xref: /openbmc/linux/fs/ntfs/inode.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * inode.c - NTFS kernel inode handling.
4  *
5  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6  */
7 
8 #include <linux/buffer_head.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/mount.h>
12 #include <linux/mutex.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/slab.h>
16 #include <linux/log2.h>
17 
18 #include "aops.h"
19 #include "attrib.h"
20 #include "bitmap.h"
21 #include "dir.h"
22 #include "debug.h"
23 #include "inode.h"
24 #include "lcnalloc.h"
25 #include "malloc.h"
26 #include "mft.h"
27 #include "time.h"
28 #include "ntfs.h"
29 
30 /**
31  * ntfs_test_inode - compare two (possibly fake) inodes for equality
32  * @vi:		vfs inode which to test
33  * @data:	data which is being tested with
34  *
35  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36  * inode @vi for equality with the ntfs attribute @data.
37  *
38  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39  * @na->name and @na->name_len are then ignored.
40  *
41  * Return 1 if the attributes match and 0 if not.
42  *
43  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44  * allowed to sleep.
45  */
46 int ntfs_test_inode(struct inode *vi, void *data)
47 {
48 	ntfs_attr *na = (ntfs_attr *)data;
49 	ntfs_inode *ni;
50 
51 	if (vi->i_ino != na->mft_no)
52 		return 0;
53 	ni = NTFS_I(vi);
54 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 	if (likely(!NInoAttr(ni))) {
56 		/* If not looking for a normal inode this is a mismatch. */
57 		if (unlikely(na->type != AT_UNUSED))
58 			return 0;
59 	} else {
60 		/* A fake inode describing an attribute. */
61 		if (ni->type != na->type)
62 			return 0;
63 		if (ni->name_len != na->name_len)
64 			return 0;
65 		if (na->name_len && memcmp(ni->name, na->name,
66 				na->name_len * sizeof(ntfschar)))
67 			return 0;
68 	}
69 	/* Match! */
70 	return 1;
71 }
72 
73 /**
74  * ntfs_init_locked_inode - initialize an inode
75  * @vi:		vfs inode to initialize
76  * @data:	data which to initialize @vi to
77  *
78  * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79  * order to enable ntfs_test_inode() to do its work.
80  *
81  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82  * In that case, @na->name and @na->name_len should be set to NULL and 0,
83  * respectively. Although that is not strictly necessary as
84  * ntfs_read_locked_inode() will fill them in later.
85  *
86  * Return 0 on success and -errno on error.
87  *
88  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90  */
91 static int ntfs_init_locked_inode(struct inode *vi, void *data)
92 {
93 	ntfs_attr *na = (ntfs_attr *)data;
94 	ntfs_inode *ni = NTFS_I(vi);
95 
96 	vi->i_ino = na->mft_no;
97 
98 	ni->type = na->type;
99 	if (na->type == AT_INDEX_ALLOCATION)
100 		NInoSetMstProtected(ni);
101 
102 	ni->name = na->name;
103 	ni->name_len = na->name_len;
104 
105 	/* If initializing a normal inode, we are done. */
106 	if (likely(na->type == AT_UNUSED)) {
107 		BUG_ON(na->name);
108 		BUG_ON(na->name_len);
109 		return 0;
110 	}
111 
112 	/* It is a fake inode. */
113 	NInoSetAttr(ni);
114 
115 	/*
116 	 * We have I30 global constant as an optimization as it is the name
117 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 	 * allocation but that is ok. And most attributes are unnamed anyway,
119 	 * thus the fraction of named attributes with name != I30 is actually
120 	 * absolutely tiny.
121 	 */
122 	if (na->name_len && na->name != I30) {
123 		unsigned int i;
124 
125 		BUG_ON(!na->name);
126 		i = na->name_len * sizeof(ntfschar);
127 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
128 		if (!ni->name)
129 			return -ENOMEM;
130 		memcpy(ni->name, na->name, i);
131 		ni->name[na->name_len] = 0;
132 	}
133 	return 0;
134 }
135 
136 static int ntfs_read_locked_inode(struct inode *vi);
137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138 static int ntfs_read_locked_index_inode(struct inode *base_vi,
139 		struct inode *vi);
140 
141 /**
142  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143  * @sb:		super block of mounted volume
144  * @mft_no:	mft record number / inode number to obtain
145  *
146  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147  * file or directory).
148  *
149  * If the inode is in the cache, it is just returned with an increased
150  * reference count. Otherwise, a new struct inode is allocated and initialized,
151  * and finally ntfs_read_locked_inode() is called to read in the inode and
152  * fill in the remainder of the inode structure.
153  *
154  * Return the struct inode on success. Check the return value with IS_ERR() and
155  * if true, the function failed and the error code is obtained from PTR_ERR().
156  */
157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
158 {
159 	struct inode *vi;
160 	int err;
161 	ntfs_attr na;
162 
163 	na.mft_no = mft_no;
164 	na.type = AT_UNUSED;
165 	na.name = NULL;
166 	na.name_len = 0;
167 
168 	vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 			ntfs_init_locked_inode, &na);
170 	if (unlikely(!vi))
171 		return ERR_PTR(-ENOMEM);
172 
173 	err = 0;
174 
175 	/* If this is a freshly allocated inode, need to read it now. */
176 	if (vi->i_state & I_NEW) {
177 		err = ntfs_read_locked_inode(vi);
178 		unlock_new_inode(vi);
179 	}
180 	/*
181 	 * There is no point in keeping bad inodes around if the failure was
182 	 * due to ENOMEM. We want to be able to retry again later.
183 	 */
184 	if (unlikely(err == -ENOMEM)) {
185 		iput(vi);
186 		vi = ERR_PTR(err);
187 	}
188 	return vi;
189 }
190 
191 /**
192  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193  * @base_vi:	vfs base inode containing the attribute
194  * @type:	attribute type
195  * @name:	Unicode name of the attribute (NULL if unnamed)
196  * @name_len:	length of @name in Unicode characters (0 if unnamed)
197  *
198  * Obtain the (fake) struct inode corresponding to the attribute specified by
199  * @type, @name, and @name_len, which is present in the base mft record
200  * specified by the vfs inode @base_vi.
201  *
202  * If the attribute inode is in the cache, it is just returned with an
203  * increased reference count. Otherwise, a new struct inode is allocated and
204  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205  * attribute and fill in the inode structure.
