xref: /openbmc/linux/fs/ntfs/inode.c (revision e8f6f3b4)
1 /**
2  * inode.c - NTFS kernel inode handling.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 #include <linux/aio.h>
32 
33 #include "aops.h"
34 #include "attrib.h"
35 #include "bitmap.h"
36 #include "dir.h"
37 #include "debug.h"
38 #include "inode.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "time.h"
43 #include "ntfs.h"
44 
45 /**
46  * ntfs_test_inode - compare two (possibly fake) inodes for equality
47  * @vi:		vfs inode which to test
48  * @na:		ntfs attribute which is being tested with
49  *
50  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
51  * inode @vi for equality with the ntfs attribute @na.
52  *
53  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
54  * @na->name and @na->name_len are then ignored.
55  *
56  * Return 1 if the attributes match and 0 if not.
57  *
58  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
59  * allowed to sleep.
60  */
61 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
62 {
63 	ntfs_inode *ni;
64 
65 	if (vi->i_ino != na->mft_no)
66 		return 0;
67 	ni = NTFS_I(vi);
68 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
69 	if (likely(!NInoAttr(ni))) {
70 		/* If not looking for a normal inode this is a mismatch. */
71 		if (unlikely(na->type != AT_UNUSED))
72 			return 0;
73 	} else {
74 		/* A fake inode describing an attribute. */
75 		if (ni->type != na->type)
76 			return 0;
77 		if (ni->name_len != na->name_len)
78 			return 0;
79 		if (na->name_len && memcmp(ni->name, na->name,
80 				na->name_len * sizeof(ntfschar)))
81 			return 0;
82 	}
83 	/* Match! */
84 	return 1;
85 }
86 
87 /**
88  * ntfs_init_locked_inode - initialize an inode
89  * @vi:		vfs inode to initialize
90  * @na:		ntfs attribute which to initialize @vi to
91  *
92  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
93  * order to enable ntfs_test_inode() to do its work.
94  *
95  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
96  * In that case, @na->name and @na->name_len should be set to NULL and 0,
97  * respectively. Although that is not strictly necessary as
98  * ntfs_read_locked_inode() will fill them in later.
99  *
100  * Return 0 on success and -errno on error.
101  *
102  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
103  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104  */
105 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
106 {
107 	ntfs_inode *ni = NTFS_I(vi);
108 
109 	vi->i_ino = na->mft_no;
110 
111 	ni->type = na->type;
112 	if (na->type == AT_INDEX_ALLOCATION)
113 		NInoSetMstProtected(ni);
114 
115 	ni->name = na->name;
116 	ni->name_len = na->name_len;
117 
118 	/* If initializing a normal inode, we are done. */
119 	if (likely(na->type == AT_UNUSED)) {
120 		BUG_ON(na->name);
121 		BUG_ON(na->name_len);
122 		return 0;
123 	}
124 
125 	/* It is a fake inode. */
126 	NInoSetAttr(ni);
127 
128 	/*
129 	 * We have I30 global constant as an optimization as it is the name
130 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
131 	 * allocation but that is ok. And most attributes are unnamed anyway,
132 	 * thus the fraction of named attributes with name != I30 is actually
133 	 * absolutely tiny.
134 	 */
135 	if (na->name_len && na->name != I30) {
136 		unsigned int i;
137 
138 		BUG_ON(!na->name);
139 		i = na->name_len * sizeof(ntfschar);
140 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
141 		if (!ni->name)
142 			return -ENOMEM;
143 		memcpy(ni->name, na->name, i);
144 		ni->name[na->name_len] = 0;
145 	}
146 	return 0;
147 }
148 
149 typedef int (*set_t)(struct inode *, void *);
150 static int ntfs_read_locked_inode(struct inode *vi);
151 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
152 static int ntfs_read_locked_index_inode(struct inode *base_vi,
153 		struct inode *vi);
154 
155 /**
156  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
157  * @sb:		super block of mounted volume
158  * @mft_no:	mft record number / inode number to obtain
159  *
160  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
161  * file or directory).
162  *
163  * If the inode is in the cache, it is just returned with an increased
164  * reference count. Otherwise, a new struct inode is allocated and initialized,
165  * and finally ntfs_read_locked_inode() is called to read in the inode and
166  * fill in the remainder of the inode structure.
167  *
168  * Return the struct inode on success. Check the return value with IS_ERR() and
169  * if true, the function failed and the error code is obtained from PTR_ERR().
170  */
171 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
172 {
173 	struct inode *vi;
174 	int err;
175 	ntfs_attr na;
176 
177 	na.mft_no = mft_no;
178 	na.type = AT_UNUSED;
179 	na.name = NULL;
180 	na.name_len = 0;
181 
182 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
183 			(set_t)ntfs_init_locked_inode, &na);
184 	if (unlikely(!vi))
185 		return ERR_PTR(-ENOMEM);
186 
187 	err = 0;
188 
189 	/* If this is a freshly allocated inode, need to read it now. */
190 	if (vi->i_state & I_NEW) {
191 		err = ntfs_read_locked_inode(vi);
192 		unlock_new_inode(vi);
193 	}
194 	/*
195 	 * There is no point in keeping bad inodes around if the failure was
196 	 * due to ENOMEM. We want to be able to retry again later.
197 	 */
198 	if (unlikely(err == -ENOMEM)) {
199 		iput(vi);
200 		vi = ERR_PTR(err);
201 	}
202 	return vi;
203 }
204 
205 /**
206  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
207  * @base_vi:	vfs base inode containing the attribute
208  * @type:	attribute type
209  * @name:	Unicode name of the attribute (NULL if unnamed)
210  * @name_len:	length of @name in Unicode characters (0 if unnamed)
211  *
212  * Obtain the (fake) struct inode corresponding to the attribute specified by
213  * @type, @name, and @name_len, which is present in the base mft record
214  * specified by the vfs inode @base_vi.
215  *
216  * If the attribute inode is in the cache, it is just returned with an
217  * increased reference count. Otherwise, a new struct inode is allocated and
218  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
219  * attribute and fill in the inode structure.
220  *
221  * Note, for index allocation attributes, you need to use ntfs_index_iget()
222  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223  *
224  * Return the struct inode of the attribute inode on success. Check the return
225  * value with IS_ERR() and if true, the function failed and the error code is
226  * obtained from PTR_ERR().
227  */
228 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
229 		ntfschar *name, u32 name_len)
230 {
231 	struct inode *vi;
232 	int err;
233 	ntfs_attr na;
234 
235 	/* Make sure no one calls ntfs_attr_iget() for indices. */
236 	BUG_ON(type == AT_INDEX_ALLOCATION);
237 
238 	na.mft_no = base_vi->i_ino;
239 	na.type = type;
240 	na.name = name;
241 	na.name_len = name_len;
242 
243 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
244 			(set_t)ntfs_init_locked_inode, &na);
245 	if (unlikely(!vi))
246 		return ERR_PTR(-ENOMEM);
247 
248 	err = 0;
249 
250 	/* If this is a freshly allocated inode, need to read it now. */
251 	if (vi->i_state & I_NEW) {
252 		err = ntfs_read_locked_attr_inode(base_vi, vi);
253 		unlock_new_inode(vi);
254 	}
255 	/*
256 	 * There is no point in keeping bad attribute inodes around. This also
257 	 * simplifies things in that we never need to check for bad attribute
258 	 * inodes elsewhere.
259 	 */
260 	if (unlikely(err)) {
261 		iput(vi);
262 		vi = ERR_PTR(err);
263 	}
264 	return vi;
265 }
266 
267 /**
268  * ntfs_index_iget - obtain a struct inode corresponding to an index
269  * @base_vi:	vfs base inode containing the index related attributes
270  * @name:	Unicode name of the index
271  * @name_len:	length of @name in Unicode characters
272  *
273  * Obtain the (fake) struct inode corresponding to the index specified by @name
274  * and @name_len, which is present in the base mft record specified by the vfs
275  * inode @base_vi.
276  *
277  * If the index inode is in the cache, it is just returned with an increased
278  * reference count.  Otherwise, a new struct inode is allocated and
279  * initialized, and finally ntfs_read_locked_index_inode() is called to read
280  * the index related attributes and fill in the inode structure.
281  *
282  * Return the struct inode of the index inode on success. Check the return
283  * value with IS_ERR() and if true, the function failed and the error code is
284  * obtained from PTR_ERR().
285  */
286 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
287 		u32 name_len)
288 {
289 	struct inode *vi;
290 	int err;
291 	ntfs_attr na;
292 
293 	na.mft_no = base_vi->i_ino;
294 	na.type = AT_INDEX_ALLOCATION;
295 	na.name = name;
296 	na.name_len = name_len;
297 
298 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
299 			(set_t)ntfs_init_locked_inode, &na);
300 	if (unlikely(!vi))
301 		return ERR_PTR(-ENOMEM);
302 
303 	err = 0;
304 
305 	/* If this is a freshly allocated inode, need to read it now. */
306 	if (vi->i_state & I_NEW) {
307 		err = ntfs_read_locked_index_inode(base_vi, vi);
308 		unlock_new_inode(vi);
309 	}
310 	/*
311 	 * There is no point in keeping bad index inodes around.  This also
312 	 * simplifies things in that we never need to check for bad index
313 	 * inodes elsewhere.
314 	 */
315 	if (unlikely(err)) {
316 		iput(vi);
317 		vi = ERR_PTR(err);
318 	}
319 	return vi;
320 }
321 
322 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
323 {
324 	ntfs_inode *ni;
325 
326 	ntfs_debug("Entering.");
327 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
328 	if (likely(ni != NULL)) {
329 		ni->state = 0;
330 		return VFS_I(ni);
331 	}
332 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
333 	return NULL;
334 }
335 
336 static void ntfs_i_callback(struct rcu_head *head)
337 {
338 	struct inode *inode = container_of(head, struct inode, i_rcu);
339 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
340 }
341 
342 void ntfs_destroy_big_inode(struct inode *inode)
343 {
344 	ntfs_inode *ni = NTFS_I(inode);
345 
346 	ntfs_debug("Entering.");
347 	BUG_ON(ni->page);
348 	if (!atomic_dec_and_test(&ni->count))
349 		BUG();
350 	call_rcu(&inode->i_rcu, ntfs_i_callback);
351 }
352 
353 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
354 {
355 	ntfs_inode *ni;
356 
357 	ntfs_debug("Entering.");
358 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
359 	if (likely(ni != NULL)) {
360 		ni->state = 0;
361 		return ni;
362 	}
363 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
364 	return NULL;
365 }
366 
367 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
368 {
369 	ntfs_debug("Entering.");
370 	BUG_ON(ni->page);
371 	if (!atomic_dec_and_test(&ni->count))
372 		BUG();
373 	kmem_cache_free(ntfs_inode_cache, ni);
374 }
375 
376 /*
377  * The attribute runlist lock has separate locking rules from the
378  * normal runlist lock, so split the two lock-classes:
379  */
380 static struct lock_class_key attr_list_rl_lock_class;
381 
382 /**
383  * __ntfs_init_inode - initialize ntfs specific part of an inode
384  * @sb:		super block of mounted volume
385  * @ni:		freshly allocated ntfs inode which to initialize
386  *
387  * Initialize an ntfs inode to defaults.
388  *
389  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
390  * untouched. Make sure to initialize them elsewhere.
391  *
392  * Return zero on success and -ENOMEM on error.
393  */
394 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
395 {
396 	ntfs_debug("Entering.");
397 	rwlock_init(&ni->size_lock);
398 	ni->initialized_size = ni->allocated_size = 0;
399 	ni->seq_no = 0;
400 	atomic_set(&ni->count, 1);
401 	ni->vol = NTFS_SB(sb);
402 	ntfs_init_runlist(&ni->runlist);
403 	mutex_init(&ni->mrec_lock);
404 	ni->page = NULL;
405 	ni->page_ofs = 0;
406 	ni->attr_list_size = 0;
407 	ni->attr_list = NULL;
408 	ntfs_init_runlist(&ni->attr_list_rl);
409 	lockdep_set_class(&ni->attr_list_rl.lock,
410 				&attr_list_rl_lock_class);
411 	ni->itype.index.block_size = 0;
412 	ni->itype.index.vcn_size = 0;
413 	ni->itype.index.collation_rule = 0;
414 	ni->itype.index.block_size_bits = 0;
415 	ni->itype.index.vcn_size_bits = 0;
416 	mutex_init(&ni->extent_lock);
417 	ni->nr_extents = 0;
418 	ni->ext.base_ntfs_ino = NULL;
419 }
420 
421 /*
422  * Extent inodes get MFT-mapped in a nested way, while the base inode
423  * is still mapped. Teach this nesting to the lock validator by creating
424  * a separate class for nested inode's mrec_lock's:
425  */
426 static struct lock_class_key extent_inode_mrec_lock_key;
427 
428 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
429 		unsigned long mft_no)
430 {
431 	ntfs_inode *ni = ntfs_alloc_extent_inode();
432 
433 	ntfs_debug("Entering.");
434 	if (likely(ni != NULL)) {
435 		__ntfs_init_inode(sb, ni);
436 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
437 		ni->mft_no = mft_no;
438 		ni->type = AT_UNUSED;
439 		ni->name = NULL;
440 		ni->name_len = 0;
441 	}
442 	return ni;
443 }
444 
445 /**
446  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
447  * @ctx:	initialized attribute search context
448  *
449  * Search all file name attributes in the inode described by the attribute
450  * search context @ctx and check if any of the names are in the $Extend system
451  * directory.
