xref: /openbmc/linux/fs/ntfs/layout.h (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * layout.h - All NTFS associated on-disk structures. Part of the Linux-NTFS
3  *	      project.
4  *
5  * Copyright (c) 2001-2005 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #ifndef _LINUX_NTFS_LAYOUT_H
25 #define _LINUX_NTFS_LAYOUT_H
26 
27 #include <linux/types.h>
28 #include <linux/bitops.h>
29 #include <linux/list.h>
30 #include <asm/byteorder.h>
31 
32 #include "types.h"
33 
34 /*
35  * Constant endianness conversion defines.
36  */
37 #define const_le16_to_cpu(x)	__constant_le16_to_cpu(x)
38 #define const_le32_to_cpu(x)	__constant_le32_to_cpu(x)
39 #define const_le64_to_cpu(x)	__constant_le64_to_cpu(x)
40 
41 #define const_cpu_to_le16(x)	__constant_cpu_to_le16(x)
42 #define const_cpu_to_le32(x)	__constant_cpu_to_le32(x)
43 #define const_cpu_to_le64(x)	__constant_cpu_to_le64(x)
44 
45 /* The NTFS oem_id "NTFS    " */
46 #define magicNTFS	const_cpu_to_le64(0x202020205346544eULL)
47 
48 /*
49  * Location of bootsector on partition:
50  *	The standard NTFS_BOOT_SECTOR is on sector 0 of the partition.
51  *	On NT4 and above there is one backup copy of the boot sector to
52  *	be found on the last sector of the partition (not normally accessible
53  *	from within Windows as the bootsector contained number of sectors
54  *	value is one less than the actual value!).
55  *	On versions of NT 3.51 and earlier, the backup copy was located at
56  *	number of sectors/2 (integer divide), i.e. in the middle of the volume.
57  */
58 
59 /*
60  * BIOS parameter block (bpb) structure.
61  */
62 typedef struct {
63 	le16 bytes_per_sector;		/* Size of a sector in bytes. */
64 	u8  sectors_per_cluster;	/* Size of a cluster in sectors. */
65 	le16 reserved_sectors;		/* zero */
66 	u8  fats;			/* zero */
67 	le16 root_entries;		/* zero */
68 	le16 sectors;			/* zero */
69 	u8  media_type;			/* 0xf8 = hard disk */
70 	le16 sectors_per_fat;		/* zero */
71 	le16 sectors_per_track;		/* irrelevant */
72 	le16 heads;			/* irrelevant */
73 	le32 hidden_sectors;		/* zero */
74 	le32 large_sectors;		/* zero */
75 } __attribute__ ((__packed__)) BIOS_PARAMETER_BLOCK;
76 
77 /*
78  * NTFS boot sector structure.
79  */
80 typedef struct {
81 	u8  jump[3];			/* Irrelevant (jump to boot up code).*/
82 	le64 oem_id;			/* Magic "NTFS    ". */
83 	BIOS_PARAMETER_BLOCK bpb;	/* See BIOS_PARAMETER_BLOCK. */
84 	u8  unused[4];			/* zero, NTFS diskedit.exe states that
85 					   this is actually:
86 						__u8 physical_drive;	// 0x80
87 						__u8 current_head;	// zero
88 						__u8 extended_boot_signature;
89 									// 0x80
90 						__u8 unused;		// zero
91 					 */
92 /*0x28*/sle64 number_of_sectors;	/* Number of sectors in volume. Gives
93 					   maximum volume size of 2^63 sectors.
94 					   Assuming standard sector size of 512
95 					   bytes, the maximum byte size is
96 					   approx. 4.7x10^21 bytes. (-; */
97 	sle64 mft_lcn;			/* Cluster location of mft data. */
98 	sle64 mftmirr_lcn;		/* Cluster location of copy of mft. */
99 	s8  clusters_per_mft_record;	/* Mft record size in clusters. */
100 	u8  reserved0[3];		/* zero */
101 	s8  clusters_per_index_record;	/* Index block size in clusters. */
102 	u8  reserved1[3];		/* zero */
103 	le64 volume_serial_number;	/* Irrelevant (serial number). */
104 	le32 checksum;			/* Boot sector checksum. */
105 /*0x54*/u8  bootstrap[426];		/* Irrelevant (boot up code). */
106 	le16 end_of_sector_marker;	/* End of bootsector magic. Always is
107 					   0xaa55 in little endian. */
108 /* sizeof() = 512 (0x200) bytes */
109 } __attribute__ ((__packed__)) NTFS_BOOT_SECTOR;
110 
111 /*
112  * Magic identifiers present at the beginning of all ntfs record containing
113  * records (like mft records for example).
114  */
115 enum {
116 	/* Found in $MFT/$DATA. */
117 	magic_FILE = const_cpu_to_le32(0x454c4946), /* Mft entry. */
118 	magic_INDX = const_cpu_to_le32(0x58444e49), /* Index buffer. */
119 	magic_HOLE = const_cpu_to_le32(0x454c4f48), /* ? (NTFS 3.0+?) */
120 
121 	/* Found in $LogFile/$DATA. */
122 	magic_RSTR = const_cpu_to_le32(0x52545352), /* Restart page. */
123 	magic_RCRD = const_cpu_to_le32(0x44524352), /* Log record page. */
124 
125 	/* Found in $LogFile/$DATA.  (May be found in $MFT/$DATA, also?) */
126 	magic_CHKD = const_cpu_to_le32(0x444b4843), /* Modified by chkdsk. */
127 
128 	/* Found in all ntfs record containing records. */
129 	magic_BAAD = const_cpu_to_le32(0x44414142), /* Failed multi sector
130 						       transfer was detected. */
131 	/*
132 	 * Found in $LogFile/$DATA when a page is full of 0xff bytes and is
133 	 * thus not initialized.  Page must be initialized before using it.
134 	 */
135 	magic_empty = const_cpu_to_le32(0xffffffff) /* Record is empty. */
136 };
137 
138 typedef le32 NTFS_RECORD_TYPE;
139 
140 /*
141  * Generic magic comparison macros. Finally found a use for the ## preprocessor
142  * operator! (-8
143  */
144 
145 static inline bool __ntfs_is_magic(le32 x, NTFS_RECORD_TYPE r)
146 {
147 	return (x == r);
148 }
149 #define ntfs_is_magic(x, m)	__ntfs_is_magic(x, magic_##m)
150 
151 static inline bool __ntfs_is_magicp(le32 *p, NTFS_RECORD_TYPE r)
152 {
153 	return (*p == r);
154 }
155 #define ntfs_is_magicp(p, m)	__ntfs_is_magicp(p, magic_##m)
156 
157 /*
158  * Specialised magic comparison macros for the NTFS_RECORD_TYPEs defined above.
159  */
160 #define ntfs_is_file_record(x)		( ntfs_is_magic (x, FILE) )
161 #define ntfs_is_file_recordp(p)		( ntfs_is_magicp(p, FILE) )
162 #define ntfs_is_mft_record(x)		( ntfs_is_file_record (x) )
163 #define ntfs_is_mft_recordp(p)		( ntfs_is_file_recordp(p) )
164 #define ntfs_is_indx_record(x)		( ntfs_is_magic (x, INDX) )
165 #define ntfs_is_indx_recordp(p)		( ntfs_is_magicp(p, INDX) )
166 #define ntfs_is_hole_record(x)		( ntfs_is_magic (x, HOLE) )
167 #define ntfs_is_hole_recordp(p)		( ntfs_is_magicp(p, HOLE) )
168 
169 #define ntfs_is_rstr_record(x)		( ntfs_is_magic (x, RSTR) )
170 #define ntfs_is_rstr_recordp(p)		( ntfs_is_magicp(p, RSTR) )
171 #define ntfs_is_rcrd_record(x)		( ntfs_is_magic (x, RCRD) )
172 #define ntfs_is_rcrd_recordp(p)		( ntfs_is_magicp(p, RCRD) )
173 
174 #define ntfs_is_chkd_record(x)		( ntfs_is_magic (x, CHKD) )
175 #define ntfs_is_chkd_recordp(p)		( ntfs_is_magicp(p, CHKD) )
176 
177 #define ntfs_is_baad_record(x)		( ntfs_is_magic (x, BAAD) )
178 #define ntfs_is_baad_recordp(p)		( ntfs_is_magicp(p, BAAD) )
179 
180 #define ntfs_is_empty_record(x)		( ntfs_is_magic (x, empty) )
181 #define ntfs_is_empty_recordp(p)	( ntfs_is_magicp(p, empty) )
182 
183 /*
184  * The Update Sequence Array (usa) is an array of the le16 values which belong
185  * to the end of each sector protected by the update sequence record in which
186  * this array is contained. Note that the first entry is the Update Sequence
187  * Number (usn), a cyclic counter of how many times the protected record has
188  * been written to disk. The values 0 and -1 (ie. 0xffff) are not used. All
189  * last le16's of each sector have to be equal to the usn (during reading) or
190  * are set to it (during writing). If they are not, an incomplete multi sector
191  * transfer has occurred when the data was written.
192  * The maximum size for the update sequence array is fixed to:
193  *	maximum size = usa_ofs + (usa_count * 2) = 510 bytes
194  * The 510 bytes comes from the fact that the last le16 in the array has to
195  * (obviously) finish before the last le16 of the first 512-byte sector.
196  * This formula can be used as a consistency check in that usa_ofs +
197  * (usa_count * 2) has to be less than or equal to 510.
198  */
199 typedef struct {
200 	NTFS_RECORD_TYPE magic;	/* A four-byte magic identifying the record
201 				   type and/or status. */
202 	le16 usa_ofs;		/* Offset to the Update Sequence Array (usa)
203 				   from the start of the ntfs record. */
204 	le16 usa_count;		/* Number of le16 sized entries in the usa
205 				   including the Update Sequence Number (usn),
206 				   thus the number of fixups is the usa_count
207 				   minus 1. */
208 } __attribute__ ((__packed__)) NTFS_RECORD;
209 
210 /*
211  * System files mft record numbers. All these files are always marked as used
212  * in the bitmap attribute of the mft; presumably in order to avoid accidental
213  * allocation for random other mft records. Also, the sequence number for each
214  * of the system files is always equal to their mft record number and it is
215  * never modified.
216  */
217 typedef enum {
218 	FILE_MFT       = 0,	/* Master file table (mft). Data attribute
219 				   contains the entries and bitmap attribute
220 				   records which ones are in use (bit==1). */
221 	FILE_MFTMirr   = 1,	/* Mft mirror: copy of first four mft records
222 				   in data attribute. If cluster size > 4kiB,
223 				   copy of first N mft records, with
224 					N = cluster_size / mft_record_size. */
225 	FILE_LogFile   = 2,	/* Journalling log in data attribute. */
226 	FILE_Volume    = 3,	/* Volume name attribute and volume information
227 				   attribute (flags and ntfs version). Windows
228 				   refers to this file as volume DASD (Direct
229 				   Access Storage Device). */
230 	FILE_AttrDef   = 4,	/* Array of attribute definitions in data
231 				   attribute. */
232 	FILE_root      = 5,	/* Root directory. */
233 	FILE_Bitmap    = 6,	/* Allocation bitmap of all clusters (lcns) in
234 				   data attribute. */
235 	FILE_Boot      = 7,	/* Boot sector (always at cluster 0) in data
236 				   attribute. */
237 	FILE_BadClus   = 8,	/* Contains all bad clusters in the non-resident
238 				   data attribute. */
239 	FILE_Secure    = 9,	/* Shared security descriptors in data attribute
240 				   and two indexes into the descriptors.
241 				   Appeared in Windows 2000. Before that, this
242 				   file was named $Quota but was unused. */
243 	FILE_UpCase    = 10,	/* Uppercase equivalents of all 65536 Unicode
244 				   characters in data attribute. */
245 	FILE_Extend    = 11,	/* Directory containing other system files (eg.
246 				   $ObjId, $Quota, $Reparse and $UsnJrnl). This
247 				   is new to NTFS3.0. */
248 	FILE_reserved12 = 12,	/* Reserved for future use (records 12-15). */
249 	FILE_reserved13 = 13,
250 	FILE_reserved14 = 14,
251 	FILE_reserved15 = 15,
252 	FILE_first_user = 16,	/* First user file, used as test limit for
253 				   whether to allow opening a file or not. */
254 } NTFS_SYSTEM_FILES;
255 
256 /*
257  * These are the so far known MFT_RECORD_* flags (16-bit) which contain
258  * information about the mft record in which they are present.
259  */
260 enum {
261 	MFT_RECORD_IN_USE	= const_cpu_to_le16(0x0001),
262 	MFT_RECORD_IS_DIRECTORY = const_cpu_to_le16(0x0002),
263 } __attribute__ ((__packed__));
264 
265 typedef le16 MFT_RECORD_FLAGS;
266 
267 /*
268  * mft references (aka file references or file record segment references) are
269  * used whenever a structure needs to refer to a record in the mft.
270  *
271  * A reference consists of a 48-bit index into the mft and a 16-bit sequence
272  * number used to detect stale references.
273  *
274  * For error reporting purposes we treat the 48-bit index as a signed quantity.
275  *
276  * The sequence number is a circular counter (skipping 0) describing how many
277  * times the referenced mft record has been (re)used. This has to match the
278  * sequence number of the mft record being referenced, otherwise the reference
279  * is considered stale and removed (FIXME: only ntfsck or the driver itself?).
280  *
281  * If the sequence number is zero it is assumed that no sequence number
282  * consistency checking should be performed.
283  *
284  * FIXME: Since inodes are 32-bit as of now, the driver needs to always check
285  * for high_part being 0 and if not either BUG(), cause a panic() or handle
286  * the situation in some other way. This shouldn't be a problem as a volume has
287  * to become HUGE in order to need more than 32-bits worth of mft records.
288  * Assuming the standard mft record size of 1kb only the records (never mind
289  * the non-resident attributes, etc.) would require 4Tb of space on their own
290  * for the first 32 bits worth of records. This is only if some strange person
291  * doesn't decide to foul play and make the mft sparse which would be a really
292  * horrible thing to do as it would trash our current driver implementation. )-:
293  * Do I hear screams "we want 64-bit inodes!" ?!? (-;
294  *
295  * FIXME: The mft zone is defined as the first 12% of the volume. This space is
296  * reserved so that the mft can grow contiguously and hence doesn't become
297  * fragmented. Volume free space includes the empty part of the mft zone and
298  * when the volume's free 88% are used up, the mft zone is shrunk by a factor
299  * of 2, thus making more space available for more files/data. This process is
300  * repeated everytime there is no more free space except for the mft zone until
301  * there really is no more free space.
302  */
303 
304 /*
305  * Typedef the MFT_REF as a 64-bit value for easier handling.
306  * Also define two unpacking macros to get to the reference (MREF) and
307  * sequence number (MSEQNO) respectively.
308  * The _LE versions are to be applied on little endian MFT_REFs.
309  * Note: The _LE versions will return a CPU endian formatted value!
310  */
311 #define MFT_REF_MASK_CPU 0x0000ffffffffffffULL
312 #define MFT_REF_MASK_LE const_cpu_to_le64(MFT_REF_MASK_CPU)
313 
314 typedef u64 MFT_REF;
315 typedef le64 leMFT_REF;
316 
317 #define MK_MREF(m, s)	((MFT_REF)(((MFT_REF)(s) << 48) |		\
318 					((MFT_REF)(m) & MFT_REF_MASK_CPU)))
319 #define MK_LE_MREF(m, s) cpu_to_le64(MK_MREF(m, s))
320 
321 #define MREF(x)		((unsigned long)((x) & MFT_REF_MASK_CPU))
322 #define MSEQNO(x)	((u16)(((x) >> 48) & 0xffff))
323 #define MREF_LE(x)	((unsigned long)(le64_to_cpu(x) & MFT_REF_MASK_CPU))
324 #define MSEQNO_LE(x)	((u16)((le64_to_cpu(x) >> 48) & 0xffff))
325 
326 #define IS_ERR_MREF(x)	(((x) & 0x0000800000000000ULL) ? true : false)
327 #define ERR_MREF(x)	((u64)((s64)(x)))
328 #define MREF_ERR(x)	((int)((s64)(x)))
329 
330 /*
331  * The mft record header present at the beginning of every record in the mft.
