1 /** 2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/mount.h> 26 #include <linux/mutex.h> 27 #include <linux/pagemap.h> 28 #include <linux/quotaops.h> 29 #include <linux/slab.h> 30 #include <linux/log2.h> 31 32 #include "aops.h" 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "dir.h" 36 #include "debug.h" 37 #include "inode.h" 38 #include "lcnalloc.h" 39 #include "malloc.h" 40 #include "mft.h" 41 #include "time.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_test_inode - compare two (possibly fake) inodes for equality 46 * @vi: vfs inode which to test 47 * @na: ntfs attribute which is being tested with 48 * 49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 50 * inode @vi for equality with the ntfs attribute @na. 51 * 52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 53 * @na->name and @na->name_len are then ignored. 54 * 55 * Return 1 if the attributes match and 0 if not. 56 * 57 * NOTE: This function runs with the inode_lock spin lock held so it is not 58 * allowed to sleep. 59 */ 60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 61 { 62 ntfs_inode *ni; 63 64 if (vi->i_ino != na->mft_no) 65 return 0; 66 ni = NTFS_I(vi); 67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 68 if (likely(!NInoAttr(ni))) { 69 /* If not looking for a normal inode this is a mismatch. */ 70 if (unlikely(na->type != AT_UNUSED)) 71 return 0; 72 } else { 73 /* A fake inode describing an attribute. */ 74 if (ni->type != na->type) 75 return 0; 76 if (ni->name_len != na->name_len) 77 return 0; 78 if (na->name_len && memcmp(ni->name, na->name, 79 na->name_len * sizeof(ntfschar))) 80 return 0; 81 } 82 /* Match! */ 83 return 1; 84 } 85 86 /** 87 * ntfs_init_locked_inode - initialize an inode 88 * @vi: vfs inode to initialize 89 * @na: ntfs attribute which to initialize @vi to 90 * 91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 92 * order to enable ntfs_test_inode() to do its work. 93 * 94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 95 * In that case, @na->name and @na->name_len should be set to NULL and 0, 96 * respectively. Although that is not strictly necessary as 97 * ntfs_read_locked_inode() will fill them in later. 98 * 99 * Return 0 on success and -errno on error. 100 * 101 * NOTE: This function runs with the inode_lock spin lock held so it is not 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 103 */ 104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 105 { 106 ntfs_inode *ni = NTFS_I(vi); 107 108 vi->i_ino = na->mft_no; 109 110 ni->type = na->type; 111 if (na->type == AT_INDEX_ALLOCATION) 112 NInoSetMstProtected(ni); 113 114 ni->name = na->name; 115 ni->name_len = na->name_len; 116 117 /* If initializing a normal inode, we are done. */ 118 if (likely(na->type == AT_UNUSED)) { 119 BUG_ON(na->name); 120 BUG_ON(na->name_len); 121 return 0; 122 } 123 124 /* It is a fake inode. */ 125 NInoSetAttr(ni); 126 127 /* 128 * We have I30 global constant as an optimization as it is the name 129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 130 * allocation but that is ok. And most attributes are unnamed anyway, 131 * thus the fraction of named attributes with name != I30 is actually 132 * absolutely tiny. 133 */ 134 if (na->name_len && na->name != I30) { 135 unsigned int i; 136 137 BUG_ON(!na->name); 138 i = na->name_len * sizeof(ntfschar); 139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 140 if (!ni->name) 141 return -ENOMEM; 142 memcpy(ni->name, na->name, i); 143 ni->name[na->name_len] = 0; 144 } 145 return 0; 146 } 147 148 typedef int (*set_t)(struct inode *, void *); 149 static int ntfs_read_locked_inode(struct inode *vi); 150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 151 static int ntfs_read_locked_index_inode(struct inode *base_vi, 152 struct inode *vi); 153 154 /** 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 156 * @sb: super block of mounted volume 157 * @mft_no: mft record number / inode number to obtain 158 * 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 160 * file or directory). 161 * 162 * If the inode is in the cache, it is just returned with an increased 163 * reference count. Otherwise, a new struct inode is allocated and initialized, 164 * and finally ntfs_read_locked_inode() is called to read in the inode and 165 * fill in the remainder of the inode structure. 166 * 167 * Return the struct inode on success. Check the return value with IS_ERR() and 168 * if true, the function failed and the error code is obtained from PTR_ERR(). 169 */ 170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 171 { 172 struct inode *vi; 173 int err; 174 ntfs_attr na; 175 176 na.mft_no = mft_no; 177 na.type = AT_UNUSED; 178 na.name = NULL; 179 na.name_len = 0; 180 181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 182 (set_t)ntfs_init_locked_inode, &na); 183 if (unlikely(!vi)) 184 return ERR_PTR(-ENOMEM); 185 186 err = 0; 187 188 /* If this is a freshly allocated inode, need to read it now. */ 189 if (vi->i_state & I_NEW) { 190 err = ntfs_read_locked_inode(vi); 191 unlock_new_inode(vi); 192 } 193 /* 194 * There is no point in keeping bad inodes around if the failure was 195 * due to ENOMEM. We want to be able to retry again later. 196 */ 197 if (unlikely(err == -ENOMEM)) { 198 iput(vi); 199 vi = ERR_PTR(err); 200 } 201 return vi; 202 } 203 204 /** 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 206 * @base_vi: vfs base inode containing the attribute 207 * @type: attribute type 208 * @name: Unicode name of the attribute (NULL if unnamed) 209 * @name_len: length of @name in Unicode characters (0 if unnamed) 210 * 211 * Obtain the (fake) struct inode corresponding to the attribute specified by 212 * @type, @name, and @name_len, which is present in the base mft record 213 * specified by the vfs inode @base_vi. 214 * 215 * If the attribute inode is in the cache, it is just returned with an 216 * increased reference count. Otherwise, a new struct inode is allocated and 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 218 * attribute and fill in the inode structure. 219 * 220 * Note, for index allocation attributes, you need to use ntfs_index_iget() 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 222 * 223 * Return the struct inode of the attribute inode on success. Check the return 224 * value with IS_ERR() and if true, the function failed and the error code is 225 * obtained from PTR_ERR(). 226 */ 227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 228 ntfschar *name, u32 name_len) 229 { 230 struct inode *vi; 231 int err; 232 ntfs_attr na; 233 234 /* Make sure no one calls ntfs_attr_iget() for indices. */ 235 BUG_ON(type == AT_INDEX_ALLOCATION); 236 237 na.mft_no = base_vi->i_ino; 238 na.type = type; 239 na.name = name; 240 na.name_len = name_len; 241 242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 243 (set_t)ntfs_init_locked_inode, &na); 244 if (unlikely(!vi)) 245 return ERR_PTR(-ENOMEM); 246 247 err = 0; 248 249 /* If this is a freshly allocated inode, need to read it now. */ 250 if (vi->i_state & I_NEW) { 251 err = ntfs_read_locked_attr_inode(base_vi, vi); 252 unlock_new_inode(vi); 253 } 254 /* 255 * There is no point in keeping bad attribute inodes around. This also 256 * simplifies things in that we never need to check for bad attribute 257 * inodes elsewhere. 258 */ 259 if (unlikely(err)) { 260 iput(vi); 261 vi = ERR_PTR(err); 262 } 263 return vi; 264 } 265 266 /** 267 * ntfs_index_iget - obtain a struct inode corresponding to an index 268 * @base_vi: vfs base inode containing the index related attributes 269 * @name: Unicode name of the index 270 * @name_len: length of @name in Unicode characters 271 * 272 * Obtain the (fake) struct inode corresponding to the index specified by @name 273 * and @name_len, which is present in the base mft record specified by the vfs 274 * inode @base_vi. 275 * 276 * If the index inode is in the cache, it is just returned with an increased 277 * reference count. Otherwise, a new struct inode is allocated and 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read 279 * the index related attributes and fill in the inode structure. 280 * 281 * Return the struct inode of the index inode on success. Check the return 282 * value with IS_ERR() and if true, the function failed and the error code is 283 * obtained from PTR_ERR(). 284 */ 285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 286 u32 name_len) 287 { 288 struct inode *vi; 289 int err; 290 ntfs_attr na; 291 292 na.mft_no = base_vi->i_ino; 293 na.type = AT_INDEX_ALLOCATION; 294 na.name = name; 295 na.name_len = name_len; 296 297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 298 (set_t)ntfs_init_locked_inode, &na); 299 if (unlikely(!vi)) 300 return ERR_PTR(-ENOMEM); 301 302 err = 0; 303 304 /* If this is a freshly allocated inode, need to read it now. */ 305 if (vi->i_state & I_NEW) { 306 err = ntfs_read_locked_index_inode(base_vi, vi); 307 unlock_new_inode(vi); 308 } 309 /* 310 * There is no point in keeping bad index inodes around. This also 311 * simplifies things in that we never need to check for bad index 312 * inodes elsewhere. 313 */ 314 if (unlikely(err)) { 315 iput(vi); 316 vi = ERR_PTR(err); 317 } 318 return vi; 319 } 320 321 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 322 { 323 ntfs_inode *ni; 324 325 ntfs_debug("Entering."); 326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 327 if (likely(ni != NULL)) { 328 ni->state = 0; 329 return VFS_I(ni); 330 } 331 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 332 return NULL; 333 } 334 335 static void ntfs_i_callback(struct rcu_head *head) 336 { 337 struct inode *inode = container_of(head, struct inode, i_rcu); 338 INIT_LIST_HEAD(&inode->i_dentry); 339 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 340 } 341 342 void ntfs_destroy_big_inode(struct inode *inode) 343 { 344 ntfs_inode *ni = NTFS_I(inode); 345 346 ntfs_debug("Entering."); 347 BUG_ON(ni->page); 348 if (!atomic_dec_and_test(&ni->count)) 349 BUG(); 350 call_rcu(&inode->i_rcu, ntfs_i_callback); 351 } 352 353 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 354 { 355 ntfs_inode *ni; 356 357 ntfs_debug("Entering."); 358 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 359 if (likely(ni != NULL)) { 360 ni->state = 0; 361 return ni; 362 } 363 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 364 return NULL; 365 } 366 367 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 368 { 369 ntfs_debug("Entering."); 370 BUG_ON(ni->page); 371 if (!atomic_dec_and_test(&ni->count)) 372 BUG(); 373 kmem_cache_free(ntfs_inode_cache, ni); 374 } 375 376 /* 377 * The attribute runlist lock has separate locking rules from the 378 * normal runlist lock, so split the two lock-classes: 379 */ 380 static struct lock_class_key attr_list_rl_lock_class; 381 382 /** 383 * __ntfs_init_inode - initialize ntfs specific part of an inode 384 * @sb: super block of mounted volume 385 * @ni: freshly allocated ntfs inode which to initialize 386 * 387 * Initialize an ntfs inode to defaults. 388 * 389 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 390 * untouched. Make sure to initialize them elsewhere. 391 * 392 * Return zero on success and -ENOMEM on error. 393 */ 394 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 395 { 396 ntfs_debug("Entering."); 397 rwlock_init(&ni->size_lock); 398 ni->initialized_size = ni->allocated_size = 0; 399 ni->seq_no = 0; 400 atomic_set(&ni->count, 1); 401 ni->vol = NTFS_SB(sb); 402 ntfs_init_runlist(&ni->runlist); 403 mutex_init(&ni->mrec_lock); 404 ni->page = NULL; 405 ni->page_ofs = 0; 406 ni->attr_list_size = 0; 407 ni->attr_list = NULL; 408 ntfs_init_runlist(&ni->attr_list_rl); 409 lockdep_set_class(&ni->attr_list_rl.lock, 410 &attr_list_rl_lock_class); 411 ni->itype.index.block_size = 0; 412 ni->itype.index.vcn_size = 0; 413 ni->itype.index.collation_rule = 0; 414 ni->itype.index.block_size_bits = 0; 415 ni->itype.index.vcn_size_bits = 0; 416 mutex_init(&ni->extent_lock); 417 ni->nr_extents = 0; 418 ni->ext.base_ntfs_ino = NULL; 419 } 420 421 /* 422 * Extent inodes get MFT-mapped in a nested way, while the base inode 423 * is still mapped. Teach this nesting to the lock validator by creating 424 * a separate class for nested inode's mrec_lock's: 425 */ 426 static struct lock_class_key extent_inode_mrec_lock_key; 427 428 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 429 unsigned long mft_no) 430 { 431 ntfs_inode *ni = ntfs_alloc_extent_inode(); 432 433 ntfs_debug("Entering."); 434 if (likely(ni != NULL)) { 435 __ntfs_init_inode(sb, ni); 436 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 437 ni->mft_no = mft_no; 438 ni->type = AT_UNUSED; 439 ni->name = NULL; 440 ni->name_len = 0; 441 } 442 return ni; 443 } 444 445 /** 446 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 447 * @ctx: initialized attribute search context 448 * 449 * Search all file name attributes in the inode described by the attribute 450 * search context @ctx and check if any of the names are in the $Extend system 451 * directory. 