialized:
2505 	/*
2506 	 * We can finally drop the mft bitmap lock as the mft data attribute
2507 	 * has been fully updated.  The only disparity left is that the
2508 	 * allocated mft record still needs to be marked as in use to match the
2509 	 * set bit in the mft bitmap but this is actually not a problem since
2510 	 * this mft record is not referenced from anywhere yet and the fact
2511 	 * that it is allocated in the mft bitmap means that no-one will try to
2512 	 * allocate it either.
2513 	 */
2514 	up_write(&vol->mftbmp_lock);
2515 	/*
2516 	 * We now have allocated and initialized the mft record.  Calculate the
2517 	 * index of and the offset within the page cache page the record is in.
2518 	 */
2519 	index = bit << vol->mft_record_size_bits >> PAGE_SHIFT;
2520 	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK;
2521 	/* Read, map, and pin the page containing the mft record. */
2522 	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2523 	if (IS_ERR(page)) {
2524 		ntfs_error(vol->sb, "Failed to map page containing allocated "
2525 				"mft record 0x%llx.", (long long)bit);
2526 		err = PTR_ERR(page);
2527 		goto undo_mftbmp_alloc;
2528 	}
2529 	lock_page(page);
2530 	BUG_ON(!PageUptodate(page));
2531 	ClearPageUptodate(page);
2532 	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2533 	/* If we just formatted the mft record no need to do it again. */
2534 	if (!record_formatted) {
2535 		/* Sanity check that the mft record is really not in use. */
2536 		if (ntfs_is_file_record(m->magic) &&
2537 				(m->flags & MFT_RECORD_IN_USE)) {
2538 			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2539 					"free in mft bitmap but is marked "
2540 					"used itself.  Corrupt filesystem.  "
2541 					"Unmount and run chkdsk.",
2542 					(long long)bit);
2543 			err = -EIO;
2544 			SetPageUptodate(page);
2545 			unlock_page(page);
2546 			ntfs_unmap_page(page);
2547 			NVolSetErrors(vol);
2548 			goto undo_mftbmp_alloc;
2549 		}
2550 		/*
2551 		 * We need to (re-)format the mft record, preserving the
2552 		 * sequence number if it is not zero as well as the update
2553 		 * sequence number if it is not zero or -1 (0xffff).  This
2554 		 * means we do not need to care whether or not something went
2555 		 * wrong with the previous mft record.
2556 		 */
2557 		seq_no = m->sequence_number;
2558 		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2559 		err = ntfs_mft_record_layout(vol, bit, m);
2560 		if (unlikely(err)) {
2561 			ntfs_error(vol->sb, "Failed to layout allocated mft "
2562 					"record 0x%llx.", (long long)bit);
2563 			SetPageUptodate(page);
2564 			unlock_page(page);
2565 			ntfs_unmap_page(page);
2566 			goto undo_mftbmp_alloc;
2567 		}
2568 		if (seq_no)
2569 			m->sequence_number = seq_no;
2570 		if (usn && le16_to_cpu(usn) != 0xffff)
2571 			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2572 	}
2573 	/* Set the mft record itself in use. */
2574 	m->flags |= MFT_RECORD_IN_USE;
2575 	if (S_ISDIR(mode))
2576 		m->flags |= MFT_RECORD_IS_DIRECTORY;
2577 	flush_dcache_page(page);
2578 	SetPageUptodate(page);
2579 	if (base_ni) {
2580 		MFT_RECORD *m_tmp;
2581 
2582 		/*
2583 		 * Setup the base mft record in the extent mft record.  This
2584 		 * completes initialization of the allocated extent mft record
2585 		 * and we can simply use it with map_extent_mft_record().
2586 		 */
2587 		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2588 				base_ni->seq_no);
2589 		/*
2590 		 * Allocate an extent inode structure for the new mft record,
2591 		 * attach it to the base inode @base_ni and map, pin, and lock
2592 		 * its, i.e. the allocated, mft record.