452  *
453  * Return values:
454  *	   1: file is in $Extend directory
455  *	   0: file is not in $Extend directory
456  *    -errno: failed to determine if the file is in the $Extend directory
457  */
458 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
459 {
460 	int nr_links, err;
461 
462 	/* Restart search. */
463 	ntfs_attr_reinit_search_ctx(ctx);
464 
465 	/* Get number of hard links. */
466 	nr_links = le16_to_cpu(ctx->mrec->link_count);
467 
468 	/* Loop through all hard links. */
469 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
470 			ctx))) {
471 		FILE_NAME_ATTR *file_name_attr;
472 		ATTR_RECORD *attr = ctx->attr;
473 		u8 *p, *p2;
474 
475 		nr_links--;
476 		/*
477 		 * Maximum sanity checking as we are called on an inode that
478 		 * we suspect might be corrupt.
479 		 */
480 		p = (u8*)attr + le32_to_cpu(attr->length);
481 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
482 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
483 err_corrupt_attr:
484 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
485 					"attribute. You should run chkdsk.");
486 			return -EIO;
487 		}
488 		if (attr->non_resident) {
489 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
490 					"name. You should run chkdsk.");
491 			return -EIO;
492 		}
493 		if (attr->flags) {
494 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
495 					"invalid flags. You should run "
496 					"chkdsk.");
497 			return -EIO;
498 		}
499 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
500 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
501 					"name. You should run chkdsk.");
502 			return -EIO;
503 		}
504 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
505 				le16_to_cpu(attr->data.resident.value_offset));
506 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
507 		if (p2 < (u8*)attr || p2 > p)
508 			goto err_corrupt_attr;
509 		/* This attribute is ok, but is it in the $Extend directory? */
510 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
511 			return 1;	/* YES, it's an extended system file. */
512 	}
513 	if (unlikely(err != -ENOENT))
514 		return err;
515 	if (unlikely(nr_links)) {
516 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
517 				"doesn't match number of name attributes. You "
518 				"should run chkdsk.");
519 		return -EIO;
520 	}
521 	return 0;	/* NO, it is not an extended system file. */
522 }
523 
524 /**
525  * ntfs_read_locked_inode - read an inode from its device
526  * @vi:		inode to read
527  *
528  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
529  * described by @vi into memory from the device.
530  *
531  * The only fields in @vi that we need to/can look at when the function is
532  * called are i_sb, pointing to the mounted device's super block, and i_ino,
533  * the number of the inode to load.
534  *
535  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
536  * for reading and sets up the necessary @vi fields as well as initializing
537  * the ntfs inode.
538  *
539  * Q: What locks are held when the function is called?
540  * A: i_state has I_NEW set, hence the inode is locked, also
541  *    i_count is set to 1, so it is not going to go away
542  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
543  *    is allowed to write to them. We should of course be honouring them but
544  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
545  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
546  *
547  * Return 0 on success and -errno on error.  In the error case, the inode will
548  * have had make_bad_inode() executed on it.
549  */
550 static int ntfs_read_locked_inode(struct inode *vi)
551 {
552 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
553 	ntfs_inode *ni;
554 	struct inode *bvi;
555 	MFT_RECORD *m;
556 	ATTR_RECORD *a;
557 	STANDARD_INFORMATION *si;
558 	ntfs_attr_search_ctx *ctx;
559 	int err = 0;
560 
561 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
562 
563 	/* Setup the generic vfs inode parts now. */
564 
565 	/*
566 	 * This is for checking whether an inode has changed w.r.t. a file so
567 	 * that the file can be updated if necessary (compare with f_version).
568 	 */
569 	vi->i_version = 1;
570 
571 	vi->i_uid = vol->uid;
572 	vi->i_gid = vol->gid;
573 	vi->i_mode = 0;
574 
575 	/*
576 	 * Initialize the ntfs specific part of @vi special casing
577 	 * FILE_MFT which we need to do at mount time.
578 	 */
579 	if (vi->i_ino != FILE_MFT)
580 		ntfs_init_big_inode(vi);
581 	ni = NTFS_I(vi);
582 
583 	m = map_mft_record(ni);
584 	if (IS_ERR(m)) {
585 		err = PTR_ERR(m);
586 		goto err_out;
587 	}
588 	ctx = ntfs_attr_get_search_ctx(ni, m);
589 	if (!ctx) {
590 		err = -ENOMEM;
591 		goto unm_err_out;
592 	}
593 
594 	if (!(m->flags & MFT_RECORD_IN_USE)) {
595 		ntfs_error(vi->i_sb, "Inode is not in use!");
596 		goto unm_err_out;
597 	}
598 	if (m->base_mft_record) {
599 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
600 		goto unm_err_out;
601 	}
602 
603 	/* Transfer information from mft record into vfs and ntfs inodes. */
604 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
605 
606 	/*
607 	 * FIXME: Keep in mind that link_count is two for files which have both
608 	 * a long file name and a short file name as separate entries, so if
609 	 * we are hiding short file names this will be too high. Either we need
610 	 * to account for the short file names by subtracting them or we need
611 	 * to make sure we delete files even though i_nlink is not zero which
612 	 * might be tricky due to vfs interactions. Need to think about this
613 	 * some more when implementing the unlink command.
614 	 */
615 	set_nlink(vi, le16_to_cpu(m->link_count));
616 	/*
617 	 * FIXME: Reparse points can have the directory bit set even though
618 	 * they would be S_IFLNK. Need to deal with this further below when we
619 	 * implement reparse points / symbolic links but it will do for now.
620 	 * Also if not a directory, it could be something else, rather than
621 	 * a regular file. But again, will do for now.
622 	 */
623 	/* Everyone gets all permissions. */
624 	vi->i_mode |= S_IRWXUGO;
625 	/* If read-only, no one gets write permissions. */
626 	if (IS_RDONLY(vi))
627 		vi->i_mode &= ~S_IWUGO;
628 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
629 		vi->i_mode |= S_IFDIR;
630 		/*
631 		 * Apply the directory permissions mask set in the mount
632 		 * options.
633 		 */
634 		vi->i_mode &= ~vol->dmask;
635 		/* Things break without this kludge! */
636 		if (vi->i_nlink > 1)
637 			set_nlink(vi, 1);
638 	} else {
639 		vi->i_mode |= S_IFREG;
640 		/* Apply the file permissions mask set in the mount options. */
641 		vi->i_mode &= ~vol->fmask;
642 	}
643 	/*
644 	 * Find the standard information attribute in the mft record. At this
645 	 * stage we haven't setup the attribute list stuff yet, so this could
646 	 * in fact fail if the standard information is in an extent record, but
647 	 * I don't think this actually ever happens.
648 	 */
649 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
650 			ctx);
651 	if (unlikely(err)) {
652 		if (err == -ENOENT) {
653 			/*
654 			 * TODO: We should be performing a hot fix here (if the
655 			 * recover mount option is set) by creating a new
656 			 * attribute.
657 			 */
658 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
659 					"is missing.");
660 		}
661 		goto unm_err_out;
662 	}
663 	a = ctx->attr;
664 	/* Get the standard information attribute value. */
665 	si = (STANDARD_INFORMATION*)((u8*)a +
666 			le16_to_cpu(a->data.resident.value_offset));
667 
668 	/* Transfer information from the standard information into vi. */
669 	/*
670 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
671 	 * but they are close enough, and in the end it doesn't really matter
672 	 * that much...
673 	 */
674 	/*
675 	 * mtime is the last change of the data within the file. Not changed
676 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
677 	 */
678 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
679 	/*
680 	 * ctime is the last change of the metadata of the file. This obviously
681 	 * always changes, when mtime is changed. ctime can be changed on its
682 	 * own, mtime is then not changed, e.g. when a file is renamed.
683 	 */
684 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
685 	/*
686 	 * Last access to the data within the file. Not changed during a rename
687 	 * for example but changed whenever the file is written to.
688 	 */
689 	vi->i_atime = ntfs2utc(si->last_access_time);
690 
691 	/* Find the attribute list attribute if present. */
692 	ntfs_attr_reinit_search_ctx(ctx);
693 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
694 	if (err) {
695 		if (unlikely(err != -ENOENT)) {
696 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
697 					"attribute.");
698 			goto unm_err_out;
699 		}
700 	} else /* if (!err) */ {
701 		if (vi->i_ino == FILE_MFT)
702 			goto skip_attr_list_load;
703 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
704 		NInoSetAttrList(ni);
705 		a = ctx->attr;
706 		if (a->flags & ATTR_COMPRESSION_MASK) {
707 			ntfs_error(vi->i_sb, "Attribute list attribute is "
708 					"compressed.");
709 			goto unm_err_out;
710 		}
711 		if (a->flags & ATTR_IS_ENCRYPTED ||
712 				a->flags & ATTR_IS_SPARSE) {
713 			if (a->non_resident) {
714 				ntfs_error(vi->i_sb, "Non-resident attribute "
715 						"list attribute is encrypted/"
716 						"sparse.");
717 				goto unm_err_out;
718 			}
719 			ntfs_warning(vi->i_sb, "Resident attribute list "
720 					"attribute in inode 0x%lx is marked "
721 					"encrypted/sparse which is not true.  "
722 					"However, Windows allows this and "
723 					"chkdsk does not detect or correct it "
724 					"so we will just ignore the invalid "
725 					"flags and pretend they are not set.",
726 					vi->i_ino);
727 		}
728 		/* Now allocate memory for the attribute list. */
729 		ni->attr_list_size = (u32)ntfs_attr_size(a);
730 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
731 		if (!ni->attr_list) {
732 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
733 					"buffer for attribute list.");
734 			err = -ENOMEM;
735 			goto unm_err_out;
736 		}
737 		if (a->non_resident) {
738 			NInoSetAttrListNonResident(ni);
739 			if (a->data.non_resident.lowest_vcn) {
740 				ntfs_error(vi->i_sb, "Attribute list has non "
741 						"zero lowest_vcn.");
742 				goto unm_err_out;
743 			}
744 			/*
745 			 * Setup the runlist. No need for locking as we have
746 			 * exclusive access to the inode at this time.
747 			 */
748 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
749 					a, NULL);
750 			if (IS_ERR(ni->attr_list_rl.rl)) {
751 				err = PTR_ERR(ni->attr_list_rl.rl);
752 				ni->attr_list_rl.rl = NULL;
753 				ntfs_error(vi->i_sb, "Mapping pairs "
754 						"decompression failed.");
755 				goto unm_err_out;
756 			}
757 			/* Now load the attribute list. */
758 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
759 					ni->attr_list, ni->attr_list_size,
760 					sle64_to_cpu(a->data.non_resident.
761 					initialized_size)))) {
762 				ntfs_error(vi->i_sb, "Failed to load "
763 						"attribute list attribute.");
764 				goto unm_err_out;
765 			}
766 		} else /* if (!a->non_resident) */ {
767 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
768 					+ le32_to_cpu(
769 					a->data.resident.value_length) >
770 					(u8*)ctx->mrec + vol->mft_record_size) {
771 				ntfs_error(vi->i_sb, "Corrupt attribute list "
772 						"in inode.");
773 				goto unm_err_out;
774 			}
775 			/* Now copy the attribute list. */
776 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
777 					a->data.resident.value_offset),
778 					le32_to_cpu(
779 					a->data.resident.value_length));
780 		}
781 	}
782 skip_attr_list_load:
783 	/*
784 	 * If an attribute list is present we now have the attribute list value
785 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
786 	 */
787 	if (S_ISDIR(vi->i_mode)) {
788 		loff_t bvi_size;
789 		ntfs_inode *bni;
790 		INDEX_ROOT *ir;
791 		u8 *ir_end, *index_end;
792 
793 		/* It is a directory, find index root attribute. */
794 		ntfs_attr_reinit_search_ctx(ctx);
795 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
796 				0, NULL, 0, ctx);
797 		if (unlikely(err)) {
798 			if (err == -ENOENT) {
799 				// FIXME: File is corrupt! Hot-fix with empty
800 				// index root attribute if recovery option is
801 				// set.
802 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
803 						"is missing.");
804 			}
805 			goto unm_err_out;
806 		}
807 		a = ctx->attr;
808 		/* Set up the state. */
809 		if (unlikely(a->non_resident)) {
810 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
811 					"resident.");
812 			goto unm_err_out;
813 		}
814 		/* Ensure the attribute name is placed before the value. */
815 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
816 				le16_to_cpu(a->data.resident.value_offset)))) {
817 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
818 					"placed after the attribute value.");
819 			goto unm_err_out;
820 		}
821 		/*
822 		 * Compressed/encrypted index root just means that the newly
823 		 * created files in that directory should be created compressed/
824 		 * encrypted. However index root cannot be both compressed and
825 		 * encrypted.