452 * 453 * Return values: 454 * 1: file is in $Extend directory 455 * 0: file is not in $Extend directory 456 * -errno: failed to determine if the file is in the $Extend directory 457 */ 458 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 459 { 460 int nr_links, err; 461 462 /* Restart search. */ 463 ntfs_attr_reinit_search_ctx(ctx); 464 465 /* Get number of hard links. */ 466 nr_links = le16_to_cpu(ctx->mrec->link_count); 467 468 /* Loop through all hard links. */ 469 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 470 ctx))) { 471 FILE_NAME_ATTR *file_name_attr; 472 ATTR_RECORD *attr = ctx->attr; 473 u8 *p, *p2; 474 475 nr_links--; 476 /* 477 * Maximum sanity checking as we are called on an inode that 478 * we suspect might be corrupt. 479 */ 480 p = (u8*)attr + le32_to_cpu(attr->length); 481 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 482 le32_to_cpu(ctx->mrec->bytes_in_use)) { 483 err_corrupt_attr: 484 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 485 "attribute. You should run chkdsk."); 486 return -EIO; 487 } 488 if (attr->non_resident) { 489 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 490 "name. You should run chkdsk."); 491 return -EIO; 492 } 493 if (attr->flags) { 494 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 495 "invalid flags. You should run " 496 "chkdsk."); 497 return -EIO; 498 } 499 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 500 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 501 "name. You should run chkdsk."); 502 return -EIO; 503 } 504 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 505 le16_to_cpu(attr->data.resident.value_offset)); 506 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 507 if (p2 < (u8*)attr || p2 > p) 508 goto err_corrupt_attr; 509 /* This attribute is ok, but is it in the $Extend directory? */ 510 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 511 return 1; /* YES, it's an extended system file. */ 512 } 513 if (unlikely(err != -ENOENT)) 514 return err; 515 if (unlikely(nr_links)) { 516 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 517 "doesn't match number of name attributes. You " 518 "should run chkdsk."); 519 return -EIO; 520 } 521 return 0; /* NO, it is not an extended system file. */ 522 } 523 524 /** 525 * ntfs_read_locked_inode - read an inode from its device 526 * @vi: inode to read 527 * 528 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 529 * described by @vi into memory from the device. 530 * 531 * The only fields in @vi that we need to/can look at when the function is 532 * called are i_sb, pointing to the mounted device's super block, and i_ino, 533 * the number of the inode to load. 534 * 535 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 536 * for reading and sets up the necessary @vi fields as well as initializing 537 * the ntfs inode. 538 * 539 * Q: What locks are held when the function is called? 540 * A: i_state has I_NEW set, hence the inode is locked, also 541 * i_count is set to 1, so it is not going to go away 542 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 543 * is allowed to write to them. We should of course be honouring them but 544 * we need to do that using the IS_* macros defined in include/linux/fs.h. 545 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 546 * 547 * Return 0 on success and -errno on error. In the error case, the inode will 548 * have had make_bad_inode() executed on it. 549 */ 550 static int ntfs_read_locked_inode(struct inode *vi) 551 { 552 ntfs_volume *vol = NTFS_SB(vi->i_sb); 553 ntfs_inode *ni; 554 struct inode *bvi; 555 MFT_RECORD *m; 556 ATTR_RECORD *a; 557 STANDARD_INFORMATION *si; 558 ntfs_attr_search_ctx *ctx; 559 int err = 0; 560 561 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 562 563 /* Setup the generic vfs inode parts now. */ 564 565 /* 566 * This is for checking whether an inode has changed w.r.t. a file so 567 * that the file can be updated if necessary (compare with f_version). 568 */ 569 vi->i_version = 1; 570 571 vi->i_uid = vol->uid; 572 vi->i_gid = vol->gid; 573 vi->i_mode = 0; 574 575 /* 576 * Initialize the ntfs specific part of @vi special casing 577 * FILE_MFT which we need to do at mount time. 578 */ 579 if (vi->i_ino != FILE_MFT) 580 ntfs_init_big_inode(vi); 581 ni = NTFS_I(vi); 582 583 m = map_mft_record(ni); 584 if (IS_ERR(m)) { 585 err = PTR_ERR(m); 586 goto err_out; 587 } 588 ctx = ntfs_attr_get_search_ctx(ni, m); 589 if (!ctx) { 590 err = -ENOMEM; 591 goto unm_err_out; 592 } 593 594 if (!(m->flags & MFT_RECORD_IN_USE)) { 595 ntfs_error(vi->i_sb, "Inode is not in use!"); 596 goto unm_err_out; 597 } 598 if (m->base_mft_record) { 599 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 600 goto unm_err_out; 601 } 602 603 /* Transfer information from mft record into vfs and ntfs inodes. */ 604 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 605 606 /* 607 * FIXME: Keep in mind that link_count is two for files which have both 608 * a long file name and a short file name as separate entries, so if 609 * we are hiding short file names this will be too high. Either we need 610 * to account for the short file names by subtracting them or we need 611 * to make sure we delete files even though i_nlink is not zero which 612 * might be tricky due to vfs interactions. Need to think about this 613 * some more when implementing the unlink command. 614 */ 615 vi->i_nlink = le16_to_cpu(m->link_count); 616 /* 617 * FIXME: Reparse points can have the directory bit set even though 618 * they would be S_IFLNK. Need to deal with this further below when we 619 * implement reparse points / symbolic links but it will do for now. 620 * Also if not a directory, it could be something else, rather than 621 * a regular file. But again, will do for now. 622 */ 623 /* Everyone gets all permissions. */ 624 vi->i_mode |= S_IRWXUGO; 625 /* If read-only, noone gets write permissions. */ 626 if (IS_RDONLY(vi)) 627 vi->i_mode &= ~S_IWUGO; 628 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 629 vi->i_mode |= S_IFDIR; 630 /* 631 * Apply the directory permissions mask set in the mount 632 * options. 633 */ 634 vi->i_mode &= ~vol->dmask; 635 /* Things break without this kludge! */ 636 if (vi->i_nlink > 1) 637 vi->i_nlink = 1; 638 } else { 639 vi->i_mode |= S_IFREG; 640 /* Apply the file permissions mask set in the mount options. */ 641 vi->i_mode &= ~vol->fmask; 642 } 643 /* 644 * Find the standard information attribute in the mft record. At this 645 * stage we haven't setup the attribute list stuff yet, so this could 646 * in fact fail if the standard information is in an extent record, but 647 * I don't think this actually ever happens. 648 */ 649 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 650 ctx); 651 if (unlikely(err)) { 652 if (err == -ENOENT) { 653 /* 654 * TODO: We should be performing a hot fix here (if the 655 * recover mount option is set) by creating a new 656 * attribute. 657 */ 658 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 659 "is missing."); 660 } 661 goto unm_err_out; 662 } 663 a = ctx->attr; 664 /* Get the standard information attribute value. */ 665 si = (STANDARD_INFORMATION*)((u8*)a + 666 le16_to_cpu(a->data.resident.value_offset)); 667 668 /* Transfer information from the standard information into vi. */ 669 /* 670 * Note: The i_?times do not quite map perfectly onto the NTFS times, 671 * but they are close enough, and in the end it doesn't really matter 672 * that much... 673 */ 674 /* 675 * mtime is the last change of the data within the file. Not changed 676 * when only metadata is changed, e.g. a rename doesn't affect mtime. 677 */ 678 vi->i_mtime = ntfs2utc(si->last_data_change_time); 679 /* 680 * ctime is the last change of the metadata of the file. This obviously 681 * always changes, when mtime is changed. ctime can be changed on its 682 * own, mtime is then not changed, e.g. when a file is renamed. 683 */ 684 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 685 /* 686 * Last access to the data within the file. Not changed during a rename 687 * for example but changed whenever the file is written to. 688 */ 689 vi->i_atime = ntfs2utc(si->last_access_time); 690 691 /* Find the attribute list attribute if present. */ 692 ntfs_attr_reinit_search_ctx(ctx); 693 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 694 if (err) { 695 if (unlikely(err != -ENOENT)) { 696 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 697 "attribute."); 698 goto unm_err_out; 699 } 700 } else /* if (!err) */ { 701 if (vi->i_ino == FILE_MFT) 702 goto skip_attr_list_load; 703 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 704 NInoSetAttrList(ni); 705 a = ctx->attr; 706 if (a->flags & ATTR_COMPRESSION_MASK) { 707 ntfs_error(vi->i_sb, "Attribute list attribute is " 708 "compressed."); 709 goto unm_err_out; 710 } 711 if (a->flags & ATTR_IS_ENCRYPTED || 712 a->flags & ATTR_IS_SPARSE) { 713 if (a->non_resident) { 714 ntfs_error(vi->i_sb, "Non-resident attribute " 715 "list attribute is encrypted/" 716 "sparse."); 717 goto unm_err_out; 718 } 719 ntfs_warning(vi->i_sb, "Resident attribute list " 720 "attribute in inode 0x%lx is marked " 721 "encrypted/sparse which is not true. " 722 "However, Windows allows this and " 723 "chkdsk does not detect or correct it " 724 "so we will just ignore the invalid " 725 "flags and pretend they are not set.", 726 vi->i_ino); 727 } 728 /* Now allocate memory for the attribute list. */ 729 ni->attr_list_size = (u32)ntfs_attr_size(a); 730 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 731 if (!ni->attr_list) { 732 ntfs_error(vi->i_sb, "Not enough memory to allocate " 733 "buffer for attribute list."); 734 err = -ENOMEM; 735 goto unm_err_out; 736 } 737 if (a->non_resident) { 738 NInoSetAttrListNonResident(ni); 739 if (a->data.non_resident.lowest_vcn) { 740 ntfs_error(vi->i_sb, "Attribute list has non " 741 "zero lowest_vcn."); 742 goto unm_err_out; 743 } 744 /* 745 * Setup the runlist. No need for locking as we have 746 * exclusive access to the inode at this time. 747 */ 748 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 749 a, NULL); 750 if (IS_ERR(ni->attr_list_rl.rl)) { 751 err = PTR_ERR(ni->attr_list_rl.rl); 752 ni->attr_list_rl.rl = NULL; 753 ntfs_error(vi->i_sb, "Mapping pairs " 754 "decompression failed."); 755 goto unm_err_out; 756 } 757 /* Now load the attribute list. */ 758 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 759 ni->attr_list, ni->attr_list_size, 760 sle64_to_cpu(a->data.non_resident. 761 initialized_size)))) { 762 ntfs_error(vi->i_sb, "Failed to load " 763 "attribute list attribute."); 764 goto unm_err_out; 765 } 766 } else /* if (!a->non_resident) */ { 767 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 768 + le32_to_cpu( 769 a->data.resident.value_length) > 770 (u8*)ctx->mrec + vol->mft_record_size) { 771 ntfs_error(vi->i_sb, "Corrupt attribute list " 772 "in inode."); 773 goto unm_err_out; 774 } 775 /* Now copy the attribute list. */ 776 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 777 a->data.resident.value_offset), 778 le32_to_cpu( 779 a->data.resident.value_length)); 780 } 781 } 782 skip_attr_list_load: 783 /* 784 * If an attribute list is present we now have the attribute list value 785 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 786 */ 787 if (S_ISDIR(vi->i_mode)) { 788 loff_t bvi_size; 789 ntfs_inode *bni; 790 INDEX_ROOT *ir; 791 u8 *ir_end, *index_end; 792 793 /* It is a directory, find index root attribute. */ 794 ntfs_attr_reinit_search_ctx(ctx); 795 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 796 0, NULL, 0, ctx); 797 if (unlikely(err)) { 798 if (err == -ENOENT) { 799 // FIXME: File is corrupt! Hot-fix with empty 800 // index root attribute if recovery option is 801 // set. 802 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 803 "is missing."); 804 } 805 goto unm_err_out; 806 } 807 a = ctx->attr; 808 /* Set up the state. */ 809 if (unlikely(a->non_resident)) { 810 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 811 "resident."); 812 goto unm_err_out; 813 } 814 /* Ensure the attribute name is placed before the value. */ 815 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 816 le16_to_cpu(a->data.resident.value_offset)))) { 817 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 818 "placed after the attribute value."); 819 goto unm_err_out; 820 } 821 /* 822 * Compressed/encrypted index root just means that the newly 823 * created files in that directory should be created compressed/ 824 * encrypted. However index root cannot be both compressed and 825 * encrypted. 