2593 		 */
2594 		m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2595 		if (IS_ERR(m_tmp)) {
2596 			ntfs_error(vol->sb, "Failed to map allocated extent "
2597 					"mft record 0x%llx.", (long long)bit);
2598 			err = PTR_ERR(m_tmp);
2599 			/* Set the mft record itself not in use. */
2600 			m->flags &= cpu_to_le16(
2601 					~le16_to_cpu(MFT_RECORD_IN_USE));
2602 			flush_dcache_page(page);
2603 			/* Make sure the mft record is written out to disk. */
2604 			mark_ntfs_record_dirty(page, ofs);
2605 			unlock_page(page);
2606 			ntfs_unmap_page(page);
2607 			goto undo_mftbmp_alloc;
2608 		}
2609 		BUG_ON(m != m_tmp);
2610 		/*
2611 		 * Make sure the allocated mft record is written out to disk.
2612 		 * No need to set the inode dirty because the caller is going
2613 		 * to do that anyway after finishing with the new extent mft
2614 		 * record (e.g. at a minimum a new attribute will be added to
2615 		 * the mft record.
2616 		 */
2617 		mark_ntfs_record_dirty(page, ofs);
2618 		unlock_page(page);
2619 		/*
2620 		 * Need to unmap the page since map_extent_mft_record() mapped
2621 		 * it as well so we have it mapped twice at the moment.
2622 		 */
2623 		ntfs_unmap_page(page);
2624 	} else {
2625 		/*
2626 		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2627 		 * is set to 1 but the mft record->link_count is 0.  The caller
2628 		 * needs to bear this in mind.
2629 		 */
2630 		vi = new_inode(vol->sb);
2631 		if (unlikely(!vi)) {
2632 			err = -ENOMEM;
2633 			/* Set the mft record itself not in use. */
2634 			m->flags &= cpu_to_le16(
2635 					~le16_to_cpu(MFT_RECORD_IN_USE));
2636 			flush_dcache_page(page);
2637 			/* Make sure the mft record is written out to disk. */
2638 			mark_ntfs_record_dirty(page, ofs);
2639 			unlock_page(page);
2640 			ntfs_unmap_page(page);
2641 			goto undo_mftbmp_alloc;
2642 		}
2643 		vi->i_ino = bit;
2644 		/*
2645 		 * This is for checking whether an inode has changed w.r.t. a
2646 		 * file so that the file can be updated if necessary (compare
2647 		 * with f_version).
2648 		 */
2649 		vi->i_version = 1;
2650 
2651 		/* The owner and group come from the ntfs volume. */
2652 		vi->i_uid = vol->uid;
2653 		vi->i_gid = vol->gid;
2654 
2655 		/* Initialize the ntfs specific part of @vi. */
2656 		ntfs_init_big_inode(vi);
2657 		ni = NTFS_I(vi);
2658 		/*
2659 		 * Set the appropriate mode, attribute type, and name.  For
2660 		 * directories, also setup the index values to the defaults.
2661 		 */
2662 		if (S_ISDIR(mode)) {
2663 			vi->i_mode = S_IFDIR | S_IRWXUGO;
2664 			vi->i_mode &= ~vol->dmask;
2665 
2666 			NInoSetMstProtected(ni);
2667 			ni->type = AT_INDEX_ALLOCATION;
2668 			ni->name = I30;
2669 			ni->name_len = 4;
2670 
2671 			ni->itype.index.block_size = 4096;
2672 			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2673 			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2674 			if (vol->cluster_size <= ni->itype.index.block_size) {
2675 				ni->itype.index.vcn_size = vol->cluster_size;
2676 				ni->itype.index.vcn_size_bits =
2677 						vol->cluster_size_bits;
2678 			} else {
2679 				ni->itype.index.vcn_size = vol->sector_size;
2680 				ni->itype.index.vcn_size_bits =
2681 						vol->sector_size_bits;
2682 			}
2683 		} else {
2684 			vi->i_mode = S_IFREG | S_IRWXUGO;
2685 			vi->i_mode &= ~vol->fmask;
2686 
2687 			ni->type = AT_DATA;
2688 			ni->name = NULL;
2689 			ni->name_len = 0;
2690 		}
2691 		if (IS_RDONLY(vi))
2692 			vi->i_mode &= ~S_IWUGO;
2693 
2694 		/* Set the inode times to the current time. */
2695 		vi->i_atime = vi->i_mtime = vi->i_ctime =
2696 			current_time(vi);
2697 		/*
2698 		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2699 		 * the call to ntfs_init_big_inode() below.