332  * This is followed by a sequence of variable length attribute records which
333  * is terminated by an attribute of type AT_END which is a truncated attribute
334  * in that it only consists of the attribute type code AT_END and none of the
335  * other members of the attribute structure are present.
336  */
337 typedef struct {
338 /*Ofs*/
339 /*  0	NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
340 	NTFS_RECORD_TYPE magic;	/* Usually the magic is "FILE". */
341 	le16 usa_ofs;		/* See NTFS_RECORD definition above. */
342 	le16 usa_count;		/* See NTFS_RECORD definition above. */
343 
344 /*  8*/	le64 lsn;		/* $LogFile sequence number for this record.
345 				   Changed every time the record is modified. */
346 /* 16*/	le16 sequence_number;	/* Number of times this mft record has been
347 				   reused. (See description for MFT_REF
348 				   above.) NOTE: The increment (skipping zero)
349 				   is done when the file is deleted. NOTE: If
350 				   this is zero it is left zero. */
351 /* 18*/	le16 link_count;	/* Number of hard links, i.e. the number of
352 				   directory entries referencing this record.
353 				   NOTE: Only used in mft base records.
354 				   NOTE: When deleting a directory entry we
355 				   check the link_count and if it is 1 we
356 				   delete the file. Otherwise we delete the
357 				   FILE_NAME_ATTR being referenced by the
358 				   directory entry from the mft record and
359 				   decrement the link_count.
360 				   FIXME: Careful with Win32 + DOS names! */
361 /* 20*/	le16 attrs_offset;	/* Byte offset to the first attribute in this
362 				   mft record from the start of the mft record.
363 				   NOTE: Must be aligned to 8-byte boundary. */
364 /* 22*/	MFT_RECORD_FLAGS flags;	/* Bit array of MFT_RECORD_FLAGS. When a file
365 				   is deleted, the MFT_RECORD_IN_USE flag is
366 				   set to zero. */
367 /* 24*/	le32 bytes_in_use;	/* Number of bytes used in this mft record.
368 				   NOTE: Must be aligned to 8-byte boundary. */
369 /* 28*/	le32 bytes_allocated;	/* Number of bytes allocated for this mft
370 				   record. This should be equal to the mft
371 				   record size. */
372 /* 32*/	leMFT_REF base_mft_record;/* This is zero for base mft records.
373 				   When it is not zero it is a mft reference
374 				   pointing to the base mft record to which
375 				   this record belongs (this is then used to
376 				   locate the attribute list attribute present
377 				   in the base record which describes this
378 				   extension record and hence might need
379 				   modification when the extension record
380 				   itself is modified, also locating the
381 				   attribute list also means finding the other
382 				   potential extents, belonging to the non-base
383 				   mft record). */
384 /* 40*/	le16 next_attr_instance;/* The instance number that will be assigned to
385 				   the next attribute added to this mft record.
386 				   NOTE: Incremented each time after it is used.
387 				   NOTE: Every time the mft record is reused
388 				   this number is set to zero.  NOTE: The first
389 				   instance number is always 0. */
390 /* The below fields are specific to NTFS 3.1+ (Windows XP and above): */
391 /* 42*/ le16 reserved;		/* Reserved/alignment. */
392 /* 44*/ le32 mft_record_number;	/* Number of this mft record. */
393 /* sizeof() = 48 bytes */
394 /*
395  * When (re)using the mft record, we place the update sequence array at this
396  * offset, i.e. before we start with the attributes.  This also makes sense,
397  * otherwise we could run into problems with the update sequence array
398  * containing in itself the last two bytes of a sector which would mean that
399  * multi sector transfer protection wouldn't work.  As you can't protect data
400  * by overwriting it since you then can't get it back...
401  * When reading we obviously use the data from the ntfs record header.
402  */
403 } __attribute__ ((__packed__)) MFT_RECORD;
404 
405 /* This is the version without the NTFS 3.1+ specific fields. */
406 typedef struct {
407 /*Ofs*/
408 /*  0	NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
409 	NTFS_RECORD_TYPE magic;	/* Usually the magic is "FILE". */
410 	le16 usa_ofs;		/* See NTFS_RECORD definition above. */
411 	le16 usa_count;		/* See NTFS_RECORD definition above. */
412 
413 /*  8*/	le64 lsn;		/* $LogFile sequence number for this record.
414 				   Changed every time the record is modified. */
415 /* 16*/	le16 sequence_number;	/* Number of times this mft record has been
416 				   reused. (See description for MFT_REF
417 				   above.) NOTE: The increment (skipping zero)
418 				   is done when the file is deleted. NOTE: If
419 				   this is zero it is left zero. */
420 /* 18*/	le16 link_count;	/* Number of hard links, i.e. the number of
421 				   directory entries referencing this record.
422 				   NOTE: Only used in mft base records.
423 				   NOTE: When deleting a directory entry we
424 				   check the link_count and if it is 1 we
425 				   delete the file. Otherwise we delete the
426 				   FILE_NAME_ATTR being referenced by the
427 				   directory entry from the mft record and
428 				   decrement the link_count.
429 				   FIXME: Careful with Win32 + DOS names! */
430 /* 20*/	le16 attrs_offset;	/* Byte offset to the first attribute in this
431 				   mft record from the start of the mft record.
432 				   NOTE: Must be aligned to 8-byte boundary. */
433 /* 22*/	MFT_RECORD_FLAGS flags;	/* Bit array of MFT_RECORD_FLAGS. When a file
434 				   is deleted, the MFT_RECORD_IN_USE flag is
435 				   set to zero. */
436 /* 24*/	le32 bytes_in_use;	/* Number of bytes used in this mft record.
437 				   NOTE: Must be aligned to 8-byte boundary. */
438 /* 28*/	le32 bytes_allocated;	/* Number of bytes allocated for this mft
439 				   record. This should be equal to the mft
440 				   record size. */
441 /* 32*/	leMFT_REF base_mft_record;/* This is zero for base mft records.
442 				   When it is not zero it is a mft reference
443 				   pointing to the base mft record to which
444 				   this record belongs (this is then used to
445 				   locate the attribute list attribute present
446 				   in the base record which describes this
447 				   extension record and hence might need
448 				   modification when the extension record
449 				   itself is modified, also locating the
450 				   attribute list also means finding the other
451 				   potential extents, belonging to the non-base
452 				   mft record). */
453 /* 40*/	le16 next_attr_instance;/* The instance number that will be assigned to
454 				   the next attribute added to this mft record.
455 				   NOTE: Incremented each time after it is used.
456 				   NOTE: Every time the mft record is reused
457 				   this number is set to zero.  NOTE: The first
458 				   instance number is always 0. */
459 /* sizeof() = 42 bytes */
460 /*
461  * When (re)using the mft record, we place the update sequence array at this
462  * offset, i.e. before we start with the attributes.  This also makes sense,
463  * otherwise we could run into problems with the update sequence array
464  * containing in itself the last two bytes of a sector which would mean that
465  * multi sector transfer protection wouldn't work.  As you can't protect data
466  * by overwriting it since you then can't get it back...
467  * When reading we obviously use the data from the ntfs record header.
468  */
469 } __attribute__ ((__packed__)) MFT_RECORD_OLD;
470 
471 /*
472  * System defined attributes (32-bit).  Each attribute type has a corresponding
473  * attribute name (Unicode string of maximum 64 character length) as described
474  * by the attribute definitions present in the data attribute of the $AttrDef
475  * system file.  On NTFS 3.0 volumes the names are just as the types are named
476  * in the below defines exchanging AT_ for the dollar sign ($).  If that is not
477  * a revealing choice of symbol I do not know what is... (-;
478  */
479 enum {
480 	AT_UNUSED			= const_cpu_to_le32(         0),
481 	AT_STANDARD_INFORMATION		= const_cpu_to_le32(      0x10),
482 	AT_ATTRIBUTE_LIST		= const_cpu_to_le32(      0x20),
483 	AT_FILE_NAME			= const_cpu_to_le32(      0x30),
484 	AT_OBJECT_ID			= const_cpu_to_le32(      0x40),
485 	AT_SECURITY_DESCRIPTOR		= const_cpu_to_le32(      0x50),
486 	AT_VOLUME_NAME			= const_cpu_to_le32(      0x60),
487 	AT_VOLUME_INFORMATION		= const_cpu_to_le32(      0x70),
488 	AT_DATA				= const_cpu_to_le32(      0x80),
489 	AT_INDEX_ROOT			= const_cpu_to_le32(      0x90),
490 	AT_INDEX_ALLOCATION		= const_cpu_to_le32(      0xa0),
491 	AT_BITMAP			= const_cpu_to_le32(      0xb0),
492 	AT_REPARSE_POINT		= const_cpu_to_le32(      0xc0),
493 	AT_EA_INFORMATION		= const_cpu_to_le32(      0xd0),
494 	AT_EA				= const_cpu_to_le32(      0xe0),
495 	AT_PROPERTY_SET			= const_cpu_to_le32(      0xf0),
496 	AT_LOGGED_UTILITY_STREAM	= const_cpu_to_le32(     0x100),
497 	AT_FIRST_USER_DEFINED_ATTRIBUTE	= const_cpu_to_le32(    0x1000),
498 	AT_END				= const_cpu_to_le32(0xffffffff)
499 };
500 
501 typedef le32 ATTR_TYPE;
502 
503 /*
504  * The collation rules for sorting views/indexes/etc (32-bit).
505  *
506  * COLLATION_BINARY - Collate by binary compare where the first byte is most
507  *	significant.
508  * COLLATION_UNICODE_STRING - Collate Unicode strings by comparing their binary
509  *	Unicode values, except that when a character can be uppercased, the
510  *	upper case value collates before the lower case one.
511  * COLLATION_FILE_NAME - Collate file names as Unicode strings. The collation
512  *	is done very much like COLLATION_UNICODE_STRING. In fact I have no idea
513  *	what the difference is. Perhaps the difference is that file names
514  *	would treat some special characters in an odd way (see
515  *	unistr.c::ntfs_collate_names() and unistr.c::legal_ansi_char_array[]
516  *	for what I mean but COLLATION_UNICODE_STRING would not give any special
517  *	treatment to any characters at all, but this is speculation.
518  * COLLATION_NTOFS_ULONG - Sorting is done according to ascending le32 key
519  *	values. E.g. used for $SII index in FILE_Secure, which sorts by
520  *	security_id (le32).
521  * COLLATION_NTOFS_SID - Sorting is done according to ascending SID values.
522  *	E.g. used for $O index in FILE_Extend/$Quota.
523  * COLLATION_NTOFS_SECURITY_HASH - Sorting is done first by ascending hash
524  *	values and second by ascending security_id values. E.g. used for $SDH
525  *	index in FILE_Secure.
526  * COLLATION_NTOFS_ULONGS - Sorting is done according to a sequence of ascending
527  *	le32 key values. E.g. used for $O index in FILE_Extend/$ObjId, which
528  *	sorts by object_id (16-byte), by splitting up the object_id in four
529  *	le32 values and using them as individual keys. E.g. take the following
530  *	two security_ids, stored as follows on disk:
531  *		1st: a1 61 65 b7 65 7b d4 11 9e 3d 00 e0 81 10 42 59
532  *		2nd: 38 14 37 d2 d2 f3 d4 11 a5 21 c8 6b 79 b1 97 45
533  *	To compare them, they are split into four le32 values each, like so:
534  *		1st: 0xb76561a1 0x11d47b65 0xe0003d9e 0x59421081
535  *		2nd: 0xd2371438 0x11d4f3d2 0x6bc821a5 0x4597b179
536  *	Now, it is apparent why the 2nd object_id collates after the 1st: the
537  *	first le32 value of the 1st object_id is less than the first le32 of
538  *	the 2nd object_id. If the first le32 values of both object_ids were
539  *	equal then the second le32 values would be compared, etc.
540  */
541 enum {
542 	COLLATION_BINARY		= const_cpu_to_le32(0x00),
543 	COLLATION_FILE_NAME		= const_cpu_to_le32(0x01),
544 	COLLATION_UNICODE_STRING	= const_cpu_to_le32(0x02),
545 	COLLATION_NTOFS_ULONG		= const_cpu_to_le32(0x10),
546 	COLLATION_NTOFS_SID		= const_cpu_to_le32(0x11),
547 	COLLATION_NTOFS_SECURITY_HASH	= const_cpu_to_le32(0x12),
548 	COLLATION_NTOFS_ULONGS		= const_cpu_to_le32(0x13),
549 };
550 
551 typedef le32 COLLATION_RULE;
552 
553 /*
554  * The flags (32-bit) describing attribute properties in the attribute
555  * definition structure.  FIXME: This information is based on Regis's
556  * information and, according to him, it is not certain and probably
557  * incomplete.  The INDEXABLE flag is fairly certainly correct as only the file
558  * name attribute has this flag set and this is the only attribute indexed in
559  * NT4.
560  */
561 enum {
562 	ATTR_DEF_INDEXABLE	= const_cpu_to_le32(0x02), /* Attribute can be
563 					indexed. */
564 	ATTR_DEF_MULTIPLE	= const_cpu_to_le32(0x04), /* Attribute type
565 					can be present multiple times in the
566 					mft records of an inode. */
567 	ATTR_DEF_NOT_ZERO	= const_cpu_to_le32(0x08), /* Attribute value
568 					must contain at least one non-zero
569 					byte. */
570 	ATTR_DEF_INDEXED_UNIQUE	= const_cpu_to_le32(0x10), /* Attribute must be
571 					indexed and the attribute value must be
572 					unique for the attribute type in all of
573 					the mft records of an inode. */
574 	ATTR_DEF_NAMED_UNIQUE	= const_cpu_to_le32(0x20), /* Attribute must be
575 					named and the name must be unique for
576 					the attribute type in all of the mft
577 					records of an inode. */
578 	ATTR_DEF_RESIDENT	= const_cpu_to_le32(0x40), /* Attribute must be
579 					resident. */
580 	ATTR_DEF_ALWAYS_LOG	= const_cpu_to_le32(0x80), /* Always log
581 					modifications to this attribute,
582 					regardless of whether it is resident or
583 					non-resident.  Without this, only log
584 					modifications if the attribute is
585 					resident. */
586 };
587 
588 typedef le32 ATTR_DEF_FLAGS;
589 
590 /*
591  * The data attribute of FILE_AttrDef contains a sequence of attribute
592  * definitions for the NTFS volume. With this, it is supposed to be safe for an
593  * older NTFS driver to mount a volume containing a newer NTFS version without
594  * damaging it (that's the theory. In practice it's: not damaging it too much).
595  * Entries are sorted by attribute type. The flags describe whether the
596  * attribute can be resident/non-resident and possibly other things, but the
597  * actual bits are unknown.
598  */
599 typedef struct {
600 /*hex ofs*/
601 /*  0*/	ntfschar name[0x40];		/* Unicode name of the attribute. Zero
602 					   terminated. */
603 /* 80*/	ATTR_TYPE type;			/* Type of the attribute. */
604 /* 84*/	le32 display_rule;		/* Default display rule.