826 		 */
827 		if (a->flags & ATTR_COMPRESSION_MASK)
828 			NInoSetCompressed(ni);
829 		if (a->flags & ATTR_IS_ENCRYPTED) {
830 			if (a->flags & ATTR_COMPRESSION_MASK) {
831 				ntfs_error(vi->i_sb, "Found encrypted and "
832 						"compressed attribute.");
833 				goto unm_err_out;
834 			}
835 			NInoSetEncrypted(ni);
836 		}
837 		if (a->flags & ATTR_IS_SPARSE)
838 			NInoSetSparse(ni);
839 		ir = (INDEX_ROOT*)((u8*)a +
840 				le16_to_cpu(a->data.resident.value_offset));
841 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
842 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
843 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
844 					"corrupt.");
845 			goto unm_err_out;
846 		}
847 		index_end = (u8*)&ir->index +
848 				le32_to_cpu(ir->index.index_length);
849 		if (index_end > ir_end) {
850 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
851 			goto unm_err_out;
852 		}
853 		if (ir->type != AT_FILE_NAME) {
854 			ntfs_error(vi->i_sb, "Indexed attribute is not "
855 					"$FILE_NAME.");
856 			goto unm_err_out;
857 		}
858 		if (ir->collation_rule != COLLATION_FILE_NAME) {
859 			ntfs_error(vi->i_sb, "Index collation rule is not "
860 					"COLLATION_FILE_NAME.");
861 			goto unm_err_out;
862 		}
863 		ni->itype.index.collation_rule = ir->collation_rule;
864 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
865 		if (ni->itype.index.block_size &
866 				(ni->itype.index.block_size - 1)) {
867 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
868 					"power of two.",
869 					ni->itype.index.block_size);
870 			goto unm_err_out;
871 		}
872 		if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
873 			ntfs_error(vi->i_sb, "Index block size (%u) > "
874 					"PAGE_CACHE_SIZE (%ld) is not "
875 					"supported.  Sorry.",
876 					ni->itype.index.block_size,
877 					PAGE_CACHE_SIZE);
878 			err = -EOPNOTSUPP;
879 			goto unm_err_out;
880 		}
881 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
882 			ntfs_error(vi->i_sb, "Index block size (%u) < "
883 					"NTFS_BLOCK_SIZE (%i) is not "
884 					"supported.  Sorry.",
885 					ni->itype.index.block_size,
886 					NTFS_BLOCK_SIZE);
887 			err = -EOPNOTSUPP;
888 			goto unm_err_out;
889 		}
890 		ni->itype.index.block_size_bits =
891 				ffs(ni->itype.index.block_size) - 1;
892 		/* Determine the size of a vcn in the directory index. */
893 		if (vol->cluster_size <= ni->itype.index.block_size) {
894 			ni->itype.index.vcn_size = vol->cluster_size;
895 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
896 		} else {
897 			ni->itype.index.vcn_size = vol->sector_size;
898 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
899 		}
900 
901 		/* Setup the index allocation attribute, even if not present. */
902 		NInoSetMstProtected(ni);
903 		ni->type = AT_INDEX_ALLOCATION;
904 		ni->name = I30;
905 		ni->name_len = 4;
906 
907 		if (!(ir->index.flags & LARGE_INDEX)) {
908 			/* No index allocation. */
909 			vi->i_size = ni->initialized_size =
910 					ni->allocated_size = 0;
911 			/* We are done with the mft record, so we release it. */
912 			ntfs_attr_put_search_ctx(ctx);
913 			unmap_mft_record(ni);
914 			m = NULL;
915 			ctx = NULL;
916 			goto skip_large_dir_stuff;
917 		} /* LARGE_INDEX: Index allocation present. Setup state. */
918 		NInoSetIndexAllocPresent(ni);
919 		/* Find index allocation attribute. */
920 		ntfs_attr_reinit_search_ctx(ctx);
921 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
922 				CASE_SENSITIVE, 0, NULL, 0, ctx);
923 		if (unlikely(err)) {
924 			if (err == -ENOENT)
925 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
926 						"attribute is not present but "
927 						"$INDEX_ROOT indicated it is.");
928 			else
929 				ntfs_error(vi->i_sb, "Failed to lookup "
930 						"$INDEX_ALLOCATION "
931 						"attribute.");
932 			goto unm_err_out;
933 		}
934 		a = ctx->attr;
935 		if (!a->non_resident) {
936 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 					"is resident.");
938 			goto unm_err_out;
939 		}
940 		/*
941 		 * Ensure the attribute name is placed before the mapping pairs
942 		 * array.
943 		 */
944 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
945 				le16_to_cpu(
946 				a->data.non_resident.mapping_pairs_offset)))) {
947 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
948 					"is placed after the mapping pairs "
949 					"array.");
950 			goto unm_err_out;
951 		}
952 		if (a->flags & ATTR_IS_ENCRYPTED) {
953 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
954 					"is encrypted.");
955 			goto unm_err_out;
956 		}
957 		if (a->flags & ATTR_IS_SPARSE) {
958 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
959 					"is sparse.");
960 			goto unm_err_out;
961 		}
962 		if (a->flags & ATTR_COMPRESSION_MASK) {
963 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
964 					"is compressed.");
965 			goto unm_err_out;
966 		}
967 		if (a->data.non_resident.lowest_vcn) {
968 			ntfs_error(vi->i_sb, "First extent of "
969 					"$INDEX_ALLOCATION attribute has non "
970 					"zero lowest_vcn.");
971 			goto unm_err_out;
972 		}
973 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
974 		ni->initialized_size = sle64_to_cpu(
975 				a->data.non_resident.initialized_size);
976 		ni->allocated_size = sle64_to_cpu(
977 				a->data.non_resident.allocated_size);
978 		/*
979 		 * We are done with the mft record, so we release it. Otherwise
980 		 * we would deadlock in ntfs_attr_iget().
981 		 */
982 		ntfs_attr_put_search_ctx(ctx);
983 		unmap_mft_record(ni);
984 		m = NULL;
985 		ctx = NULL;
986 		/* Get the index bitmap attribute inode. */
987 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
988 		if (IS_ERR(bvi)) {
989 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
990 			err = PTR_ERR(bvi);
991 			goto unm_err_out;
992 		}
993 		bni = NTFS_I(bvi);
994 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
995 				NInoSparse(bni)) {
996 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
997 					"and/or encrypted and/or sparse.");
998 			goto iput_unm_err_out;
999 		}
1000 		/* Consistency check bitmap size vs. index allocation size. */
1001 		bvi_size = i_size_read(bvi);
1002 		if ((bvi_size << 3) < (vi->i_size >>
1003 				ni->itype.index.block_size_bits)) {
1004 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1005 					"for index allocation (0x%llx).",
1006 					bvi_size << 3, vi->i_size);
1007 			goto iput_unm_err_out;
1008 		}
1009 		/* No longer need the bitmap attribute inode. */
1010 		iput(bvi);
1011 skip_large_dir_stuff:
1012 		/* Setup the operations for this inode. */
1013 		vi->i_op = &ntfs_dir_inode_ops;
1014 		vi->i_fop = &ntfs_dir_ops;
1015 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1016 	} else {
1017 		/* It is a file. */
1018 		ntfs_attr_reinit_search_ctx(ctx);
1019 
1020 		/* Setup the data attribute, even if not present. */
1021 		ni->type = AT_DATA;
1022 		ni->name = NULL;
1023 		ni->name_len = 0;
1024 
1025 		/* Find first extent of the unnamed data attribute. */
1026 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1027 		if (unlikely(err)) {
1028 			vi->i_size = ni->initialized_size =
1029 					ni->allocated_size = 0;
1030 			if (err != -ENOENT) {
1031 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1032 						"attribute.");
1033 				goto unm_err_out;
1034 			}
1035 			/*
1036 			 * FILE_Secure does not have an unnamed $DATA
1037 			 * attribute, so we special case it here.
1038 			 */
1039 			if (vi->i_ino == FILE_Secure)
1040 				goto no_data_attr_special_case;
1041 			/*
1042 			 * Most if not all the system files in the $Extend
1043 			 * system directory do not have unnamed data
1044 			 * attributes so we need to check if the parent
1045 			 * directory of the file is FILE_Extend and if it is
1046 			 * ignore this error. To do this we need to get the
1047 			 * name of this inode from the mft record as the name
1048 			 * contains the back reference to the parent directory.
1049 			 */
1050 			if (ntfs_is_extended_system_file(ctx) > 0)
1051 				goto no_data_attr_special_case;
1052 			// FIXME: File is corrupt! Hot-fix with empty data
1053 			// attribute if recovery option is set.
1054 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1055 			goto unm_err_out;
1056 		}
1057 		a = ctx->attr;
1058 		/* Setup the state. */
1059 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1060 			if (a->flags & ATTR_COMPRESSION_MASK) {
1061 				NInoSetCompressed(ni);
1062 				if (vol->cluster_size > 4096) {
1063 					ntfs_error(vi->i_sb, "Found "
1064 							"compressed data but "
1065 							"compression is "
1066 							"disabled due to "
1067 							"cluster size (%i) > "
1068 							"4kiB.",
1069 							vol->cluster_size);
1070 					goto unm_err_out;
1071 				}
1072 				if ((a->flags & ATTR_COMPRESSION_MASK)
1073 						!= ATTR_IS_COMPRESSED) {
1074 					ntfs_error(vi->i_sb, "Found unknown "
1075 							"compression method "
1076 							"or corrupt file.");
1077 					goto unm_err_out;
1078 				}
1079 			}
1080 			if (a->flags & ATTR_IS_SPARSE)
1081 				NInoSetSparse(ni);
1082 		}
1083 		if (a->flags & ATTR_IS_ENCRYPTED) {
1084 			if (NInoCompressed(ni)) {
1085 				ntfs_error(vi->i_sb, "Found encrypted and "
1086 						"compressed data.");
1087 				goto unm_err_out;
1088 			}
1089 			NInoSetEncrypted(ni);
1090 		}
1091 		if (a->non_resident) {
1092 			NInoSetNonResident(ni);
1093 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1094 				if (NInoCompressed(ni) && a->data.non_resident.
1095 						compression_unit != 4) {
1096 					ntfs_error(vi->i_sb, "Found "
1097 							"non-standard "
1098 							"compression unit (%u "
1099 							"instead of 4).  "
1100 							"Cannot handle this.",
1101 							a->data.non_resident.
1102 							compression_unit);
1103 					err = -EOPNOTSUPP;
1104 					goto unm_err_out;
1105 				}
1106 				if (a->data.non_resident.compression_unit) {
1107 					ni->itype.compressed.block_size = 1U <<
1108 							(a->data.non_resident.
1109 							compression_unit +
1110 							vol->cluster_size_bits);
1111 					ni->itype.compressed.block_size_bits =
1112 							ffs(ni->itype.
1113 							compressed.
1114 							block_size) - 1;
1115 					ni->itype.compressed.block_clusters =
1116 							1U << a->data.
1117 							non_resident.
1118 							compression_unit;
1119 				} else {
1120 					ni->itype.compressed.block_size = 0;
1121 					ni->itype.compressed.block_size_bits =
1122 							0;
1123 					ni->itype.compressed.block_clusters =
1124 							0;
1125 				}
1126 				ni->itype.compressed.size = sle64_to_cpu(
1127 						a->data.non_resident.
1128 						compressed_size);
1129 			}
1130 			if (a->data.non_resident.lowest_vcn) {
1131 				ntfs_error(vi->i_sb, "First extent of $DATA "
1132 						"attribute has non zero "
1133 						"lowest_vcn.");
1134 				goto unm_err_out;
1135 			}
1136 			vi->i_size = sle64_to_cpu(
1137 					a->data.non_resident.data_size);
1138 			ni->initialized_size = sle64_to_cpu(
1139 					a->data.non_resident.initialized_size);
1140 			ni->allocated_size = sle64_to_cpu(
1141 					a->data.non_resident.allocated_size);
1142 		} else { /* Resident attribute. */
1143 			vi->i_size = ni->initialized_size = le32_to_cpu(
1144 					a->data.resident.value_length);
1145 			ni->allocated_size = le32_to_cpu(a->length) -
1146 					le16_to_cpu(
1147 					a->data.resident.value_offset);
1148 			if (vi->i_size > ni->allocated_size) {
1149 				ntfs_error(vi->i_sb, "Resident data attribute "
1150 						"is corrupt (size exceeds "
1151 						"allocation).");
1152 				goto unm_err_out;
1153 			}
1154 		}
1155 no_data_attr_special_case:
1156 		/* We are done with the mft record, so we release it. */
1157 		ntfs_attr_put_search_ctx(ctx);
1158 		unmap_mft_record(ni);
1159 		m = NULL;
1160 		ctx = NULL;
1161 		/* Setup the operations for this inode. */
1162 		vi->i_op = &ntfs_file_inode_ops;
1163 		vi->i_fop = &ntfs_file_ops;
1164 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1165 		if (NInoMstProtected(ni))
1166 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1167 		else if (NInoCompressed(ni))
1168 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1169 	}
1170 	/*
1171 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1172 	 * far inaccurate as it doesn't account for any named streams or other
1173 	 * special non-resident attributes, but that is how Windows works, too,
1174 	 * so we are at least consistent with Windows, if not entirely
1175 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1176 	 * significant slowdown as it would involve iterating over all
1177 	 * attributes in the mft record and adding the allocated/compressed
1178 	 * sizes of all non-resident attributes present to give us the Linux
1179 	 * correct size that should go into i_blocks (after division by 512).
1180 	 */
1181 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1182 		vi->i_blocks = ni->itype.compressed.size >> 9;
1183 	else
1184 		vi->i_blocks = ni->allocated_size >> 9;
1185 	ntfs_debug("Done.");
1186 	return 0;
1187 iput_unm_err_out:
1188 	iput(bvi);
1189 unm_err_out:
1190 	if (!err)
1191 		err = -EIO;
1192 	if (ctx)
1193 		ntfs_attr_put_search_ctx(ctx);
1194 	if (m)
1195 		unmap_mft_record(ni);
1196 err_out:
1197 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1198 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1199 	make_bad_inode(vi);
1200 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1201 		NVolSetErrors(vol);
1202 	return err;
1203 }
1204 
1205 /**
1206  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1207  * @base_vi:	base inode
1208  * @vi:		attribute inode to read
1209  *
1210  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1211  * attribute inode described by @vi into memory from the base mft record
1212  * described by @base_ni.
1213  *
1214  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1215  * reading and looks up the attribute described by @vi before setting up the
1216  * necessary fields in @vi as well as initializing the ntfs inode.
1217  *
1218  * Q: What locks are held when the function is called?
1219  * A: i_state has I_NEW set, hence the inode is locked, also
1220  *    i_count is set to 1, so it is not going to go away
1221  *
1222  * Return 0 on success and -errno on error.  In the error case, the inode will
1223  * have had make_bad_inode() executed on it.
1224  *
1225  * Note this cannot be called for AT_INDEX_ALLOCATION.