206  *
207  * Note, for index allocation attributes, you need to use ntfs_index_iget()
208  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209  *
210  * Return the struct inode of the attribute inode on success. Check the return
211  * value with IS_ERR() and if true, the function failed and the error code is
212  * obtained from PTR_ERR().
213  */
214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 		ntfschar *name, u32 name_len)
216 {
217 	struct inode *vi;
218 	int err;
219 	ntfs_attr na;
220 
221 	/* Make sure no one calls ntfs_attr_iget() for indices. */
222 	BUG_ON(type == AT_INDEX_ALLOCATION);
223 
224 	na.mft_no = base_vi->i_ino;
225 	na.type = type;
226 	na.name = name;
227 	na.name_len = name_len;
228 
229 	vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 			ntfs_init_locked_inode, &na);
231 	if (unlikely(!vi))
232 		return ERR_PTR(-ENOMEM);
233 
234 	err = 0;
235 
236 	/* If this is a freshly allocated inode, need to read it now. */
237 	if (vi->i_state & I_NEW) {
238 		err = ntfs_read_locked_attr_inode(base_vi, vi);
239 		unlock_new_inode(vi);
240 	}
241 	/*
242 	 * There is no point in keeping bad attribute inodes around. This also
243 	 * simplifies things in that we never need to check for bad attribute
244 	 * inodes elsewhere.
245 	 */
246 	if (unlikely(err)) {
247 		iput(vi);
248 		vi = ERR_PTR(err);
249 	}
250 	return vi;
251 }
252 
253 /**
254  * ntfs_index_iget - obtain a struct inode corresponding to an index
255  * @base_vi:	vfs base inode containing the index related attributes
256  * @name:	Unicode name of the index
257  * @name_len:	length of @name in Unicode characters
258  *
259  * Obtain the (fake) struct inode corresponding to the index specified by @name
260  * and @name_len, which is present in the base mft record specified by the vfs
261  * inode @base_vi.
262  *
263  * If the index inode is in the cache, it is just returned with an increased
264  * reference count.  Otherwise, a new struct inode is allocated and
265  * initialized, and finally ntfs_read_locked_index_inode() is called to read
266  * the index related attributes and fill in the inode structure.
267  *
268  * Return the struct inode of the index inode on success. Check the return
269  * value with IS_ERR() and if true, the function failed and the error code is
270  * obtained from PTR_ERR().
271  */
272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
273 		u32 name_len)
274 {
275 	struct inode *vi;
276 	int err;
277 	ntfs_attr na;
278 
279 	na.mft_no = base_vi->i_ino;
280 	na.type = AT_INDEX_ALLOCATION;
281 	na.name = name;
282 	na.name_len = name_len;
283 
284 	vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 			ntfs_init_locked_inode, &na);
286 	if (unlikely(!vi))
287 		return ERR_PTR(-ENOMEM);
288 
289 	err = 0;
290 
291 	/* If this is a freshly allocated inode, need to read it now. */
292 	if (vi->i_state & I_NEW) {
293 		err = ntfs_read_locked_index_inode(base_vi, vi);
294 		unlock_new_inode(vi);
295 	}
296 	/*
297 	 * There is no point in keeping bad index inodes around.  This also
298 	 * simplifies things in that we never need to check for bad index
299 	 * inodes elsewhere.
300 	 */
301 	if (unlikely(err)) {
302 		iput(vi);
303 		vi = ERR_PTR(err);
304 	}
305 	return vi;
306 }
307 
308 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
309 {
310 	ntfs_inode *ni;
311 
312 	ntfs_debug("Entering.");
313 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
314 	if (likely(ni != NULL)) {
315 		ni->state = 0;
316 		return VFS_I(ni);
317 	}
318 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
319 	return NULL;
320 }
321 
322 void ntfs_free_big_inode(struct inode *inode)
323 {
324 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
325 }
326 
327 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
328 {
329 	ntfs_inode *ni;
330 
331 	ntfs_debug("Entering.");
332 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 	if (likely(ni != NULL)) {
334 		ni->state = 0;
335 		return ni;
336 	}
337 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
338 	return NULL;
339 }
340 
341 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
342 {
343 	ntfs_debug("Entering.");
344 	BUG_ON(ni->page);
345 	if (!atomic_dec_and_test(&ni->count))
346 		BUG();
347 	kmem_cache_free(ntfs_inode_cache, ni);
348 }
349 
350 /*
351  * The attribute runlist lock has separate locking rules from the
352  * normal runlist lock, so split the two lock-classes:
353  */
354 static struct lock_class_key attr_list_rl_lock_class;
355 
356 /**
357  * __ntfs_init_inode - initialize ntfs specific part of an inode
358  * @sb:		super block of mounted volume
359  * @ni:		freshly allocated ntfs inode which to initialize
360  *
361  * Initialize an ntfs inode to defaults.
362  *
363  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364  * untouched. Make sure to initialize them elsewhere.
365  *
366  * Return zero on success and -ENOMEM on error.
367  */
368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
369 {
370 	ntfs_debug("Entering.");
371 	rwlock_init(&ni->size_lock);
372 	ni->initialized_size = ni->allocated_size = 0;
373 	ni->seq_no = 0;
374 	atomic_set(&ni->count, 1);
375 	ni->vol = NTFS_SB(sb);
376 	ntfs_init_runlist(&ni->runlist);
377 	mutex_init(&ni->mrec_lock);
378 	ni->page = NULL;
379 	ni->page_ofs = 0;
380 	ni->attr_list_size = 0;
381 	ni->attr_list = NULL;
382 	ntfs_init_runlist(&ni->attr_list_rl);
383 	lockdep_set_class(&ni->attr_list_rl.lock,
384 				&attr_list_rl_lock_class);
385 	ni->itype.index.block_size = 0;
386 	ni->itype.index.vcn_size = 0;
387 	ni->itype.index.collation_rule = 0;
388 	ni->itype.index.block_size_bits = 0;
389 	ni->itype.index.vcn_size_bits = 0;
390 	mutex_init(&ni->extent_lock);
391 	ni->nr_extents = 0;
392 	ni->ext.base_ntfs_ino = NULL;
393 }
394 
395 /*
396  * Extent inodes get MFT-mapped in a nested way, while the base inode
397  * is still mapped. Teach this nesting to the lock validator by creating
398  * a separate class for nested inode's mrec_lock's:
399  */
400 static struct lock_class_key extent_inode_mrec_lock_key;
401 
402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 		unsigned long mft_no)
404 {
405 	ntfs_inode *ni = ntfs_alloc_extent_inode();
406 
407 	ntfs_debug("Entering.");
408 	if (likely(ni != NULL)) {
409 		__ntfs_init_inode(sb, ni);
410 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
411 		ni->mft_no = mft_no;
412 		ni->type = AT_UNUSED;
413 		ni->name = NULL;
414 		ni->name_len = 0;
415 	}
416 	return ni;
417 }
418 
419 /**
420  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421  * @ctx:	initialized attribute search context
422  *
423  * Search all file name attributes in the inode described by the attribute
424  * search context @ctx and check if any of the names are in the $Extend system
425  * directory.