605 					   FIXME: What does it mean? (AIA) */
606 /* 88*/ COLLATION_RULE collation_rule;	/* Default collation rule. */
607 /* 8c*/	ATTR_DEF_FLAGS flags;		/* Flags describing the attribute. */
608 /* 90*/	sle64 min_size;			/* Optional minimum attribute size. */
609 /* 98*/	sle64 max_size;			/* Maximum size of attribute. */
610 /* sizeof() = 0xa0 or 160 bytes */
611 } __attribute__ ((__packed__)) ATTR_DEF;
612 
613 /*
614  * Attribute flags (16-bit).
615  */
616 enum {
617 	ATTR_IS_COMPRESSED    = const_cpu_to_le16(0x0001),
618 	ATTR_COMPRESSION_MASK = const_cpu_to_le16(0x00ff), /* Compression method
619 							      mask.  Also, first
620 							      illegal value. */
621 	ATTR_IS_ENCRYPTED     = const_cpu_to_le16(0x4000),
622 	ATTR_IS_SPARSE	      = const_cpu_to_le16(0x8000),
623 } __attribute__ ((__packed__));
624 
625 typedef le16 ATTR_FLAGS;
626 
627 /*
628  * Attribute compression.
629  *
630  * Only the data attribute is ever compressed in the current ntfs driver in
631  * Windows. Further, compression is only applied when the data attribute is
632  * non-resident. Finally, to use compression, the maximum allowed cluster size
633  * on a volume is 4kib.
634  *
635  * The compression method is based on independently compressing blocks of X
636  * clusters, where X is determined from the compression_unit value found in the
637  * non-resident attribute record header (more precisely: X = 2^compression_unit
638  * clusters). On Windows NT/2k, X always is 16 clusters (compression_unit = 4).
639  *
640  * There are three different cases of how a compression block of X clusters
641  * can be stored:
642  *
643  *   1) The data in the block is all zero (a sparse block):
644  *	  This is stored as a sparse block in the runlist, i.e. the runlist
645  *	  entry has length = X and lcn = -1. The mapping pairs array actually
646  *	  uses a delta_lcn value length of 0, i.e. delta_lcn is not present at
647  *	  all, which is then interpreted by the driver as lcn = -1.
648  *	  NOTE: Even uncompressed files can be sparse on NTFS 3.0 volumes, then
649  *	  the same principles apply as above, except that the length is not
650  *	  restricted to being any particular value.
651  *
652  *   2) The data in the block is not compressed:
653  *	  This happens when compression doesn't reduce the size of the block
654  *	  in clusters. I.e. if compression has a small effect so that the
655  *	  compressed data still occupies X clusters, then the uncompressed data
656  *	  is stored in the block.
657  *	  This case is recognised by the fact that the runlist entry has
658  *	  length = X and lcn >= 0. The mapping pairs array stores this as
659  *	  normal with a run length of X and some specific delta_lcn, i.e.
660  *	  delta_lcn has to be present.
661  *
662  *   3) The data in the block is compressed:
663  *	  The common case. This case is recognised by the fact that the run
664  *	  list entry has length L < X and lcn >= 0. The mapping pairs array
665  *	  stores this as normal with a run length of X and some specific
666  *	  delta_lcn, i.e. delta_lcn has to be present. This runlist entry is
667  *	  immediately followed by a sparse entry with length = X - L and
668  *	  lcn = -1. The latter entry is to make up the vcn counting to the
669  *	  full compression block size X.
670  *
671  * In fact, life is more complicated because adjacent entries of the same type
672  * can be coalesced. This means that one has to keep track of the number of
673  * clusters handled and work on a basis of X clusters at a time being one
674  * block. An example: if length L > X this means that this particular runlist
675  * entry contains a block of length X and part of one or more blocks of length
676  * L - X. Another example: if length L < X, this does not necessarily mean that
677  * the block is compressed as it might be that the lcn changes inside the block
678  * and hence the following runlist entry describes the continuation of the
679  * potentially compressed block. The block would be compressed if the
680  * following runlist entry describes at least X - L sparse clusters, thus
681  * making up the compression block length as described in point 3 above. (Of
682  * course, there can be several runlist entries with small lengths so that the
683  * sparse entry does not follow the first data containing entry with
684  * length < X.)
685  *
686  * NOTE: At the end of the compressed attribute value, there most likely is not
687  * just the right amount of data to make up a compression block, thus this data
688  * is not even attempted to be compressed. It is just stored as is, unless
689  * the number of clusters it occupies is reduced when compressed in which case
690  * it is stored as a compressed compression block, complete with sparse
691  * clusters at the end.
692  */
693 
694 /*
695  * Flags of resident attributes (8-bit).
696  */
697 enum {
698 	RESIDENT_ATTR_IS_INDEXED = 0x01, /* Attribute is referenced in an index
699 					    (has implications for deleting and
700 					    modifying the attribute). */
701 } __attribute__ ((__packed__));
702 
703 typedef u8 RESIDENT_ATTR_FLAGS;
704 
705 /*
706  * Attribute record header. Always aligned to 8-byte boundary.
707  */
708 typedef struct {
709 /*Ofs*/
710 /*  0*/	ATTR_TYPE type;		/* The (32-bit) type of the attribute. */
711 /*  4*/	le32 length;		/* Byte size of the resident part of the
712 				   attribute (aligned to 8-byte boundary).
713 				   Used to get to the next attribute. */
714 /*  8*/	u8 non_resident;	/* If 0, attribute is resident.
715 				   If 1, attribute is non-resident. */
716 /*  9*/	u8 name_length;		/* Unicode character size of name of attribute.
717 				   0 if unnamed. */
718 /* 10*/	le16 name_offset;	/* If name_length != 0, the byte offset to the
719 				   beginning of the name from the attribute
720 				   record. Note that the name is stored as a
721 				   Unicode string. When creating, place offset
722 				   just at the end of the record header. Then,
723 				   follow with attribute value or mapping pairs
724 				   array, resident and non-resident attributes
725 				   respectively, aligning to an 8-byte
726 				   boundary. */
727 /* 12*/	ATTR_FLAGS flags;	/* Flags describing the attribute. */
728 /* 14*/	le16 instance;		/* The instance of this attribute record. This
729 				   number is unique within this mft record (see
730 				   MFT_RECORD/next_attribute_instance notes in
731 				   in mft.h for more details). */
732 /* 16*/	union {
733 		/* Resident attributes. */
734 		struct {
735 /* 16 */		le32 value_length;/* Byte size of attribute value. */
736 /* 20 */		le16 value_offset;/* Byte offset of the attribute
737 					     value from the start of the
738 					     attribute record. When creating,
739 					     align to 8-byte boundary if we
740 					     have a name present as this might
741 					     not have a length of a multiple
742 					     of 8-bytes. */
743 /* 22 */		RESIDENT_ATTR_FLAGS flags; /* See above. */
744 /* 23 */		s8 reserved;	  /* Reserved/alignment to 8-byte
745 					     boundary. */
746 		} __attribute__ ((__packed__)) resident;
747 		/* Non-resident attributes. */
748 		struct {
749 /* 16*/			leVCN lowest_vcn;/* Lowest valid virtual cluster number
750 				for this portion of the attribute value or
751 				0 if this is the only extent (usually the
752 				case). - Only when an attribute list is used
753 				does lowest_vcn != 0 ever occur. */
754 /* 24*/			leVCN highest_vcn;/* Highest valid vcn of this extent of
755 				the attribute value. - Usually there is only one
756 				portion, so this usually equals the attribute
757 				value size in clusters minus 1. Can be -1 for
758 				zero length files. Can be 0 for "single extent"
759 				attributes. */
760 /* 32*/			le16 mapping_pairs_offset; /* Byte offset from the
761 				beginning of the structure to the mapping pairs
762 				array which contains the mappings between the
763 				vcns and the logical cluster numbers (lcns).
764 				When creating, place this at the end of this
765 				record header aligned to 8-byte boundary. */
766 /* 34*/			u8 compression_unit; /* The compression unit expressed
767 				as the log to the base 2 of the number of
768 				clusters in a compression unit.  0 means not
769 				compressed.  (This effectively limits the
770 				compression unit size to be a power of two
771 				clusters.)  WinNT4 only uses a value of 4.
772 				Sparse files have this set to 0 on XPSP2. */
773 /* 35*/			u8 reserved[5];		/* Align to 8-byte boundary. */
774 /* The sizes below are only used when lowest_vcn is zero, as otherwise it would
775    be difficult to keep them up-to-date.*/
776 /* 40*/			sle64 allocated_size;	/* Byte size of disk space
777 				allocated to hold the attribute value. Always
778 				is a multiple of the cluster size. When a file
779 				is compressed, this field is a multiple of the
780 				compression block size (2^compression_unit) and
781 				it represents the logically allocated space
782 				rather than the actual on disk usage. For this
783 				use the compressed_size (see below). */
784 /* 48*/			sle64 data_size;	/* Byte size of the attribute
785 				value. Can be larger than allocated_size if
786 				attribute value is compressed or sparse. */
787 /* 56*/			sle64 initialized_size;	/* Byte size of initialized
788 				portion of the attribute value. Usually equals
789 				data_size. */
790 /* sizeof(uncompressed attr) = 64*/
791 /* 64*/			sle64 compressed_size;	/* Byte size of the attribute
792 				value after compression.  Only present when
793 				compressed or sparse.  Always is a multiple of
794 				the cluster size.  Represents the actual amount
795 				of disk space being used on the disk. */
796 /* sizeof(compressed attr) = 72*/
797 		} __attribute__ ((__packed__)) non_resident;
798 	} __attribute__ ((__packed__)) data;
799 } __attribute__ ((__packed__)) ATTR_RECORD;
800 
801 typedef ATTR_RECORD ATTR_REC;
802 
803 /*
804  * File attribute flags (32-bit) appearing in the file_attributes fields of the
805  * STANDARD_INFORMATION attribute of MFT_RECORDs and the FILENAME_ATTR
806  * attributes of MFT_RECORDs and directory index entries.
807  *
808  * All of the below flags appear in the directory index entries but only some
809  * appear in the STANDARD_INFORMATION attribute whilst only some others appear
810  * in the FILENAME_ATTR attribute of MFT_RECORDs.  Unless otherwise stated the
811  * flags appear in all of the above.
812  */
813 enum {
814 	FILE_ATTR_READONLY		= const_cpu_to_le32(0x00000001),
815 	FILE_ATTR_HIDDEN		= const_cpu_to_le32(0x00000002),
816 	FILE_ATTR_SYSTEM		= const_cpu_to_le32(0x00000004),
817 	/* Old DOS volid. Unused in NT.	= const_cpu_to_le32(0x00000008), */
818 
819 	FILE_ATTR_DIRECTORY		= const_cpu_to_le32(0x00000010),
820 	/* Note, FILE_ATTR_DIRECTORY is not considered valid in NT.  It is
821 	   reserved for the DOS SUBDIRECTORY flag. */
822 	FILE_ATTR_ARCHIVE		= const_cpu_to_le32(0x00000020),
823 	FILE_ATTR_DEVICE		= const_cpu_to_le32(0x00000040),
824 	FILE_ATTR_NORMAL		= const_cpu_to_le32(0x00000080),
825 
826 	FILE_ATTR_TEMPORARY		= const_cpu_to_le32(0x00000100),
827 	FILE_ATTR_SPARSE_FILE		= const_cpu_to_le32(0x00000200),
828 	FILE_ATTR_REPARSE_POINT		= const_cpu_to_le32(0x00000400),
829 	FILE_ATTR_COMPRESSED		= const_cpu_to_le32(0x00000800),
830 
831 	FILE_ATTR_OFFLINE		= const_cpu_to_le32(0x00001000),
832 	FILE_ATTR_NOT_CONTENT_INDEXED	= const_cpu_to_le32(0x00002000),
833 	FILE_ATTR_ENCRYPTED		= const_cpu_to_le32(0x00004000),
834 
835 	FILE_ATTR_VALID_FLAGS		= const_cpu_to_le32(0x00007fb7),
836 	/* Note, FILE_ATTR_VALID_FLAGS masks out the old DOS VolId and the
837 	   FILE_ATTR_DEVICE and preserves everything else.  This mask is used
838 	   to obtain all flags that are valid for reading. */
839 	FILE_ATTR_VALID_SET_FLAGS	= const_cpu_to_le32(0x000031a7),
840 	/* Note, FILE_ATTR_VALID_SET_FLAGS masks out the old DOS VolId, the
841 	   F_A_DEVICE, F_A_DIRECTORY, F_A_SPARSE_FILE, F_A_REPARSE_POINT,
842 	   F_A_COMPRESSED, and F_A_ENCRYPTED and preserves the rest.  This mask
843 	   is used to to obtain all flags that are valid for setting. */
844 	/*
845 	 * The flag FILE_ATTR_DUP_FILENAME_INDEX_PRESENT is present in all
846 	 * FILENAME_ATTR attributes but not in the STANDARD_INFORMATION
847 	 * attribute of an mft record.
848 	 */
849 	FILE_ATTR_DUP_FILE_NAME_INDEX_PRESENT	= const_cpu_to_le32(0x10000000),
850 	/* Note, this is a copy of the corresponding bit from the mft record,
851 	   telling us whether this is a directory or not, i.e. whether it has
852 	   an index root attribute or not. */
853 	FILE_ATTR_DUP_VIEW_INDEX_PRESENT	= const_cpu_to_le32(0x20000000),
854 	/* Note, this is a copy of the corresponding bit from the mft record,
855 	   telling us whether this file has a view index present (eg. object id
856 	   index, quota index, one of the security indexes or the encrypting
857 	   filesystem related indexes). */
858 };
859 
860 typedef le32 FILE_ATTR_FLAGS;
861 
862 /*
863  * NOTE on times in NTFS: All times are in MS standard time format, i.e. they
864  * are the number of 100-nanosecond intervals since 1st January 1601, 00:00:00
865  * universal coordinated time (UTC). (In Linux time starts 1st January 1970,
866  * 00:00:00 UTC and is stored as the number of 1-second intervals since then.)
867  */
868 
869 /*
870  * Attribute: Standard information (0x10).
871  *
872  * NOTE: Always resident.
873  * NOTE: Present in all base file records on a volume.
874  * NOTE: There is conflicting information about the meaning of each of the time
875  *	 fields but the meaning as defined below has been verified to be
876  *	 correct by practical experimentation on Windows NT4 SP6a and is hence
877  *	 assumed to be the one and only correct interpretation.
878  */
879 typedef struct {
880 /*Ofs*/
881 /*  0*/	sle64 creation_time;		/* Time file was created. Updated when
882 					   a filename is changed(?). */
883 /*  8*/	sle64 last_data_change_time;	/* Time the data attribute was last
884 					   modified. */
885 /* 16*/	sle64 last_mft_change_time;	/* Time this mft record was last
886 					   modified. */
887 /* 24*/	sle64 last_access_time;		/* Approximate time when the file was
888 					   last accessed (obviously this is not
889 					   updated on read-only volumes). In
890 					   Windows this is only updated when
891 					   accessed if some time delta has
892 					   passed since the last update. Also,
893 					   last access time updates can be
894 					   disabled altogether for speed. */
895 /* 32*/	FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */
896 /* 36*/	union {
897 	/* NTFS 1.2 */
898 		struct {
899 		/* 36*/	u8 reserved12[12];	/* Reserved/alignment to 8-byte
900 						   boundary. */
901 		} __attribute__ ((__packed__)) v1;
902 	/* sizeof() = 48 bytes */
903 	/* NTFS 3.x */
904 		struct {
905 /*
906  * If a volume has been upgraded from a previous NTFS version, then these
907  * fields are present only if the file has been accessed since the upgrade.