826 */ 827 if (a->flags & ATTR_COMPRESSION_MASK) 828 NInoSetCompressed(ni); 829 if (a->flags & ATTR_IS_ENCRYPTED) { 830 if (a->flags & ATTR_COMPRESSION_MASK) { 831 ntfs_error(vi->i_sb, "Found encrypted and " 832 "compressed attribute."); 833 goto unm_err_out; 834 } 835 NInoSetEncrypted(ni); 836 } 837 if (a->flags & ATTR_IS_SPARSE) 838 NInoSetSparse(ni); 839 ir = (INDEX_ROOT*)((u8*)a + 840 le16_to_cpu(a->data.resident.value_offset)); 841 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 842 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 843 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 844 "corrupt."); 845 goto unm_err_out; 846 } 847 index_end = (u8*)&ir->index + 848 le32_to_cpu(ir->index.index_length); 849 if (index_end > ir_end) { 850 ntfs_error(vi->i_sb, "Directory index is corrupt."); 851 goto unm_err_out; 852 } 853 if (ir->type != AT_FILE_NAME) { 854 ntfs_error(vi->i_sb, "Indexed attribute is not " 855 "$FILE_NAME."); 856 goto unm_err_out; 857 } 858 if (ir->collation_rule != COLLATION_FILE_NAME) { 859 ntfs_error(vi->i_sb, "Index collation rule is not " 860 "COLLATION_FILE_NAME."); 861 goto unm_err_out; 862 } 863 ni->itype.index.collation_rule = ir->collation_rule; 864 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 865 if (ni->itype.index.block_size & 866 (ni->itype.index.block_size - 1)) { 867 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 868 "power of two.", 869 ni->itype.index.block_size); 870 goto unm_err_out; 871 } 872 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 873 ntfs_error(vi->i_sb, "Index block size (%u) > " 874 "PAGE_CACHE_SIZE (%ld) is not " 875 "supported. Sorry.", 876 ni->itype.index.block_size, 877 PAGE_CACHE_SIZE); 878 err = -EOPNOTSUPP; 879 goto unm_err_out; 880 } 881 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 882 ntfs_error(vi->i_sb, "Index block size (%u) < " 883 "NTFS_BLOCK_SIZE (%i) is not " 884 "supported. Sorry.", 885 ni->itype.index.block_size, 886 NTFS_BLOCK_SIZE); 887 err = -EOPNOTSUPP; 888 goto unm_err_out; 889 } 890 ni->itype.index.block_size_bits = 891 ffs(ni->itype.index.block_size) - 1; 892 /* Determine the size of a vcn in the directory index. */ 893 if (vol->cluster_size <= ni->itype.index.block_size) { 894 ni->itype.index.vcn_size = vol->cluster_size; 895 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 896 } else { 897 ni->itype.index.vcn_size = vol->sector_size; 898 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 899 } 900 901 /* Setup the index allocation attribute, even if not present. */ 902 NInoSetMstProtected(ni); 903 ni->type = AT_INDEX_ALLOCATION; 904 ni->name = I30; 905 ni->name_len = 4; 906 907 if (!(ir->index.flags & LARGE_INDEX)) { 908 /* No index allocation. */ 909 vi->i_size = ni->initialized_size = 910 ni->allocated_size = 0; 911 /* We are done with the mft record, so we release it. */ 912 ntfs_attr_put_search_ctx(ctx); 913 unmap_mft_record(ni); 914 m = NULL; 915 ctx = NULL; 916 goto skip_large_dir_stuff; 917 } /* LARGE_INDEX: Index allocation present. Setup state. */ 918 NInoSetIndexAllocPresent(ni); 919 /* Find index allocation attribute. */ 920 ntfs_attr_reinit_search_ctx(ctx); 921 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 922 CASE_SENSITIVE, 0, NULL, 0, ctx); 923 if (unlikely(err)) { 924 if (err == -ENOENT) 925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 926 "attribute is not present but " 927 "$INDEX_ROOT indicated it is."); 928 else 929 ntfs_error(vi->i_sb, "Failed to lookup " 930 "$INDEX_ALLOCATION " 931 "attribute."); 932 goto unm_err_out; 933 } 934 a = ctx->attr; 935 if (!a->non_resident) { 936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 937 "is resident."); 938 goto unm_err_out; 939 } 940 /* 941 * Ensure the attribute name is placed before the mapping pairs 942 * array. 943 */ 944 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 945 le16_to_cpu( 946 a->data.non_resident.mapping_pairs_offset)))) { 947 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 948 "is placed after the mapping pairs " 949 "array."); 950 goto unm_err_out; 951 } 952 if (a->flags & ATTR_IS_ENCRYPTED) { 953 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 954 "is encrypted."); 955 goto unm_err_out; 956 } 957 if (a->flags & ATTR_IS_SPARSE) { 958 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 959 "is sparse."); 960 goto unm_err_out; 961 } 962 if (a->flags & ATTR_COMPRESSION_MASK) { 963 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 964 "is compressed."); 965 goto unm_err_out; 966 } 967 if (a->data.non_resident.lowest_vcn) { 968 ntfs_error(vi->i_sb, "First extent of " 969 "$INDEX_ALLOCATION attribute has non " 970 "zero lowest_vcn."); 971 goto unm_err_out; 972 } 973 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 974 ni->initialized_size = sle64_to_cpu( 975 a->data.non_resident.initialized_size); 976 ni->allocated_size = sle64_to_cpu( 977 a->data.non_resident.allocated_size); 978 /* 979 * We are done with the mft record, so we release it. Otherwise 980 * we would deadlock in ntfs_attr_iget(). 981 */ 982 ntfs_attr_put_search_ctx(ctx); 983 unmap_mft_record(ni); 984 m = NULL; 985 ctx = NULL; 986 /* Get the index bitmap attribute inode. */ 987 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 988 if (IS_ERR(bvi)) { 989 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 990 err = PTR_ERR(bvi); 991 goto unm_err_out; 992 } 993 bni = NTFS_I(bvi); 994 if (NInoCompressed(bni) || NInoEncrypted(bni) || 995 NInoSparse(bni)) { 996 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 997 "and/or encrypted and/or sparse."); 998 goto iput_unm_err_out; 999 } 1000 /* Consistency check bitmap size vs. index allocation size. */ 1001 bvi_size = i_size_read(bvi); 1002 if ((bvi_size << 3) < (vi->i_size >> 1003 ni->itype.index.block_size_bits)) { 1004 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 1005 "for index allocation (0x%llx).", 1006 bvi_size << 3, vi->i_size); 1007 goto iput_unm_err_out; 1008 } 1009 /* No longer need the bitmap attribute inode. */ 1010 iput(bvi); 1011 skip_large_dir_stuff: 1012 /* Setup the operations for this inode. */ 1013 vi->i_op = &ntfs_dir_inode_ops; 1014 vi->i_fop = &ntfs_dir_ops; 1015 } else { 1016 /* It is a file. */ 1017 ntfs_attr_reinit_search_ctx(ctx); 1018 1019 /* Setup the data attribute, even if not present. */ 1020 ni->type = AT_DATA; 1021 ni->name = NULL; 1022 ni->name_len = 0; 1023 1024 /* Find first extent of the unnamed data attribute. */ 1025 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1026 if (unlikely(err)) { 1027 vi->i_size = ni->initialized_size = 1028 ni->allocated_size = 0; 1029 if (err != -ENOENT) { 1030 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1031 "attribute."); 1032 goto unm_err_out; 1033 } 1034 /* 1035 * FILE_Secure does not have an unnamed $DATA 1036 * attribute, so we special case it here. 1037 */ 1038 if (vi->i_ino == FILE_Secure) 1039 goto no_data_attr_special_case; 1040 /* 1041 * Most if not all the system files in the $Extend 1042 * system directory do not have unnamed data 1043 * attributes so we need to check if the parent 1044 * directory of the file is FILE_Extend and if it is 1045 * ignore this error. To do this we need to get the 1046 * name of this inode from the mft record as the name 1047 * contains the back reference to the parent directory. 1048 */ 1049 if (ntfs_is_extended_system_file(ctx) > 0) 1050 goto no_data_attr_special_case; 1051 // FIXME: File is corrupt! Hot-fix with empty data 1052 // attribute if recovery option is set. 1053 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1054 goto unm_err_out; 1055 } 1056 a = ctx->attr; 1057 /* Setup the state. */ 1058 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1059 if (a->flags & ATTR_COMPRESSION_MASK) { 1060 NInoSetCompressed(ni); 1061 if (vol->cluster_size > 4096) { 1062 ntfs_error(vi->i_sb, "Found " 1063 "compressed data but " 1064 "compression is " 1065 "disabled due to " 1066 "cluster size (%i) > " 1067 "4kiB.", 1068 vol->cluster_size); 1069 goto unm_err_out; 1070 } 1071 if ((a->flags & ATTR_COMPRESSION_MASK) 1072 != ATTR_IS_COMPRESSED) { 1073 ntfs_error(vi->i_sb, "Found unknown " 1074 "compression method " 1075 "or corrupt file."); 1076 goto unm_err_out; 1077 } 1078 } 1079 if (a->flags & ATTR_IS_SPARSE) 1080 NInoSetSparse(ni); 1081 } 1082 if (a->flags & ATTR_IS_ENCRYPTED) { 1083 if (NInoCompressed(ni)) { 1084 ntfs_error(vi->i_sb, "Found encrypted and " 1085 "compressed data."); 1086 goto unm_err_out; 1087 } 1088 NInoSetEncrypted(ni); 1089 } 1090 if (a->non_resident) { 1091 NInoSetNonResident(ni); 1092 if (NInoCompressed(ni) || NInoSparse(ni)) { 1093 if (NInoCompressed(ni) && a->data.non_resident. 1094 compression_unit != 4) { 1095 ntfs_error(vi->i_sb, "Found " 1096 "non-standard " 1097 "compression unit (%u " 1098 "instead of 4). " 1099 "Cannot handle this.", 1100 a->data.non_resident. 1101 compression_unit); 1102 err = -EOPNOTSUPP; 1103 goto unm_err_out; 1104 } 1105 if (a->data.non_resident.compression_unit) { 1106 ni->itype.compressed.block_size = 1U << 1107 (a->data.non_resident. 1108 compression_unit + 1109 vol->cluster_size_bits); 1110 ni->itype.compressed.block_size_bits = 1111 ffs(ni->itype. 1112 compressed. 1113 block_size) - 1; 1114 ni->itype.compressed.block_clusters = 1115 1U << a->data. 1116 non_resident. 1117 compression_unit; 1118 } else { 1119 ni->itype.compressed.block_size = 0; 1120 ni->itype.compressed.block_size_bits = 1121 0; 1122 ni->itype.compressed.block_clusters = 1123 0; 1124 } 1125 ni->itype.compressed.size = sle64_to_cpu( 1126 a->data.non_resident. 1127 compressed_size); 1128 } 1129 if (a->data.non_resident.lowest_vcn) { 1130 ntfs_error(vi->i_sb, "First extent of $DATA " 1131 "attribute has non zero " 1132 "lowest_vcn."); 1133 goto unm_err_out; 1134 } 1135 vi->i_size = sle64_to_cpu( 1136 a->data.non_resident.data_size); 1137 ni->initialized_size = sle64_to_cpu( 1138 a->data.non_resident.initialized_size); 1139 ni->allocated_size = sle64_to_cpu( 1140 a->data.non_resident.allocated_size); 1141 } else { /* Resident attribute. */ 1142 vi->i_size = ni->initialized_size = le32_to_cpu( 1143 a->data.resident.value_length); 1144 ni->allocated_size = le32_to_cpu(a->length) - 1145 le16_to_cpu( 1146 a->data.resident.value_offset); 1147 if (vi->i_size > ni->allocated_size) { 1148 ntfs_error(vi->i_sb, "Resident data attribute " 1149 "is corrupt (size exceeds " 1150 "allocation)."); 1151 goto unm_err_out; 1152 } 1153 } 1154 no_data_attr_special_case: 1155 /* We are done with the mft record, so we release it. */ 1156 ntfs_attr_put_search_ctx(ctx); 1157 unmap_mft_record(ni); 1158 m = NULL; 1159 ctx = NULL; 1160 /* Setup the operations for this inode. */ 1161 vi->i_op = &ntfs_file_inode_ops; 1162 vi->i_fop = &ntfs_file_ops; 1163 } 1164 if (NInoMstProtected(ni)) 1165 vi->i_mapping->a_ops = &ntfs_mst_aops; 1166 else 1167 vi->i_mapping->a_ops = &ntfs_aops; 1168 /* 1169 * The number of 512-byte blocks used on disk (for stat). This is in so 1170 * far inaccurate as it doesn't account for any named streams or other 1171 * special non-resident attributes, but that is how Windows works, too, 1172 * so we are at least consistent with Windows, if not entirely 1173 * consistent with the Linux Way. Doing it the Linux Way would cause a 1174 * significant slowdown as it would involve iterating over all 1175 * attributes in the mft record and adding the allocated/compressed 1176 * sizes of all non-resident attributes present to give us the Linux 1177 * correct size that should go into i_blocks (after division by 512). 1178 */ 1179 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1180 vi->i_blocks = ni->itype.compressed.size >> 9; 1181 else 1182 vi->i_blocks = ni->allocated_size >> 9; 1183 ntfs_debug("Done."); 1184 return 0; 1185 iput_unm_err_out: 1186 iput(bvi); 1187 unm_err_out: 1188 if (!err) 1189 err = -EIO; 1190 if (ctx) 1191 ntfs_attr_put_search_ctx(ctx); 1192 if (m) 1193 unmap_mft_record(ni); 1194 err_out: 1195 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1196 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1197 make_bad_inode(vi); 1198 if (err != -EOPNOTSUPP && err != -ENOMEM) 1199 NVolSetErrors(vol); 1200 return err; 1201 } 1202 1203 /** 1204 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1205 * @base_vi: base inode 1206 * @vi: attribute inode to read 1207 * 1208 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1209 * attribute inode described by @vi into memory from the base mft record 1210 * described by @base_ni. 1211 * 1212 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1213 * reading and looks up the attribute described by @vi before setting up the 1214 * necessary fields in @vi as well as initializing the ntfs inode. 1215 * 1216 * Q: What locks are held when the function is called? 1217 * A: i_state has I_NEW set, hence the inode is locked, also 1218 * i_count is set to 1, so it is not going to go away 1219 * 1220 * Return 0 on success and -errno on error. In the error case, the inode will 1221 * have had make_bad_inode() executed on it. 1222 * 1223 * Note this cannot be called for AT_INDEX_ALLOCATION. 