426  *
427  * Return values:
428  *	   1: file is in $Extend directory
429  *	   0: file is not in $Extend directory
430  *    -errno: failed to determine if the file is in the $Extend directory
431  */
432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
433 {
434 	int nr_links, err;
435 
436 	/* Restart search. */
437 	ntfs_attr_reinit_search_ctx(ctx);
438 
439 	/* Get number of hard links. */
440 	nr_links = le16_to_cpu(ctx->mrec->link_count);
441 
442 	/* Loop through all hard links. */
443 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 			ctx))) {
445 		FILE_NAME_ATTR *file_name_attr;
446 		ATTR_RECORD *attr = ctx->attr;
447 		u8 *p, *p2;
448 
449 		nr_links--;
450 		/*
451 		 * Maximum sanity checking as we are called on an inode that
452 		 * we suspect might be corrupt.
453 		 */
454 		p = (u8*)attr + le32_to_cpu(attr->length);
455 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
457 err_corrupt_attr:
458 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 					"attribute. You should run chkdsk.");
460 			return -EIO;
461 		}
462 		if (attr->non_resident) {
463 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 					"name. You should run chkdsk.");
465 			return -EIO;
466 		}
467 		if (attr->flags) {
468 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 					"invalid flags. You should run "
470 					"chkdsk.");
471 			return -EIO;
472 		}
473 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 					"name. You should run chkdsk.");
476 			return -EIO;
477 		}
478 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 				le16_to_cpu(attr->data.resident.value_offset));
480 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
481 		if (p2 < (u8*)attr || p2 > p)
482 			goto err_corrupt_attr;
483 		/* This attribute is ok, but is it in the $Extend directory? */
484 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 			return 1;	/* YES, it's an extended system file. */
486 	}
487 	if (unlikely(err != -ENOENT))
488 		return err;
489 	if (unlikely(nr_links)) {
490 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 				"doesn't match number of name attributes. You "
492 				"should run chkdsk.");
493 		return -EIO;
494 	}
495 	return 0;	/* NO, it is not an extended system file. */
496 }
497 
498 /**
499  * ntfs_read_locked_inode - read an inode from its device
500  * @vi:		inode to read
501  *
502  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503  * described by @vi into memory from the device.
504  *
505  * The only fields in @vi that we need to/can look at when the function is
506  * called are i_sb, pointing to the mounted device's super block, and i_ino,
507  * the number of the inode to load.
508  *
509  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510  * for reading and sets up the necessary @vi fields as well as initializing
511  * the ntfs inode.
512  *
513  * Q: What locks are held when the function is called?
514  * A: i_state has I_NEW set, hence the inode is locked, also
515  *    i_count is set to 1, so it is not going to go away
516  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
517  *    is allowed to write to them. We should of course be honouring them but
518  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
519  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520  *
521  * Return 0 on success and -errno on error.  In the error case, the inode will
522  * have had make_bad_inode() executed on it.
523  */
524 static int ntfs_read_locked_inode(struct inode *vi)
525 {
526 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
527 	ntfs_inode *ni;
528 	struct inode *bvi;
529 	MFT_RECORD *m;
530 	ATTR_RECORD *a;
531 	STANDARD_INFORMATION *si;
532 	ntfs_attr_search_ctx *ctx;
533 	int err = 0;
534 
535 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
536 
537 	/* Setup the generic vfs inode parts now. */
538 	vi->i_uid = vol->uid;
539 	vi->i_gid = vol->gid;
540 	vi->i_mode = 0;
541 
542 	/*
543 	 * Initialize the ntfs specific part of @vi special casing
544 	 * FILE_MFT which we need to do at mount time.
545 	 */
546 	if (vi->i_ino != FILE_MFT)
547 		ntfs_init_big_inode(vi);
548 	ni = NTFS_I(vi);
549 
550 	m = map_mft_record(ni);
551 	if (IS_ERR(m)) {
552 		err = PTR_ERR(m);
553 		goto err_out;
554 	}
555 	ctx = ntfs_attr_get_search_ctx(ni, m);
556 	if (!ctx) {
557 		err = -ENOMEM;
558 		goto unm_err_out;
559 	}
560 
561 	if (!(m->flags & MFT_RECORD_IN_USE)) {
562 		ntfs_error(vi->i_sb, "Inode is not in use!");
563 		goto unm_err_out;
564 	}
565 	if (m->base_mft_record) {
566 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
567 		goto unm_err_out;
568 	}
569 
570 	/* Transfer information from mft record into vfs and ntfs inodes. */
571 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
572 
573 	/*
574 	 * FIXME: Keep in mind that link_count is two for files which have both
575 	 * a long file name and a short file name as separate entries, so if
576 	 * we are hiding short file names this will be too high. Either we need
577 	 * to account for the short file names by subtracting them or we need
578 	 * to make sure we delete files even though i_nlink is not zero which
579 	 * might be tricky due to vfs interactions. Need to think about this
580 	 * some more when implementing the unlink command.
581 	 */
582 	set_nlink(vi, le16_to_cpu(m->link_count));
583 	/*
584 	 * FIXME: Reparse points can have the directory bit set even though
585 	 * they would be S_IFLNK. Need to deal with this further below when we
586 	 * implement reparse points / symbolic links but it will do for now.
587 	 * Also if not a directory, it could be something else, rather than
588 	 * a regular file. But again, will do for now.
589 	 */
590 	/* Everyone gets all permissions. */
591 	vi->i_mode |= S_IRWXUGO;
592 	/* If read-only, no one gets write permissions. */
593 	if (IS_RDONLY(vi))
594 		vi->i_mode &= ~S_IWUGO;
595 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 		vi->i_mode |= S_IFDIR;
597 		/*
598 		 * Apply the directory permissions mask set in the mount
599 		 * options.