908  * Recognize the difference by comparing the length of the resident attribute
909  * value. If it is 48, then the following fields are missing. If it is 72 then
910  * the fields are present. Maybe just check like this:
911  *	if (resident.ValueLength < sizeof(STANDARD_INFORMATION)) {
912  *		Assume NTFS 1.2- format.
913  *		If (volume version is 3.x)
914  *			Upgrade attribute to NTFS 3.x format.
915  *		else
916  *			Use NTFS 1.2- format for access.
917  *	} else
918  *		Use NTFS 3.x format for access.
919  * Only problem is that it might be legal to set the length of the value to
920  * arbitrarily large values thus spoiling this check. - But chkdsk probably
921  * views that as a corruption, assuming that it behaves like this for all
922  * attributes.
923  */
924 		/* 36*/	le32 maximum_versions;	/* Maximum allowed versions for
925 				file. Zero if version numbering is disabled. */
926 		/* 40*/	le32 version_number;	/* This file's version (if any).
927 				Set to zero if maximum_versions is zero. */
928 		/* 44*/	le32 class_id;		/* Class id from bidirectional
929 				class id index (?). */
930 		/* 48*/	le32 owner_id;		/* Owner_id of the user owning
931 				the file. Translate via $Q index in FILE_Extend
932 				/$Quota to the quota control entry for the user
933 				owning the file. Zero if quotas are disabled. */
934 		/* 52*/	le32 security_id;	/* Security_id for the file.
935 				Translate via $SII index and $SDS data stream
936 				in FILE_Secure to the security descriptor. */
937 		/* 56*/	le64 quota_charged;	/* Byte size of the charge to
938 				the quota for all streams of the file. Note: Is
939 				zero if quotas are disabled. */
940 		/* 64*/	leUSN usn;		/* Last update sequence number
941 				of the file.  This is a direct index into the
942 				transaction log file ($UsnJrnl).  It is zero if
943 				the usn journal is disabled or this file has
944 				not been subject to logging yet.  See usnjrnl.h
945 				for details. */
946 		} __attribute__ ((__packed__)) v3;
947 	/* sizeof() = 72 bytes (NTFS 3.x) */
948 	} __attribute__ ((__packed__)) ver;
949 } __attribute__ ((__packed__)) STANDARD_INFORMATION;
950 
951 /*
952  * Attribute: Attribute list (0x20).
953  *
954  * - Can be either resident or non-resident.
955  * - Value consists of a sequence of variable length, 8-byte aligned,
956  * ATTR_LIST_ENTRY records.
957  * - The list is not terminated by anything at all! The only way to know when
958  * the end is reached is to keep track of the current offset and compare it to
959  * the attribute value size.
960  * - The attribute list attribute contains one entry for each attribute of
961  * the file in which the list is located, except for the list attribute
962  * itself. The list is sorted: first by attribute type, second by attribute
963  * name (if present), third by instance number. The extents of one
964  * non-resident attribute (if present) immediately follow after the initial
965  * extent. They are ordered by lowest_vcn and have their instace set to zero.
966  * It is not allowed to have two attributes with all sorting keys equal.
967  * - Further restrictions:
968  *	- If not resident, the vcn to lcn mapping array has to fit inside the
969  *	  base mft record.
970  *	- The attribute list attribute value has a maximum size of 256kb. This
971  *	  is imposed by the Windows cache manager.
972  * - Attribute lists are only used when the attributes of mft record do not
973  * fit inside the mft record despite all attributes (that can be made
974  * non-resident) having been made non-resident. This can happen e.g. when:
975  *	- File has a large number of hard links (lots of file name
976  *	  attributes present).
977  *	- The mapping pairs array of some non-resident attribute becomes so
978  *	  large due to fragmentation that it overflows the mft record.
979  *	- The security descriptor is very complex (not applicable to
980  *	  NTFS 3.0 volumes).
981  *	- There are many named streams.
982  */
983 typedef struct {
984 /*Ofs*/
985 /*  0*/	ATTR_TYPE type;		/* Type of referenced attribute. */
986 /*  4*/	le16 length;		/* Byte size of this entry (8-byte aligned). */
987 /*  6*/	u8 name_length;		/* Size in Unicode chars of the name of the
988 				   attribute or 0 if unnamed. */
989 /*  7*/	u8 name_offset;		/* Byte offset to beginning of attribute name
990 				   (always set this to where the name would
991 				   start even if unnamed). */
992 /*  8*/	leVCN lowest_vcn;	/* Lowest virtual cluster number of this portion
993 				   of the attribute value. This is usually 0. It
994 				   is non-zero for the case where one attribute
995 				   does not fit into one mft record and thus
996 				   several mft records are allocated to hold
997 				   this attribute. In the latter case, each mft
998 				   record holds one extent of the attribute and
999 				   there is one attribute list entry for each
1000 				   extent. NOTE: This is DEFINITELY a signed
1001 				   value! The windows driver uses cmp, followed
1002 				   by jg when comparing this, thus it treats it
1003 				   as signed. */
1004 /* 16*/	leMFT_REF mft_reference;/* The reference of the mft record holding
1005 				   the ATTR_RECORD for this portion of the
1006 				   attribute value. */
1007 /* 24*/	le16 instance;		/* If lowest_vcn = 0, the instance of the
1008 				   attribute being referenced; otherwise 0. */
1009 /* 26*/	ntfschar name[0];	/* Use when creating only. When reading use
1010 				   name_offset to determine the location of the
1011 				   name. */
1012 /* sizeof() = 26 + (attribute_name_length * 2) bytes */
1013 } __attribute__ ((__packed__)) ATTR_LIST_ENTRY;
1014 
1015 /*
1016  * The maximum allowed length for a file name.
1017  */
1018 #define MAXIMUM_FILE_NAME_LENGTH	255
1019 
1020 /*
1021  * Possible namespaces for filenames in ntfs (8-bit).
1022  */
1023 enum {
1024 	FILE_NAME_POSIX		= 0x00,
1025 	/* This is the largest namespace. It is case sensitive and allows all
1026 	   Unicode characters except for: '\0' and '/'.  Beware that in
1027 	   WinNT/2k/2003 by default files which eg have the same name except
1028 	   for their case will not be distinguished by the standard utilities
1029 	   and thus a "del filename" will delete both "filename" and "fileName"
1030 	   without warning.  However if for example Services For Unix (SFU) are
1031 	   installed and the case sensitive option was enabled at installation
1032 	   time, then you can create/access/delete such files.
1033 	   Note that even SFU places restrictions on the filenames beyond the
1034 	   '\0' and '/' and in particular the following set of characters is
1035 	   not allowed: '"', '/', '<', '>', '\'.  All other characters,
1036 	   including the ones no allowed in WIN32 namespace are allowed.
1037 	   Tested with SFU 3.5 (this is now free) running on Windows XP. */
1038 	FILE_NAME_WIN32		= 0x01,
1039 	/* The standard WinNT/2k NTFS long filenames. Case insensitive.  All
1040 	   Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\',
1041 	   and '|'.  Further, names cannot end with a '.' or a space. */
1042 	FILE_NAME_DOS		= 0x02,
1043 	/* The standard DOS filenames (8.3 format). Uppercase only.  All 8-bit
1044 	   characters greater space, except: '"', '*', '+', ',', '/', ':', ';',
1045 	   '<', '=', '>', '?', and '\'. */
1046 	FILE_NAME_WIN32_AND_DOS	= 0x03,
1047 	/* 3 means that both the Win32 and the DOS filenames are identical and
1048 	   hence have been saved in this single filename record. */
1049 } __attribute__ ((__packed__));
1050 
1051 typedef u8 FILE_NAME_TYPE_FLAGS;
1052 
1053 /*
1054  * Attribute: Filename (0x30).
1055  *
1056  * NOTE: Always resident.
1057  * NOTE: All fields, except the parent_directory, are only updated when the
1058  *	 filename is changed. Until then, they just become out of sync with
1059  *	 reality and the more up to date values are present in the standard
1060  *	 information attribute.
1061  * NOTE: There is conflicting information about the meaning of each of the time
1062  *	 fields but the meaning as defined below has been verified to be
1063  *	 correct by practical experimentation on Windows NT4 SP6a and is hence
1064  *	 assumed to be the one and only correct interpretation.
1065  */
1066 typedef struct {
1067 /*hex ofs*/
1068 /*  0*/	leMFT_REF parent_directory;	/* Directory this filename is
1069 					   referenced from. */
1070 /*  8*/	sle64 creation_time;		/* Time file was created. */
1071 /* 10*/	sle64 last_data_change_time;	/* Time the data attribute was last
1072 					   modified. */
1073 /* 18*/	sle64 last_mft_change_time;	/* Time this mft record was last
1074 					   modified. */
1075 /* 20*/	sle64 last_access_time;		/* Time this mft record was last
1076 					   accessed. */
1077 /* 28*/	sle64 allocated_size;		/* Byte size of on-disk allocated space
1078 					   for the unnamed data attribute.  So
1079 					   for normal $DATA, this is the
1080 					   allocated_size from the unnamed
1081 					   $DATA attribute and for compressed
1082 					   and/or sparse $DATA, this is the
1083 					   compressed_size from the unnamed
1084 					   $DATA attribute.  For a directory or
1085 					   other inode without an unnamed $DATA
1086 					   attribute, this is always 0.  NOTE:
1087 					   This is a multiple of the cluster
1088 					   size. */
1089 /* 30*/	sle64 data_size;		/* Byte size of actual data in unnamed
1090 					   data attribute.  For a directory or
1091 					   other inode without an unnamed $DATA
1092 					   attribute, this is always 0. */
1093 /* 38*/	FILE_ATTR_FLAGS file_attributes;	/* Flags describing the file. */
1094 /* 3c*/	union {
1095 	/* 3c*/	struct {
1096 		/* 3c*/	le16 packed_ea_size;	/* Size of the buffer needed to
1097 						   pack the extended attributes
1098 						   (EAs), if such are present.*/
1099 		/* 3e*/	le16 reserved;		/* Reserved for alignment. */
1100 		} __attribute__ ((__packed__)) ea;
1101 	/* 3c*/	struct {
1102 		/* 3c*/	le32 reparse_point_tag;	/* Type of reparse point,
1103 						   present only in reparse
1104 						   points and only if there are
1105 						   no EAs. */
1106 		} __attribute__ ((__packed__)) rp;
1107 	} __attribute__ ((__packed__)) type;
1108 /* 40*/	u8 file_name_length;			/* Length of file name in
1109 						   (Unicode) characters. */
1110 /* 41*/	FILE_NAME_TYPE_FLAGS file_name_type;	/* Namespace of the file name.*/
1111 /* 42*/	ntfschar file_name[0];			/* File name in Unicode. */
1112 } __attribute__ ((__packed__)) FILE_NAME_ATTR;
1113 
1114 /*
1115  * GUID structures store globally unique identifiers (GUID). A GUID is a
1116  * 128-bit value consisting of one group of eight hexadecimal digits, followed
1117  * by three groups of four hexadecimal digits each, followed by one group of
1118  * twelve hexadecimal digits. GUIDs are Microsoft's implementation of the
1119  * distributed computing environment (DCE) universally unique identifier (UUID).
1120  * Example of a GUID:
1121  *	1F010768-5A73-BC91-0010A52216A7
1122  */
1123 typedef struct {
1124 	le32 data1;	/* The first eight hexadecimal digits of the GUID. */
1125 	le16 data2;	/* The first group of four hexadecimal digits. */
1126 	le16 data3;	/* The second group of four hexadecimal digits. */
1127 	u8 data4[8];	/* The first two bytes are the third group of four
1128 			   hexadecimal digits. The remaining six bytes are the
1129 			   final 12 hexadecimal digits. */
1130 } __attribute__ ((__packed__)) GUID;
1131 
1132 /*
1133  * FILE_Extend/$ObjId contains an index named $O. This index contains all
1134  * object_ids present on the volume as the index keys and the corresponding
1135  * mft_record numbers as the index entry data parts. The data part (defined
1136  * below) also contains three other object_ids:
1137  *	birth_volume_id - object_id of FILE_Volume on which the file was first
1138  *			  created. Optional (i.e. can be zero).
1139  *	birth_object_id - object_id of file when it was first created. Usually
1140  *			  equals the object_id. Optional (i.e. can be zero).
1141  *	domain_id	- Reserved (always zero).
1142  */
1143 typedef struct {
1144 	leMFT_REF mft_reference;/* Mft record containing the object_id in
1145 				   the index entry key. */
1146 	union {
1147 		struct {
1148 			GUID birth_volume_id;
1149 			GUID birth_object_id;
1150 			GUID domain_id;
1151 		} __attribute__ ((__packed__)) origin;
1152 		u8 extended_info[48];
1153 	} __attribute__ ((__packed__)) opt;
1154 } __attribute__ ((__packed__)) OBJ_ID_INDEX_DATA;
1155 
1156 /*
1157  * Attribute: Object id (NTFS 3.0+) (0x40).
1158  *
1159  * NOTE: Always resident.
1160  */
1161 typedef struct {
1162 	GUID object_id;				/* Unique id assigned to the
1163 						   file.*/
1164 	/* The following fields are optional. The attribute value size is 16
1165 	   bytes, i.e. sizeof(GUID), if these are not present at all. Note,
1166 	   the entries can be present but one or more (or all) can be zero
1167 	   meaning that that particular value(s) is(are) not defined. */
1168 	union {
1169 		struct {
1170 			GUID birth_volume_id;	/* Unique id of volume on which
1171 						   the file was first created.*/
1172 			GUID birth_object_id;	/* Unique id of file when it was
1173 						   first created. */
1174 			GUID domain_id;		/* Reserved, zero. */
1175 		} __attribute__ ((__packed__)) origin;
1176 		u8 extended_info[48];
1177 	} __attribute__ ((__packed__)) opt;
1178 } __attribute__ ((__packed__)) OBJECT_ID_ATTR;
1179 
1180 /*
1181  * The pre-defined IDENTIFIER_AUTHORITIES used as SID_IDENTIFIER_AUTHORITY in
1182  * the SID structure (see below).
1183  */
1184 //typedef enum {					/* SID string prefix. */
1185 //	SECURITY_NULL_SID_AUTHORITY	= {0, 0, 0, 0, 0, 0},	/* S-1-0 */
1186 //	SECURITY_WORLD_SID_AUTHORITY	= {0, 0, 0, 0, 0, 1},	/* S-1-1 */
1187 //	SECURITY_LOCAL_SID_AUTHORITY	= {0, 0, 0, 0, 0, 2},	/* S-1-2 */
1188 //	SECURITY_CREATOR_SID_AUTHORITY	= {0, 0, 0, 0, 0, 3},	/* S-1-3 */
1189 //	SECURITY_NON_UNIQUE_AUTHORITY	= {0, 0, 0, 0, 0, 4},	/* S-1-4 */
1190 //	SECURITY_NT_SID_AUTHORITY	= {0, 0, 0, 0, 0, 5},	/* S-1-5 */
1191 //} IDENTIFIER_AUTHORITIES;
1192 
1193 /*
1194  * These relative identifiers (RIDs) are used with the above identifier
1195  * authorities to make up universal well-known SIDs.
1196  *
1197  * Note: The relative identifier (RID) refers to the portion of a SID, which
1198  * identifies a user or group in relation to the authority that issued the SID.
1199  * For example, the universal well-known SID Creator Owner ID (S-1-3-0) is
1200  * made up of the identifier authority SECURITY_CREATOR_SID_AUTHORITY (3) and
1201  * the relative identifier SECURITY_CREATOR_OWNER_RID (0).