1224 */ 1225 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1226 { 1227 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1228 ntfs_inode *ni, *base_ni; 1229 MFT_RECORD *m; 1230 ATTR_RECORD *a; 1231 ntfs_attr_search_ctx *ctx; 1232 int err = 0; 1233 1234 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1235 1236 ntfs_init_big_inode(vi); 1237 1238 ni = NTFS_I(vi); 1239 base_ni = NTFS_I(base_vi); 1240 1241 /* Just mirror the values from the base inode. */ 1242 vi->i_version = base_vi->i_version; 1243 vi->i_uid = base_vi->i_uid; 1244 vi->i_gid = base_vi->i_gid; 1245 vi->i_nlink = base_vi->i_nlink; 1246 vi->i_mtime = base_vi->i_mtime; 1247 vi->i_ctime = base_vi->i_ctime; 1248 vi->i_atime = base_vi->i_atime; 1249 vi->i_generation = ni->seq_no = base_ni->seq_no; 1250 1251 /* Set inode type to zero but preserve permissions. */ 1252 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1253 1254 m = map_mft_record(base_ni); 1255 if (IS_ERR(m)) { 1256 err = PTR_ERR(m); 1257 goto err_out; 1258 } 1259 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1260 if (!ctx) { 1261 err = -ENOMEM; 1262 goto unm_err_out; 1263 } 1264 /* Find the attribute. */ 1265 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1266 CASE_SENSITIVE, 0, NULL, 0, ctx); 1267 if (unlikely(err)) 1268 goto unm_err_out; 1269 a = ctx->attr; 1270 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1271 if (a->flags & ATTR_COMPRESSION_MASK) { 1272 NInoSetCompressed(ni); 1273 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1274 ni->name_len)) { 1275 ntfs_error(vi->i_sb, "Found compressed " 1276 "non-data or named data " 1277 "attribute. Please report " 1278 "you saw this message to " 1279 "linux-ntfs-dev@lists." 1280 "sourceforge.net"); 1281 goto unm_err_out; 1282 } 1283 if (vol->cluster_size > 4096) { 1284 ntfs_error(vi->i_sb, "Found compressed " 1285 "attribute but compression is " 1286 "disabled due to cluster size " 1287 "(%i) > 4kiB.", 1288 vol->cluster_size); 1289 goto unm_err_out; 1290 } 1291 if ((a->flags & ATTR_COMPRESSION_MASK) != 1292 ATTR_IS_COMPRESSED) { 1293 ntfs_error(vi->i_sb, "Found unknown " 1294 "compression method."); 1295 goto unm_err_out; 1296 } 1297 } 1298 /* 1299 * The compressed/sparse flag set in an index root just means 1300 * to compress all files. 1301 */ 1302 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1303 ntfs_error(vi->i_sb, "Found mst protected attribute " 1304 "but the attribute is %s. Please " 1305 "report you saw this message to " 1306 "linux-ntfs-dev@lists.sourceforge.net", 1307 NInoCompressed(ni) ? "compressed" : 1308 "sparse"); 1309 goto unm_err_out; 1310 } 1311 if (a->flags & ATTR_IS_SPARSE) 1312 NInoSetSparse(ni); 1313 } 1314 if (a->flags & ATTR_IS_ENCRYPTED) { 1315 if (NInoCompressed(ni)) { 1316 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1317 "data."); 1318 goto unm_err_out; 1319 } 1320 /* 1321 * The encryption flag set in an index root just means to 1322 * encrypt all files. 1323 */ 1324 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1325 ntfs_error(vi->i_sb, "Found mst protected attribute " 1326 "but the attribute is encrypted. " 1327 "Please report you saw this message " 1328 "to linux-ntfs-dev@lists.sourceforge." 1329 "net"); 1330 goto unm_err_out; 1331 } 1332 if (ni->type != AT_DATA) { 1333 ntfs_error(vi->i_sb, "Found encrypted non-data " 1334 "attribute."); 1335 goto unm_err_out; 1336 } 1337 NInoSetEncrypted(ni); 1338 } 1339 if (!a->non_resident) { 1340 /* Ensure the attribute name is placed before the value. */ 1341 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1342 le16_to_cpu(a->data.resident.value_offset)))) { 1343 ntfs_error(vol->sb, "Attribute name is placed after " 1344 "the attribute value."); 1345 goto unm_err_out; 1346 } 1347 if (NInoMstProtected(ni)) { 1348 ntfs_error(vi->i_sb, "Found mst protected attribute " 1349 "but the attribute is resident. " 1350 "Please report you saw this message to " 1351 "linux-ntfs-dev@lists.sourceforge.net"); 1352 goto unm_err_out; 1353 } 1354 vi->i_size = ni->initialized_size = le32_to_cpu( 1355 a->data.resident.value_length); 1356 ni->allocated_size = le32_to_cpu(a->length) - 1357 le16_to_cpu(a->data.resident.value_offset); 1358 if (vi->i_size > ni->allocated_size) { 1359 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1360 "(size exceeds allocation)."); 1361 goto unm_err_out; 1362 } 1363 } else { 1364 NInoSetNonResident(ni); 1365 /* 1366 * Ensure the attribute name is placed before the mapping pairs 1367 * array. 1368 */ 1369 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1370 le16_to_cpu( 1371 a->data.non_resident.mapping_pairs_offset)))) { 1372 ntfs_error(vol->sb, "Attribute name is placed after " 1373 "the mapping pairs array."); 1374 goto unm_err_out; 1375 } 1376 if (NInoCompressed(ni) || NInoSparse(ni)) { 1377 if (NInoCompressed(ni) && a->data.non_resident. 1378 compression_unit != 4) { 1379 ntfs_error(vi->i_sb, "Found non-standard " 1380 "compression unit (%u instead " 1381 "of 4). Cannot handle this.", 1382 a->data.non_resident. 1383 compression_unit); 1384 err = -EOPNOTSUPP; 1385 goto unm_err_out; 1386 } 1387 if (a->data.non_resident.compression_unit) { 1388 ni->itype.compressed.block_size = 1U << 1389 (a->data.non_resident. 1390 compression_unit + 1391 vol->cluster_size_bits); 1392 ni->itype.compressed.block_size_bits = 1393 ffs(ni->itype.compressed. 1394 block_size) - 1; 1395 ni->itype.compressed.block_clusters = 1U << 1396 a->data.non_resident. 1397 compression_unit; 1398 } else { 1399 ni->itype.compressed.block_size = 0; 1400 ni->itype.compressed.block_size_bits = 0; 1401 ni->itype.compressed.block_clusters = 0; 1402 } 1403 ni->itype.compressed.size = sle64_to_cpu( 1404 a->data.non_resident.compressed_size); 1405 } 1406 if (a->data.non_resident.lowest_vcn) { 1407 ntfs_error(vi->i_sb, "First extent of attribute has " 1408 "non-zero lowest_vcn."); 1409 goto unm_err_out; 1410 } 1411 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1412 ni->initialized_size = sle64_to_cpu( 1413 a->data.non_resident.initialized_size); 1414 ni->allocated_size = sle64_to_cpu( 1415 a->data.non_resident.allocated_size); 1416 } 1417 if (NInoMstProtected(ni)) 1418 vi->i_mapping->a_ops = &ntfs_mst_aops; 1419 else 1420 vi->i_mapping->a_ops = &ntfs_aops; 1421 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1422 vi->i_blocks = ni->itype.compressed.size >> 9; 1423 else 1424 vi->i_blocks = ni->allocated_size >> 9; 1425 /* 1426 * Make sure the base inode does not go away and attach it to the 1427 * attribute inode. 1428 */ 1429 igrab(base_vi); 1430 ni->ext.base_ntfs_ino = base_ni; 1431 ni->nr_extents = -1; 1432 1433 ntfs_attr_put_search_ctx(ctx); 1434 unmap_mft_record(base_ni); 1435 1436 ntfs_debug("Done."); 1437 return 0; 1438 1439 unm_err_out: 1440 if (!err) 1441 err = -EIO; 1442 if (ctx) 1443 ntfs_attr_put_search_ctx(ctx); 1444 unmap_mft_record(base_ni); 1445 err_out: 1446 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1447 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1448 "Marking corrupt inode and base inode 0x%lx as bad. " 1449 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1450 base_vi->i_ino); 1451 make_bad_inode(vi); 1452 if (err != -ENOMEM) 1453 NVolSetErrors(vol); 1454 return err; 1455 } 1456 1457 /** 1458 * ntfs_read_locked_index_inode - read an index inode from its base inode 1459 * @base_vi: base inode 1460 * @vi: index inode to read 1461 * 1462 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1463 * index inode described by @vi into memory from the base mft record described 1464 * by @base_ni. 1465 * 1466 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1467 * reading and looks up the attributes relating to the index described by @vi 1468 * before setting up the necessary fields in @vi as well as initializing the 1469 * ntfs inode. 1470 * 1471 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1472 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1473 * are setup like directory inodes since directories are a special case of 1474 * indices ao they need to be treated in much the same way. Most importantly, 1475 * for small indices the index allocation attribute might not actually exist. 1476 * However, the index root attribute always exists but this does not need to 1477 * have an inode associated with it and this is why we define a new inode type 1478 * index. Also, like for directories, we need to have an attribute inode for 1479 * the bitmap attribute corresponding to the index allocation attribute and we 1480 * can store this in the appropriate field of the inode, just like we do for 1481 * normal directory inodes. 1482 * 1483 * Q: What locks are held when the function is called? 1484 * A: i_state has I_NEW set, hence the inode is locked, also 1485 * i_count is set to 1, so it is not going to go away 1486 * 1487 * Return 0 on success and -errno on error. In the error case, the inode will 1488 * have had make_bad_inode() executed on it. 1489 */ 1490 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1491 { 1492 loff_t bvi_size; 1493 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1494 ntfs_inode *ni, *base_ni, *bni; 1495 struct inode *bvi; 1496 MFT_RECORD *m; 1497 ATTR_RECORD *a; 1498 ntfs_attr_search_ctx *ctx; 1499 INDEX_ROOT *ir; 1500 u8 *ir_end, *index_end; 1501 int err = 0; 1502 1503 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1504 ntfs_init_big_inode(vi); 1505 ni = NTFS_I(vi); 1506 base_ni = NTFS_I(base_vi); 1507 /* Just mirror the values from the base inode. */ 1508 vi->i_version = base_vi->i_version; 1509 vi->i_uid = base_vi->i_uid; 1510 vi->i_gid = base_vi->i_gid; 1511 vi->i_nlink = base_vi->i_nlink; 1512 vi->i_mtime = base_vi->i_mtime; 1513 vi->i_ctime = base_vi->i_ctime; 1514 vi->i_atime = base_vi->i_atime; 1515 vi->i_generation = ni->seq_no = base_ni->seq_no; 1516 /* Set inode type to zero but preserve permissions. */ 1517 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1518 /* Map the mft record for the base inode. */ 1519 m = map_mft_record(base_ni); 1520 if (IS_ERR(m)) { 1521 err = PTR_ERR(m); 1522 goto err_out; 1523 } 1524 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1525 if (!ctx) { 1526 err = -ENOMEM; 1527 goto unm_err_out; 1528 } 1529 /* Find the index root attribute. */ 1530 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1531 CASE_SENSITIVE, 0, NULL, 0, ctx); 1532 if (unlikely(err)) { 1533 if (err == -ENOENT) 1534 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1535 "missing."); 1536 goto unm_err_out; 1537 } 1538 a = ctx->attr; 1539 /* Set up the state. */ 1540 if (unlikely(a->non_resident)) { 1541 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1542 goto unm_err_out; 1543 } 1544 /* Ensure the attribute name is placed before the value. */ 1545 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1546 le16_to_cpu(a->data.resident.value_offset)))) { 1547 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1548 "after the attribute value."); 1549 goto unm_err_out; 1550 } 1551 /* 1552 * Compressed/encrypted/sparse index root is not allowed, except for 1553 * directories of course but those are not dealt with here. 1554 */ 1555 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1556 ATTR_IS_SPARSE)) { 1557 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1558 "root attribute."); 1559 goto unm_err_out; 1560 } 1561 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1562 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1563 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1564 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1565 goto unm_err_out; 1566 } 1567 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1568 if (index_end > ir_end) { 1569 ntfs_error(vi->i_sb, "Index is corrupt."); 1570 goto unm_err_out; 1571 } 1572 if (ir->type) { 1573 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1574 le32_to_cpu(ir->type)); 1575 goto unm_err_out; 1576 } 1577 ni->itype.index.collation_rule = ir->collation_rule; 1578 ntfs_debug("Index collation rule is 0x%x.", 1579 le32_to_cpu(ir->collation_rule)); 1580 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1581 if (!is_power_of_2(ni->itype.index.block_size)) { 1582 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1583 "two.", ni->itype.index.block_size); 1584 goto unm_err_out; 1585 } 1586 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 1587 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " 1588 "(%ld) is not supported. Sorry.", 1589 ni->itype.index.block_size, PAGE_CACHE_SIZE); 1590 err = -EOPNOTSUPP; 1591 goto unm_err_out; 1592 } 1593 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1594 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1595 "(%i) is not supported. Sorry.", 1596 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1597 err = -EOPNOTSUPP; 1598 goto unm_err_out; 1599 } 1600 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1601 /* Determine the size of a vcn in the index. */ 1602 if (vol->cluster_size <= ni->itype.index.block_size) { 1603 ni->itype.index.vcn_size = vol->cluster_size; 1604 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1605 } else { 1606 ni->itype.index.vcn_size = vol->sector_size; 1607 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1608 } 1609 /* Check for presence of index allocation attribute. */ 1610 if (!