600 		 */
601 		vi->i_mode &= ~vol->dmask;
602 		/* Things break without this kludge! */
603 		if (vi->i_nlink > 1)
604 			set_nlink(vi, 1);
605 	} else {
606 		vi->i_mode |= S_IFREG;
607 		/* Apply the file permissions mask set in the mount options. */
608 		vi->i_mode &= ~vol->fmask;
609 	}
610 	/*
611 	 * Find the standard information attribute in the mft record. At this
612 	 * stage we haven't setup the attribute list stuff yet, so this could
613 	 * in fact fail if the standard information is in an extent record, but
614 	 * I don't think this actually ever happens.
615 	 */
616 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
617 			ctx);
618 	if (unlikely(err)) {
619 		if (err == -ENOENT) {
620 			/*
621 			 * TODO: We should be performing a hot fix here (if the
622 			 * recover mount option is set) by creating a new
623 			 * attribute.
624 			 */
625 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
626 					"is missing.");
627 		}
628 		goto unm_err_out;
629 	}
630 	a = ctx->attr;
631 	/* Get the standard information attribute value. */
632 	if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
633 			+ le32_to_cpu(a->data.resident.value_length) >
634 			(u8 *)ctx->mrec + vol->mft_record_size) {
635 		ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
636 		goto unm_err_out;
637 	}
638 	si = (STANDARD_INFORMATION*)((u8*)a +
639 			le16_to_cpu(a->data.resident.value_offset));
640 
641 	/* Transfer information from the standard information into vi. */
642 	/*
643 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
644 	 * but they are close enough, and in the end it doesn't really matter
645 	 * that much...
646 	 */
647 	/*
648 	 * mtime is the last change of the data within the file. Not changed
649 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
650 	 */
651 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
652 	/*
653 	 * ctime is the last change of the metadata of the file. This obviously
654 	 * always changes, when mtime is changed. ctime can be changed on its
655 	 * own, mtime is then not changed, e.g. when a file is renamed.
656 	 */
657 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
658 	/*
659 	 * Last access to the data within the file. Not changed during a rename
660 	 * for example but changed whenever the file is written to.
661 	 */
662 	vi->i_atime = ntfs2utc(si->last_access_time);
663 
664 	/* Find the attribute list attribute if present. */
665 	ntfs_attr_reinit_search_ctx(ctx);
666 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
667 	if (err) {
668 		if (unlikely(err != -ENOENT)) {
669 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
670 					"attribute.");
671 			goto unm_err_out;
672 		}
673 	} else /* if (!err) */ {
674 		if (vi->i_ino == FILE_MFT)
675 			goto skip_attr_list_load;
676 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
677 		NInoSetAttrList(ni);
678 		a = ctx->attr;
679 		if (a->flags & ATTR_COMPRESSION_MASK) {
680 			ntfs_error(vi->i_sb, "Attribute list attribute is "
681 					"compressed.");
682 			goto unm_err_out;
683 		}
684 		if (a->flags & ATTR_IS_ENCRYPTED ||
685 				a->flags & ATTR_IS_SPARSE) {
686 			if (a->non_resident) {
687 				ntfs_error(vi->i_sb, "Non-resident attribute "
688 						"list attribute is encrypted/"
689 						"sparse.");
690 				goto unm_err_out;
691 			}
692 			ntfs_warning(vi->i_sb, "Resident attribute list "
693 					"attribute in inode 0x%lx is marked "
694 					"encrypted/sparse which is not true.  "
695 					"However, Windows allows this and "
696 					"chkdsk does not detect or correct it "
697 					"so we will just ignore the invalid "
698 					"flags and pretend they are not set.",
699 					vi->i_ino);
700 		}
701 		/* Now allocate memory for the attribute list. */
702 		ni->attr_list_size = (u32)ntfs_attr_size(a);
703 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
704 		if (!ni->attr_list) {
705 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
706 					"buffer for attribute list.");
707 			err = -ENOMEM;
708 			goto unm_err_out;
709 		}
710 		if (a->non_resident) {
711 			NInoSetAttrListNonResident(ni);
712 			if (a->data.non_resident.lowest_vcn) {
713 				ntfs_error(vi->i_sb, "Attribute list has non "
714 						"zero lowest_vcn.");
715 				goto unm_err_out;
716 			}
717 			/*
718 			 * Setup the runlist. No need for locking as we have
719 			 * exclusive access to the inode at this time.
720 			 */
721 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
722 					a, NULL);
723 			if (IS_ERR(ni->attr_list_rl.rl)) {
724 				err = PTR_ERR(ni->attr_list_rl.rl);
725 				ni->attr_list_rl.rl = NULL;
726 				ntfs_error(vi->i_sb, "Mapping pairs "
727 						"decompression failed.");
728 				goto unm_err_out;
729 			}
730 			/* Now load the attribute list. */
731 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
732 					ni->attr_list, ni->attr_list_size,
733 					sle64_to_cpu(a->data.non_resident.
734 					initialized_size)))) {
735 				ntfs_error(vi->i_sb, "Failed to load "
736 						"attribute list attribute.");
737 				goto unm_err_out;
738 			}
739 		} else /* if (!a->non_resident) */ {
740 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
741 					+ le32_to_cpu(
742 					a->data.resident.value_length) >
743 					(u8*)ctx->mrec + vol->mft_record_size) {
744 				ntfs_error(vi->i_sb, "Corrupt attribute list "
745 						"in inode.");
746 				goto unm_err_out;
747 			}
748 			/* Now copy the attribute list. */
749 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
750 					a->data.resident.value_offset),
751 					le32_to_cpu(
752 					a->data.resident.value_length));
753 		}
754 	}
755 skip_attr_list_load:
756 	/*
757 	 * If an attribute list is present we now have the attribute list value
758 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
759 	 */
760 	if (S_ISDIR(vi->i_mode)) {
761 		loff_t bvi_size;
762 		ntfs_inode *bni;
763 		INDEX_ROOT *ir;
764 		u8 *ir_end, *index_end;
765 
766 		/* It is a directory, find index root attribute. */
767 		ntfs_attr_reinit_search_ctx(ctx);
768 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
769 				0, NULL, 0, ctx);
770 		if (unlikely(err)) {
771 			if (err == -ENOENT) {
772 				// FIXME: File is corrupt! Hot-fix with empty
773 				// index root attribute if recovery option is
774 				// set.