1202  */
1203 typedef enum {					/* Identifier authority. */
1204 	SECURITY_NULL_RID		  = 0,	/* S-1-0 */
1205 	SECURITY_WORLD_RID		  = 0,	/* S-1-1 */
1206 	SECURITY_LOCAL_RID		  = 0,	/* S-1-2 */
1207 
1208 	SECURITY_CREATOR_OWNER_RID	  = 0,	/* S-1-3 */
1209 	SECURITY_CREATOR_GROUP_RID	  = 1,	/* S-1-3 */
1210 
1211 	SECURITY_CREATOR_OWNER_SERVER_RID = 2,	/* S-1-3 */
1212 	SECURITY_CREATOR_GROUP_SERVER_RID = 3,	/* S-1-3 */
1213 
1214 	SECURITY_DIALUP_RID		  = 1,
1215 	SECURITY_NETWORK_RID		  = 2,
1216 	SECURITY_BATCH_RID		  = 3,
1217 	SECURITY_INTERACTIVE_RID	  = 4,
1218 	SECURITY_SERVICE_RID		  = 6,
1219 	SECURITY_ANONYMOUS_LOGON_RID	  = 7,
1220 	SECURITY_PROXY_RID		  = 8,
1221 	SECURITY_ENTERPRISE_CONTROLLERS_RID=9,
1222 	SECURITY_SERVER_LOGON_RID	  = 9,
1223 	SECURITY_PRINCIPAL_SELF_RID	  = 0xa,
1224 	SECURITY_AUTHENTICATED_USER_RID	  = 0xb,
1225 	SECURITY_RESTRICTED_CODE_RID	  = 0xc,
1226 	SECURITY_TERMINAL_SERVER_RID	  = 0xd,
1227 
1228 	SECURITY_LOGON_IDS_RID		  = 5,
1229 	SECURITY_LOGON_IDS_RID_COUNT	  = 3,
1230 
1231 	SECURITY_LOCAL_SYSTEM_RID	  = 0x12,
1232 
1233 	SECURITY_NT_NON_UNIQUE		  = 0x15,
1234 
1235 	SECURITY_BUILTIN_DOMAIN_RID	  = 0x20,
1236 
1237 	/*
1238 	 * Well-known domain relative sub-authority values (RIDs).
1239 	 */
1240 
1241 	/* Users. */
1242 	DOMAIN_USER_RID_ADMIN		  = 0x1f4,
1243 	DOMAIN_USER_RID_GUEST		  = 0x1f5,
1244 	DOMAIN_USER_RID_KRBTGT		  = 0x1f6,
1245 
1246 	/* Groups. */
1247 	DOMAIN_GROUP_RID_ADMINS		  = 0x200,
1248 	DOMAIN_GROUP_RID_USERS		  = 0x201,
1249 	DOMAIN_GROUP_RID_GUESTS		  = 0x202,
1250 	DOMAIN_GROUP_RID_COMPUTERS	  = 0x203,
1251 	DOMAIN_GROUP_RID_CONTROLLERS	  = 0x204,
1252 	DOMAIN_GROUP_RID_CERT_ADMINS	  = 0x205,
1253 	DOMAIN_GROUP_RID_SCHEMA_ADMINS	  = 0x206,
1254 	DOMAIN_GROUP_RID_ENTERPRISE_ADMINS= 0x207,
1255 	DOMAIN_GROUP_RID_POLICY_ADMINS	  = 0x208,
1256 
1257 	/* Aliases. */
1258 	DOMAIN_ALIAS_RID_ADMINS		  = 0x220,
1259 	DOMAIN_ALIAS_RID_USERS		  = 0x221,
1260 	DOMAIN_ALIAS_RID_GUESTS		  = 0x222,
1261 	DOMAIN_ALIAS_RID_POWER_USERS	  = 0x223,
1262 
1263 	DOMAIN_ALIAS_RID_ACCOUNT_OPS	  = 0x224,
1264 	DOMAIN_ALIAS_RID_SYSTEM_OPS	  = 0x225,
1265 	DOMAIN_ALIAS_RID_PRINT_OPS	  = 0x226,
1266 	DOMAIN_ALIAS_RID_BACKUP_OPS	  = 0x227,
1267 
1268 	DOMAIN_ALIAS_RID_REPLICATOR	  = 0x228,
1269 	DOMAIN_ALIAS_RID_RAS_SERVERS	  = 0x229,
1270 	DOMAIN_ALIAS_RID_PREW2KCOMPACCESS = 0x22a,
1271 } RELATIVE_IDENTIFIERS;
1272 
1273 /*
1274  * The universal well-known SIDs:
1275  *
1276  *	NULL_SID			S-1-0-0
1277  *	WORLD_SID			S-1-1-0
1278  *	LOCAL_SID			S-1-2-0
1279  *	CREATOR_OWNER_SID		S-1-3-0
1280  *	CREATOR_GROUP_SID		S-1-3-1
1281  *	CREATOR_OWNER_SERVER_SID	S-1-3-2
1282  *	CREATOR_GROUP_SERVER_SID	S-1-3-3
1283  *
1284  *	(Non-unique IDs)		S-1-4
1285  *
1286  * NT well-known SIDs:
1287  *
1288  *	NT_AUTHORITY_SID	S-1-5
1289  *	DIALUP_SID		S-1-5-1
1290  *
1291  *	NETWORD_SID		S-1-5-2
1292  *	BATCH_SID		S-1-5-3
1293  *	INTERACTIVE_SID		S-1-5-4
1294  *	SERVICE_SID		S-1-5-6
1295  *	ANONYMOUS_LOGON_SID	S-1-5-7		(aka null logon session)
1296  *	PROXY_SID		S-1-5-8
1297  *	SERVER_LOGON_SID	S-1-5-9		(aka domain controller account)
1298  *	SELF_SID		S-1-5-10	(self RID)
1299  *	AUTHENTICATED_USER_SID	S-1-5-11
1300  *	RESTRICTED_CODE_SID	S-1-5-12	(running restricted code)
1301  *	TERMINAL_SERVER_SID	S-1-5-13	(running on terminal server)
1302  *
1303  *	(Logon IDs)		S-1-5-5-X-Y
1304  *
1305  *	(NT non-unique IDs)	S-1-5-0x15-...
1306  *
1307  *	(Built-in domain)	S-1-5-0x20
1308  */
1309 
1310 /*
1311  * The SID_IDENTIFIER_AUTHORITY is a 48-bit value used in the SID structure.
1312  *
1313  * NOTE: This is stored as a big endian number, hence the high_part comes
1314  * before the low_part.
1315  */
1316 typedef union {
1317 	struct {
1318 		u16 high_part;	/* High 16-bits. */
1319 		u32 low_part;	/* Low 32-bits. */
1320 	} __attribute__ ((__packed__)) parts;
1321 	u8 value[6];		/* Value as individual bytes. */
1322 } __attribute__ ((__packed__)) SID_IDENTIFIER_AUTHORITY;
1323 
1324 /*
1325  * The SID structure is a variable-length structure used to uniquely identify
1326  * users or groups. SID stands for security identifier.
1327  *
1328  * The standard textual representation of the SID is of the form:
1329  *	S-R-I-S-S...
1330  * Where:
1331  *    - The first "S" is the literal character 'S' identifying the following
1332  *	digits as a SID.
1333  *    - R is the revision level of the SID expressed as a sequence of digits
1334  *	either in decimal or hexadecimal (if the later, prefixed by "0x").
1335  *    - I is the 48-bit identifier_authority, expressed as digits as R above.
1336  *    - S... is one or more sub_authority values, expressed as digits as above.
1337  *
1338  * Example SID; the domain-relative SID of the local Administrators group on
1339  * Windows NT/2k:
1340  *	S-1-5-32-544
1341  * This translates to a SID with:
1342  *	revision = 1,
1343  *	sub_authority_count = 2,
1344  *	identifier_authority = {0,0,0,0,0,5},	// SECURITY_NT_AUTHORITY
1345  *	sub_authority[0] = 32,			// SECURITY_BUILTIN_DOMAIN_RID
1346  *	sub_authority[1] = 544			// DOMAIN_ALIAS_RID_ADMINS
1347  */
1348 typedef struct {
1349 	u8 revision;
1350 	u8 sub_authority_count;
1351 	SID_IDENTIFIER_AUTHORITY identifier_authority;
1352 	le32 sub_authority[1];		/* At least one sub_authority. */
1353 } __attribute__ ((__packed__)) SID;
1354 
1355 /*
1356  * Current constants for SIDs.
1357  */
1358 typedef enum {
1359 	SID_REVISION			=  1,	/* Current revision level. */
1360 	SID_MAX_SUB_AUTHORITIES		= 15,	/* Maximum number of those. */
1361 	SID_RECOMMENDED_SUB_AUTHORITIES	=  1,	/* Will change to around 6 in
1362 						   a future revision. */
1363 } SID_CONSTANTS;
1364 
1365 /*
1366  * The predefined ACE types (8-bit, see below).
1367  */
1368 enum {
1369 	ACCESS_MIN_MS_ACE_TYPE		= 0,
1370 	ACCESS_ALLOWED_ACE_TYPE		= 0,
1371 	ACCESS_DENIED_ACE_TYPE		= 1,
1372 	SYSTEM_AUDIT_ACE_TYPE		= 2,
1373 	SYSTEM_ALARM_ACE_TYPE		= 3, /* Not implemented as of Win2k. */
1374 	ACCESS_MAX_MS_V2_ACE_TYPE	= 3,
1375 
1376 	ACCESS_ALLOWED_COMPOUND_ACE_TYPE= 4,
1377 	ACCESS_MAX_MS_V3_ACE_TYPE	= 4,
1378 
1379 	/* The following are Win2k only. */
1380 	ACCESS_MIN_MS_OBJECT_ACE_TYPE	= 5,
1381 	ACCESS_ALLOWED_OBJECT_ACE_TYPE	= 5,
1382 	ACCESS_DENIED_OBJECT_ACE_TYPE	= 6,
1383 	SYSTEM_AUDIT_OBJECT_ACE_TYPE	= 7,
1384 	SYSTEM_ALARM_OBJECT_ACE_TYPE	= 8,
1385 	ACCESS_MAX_MS_OBJECT_ACE_TYPE	= 8,
1386 
1387 	ACCESS_MAX_MS_V4_ACE_TYPE	= 8,
1388 
1389 	/* This one is for WinNT/2k. */
1390 	ACCESS_MAX_MS_ACE_TYPE		= 8,
1391 } __attribute__ ((__packed__));
1392 
1393 typedef u8 ACE_TYPES;
1394 
1395 /*
1396  * The ACE flags (8-bit) for audit and inheritance (see below).
1397  *
1398  * SUCCESSFUL_ACCESS_ACE_FLAG is only used with system audit and alarm ACE
1399  * types to indicate that a message is generated (in Windows!) for successful
1400  * accesses.
1401  *
1402  * FAILED_ACCESS_ACE_FLAG is only used with system audit and alarm ACE types
1403  * to indicate that a message is generated (in Windows!) for failed accesses.
1404  */
1405 enum {
1406 	/* The inheritance flags. */
1407 	OBJECT_INHERIT_ACE		= 0x01,
1408 	CONTAINER_INHERIT_ACE		= 0x02,
1409 	NO_PROPAGATE_INHERIT_ACE	= 0x04,
1410 	INHERIT_ONLY_ACE		= 0x08,
1411 	INHERITED_ACE			= 0x10,	/* Win2k only. */
1412 	VALID_INHERIT_FLAGS		= 0x1f,
1413 
1414 	/* The audit flags. */
1415 	SUCCESSFUL_ACCESS_ACE_FLAG	= 0x40,
1416 	FAILED_ACCESS_ACE_FLAG		= 0x80,
1417 } __attribute__ ((__packed__));
1418 
1419 typedef u8 ACE_FLAGS;
1420 
1421 /*
1422  * An ACE is an access-control entry in an access-control list (ACL).
1423  * An ACE defines access to an object for a specific user or group or defines
1424  * the types of access that generate system-administration messages or alarms
1425  * for a specific user or group. The user or group is identified by a security
1426  * identifier (SID).
1427  *
1428  * Each ACE starts with an ACE_HEADER structure (aligned on 4-byte boundary),
1429  * which specifies the type and size of the ACE. The format of the subsequent
1430  * data depends on the ACE type.
1431  */
1432 typedef struct {
1433 /*Ofs*/
1434 /*  0*/	ACE_TYPES type;		/* Type of the ACE. */
1435 /*  1*/	ACE_FLAGS flags;	/* Flags describing the ACE. */
1436 /*  2*/	le16 size;		/* Size in bytes of the ACE. */
1437 } __attribute__ ((__packed__)) ACE_HEADER;
1438 
1439 /*
1440  * The access mask (32-bit). Defines the access rights.
1441  *
1442  * The specific rights (bits 0 to 15).  These depend on the type of the object
1443  * being secured by the ACE.
1444  */
1445 enum {
1446 	/* Specific rights for files and directories are as follows: */
1447 
1448 	/* Right to read data from the file. (FILE) */
1449 	FILE_READ_DATA			= const_cpu_to_le32(0x00000001),
1450 	/* Right to list contents of a directory. (DIRECTORY) */
1451 	FILE_LIST_DIRECTORY		= const_cpu_to_le32(0x00000001),
1452 
1453 	/* Right to write data to the file. (FILE) */
1454 	FILE_WRITE_DATA			= const_cpu_to_le32(0x00000002),
1455 	/* Right to create a file in the directory. (DIRECTORY) */
1456 	FILE_ADD_FILE			= const_cpu_to_le32(0x00000002),
1457 
1458 	/* Right to append data to the file. (FILE) */
1459 	FILE_APPEND_DATA		= const_cpu_to_le32(0x00000004),
1460 	/* Right to create a subdirectory. (DIRECTORY) */
1461 	FILE_ADD_SUBDIRECTORY		= const_cpu_to_le32(0x00000004),
1462 
1463 	/* Right to read extended attributes. (FILE/DIRECTORY) */
1464 	FILE_READ_EA			= const_cpu_to_le32(0x00000008),
1465 
1466 	/* Right to write extended attributes. (FILE/DIRECTORY) */
1467 	FILE_WRITE_EA			= const_cpu_to_le32(0x00000010),
1468 
1469 	/* Right to execute a file. (FILE) */
1470 	FILE_EXECUTE			= const_cpu_to_le32(0x00000020),
1471 	/* Right to traverse the directory. (DIRECTORY) */
1472 	FILE_TRAVERSE			= const_cpu_to_le32(0x00000020),
1473 
1474 	/*
1475 	 * Right to delete a directory and all the files it contains (its
1476 	 * children), even if the files are read-only. (DIRECTORY)
1477 	 */
1478 	FILE_DELETE_CHILD		= const_cpu_to_le32(0x00000040),
1479 
1480 	/* Right to read file attributes. (FILE/DIRECTORY) */
1481 	FILE_READ_ATTRIBUTES		= const_cpu_to_le32(0x00000080),
1482 
1483 	/* Right to change file attributes. (FILE/DIRECTORY) */
1484 	FILE_WRITE_ATTRIBUTES		= const_cpu_to_le32(0x00000100),
1485 
1486 	/*
1487 	 * The standard rights (bits 16 to 23).  These are independent of the
1488 	 * type of object being secured.
1489 	 */
1490 
1491 	/* Right to delete the object. */
1492 	DELETE				= const_cpu_to_le32(0x00010000),
1493 
1494 	/*
1495 	 * Right to read the information in the object's security descriptor,
1496 	 * not including the information in the SACL, i.e. right to read the
1497 	 * security descriptor and owner.