1226  */
1227 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1228 {
1229 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1230 	ntfs_inode *ni, *base_ni;
1231 	MFT_RECORD *m;
1232 	ATTR_RECORD *a;
1233 	ntfs_attr_search_ctx *ctx;
1234 	int err = 0;
1235 
1236 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1237 
1238 	ntfs_init_big_inode(vi);
1239 
1240 	ni	= NTFS_I(vi);
1241 	base_ni = NTFS_I(base_vi);
1242 
1243 	/* Just mirror the values from the base inode. */
1244 	vi->i_version	= base_vi->i_version;
1245 	vi->i_uid	= base_vi->i_uid;
1246 	vi->i_gid	= base_vi->i_gid;
1247 	set_nlink(vi, base_vi->i_nlink);
1248 	vi->i_mtime	= base_vi->i_mtime;
1249 	vi->i_ctime	= base_vi->i_ctime;
1250 	vi->i_atime	= base_vi->i_atime;
1251 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1252 
1253 	/* Set inode type to zero but preserve permissions. */
1254 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1255 
1256 	m = map_mft_record(base_ni);
1257 	if (IS_ERR(m)) {
1258 		err = PTR_ERR(m);
1259 		goto err_out;
1260 	}
1261 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1262 	if (!ctx) {
1263 		err = -ENOMEM;
1264 		goto unm_err_out;
1265 	}
1266 	/* Find the attribute. */
1267 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1268 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1269 	if (unlikely(err))
1270 		goto unm_err_out;
1271 	a = ctx->attr;
1272 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1273 		if (a->flags & ATTR_COMPRESSION_MASK) {
1274 			NInoSetCompressed(ni);
1275 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1276 					ni->name_len)) {
1277 				ntfs_error(vi->i_sb, "Found compressed "
1278 						"non-data or named data "
1279 						"attribute.  Please report "
1280 						"you saw this message to "
1281 						"linux-ntfs-dev@lists."
1282 						"sourceforge.net");
1283 				goto unm_err_out;
1284 			}
1285 			if (vol->cluster_size > 4096) {
1286 				ntfs_error(vi->i_sb, "Found compressed "
1287 						"attribute but compression is "
1288 						"disabled due to cluster size "
1289 						"(%i) > 4kiB.",
1290 						vol->cluster_size);
1291 				goto unm_err_out;
1292 			}
1293 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1294 					ATTR_IS_COMPRESSED) {
1295 				ntfs_error(vi->i_sb, "Found unknown "
1296 						"compression method.");
1297 				goto unm_err_out;
1298 			}
1299 		}
1300 		/*
1301 		 * The compressed/sparse flag set in an index root just means
1302 		 * to compress all files.
1303 		 */
1304 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1305 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1306 					"but the attribute is %s.  Please "
1307 					"report you saw this message to "
1308 					"linux-ntfs-dev@lists.sourceforge.net",
1309 					NInoCompressed(ni) ? "compressed" :
1310 					"sparse");
1311 			goto unm_err_out;
1312 		}
1313 		if (a->flags & ATTR_IS_SPARSE)
1314 			NInoSetSparse(ni);
1315 	}
1316 	if (a->flags & ATTR_IS_ENCRYPTED) {
1317 		if (NInoCompressed(ni)) {
1318 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1319 					"data.");
1320 			goto unm_err_out;
1321 		}
1322 		/*
1323 		 * The encryption flag set in an index root just means to
1324 		 * encrypt all files.
1325 		 */
1326 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1327 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1328 					"but the attribute is encrypted.  "
1329 					"Please report you saw this message "
1330 					"to linux-ntfs-dev@lists.sourceforge."
1331 					"net");
1332 			goto unm_err_out;
1333 		}
1334 		if (ni->type != AT_DATA) {
1335 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1336 					"attribute.");
1337 			goto unm_err_out;
1338 		}
1339 		NInoSetEncrypted(ni);
1340 	}
1341 	if (!a->non_resident) {
1342 		/* Ensure the attribute name is placed before the value. */
1343 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1344 				le16_to_cpu(a->data.resident.value_offset)))) {
1345 			ntfs_error(vol->sb, "Attribute name is placed after "
1346 					"the attribute value.");
1347 			goto unm_err_out;
1348 		}
1349 		if (NInoMstProtected(ni)) {
1350 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1351 					"but the attribute is resident.  "
1352 					"Please report you saw this message to "
1353 					"linux-ntfs-dev@lists.sourceforge.net");
1354 			goto unm_err_out;
1355 		}
1356 		vi->i_size = ni->initialized_size = le32_to_cpu(
1357 				a->data.resident.value_length);
1358 		ni->allocated_size = le32_to_cpu(a->length) -
1359 				le16_to_cpu(a->data.resident.value_offset);
1360 		if (vi->i_size > ni->allocated_size) {
1361 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1362 					"(size exceeds allocation).");
1363 			goto unm_err_out;
1364 		}
1365 	} else {
1366 		NInoSetNonResident(ni);
1367 		/*
1368 		 * Ensure the attribute name is placed before the mapping pairs
1369 		 * array.
1370 		 */
1371 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1372 				le16_to_cpu(
1373 				a->data.non_resident.mapping_pairs_offset)))) {
1374 			ntfs_error(vol->sb, "Attribute name is placed after "
1375 					"the mapping pairs array.");
1376 			goto unm_err_out;
1377 		}
1378 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1379 			if (NInoCompressed(ni) && a->data.non_resident.
1380 					compression_unit != 4) {
1381 				ntfs_error(vi->i_sb, "Found non-standard "
1382 						"compression unit (%u instead "
1383 						"of 4).  Cannot handle this.",
1384 						a->data.non_resident.
1385 						compression_unit);
1386 				err = -EOPNOTSUPP;
1387 				goto unm_err_out;
1388 			}
1389 			if (a->data.non_resident.compression_unit) {
1390 				ni->itype.compressed.block_size = 1U <<
1391 						(a->data.non_resident.
1392 						compression_unit +
1393 						vol->cluster_size_bits);
1394 				ni->itype.compressed.block_size_bits =
1395 						ffs(ni->itype.compressed.
1396 						block_size) - 1;
1397 				ni->itype.compressed.block_clusters = 1U <<
1398 						a->data.non_resident.
1399 						compression_unit;
1400 			} else {
1401 				ni->itype.compressed.block_size = 0;
1402 				ni->itype.compressed.block_size_bits = 0;
1403 				ni->itype.compressed.block_clusters = 0;
1404 			}
1405 			ni->itype.compressed.size = sle64_to_cpu(
1406 					a->data.non_resident.compressed_size);
1407 		}
1408 		if (a->data.non_resident.lowest_vcn) {
1409 			ntfs_error(vi->i_sb, "First extent of attribute has "
1410 					"non-zero lowest_vcn.");
1411 			goto unm_err_out;
1412 		}
1413 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1414 		ni->initialized_size = sle64_to_cpu(
1415 				a->data.non_resident.initialized_size);
1416 		ni->allocated_size = sle64_to_cpu(
1417 				a->data.non_resident.allocated_size);
1418 	}
1419 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1420 	if (NInoMstProtected(ni))
1421 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1422 	else if (NInoCompressed(ni))
1423 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1424 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1425 		vi->i_blocks = ni->itype.compressed.size >> 9;
1426 	else
1427 		vi->i_blocks = ni->allocated_size >> 9;
1428 	/*
1429 	 * Make sure the base inode does not go away and attach it to the
1430 	 * attribute inode.
1431 	 */
1432 	igrab(base_vi);
1433 	ni->ext.base_ntfs_ino = base_ni;
1434 	ni->nr_extents = -1;
1435 
1436 	ntfs_attr_put_search_ctx(ctx);
1437 	unmap_mft_record(base_ni);
1438 
1439 	ntfs_debug("Done.");
1440 	return 0;
1441 
1442 unm_err_out:
1443 	if (!err)
1444 		err = -EIO;
1445 	if (ctx)
1446 		ntfs_attr_put_search_ctx(ctx);
1447 	unmap_mft_record(base_ni);
1448 err_out:
1449 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1450 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1451 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1452 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1453 			base_vi->i_ino);
1454 	make_bad_inode(vi);
1455 	if (err != -ENOMEM)
1456 		NVolSetErrors(vol);
1457 	return err;
1458 }
1459 
1460 /**
1461  * ntfs_read_locked_index_inode - read an index inode from its base inode
1462  * @base_vi:	base inode
1463  * @vi:		index inode to read
1464  *
1465  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1466  * index inode described by @vi into memory from the base mft record described
1467  * by @base_ni.
1468  *
1469  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1470  * reading and looks up the attributes relating to the index described by @vi
1471  * before setting up the necessary fields in @vi as well as initializing the
1472  * ntfs inode.
1473  *
1474  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1475  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1476  * are setup like directory inodes since directories are a special case of
1477  * indices ao they need to be treated in much the same way.  Most importantly,
1478  * for small indices the index allocation attribute might not actually exist.
1479  * However, the index root attribute always exists but this does not need to
1480  * have an inode associated with it and this is why we define a new inode type
1481  * index.  Also, like for directories, we need to have an attribute inode for
1482  * the bitmap attribute corresponding to the index allocation attribute and we
1483  * can store this in the appropriate field of the inode, just like we do for
1484  * normal directory inodes.
1485  *
1486  * Q: What locks are held when the function is called?
1487  * A: i_state has I_NEW set, hence the inode is locked, also
1488  *    i_count is set to 1, so it is not going to go away
1489  *
1490  * Return 0 on success and -errno on error.  In the error case, the inode will
1491  * have had make_bad_inode() executed on it.
1492  */
1493 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1494 {
1495 	loff_t bvi_size;
1496 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1497 	ntfs_inode *ni, *base_ni, *bni;
1498 	struct inode *bvi;
1499 	MFT_RECORD *m;
1500 	ATTR_RECORD *a;
1501 	ntfs_attr_search_ctx *ctx;
1502 	INDEX_ROOT *ir;
1503 	u8 *ir_end, *index_end;
1504 	int err = 0;
1505 
1506 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1507 	ntfs_init_big_inode(vi);
1508 	ni	= NTFS_I(vi);
1509 	base_ni = NTFS_I(base_vi);
1510 	/* Just mirror the values from the base inode. */
1511 	vi->i_version	= base_vi->i_version;
1512 	vi->i_uid	= base_vi->i_uid;
1513 	vi->i_gid	= base_vi->i_gid;
1514 	set_nlink(vi, base_vi->i_nlink);
1515 	vi->i_mtime	= base_vi->i_mtime;
1516 	vi->i_ctime	= base_vi->i_ctime;
1517 	vi->i_atime	= base_vi->i_atime;
1518 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1519 	/* Set inode type to zero but preserve permissions. */
1520 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1521 	/* Map the mft record for the base inode. */
1522 	m = map_mft_record(base_ni);
1523 	if (IS_ERR(m)) {
1524 		err = PTR_ERR(m);
1525 		goto err_out;
1526 	}
1527 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1528 	if (!ctx) {
1529 		err = -ENOMEM;
1530 		goto unm_err_out;
1531 	}
1532 	/* Find the index root attribute. */
1533 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1534 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1535 	if (unlikely(err)) {
1536 		if (err == -ENOENT)
1537 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1538 					"missing.");
1539 		goto unm_err_out;
1540 	}
1541 	a = ctx->attr;
1542 	/* Set up the state. */
1543 	if (unlikely(a->non_resident)) {
1544 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1545 		goto unm_err_out;
1546 	}
1547 	/* Ensure the attribute name is placed before the value. */
1548 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1549 			le16_to_cpu(a->data.resident.value_offset)))) {
1550 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1551 				"after the attribute value.");
1552 		goto unm_err_out;
1553 	}
1554 	/*
1555 	 * Compressed/encrypted/sparse index root is not allowed, except for
1556 	 * directories of course but those are not dealt with here.
1557 	 */
1558 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1559 			ATTR_IS_SPARSE)) {
1560 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1561 				"root attribute.");
1562 		goto unm_err_out;
1563 	}
1564 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1565 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1566 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1567 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1568 		goto unm_err_out;
1569 	}
1570 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1571 	if (index_end > ir_end) {
1572 		ntfs_error(vi->i_sb, "Index is corrupt.");
1573 		goto unm_err_out;
1574 	}
1575 	if (ir->type) {
1576 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1577 				le32_to_cpu(ir->type));
1578 		goto unm_err_out;
1579 	}
1580 	ni->itype.index.collation_rule = ir->collation_rule;
1581 	ntfs_debug("Index collation rule is 0x%x.",
1582 			le32_to_cpu(ir->collation_rule));
1583 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1584 	if (!is_power_of_2(ni->itype.index.block_size)) {
1585 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1586 				"two.", ni->itype.index.block_size);
1587 		goto unm_err_out;
1588 	}
1589 	if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1590 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1591 				"(%ld) is not supported.  Sorry.",
1592 				ni->itype.index.block_size, PAGE_CACHE_SIZE);
1593 		err = -EOPNOTSUPP;
1594 		goto unm_err_out;
1595 	}
1596 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1597 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1598 				"(%i) is not supported.  Sorry.",
1599 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1600 		err = -EOPNOTSUPP;
1601 		goto unm_err_out;
1602 	}
1603 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1604 	/* Determine the size of a vcn in the index. */
1605 	if (vol->cluster_size <= ni->itype.index.block_size) {
1606 		ni->itype.index.vcn_size = vol->cluster_size;
1607 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1608 	} else {
1609 		ni->itype.index.vcn_size = vol->sector_size;
1610 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1611 	}
1612 	/* Check for presence of index allocation attribute. */
1613 	if (!(ir->index.flags & LARGE_INDEX)) {
1614 		/* No index allocation. */
1615 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1616 		/* We are done with the mft record, so we release it. */
1617 		ntfs_attr_put_search_ctx(ctx);
1618 		unmap_mft_record(base_ni);
1619 		m = NULL;
1620 		ctx = NULL;
1621 		goto skip_large_index_stuff;
1622 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1623 	NInoSetIndexAllocPresent(ni);
1624 	/* Find index allocation attribute. */
1625 	ntfs_attr_reinit_search_ctx(ctx);
1626 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1627 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1628 	if (unlikely(err)) {
1629 		if (err == -ENOENT)
1630 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1631 					"not present but $INDEX_ROOT "
1632 					"indicated it is.");
1633 		else
1634 			ntfs_error(vi->i_sb, "Failed to lookup "
1635 					"$INDEX_ALLOCATION attribute.");
1636 		goto unm_err_out;
1637 	}
1638 	a = ctx->attr;
1639 	if (!a->non_resident) {
1640 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1641 				"resident.");
1642 		goto unm_err_out;
1643 	}
1644 	/*
1645 	 * Ensure the attribute name is placed before the mapping pairs array.