(ir->index.flags & LARGE_INDEX)) { 1611 /* No index allocation. */ 1612 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1613 /* We are done with the mft record, so we release it. */ 1614 ntfs_attr_put_search_ctx(ctx); 1615 unmap_mft_record(base_ni); 1616 m = NULL; 1617 ctx = NULL; 1618 goto skip_large_index_stuff; 1619 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1620 NInoSetIndexAllocPresent(ni); 1621 /* Find index allocation attribute. */ 1622 ntfs_attr_reinit_search_ctx(ctx); 1623 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1624 CASE_SENSITIVE, 0, NULL, 0, ctx); 1625 if (unlikely(err)) { 1626 if (err == -ENOENT) 1627 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1628 "not present but $INDEX_ROOT " 1629 "indicated it is."); 1630 else 1631 ntfs_error(vi->i_sb, "Failed to lookup " 1632 "$INDEX_ALLOCATION attribute."); 1633 goto unm_err_out; 1634 } 1635 a = ctx->attr; 1636 if (!a->non_resident) { 1637 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1638 "resident."); 1639 goto unm_err_out; 1640 } 1641 /* 1642 * Ensure the attribute name is placed before the mapping pairs array. 1643 */ 1644 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1645 le16_to_cpu( 1646 a->data.non_resident.mapping_pairs_offset)))) { 1647 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1648 "placed after the mapping pairs array."); 1649 goto unm_err_out; 1650 } 1651 if (a->flags & ATTR_IS_ENCRYPTED) { 1652 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1653 "encrypted."); 1654 goto unm_err_out; 1655 } 1656 if (a->flags & ATTR_IS_SPARSE) { 1657 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1658 goto unm_err_out; 1659 } 1660 if (a->flags & ATTR_COMPRESSION_MASK) { 1661 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1662 "compressed."); 1663 goto unm_err_out; 1664 } 1665 if (a->data.non_resident.lowest_vcn) { 1666 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1667 "attribute has non zero lowest_vcn."); 1668 goto unm_err_out; 1669 } 1670 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1671 ni->initialized_size = sle64_to_cpu( 1672 a->data.non_resident.initialized_size); 1673 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1674 /* 1675 * We are done with the mft record, so we release it. Otherwise 1676 * we would deadlock in ntfs_attr_iget(). 1677 */ 1678 ntfs_attr_put_search_ctx(ctx); 1679 unmap_mft_record(base_ni); 1680 m = NULL; 1681 ctx = NULL; 1682 /* Get the index bitmap attribute inode. */ 1683 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1684 if (IS_ERR(bvi)) { 1685 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1686 err = PTR_ERR(bvi); 1687 goto unm_err_out; 1688 } 1689 bni = NTFS_I(bvi); 1690 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1691 NInoSparse(bni)) { 1692 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1693 "encrypted and/or sparse."); 1694 goto iput_unm_err_out; 1695 } 1696 /* Consistency check bitmap size vs. index allocation size. */ 1697 bvi_size = i_size_read(bvi); 1698 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1699 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1700 "index allocation (0x%llx).", bvi_size << 3, 1701 vi->i_size); 1702 goto iput_unm_err_out; 1703 } 1704 iput(bvi); 1705 skip_large_index_stuff: 1706 /* Setup the operations for this index inode. */ 1707 vi->i_op = NULL; 1708 vi->i_fop = NULL; 1709 vi->i_mapping->a_ops = &ntfs_mst_aops; 1710 vi->i_blocks = ni->allocated_size >> 9; 1711 /* 1712 * Make sure the base inode doesn't go away and attach it to the 1713 * index inode. 1714 */ 1715 igrab(base_vi); 1716 ni->ext.base_ntfs_ino = base_ni; 1717 ni->nr_extents = -1; 1718 1719 ntfs_debug("Done."); 1720 return 0; 1721 iput_unm_err_out: 1722 iput(bvi); 1723 unm_err_out: 1724 if (!err) 1725 err = -EIO; 1726 if (ctx) 1727 ntfs_attr_put_search_ctx(ctx); 1728 if (m) 1729 unmap_mft_record(base_ni); 1730 err_out: 1731 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1732 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1733 ni->name_len); 1734 make_bad_inode(vi); 1735 if (err != -EOPNOTSUPP && err != -ENOMEM) 1736 NVolSetErrors(vol); 1737 return err; 1738 } 1739 1740 /* 1741 * The MFT inode has special locking, so teach the lock validator 1742 * about this by splitting off the locking rules of the MFT from 1743 * the locking rules of other inodes. The MFT inode can never be 1744 * accessed from the VFS side (or even internally), only by the 1745 * map_mft functions. 1746 */ 1747 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1748 1749 /** 1750 * ntfs_read_inode_mount - special read_inode for mount time use only 1751 * @vi: inode to read 1752 * 1753 * Read inode FILE_MFT at mount time, only called with super_block lock 1754 * held from within the read_super() code path. 1755 * 1756 * This function exists because when it is called the page cache for $MFT/$DATA 1757 * is not initialized and hence we cannot get at the contents of mft records 1758 * by calling map_mft_record*(). 1759 * 1760 * Further it needs to cope with the circular references problem, i.e. cannot 1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1762 * we do not know where the other extent mft records are yet and again, because 1763 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1764 * attribute list is actually present in $MFT inode. 1765 * 1766 * We solve these problems by starting with the $DATA attribute before anything 1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1769 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1770 * sufficient information for the next step to complete. 1771 * 1772 * This should work but there are two possible pit falls (see inline comments 1773 * below), but only time will tell if they are real pits or just smoke... 1774 */ 1775 int ntfs_read_inode_mount(struct inode *vi) 1776 { 1777 VCN next_vcn, last_vcn, highest_vcn; 1778 s64 block; 1779 struct super_block *sb = vi->i_sb; 1780 ntfs_volume *vol = NTFS_SB(sb); 1781 struct buffer_head *bh; 1782 ntfs_inode *ni; 1783 MFT_RECORD *m = NULL; 1784 ATTR_RECORD *a; 1785 ntfs_attr_search_ctx *ctx; 1786 unsigned int i, nr_blocks; 1787 int err; 1788 1789 ntfs_debug("Entering."); 1790 1791 /* Initialize the ntfs specific part of @vi. */ 1792 ntfs_init_big_inode(vi); 1793 1794 ni = NTFS_I(vi); 1795 1796 /* Setup the data attribute. It is special as it is mst protected. */ 1797 NInoSetNonResident(ni); 1798 NInoSetMstProtected(ni); 1799 NInoSetSparseDisabled(ni); 1800 ni->type = AT_DATA; 1801 ni->name = NULL; 1802 ni->name_len = 0; 1803 /* 1804 * This sets up our little cheat allowing us to reuse the async read io 1805 * completion handler for directories. 1806 */ 1807 ni->itype.index.block_size = vol->mft_record_size; 1808 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1809 1810 /* Very important! Needed to be able to call map_mft_record*(). */ 1811 vol->mft_ino = vi; 1812 1813 /* Allocate enough memory to read the first mft record. */ 1814 if (vol->mft_record_size > 64 * 1024) { 1815 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1816 vol->mft_record_size); 1817 goto err_out; 1818 } 1819 i = vol->mft_record_size; 1820 if (i < sb->s_blocksize) 1821 i = sb->s_blocksize; 1822 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1823 if (!m) { 1824 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1825 goto err_out; 1826 } 1827 1828 /* Determine the first block of the $MFT/$DATA attribute. */ 1829 block = vol->mft_lcn << vol->cluster_size_bits >> 1830 sb->s_blocksize_bits; 1831 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1832 if (!nr_blocks) 1833 nr_blocks = 1; 1834 1835 /* Load $MFT/$DATA's first mft record. */ 1836 for (i = 0; i < nr_blocks; i++) { 1837 bh = sb_bread(sb, block++); 1838 if (!bh) { 1839 ntfs_error(sb, "Device read failed."); 1840 goto err_out; 1841 } 1842 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1843 sb->s_blocksize); 1844 brelse(bh); 1845 } 1846 1847 /* Apply the mst fixups. */ 1848 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1849 /* FIXME: Try to use the $MFTMirr now. */ 1850 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1851 goto err_out; 1852 } 1853 1854 /* Need this to sanity check attribute list references to $MFT. */ 1855 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1856 1857 /* Provides readpage() and sync_page() for map_mft_record(). */ 1858 vi->i_mapping->a_ops = &ntfs_mst_aops; 1859 1860 ctx = ntfs_attr_get_search_ctx(ni, m); 1861 if (!ctx) { 1862 err = -ENOMEM; 1863 goto err_out; 1864 } 1865 1866 /* Find the attribute list attribute if present. */ 1867 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1868 if (err) { 1869 if (unlikely(err != -ENOENT)) { 1870 ntfs_error(sb, "Failed to lookup attribute list " 1871 "attribute. You should run chkdsk."); 1872 goto put_err_out; 1873 } 1874 } else /* if (!err) */ { 1875 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1876 u8 *al_end; 1877 static const char *es = " Not allowed. $MFT is corrupt. " 1878 "You should run chkdsk."; 1879 1880 ntfs_debug("Attribute list attribute found in $MFT."); 1881 NInoSetAttrList(ni); 1882 a = ctx->attr; 1883 if (a->flags & ATTR_COMPRESSION_MASK) { 1884 ntfs_error(sb, "Attribute list attribute is " 1885 "compressed.%s", es); 1886 goto put_err_out; 1887 } 1888 if (a->flags & ATTR_IS_ENCRYPTED || 1889 a->flags & ATTR_IS_SPARSE) { 1890 if (a->non_resident) { 1891 ntfs_error(sb, "Non-resident attribute list " 1892 "attribute is encrypted/" 1893 "sparse.%s", es); 1894 goto put_err_out; 1895 } 1896 ntfs_warning(sb, "Resident attribute list attribute " 1897 "in $MFT system file is marked " 1898 "encrypted/sparse which is not true. " 1899 "However, Windows allows this and " 1900 "chkdsk does not detect or correct it " 1901 "so we will just ignore the invalid " 1902 "flags and pretend they are not set."); 1903 } 1904 /* Now allocate memory for the attribute list. */ 1905 ni->attr_list_size = (u32)ntfs_attr_size(a); 1906 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1907 if (!ni->attr_list) { 1908 ntfs_error(sb, "Not enough memory to allocate buffer " 1909 "for attribute list."); 1910 goto put_err_out; 1911 } 1912 if (a->non_resident) { 1913 NInoSetAttrListNonResident(ni); 1914 if (a->data.non_resident.lowest_vcn) { 1915 ntfs_error(sb, "Attribute list has non zero " 1916 "lowest_vcn. $MFT is corrupt. " 1917 "You should run chkdsk."); 1918 goto put_err_out; 1919 } 1920 /* Setup the runlist. */ 1921 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1922 a, NULL); 1923 if (IS_ERR(ni->attr_list_rl.rl)) { 1924 err = PTR_ERR(ni->attr_list_rl.rl); 1925 ni->attr_list_rl.rl = NULL; 1926 ntfs_error(sb, "Mapping pairs decompression " 1927 "failed with error code %i.", 1928 -err); 1929 goto put_err_out; 1930 } 1931 /* Now load the attribute list. */ 1932 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1933 ni->attr_list, ni->attr_list_size, 1934 sle64_to_cpu(a->data. 1935 non_resident.initialized_size)))) { 1936 ntfs_error(sb, "Failed to load attribute list " 1937 "attribute with error code %i.", 1938 -err); 1939 goto put_err_out; 1940 } 1941 } else /* if (!ctx.attr->non_resident) */ { 1942 if ((u8*)a + le16_to_cpu( 1943 a->data.resident.value_offset) + 1944 le32_to_cpu( 1945 a->data.resident.value_length) > 1946 (u8*)ctx->mrec + vol->mft_record_size) { 1947 ntfs_error(sb, "Corrupt attribute list " 1948 "attribute."); 1949 goto put_err_out; 1950 } 1951 /* Now copy the attribute list. */ 1952 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1953 a->data.resident.value_offset), 1954 le32_to_cpu( 1955 a->data.resident.value_length)); 1956 } 1957 /* The attribute list is now setup in memory. */ 1958 /* 1959 * FIXME: I don't know if this case is actually possible. 1960 * According to logic it is not possible but I have seen too 1961 * many weird things in MS software to rely on logic... Thus we 1962 * perform a manual search and make sure the first $MFT/$DATA 1963 * extent is in the base inode. If it is not we abort with an 1964 * error and if we ever see a report of this error we will need 1965 * to do some magic in order to have the necessary mft record 1966 * loaded and in the right place in the page cache. But 1967 * hopefully logic will prevail and this never happens... 1968 */ 1969 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1970 al_end = (u8*)al_entry + ni->attr_list_size; 1971 for (;; al_entry = next_al_entry) { 1972 /* Out of bounds check. */ 1973 if ((u8*)al_entry < ni->attr_list || 1974 (u8*)al_entry > al_end) 1975 goto em_put_err_out; 1976 /* Catch the end of the attribute list. */ 1977 if ((u8*)al_entry == al_end) 1978 goto em_put_err_out; 1979 if (!al_entry->length) 1980 goto em_put_err_out; 1981 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1982 le16_to_cpu(al_entry->length) > al_end) 1983 goto em_put_err_out; 1984 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1985 le16_to_cpu(al_entry->length)); 1986 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1987 goto em_put_err_out; 1988 if (AT_DATA != al_entry->type) 1989 continue; 1990 /* We want an unnamed attribute. */ 1991 if (al_entry->name_length) 1992 goto em_put_err_out; 1993 /* Want the first entry, i.e. lowest_vcn == 0. */ 1994 if (al_entry->lowest_vcn) 1995 goto em_put_err_out; 1996 /* First entry has to be in the base mft record. */ 1997 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1998 /* MFT references do not match, logic fails. */ 1999 ntfs_error(sb, "BUG: The first $DATA extent " 2000 "of $MFT is not in the base " 2001 "mft record. Please report " 2002 "you saw this message to " 2003 "linux-ntfs-dev@lists." 