2700 		 */
2701 		vi->i_size = 0;
2702 		vi->i_blocks = 0;
2703 
2704 		/* Set the sequence number. */
2705 		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2706 		/*
2707 		 * Manually map, pin, and lock the mft record as we already
2708 		 * have its page mapped and it is very easy to do.
2709 		 */
2710 		atomic_inc(&ni->count);
2711 		mutex_lock(&ni->mrec_lock);
2712 		ni->page = page;
2713 		ni->page_ofs = ofs;
2714 		/*
2715 		 * Make sure the allocated mft record is written out to disk.
2716 		 * NOTE: We do not set the ntfs inode dirty because this would
2717 		 * fail in ntfs_write_inode() because the inode does not have a
2718 		 * standard information attribute yet.  Also, there is no need
2719 		 * to set the inode dirty because the caller is going to do
2720 		 * that anyway after finishing with the new mft record (e.g. at
2721 		 * a minimum some new attributes will be added to the mft
2722 		 * record.
2723 		 */
2724 		mark_ntfs_record_dirty(page, ofs);
2725 		unlock_page(page);
2726 
2727 		/* Add the inode to the inode hash for the superblock. */
2728 		insert_inode_hash(vi);
2729 
2730 		/* Update the default mft allocation position. */
2731 		vol->mft_data_pos = bit + 1;
2732 	}
2733 	/*
2734 	 * Return the opened, allocated inode of the allocated mft record as
2735 	 * well as the mapped, pinned, and locked mft record.
2736 	 */
2737 	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2738 			base_ni ? "extent " : "", (long long)bit);
2739 	*mrec = m;
2740 	return ni;
2741 undo_data_init:
2742 	write_lock_irqsave(&mft_ni->size_lock, flags);
2743 	mft_ni->initialized_size = old_data_initialized;
2744 	i_size_write(vol->mft_ino, old_data_size);
2745 	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2746 	goto undo_mftbmp_alloc_nolock;
2747 undo_mftbmp_alloc:
2748 	down_write(&vol->mftbmp_lock);
2749 undo_mftbmp_alloc_nolock:
2750 	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2751 		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2752 		NVolSetErrors(vol);
2753 	}
2754 	up_write(&vol->mftbmp_lock);
2755 err_out:
2756 	return ERR_PTR(err);
2757 max_err_out:
2758 	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2759 			"number of inodes (2^32) has already been reached.");
2760 	up_write(&vol->mftbmp_lock);
2761 	return ERR_PTR(-ENOSPC);
2762 }
2763 
2764 /**
2765  * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2766  * @ni:		ntfs inode of the mapped extent mft record to free
2767  * @m:		mapped extent mft record of the ntfs inode @ni
2768  *
2769  * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2770  *
2771  * Note that this function unmaps the mft record and closes and destroys @ni
2772  * internally and hence you cannot use either @ni nor @m any more after this
2773  * function returns success.
2774  *
2775  * On success return 0 and on error return -errno.  @ni and @m are still valid
2776  * in this case and have not been freed.
2777  *
2778  * For some errors an error message is displayed and the success code 0 is
2779  * returned and the volume is then left dirty on umount.  This makes sense in
2780  * case we could not rollback the changes that were already done since the
2781  * caller no longer wants to reference this mft record so it does not matter to
2782  * the caller if something is wrong with it as long as it is properly detached
2783  * from the base inode.