1646 	 */
1647 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1648 			le16_to_cpu(
1649 			a->data.non_resident.mapping_pairs_offset)))) {
1650 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1651 				"placed after the mapping pairs array.");
1652 		goto unm_err_out;
1653 	}
1654 	if (a->flags & ATTR_IS_ENCRYPTED) {
1655 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1656 				"encrypted.");
1657 		goto unm_err_out;
1658 	}
1659 	if (a->flags & ATTR_IS_SPARSE) {
1660 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1661 		goto unm_err_out;
1662 	}
1663 	if (a->flags & ATTR_COMPRESSION_MASK) {
1664 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1665 				"compressed.");
1666 		goto unm_err_out;
1667 	}
1668 	if (a->data.non_resident.lowest_vcn) {
1669 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1670 				"attribute has non zero lowest_vcn.");
1671 		goto unm_err_out;
1672 	}
1673 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1674 	ni->initialized_size = sle64_to_cpu(
1675 			a->data.non_resident.initialized_size);
1676 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1677 	/*
1678 	 * We are done with the mft record, so we release it.  Otherwise
1679 	 * we would deadlock in ntfs_attr_iget().
1680 	 */
1681 	ntfs_attr_put_search_ctx(ctx);
1682 	unmap_mft_record(base_ni);
1683 	m = NULL;
1684 	ctx = NULL;
1685 	/* Get the index bitmap attribute inode. */
1686 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1687 	if (IS_ERR(bvi)) {
1688 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1689 		err = PTR_ERR(bvi);
1690 		goto unm_err_out;
1691 	}
1692 	bni = NTFS_I(bvi);
1693 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1694 			NInoSparse(bni)) {
1695 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1696 				"encrypted and/or sparse.");
1697 		goto iput_unm_err_out;
1698 	}
1699 	/* Consistency check bitmap size vs. index allocation size. */
1700 	bvi_size = i_size_read(bvi);
1701 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1702 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1703 				"index allocation (0x%llx).", bvi_size << 3,
1704 				vi->i_size);
1705 		goto iput_unm_err_out;
1706 	}
1707 	iput(bvi);
1708 skip_large_index_stuff:
1709 	/* Setup the operations for this index inode. */
1710 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1711 	vi->i_blocks = ni->allocated_size >> 9;
1712 	/*
1713 	 * Make sure the base inode doesn't go away and attach it to the
1714 	 * index inode.
1715 	 */
1716 	igrab(base_vi);
1717 	ni->ext.base_ntfs_ino = base_ni;
1718 	ni->nr_extents = -1;
1719 
1720 	ntfs_debug("Done.");
1721 	return 0;
1722 iput_unm_err_out:
1723 	iput(bvi);
1724 unm_err_out:
1725 	if (!err)
1726 		err = -EIO;
1727 	if (ctx)
1728 		ntfs_attr_put_search_ctx(ctx);
1729 	if (m)
1730 		unmap_mft_record(base_ni);
1731 err_out:
1732 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1733 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1734 			ni->name_len);
1735 	make_bad_inode(vi);
1736 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1737 		NVolSetErrors(vol);
1738 	return err;
1739 }
1740 
1741 /*
1742  * The MFT inode has special locking, so teach the lock validator
1743  * about this by splitting off the locking rules of the MFT from
1744  * the locking rules of other inodes. The MFT inode can never be
1745  * accessed from the VFS side (or even internally), only by the
1746  * map_mft functions.
1747  */
1748 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1749 
1750 /**
1751  * ntfs_read_inode_mount - special read_inode for mount time use only
1752  * @vi:		inode to read
1753  *
1754  * Read inode FILE_MFT at mount time, only called with super_block lock
1755  * held from within the read_super() code path.
1756  *
1757  * This function exists because when it is called the page cache for $MFT/$DATA
1758  * is not initialized and hence we cannot get at the contents of mft records
1759  * by calling map_mft_record*().
1760  *
1761  * Further it needs to cope with the circular references problem, i.e. cannot
1762  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1763  * we do not know where the other extent mft records are yet and again, because
1764  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1765  * attribute list is actually present in $MFT inode.
1766  *
1767  * We solve these problems by starting with the $DATA attribute before anything
1768  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1769  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1770  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1771  * sufficient information for the next step to complete.
1772  *
1773  * This should work but there are two possible pit falls (see inline comments
1774  * below), but only time will tell if they are real pits or just smoke...
1775  */
1776 int ntfs_read_inode_mount(struct inode *vi)
1777 {
1778 	VCN next_vcn, last_vcn, highest_vcn;
1779 	s64 block;
1780 	struct super_block *sb = vi->i_sb;
1781 	ntfs_volume *vol = NTFS_SB(sb);
1782 	struct buffer_head *bh;
1783 	ntfs_inode *ni;
1784 	MFT_RECORD *m = NULL;
1785 	ATTR_RECORD *a;
1786 	ntfs_attr_search_ctx *ctx;
1787 	unsigned int i, nr_blocks;
1788 	int err;
1789 
1790 	ntfs_debug("Entering.");
1791 
1792 	/* Initialize the ntfs specific part of @vi. */
1793 	ntfs_init_big_inode(vi);
1794 
1795 	ni = NTFS_I(vi);
1796 
1797 	/* Setup the data attribute. It is special as it is mst protected. */
1798 	NInoSetNonResident(ni);
1799 	NInoSetMstProtected(ni);
1800 	NInoSetSparseDisabled(ni);
1801 	ni->type = AT_DATA;
1802 	ni->name = NULL;
1803 	ni->name_len = 0;
1804 	/*
1805 	 * This sets up our little cheat allowing us to reuse the async read io
1806 	 * completion handler for directories.
1807 	 */
1808 	ni->itype.index.block_size = vol->mft_record_size;
1809 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1810 
1811 	/* Very important! Needed to be able to call map_mft_record*(). */
1812 	vol->mft_ino = vi;
1813 
1814 	/* Allocate enough memory to read the first mft record. */
1815 	if (vol->mft_record_size > 64 * 1024) {
1816 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1817 				vol->mft_record_size);
1818 		goto err_out;
1819 	}
1820 	i = vol->mft_record_size;
1821 	if (i < sb->s_blocksize)
1822 		i = sb->s_blocksize;
1823 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1824 	if (!m) {
1825 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1826 		goto err_out;
1827 	}
1828 
1829 	/* Determine the first block of the $MFT/$DATA attribute. */
1830 	block = vol->mft_lcn << vol->cluster_size_bits >>
1831 			sb->s_blocksize_bits;
1832 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1833 	if (!nr_blocks)
1834 		nr_blocks = 1;
1835 
1836 	/* Load $MFT/$DATA's first mft record. */
1837 	for (i = 0; i < nr_blocks; i++) {
1838 		bh = sb_bread(sb, block++);
1839 		if (!bh) {
1840 			ntfs_error(sb, "Device read failed.");
1841 			goto err_out;
1842 		}
1843 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1844 				sb->s_blocksize);
1845 		brelse(bh);
1846 	}
1847 
1848 	/* Apply the mst fixups. */
1849 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1850 		/* FIXME: Try to use the $MFTMirr now. */
1851 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1852 		goto err_out;
1853 	}
1854 
1855 	/* Need this to sanity check attribute list references to $MFT. */
1856 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1857 
1858 	/* Provides readpage() and sync_page() for map_mft_record(). */
1859 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1860 
1861 	ctx = ntfs_attr_get_search_ctx(ni, m);
1862 	if (!ctx) {
1863 		err = -ENOMEM;
1864 		goto err_out;
1865 	}
1866 
1867 	/* Find the attribute list attribute if present. */
1868 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1869 	if (err) {
1870 		if (unlikely(err != -ENOENT)) {
1871 			ntfs_error(sb, "Failed to lookup attribute list "
1872 					"attribute. You should run chkdsk.");
1873 			goto put_err_out;
1874 		}
1875 	} else /* if (!err) */ {
1876 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1877 		u8 *al_end;
1878 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1879 				"You should run chkdsk.";
1880 
1881 		ntfs_debug("Attribute list attribute found in $MFT.");
1882 		NInoSetAttrList(ni);
1883 		a = ctx->attr;
1884 		if (a->flags & ATTR_COMPRESSION_MASK) {
1885 			ntfs_error(sb, "Attribute list attribute is "
1886 					"compressed.%s", es);
1887 			goto put_err_out;
1888 		}
1889 		if (a->flags & ATTR_IS_ENCRYPTED ||
1890 				a->flags & ATTR_IS_SPARSE) {
1891 			if (a->non_resident) {
1892 				ntfs_error(sb, "Non-resident attribute list "
1893 						"attribute is encrypted/"
1894 						"sparse.%s", es);
1895 				goto put_err_out;
1896 			}
1897 			ntfs_warning(sb, "Resident attribute list attribute "
1898 					"in $MFT system file is marked "
1899 					"encrypted/sparse which is not true.  "
1900 					"However, Windows allows this and "
1901 					"chkdsk does not detect or correct it "
1902 					"so we will just ignore the invalid "
1903 					"flags and pretend they are not set.");
1904 		}
1905 		/* Now allocate memory for the attribute list. */
1906 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1907 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1908 		if (!ni->attr_list) {
1909 			ntfs_error(sb, "Not enough memory to allocate buffer "
1910 					"for attribute list.");
1911 			goto put_err_out;
1912 		}
1913 		if (a->non_resident) {
1914 			NInoSetAttrListNonResident(ni);
1915 			if (a->data.non_resident.lowest_vcn) {
1916 				ntfs_error(sb, "Attribute list has non zero "
1917 						"lowest_vcn. $MFT is corrupt. "
1918 						"You should run chkdsk.");
1919 				goto put_err_out;
1920 			}
1921 			/* Setup the runlist. */
1922 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1923 					a, NULL);
1924 			if (IS_ERR(ni->attr_list_rl.rl)) {
1925 				err = PTR_ERR(ni->attr_list_rl.rl);
1926 				ni->attr_list_rl.rl = NULL;
1927 				ntfs_error(sb, "Mapping pairs decompression "
1928 						"failed with error code %i.",
1929 						-err);
1930 				goto put_err_out;
1931 			}
1932 			/* Now load the attribute list. */
1933 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1934 					ni->attr_list, ni->attr_list_size,
1935 					sle64_to_cpu(a->data.
1936 					non_resident.initialized_size)))) {
1937 				ntfs_error(sb, "Failed to load attribute list "
1938 						"attribute with error code %i.",
1939 						-err);
1940 				goto put_err_out;
1941 			}
1942 		} else /* if (!ctx.attr->non_resident) */ {
1943 			if ((u8*)a + le16_to_cpu(
1944 					a->data.resident.value_offset) +
1945 					le32_to_cpu(
1946 					a->data.resident.value_length) >
1947 					(u8*)ctx->mrec + vol->mft_record_size) {
1948 				ntfs_error(sb, "Corrupt attribute list "
1949 						"attribute.");
1950 				goto put_err_out;
1951 			}
1952 			/* Now copy the attribute list. */
1953 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1954 					a->data.resident.value_offset),
1955 					le32_to_cpu(
1956 					a->data.resident.value_length));
1957 		}
1958 		/* The attribute list is now setup in memory. */
1959 		/*
1960 		 * FIXME: I don't know if this case is actually possible.
1961 		 * According to logic it is not possible but I have seen too
1962 		 * many weird things in MS software to rely on logic... Thus we
1963 		 * perform a manual search and make sure the first $MFT/$DATA
1964 		 * extent is in the base inode. If it is not we abort with an
1965 		 * error and if we ever see a report of this error we will need
1966 		 * to do some magic in order to have the necessary mft record
1967 		 * loaded and in the right place in the page cache. But
1968 		 * hopefully logic will prevail and this never happens...
1969 		 */
1970 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1971 		al_end = (u8*)al_entry + ni->attr_list_size;
1972 		for (;; al_entry = next_al_entry) {
1973 			/* Out of bounds check. */
1974 			if ((u8*)al_entry < ni->attr_list ||
1975 					(u8*)al_entry > al_end)
1976 				goto em_put_err_out;
1977 			/* Catch the end of the attribute list. */
1978 			if ((u8*)al_entry == al_end)
1979 				goto em_put_err_out;
1980 			if (!al_entry->length)
1981 				goto em_put_err_out;
1982 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1983 					le16_to_cpu(al_entry->length) > al_end)
1984 				goto em_put_err_out;
1985 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1986 					le16_to_cpu(al_entry->length));
1987 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1988 				goto em_put_err_out;
1989 			if (AT_DATA != al_entry->type)
1990 				continue;
1991 			/* We want an unnamed attribute. */
1992 			if (al_entry->name_length)
1993 				goto em_put_err_out;
1994 			/* Want the first entry, i.e. lowest_vcn == 0. */
1995 			if (al_entry->lowest_vcn)
1996 				goto em_put_err_out;
1997 			/* First entry has to be in the base mft record. */
1998 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1999 				/* MFT references do not match, logic fails. */
2000 				ntfs_error(sb, "BUG: The first $DATA extent "
2001 						"of $MFT is not in the base "
2002 						"mft record. Please report "
2003 						"you saw this message to "
2004 						"linux-ntfs-dev@lists."