1498 	 */
1499 	READ_CONTROL			= const_cpu_to_le32(0x00020000),
1500 
1501 	/* Right to modify the DACL in the object's security descriptor. */
1502 	WRITE_DAC			= const_cpu_to_le32(0x00040000),
1503 
1504 	/* Right to change the owner in the object's security descriptor. */
1505 	WRITE_OWNER			= const_cpu_to_le32(0x00080000),
1506 
1507 	/*
1508 	 * Right to use the object for synchronization.  Enables a process to
1509 	 * wait until the object is in the signalled state.  Some object types
1510 	 * do not support this access right.
1511 	 */
1512 	SYNCHRONIZE			= const_cpu_to_le32(0x00100000),
1513 
1514 	/*
1515 	 * The following STANDARD_RIGHTS_* are combinations of the above for
1516 	 * convenience and are defined by the Win32 API.
1517 	 */
1518 
1519 	/* These are currently defined to READ_CONTROL. */
1520 	STANDARD_RIGHTS_READ		= const_cpu_to_le32(0x00020000),
1521 	STANDARD_RIGHTS_WRITE		= const_cpu_to_le32(0x00020000),
1522 	STANDARD_RIGHTS_EXECUTE		= const_cpu_to_le32(0x00020000),
1523 
1524 	/* Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access. */
1525 	STANDARD_RIGHTS_REQUIRED	= const_cpu_to_le32(0x000f0000),
1526 
1527 	/*
1528 	 * Combines DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER, and
1529 	 * SYNCHRONIZE access.
1530 	 */
1531 	STANDARD_RIGHTS_ALL		= const_cpu_to_le32(0x001f0000),
1532 
1533 	/*
1534 	 * The access system ACL and maximum allowed access types (bits 24 to
1535 	 * 25, bits 26 to 27 are reserved).
1536 	 */
1537 	ACCESS_SYSTEM_SECURITY		= const_cpu_to_le32(0x01000000),
1538 	MAXIMUM_ALLOWED			= const_cpu_to_le32(0x02000000),
1539 
1540 	/*
1541 	 * The generic rights (bits 28 to 31).  These map onto the standard and
1542 	 * specific rights.
1543 	 */
1544 
1545 	/* Read, write, and execute access. */
1546 	GENERIC_ALL			= const_cpu_to_le32(0x10000000),
1547 
1548 	/* Execute access. */
1549 	GENERIC_EXECUTE			= const_cpu_to_le32(0x20000000),
1550 
1551 	/*
1552 	 * Write access.  For files, this maps onto:
1553 	 *	FILE_APPEND_DATA | FILE_WRITE_ATTRIBUTES | FILE_WRITE_DATA |
1554 	 *	FILE_WRITE_EA | STANDARD_RIGHTS_WRITE | SYNCHRONIZE
1555 	 * For directories, the mapping has the same numerical value.  See
1556 	 * above for the descriptions of the rights granted.
1557 	 */
1558 	GENERIC_WRITE			= const_cpu_to_le32(0x40000000),
1559 
1560 	/*
1561 	 * Read access.  For files, this maps onto:
1562 	 *	FILE_READ_ATTRIBUTES | FILE_READ_DATA | FILE_READ_EA |
1563 	 *	STANDARD_RIGHTS_READ | SYNCHRONIZE
1564 	 * For directories, the mapping has the same numberical value.  See
1565 	 * above for the descriptions of the rights granted.
1566 	 */
1567 	GENERIC_READ			= const_cpu_to_le32(0x80000000),
1568 };
1569 
1570 typedef le32 ACCESS_MASK;
1571 
1572 /*
1573  * The generic mapping array. Used to denote the mapping of each generic
1574  * access right to a specific access mask.
1575  *
1576  * FIXME: What exactly is this and what is it for? (AIA)
1577  */
1578 typedef struct {
1579 	ACCESS_MASK generic_read;
1580 	ACCESS_MASK generic_write;
1581 	ACCESS_MASK generic_execute;
1582 	ACCESS_MASK generic_all;
1583 } __attribute__ ((__packed__)) GENERIC_MAPPING;
1584 
1585 /*
1586  * The predefined ACE type structures are as defined below.
1587  */
1588 
1589 /*
1590  * ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE
1591  */
1592 typedef struct {
1593 /*  0	ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */
1594 	ACE_TYPES type;		/* Type of the ACE. */
1595 	ACE_FLAGS flags;	/* Flags describing the ACE. */
1596 	le16 size;		/* Size in bytes of the ACE. */
1597 /*  4*/	ACCESS_MASK mask;	/* Access mask associated with the ACE. */
1598 
1599 /*  8*/	SID sid;		/* The SID associated with the ACE. */
1600 } __attribute__ ((__packed__)) ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE,
1601 			       SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE;
1602 
1603 /*
1604  * The object ACE flags (32-bit).
1605  */
1606 enum {
1607 	ACE_OBJECT_TYPE_PRESENT			= const_cpu_to_le32(1),
1608 	ACE_INHERITED_OBJECT_TYPE_PRESENT	= const_cpu_to_le32(2),
1609 };
1610 
1611 typedef le32 OBJECT_ACE_FLAGS;
1612 
1613 typedef struct {
1614 /*  0	ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */
1615 	ACE_TYPES type;		/* Type of the ACE. */
1616 	ACE_FLAGS flags;	/* Flags describing the ACE. */
1617 	le16 size;		/* Size in bytes of the ACE. */
1618 /*  4*/	ACCESS_MASK mask;	/* Access mask associated with the ACE. */
1619 
1620 /*  8*/	OBJECT_ACE_FLAGS object_flags;	/* Flags describing the object ACE. */
1621 /* 12*/	GUID object_type;
1622 /* 28*/	GUID inherited_object_type;
1623 
1624 /* 44*/	SID sid;		/* The SID associated with the ACE. */
1625 } __attribute__ ((__packed__)) ACCESS_ALLOWED_OBJECT_ACE,
1626 			       ACCESS_DENIED_OBJECT_ACE,
1627 			       SYSTEM_AUDIT_OBJECT_ACE,
1628 			       SYSTEM_ALARM_OBJECT_ACE;
1629 
1630 /*
1631  * An ACL is an access-control list (ACL).
1632  * An ACL starts with an ACL header structure, which specifies the size of
1633  * the ACL and the number of ACEs it contains. The ACL header is followed by
1634  * zero or more access control entries (ACEs). The ACL as well as each ACE
1635  * are aligned on 4-byte boundaries.
1636  */
1637 typedef struct {
1638 	u8 revision;	/* Revision of this ACL. */
1639 	u8 alignment1;
1640 	le16 size;	/* Allocated space in bytes for ACL. Includes this
1641 			   header, the ACEs and the remaining free space. */
1642 	le16 ace_count;	/* Number of ACEs in the ACL. */
1643 	le16 alignment2;
1644 /* sizeof() = 8 bytes */
1645 } __attribute__ ((__packed__)) ACL;
1646 
1647 /*
1648  * Current constants for ACLs.
1649  */
1650 typedef enum {
1651 	/* Current revision. */
1652 	ACL_REVISION		= 2,
1653 	ACL_REVISION_DS		= 4,
1654 
1655 	/* History of revisions. */
1656 	ACL_REVISION1		= 1,
1657 	MIN_ACL_REVISION	= 2,
1658 	ACL_REVISION2		= 2,
1659 	ACL_REVISION3		= 3,
1660 	ACL_REVISION4		= 4,
1661 	MAX_ACL_REVISION	= 4,
1662 } ACL_CONSTANTS;
1663 
1664 /*
1665  * The security descriptor control flags (16-bit).
1666  *
1667  * SE_OWNER_DEFAULTED - This boolean flag, when set, indicates that the SID
1668  *	pointed to by the Owner field was provided by a defaulting mechanism
1669  *	rather than explicitly provided by the original provider of the
1670  *	security descriptor.  This may affect the treatment of the SID with
1671  *	respect to inheritence of an owner.
1672  *
1673  * SE_GROUP_DEFAULTED - This boolean flag, when set, indicates that the SID in
1674  *	the Group field was provided by a defaulting mechanism rather than
1675  *	explicitly provided by the original provider of the security
1676  *	descriptor.  This may affect the treatment of the SID with respect to
1677  *	inheritence of a primary group.
1678  *
1679  * SE_DACL_PRESENT - This boolean flag, when set, indicates that the security
1680  *	descriptor contains a discretionary ACL.  If this flag is set and the
1681  *	Dacl field of the SECURITY_DESCRIPTOR is null, then a null ACL is
1682  *	explicitly being specified.
1683  *
1684  * SE_DACL_DEFAULTED - This boolean flag, when set, indicates that the ACL
1685  *	pointed to by the Dacl field was provided by a defaulting mechanism
1686  *	rather than explicitly provided by the original provider of the
1687  *	security descriptor.  This may affect the treatment of the ACL with
1688  *	respect to inheritence of an ACL.  This flag is ignored if the
1689  *	DaclPresent flag is not set.
1690  *
1691  * SE_SACL_PRESENT - This boolean flag, when set,  indicates that the security
1692  *	descriptor contains a system ACL pointed to by the Sacl field.  If this
1693  *	flag is set and the Sacl field of the SECURITY_DESCRIPTOR is null, then
1694  *	an empty (but present) ACL is being specified.
1695  *
1696  * SE_SACL_DEFAULTED - This boolean flag, when set, indicates that the ACL
1697  *	pointed to by the Sacl field was provided by a defaulting mechanism
1698  *	rather than explicitly provided by the original provider of the
1699  *	security descriptor.  This may affect the treatment of the ACL with
1700  *	respect to inheritence of an ACL.  This flag is ignored if the
1701  *	SaclPresent flag is not set.
1702  *
1703  * SE_SELF_RELATIVE - This boolean flag, when set, indicates that the security
1704  *	descriptor is in self-relative form.  In this form, all fields of the
1705  *	security descriptor are contiguous in memory and all pointer fields are
1706  *	expressed as offsets from the beginning of the security descriptor.
1707  */
1708 enum {
1709 	SE_OWNER_DEFAULTED		= const_cpu_to_le16(0x0001),
1710 	SE_GROUP_DEFAULTED		= const_cpu_to_le16(0x0002),
1711 	SE_DACL_PRESENT			= const_cpu_to_le16(0x0004),
1712 	SE_DACL_DEFAULTED		= const_cpu_to_le16(0x0008),
1713 
1714 	SE_SACL_PRESENT			= const_cpu_to_le16(0x0010),
1715 	SE_SACL_DEFAULTED		= const_cpu_to_le16(0x0020),
1716 
1717 	SE_DACL_AUTO_INHERIT_REQ	= const_cpu_to_le16(0x0100),
1718 	SE_SACL_AUTO_INHERIT_REQ	= const_cpu_to_le16(0x0200),
1719 	SE_DACL_AUTO_INHERITED		= const_cpu_to_le16(0x0400),
1720 	SE_SACL_AUTO_INHERITED		= const_cpu_to_le16(0x0800),
1721 
1722 	SE_DACL_PROTECTED		= const_cpu_to_le16(0x1000),
1723 	SE_SACL_PROTECTED		= const_cpu_to_le16(0x2000),
1724 	SE_RM_CONTROL_VALID		= const_cpu_to_le16(0x4000),
1725 	SE_SELF_RELATIVE		= const_cpu_to_le16(0x8000)
1726 } __attribute__ ((__packed__));
1727 
1728 typedef le16 SECURITY_DESCRIPTOR_CONTROL;
1729 
1730 /*
1731  * Self-relative security descriptor. Contains the owner and group SIDs as well
1732  * as the sacl and dacl ACLs inside the security descriptor itself.
1733  */
1734 typedef struct {
1735 	u8 revision;	/* Revision level of the security descriptor. */
1736 	u8 alignment;
1737 	SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of
1738 			   the descriptor as well as the following fields. */
1739 	le32 owner;	/* Byte offset to a SID representing an object's
1740 			   owner. If this is NULL, no owner SID is present in
1741 			   the descriptor. */
1742 	le32 group;	/* Byte offset to a SID representing an object's
1743 			   primary group. If this is NULL, no primary group
1744 			   SID is present in the descriptor. */
1745 	le32 sacl;	/* Byte offset to a system ACL. Only valid, if
1746 			   SE_SACL_PRESENT is set in the control field. If
1747 			   SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL
1748 			   is specified. */
1749 	le32 dacl;	/* Byte offset to a discretionary ACL. Only valid, if
1750 			   SE_DACL_PRESENT is set in the control field. If
1751 			   SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL
1752 			   (unconditionally granting access) is specified. */
1753 /* sizeof() = 0x14 bytes */
1754 } __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_RELATIVE;
1755 
1756 /*
1757  * Absolute security descriptor. Does not contain the owner and group SIDs, nor
1758  * the sacl and dacl ACLs inside the security descriptor. Instead, it contains
1759  * pointers to these structures in memory. Obviously, absolute security
1760  * descriptors are only useful for in memory representations of security
1761  * descriptors. On disk, a self-relative security descriptor is used.
1762  */
1763 typedef struct {
1764 	u8 revision;	/* Revision level of the security descriptor. */
1765 	u8 alignment;
1766 	SECURITY_DESCRIPTOR_CONTROL control;	/* Flags qualifying the type of
1767 			   the descriptor as well as the following fields. */
1768 	SID *owner;	/* Points to a SID representing an object's owner. If
1769 			   this is NULL, no owner SID is present in the
1770 			   descriptor. */
1771 	SID *group;	/* Points to a SID representing an object's primary
1772 			   group. If this is NULL, no primary group SID is
1773 			   present in the descriptor. */
1774 	ACL *sacl;	/* Points to a system ACL. Only valid, if
1775 			   SE_SACL_PRESENT is set in the control field. If
1776 			   SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL
1777 			   is specified. */
1778 	ACL *dacl;	/* Points to a discretionary ACL. Only valid, if
1779 			   SE_DACL_PRESENT is set in the control field. If
1780 			   SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL
1781 			   (unconditionally granting access) is specified. */
1782 } __attribute__ ((__packed__)) SECURITY_DESCRIPTOR;
1783 
1784 /*
1785  * Current constants for security descriptors.
1786  */
1787 typedef enum {
1788 	/* Current revision. */
1789 	SECURITY_DESCRIPTOR_REVISION	= 1,
1790 	SECURITY_DESCRIPTOR_REVISION1	= 1,
1791 
1792 	/* The sizes of both the absolute and relative security descriptors is
1793 	   the same as pointers, at least on ia32 architecture are 32-bit. */
1794 	SECURITY_DESCRIPTOR_MIN_LENGTH	= sizeof(SECURITY_DESCRIPTOR),
1795 } SECURITY_DESCRIPTOR_CONSTANTS;
1796 
1797 /*
1798  * Attribute: Security descriptor (0x50). A standard self-relative security
1799  * descriptor.
1800  *
1801  * NOTE: Can be resident or non-resident.
1802  * NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally
1803  * in FILE_Secure and the correct descriptor is found using the security_id
1804  * from the standard information attribute.
1805  */
1806 typedef SECURITY_DESCRIPTOR_RELATIVE SECURITY_DESCRIPTOR_ATTR;
1807 
1808 /*
1809  * On NTFS 3.0+, all security descriptors are stored in FILE_Secure. Only one
1810  * referenced instance of each unique security descriptor is stored.
1811  *
1812  * FILE_Secure contains no unnamed data attribute, i.e. it has zero length. It
1813  * does, however, contain two indexes ($SDH and $SII) as well as a named data
1814  * stream ($SDS).
1815  *
1816  * Every unique security descriptor is assigned a unique security identifier
1817  * (security_id, not to be confused with a SID). The security_id is unique for
1818  * the NTFS volume and is used as an index into the $SII index, which maps
1819  * security_ids to the security descriptor's storage location within the $SDS
1820  * data attribute. The $SII index is sorted by ascending security_id.