775 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
776 						"is missing.");
777 			}
778 			goto unm_err_out;
779 		}
780 		a = ctx->attr;
781 		/* Set up the state. */
782 		if (unlikely(a->non_resident)) {
783 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
784 					"resident.");
785 			goto unm_err_out;
786 		}
787 		/* Ensure the attribute name is placed before the value. */
788 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
789 				le16_to_cpu(a->data.resident.value_offset)))) {
790 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
791 					"placed after the attribute value.");
792 			goto unm_err_out;
793 		}
794 		/*
795 		 * Compressed/encrypted index root just means that the newly
796 		 * created files in that directory should be created compressed/
797 		 * encrypted. However index root cannot be both compressed and
798 		 * encrypted.
799 		 */
800 		if (a->flags & ATTR_COMPRESSION_MASK)
801 			NInoSetCompressed(ni);
802 		if (a->flags & ATTR_IS_ENCRYPTED) {
803 			if (a->flags & ATTR_COMPRESSION_MASK) {
804 				ntfs_error(vi->i_sb, "Found encrypted and "
805 						"compressed attribute.");
806 				goto unm_err_out;
807 			}
808 			NInoSetEncrypted(ni);
809 		}
810 		if (a->flags & ATTR_IS_SPARSE)
811 			NInoSetSparse(ni);
812 		ir = (INDEX_ROOT*)((u8*)a +
813 				le16_to_cpu(a->data.resident.value_offset));
814 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
815 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
816 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
817 					"corrupt.");
818 			goto unm_err_out;
819 		}
820 		index_end = (u8*)&ir->index +
821 				le32_to_cpu(ir->index.index_length);
822 		if (index_end > ir_end) {
823 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
824 			goto unm_err_out;
825 		}
826 		if (ir->type != AT_FILE_NAME) {
827 			ntfs_error(vi->i_sb, "Indexed attribute is not "
828 					"$FILE_NAME.");
829 			goto unm_err_out;
830 		}
831 		if (ir->collation_rule != COLLATION_FILE_NAME) {
832 			ntfs_error(vi->i_sb, "Index collation rule is not "
833 					"COLLATION_FILE_NAME.");
834 			goto unm_err_out;
835 		}
836 		ni->itype.index.collation_rule = ir->collation_rule;
837 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
838 		if (ni->itype.index.block_size &
839 				(ni->itype.index.block_size - 1)) {
840 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
841 					"power of two.",
842 					ni->itype.index.block_size);
843 			goto unm_err_out;
844 		}
845 		if (ni->itype.index.block_size > PAGE_SIZE) {
846 			ntfs_error(vi->i_sb, "Index block size (%u) > "
847 					"PAGE_SIZE (%ld) is not "
848 					"supported.  Sorry.",
849 					ni->itype.index.block_size,
850 					PAGE_SIZE);
851 			err = -EOPNOTSUPP;
852 			goto unm_err_out;
853 		}
854 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
855 			ntfs_error(vi->i_sb, "Index block size (%u) < "
856 					"NTFS_BLOCK_SIZE (%i) is not "
857 					"supported.  Sorry.",
858 					ni->itype.index.block_size,
859 					NTFS_BLOCK_SIZE);
860 			err = -EOPNOTSUPP;
861 			goto unm_err_out;
862 		}
863 		ni->itype.index.block_size_bits =
864 				ffs(ni->itype.index.block_size) - 1;
865 		/* Determine the size of a vcn in the directory index. */
866 		if (vol->cluster_size <= ni->itype.index.block_size) {
867 			ni->itype.index.vcn_size = vol->cluster_size;
868 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
869 		} else {
870 			ni->itype.index.vcn_size = vol->sector_size;
871 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
872 		}
873 
874 		/* Setup the index allocation attribute, even if not present. */
875 		NInoSetMstProtected(ni);
876 		ni->type = AT_INDEX_ALLOCATION;
877 		ni->name = I30;
878 		ni->name_len = 4;
879 
880 		if (!(ir->index.flags & LARGE_INDEX)) {
881 			/* No index allocation. */
882 			vi->i_size = ni->initialized_size =
883 					ni->allocated_size = 0;
884 			/* We are done with the mft record, so we release it. */
885 			ntfs_attr_put_search_ctx(ctx);
886 			unmap_mft_record(ni);
887 			m = NULL;
888 			ctx = NULL;
889 			goto skip_large_dir_stuff;
890 		} /* LARGE_INDEX: Index allocation present. Setup state. */
891 		NInoSetIndexAllocPresent(ni);
892 		/* Find index allocation attribute. */
893 		ntfs_attr_reinit_search_ctx(ctx);
894 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
895 				CASE_SENSITIVE, 0, NULL, 0, ctx);
896 		if (unlikely(err)) {
897 			if (err == -ENOENT)
898 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
899 						"attribute is not present but "
900 						"$INDEX_ROOT indicated it is.");
901 			else
902 				ntfs_error(vi->i_sb, "Failed to lookup "
903 						"$INDEX_ALLOCATION "
904 						"attribute.");
905 			goto unm_err_out;
906 		}
907 		a = ctx->attr;
908 		if (!a->non_resident) {
909 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
910 					"is resident.");
911 			goto unm_err_out;
912 		}
913 		/*
914 		 * Ensure the attribute name is placed before the mapping pairs
915 		 * array.
916 		 */
917 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
918 				le16_to_cpu(
919 				a->data.non_resident.mapping_pairs_offset)))) {
920 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
921 					"is placed after the mapping pairs "
922 					"array.");
923 			goto unm_err_out;
924 		}
925 		if (a->flags & ATTR_IS_ENCRYPTED) {
926 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
927 					"is encrypted.");
928 			goto unm_err_out;
929 		}
930 		if (a->flags & ATTR_IS_SPARSE) {
931 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
932 					"is sparse.");
933 			goto unm_err_out;
934 		}
935 		if (a->flags & ATTR_COMPRESSION_MASK) {
936 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 					"is compressed.");
938 			goto unm_err_out;
939 		}
940 		if (a->data.non_resident.lowest_vcn) {
941 			ntfs_error(vi->i_sb, "First extent of "
942 					"$INDEX_ALLOCATION attribute has non "
943 					"zero lowest_vcn.");
944 			goto unm_err_out;
945 		}
946 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
947 		ni->initialized_size = sle64_to_cpu(
948 				a->data.non_resident.initialized_size);
949 		ni->allocated_size = sle64_to_cpu(
950 				a->data.non_resident.allocated_size);
951 		/*
952 		 * We are done with the mft record, so we release it. Otherwise
953 		 * we would deadlock in ntfs_attr_iget().