2005 						"sourceforge.net");
2006 				goto put_err_out;
2007 			} else {
2008 				/* Sequence numbers must match. */
2009 				if (MSEQNO_LE(al_entry->mft_reference) !=
2010 						ni->seq_no)
2011 					goto em_put_err_out;
2012 				/* Got it. All is ok. We can stop now. */
2013 				break;
2014 			}
2015 		}
2016 	}
2017 
2018 	ntfs_attr_reinit_search_ctx(ctx);
2019 
2020 	/* Now load all attribute extents. */
2021 	a = NULL;
2022 	next_vcn = last_vcn = highest_vcn = 0;
2023 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2024 			ctx))) {
2025 		runlist_element *nrl;
2026 
2027 		/* Cache the current attribute. */
2028 		a = ctx->attr;
2029 		/* $MFT must be non-resident. */
2030 		if (!a->non_resident) {
2031 			ntfs_error(sb, "$MFT must be non-resident but a "
2032 					"resident extent was found. $MFT is "
2033 					"corrupt. Run chkdsk.");
2034 			goto put_err_out;
2035 		}
2036 		/* $MFT must be uncompressed and unencrypted. */
2037 		if (a->flags & ATTR_COMPRESSION_MASK ||
2038 				a->flags & ATTR_IS_ENCRYPTED ||
2039 				a->flags & ATTR_IS_SPARSE) {
2040 			ntfs_error(sb, "$MFT must be uncompressed, "
2041 					"non-sparse, and unencrypted but a "
2042 					"compressed/sparse/encrypted extent "
2043 					"was found. $MFT is corrupt. Run "
2044 					"chkdsk.");
2045 			goto put_err_out;
2046 		}
2047 		/*
2048 		 * Decompress the mapping pairs array of this extent and merge
2049 		 * the result into the existing runlist. No need for locking
2050 		 * as we have exclusive access to the inode at this time and we
2051 		 * are a mount in progress task, too.
2052 		 */
2053 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2054 		if (IS_ERR(nrl)) {
2055 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2056 					"failed with error code %ld.  $MFT is "
2057 					"corrupt.", PTR_ERR(nrl));
2058 			goto put_err_out;
2059 		}
2060 		ni->runlist.rl = nrl;
2061 
2062 		/* Are we in the first extent? */
2063 		if (!next_vcn) {
2064 			if (a->data.non_resident.lowest_vcn) {
2065 				ntfs_error(sb, "First extent of $DATA "
2066 						"attribute has non zero "
2067 						"lowest_vcn. $MFT is corrupt. "
2068 						"You should run chkdsk.");
2069 				goto put_err_out;
2070 			}
2071 			/* Get the last vcn in the $DATA attribute. */
2072 			last_vcn = sle64_to_cpu(
2073 					a->data.non_resident.allocated_size)
2074 					>> vol->cluster_size_bits;
2075 			/* Fill in the inode size. */
2076 			vi->i_size = sle64_to_cpu(
2077 					a->data.non_resident.data_size);
2078 			ni->initialized_size = sle64_to_cpu(
2079 					a->data.non_resident.initialized_size);
2080 			ni->allocated_size = sle64_to_cpu(
2081 					a->data.non_resident.allocated_size);
2082 			/*
2083 			 * Verify the number of mft records does not exceed
2084 			 * 2^32 - 1.
2085 			 */
2086 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2087 					(1ULL << 32)) {
2088 				ntfs_error(sb, "$MFT is too big! Aborting.");
2089 				goto put_err_out;
2090 			}
2091 			/*
2092 			 * We have got the first extent of the runlist for
2093 			 * $MFT which means it is now relatively safe to call
2094 			 * the normal ntfs_read_inode() function.
2095 			 * Complete reading the inode, this will actually
2096 			 * re-read the mft record for $MFT, this time entering
2097 			 * it into the page cache with which we complete the
2098 			 * kick start of the volume. It should be safe to do
2099 			 * this now as the first extent of $MFT/$DATA is
2100 			 * already known and we would hope that we don't need
2101 			 * further extents in order to find the other
2102 			 * attributes belonging to $MFT. Only time will tell if
2103 			 * this is really the case. If not we will have to play
2104 			 * magic at this point, possibly duplicating a lot of
2105 			 * ntfs_read_inode() at this point. We will need to
2106 			 * ensure we do enough of its work to be able to call
2107 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2108 			 * hope this never happens...
2109 			 */
2110 			ntfs_read_locked_inode(vi);
2111 			if (is_bad_inode(vi)) {
2112 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2113 						"failed. BUG or corrupt $MFT. "
2114 						"Run chkdsk and if no errors "
2115 						"are found, please report you "
2116 						"saw this message to "
2117 						"linux-ntfs-dev@lists."
2118 						"sourceforge.net");
2119 				ntfs_attr_put_search_ctx(ctx);
2120 				/* Revert to the safe super operations. */
2121 				ntfs_free(m);
2122 				return -1;
2123 			}
2124 			/*
2125 			 * Re-initialize some specifics about $MFT's inode as
2126 			 * ntfs_read_inode() will have set up the default ones.
2127 			 */
2128 			/* Set uid and gid to root. */
2129 			vi->i_uid = GLOBAL_ROOT_UID;
2130 			vi->i_gid = GLOBAL_ROOT_GID;
2131 			/* Regular file. No access for anyone. */
2132 			vi->i_mode = S_IFREG;
2133 			/* No VFS initiated operations allowed for $MFT. */
2134 			vi->i_op = &ntfs_empty_inode_ops;
2135 			vi->i_fop = &ntfs_empty_file_ops;
2136 		}
2137 
2138 		/* Get the lowest vcn for the next extent. */
2139 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2140 		next_vcn = highest_vcn + 1;
2141 
2142 		/* Only one extent or error, which we catch below. */
2143 		if (next_vcn <= 0)
2144 			break;
2145 
2146 		/* Avoid endless loops due to corruption. */
2147 		if (next_vcn < sle64_to_cpu(
2148 				a->data.non_resident.lowest_vcn)) {
2149 			ntfs_error(sb, "$MFT has corrupt attribute list "
2150 					"attribute. Run chkdsk.");
2151 			goto put_err_out;
2152 		}
2153 	}
2154 	if (err != -ENOENT) {
2155 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2156 				"$MFT is corrupt. Run chkdsk.");
2157 		goto put_err_out;
2158 	}
2159 	if (!a) {
2160 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2161 				"corrupt. Run chkdsk.");
2162 		goto put_err_out;
2163 	}
2164 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2165 		ntfs_error(sb, "Failed to load the complete runlist for "
2166 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2167 				"Run chkdsk.");
2168 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2169 				(unsigned long long)highest_vcn,
2170 				(unsigned long long)last_vcn - 1);
2171 		goto put_err_out;
2172 	}
2173 	ntfs_attr_put_search_ctx(ctx);
2174 	ntfs_debug("Done.");
2175 	ntfs_free(m);
2176 
2177 	/*
2178 	 * Split the locking rules of the MFT inode from the
2179 	 * locking rules of other inodes:
2180 	 */
2181 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2182 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2183 
2184 	return 0;
2185 
2186 em_put_err_out:
2187 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2188 			"attribute list. $MFT is corrupt. Run chkdsk.");
2189 put_err_out:
2190 	ntfs_attr_put_search_ctx(ctx);
2191 err_out:
2192 	ntfs_error(sb, "Failed. Marking inode as bad.");
2193 	make_bad_inode(vi);
2194 	ntfs_free(m);
2195 	return -1;
2196 }
2197 
2198 static void __ntfs_clear_inode(ntfs_inode *ni)
2199 {
2200 	/* Free all alocated memory. */
2201 	down_write(&ni->runlist.lock);
2202 	if (ni->runlist.rl) {
2203 		ntfs_free(ni->runlist.rl);
2204 		ni->runlist.rl = NULL;
2205 	}
2206 	up_write(&ni->runlist.lock);
2207 
2208 	if (ni->attr_list) {
2209 		ntfs_free(ni->attr_list);
2210 		ni->attr_list = NULL;
2211 	}
2212 
2213 	down_write(&ni->attr_list_rl.lock);
2214 	if (ni->attr_list_rl.rl) {
2215 		ntfs_free(ni->attr_list_rl.rl);
2216 		ni->attr_list_rl.rl = NULL;
2217 	}
2218 	up_write(&ni->attr_list_rl.lock);
2219 
2220 	if (ni->name_len && ni->name != I30) {
2221 		/* Catch bugs... */
2222 		BUG_ON(!ni->name);
2223 		kfree(ni->name);
2224 	}
2225 }
2226 
2227 void ntfs_clear_extent_inode(ntfs_inode *ni)
2228 {
2229 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2230 
2231 	BUG_ON(NInoAttr(ni));
2232 	BUG_ON(ni->nr_extents != -1);
2233 
2234 #ifdef NTFS_RW
2235 	if (NInoDirty(ni)) {
2236 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2237 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2238 					"Losing data!  This is a BUG!!!");
2239 		// FIXME:  Do something!!!
2240 	}
2241 #endif /* NTFS_RW */
2242 
2243 	__ntfs_clear_inode(ni);
2244 
2245 	/* Bye, bye... */
2246 	ntfs_destroy_extent_inode(ni);
2247 }
2248 
2249 /**
2250  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2251  * @vi:		vfs inode pending annihilation
2252  *
2253  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2254  * is called, which deallocates all memory belonging to the NTFS specific part
2255  * of the inode and returns.
2256  *
2257  * If the MFT record is dirty, we commit it before doing anything else.
2258  */
2259 void ntfs_evict_big_inode(struct inode *vi)
2260 {
2261 	ntfs_inode *ni = NTFS_I(vi);
2262 
2263 	truncate_inode_pages_final(&vi->i_data);
2264 	clear_inode(vi);
2265 
2266 #ifdef NTFS_RW
2267 	if (NInoDirty(ni)) {
2268 		bool was_bad = (is_bad_inode(vi));
2269 
2270 		/* Committing the inode also commits all extent inodes. */
2271 		ntfs_commit_inode(vi);
2272 
2273 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2274 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2275 					"0x%lx.  Losing data!", vi->i_ino);
2276 			// FIXME:  Do something!!!
2277 		}
2278 	}
2279 #endif /* NTFS_RW */
2280 
2281 	/* No need to lock at this stage as no one else has a reference. */
2282 	if (ni->nr_extents > 0) {
2283 		int i;
2284 
2285 		for (i = 0; i < ni->nr_extents; i++)
2286 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2287 		kfree(ni->ext.extent_ntfs_inos);
2288 	}
2289 
2290 	__ntfs_clear_inode(ni);
2291 
2292 	if (NInoAttr(ni)) {
2293 		/* Release the base inode if we are holding it. */
2294 		if (ni->nr_extents == -1) {
2295 			iput(VFS_I(ni->ext.base_ntfs_ino));
2296 			ni->nr_extents = 0;
2297 			ni->ext.base_ntfs_ino = NULL;
2298 		}
2299 	}
2300 	return;
2301 }
2302 
2303 /**
2304  * ntfs_show_options - show mount options in /proc/mounts
2305  * @sf:		seq_file in which to write our mount options
2306  * @root:	root of the mounted tree whose mount options to display
2307  *
2308  * Called by the VFS once for each mounted ntfs volume when someone reads
2309  * /proc/mounts in order to display the NTFS specific mount options of each
2310  * mount. The mount options of fs specified by @root are written to the seq file
2311  * @sf and success is returned.
2312  */
2313 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2314 {
2315 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2316 	int i;
2317 
2318 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2319 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2320 	if (vol->fmask == vol->dmask)
2321 		seq_printf(sf, ",umask=0%o", vol->fmask);
2322 	else {
2323 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2324 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2325 	}
2326 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2327 	if (NVolCaseSensitive(vol))
2328 		seq_printf(sf, ",case_sensitive");
2329 	if (NVolShowSystemFiles(vol))
2330 		seq_printf(sf, ",show_sys_files");
2331 	if (!NVolSparseEnabled(vol))
2332 		seq_printf(sf, ",disable_sparse");
2333 	for (i = 0; on_errors_arr[i].val; i++) {
2334 		if (on_errors_arr[i].val & vol->on_errors)
2335 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2336 	}
2337 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2338 	return 0;
2339 }
2340 
2341 #ifdef NTFS_RW
2342 
2343 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2344 		"chkdsk.";
2345 
2346 /**
2347  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2348  * @vi:		inode for which the i_size was changed
2349  *
2350  * We only support i_size changes for normal files at present, i.e. not
2351  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2352  * below.
2353  *
2354  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2355  * that the change is allowed.
2356  *
2357  * This implies for us that @vi is a file inode rather than a directory, index,
2358  * or attribute inode as well as that @vi is a base inode.
2359  *
2360  * Returns 0 on success or -errno on error.
2361  *
2362  * Called with ->i_mutex held.
2363  */
2364 int ntfs_truncate(struct inode *vi)
2365 {
2366 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2367 	VCN highest_vcn;
2368 	unsigned long flags;
2369 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2370 	ntfs_volume *vol = ni->vol;
2371 	ntfs_attr_search_ctx *ctx;
2372 	MFT_RECORD *m;
2373 	ATTR_RECORD *a;
2374 	const char *te = "  Leaving file length out of sync with i_size.";
2375 	int err, mp_size, size_change, alloc_change;
2376 	u32 attr_len;
2377 
2378 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2379 	BUG_ON(NInoAttr(ni));
2380 	BUG_ON(S_ISDIR(vi->i_mode));
2381 	BUG_ON(NInoMstProtected(ni));
2382 	BUG_ON(ni->nr_extents < 0);
2383 retry_truncate:
2384 	/*
2385 	 * Lock the runlist for writing and map the mft record to ensure it is
2386 	 * safe to mess with the attribute runlist and sizes.