1821  *
1822  * A simple hash is computed from each security descriptor. This hash is used
1823  * as an index into the $SDH index, which maps security descriptor hashes to
1824  * the security descriptor's storage location within the $SDS data attribute.
1825  * The $SDH index is sorted by security descriptor hash and is stored in a B+
1826  * tree. When searching $SDH (with the intent of determining whether or not a
1827  * new security descriptor is already present in the $SDS data stream), if a
1828  * matching hash is found, but the security descriptors do not match, the
1829  * search in the $SDH index is continued, searching for a next matching hash.
1830  *
1831  * When a precise match is found, the security_id coresponding to the security
1832  * descriptor in the $SDS attribute is read from the found $SDH index entry and
1833  * is stored in the $STANDARD_INFORMATION attribute of the file/directory to
1834  * which the security descriptor is being applied. The $STANDARD_INFORMATION
1835  * attribute is present in all base mft records (i.e. in all files and
1836  * directories).
1837  *
1838  * If a match is not found, the security descriptor is assigned a new unique
1839  * security_id and is added to the $SDS data attribute. Then, entries
1840  * referencing the this security descriptor in the $SDS data attribute are
1841  * added to the $SDH and $SII indexes.
1842  *
1843  * Note: Entries are never deleted from FILE_Secure, even if nothing
1844  * references an entry any more.
1845  */
1846 
1847 /*
1848  * This header precedes each security descriptor in the $SDS data stream.
1849  * This is also the index entry data part of both the $SII and $SDH indexes.
1850  */
1851 typedef struct {
1852 	le32 hash;	  /* Hash of the security descriptor. */
1853 	le32 security_id; /* The security_id assigned to the descriptor. */
1854 	le64 offset;	  /* Byte offset of this entry in the $SDS stream. */
1855 	le32 length;	  /* Size in bytes of this entry in $SDS stream. */
1856 } __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_HEADER;
1857 
1858 /*
1859  * The $SDS data stream contains the security descriptors, aligned on 16-byte
1860  * boundaries, sorted by security_id in a B+ tree. Security descriptors cannot
1861  * cross 256kib boundaries (this restriction is imposed by the Windows cache
1862  * manager). Each security descriptor is contained in a SDS_ENTRY structure.
1863  * Also, each security descriptor is stored twice in the $SDS stream with a
1864  * fixed offset of 0x40000 bytes (256kib, the Windows cache manager's max size)
1865  * between them; i.e. if a SDS_ENTRY specifies an offset of 0x51d0, then the
1866  * the first copy of the security descriptor will be at offset 0x51d0 in the
1867  * $SDS data stream and the second copy will be at offset 0x451d0.
1868  */
1869 typedef struct {
1870 /*Ofs*/
1871 /*  0	SECURITY_DESCRIPTOR_HEADER; -- Unfolded here as gcc doesn't like
1872 				       unnamed structs. */
1873 	le32 hash;	  /* Hash of the security descriptor. */
1874 	le32 security_id; /* The security_id assigned to the descriptor. */
1875 	le64 offset;	  /* Byte offset of this entry in the $SDS stream. */
1876 	le32 length;	  /* Size in bytes of this entry in $SDS stream. */
1877 /* 20*/	SECURITY_DESCRIPTOR_RELATIVE sid; /* The self-relative security
1878 					     descriptor. */
1879 } __attribute__ ((__packed__)) SDS_ENTRY;
1880 
1881 /*
1882  * The index entry key used in the $SII index. The collation type is
1883  * COLLATION_NTOFS_ULONG.
1884  */
1885 typedef struct {
1886 	le32 security_id; /* The security_id assigned to the descriptor. */
1887 } __attribute__ ((__packed__)) SII_INDEX_KEY;
1888 
1889 /*
1890  * The index entry key used in the $SDH index. The keys are sorted first by
1891  * hash and then by security_id. The collation rule is
1892  * COLLATION_NTOFS_SECURITY_HASH.
1893  */
1894 typedef struct {
1895 	le32 hash;	  /* Hash of the security descriptor. */
1896 	le32 security_id; /* The security_id assigned to the descriptor. */
1897 } __attribute__ ((__packed__)) SDH_INDEX_KEY;
1898 
1899 /*
1900  * Attribute: Volume name (0x60).
1901  *
1902  * NOTE: Always resident.
1903  * NOTE: Present only in FILE_Volume.
1904  */
1905 typedef struct {
1906 	ntfschar name[0];	/* The name of the volume in Unicode. */
1907 } __attribute__ ((__packed__)) VOLUME_NAME;
1908 
1909 /*
1910  * Possible flags for the volume (16-bit).
1911  */
1912 enum {
1913 	VOLUME_IS_DIRTY			= const_cpu_to_le16(0x0001),
1914 	VOLUME_RESIZE_LOG_FILE		= const_cpu_to_le16(0x0002),
1915 	VOLUME_UPGRADE_ON_MOUNT		= const_cpu_to_le16(0x0004),
1916 	VOLUME_MOUNTED_ON_NT4		= const_cpu_to_le16(0x0008),
1917 
1918 	VOLUME_DELETE_USN_UNDERWAY	= const_cpu_to_le16(0x0010),
1919 	VOLUME_REPAIR_OBJECT_ID		= const_cpu_to_le16(0x0020),
1920 
1921 	VOLUME_CHKDSK_UNDERWAY		= const_cpu_to_le16(0x4000),
1922 	VOLUME_MODIFIED_BY_CHKDSK	= const_cpu_to_le16(0x8000),
1923 
1924 	VOLUME_FLAGS_MASK		= const_cpu_to_le16(0xc03f),
1925 
1926 	/* To make our life easier when checking if we must mount read-only. */
1927 	VOLUME_MUST_MOUNT_RO_MASK	= const_cpu_to_le16(0xc027),
1928 } __attribute__ ((__packed__));
1929 
1930 typedef le16 VOLUME_FLAGS;
1931 
1932 /*
1933  * Attribute: Volume information (0x70).
1934  *
1935  * NOTE: Always resident.
1936  * NOTE: Present only in FILE_Volume.
1937  * NOTE: Windows 2000 uses NTFS 3.0 while Windows NT4 service pack 6a uses
1938  *	 NTFS 1.2. I haven't personally seen other values yet.
1939  */
1940 typedef struct {
1941 	le64 reserved;		/* Not used (yet?). */
1942 	u8 major_ver;		/* Major version of the ntfs format. */
1943 	u8 minor_ver;		/* Minor version of the ntfs format. */
1944 	VOLUME_FLAGS flags;	/* Bit array of VOLUME_* flags. */
1945 } __attribute__ ((__packed__)) VOLUME_INFORMATION;
1946 
1947 /*
1948  * Attribute: Data attribute (0x80).
1949  *
1950  * NOTE: Can be resident or non-resident.
1951  *
1952  * Data contents of a file (i.e. the unnamed stream) or of a named stream.
1953  */
1954 typedef struct {
1955 	u8 data[0];		/* The file's data contents. */
1956 } __attribute__ ((__packed__)) DATA_ATTR;
1957 
1958 /*
1959  * Index header flags (8-bit).
1960  */
1961 enum {
1962 	/*
1963 	 * When index header is in an index root attribute:
1964 	 */
1965 	SMALL_INDEX = 0, /* The index is small enough to fit inside the index
1966 			    root attribute and there is no index allocation
1967 			    attribute present. */
1968 	LARGE_INDEX = 1, /* The index is too large to fit in the index root
1969 			    attribute and/or an index allocation attribute is
1970 			    present. */
1971 	/*
1972 	 * When index header is in an index block, i.e. is part of index
1973 	 * allocation attribute:
1974 	 */
1975 	LEAF_NODE  = 0, /* This is a leaf node, i.e. there are no more nodes
1976 			   branching off it. */
1977 	INDEX_NODE = 1, /* This node indexes other nodes, i.e. it is not a leaf
1978 			   node. */
1979 	NODE_MASK  = 1, /* Mask for accessing the *_NODE bits. */
1980 } __attribute__ ((__packed__));
1981 
1982 typedef u8 INDEX_HEADER_FLAGS;
1983 
1984 /*
1985  * This is the header for indexes, describing the INDEX_ENTRY records, which
1986  * follow the INDEX_HEADER. Together the index header and the index entries
1987  * make up a complete index.
1988  *
1989  * IMPORTANT NOTE: The offset, length and size structure members are counted
1990  * relative to the start of the index header structure and not relative to the
1991  * start of the index root or index allocation structures themselves.
1992  */
1993 typedef struct {
1994 	le32 entries_offset;		/* Byte offset to first INDEX_ENTRY
1995 					   aligned to 8-byte boundary. */
1996 	le32 index_length;		/* Data size of the index in bytes,
1997 					   i.e. bytes used from allocated
1998 					   size, aligned to 8-byte boundary. */
1999 	le32 allocated_size;		/* Byte size of this index (block),
2000 					   multiple of 8 bytes. */
2001 	/* NOTE: For the index root attribute, the above two numbers are always
2002 	   equal, as the attribute is resident and it is resized as needed. In
2003 	   the case of the index allocation attribute the attribute is not
2004 	   resident and hence the allocated_size is a fixed value and must
2005 	   equal the index_block_size specified by the INDEX_ROOT attribute
2006 	   corresponding to the INDEX_ALLOCATION attribute this INDEX_BLOCK
2007 	   belongs to. */
2008 	INDEX_HEADER_FLAGS flags;	/* Bit field of INDEX_HEADER_FLAGS. */
2009 	u8 reserved[3];			/* Reserved/align to 8-byte boundary. */
2010 } __attribute__ ((__packed__)) INDEX_HEADER;
2011 
2012 /*
2013  * Attribute: Index root (0x90).
2014  *
2015  * NOTE: Always resident.
2016  *
2017  * This is followed by a sequence of index entries (INDEX_ENTRY structures)
2018  * as described by the index header.
2019  *
2020  * When a directory is small enough to fit inside the index root then this
2021  * is the only attribute describing the directory. When the directory is too
2022  * large to fit in the index root, on the other hand, two aditional attributes
2023  * are present: an index allocation attribute, containing sub-nodes of the B+
2024  * directory tree (see below), and a bitmap attribute, describing which virtual
2025  * cluster numbers (vcns) in the index allocation attribute are in use by an
2026  * index block.
2027  *
2028  * NOTE: The root directory (FILE_root) contains an entry for itself. Other
2029  * dircetories do not contain entries for themselves, though.
2030  */
2031 typedef struct {
2032 	ATTR_TYPE type;			/* Type of the indexed attribute. Is
2033 					   $FILE_NAME for directories, zero
2034 					   for view indexes. No other values
2035 					   allowed. */
2036 	COLLATION_RULE collation_rule;	/* Collation rule used to sort the
2037 					   index entries. If type is $FILE_NAME,
2038 					   this must be COLLATION_FILE_NAME. */
2039 	le32 index_block_size;		/* Size of each index block in bytes (in
2040 					   the index allocation attribute). */
2041 	u8 clusters_per_index_block;	/* Cluster size of each index block (in
2042 					   the index allocation attribute), when
2043 					   an index block is >= than a cluster,
2044 					   otherwise this will be the log of
2045 					   the size (like how the encoding of
2046 					   the mft record size and the index
2047 					   record size found in the boot sector
2048 					   work). Has to be a power of 2. */
2049 	u8 reserved[3];			/* Reserved/align to 8-byte boundary. */
2050 	INDEX_HEADER index;		/* Index header describing the
2051 					   following index entries. */
2052 } __attribute__ ((__packed__)) INDEX_ROOT;
2053 
2054 /*
2055  * Attribute: Index allocation (0xa0).
2056  *
2057  * NOTE: Always non-resident (doesn't make sense to be resident anyway!).
2058  *
2059  * This is an array of index blocks. Each index block starts with an
2060  * INDEX_BLOCK structure containing an index header, followed by a sequence of
2061  * index entries (INDEX_ENTRY structures), as described by the INDEX_HEADER.
2062  */
2063 typedef struct {
2064 /*  0	NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
2065 	NTFS_RECORD_TYPE magic;	/* Magic is "INDX". */
2066 	le16 usa_ofs;		/* See NTFS_RECORD definition. */
2067 	le16 usa_count;		/* See NTFS_RECORD definition. */
2068 
2069 /*  8*/	sle64 lsn;		/* $LogFile sequence number of the last
2070 				   modification of this index block. */
2071 /* 16*/	leVCN index_block_vcn;	/* Virtual cluster number of the index block.
2072 				   If the cluster_size on the volume is <= the
2073 				   index_block_size of the directory,
2074 				   index_block_vcn counts in units of clusters,
2075 				   and in units of sectors otherwise. */
2076 /* 24*/	INDEX_HEADER index;	/* Describes the following index entries. */
2077 /* sizeof()= 40 (0x28) bytes */
2078 /*
2079  * When creating the index block, we place the update sequence array at this
2080  * offset, i.e. before we start with the index entries. This also makes sense,
2081  * otherwise we could run into problems with the update sequence array
2082  * containing in itself the last two bytes of a sector which would mean that
2083  * multi sector transfer protection wouldn't work. As you can't protect data
2084  * by overwriting it since you then can't get it back...
2085  * When reading use the data from the ntfs record header.
2086  */
2087 } __attribute__ ((__packed__)) INDEX_BLOCK;
2088 
2089 typedef INDEX_BLOCK INDEX_ALLOCATION;
2090 
2091 /*
2092  * The system file FILE_Extend/$Reparse contains an index named $R listing
2093  * all reparse points on the volume. The index entry keys are as defined
2094  * below. Note, that there is no index data associated with the index entries.
2095  *
2096  * The index entries are sorted by the index key file_id. The collation rule is
2097  * COLLATION_NTOFS_ULONGS. FIXME: Verify whether the reparse_tag is not the
2098  * primary key / is not a key at all. (AIA)
2099  */
2100 typedef struct {
2101 	le32 reparse_tag;	/* Reparse point type (inc. flags). */
2102 	leMFT_REF file_id;	/* Mft record of the file containing the
2103 				   reparse point attribute. */
2104 } __attribute__ ((__packed__)) REPARSE_INDEX_KEY;
2105 
2106 /*
2107  * Quota flags (32-bit).
2108  *
2109  * The user quota flags.  Names explain meaning.
2110  */
2111 enum {
2112 	QUOTA_FLAG_DEFAULT_LIMITS	= const_cpu_to_le32(0x00000001),
2113 	QUOTA_FLAG_LIMIT_REACHED	= const_cpu_to_le32(0x00000002),
2114 	QUOTA_FLAG_ID_DELETED		= const_cpu_to_le32(0x00000004),
2115 
2116 	QUOTA_FLAG_USER_MASK		= const_cpu_to_le32(0x00000007),
2117 	/* This is a bit mask for the user quota flags. */
2118 
2119 	/*
2120 	 * These flags are only present in the quota defaults index entry, i.e.
2121 	 * in the entry where owner_id = QUOTA_DEFAULTS_ID.
2122 	 */
2123 	QUOTA_FLAG_TRACKING_ENABLED	= const_cpu_to_le32(0x00000010),
2124 	QUOTA_FLAG_ENFORCEMENT_ENABLED	= const_cpu_to_le32(0x00000020),
2125 	QUOTA_FLAG_TRACKING_REQUESTED	= const_cpu_to_le32(0x00000040),
2126 	QUOTA_FLAG_LOG_THRESHOLD	= const_cpu_to_le32(0x00000080),
2127 
2128 	QUOTA_FLAG_LOG_LIMIT		= const_cpu_to_le32(0x00000100),
2129 	QUOTA_FLAG_OUT_OF_DATE		= const_cpu_to_le32(0x00000200),
2130 	QUOTA_FLAG_CORRUPT		= const_cpu_to_le32(0x00000400),
2131 	QUOTA_FLAG_PENDING_DELETES	= const_cpu_to_le32(0x00000800),
2132 };
2133 
2134 typedef le32 QUOTA_FLAGS;
2135 
2136 /*
2137  * The system file FILE_Extend/$Quota contains two indexes $O and $Q. Quotas
2138  * are on a per volume and per user basis.