954 		 */
955 		ntfs_attr_put_search_ctx(ctx);
956 		unmap_mft_record(ni);
957 		m = NULL;
958 		ctx = NULL;
959 		/* Get the index bitmap attribute inode. */
960 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
961 		if (IS_ERR(bvi)) {
962 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
963 			err = PTR_ERR(bvi);
964 			goto unm_err_out;
965 		}
966 		bni = NTFS_I(bvi);
967 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
968 				NInoSparse(bni)) {
969 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
970 					"and/or encrypted and/or sparse.");
971 			goto iput_unm_err_out;
972 		}
973 		/* Consistency check bitmap size vs. index allocation size. */
974 		bvi_size = i_size_read(bvi);
975 		if ((bvi_size << 3) < (vi->i_size >>
976 				ni->itype.index.block_size_bits)) {
977 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
978 					"for index allocation (0x%llx).",
979 					bvi_size << 3, vi->i_size);
980 			goto iput_unm_err_out;
981 		}
982 		/* No longer need the bitmap attribute inode. */
983 		iput(bvi);
984 skip_large_dir_stuff:
985 		/* Setup the operations for this inode. */
986 		vi->i_op = &ntfs_dir_inode_ops;
987 		vi->i_fop = &ntfs_dir_ops;
988 		vi->i_mapping->a_ops = &ntfs_mst_aops;
989 	} else {
990 		/* It is a file. */
991 		ntfs_attr_reinit_search_ctx(ctx);
992 
993 		/* Setup the data attribute, even if not present. */
994 		ni->type = AT_DATA;
995 		ni->name = NULL;
996 		ni->name_len = 0;
997 
998 		/* Find first extent of the unnamed data attribute. */
999 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1000 		if (unlikely(err)) {
1001 			vi->i_size = ni->initialized_size =
1002 					ni->allocated_size = 0;
1003 			if (err != -ENOENT) {
1004 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1005 						"attribute.");
1006 				goto unm_err_out;
1007 			}
1008 			/*
1009 			 * FILE_Secure does not have an unnamed $DATA
1010 			 * attribute, so we special case it here.
1011 			 */
1012 			if (vi->i_ino == FILE_Secure)
1013 				goto no_data_attr_special_case;
1014 			/*
1015 			 * Most if not all the system files in the $Extend
1016 			 * system directory do not have unnamed data
1017 			 * attributes so we need to check if the parent
1018 			 * directory of the file is FILE_Extend and if it is
1019 			 * ignore this error. To do this we need to get the
1020 			 * name of this inode from the mft record as the name
1021 			 * contains the back reference to the parent directory.
1022 			 */
1023 			if (ntfs_is_extended_system_file(ctx) > 0)
1024 				goto no_data_attr_special_case;
1025 			// FIXME: File is corrupt! Hot-fix with empty data
1026 			// attribute if recovery option is set.
1027 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1028 			goto unm_err_out;
1029 		}
1030 		a = ctx->attr;
1031 		/* Setup the state. */
1032 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1033 			if (a->flags & ATTR_COMPRESSION_MASK) {
1034 				NInoSetCompressed(ni);
1035 				if (vol->cluster_size > 4096) {
1036 					ntfs_error(vi->i_sb, "Found "
1037 							"compressed data but "
1038 							"compression is "
1039 							"disabled due to "
1040 							"cluster size (%i) > "
1041 							"4kiB.",
1042 							vol->cluster_size);
1043 					goto unm_err_out;
1044 				}
1045 				if ((a->flags & ATTR_COMPRESSION_MASK)
1046 						!= ATTR_IS_COMPRESSED) {
1047 					ntfs_error(vi->i_sb, "Found unknown "
1048 							"compression method "
1049 							"or corrupt file.");
1050 					goto unm_err_out;
1051 				}
1052 			}
1053 			if (a->flags & ATTR_IS_SPARSE)
1054 				NInoSetSparse(ni);
1055 		}
1056 		if (a->flags & ATTR_IS_ENCRYPTED) {
1057 			if (NInoCompressed(ni)) {
1058 				ntfs_error(vi->i_sb, "Found encrypted and "
1059 						"compressed data.");
1060 				goto unm_err_out;
1061 			}
1062 			NInoSetEncrypted(ni);
1063 		}
1064 		if (a->non_resident) {
1065 			NInoSetNonResident(ni);
1066 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1067 				if (NInoCompressed(ni) && a->data.non_resident.
1068 						compression_unit != 4) {
1069 					ntfs_error(vi->i_sb, "Found "
1070 							"non-standard "
1071 							"compression unit (%u "
1072 							"instead of 4).  "
1073 							"Cannot handle this.",
1074 							a->data.non_resident.
1075 							compression_unit);
1076 					err = -EOPNOTSUPP;
1077 					goto unm_err_out;
1078 				}
1079 				if (a->data.non_resident.compression_unit) {
1080 					ni->itype.compressed.block_size = 1U <<
1081 							(a->data.non_resident.
1082 							compression_unit +
1083 							vol->cluster_size_bits);
1084 					ni->itype.compressed.block_size_bits =
1085 							ffs(ni->itype.
1086 							compressed.
1087 							block_size) - 1;
1088 					ni->itype.compressed.block_clusters =
1089 							1U << a->data.
1090 							non_resident.
1091 							compression_unit;
1092 				} else {
1093 					ni->itype.compressed.block_size = 0;
1094 					ni->itype.compressed.block_size_bits =
1095 							0;
1096 					ni->itype.compressed.block_clusters =
1097 							0;
1098 				}
1099 				ni->itype.compressed.size = sle64_to_cpu(
1100 						a->data.non_resident.