2387 	 */
2388 	down_write(&ni->runlist.lock);
2389 	if (!NInoAttr(ni))
2390 		base_ni = ni;
2391 	else
2392 		base_ni = ni->ext.base_ntfs_ino;
2393 	m = map_mft_record(base_ni);
2394 	if (IS_ERR(m)) {
2395 		err = PTR_ERR(m);
2396 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2397 				"(error code %d).%s", vi->i_ino, err, te);
2398 		ctx = NULL;
2399 		m = NULL;
2400 		goto old_bad_out;
2401 	}
2402 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2403 	if (unlikely(!ctx)) {
2404 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2405 				"inode 0x%lx (not enough memory).%s",
2406 				vi->i_ino, te);
2407 		err = -ENOMEM;
2408 		goto old_bad_out;
2409 	}
2410 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2411 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2412 	if (unlikely(err)) {
2413 		if (err == -ENOENT) {
2414 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2415 					"mft record.  Inode 0x%lx is corrupt.  "
2416 					"Run chkdsk.%s", vi->i_ino, te);
2417 			err = -EIO;
2418 		} else
2419 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2420 					"inode 0x%lx (error code %d).%s",
2421 					vi->i_ino, err, te);
2422 		goto old_bad_out;
2423 	}
2424 	m = ctx->mrec;
2425 	a = ctx->attr;
2426 	/*
2427 	 * The i_size of the vfs inode is the new size for the attribute value.
2428 	 */
2429 	new_size = i_size_read(vi);
2430 	/* The current size of the attribute value is the old size. */
2431 	old_size = ntfs_attr_size(a);
2432 	/* Calculate the new allocated size. */
2433 	if (NInoNonResident(ni))
2434 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2435 				~(s64)vol->cluster_size_mask;
2436 	else
2437 		new_alloc_size = (new_size + 7) & ~7;
2438 	/* The current allocated size is the old allocated size. */
2439 	read_lock_irqsave(&ni->size_lock, flags);
2440 	old_alloc_size = ni->allocated_size;
2441 	read_unlock_irqrestore(&ni->size_lock, flags);
2442 	/*
2443 	 * The change in the file size.  This will be 0 if no change, >0 if the
2444 	 * size is growing, and <0 if the size is shrinking.
2445 	 */
2446 	size_change = -1;
2447 	if (new_size - old_size >= 0) {
2448 		size_change = 1;
2449 		if (new_size == old_size)
2450 			size_change = 0;
2451 	}
2452 	/* As above for the allocated size. */
2453 	alloc_change = -1;
2454 	if (new_alloc_size - old_alloc_size >= 0) {
2455 		alloc_change = 1;
2456 		if (new_alloc_size == old_alloc_size)
2457 			alloc_change = 0;
2458 	}
2459 	/*
2460 	 * If neither the size nor the allocation are being changed there is
2461 	 * nothing to do.
2462 	 */
2463 	if (!size_change && !alloc_change)
2464 		goto unm_done;
2465 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2466 	if (size_change) {
2467 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2468 		if (unlikely(err)) {
2469 			if (err == -ERANGE) {
2470 				ntfs_error(vol->sb, "Truncate would cause the "
2471 						"inode 0x%lx to %simum size "
2472 						"for its attribute type "
2473 						"(0x%x).  Aborting truncate.",
2474 						vi->i_ino,
2475 						new_size > old_size ? "exceed "
2476 						"the max" : "go under the min",
2477 						le32_to_cpu(ni->type));
2478 				err = -EFBIG;
2479 			} else {
2480 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2481 						"attribute type 0x%x.  "
2482 						"Aborting truncate.",
2483 						vi->i_ino,
2484 						le32_to_cpu(ni->type));
2485 				err = -EIO;
2486 			}
2487 			/* Reset the vfs inode size to the old size. */
2488 			i_size_write(vi, old_size);
2489 			goto err_out;
2490 		}
2491 	}
2492 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2493 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2494 				"supported yet for %s files, ignoring.",
2495 				NInoCompressed(ni) ? "compressed" :
2496 				"encrypted");
2497 		err = -EOPNOTSUPP;
2498 		goto bad_out;
2499 	}
2500 	if (a->non_resident)
2501 		goto do_non_resident_truncate;
2502 	BUG_ON(NInoNonResident(ni));
2503 	/* Resize the attribute record to best fit the new attribute size. */
2504 	if (new_size < vol->mft_record_size &&
2505 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2506 		/* The resize succeeded! */
2507 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2508 		mark_mft_record_dirty(ctx->ntfs_ino);
2509 		write_lock_irqsave(&ni->size_lock, flags);
2510 		/* Update the sizes in the ntfs inode and all is done. */
2511 		ni->allocated_size = le32_to_cpu(a->length) -
2512 				le16_to_cpu(a->data.resident.value_offset);
2513 		/*
2514 		 * Note ntfs_resident_attr_value_resize() has already done any
2515 		 * necessary data clearing in the attribute record.  When the
2516 		 * file is being shrunk vmtruncate() will already have cleared
2517 		 * the top part of the last partial page, i.e. since this is
2518 		 * the resident case this is the page with index 0.  However,
2519 		 * when the file is being expanded, the page cache page data
2520 		 * between the old data_size, i.e. old_size, and the new_size
2521 		 * has not been zeroed.  Fortunately, we do not need to zero it
2522 		 * either since on one hand it will either already be zero due
2523 		 * to both readpage and writepage clearing partial page data
2524 		 * beyond i_size in which case there is nothing to do or in the
2525 		 * case of the file being mmap()ped at the same time, POSIX
2526 		 * specifies that the behaviour is unspecified thus we do not
2527 		 * have to do anything.  This means that in our implementation
2528 		 * in the rare case that the file is mmap()ped and a write
2529 		 * occurred into the mmap()ped region just beyond the file size
2530 		 * and writepage has not yet been called to write out the page
2531 		 * (which would clear the area beyond the file size) and we now
2532 		 * extend the file size to incorporate this dirty region
2533 		 * outside the file size, a write of the page would result in
2534 		 * this data being written to disk instead of being cleared.
2535 		 * Given both POSIX and the Linux mmap(2) man page specify that
2536 		 * this corner case is undefined, we choose to leave it like
2537 		 * that as this is much simpler for us as we cannot lock the
2538 		 * relevant page now since we are holding too many ntfs locks
2539 		 * which would result in a lock reversal deadlock.
2540 		 */
2541 		ni->initialized_size = new_size;
2542 		write_unlock_irqrestore(&ni->size_lock, flags);
2543 		goto unm_done;
2544 	}
2545 	/* If the above resize failed, this must be an attribute extension. */
2546 	BUG_ON(size_change < 0);
2547 	/*
2548 	 * We have to drop all the locks so we can call
2549 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2550 	 * locking the first page cache page and only if that fails dropping
2551 	 * the locks, locking the page, and redoing all the locking and
2552 	 * lookups.  While this would be a huge optimisation, it is not worth
2553 	 * it as this is definitely a slow code path as it only ever can happen
2554 	 * once for any given file.
2555 	 */
2556 	ntfs_attr_put_search_ctx(ctx);
2557 	unmap_mft_record(base_ni);
2558 	up_write(&ni->runlist.lock);
2559 	/*
2560 	 * Not enough space in the mft record, try to make the attribute
2561 	 * non-resident and if successful restart the truncation process.
2562 	 */
2563 	err = ntfs_attr_make_non_resident(ni, old_size);
2564 	if (likely(!err))
2565 		goto retry_truncate;
2566 	/*
2567 	 * Could not make non-resident.  If this is due to this not being
2568 	 * permitted for this attribute type or there not being enough space,
2569 	 * try to make other attributes non-resident.  Otherwise fail.
2570 	 */
2571 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2572 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2573 				"type 0x%x, because the conversion from "
2574 				"resident to non-resident attribute failed "
2575 				"with error code %i.", vi->i_ino,
2576 				(unsigned)le32_to_cpu(ni->type), err);
2577 		if (err != -ENOMEM)
2578 			err = -EIO;
2579 		goto conv_err_out;
2580 	}
2581 	/* TODO: Not implemented from here, abort. */
2582 	if (err == -ENOSPC)
2583 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2584 				"disk for the non-resident attribute value.  "
2585 				"This case is not implemented yet.");
2586 	else /* if (err == -EPERM) */
2587 		ntfs_error(vol->sb, "This attribute type may not be "
2588 				"non-resident.  This case is not implemented "
2589 				"yet.");
2590 	err = -EOPNOTSUPP;
2591 	goto conv_err_out;
2592 #if 0
2593 	// TODO: Attempt to make other attributes non-resident.
2594 	if (!err)
2595 		goto do_resident_extend;
2596 	/*
2597 	 * Both the attribute list attribute and the standard information
2598 	 * attribute must remain in the base inode.  Thus, if this is one of
2599 	 * these attributes, we have to try to move other attributes out into
2600 	 * extent mft records instead.
2601 	 */
2602 	if (ni->type == AT_ATTRIBUTE_LIST ||
2603 			ni->type == AT_STANDARD_INFORMATION) {
2604 		// TODO: Attempt to move other attributes into extent mft
2605 		// records.
2606 		err = -EOPNOTSUPP;
2607 		if (!err)
2608 			goto do_resident_extend;
2609 		goto err_out;
2610 	}
2611 	// TODO: Attempt to move this attribute to an extent mft record, but
2612 	// only if it is not already the only attribute in an mft record in
2613 	// which case there would be nothing to gain.
2614 	err = -EOPNOTSUPP;
2615 	if (!err)
2616 		goto do_resident_extend;
2617 	/* There is nothing we can do to make enough space. )-: */
2618 	goto err_out;
2619 #endif
2620 do_non_resident_truncate:
2621 	BUG_ON(!NInoNonResident(ni));
2622 	if (alloc_change < 0) {
2623 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2624 		if (highest_vcn > 0 &&
2625 				old_alloc_size >> vol->cluster_size_bits >
2626 				highest_vcn + 1) {
2627 			/*
2628 			 * This attribute has multiple extents.  Not yet
2629 			 * supported.
2630 			 */
2631 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2632 					"attribute type 0x%x, because the "
2633 					"attribute is highly fragmented (it "
2634 					"consists of multiple extents) and "
2635 					"this case is not implemented yet.",
2636 					vi->i_ino,
2637 					(unsigned)le32_to_cpu(ni->type));
2638 			err = -EOPNOTSUPP;
2639 			goto bad_out;
2640 		}
2641 	}
2642 	/*
2643 	 * If the size is shrinking, need to reduce the initialized_size and
2644 	 * the data_size before reducing the allocation.
2645 	 */
2646 	if (size_change < 0) {
2647 		/*
2648 		 * Make the valid size smaller (i_size is already up-to-date).
2649 		 */
2650 		write_lock_irqsave(&ni->size_lock, flags);
2651 		if (new_size < ni->initialized_size) {
2652 			ni->initialized_size = new_size;
2653 			a->data.non_resident.initialized_size =
2654 					cpu_to_sle64(new_size);
2655 		}
2656 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2657 		write_unlock_irqrestore(&ni->size_lock, flags);
2658 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2659 		mark_mft_record_dirty(ctx->ntfs_ino);
2660 		/* If the allocated size is not changing, we are done. */
2661 		if (!alloc_change)
2662 			goto unm_done;
2663 		/*
2664 		 * If the size is shrinking it makes no sense for the
2665 		 * allocation to be growing.
2666 		 */
2667 		BUG_ON(alloc_change > 0);
2668 	} else /* if (size_change >= 0) */ {
2669 		/*
2670 		 * The file size is growing or staying the same but the
2671 		 * allocation can be shrinking, growing or staying the same.
2672 		 */
2673 		if (alloc_change > 0) {
2674 			/*
2675 			 * We need to extend the allocation and possibly update
2676 			 * the data size.  If we are updating the data size,
2677 			 * since we are not touching the initialized_size we do
2678 			 * not need to worry about the actual data on disk.
2679 			 * And as far as the page cache is concerned, there
2680 			 * will be no pages beyond the old data size and any
2681 			 * partial region in the last page between the old and
2682 			 * new data size (or the end of the page if the new
2683 			 * data size is outside the page) does not need to be
2684 			 * modified as explained above for the resident
2685 			 * attribute truncate case.  To do this, we simply drop
2686 			 * the locks we hold and leave all the work to our
2687 			 * friendly helper ntfs_attr_extend_allocation().
2688 			 */
2689 			ntfs_attr_put_search_ctx(ctx);
2690 			unmap_mft_record(base_ni);
2691 			up_write(&ni->runlist.lock);
2692 			err = ntfs_attr_extend_allocation(ni, new_size,
2693 					size_change > 0 ? new_size : -1, -1);
2694 			/*
2695 			 * ntfs_attr_extend_allocation() will have done error
2696 			 * output already.
2697 			 */
2698 			goto done;
2699 		}
2700 		if (!alloc_change)
2701 			goto alloc_done;
2702 	}
2703 	/* alloc_change < 0 */
2704 	/* Free the clusters. */
2705 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2706 			vol->cluster_size_bits, -1, ctx);
2707 	m = ctx->mrec;
2708 	a = ctx->attr;
2709 	if (unlikely(nr_freed < 0)) {
2710 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2711 				"%lli).  Unmount and run chkdsk to recover "
2712 				"the lost cluster(s).", (long long)nr_freed);
2713 		NVolSetErrors(vol);
2714 		nr_freed = 0;
2715 	}
2716 	/* Truncate the runlist. */
2717 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2718 			new_alloc_size >> vol->cluster_size_bits);
2719 	/*
2720 	 * If the runlist truncation failed and/or the search context is no
2721 	 * longer valid, we cannot resize the attribute record or build the
2722 	 * mapping pairs array thus we mark the inode bad so that no access to
2723 	 * the freed clusters can happen.
2724 	 */
2725 	if (unlikely(err || IS_ERR(m))) {
2726 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2727 				IS_ERR(m) ?