2139  *
2140  * The $Q index contains one entry for each existing user_id on the volume. The
2141  * index key is the user_id of the user/group owning this quota control entry,
2142  * i.e. the key is the owner_id. The user_id of the owner of a file, i.e. the
2143  * owner_id, is found in the standard information attribute. The collation rule
2144  * for $Q is COLLATION_NTOFS_ULONG.
2145  *
2146  * The $O index contains one entry for each user/group who has been assigned
2147  * a quota on that volume. The index key holds the SID of the user_id the
2148  * entry belongs to, i.e. the owner_id. The collation rule for $O is
2149  * COLLATION_NTOFS_SID.
2150  *
2151  * The $O index entry data is the user_id of the user corresponding to the SID.
2152  * This user_id is used as an index into $Q to find the quota control entry
2153  * associated with the SID.
2154  *
2155  * The $Q index entry data is the quota control entry and is defined below.
2156  */
2157 typedef struct {
2158 	le32 version;		/* Currently equals 2. */
2159 	QUOTA_FLAGS flags;	/* Flags describing this quota entry. */
2160 	le64 bytes_used;	/* How many bytes of the quota are in use. */
2161 	sle64 change_time;	/* Last time this quota entry was changed. */
2162 	sle64 threshold;	/* Soft quota (-1 if not limited). */
2163 	sle64 limit;		/* Hard quota (-1 if not limited). */
2164 	sle64 exceeded_time;	/* How long the soft quota has been exceeded. */
2165 	SID sid;		/* The SID of the user/object associated with
2166 				   this quota entry.  Equals zero for the quota
2167 				   defaults entry (and in fact on a WinXP
2168 				   volume, it is not present at all). */
2169 } __attribute__ ((__packed__)) QUOTA_CONTROL_ENTRY;
2170 
2171 /*
2172  * Predefined owner_id values (32-bit).
2173  */
2174 enum {
2175 	QUOTA_INVALID_ID	= const_cpu_to_le32(0x00000000),
2176 	QUOTA_DEFAULTS_ID	= const_cpu_to_le32(0x00000001),
2177 	QUOTA_FIRST_USER_ID	= const_cpu_to_le32(0x00000100),
2178 };
2179 
2180 /*
2181  * Current constants for quota control entries.
2182  */
2183 typedef enum {
2184 	/* Current version. */
2185 	QUOTA_VERSION	= 2,
2186 } QUOTA_CONTROL_ENTRY_CONSTANTS;
2187 
2188 /*
2189  * Index entry flags (16-bit).
2190  */
2191 enum {
2192 	INDEX_ENTRY_NODE = const_cpu_to_le16(1), /* This entry contains a
2193 			sub-node, i.e. a reference to an index block in form of
2194 			a virtual cluster number (see below). */
2195 	INDEX_ENTRY_END  = const_cpu_to_le16(2), /* This signifies the last
2196 			entry in an index block.  The index entry does not
2197 			represent a file but it can point to a sub-node. */
2198 
2199 	INDEX_ENTRY_SPACE_FILLER = const_cpu_to_le16(0xffff), /* gcc: Force
2200 			enum bit width to 16-bit. */
2201 } __attribute__ ((__packed__));
2202 
2203 typedef le16 INDEX_ENTRY_FLAGS;
2204 
2205 /*
2206  * This the index entry header (see below).
2207  */
2208 typedef struct {
2209 /*  0*/	union {
2210 		struct { /* Only valid when INDEX_ENTRY_END is not set. */
2211 			leMFT_REF indexed_file;	/* The mft reference of the file
2212 						   described by this index
2213 						   entry. Used for directory
2214 						   indexes. */
2215 		} __attribute__ ((__packed__)) dir;
2216 		struct { /* Used for views/indexes to find the entry's data. */
2217 			le16 data_offset;	/* Data byte offset from this
2218 						   INDEX_ENTRY. Follows the
2219 						   index key. */
2220 			le16 data_length;	/* Data length in bytes. */
2221 			le32 reservedV;		/* Reserved (zero). */
2222 		} __attribute__ ((__packed__)) vi;
2223 	} __attribute__ ((__packed__)) data;
2224 /*  8*/	le16 length;		 /* Byte size of this index entry, multiple of
2225 				    8-bytes. */
2226 /* 10*/	le16 key_length;	 /* Byte size of the key value, which is in the
2227 				    index entry. It follows field reserved. Not
2228 				    multiple of 8-bytes. */
2229 /* 12*/	INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */
2230 /* 14*/	le16 reserved;		 /* Reserved/align to 8-byte boundary. */
2231 /* sizeof() = 16 bytes */
2232 } __attribute__ ((__packed__)) INDEX_ENTRY_HEADER;
2233 
2234 /*
2235  * This is an index entry. A sequence of such entries follows each INDEX_HEADER
2236  * structure. Together they make up a complete index. The index follows either
2237  * an index root attribute or an index allocation attribute.
2238  *
2239  * NOTE: Before NTFS 3.0 only filename attributes were indexed.
2240  */
2241 typedef struct {
2242 /*Ofs*/
2243 /*  0	INDEX_ENTRY_HEADER; -- Unfolded here as gcc dislikes unnamed structs. */
2244 	union {
2245 		struct { /* Only valid when INDEX_ENTRY_END is not set. */
2246 			leMFT_REF indexed_file;	/* The mft reference of the file
2247 						   described by this index
2248 						   entry. Used for directory
2249 						   indexes. */
2250 		} __attribute__ ((__packed__)) dir;
2251 		struct { /* Used for views/indexes to find the entry's data. */
2252 			le16 data_offset;	/* Data byte offset from this
2253 						   INDEX_ENTRY. Follows the
2254 						   index key. */
2255 			le16 data_length;	/* Data length in bytes. */
2256 			le32 reservedV;		/* Reserved (zero). */
2257 		} __attribute__ ((__packed__)) vi;
2258 	} __attribute__ ((__packed__)) data;
2259 	le16 length;		 /* Byte size of this index entry, multiple of
2260 				    8-bytes. */
2261 	le16 key_length;	 /* Byte size of the key value, which is in the
2262 				    index entry. It follows field reserved. Not
2263 				    multiple of 8-bytes. */
2264 	INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */
2265 	le16 reserved;		 /* Reserved/align to 8-byte boundary. */
2266 
2267 /* 16*/	union {		/* The key of the indexed attribute. NOTE: Only present
2268 			   if INDEX_ENTRY_END bit in flags is not set. NOTE: On
2269 			   NTFS versions before 3.0 the only valid key is the
2270 			   FILE_NAME_ATTR. On NTFS 3.0+ the following
2271 			   additional index keys are defined: */
2272 		FILE_NAME_ATTR file_name;/* $I30 index in directories. */
2273 		SII_INDEX_KEY sii;	/* $SII index in $Secure. */
2274 		SDH_INDEX_KEY sdh;	/* $SDH index in $Secure. */
2275 		GUID object_id;		/* $O index in FILE_Extend/$ObjId: The
2276 					   object_id of the mft record found in
2277 					   the data part of the index. */
2278 		REPARSE_INDEX_KEY reparse;	/* $R index in
2279 						   FILE_Extend/$Reparse. */
2280 		SID sid;		/* $O index in FILE_Extend/$Quota:
2281 					   SID of the owner of the user_id. */
2282 		le32 owner_id;		/* $Q index in FILE_Extend/$Quota:
2283 					   user_id of the owner of the quota
2284 					   control entry in the data part of
2285 					   the index. */
2286 	} __attribute__ ((__packed__)) key;
2287 	/* The (optional) index data is inserted here when creating. */
2288 	// leVCN vcn;	/* If INDEX_ENTRY_NODE bit in flags is set, the last
2289 	//		   eight bytes of this index entry contain the virtual
2290 	//		   cluster number of the index block that holds the
2291 	//		   entries immediately preceding the current entry (the
2292 	//		   vcn references the corresponding cluster in the data
2293 	//		   of the non-resident index allocation attribute). If
2294 	//		   the key_length is zero, then the vcn immediately
2295 	//		   follows the INDEX_ENTRY_HEADER. Regardless of
2296 	//		   key_length, the address of the 8-byte boundary
2297 	//		   alligned vcn of INDEX_ENTRY{_HEADER} *ie is given by
2298 	//		   (char*)ie + le16_to_cpu(ie*)->length) - sizeof(VCN),
2299 	//		   where sizeof(VCN) can be hardcoded as 8 if wanted. */
2300 } __attribute__ ((__packed__)) INDEX_ENTRY;
2301 
2302 /*
2303  * Attribute: Bitmap (0xb0).
2304  *
2305  * Contains an array of bits (aka a bitfield).
2306  *
2307  * When used in conjunction with the index allocation attribute, each bit
2308  * corresponds to one index block within the index allocation attribute. Thus
2309  * the number of bits in the bitmap * index block size / cluster size is the
2310  * number of clusters in the index allocation attribute.
2311  */
2312 typedef struct {
2313 	u8 bitmap[0];			/* Array of bits. */
2314 } __attribute__ ((__packed__)) BITMAP_ATTR;
2315 
2316 /*
2317  * The reparse point tag defines the type of the reparse point. It also
2318  * includes several flags, which further describe the reparse point.
2319  *
2320  * The reparse point tag is an unsigned 32-bit value divided in three parts:
2321  *
2322  * 1. The least significant 16 bits (i.e. bits 0 to 15) specifiy the type of
2323  *    the reparse point.
2324  * 2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use.
2325  * 3. The most significant three bits are flags describing the reparse point.
2326  *    They are defined as follows:
2327  *	bit 29: Name surrogate bit. If set, the filename is an alias for
2328  *		another object in the system.
2329  *	bit 30: High-latency bit. If set, accessing the first byte of data will
2330  *		be slow. (E.g. the data is stored on a tape drive.)
2331  *	bit 31: Microsoft bit. If set, the tag is owned by Microsoft. User
2332  *		defined tags have to use zero here.
2333  *
2334  * These are the predefined reparse point tags:
2335  */
2336 enum {
2337 	IO_REPARSE_TAG_IS_ALIAS		= const_cpu_to_le32(0x20000000),
2338 	IO_REPARSE_TAG_IS_HIGH_LATENCY	= const_cpu_to_le32(0x40000000),
2339 	IO_REPARSE_TAG_IS_MICROSOFT	= const_cpu_to_le32(0x80000000),
2340 
2341 	IO_REPARSE_TAG_RESERVED_ZERO	= const_cpu_to_le32(0x00000000),
2342 	IO_REPARSE_TAG_RESERVED_ONE	= const_cpu_to_le32(0x00000001),
2343 	IO_REPARSE_TAG_RESERVED_RANGE	= const_cpu_to_le32(0x00000001),
2344 
2345 	IO_REPARSE_TAG_NSS		= const_cpu_to_le32(0x68000005),
2346 	IO_REPARSE_TAG_NSS_RECOVER	= const_cpu_to_le32(0x68000006),
2347 	IO_REPARSE_TAG_SIS		= const_cpu_to_le32(0x68000007),
2348 	IO_REPARSE_TAG_DFS		= const_cpu_to_le32(0x68000008),
2349 
2350 	IO_REPARSE_TAG_MOUNT_POINT	= const_cpu_to_le32(0x88000003),
2351 
2352 	IO_REPARSE_TAG_HSM		= const_cpu_to_le32(0xa8000004),
2353 
2354 	IO_REPARSE_TAG_SYMBOLIC_LINK	= const_cpu_to_le32(0xe8000000),
2355 
2356 	IO_REPARSE_TAG_VALID_VALUES	= const_cpu_to_le32(0xe000ffff),
2357 };
2358 
2359 /*
2360  * Attribute: Reparse point (0xc0).
2361  *
2362  * NOTE: Can be resident or non-resident.
2363  */
2364 typedef struct {
2365 	le32 reparse_tag;		/* Reparse point type (inc. flags). */
2366 	le16 reparse_data_length;	/* Byte size of reparse data. */
2367 	le16 reserved;			/* Align to 8-byte boundary. */
2368 	u8 reparse_data[0];		/* Meaning depends on reparse_tag. */
2369 } __attribute__ ((__packed__)) REPARSE_POINT;
2370 
2371 /*
2372  * Attribute: Extended attribute (EA) information (0xd0).
2373  *
2374  * NOTE: Always resident. (Is this true???)
2375  */
2376 typedef struct {
2377 	le16 ea_length;		/* Byte size of the packed extended
2378 				   attributes. */
2379 	le16 need_ea_count;	/* The number of extended attributes which have
2380 				   the NEED_EA bit set. */
2381 	le32 ea_query_length;	/* Byte size of the buffer required to query
2382 				   the extended attributes when calling
2383 				   ZwQueryEaFile() in Windows NT/2k. I.e. the
2384 				   byte size of the unpacked extended
2385 				   attributes. */
2386 } __attribute__ ((__packed__)) EA_INFORMATION;
2387 
2388 /*
2389  * Extended attribute flags (8-bit).
2390  */
2391 enum {
2392 	NEED_EA	= 0x80		/* If set the file to which the EA belongs
2393 				   cannot be interpreted without understanding
2394 				   the associates extended attributes. */
2395 } __attribute__ ((__packed__));
2396 
2397 typedef u8 EA_FLAGS;
2398 
2399 /*
2400  * Attribute: Extended attribute (EA) (0xe0).
2401  *
2402  * NOTE: Can be resident or non-resident.
2403  *
2404  * Like the attribute list and the index buffer list, the EA attribute value is
2405  * a sequence of EA_ATTR variable length records.
2406  */
2407 typedef struct {
2408 	le32 next_entry_offset;	/* Offset to the next EA_ATTR. */
2409 	EA_FLAGS flags;		/* Flags describing the EA. */
2410 	u8 ea_name_length;	/* Length of the name of the EA in bytes
2411 				   excluding the '\0' byte terminator. */
2412 	le16 ea_value_length;	/* Byte size of the EA's value. */
2413 	u8 ea_name[0];		/* Name of the EA.  Note this is ASCII, not
2414 				   Unicode and it is zero terminated. */
2415 	u8 ea_value[0];		/* The value of the EA.  Immediately follows
2416 				   the name. */
2417 } __attribute__ ((__packed__)) EA_ATTR;
2418 
2419 /*
2420  * Attribute: Property set (0xf0).
2421  *
2422  * Intended to support Native Structure Storage (NSS) - a feature removed from
2423  * NTFS 3.0 during beta testing.
2424  */
2425 typedef struct {
2426 	/* Irrelevant as feature unused. */
2427 } __attribute__ ((__packed__)) PROPERTY_SET;
2428 
2429 /*
2430  * Attribute: Logged utility stream (0x100).
2431  *
2432  * NOTE: Can be resident or non-resident.
2433  *
2434  * Operations on this attribute are logged to the journal ($LogFile) like
2435  * normal metadata changes.
2436  *
2437  * Used by the Encrypting File System (EFS). All encrypted files have this
2438  * attribute with the name $EFS.
2439  */
2440 typedef struct {
2441 	/* Can be anything the creator chooses. */
2442 	/* EFS uses it as follows: */
2443 	// FIXME: Type this info, verifying it along the way. (AIA)
2444 } __attribute__ ((__packed__)) LOGGED_UTILITY_STREAM, EFS_ATTR;
2445 
2446 #endif /* _LINUX_NTFS_LAYOUT_H */
2447