1101 						compressed_size);
1102 			}
1103 			if (a->data.non_resident.lowest_vcn) {
1104 				ntfs_error(vi->i_sb, "First extent of $DATA "
1105 						"attribute has non zero "
1106 						"lowest_vcn.");
1107 				goto unm_err_out;
1108 			}
1109 			vi->i_size = sle64_to_cpu(
1110 					a->data.non_resident.data_size);
1111 			ni->initialized_size = sle64_to_cpu(
1112 					a->data.non_resident.initialized_size);
1113 			ni->allocated_size = sle64_to_cpu(
1114 					a->data.non_resident.allocated_size);
1115 		} else { /* Resident attribute. */
1116 			vi->i_size = ni->initialized_size = le32_to_cpu(
1117 					a->data.resident.value_length);
1118 			ni->allocated_size = le32_to_cpu(a->length) -
1119 					le16_to_cpu(
1120 					a->data.resident.value_offset);
1121 			if (vi->i_size > ni->allocated_size) {
1122 				ntfs_error(vi->i_sb, "Resident data attribute "
1123 						"is corrupt (size exceeds "
1124 						"allocation).");
1125 				goto unm_err_out;
1126 			}
1127 		}
1128 no_data_attr_special_case:
1129 		/* We are done with the mft record, so we release it. */
1130 		ntfs_attr_put_search_ctx(ctx);
1131 		unmap_mft_record(ni);
1132 		m = NULL;
1133 		ctx = NULL;
1134 		/* Setup the operations for this inode. */
1135 		vi->i_op = &ntfs_file_inode_ops;
1136 		vi->i_fop = &ntfs_file_ops;
1137 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1138 		if (NInoMstProtected(ni))
1139 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1140 		else if (NInoCompressed(ni))
1141 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1142 	}
1143 	/*
1144 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1145 	 * far inaccurate as it doesn't account for any named streams or other
1146 	 * special non-resident attributes, but that is how Windows works, too,
1147 	 * so we are at least consistent with Windows, if not entirely
1148 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149 	 * significant slowdown as it would involve iterating over all
1150 	 * attributes in the mft record and adding the allocated/compressed
1151 	 * sizes of all non-resident attributes present to give us the Linux
1152 	 * correct size that should go into i_blocks (after division by 512).
1153 	 */
1154 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155 		vi->i_blocks = ni->itype.compressed.size >> 9;
1156 	else
1157 		vi->i_blocks = ni->allocated_size >> 9;
1158 	ntfs_debug("Done.");
1159 	return 0;
1160 iput_unm_err_out:
1161 	iput(bvi);
1162 unm_err_out:
1163 	if (!err)
1164 		err = -EIO;
1165 	if (ctx)
1166 		ntfs_attr_put_search_ctx(ctx);
1167 	if (m)
1168 		unmap_mft_record(ni);
1169 err_out:
1170 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1171 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1172 	make_bad_inode(vi);
1173 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1174 		NVolSetErrors(vol);
1175 	return err;
1176 }
1177 
1178 /**
1179  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180  * @base_vi:	base inode
1181  * @vi:		attribute inode to read
1182  *
1183  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184  * attribute inode described by @vi into memory from the base mft record
1185  * described by @base_ni.
1186  *
1187  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188  * reading and looks up the attribute described by @vi before setting up the
1189  * necessary fields in @vi as well as initializing the ntfs inode.
1190  *
1191  * Q: What locks are held when the function is called?
1192  * A: i_state has I_NEW set, hence the inode is locked, also
1193  *    i_count is set to 1, so it is not going to go away
1194  *
1195  * Return 0 on success and -errno on error.  In the error case, the inode will
1196  * have had make_bad_inode() executed on it.
1197  *
1198  * Note this cannot be called for AT_INDEX_ALLOCATION.
1199  */
1200 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1201 {
1202 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203 	ntfs_inode *ni, *base_ni;
1204 	MFT_RECORD *m;
1205 	ATTR_RECORD *a;
1206 	ntfs_attr_search_ctx *ctx;
1207 	int err = 0;
1208 
1209 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1210 
1211 	ntfs_init_big_inode(vi);
1212 
1213 	ni	= NTFS_I(vi);
1214 	base_ni = NTFS_I(base_vi);
1215 
1216 	/* Just mirror the values from the base inode. */
1217 	vi->i_uid	= base_vi->i_uid;
1218 	vi->i_gid	= base_vi->i_gid;
1219 	set_nlink(vi, base_vi->i_nlink);
1220 	vi->i_mtime	= base_vi->i_mtime;
1221 	vi->i_ctime	= base_vi->i_ctime;
1222 	vi->i_atime	= base_vi->i_atime;
1223 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1224 
1225 	/* Set inode type to zero but preserve permissions. */
1226 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1227 
1228 	m = map_mft_record(base_ni);
1229 	if (IS_ERR(m)) {
1230 		err = PTR_ERR(m);
1231 		goto err_out;
1232 	}
1233 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1234 	if (!ctx) {
1235 		err = -ENOMEM;
1236 		goto unm_err_out;
1237 	}
1238 	/* Find the attribute. */
1239 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1240 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1241 	if (unlikely(err))
1242 		goto unm_err_out;
1243 	a = ctx->attr;
1244 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1245 		if (a->flags & ATTR_COMPRESSION_MASK) {
1246 			NInoSetCompressed(ni);
1247 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1248 					ni->name_len)) {
1249 				ntfs_error(vi->i_sb, "Found compressed "
1250 						"non-data or named data "
1251 						"attribute.  Please report "
1252 						"you saw this message to "
1253 						"linux-ntfs-dev@lists."
1254 						"sourceforge.net");
1255 				goto unm_err_out;
1256 			}
1257 			if (vol->cluster_size > 4096) {
1258 				ntfs_error(vi->i_sb, "Found compressed "
1259 						"attribute but compression is "
1260 						"disabled due to cluster size "
1261 						"(%i) > 4kiB.",
1262 						vol->cluster_size);
1263 				goto unm_err_out;
1264 			}
1265 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1266 					ATTR_IS_COMPRESSED) {
1267 				ntfs_error(vi->i_sb, "Found unknown "
1268 						"compression method.");
1269 				goto unm_err_out;
1270 			}
1271 		}
1272 		/*
1273 		 * The compressed/sparse flag set in an index root just means
1274 		 * to compress all files.
1275 		 */
1276 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1277 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1278 					"but the attribute is %s.  Please "
1279 					"report you saw this message to "
1280 					"linux-ntfs-dev@lists.sourceforge.net",
1281 					NInoCompressed(ni) ? "compressed" :
1282 					"sparse");
1283 			goto unm_err_out;
1284 		}
1285 		if (a->flags & ATTR_IS_SPARSE)
1286 			NInoSetSparse(ni);
1287 	}
1288 	if (a->flags & ATTR_IS_ENCRYPTED) {
1289 		if (NInoCompressed(ni)) {
1290 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1291 					"data.");
1292 			goto unm_err_out;
1293 		}
1294 		/*
1295 		 * The encryption flag set in an index root just means to
1296 		 * encrypt all files.