2004 "sourceforge.net"); 2005 goto put_err_out; 2006 } else { 2007 /* Sequence numbers must match. */ 2008 if (MSEQNO_LE(al_entry->mft_reference) != 2009 ni->seq_no) 2010 goto em_put_err_out; 2011 /* Got it. All is ok. We can stop now. */ 2012 break; 2013 } 2014 } 2015 } 2016 2017 ntfs_attr_reinit_search_ctx(ctx); 2018 2019 /* Now load all attribute extents. */ 2020 a = NULL; 2021 next_vcn = last_vcn = highest_vcn = 0; 2022 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2023 ctx))) { 2024 runlist_element *nrl; 2025 2026 /* Cache the current attribute. */ 2027 a = ctx->attr; 2028 /* $MFT must be non-resident. */ 2029 if (!a->non_resident) { 2030 ntfs_error(sb, "$MFT must be non-resident but a " 2031 "resident extent was found. $MFT is " 2032 "corrupt. Run chkdsk."); 2033 goto put_err_out; 2034 } 2035 /* $MFT must be uncompressed and unencrypted. */ 2036 if (a->flags & ATTR_COMPRESSION_MASK || 2037 a->flags & ATTR_IS_ENCRYPTED || 2038 a->flags & ATTR_IS_SPARSE) { 2039 ntfs_error(sb, "$MFT must be uncompressed, " 2040 "non-sparse, and unencrypted but a " 2041 "compressed/sparse/encrypted extent " 2042 "was found. $MFT is corrupt. Run " 2043 "chkdsk."); 2044 goto put_err_out; 2045 } 2046 /* 2047 * Decompress the mapping pairs array of this extent and merge 2048 * the result into the existing runlist. No need for locking 2049 * as we have exclusive access to the inode at this time and we 2050 * are a mount in progress task, too. 2051 */ 2052 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2053 if (IS_ERR(nrl)) { 2054 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2055 "failed with error code %ld. $MFT is " 2056 "corrupt.", PTR_ERR(nrl)); 2057 goto put_err_out; 2058 } 2059 ni->runlist.rl = nrl; 2060 2061 /* Are we in the first extent? */ 2062 if (!next_vcn) { 2063 if (a->data.non_resident.lowest_vcn) { 2064 ntfs_error(sb, "First extent of $DATA " 2065 "attribute has non zero " 2066 "lowest_vcn. $MFT is corrupt. " 2067 "You should run chkdsk."); 2068 goto put_err_out; 2069 } 2070 /* Get the last vcn in the $DATA attribute. */ 2071 last_vcn = sle64_to_cpu( 2072 a->data.non_resident.allocated_size) 2073 >> vol->cluster_size_bits; 2074 /* Fill in the inode size. */ 2075 vi->i_size = sle64_to_cpu( 2076 a->data.non_resident.data_size); 2077 ni->initialized_size = sle64_to_cpu( 2078 a->data.non_resident.initialized_size); 2079 ni->allocated_size = sle64_to_cpu( 2080 a->data.non_resident.allocated_size); 2081 /* 2082 * Verify the number of mft records does not exceed 2083 * 2^32 - 1. 2084 */ 2085 if ((vi->i_size >> vol->mft_record_size_bits) >= 2086 (1ULL << 32)) { 2087 ntfs_error(sb, "$MFT is too big! Aborting."); 2088 goto put_err_out; 2089 } 2090 /* 2091 * We have got the first extent of the runlist for 2092 * $MFT which means it is now relatively safe to call 2093 * the normal ntfs_read_inode() function. 2094 * Complete reading the inode, this will actually 2095 * re-read the mft record for $MFT, this time entering 2096 * it into the page cache with which we complete the 2097 * kick start of the volume. It should be safe to do 2098 * this now as the first extent of $MFT/$DATA is 2099 * already known and we would hope that we don't need 2100 * further extents in order to find the other 2101 * attributes belonging to $MFT. Only time will tell if 2102 * this is really the case. If not we will have to play 2103 * magic at this point, possibly duplicating a lot of 2104 * ntfs_read_inode() at this point. We will need to 2105 * ensure we do enough of its work to be able to call 2106 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2107 * hope this never happens... 2108 */ 2109 ntfs_read_locked_inode(vi); 2110 if (is_bad_inode(vi)) { 2111 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2112 "failed. BUG or corrupt $MFT. " 2113 "Run chkdsk and if no errors " 2114 "are found, please report you " 2115 "saw this message to " 2116 "linux-ntfs-dev@lists." 2117 "sourceforge.net"); 2118 ntfs_attr_put_search_ctx(ctx); 2119 /* Revert to the safe super operations. */ 2120 ntfs_free(m); 2121 return -1; 2122 } 2123 /* 2124 * Re-initialize some specifics about $MFT's inode as 2125 * ntfs_read_inode() will have set up the default ones. 2126 */ 2127 /* Set uid and gid to root. */ 2128 vi->i_uid = vi->i_gid = 0; 2129 /* Regular file. No access for anyone. */ 2130 vi->i_mode = S_IFREG; 2131 /* No VFS initiated operations allowed for $MFT. */ 2132 vi->i_op = &ntfs_empty_inode_ops; 2133 vi->i_fop = &ntfs_empty_file_ops; 2134 } 2135 2136 /* Get the lowest vcn for the next extent. */ 2137 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2138 next_vcn = highest_vcn + 1; 2139 2140 /* Only one extent or error, which we catch below. */ 2141 if (next_vcn <= 0) 2142 break; 2143 2144 /* Avoid endless loops due to corruption. */ 2145 if (next_vcn < sle64_to_cpu( 2146 a->data.non_resident.lowest_vcn)) { 2147 ntfs_error(sb, "$MFT has corrupt attribute list " 2148 "attribute. Run chkdsk."); 2149 goto put_err_out; 2150 } 2151 } 2152 if (err != -ENOENT) { 2153 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2154 "$MFT is corrupt. Run chkdsk."); 2155 goto put_err_out; 2156 } 2157 if (!a) { 2158 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2159 "corrupt. Run chkdsk."); 2160 goto put_err_out; 2161 } 2162 if (highest_vcn && highest_vcn != last_vcn - 1) { 2163 ntfs_error(sb, "Failed to load the complete runlist for " 2164 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2165 "Run chkdsk."); 2166 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2167 (unsigned long long)highest_vcn, 2168 (unsigned long long)last_vcn - 1); 2169 goto put_err_out; 2170 } 2171 ntfs_attr_put_search_ctx(ctx); 2172 ntfs_debug("Done."); 2173 ntfs_free(m); 2174 2175 /* 2176 * Split the locking rules of the MFT inode from the 2177 * locking rules of other inodes: 2178 */ 2179 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2180 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2181 2182 return 0; 2183 2184 em_put_err_out: 2185 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2186 "attribute list. $MFT is corrupt. Run chkdsk."); 2187 put_err_out: 2188 ntfs_attr_put_search_ctx(ctx); 2189 err_out: 2190 ntfs_error(sb, "Failed. Marking inode as bad."); 2191 make_bad_inode(vi); 2192 ntfs_free(m); 2193 return -1; 2194 } 2195 2196 static void __ntfs_clear_inode(ntfs_inode *ni) 2197 { 2198 /* Free all alocated memory. */ 2199 down_write(&ni->runlist.lock); 2200 if (ni->runlist.rl) { 2201 ntfs_free(ni->runlist.rl); 2202 ni->runlist.rl = NULL; 2203 } 2204 up_write(&ni->runlist.lock); 2205 2206 if (ni->attr_list) { 2207 ntfs_free(ni->attr_list); 2208 ni->attr_list = NULL; 2209 } 2210 2211 down_write(&ni->attr_list_rl.lock); 2212 if (ni->attr_list_rl.rl) { 2213 ntfs_free(ni->attr_list_rl.rl); 2214 ni->attr_list_rl.rl = NULL; 2215 } 2216 up_write(&ni->attr_list_rl.lock); 2217 2218 if (ni->name_len && ni->name != I30) { 2219 /* Catch bugs... */ 2220 BUG_ON(!ni->name); 2221 kfree(ni->name); 2222 } 2223 } 2224 2225 void ntfs_clear_extent_inode(ntfs_inode *ni) 2226 { 2227 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2228 2229 BUG_ON(NInoAttr(ni)); 2230 BUG_ON(ni->nr_extents != -1); 2231 2232 #ifdef NTFS_RW 2233 if (NInoDirty(ni)) { 2234 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2235 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2236 "Losing data! This is a BUG!!!"); 2237 // FIXME: Do something!!! 2238 } 2239 #endif /* NTFS_RW */ 2240 2241 __ntfs_clear_inode(ni); 2242 2243 /* Bye, bye... */ 2244 ntfs_destroy_extent_inode(ni); 2245 } 2246 2247 /** 2248 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2249 * @vi: vfs inode pending annihilation 2250 * 2251 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2252 * is called, which deallocates all memory belonging to the NTFS specific part 2253 * of the inode and returns. 2254 * 2255 * If the MFT record is dirty, we commit it before doing anything else. 2256 */ 2257 void ntfs_evict_big_inode(struct inode *vi) 2258 { 2259 ntfs_inode *ni = NTFS_I(vi); 2260 2261 truncate_inode_pages(&vi->i_data, 0); 2262 end_writeback(vi); 2263 2264 #ifdef NTFS_RW 2265 if (NInoDirty(ni)) { 2266 bool was_bad = (is_bad_inode(vi)); 2267 2268 /* Committing the inode also commits all extent inodes. */ 2269 ntfs_commit_inode(vi); 2270 2271 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2272 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2273 "0x%lx. Losing data!", vi->i_ino); 2274 // FIXME: Do something!!! 2275 } 2276 } 2277 #endif /* NTFS_RW */ 2278 2279 /* No need to lock at this stage as no one else has a reference. */ 2280 if (ni->nr_extents > 0) { 2281 int i; 2282 2283 for (i = 0; i < ni->nr_extents; i++) 2284 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2285 kfree(ni->ext.extent_ntfs_inos); 2286 } 2287 2288 __ntfs_clear_inode(ni); 2289 2290 if (NInoAttr(ni)) { 2291 /* Release the base inode if we are holding it. */ 2292 if (ni->nr_extents == -1) { 2293 iput(VFS_I(ni->ext.base_ntfs_ino)); 2294 ni->nr_extents = 0; 2295 ni->ext.base_ntfs_ino = NULL; 2296 } 2297 } 2298 return; 2299 } 2300 2301 /** 2302 * ntfs_show_options - show mount options in /proc/mounts 2303 * @sf: seq_file in which to write our mount options 2304 * @mnt: vfs mount whose mount options to display 2305 * 2306 * Called by the VFS once for each mounted ntfs volume when someone reads 2307 * /proc/mounts in order to display the NTFS specific mount options of each 2308 * mount. The mount options of the vfs mount @mnt are written to the seq file 2309 * @sf and success is returned. 2310 */ 2311 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt) 2312 { 2313 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb); 2314 int i; 2315 2316 seq_printf(sf, ",uid=%i", vol->uid); 2317 seq_printf(sf, ",gid=%i", vol->gid); 2318 if (vol->fmask == vol->dmask) 2319 seq_printf(sf, ",umask=0%o", vol->fmask); 2320 else { 2321 seq_printf(sf, ",fmask=0%o", vol->fmask); 2322 seq_printf(sf, ",dmask=0%o", vol->dmask); 2323 } 2324 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2325 if (NVolCaseSensitive(vol)) 2326 seq_printf(sf, ",case_sensitive"); 2327 if (NVolShowSystemFiles(vol)) 2328 seq_printf(sf, ",show_sys_files"); 2329 if (!NVolSparseEnabled(vol)) 2330 seq_printf(sf, ",disable_sparse"); 2331 for (i = 0; on_errors_arr[i].val; i++) { 2332 if (on_errors_arr[i].val & vol->on_errors) 2333 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2334 } 2335 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2336 return 0; 2337 } 2338 2339 #ifdef NTFS_RW 2340 2341 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2342 "chkdsk."; 2343 2344 /** 2345 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2346 * @vi: inode for which the i_size was changed 2347 * 2348 * We only support i_size changes for normal files at present, i.e. not 2349 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2350 * below. 2351 * 2352 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2353 * that the change is allowed. 2354 * 2355 * This implies for us that @vi is a file inode rather than a directory, index, 2356 * or attribute inode as well as that @vi is a base inode. 2357 * 2358 * Returns 0 on success or -errno on error. 2359 * 2360 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for 2361 * writing. The only case in the kernel where ->i_alloc_sem is not held is 2362 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called 2363 * with the current i_size as the offset. The analogous place in NTFS is in 2364 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again 2365 * without holding ->i_alloc_sem. 2366 */ 2367 int ntfs_truncate(struct inode *vi) 2368 { 2369 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2370 VCN highest_vcn; 2371 unsigned long flags; 2372 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2373 ntfs_volume *vol = ni->vol; 2374 ntfs_attr_search_ctx *ctx; 2375 MFT_RECORD *m; 2376 ATTR_RECORD *a; 2377 const char *te = " Leaving file length out of sync with i_size."; 2378 int err, mp_size, size_change, alloc_change; 2379 u32 attr_len; 2380 2381 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2382 BUG_ON(NInoAttr(ni)); 2383 BUG_ON(S_ISDIR(vi->i_mode)); 2384 BUG_ON(NInoMstProtected(ni)); 2385 BUG_ON(ni->nr_extents < 0); 2386 retry_truncate: 2387 /* 2388 * Lock the runlist for writing and map the mft record to ensure it is 2389 * safe to mess with the attribute runlist and sizes. 