2728 				"restore attribute search context" :
2729 				"truncate attribute runlist",
2730 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2731 		err = -EIO;
2732 		goto bad_out;
2733 	}
2734 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2735 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2736 	if (unlikely(mp_size <= 0)) {
2737 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2738 				"attribute type 0x%x, because determining the "
2739 				"size for the mapping pairs failed with error "
2740 				"code %i.%s", vi->i_ino,
2741 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2742 		err = -EIO;
2743 		goto bad_out;
2744 	}
2745 	/*
2746 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2747 	 * this cannot fail since we are making the attribute smaller thus by
2748 	 * definition there is enough space to do so.
2749 	 */
2750 	attr_len = le32_to_cpu(a->length);
2751 	err = ntfs_attr_record_resize(m, a, mp_size +
2752 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2753 	BUG_ON(err);
2754 	/*
2755 	 * Generate the mapping pairs array directly into the attribute record.
2756 	 */
2757 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2758 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2759 			mp_size, ni->runlist.rl, 0, -1, NULL);
2760 	if (unlikely(err)) {
2761 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2762 				"attribute type 0x%x, because building the "
2763 				"mapping pairs failed with error code %i.%s",
2764 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2765 				err, es);
2766 		err = -EIO;
2767 		goto bad_out;
2768 	}
2769 	/* Update the allocated/compressed size as well as the highest vcn. */
2770 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2771 			vol->cluster_size_bits) - 1);
2772 	write_lock_irqsave(&ni->size_lock, flags);
2773 	ni->allocated_size = new_alloc_size;
2774 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2775 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2776 		if (nr_freed) {
2777 			ni->itype.compressed.size -= nr_freed <<
2778 					vol->cluster_size_bits;
2779 			BUG_ON(ni->itype.compressed.size < 0);
2780 			a->data.non_resident.compressed_size = cpu_to_sle64(
2781 					ni->itype.compressed.size);
2782 			vi->i_blocks = ni->itype.compressed.size >> 9;
2783 		}
2784 	} else
2785 		vi->i_blocks = new_alloc_size >> 9;
2786 	write_unlock_irqrestore(&ni->size_lock, flags);
2787 	/*
2788 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2789 	 * have already dealt with the initialized_size and the data_size above
2790 	 * and we are done.  If the truncate is only changing the allocation
2791 	 * and not the data_size, we are also done.  If this is an extending
2792 	 * truncate, need to extend the data_size now which is ensured by the
2793 	 * fact that @size_change is positive.
2794 	 */
2795 alloc_done:
2796 	/*
2797 	 * If the size is growing, need to update it now.  If it is shrinking,
2798 	 * we have already updated it above (before the allocation change).
2799 	 */
2800 	if (size_change > 0)
2801 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2802 	/* Ensure the modified mft record is written out. */
2803 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2804 	mark_mft_record_dirty(ctx->ntfs_ino);
2805 unm_done:
2806 	ntfs_attr_put_search_ctx(ctx);
2807 	unmap_mft_record(base_ni);
2808 	up_write(&ni->runlist.lock);
2809 done:
2810 	/* Update the mtime and ctime on the base inode. */
2811 	/* normally ->truncate shouldn't update ctime or mtime,
2812 	 * but ntfs did before so it got a copy & paste version
2813 	 * of file_update_time.  one day someone should fix this
2814 	 * for real.
2815 	 */
2816 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2817 		struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2818 		int sync_it = 0;
2819 
2820 		if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2821 		    !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2822 			sync_it = 1;
2823 		VFS_I(base_ni)->i_mtime = now;
2824 		VFS_I(base_ni)->i_ctime = now;
2825 
2826 		if (sync_it)
2827 			mark_inode_dirty_sync(VFS_I(base_ni));
2828 	}
2829 
2830 	if (likely(!err)) {
2831 		NInoClearTruncateFailed(ni);
2832 		ntfs_debug("Done.");
2833 	}
2834 	return err;
2835 old_bad_out:
2836 	old_size = -1;
2837 bad_out:
2838 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2839 		NVolSetErrors(vol);
2840 	if (err != -EOPNOTSUPP)
2841 		NInoSetTruncateFailed(ni);
2842 	else if (old_size >= 0)
2843 		i_size_write(vi, old_size);
2844 err_out:
2845 	if (ctx)
2846 		ntfs_attr_put_search_ctx(ctx);
2847 	if (m)
2848 		unmap_mft_record(base_ni);
2849 	up_write(&ni->runlist.lock);
2850 out:
2851 	ntfs_debug("Failed.  Returning error code %i.", err);
2852 	return err;
2853 conv_err_out:
2854 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2855 		NVolSetErrors(vol);
2856 	if (err != -EOPNOTSUPP)
2857 		NInoSetTruncateFailed(ni);
2858 	else
2859 		i_size_write(vi, old_size);
2860 	goto out;
2861 }
2862 
2863 /**
2864  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2865  * @vi:		inode for which the i_size was changed
2866  *
2867  * Wrapper for ntfs_truncate() that has no return value.
2868  *
2869  * See ntfs_truncate() description above for details.
2870  */
2871 #ifdef NTFS_RW
2872 void ntfs_truncate_vfs(struct inode *vi) {
2873 	ntfs_truncate(vi);
2874 }
2875 #endif
2876 
2877 /**
2878  * ntfs_setattr - called from notify_change() when an attribute is being changed
2879  * @dentry:	dentry whose attributes to change
2880  * @attr:	structure describing the attributes and the changes
2881  *
2882  * We have to trap VFS attempts to truncate the file described by @dentry as
2883  * soon as possible, because we do not implement changes in i_size yet.  So we
2884  * abort all i_size changes here.
2885  *
2886  * We also abort all changes of user, group, and mode as we do not implement
2887  * the NTFS ACLs yet.
2888  *
2889  * Called with ->i_mutex held.
2890  */
2891 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2892 {
2893 	struct inode *vi = dentry->d_inode;
2894 	int err;
2895 	unsigned int ia_valid = attr->ia_valid;
2896 
2897 	err = inode_change_ok(vi, attr);
2898 	if (err)
2899 		goto out;
2900 	/* We do not support NTFS ACLs yet. */
2901 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2902 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2903 				"supported yet, ignoring.");
2904 		err = -EOPNOTSUPP;
2905 		goto out;
2906 	}
2907 	if (ia_valid & ATTR_SIZE) {
2908 		if (attr->ia_size != i_size_read(vi)) {
2909 			ntfs_inode *ni = NTFS_I(vi);
2910 			/*
2911 			 * FIXME: For now we do not support resizing of
2912 			 * compressed or encrypted files yet.
2913 			 */
2914 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2915 				ntfs_warning(vi->i_sb, "Changes in inode size "
2916 						"are not supported yet for "
2917 						"%s files, ignoring.",
2918 						NInoCompressed(ni) ?
2919 						"compressed" : "encrypted");
2920 				err = -EOPNOTSUPP;
2921 			} else {
2922 				truncate_setsize(vi, attr->ia_size);
2923 				ntfs_truncate_vfs(vi);
2924 			}
2925 			if (err || ia_valid == ATTR_SIZE)
2926 				goto out;
2927 		} else {
2928 			/*
2929 			 * We skipped the truncate but must still update
2930 			 * timestamps.
2931 			 */
2932 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2933 		}
2934 	}
2935 	if (ia_valid & ATTR_ATIME)
2936 		vi->i_atime = timespec_trunc(attr->ia_atime,
2937 				vi->i_sb->s_time_gran);
2938 	if (ia_valid & ATTR_MTIME)
2939 		vi->i_mtime = timespec_trunc(attr->ia_mtime,
2940 				vi->i_sb->s_time_gran);
2941 	if (ia_valid & ATTR_CTIME)
2942 		vi->i_ctime = timespec_trunc(attr->ia_ctime,
2943 				vi->i_sb->s_time_gran);
2944 	mark_inode_dirty(vi);
2945 out:
2946 	return err;
2947 }
2948 
2949 /**
2950  * ntfs_write_inode - write out a dirty inode
2951  * @vi:		inode to write out
2952  * @sync:	if true, write out synchronously
2953  *
2954  * Write out a dirty inode to disk including any extent inodes if present.
2955  *
2956  * If @sync is true, commit the inode to disk and wait for io completion.  This
2957  * is done using write_mft_record().
2958  *
2959  * If @sync is false, just schedule the write to happen but do not wait for i/o
2960  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2961  * marking the page (and in this case mft record) dirty but we do not implement
2962  * this yet as write_mft_record() largely ignores the @sync parameter and
2963  * always performs synchronous writes.
2964  *
2965  * Return 0 on success and -errno on error.
2966  */
2967 int __ntfs_write_inode(struct inode *vi, int sync)
2968 {
2969 	sle64 nt;
2970 	ntfs_inode *ni = NTFS_I(vi);
2971 	ntfs_attr_search_ctx *ctx;
2972 	MFT_RECORD *m;
2973 	STANDARD_INFORMATION *si;
2974 	int err = 0;
2975 	bool modified = false;
2976 
2977 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2978 			vi->i_ino);
2979 	/*
2980 	 * Dirty attribute inodes are written via their real inodes so just
2981 	 * clean them here.  Access time updates are taken care off when the
2982 	 * real inode is written.
2983 	 */
2984 	if (NInoAttr(ni)) {
2985 		NInoClearDirty(ni);
2986 		ntfs_debug("Done.");
2987 		return 0;
2988 	}
2989 	/* Map, pin, and lock the mft record belonging to the inode. */
2990 	m = map_mft_record(ni);
2991 	if (IS_ERR(m)) {
2992 		err = PTR_ERR(m);
2993 		goto err_out;
2994 	}
2995 	/* Update the access times in the standard information attribute. */
2996 	ctx = ntfs_attr_get_search_ctx(ni, m);
2997 	if (unlikely(!ctx)) {
2998 		err = -ENOMEM;
2999 		goto unm_err_out;
3000 	}
3001 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3002 			CASE_SENSITIVE, 0, NULL, 0, ctx);
3003 	if (unlikely(err)) {
3004 		ntfs_attr_put_search_ctx(ctx);
3005 		goto unm_err_out;
3006 	}
3007 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3008 			le16_to_cpu(ctx->attr->data.resident.value_offset));
3009 	/* Update the access times if they have changed. */
3010 	nt = utc2ntfs(vi->i_mtime);
3011 	if (si->last_data_change_time != nt) {
3012 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3013 				"new = 0x%llx", vi->i_ino, (long long)
3014 				sle64_to_cpu(si->last_data_change_time),
3015 				(long long)sle64_to_cpu(nt));
3016 		si->last_data_change_time = nt;
3017 		modified = true;
3018 	}
3019 	nt = utc2ntfs(vi->i_ctime);
3020 	if (si->last_mft_change_time != nt) {
3021 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3022 				"new = 0x%llx", vi->i_ino, (long long)
3023 				sle64_to_cpu(si->last_mft_change_time),
3024 				(long long)sle64_to_cpu(nt));
3025 		si->last_mft_change_time = nt;
3026 		modified = true;
3027 	}
3028 	nt = utc2ntfs(vi->i_atime);
3029 	if (si->last_access_time != nt) {
3030 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3031 				"new = 0x%llx", vi->i_ino,
3032 				(long long)sle64_to_cpu(si->last_access_time),
3033 				(long long)sle64_to_cpu(nt));
3034 		si->last_access_time = nt;
3035 		modified = true;
3036 	}
3037 	/*
3038 	 * If we just modified the standard information attribute we need to
3039 	 * mark the mft record it is in dirty.  We do this manually so that
3040 	 * mark_inode_dirty() is not called which would redirty the inode and
3041 	 * hence result in an infinite loop of trying to write the inode.
3042 	 * There is no need to mark the base inode nor the base mft record
3043 	 * dirty, since we are going to write this mft record below in any case
3044 	 * and the base mft record may actually not have been modified so it
3045 	 * might not need to be written out.
3046 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3047 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3048 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3049 	 * re-invoked because of it which in turn is ok since the dirtied mft
3050 	 * record will be cleaned and written out to disk below, i.e. before
3051 	 * this function returns.
3052 	 */
3053 	if (modified) {
3054 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3055 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3056 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3057 					ctx->ntfs_ino->page_ofs);
3058 	}
3059 	ntfs_attr_put_search_ctx(ctx);
3060 	/* Now the access times are updated, write the base mft record. */
3061 	if (NInoDirty(ni))
3062 		err = write_mft_record(ni, m, sync);
3063 	/* Write all attached extent mft records. */
3064 	mutex_lock(&ni->extent_lock);
3065 	if (ni->nr_extents > 0) {
3066 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3067 		int i;
3068 
3069 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3070 		for (i = 0; i < ni->nr_extents; i++) {
3071 			ntfs_inode *tni = extent_nis[i];
3072 
3073 			if (NInoDirty(tni)) {
3074 				MFT_RECORD *tm = map_mft_record(tni);
3075 				int ret;
3076 
3077 				if (IS_ERR(tm)) {
3078 					if (!err || err == -ENOMEM)
3079 						err = PTR_ERR(tm);
3080 					continue;
3081 				}
3082 				ret = write_mft_record(tni, tm, sync);
3083 				unmap_mft_record(tni);
3084 				if (unlikely(ret)) {
3085 					if (!err || err == -ENOMEM)
3086 						err = ret;
3087 				}
3088 			}
3089 		}
3090 	}
3091 	mutex_unlock(&ni->extent_lock);
3092 	unmap_mft_record(ni);
3093 	if (unlikely(err))
3094 		goto err_out;
3095 	ntfs_debug("Done.");
3096 	return 0;
3097 unm_err_out:
3098 	unmap_mft_record(ni);
3099 err_out:
3100 	if (err == -ENOMEM) {
3101 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3102 				"Marking the inode dirty again, so the VFS "
3103 				"retries later.");
3104 		mark_inode_dirty(vi);
3105 	} else {
3106 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3107 		NVolSetErrors(ni->vol);
3108 	}
3109 	return err;
3110 }
3111 
3112 #endif /* NTFS_RW */
3113