2784  */
2785 int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2786 {
2787 	unsigned long mft_no = ni->mft_no;
2788 	ntfs_volume *vol = ni->vol;
2789 	ntfs_inode *base_ni;
2790 	ntfs_inode **extent_nis;
2791 	int i, err;
2792 	le16 old_seq_no;
2793 	u16 seq_no;
2794 
2795 	BUG_ON(NInoAttr(ni));
2796 	BUG_ON(ni->nr_extents != -1);
2797 
2798 	mutex_lock(&ni->extent_lock);
2799 	base_ni = ni->ext.base_ntfs_ino;
2800 	mutex_unlock(&ni->extent_lock);
2801 
2802 	BUG_ON(base_ni->nr_extents <= 0);
2803 
2804 	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2805 			mft_no, base_ni->mft_no);
2806 
2807 	mutex_lock(&base_ni->extent_lock);
2808 
2809 	/* Make sure we are holding the only reference to the extent inode. */
2810 	if (atomic_read(&ni->count) > 2) {
2811 		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2812 				"not freeing.", base_ni->mft_no);
2813 		mutex_unlock(&base_ni->extent_lock);
2814 		return -EBUSY;
2815 	}
2816 
2817 	/* Dissociate the ntfs inode from the base inode. */
2818 	extent_nis = base_ni->ext.extent_ntfs_inos;
2819 	err = -ENOENT;
2820 	for (i = 0; i < base_ni->nr_extents; i++) {
2821 		if (ni != extent_nis[i])
2822 			continue;
2823 		extent_nis += i;
2824 		base_ni->nr_extents--;
2825 		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2826 				sizeof(ntfs_inode*));
2827 		err = 0;
2828 		break;
2829 	}
2830 
2831 	mutex_unlock(&base_ni->extent_lock);
2832 
2833 	if (unlikely(err)) {
2834 		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2835 				"its base inode 0x%lx.", mft_no,
2836 				base_ni->mft_no);
2837 		BUG();
2838 	}
2839 
2840 	/*
2841 	 * The extent inode is no longer attached to the base inode so no one
2842 	 * can get a reference to it any more.
2843 	 */
2844 
2845 	/* Mark the mft record as not in use. */
2846 	m->flags &= ~MFT_RECORD_IN_USE;
2847 
2848 	/* Increment the sequence number, skipping zero, if it is not zero. */
2849 	old_seq_no = m->sequence_number;
2850 	seq_no = le16_to_cpu(old_seq_no);
2851 	if (seq_no == 0xffff)
2852 		seq_no = 1;
2853 	else if (seq_no)
2854 		seq_no++;
2855 	m->sequence_number = cpu_to_le16(seq_no);
2856 
2857 	/*
2858 	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2859 	 * about the base inode here since whatever caused the extent mft
2860 	 * record to be freed is guaranteed to do it already.
2861 	 */
2862 	NInoSetDirty(ni);
2863 	err = write_mft_record(ni, m, 0);
2864 	if (unlikely(err)) {
2865 		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2866 				"freeing.", mft_no);
2867 		goto rollback;
2868 	}
2869 rollback_error:
2870 	/* Unmap and throw away the now freed extent inode. */
2871 	unmap_extent_mft_record(ni);
2872 	ntfs_clear_extent_inode(ni);
2873 
2874 	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2875 	down_write(&vol->mftbmp_lock);
2876 	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2877 	up_write(&vol->mftbmp_lock);
2878 	if (unlikely(err)) {
2879 		/*
2880 		 * The extent inode is gone but we failed to deallocate it in
2881 		 * the mft bitmap.  Just emit a warning and leave the volume
2882 		 * dirty on umount.
2883 		 */
2884 		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2885 		NVolSetErrors(vol);
2886 	}
2887 	return 0;
2888 rollback:
2889 	/* Rollback what we did... */
2890 	mutex_lock(&base_ni->extent_lock);
2891 	extent_nis = base_ni->ext.extent_ntfs_inos;
2892 	if (!(base_ni->nr_extents & 3)) {
2893 		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2894 
2895 		extent_nis = kmalloc(new_size, GFP_NOFS);
2896 		if (unlikely(!extent_nis)) {
2897 			ntfs_error(vol->sb, "Failed to allocate internal "
2898 					"buffer during rollback.%s", es);
2899 			mutex_unlock(&base_ni->extent_lock);
2900 			NVolSetErrors(vol);
2901 			goto rollback_error;
2902 		}
2903 		if (base_ni->nr_extents) {
2904 			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2905 			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2906 					new_size - 4 * sizeof(ntfs_inode*));
2907 			kfree(base_ni->ext.extent_ntfs_inos);
2908 		}
2909 		base_ni->ext.extent_ntfs_inos = extent_nis;
2910 	}
2911 	m->flags |= MFT_RECORD_IN_USE;
2912 	m->sequence_number = old_seq_no;
2913 	extent_nis[base_ni->nr_extents++] = ni;
2914 	mutex_unlock(&base_ni->extent_lock);
2915 	mark_mft_record_dirty(ni);
2916 	return err;
2917 }
2918 #endif /* NTFS_RW */
2919