2390 */ 2391 down_write(&ni->runlist.lock); 2392 if (!NInoAttr(ni)) 2393 base_ni = ni; 2394 else 2395 base_ni = ni->ext.base_ntfs_ino; 2396 m = map_mft_record(base_ni); 2397 if (IS_ERR(m)) { 2398 err = PTR_ERR(m); 2399 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2400 "(error code %d).%s", vi->i_ino, err, te); 2401 ctx = NULL; 2402 m = NULL; 2403 goto old_bad_out; 2404 } 2405 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2406 if (unlikely(!ctx)) { 2407 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2408 "inode 0x%lx (not enough memory).%s", 2409 vi->i_ino, te); 2410 err = -ENOMEM; 2411 goto old_bad_out; 2412 } 2413 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2414 CASE_SENSITIVE, 0, NULL, 0, ctx); 2415 if (unlikely(err)) { 2416 if (err == -ENOENT) { 2417 ntfs_error(vi->i_sb, "Open attribute is missing from " 2418 "mft record. Inode 0x%lx is corrupt. " 2419 "Run chkdsk.%s", vi->i_ino, te); 2420 err = -EIO; 2421 } else 2422 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2423 "inode 0x%lx (error code %d).%s", 2424 vi->i_ino, err, te); 2425 goto old_bad_out; 2426 } 2427 m = ctx->mrec; 2428 a = ctx->attr; 2429 /* 2430 * The i_size of the vfs inode is the new size for the attribute value. 2431 */ 2432 new_size = i_size_read(vi); 2433 /* The current size of the attribute value is the old size. */ 2434 old_size = ntfs_attr_size(a); 2435 /* Calculate the new allocated size. */ 2436 if (NInoNonResident(ni)) 2437 new_alloc_size = (new_size + vol->cluster_size - 1) & 2438 ~(s64)vol->cluster_size_mask; 2439 else 2440 new_alloc_size = (new_size + 7) & ~7; 2441 /* The current allocated size is the old allocated size. */ 2442 read_lock_irqsave(&ni->size_lock, flags); 2443 old_alloc_size = ni->allocated_size; 2444 read_unlock_irqrestore(&ni->size_lock, flags); 2445 /* 2446 * The change in the file size. This will be 0 if no change, >0 if the 2447 * size is growing, and <0 if the size is shrinking. 2448 */ 2449 size_change = -1; 2450 if (new_size - old_size >= 0) { 2451 size_change = 1; 2452 if (new_size == old_size) 2453 size_change = 0; 2454 } 2455 /* As above for the allocated size. */ 2456 alloc_change = -1; 2457 if (new_alloc_size - old_alloc_size >= 0) { 2458 alloc_change = 1; 2459 if (new_alloc_size == old_alloc_size) 2460 alloc_change = 0; 2461 } 2462 /* 2463 * If neither the size nor the allocation are being changed there is 2464 * nothing to do. 2465 */ 2466 if (!size_change && !alloc_change) 2467 goto unm_done; 2468 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2469 if (size_change) { 2470 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2471 if (unlikely(err)) { 2472 if (err == -ERANGE) { 2473 ntfs_error(vol->sb, "Truncate would cause the " 2474 "inode 0x%lx to %simum size " 2475 "for its attribute type " 2476 "(0x%x). Aborting truncate.", 2477 vi->i_ino, 2478 new_size > old_size ? "exceed " 2479 "the max" : "go under the min", 2480 le32_to_cpu(ni->type)); 2481 err = -EFBIG; 2482 } else { 2483 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2484 "attribute type 0x%x. " 2485 "Aborting truncate.", 2486 vi->i_ino, 2487 le32_to_cpu(ni->type)); 2488 err = -EIO; 2489 } 2490 /* Reset the vfs inode size to the old size. */ 2491 i_size_write(vi, old_size); 2492 goto err_out; 2493 } 2494 } 2495 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2496 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2497 "supported yet for %s files, ignoring.", 2498 NInoCompressed(ni) ? "compressed" : 2499 "encrypted"); 2500 err = -EOPNOTSUPP; 2501 goto bad_out; 2502 } 2503 if (a->non_resident) 2504 goto do_non_resident_truncate; 2505 BUG_ON(NInoNonResident(ni)); 2506 /* Resize the attribute record to best fit the new attribute size. */ 2507 if (new_size < vol->mft_record_size && 2508 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2509 /* The resize succeeded! */ 2510 flush_dcache_mft_record_page(ctx->ntfs_ino); 2511 mark_mft_record_dirty(ctx->ntfs_ino); 2512 write_lock_irqsave(&ni->size_lock, flags); 2513 /* Update the sizes in the ntfs inode and all is done. */ 2514 ni->allocated_size = le32_to_cpu(a->length) - 2515 le16_to_cpu(a->data.resident.value_offset); 2516 /* 2517 * Note ntfs_resident_attr_value_resize() has already done any 2518 * necessary data clearing in the attribute record. When the 2519 * file is being shrunk vmtruncate() will already have cleared 2520 * the top part of the last partial page, i.e. since this is 2521 * the resident case this is the page with index 0. However, 2522 * when the file is being expanded, the page cache page data 2523 * between the old data_size, i.e. old_size, and the new_size 2524 * has not been zeroed. Fortunately, we do not need to zero it 2525 * either since on one hand it will either already be zero due 2526 * to both readpage and writepage clearing partial page data 2527 * beyond i_size in which case there is nothing to do or in the 2528 * case of the file being mmap()ped at the same time, POSIX 2529 * specifies that the behaviour is unspecified thus we do not 2530 * have to do anything. This means that in our implementation 2531 * in the rare case that the file is mmap()ped and a write 2532 * occured into the mmap()ped region just beyond the file size 2533 * and writepage has not yet been called to write out the page 2534 * (which would clear the area beyond the file size) and we now 2535 * extend the file size to incorporate this dirty region 2536 * outside the file size, a write of the page would result in 2537 * this data being written to disk instead of being cleared. 2538 * Given both POSIX and the Linux mmap(2) man page specify that 2539 * this corner case is undefined, we choose to leave it like 2540 * that as this is much simpler for us as we cannot lock the 2541 * relevant page now since we are holding too many ntfs locks 2542 * which would result in a lock reversal deadlock. 2543 */ 2544 ni->initialized_size = new_size; 2545 write_unlock_irqrestore(&ni->size_lock, flags); 2546 goto unm_done; 2547 } 2548 /* If the above resize failed, this must be an attribute extension. */ 2549 BUG_ON(size_change < 0); 2550 /* 2551 * We have to drop all the locks so we can call 2552 * ntfs_attr_make_non_resident(). This could be optimised by try- 2553 * locking the first page cache page and only if that fails dropping 2554 * the locks, locking the page, and redoing all the locking and 2555 * lookups. While this would be a huge optimisation, it is not worth 2556 * it as this is definitely a slow code path as it only ever can happen 2557 * once for any given file. 2558 */ 2559 ntfs_attr_put_search_ctx(ctx); 2560 unmap_mft_record(base_ni); 2561 up_write(&ni->runlist.lock); 2562 /* 2563 * Not enough space in the mft record, try to make the attribute 2564 * non-resident and if successful restart the truncation process. 2565 */ 2566 err = ntfs_attr_make_non_resident(ni, old_size); 2567 if (likely(!err)) 2568 goto retry_truncate; 2569 /* 2570 * Could not make non-resident. If this is due to this not being 2571 * permitted for this attribute type or there not being enough space, 2572 * try to make other attributes non-resident. Otherwise fail. 2573 */ 2574 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2575 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2576 "type 0x%x, because the conversion from " 2577 "resident to non-resident attribute failed " 2578 "with error code %i.", vi->i_ino, 2579 (unsigned)le32_to_cpu(ni->type), err); 2580 if (err != -ENOMEM) 2581 err = -EIO; 2582 goto conv_err_out; 2583 } 2584 /* TODO: Not implemented from here, abort. */ 2585 if (err == -ENOSPC) 2586 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2587 "disk for the non-resident attribute value. " 2588 "This case is not implemented yet."); 2589 else /* if (err == -EPERM) */ 2590 ntfs_error(vol->sb, "This attribute type may not be " 2591 "non-resident. This case is not implemented " 2592 "yet."); 2593 err = -EOPNOTSUPP; 2594 goto conv_err_out; 2595 #if 0 2596 // TODO: Attempt to make other attributes non-resident. 2597 if (!err) 2598 goto do_resident_extend; 2599 /* 2600 * Both the attribute list attribute and the standard information 2601 * attribute must remain in the base inode. Thus, if this is one of 2602 * these attributes, we have to try to move other attributes out into 2603 * extent mft records instead. 2604 */ 2605 if (ni->type == AT_ATTRIBUTE_LIST || 2606 ni->type == AT_STANDARD_INFORMATION) { 2607 // TODO: Attempt to move other attributes into extent mft 2608 // records. 2609 err = -EOPNOTSUPP; 2610 if (!err) 2611 goto do_resident_extend; 2612 goto err_out; 2613 } 2614 // TODO: Attempt to move this attribute to an extent mft record, but 2615 // only if it is not already the only attribute in an mft record in 2616 // which case there would be nothing to gain. 2617 err = -EOPNOTSUPP; 2618 if (!err) 2619 goto do_resident_extend; 2620 /* There is nothing we can do to make enough space. )-: */ 2621 goto err_out; 2622 #endif 2623 do_non_resident_truncate: 2624 BUG_ON(!NInoNonResident(ni)); 2625 if (alloc_change < 0) { 2626 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2627 if (highest_vcn > 0 && 2628 old_alloc_size >> vol->cluster_size_bits > 2629 highest_vcn + 1) { 2630 /* 2631 * This attribute has multiple extents. Not yet 2632 * supported. 2633 */ 2634 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2635 "attribute type 0x%x, because the " 2636 "attribute is highly fragmented (it " 2637 "consists of multiple extents) and " 2638 "this case is not implemented yet.", 2639 vi->i_ino, 2640 (unsigned)le32_to_cpu(ni->type)); 2641 err = -EOPNOTSUPP; 2642 goto bad_out; 2643 } 2644 } 2645 /* 2646 * If the size is shrinking, need to reduce the initialized_size and 2647 * the data_size before reducing the allocation. 2648 */ 2649 if (size_change < 0) { 2650 /* 2651 * Make the valid size smaller (i_size is already up-to-date). 2652 */ 2653 write_lock_irqsave(&ni->size_lock, flags); 2654 if (new_size < ni->initialized_size) { 2655 ni->initialized_size = new_size; 2656 a->data.non_resident.initialized_size = 2657 cpu_to_sle64(new_size); 2658 } 2659 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2660 write_unlock_irqrestore(&ni->size_lock, flags); 2661 flush_dcache_mft_record_page(ctx->ntfs_ino); 2662 mark_mft_record_dirty(ctx->ntfs_ino); 2663 /* If the allocated size is not changing, we are done. */ 2664 if (!alloc_change) 2665 goto unm_done; 2666 /* 2667 * If the size is shrinking it makes no sense for the 2668 * allocation to be growing. 2669 */ 2670 BUG_ON(alloc_change > 0); 2671 } else /* if (size_change >= 0) */ { 2672 /* 2673 * The file size is growing or staying the same but the 2674 * allocation can be shrinking, growing or staying the same. 2675 */ 2676 if (alloc_change > 0) { 2677 /* 2678 * We need to extend the allocation and possibly update 2679 * the data size. If we are updating the data size, 2680 * since we are not touching the initialized_size we do 2681 * not need to worry about the actual data on disk. 2682 * And as far as the page cache is concerned, there 2683 * will be no pages beyond the old data size and any 2684 * partial region in the last page between the old and 2685 * new data size (or the end of the page if the new 2686 * data size is outside the page) does not need to be 2687 * modified as explained above for the resident 2688 * attribute truncate case. To do this, we simply drop 2689 * the locks we hold and leave all the work to our 2690 * friendly helper ntfs_attr_extend_allocation(). 2691 */ 2692 ntfs_attr_put_search_ctx(ctx); 2693 unmap_mft_record(base_ni); 2694 up_write(&ni->runlist.lock); 2695 err = ntfs_attr_extend_allocation(ni, new_size, 2696 size_change > 0 ? new_size : -1, -1); 2697 /* 2698 * ntfs_attr_extend_allocation() will have done error 2699 * output already. 2700 */ 2701 goto done; 2702 } 2703 if (!alloc_change) 2704 goto alloc_done; 2705 } 2706 /* alloc_change < 0 */ 2707 /* Free the clusters. */ 2708 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2709 vol->cluster_size_bits, -1, ctx); 2710 m = ctx->mrec; 2711 a = ctx->attr; 2712 if (unlikely(nr_freed < 0)) { 2713 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2714 "%lli). Unmount and run chkdsk to recover " 2715 "the lost cluster(s).", (long long)nr_freed); 2716 NVolSetErrors(vol); 2717 nr_freed = 0; 2718 } 2719 /* Truncate the runlist. */ 2720 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2721 new_alloc_size >> vol->cluster_size_bits); 2722 /* 2723 * If the runlist truncation failed and/or the search context is no 2724 * longer valid, we cannot resize the attribute record or build the 2725 * mapping pairs array thus we mark the inode bad so that no access to 2726 * the freed clusters can happen. 2727 */ 2728 if (unlikely(err || IS_ERR(m))) { 2729 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2730 IS_ERR(m) ? 2731 "restore attribute search context" : 2732 "truncate attribute runlist", 2733 IS_ERR(m) ? PTR_ERR(m) : err, es); 2734 err = -EIO; 2735 goto bad_out; 2736 } 2737 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2738 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2739 if (unlikely(mp_size <= 0)) { 2740 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2741 "attribute type 0x%x, because determining the " 2742 "size for the mapping pairs failed with error " 2743 "code %i.%s", vi->i_ino, 2744 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2745 err = -EIO; 2746 goto bad_out; 2747 } 2748 /* 2749 * Shrink the attribute record for the new mapping pairs array. Note, 2750 * this cannot fail since we are making the attribute smaller thus by 2751 * definition there is enough space to do so. 2752 */ 2753 attr_len = le32_to_cpu(a->length); 2754 err = ntfs_attr_record_resize(m, a, mp_size + 2755 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2756 BUG_ON(err); 2757 /* 2758 * Generate the mapping pairs array directly into the attribute record. 2759 */ 2760 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2761 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2762 mp_size, ni->runlist.rl, 0, -1, NULL); 2763 if (unlikely(err)) { 2764 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2765 "attribute type 0x%x, because building the " 2766 "mapping pairs failed with error code %i.%s", 2767 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2768 err, es); 2769 err = -EIO; 2770 goto bad_out; 2771 } 2772 /* Update the allocated/compressed size as well as the highest vcn. */ 2773 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2774 vol->cluster_size_bits) - 1); 2775 write_lock_irqsave(&ni->size_lock, flags); 2776 ni->allocated_size = new_alloc_size; 2777 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2778 if (NInoSparse(ni) || NInoCompressed(ni)) { 2779 if (nr_freed) { 2780 ni->itype.compressed.size -= nr_freed << 2781 vol->cluster_size_bits; 2782 BUG_ON(ni->itype.compressed.size < 0); 2783 a->data.non_resident.compressed_size = cpu_to_sle64( 2784 ni->itype.compressed.size); 2785 vi->i_blocks = ni->itype.compressed.size >> 9; 2786 } 2787 } else 2788 vi->i_blocks = new_alloc_size >> 9; 2789 write_unlock_irqrestore(&ni->size_lock, flags); 2790 /* 2791 * We have shrunk the allocation. If this is a shrinking truncate we 2792 * have already dealt with the initialized_size and the data_size above 2793 * and we are done. If the truncate is only changing the allocation 2794 * and not the data_size, we are also done. If this is an extending 2795 * truncate, need to extend the data_size now which is ensured by the 2796 * fact that @size_change is positive. 2797 */ 2798 alloc_done: 2799 /* 2800 * If the size is growing, need to update it now. If it is shrinking, 2801 * we have already updated it above (before the allocation change). 2802 */ 2803 if (size_change > 0) 2804 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2805 /* Ensure the modified mft record is written out. */ 2806 flush_dcache_mft_record_page(ctx->ntfs_ino); 2807 mark_mft_record_dirty(ctx->ntfs_ino); 2808 unm_done: 2809 ntfs_attr_put_search_ctx(ctx); 2810 unmap_mft_record(base_ni); 2811 up_write(&ni->runlist.lock); 2812 done: 2813 /* Update the mtime and ctime on the base inode. */ 2814 /* normally ->truncate shouldn't update ctime or mtime, 2815 * but ntfs did before so it got a copy & paste version 2816 * of file_update_time. one day someone should fix this 2817 * for real. 2818 */ 2819 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2820 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); 2821 int sync_it = 0; 2822 2823 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || 2824 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) 2825 sync_it = 1; 2826 VFS_I(base_ni)->i_mtime = now; 2827 VFS_I(base_ni)->i_ctime = now; 2828 2829 if (sync_it) 2830 mark_inode_dirty_sync(VFS_I(base_ni)); 2831 } 2832 2833 if (likely(!err)) { 2834 NInoClearTruncateFailed(ni); 2835 ntfs_debug("Done."); 2836 } 2837 return err; 2838 old_bad_out: 2839 old_size = -1; 2840 bad_out: 2841 if (err != -ENOMEM && err != -EOPNOTSUPP) 2842 NVolSetErrors(vol); 2843 if (err != -EOPNOTSUPP) 2844 NInoSetTruncateFailed(ni); 2845 else if (old_size >= 0) 2846 i_size_write(vi, old_size); 2847 err_out: 2848 if (ctx) 2849 ntfs_attr_put_search_ctx(ctx); 2850 if (m) 2851 unmap_mft_record(base_ni); 2852 up_write(&ni->runlist.lock); 2853 out: 2854 ntfs_debug("Failed. Returning error code %i.", err); 2855 return err; 2856 conv_err_out: 2857 if (err != -ENOMEM && err != -EOPNOTSUPP) 2858 NVolSetErrors(vol); 2859 if (err != -EOPNOTSUPP) 2860 NInoSetTruncateFailed(ni); 2861 else 2862 i_size_write(vi, old_size); 2863 goto out; 2864 } 2865 2866 /** 2867 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2868 * @vi: inode for which the i_size was changed 2869 * 2870 * Wrapper for ntfs_truncate() that has no return value. 2871 * 2872 * See ntfs_truncate() description above for details. 2873 */ 2874 void ntfs_truncate_vfs(struct inode *vi) { 2875 ntfs_truncate(vi); 2876 } 2877 2878 /** 2879 * ntfs_setattr - called from notify_change() when an attribute is being changed 2880 * @dentry: dentry whose attributes to change 2881 * @attr: structure describing the attributes and the changes 2882 * 2883 * We have to trap VFS attempts to truncate the file described by @dentry as 2884 * soon as possible, because we do not implement changes in i_size yet. So we 2885 * abort all i_size changes here. 2886 * 2887 * We also abort all changes of user, group, and mode as we do not implement 2888 * the NTFS ACLs yet. 2889 * 2890 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also 2891 * called with ->i_alloc_sem held for writing. 2892 */ 2893 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2894 { 2895 struct inode *vi = dentry->d_inode; 2896 int err; 2897 unsigned int ia_valid = attr->ia_valid; 2898 2899 err = inode_change_ok(vi, attr); 2900 if (err) 2901 goto out; 2902 /* We do not support NTFS ACLs yet. */ 2903 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2904 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2905 "supported yet, ignoring."); 2906 err = -EOPNOTSUPP; 2907 goto out; 2908 } 2909 if (ia_valid & ATTR_SIZE) { 2910 if (attr->ia_size != i_size_read(vi)) { 2911 ntfs_inode *ni = NTFS_I(vi); 2912 /* 2913 * FIXME: For now we do not support resizing of 2914 * compressed or encrypted files yet. 2915 */ 2916 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2917 ntfs_warning(vi->i_sb, "Changes in inode size " 2918 "are not supported yet for " 2919 "%s files, ignoring.", 2920 NInoCompressed(ni) ? 2921 "compressed" : "encrypted"); 2922 err = -EOPNOTSUPP; 2923 } else 2924 err = vmtruncate(vi, attr->ia_size); 2925 if (err || ia_valid == ATTR_SIZE) 2926 goto out; 2927 } else { 2928 /* 2929 * We skipped the truncate but must still update 2930 * timestamps. 2931 */ 2932 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2933 } 2934 } 2935 if (ia_valid & ATTR_ATIME) 2936 vi->i_atime = timespec_trunc(attr->ia_atime, 2937 vi->i_sb->s_time_gran); 2938 if (ia_valid & ATTR_MTIME) 2939 vi->i_mtime = timespec_trunc(attr->ia_mtime, 2940 vi->i_sb->s_time_gran); 2941 if (ia_valid & ATTR_CTIME) 2942 vi->i_ctime = timespec_trunc(attr->ia_ctime, 2943 vi->i_sb->s_time_gran); 2944 mark_inode_dirty(vi); 2945 out: 2946 return err; 2947 } 2948 2949 /** 2950 * ntfs_write_inode - write out a dirty inode 2951 * @vi: inode to write out 2952 * @sync: if true, write out synchronously 2953 * 2954 * Write out a dirty inode to disk including any extent inodes if present. 2955 * 2956 * If @sync is true, commit the inode to disk and wait for io completion. This 2957 * is done using write_mft_record(). 2958 * 2959 * If @sync is false, just schedule the write to happen but do not wait for i/o 2960 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2961 * marking the page (and in this case mft record) dirty but we do not implement 2962 * this yet as write_mft_record() largely ignores the @sync parameter and 2963 * always performs synchronous writes. 2964 * 2965 * Return 0 on success and -errno on error. 2966 */ 2967 int __ntfs_write_inode(struct inode *vi, int sync) 2968 { 2969 sle64 nt; 2970 ntfs_inode *ni = NTFS_I(vi); 2971 ntfs_attr_search_ctx *ctx; 2972 MFT_RECORD *m; 2973 STANDARD_INFORMATION *si; 2974 int err = 0; 2975 bool modified = false; 2976 2977 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2978 vi->i_ino); 2979 /* 2980 * Dirty attribute inodes are written via their real inodes so just 2981 * clean them here. Access time updates are taken care off when the 2982 * real inode is written. 2983 */ 2984 if (NInoAttr(ni)) { 2985 NInoClearDirty(ni); 2986 ntfs_debug("Done."); 2987 return 0; 2988 } 2989 /* Map, pin, and lock the mft record belonging to the inode. */ 2990 m = map_mft_record(ni); 2991 if (IS_ERR(m)) { 2992 err = PTR_ERR(m); 2993 goto err_out; 2994 } 2995 /* Update the access times in the standard information attribute. */ 2996 ctx = ntfs_attr_get_search_ctx(ni, m); 2997 if (unlikely(!ctx)) { 2998 err = -ENOMEM; 2999 goto unm_err_out; 3000 } 3001 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 3002 CASE_SENSITIVE, 0, NULL, 0, ctx); 3003 if (unlikely(err)) { 3004 ntfs_attr_put_search_ctx(ctx); 3005 goto unm_err_out; 3006 } 3007 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 3008 le16_to_cpu(ctx->attr->data.resident.value_offset)); 3009 /* Update the access times if they have changed. */ 3010 nt = utc2ntfs(vi->i_mtime); 3011 if (si->last_data_change_time != nt) { 3012 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 3013 "new = 0x%llx", vi->i_ino, (long long) 3014 sle64_to_cpu(si->last_data_change_time), 3015 (long long)sle64_to_cpu(nt)); 3016 si->last_data_change_time = nt; 3017 modified = true; 3018 } 3019 nt = utc2ntfs(vi->i_ctime); 3020 if (si->last_mft_change_time != nt) { 3021 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 3022 "new = 0x%llx", vi->i_ino, (long long) 3023 sle64_to_cpu(si->last_mft_change_time), 3024 (long long)sle64_to_cpu(nt)); 3025 si->last_mft_change_time = nt; 3026 modified = true; 3027 } 3028 nt = utc2ntfs(vi->i_atime); 3029 if (si->last_access_time != nt) { 3030 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3031 "new = 0x%llx", vi->i_ino, 3032 (long long)sle64_to_cpu(si->last_access_time), 3033 (long long)sle64_to_cpu(nt)); 3034 si->last_access_time = nt; 3035 modified = true; 3036 } 3037 /* 3038 * If we just modified the standard information attribute we need to 3039 * mark the mft record it is in dirty. We do this manually so that 3040 * mark_inode_dirty() is not called which would redirty the inode and 3041 * hence result in an infinite loop of trying to write the inode. 3042 * There is no need to mark the base inode nor the base mft record 3043 * dirty, since we are going to write this mft record below in any case 3044 * and the base mft record may actually not have been modified so it 3045 * might not need to be written out. 3046 * NOTE: It is not a problem when the inode for $MFT itself is being 3047 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3048 * on the $MFT inode and hence ntfs_write_inode() will not be 3049 * re-invoked because of it which in turn is ok since the dirtied mft 3050 * record will be cleaned and written out to disk below, i.e. before 3051 * this function returns. 3052 */ 3053 if (modified) { 3054 flush_dcache_mft_record_page(ctx->ntfs_ino); 3055 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3056 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3057 ctx->ntfs_ino->page_ofs); 3058 } 3059 ntfs_attr_put_search_ctx(ctx); 3060 /* Now the access times are updated, write the base mft record. */ 3061 if (NInoDirty(ni)) 3062 err = write_mft_record(ni, m, sync); 3063 /* Write all attached extent mft records. */ 3064 mutex_lock(&ni->extent_lock); 3065 if (ni->nr_extents > 0) { 3066 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3067 int i; 3068 3069 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3070 for (i = 0; i < ni->nr_extents; i++) { 3071 ntfs_inode *tni = extent_nis[i]; 3072 3073 if (NInoDirty(tni)) { 3074 MFT_RECORD *tm = map_mft_record(tni); 3075 int ret; 3076 3077 if (IS_ERR(tm)) { 3078 if (!err || err == -ENOMEM) 3079 err = PTR_ERR(tm); 3080 continue; 3081 } 3082 ret = write_mft_record(tni, tm, sync); 3083 unmap_mft_record(tni); 3084 if (unlikely(ret)) { 3085 if (!err || err == -ENOMEM) 3086 err = ret; 3087 } 3088 } 3089 } 3090 } 3091 mutex_unlock(&ni->extent_lock); 3092 unmap_mft_record(ni); 3093 if (unlikely(err)) 3094 goto err_out; 3095 ntfs_debug("Done."); 3096 return 0; 3097 unm_err_out: 3098 unmap_mft_record(ni); 3099 err_out: 3100 if (err == -ENOMEM) { 3101 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3102 "Marking the inode dirty again, so the VFS " 3103 "retries later."); 3104 mark_inode_dirty(vi); 3105 } else { 3106 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3107 NVolSetErrors(ni->vol); 3108 } 3109 return err; 3110 } 3111 3112 #endif /* NTFS_RW */ 3113