1297 		 */
1298 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1299 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1300 					"but the attribute is encrypted.  "
1301 					"Please report you saw this message "
1302 					"to linux-ntfs-dev@lists.sourceforge."
1303 					"net");
1304 			goto unm_err_out;
1305 		}
1306 		if (ni->type != AT_DATA) {
1307 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1308 					"attribute.");
1309 			goto unm_err_out;
1310 		}
1311 		NInoSetEncrypted(ni);
1312 	}
1313 	if (!a->non_resident) {
1314 		/* Ensure the attribute name is placed before the value. */
1315 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1316 				le16_to_cpu(a->data.resident.value_offset)))) {
1317 			ntfs_error(vol->sb, "Attribute name is placed after "
1318 					"the attribute value.");
1319 			goto unm_err_out;
1320 		}
1321 		if (NInoMstProtected(ni)) {
1322 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1323 					"but the attribute is resident.  "
1324 					"Please report you saw this message to "
1325 					"linux-ntfs-dev@lists.sourceforge.net");
1326 			goto unm_err_out;
1327 		}
1328 		vi->i_size = ni->initialized_size = le32_to_cpu(
1329 				a->data.resident.value_length);
1330 		ni->allocated_size = le32_to_cpu(a->length) -
1331 				le16_to_cpu(a->data.resident.value_offset);
1332 		if (vi->i_size > ni->allocated_size) {
1333 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1334 					"(size exceeds allocation).");
1335 			goto unm_err_out;
1336 		}
1337 	} else {
1338 		NInoSetNonResident(ni);
1339 		/*
1340 		 * Ensure the attribute name is placed before the mapping pairs
1341 		 * array.
1342 		 */
1343 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1344 				le16_to_cpu(
1345 				a->data.non_resident.mapping_pairs_offset)))) {
1346 			ntfs_error(vol->sb, "Attribute name is placed after "
1347 					"the mapping pairs array.");
1348 			goto unm_err_out;
1349 		}
1350 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1351 			if (NInoCompressed(ni) && a->data.non_resident.
1352 					compression_unit != 4) {
1353 				ntfs_error(vi->i_sb, "Found non-standard "
1354 						"compression unit (%u instead "
1355 						"of 4).  Cannot handle this.",
1356 						a->data.non_resident.
1357 						compression_unit);
1358 				err = -EOPNOTSUPP;
1359 				goto unm_err_out;
1360 			}
1361 			if (a->data.non_resident.compression_unit) {
1362 				ni->itype.compressed.block_size = 1U <<
1363 						(a->data.non_resident.
1364 						compression_unit +
1365 						vol->cluster_size_bits);
1366 				ni->itype.compressed.block_size_bits =
1367 						ffs(ni->itype.compressed.
1368 						block_size) - 1;
1369 				ni->itype.compressed.block_clusters = 1U <<
1370 						a->data.non_resident.
1371 						compression_unit;
1372 			} else {
1373 				ni->itype.compressed.block_size = 0;
1374 				ni->itype.compressed.block_size_bits = 0;
1375 				ni->itype.compressed.block_clusters = 0;
1376 			}
1377 			ni->itype.compressed.size = sle64_to_cpu(
1378 					a->data.non_resident.compressed_size);
1379 		}
1380 		if (a->data.non_resident.lowest_vcn) {
1381 			ntfs_error(vi->i_sb, "First extent of attribute has "
1382 					"non-zero lowest_vcn.");
1383 			goto unm_err_out;
1384 		}
1385 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1386 		ni->initialized_size = sle64_to_cpu(
1387 				a->data.non_resident.initialized_size);
1388 		ni->allocated_size = sle64_to_cpu(
1389 				a->data.non_resident.allocated_size);
1390 	}
1391 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1392 	if (NInoMstProtected(ni))
1393 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1394 	else if (NInoCompressed(ni))
1395 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1396 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397 		vi->i_blocks = ni->itype.compressed.size >> 9;
1398 	else
1399 		vi->i_blocks = ni->allocated_size >> 9;
1400 	/*
1401 	 * Make sure the base inode does not go away and attach it to the
1402 	 * attribute inode.
1403 	 */
1404 	igrab(base_vi);
1405 	ni->ext.base_ntfs_ino = base_ni;
1406 	ni->nr_extents = -1;
1407 
1408 	ntfs_attr_put_search_ctx(ctx);
1409 	unmap_mft_record(base_ni);
1410 
1411 	ntfs_debug("Done.");
1412 	return 0;
1413 
1414 unm_err_out:
1415 	if (!err)
1416 		err = -EIO;
1417 	if (ctx)
1418 		ntfs_attr_put_search_ctx(ctx);
1419 	unmap_mft_record(base_ni);
1420 err_out:
1421 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1423 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1424 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1425 			base_vi->i_ino);
1426 	make_bad_inode(vi);
1427 	if (err != -ENOMEM)
1428 		NVolSetErrors(vol);
1429 	return err;
1430 }
1431 
1432 /**
1433  * ntfs_read_locked_index_inode - read an index inode from its base inode
1434  * @base_vi:	base inode
1435  * @vi:		index inode to read
1436  *
1437  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438  * index inode described by @vi into memory from the base mft record described
1439  * by @base_ni.
1440  *
1441  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442  * reading and looks up the attributes relating to the index described by @vi
1443  * before setting up the necessary fields in @vi as well as initializing the
1444  * ntfs inode.
1445  *
1446  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1448  * are setup like directory inodes since directories are a special case of
1449  * indices ao they need to be treated in much the same way.  Most importantly,
1450  * for small indices the index allocation attribute might not actually exist.
1451  * However, the index root attribute always exists but this does not need to
1452  * have an inode associated with it and this is why we define a new inode type
1453  * index.  Also, like for directories, we need to have an attribute inode for
1454  * the bitmap attribute corresponding to the index allocation attribute and we
1455  * can store this in the appropriate field of the inode, just like we do for
1456  * normal directory inodes.
1457  *
1458  * Q: What locks are held when the function is called?
1459  * A: i_state has I_NEW set, hence the inode is locked, also
1460  *    i_count is set to 1, so it is not going to go away
1461  *
1462  * Return 0 on success and -errno on error.  In the error case, the inode will
1463  * have had make_bad_inode() executed on it.
1464  */
1465 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1466 {
1467 	loff_t bvi_size;
1468 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469 	ntfs_inode *ni, *base_ni, *bni;
1470 	struct inode *bvi;
1471 	MFT_RECORD *m;
1472 	ATTR_RECORD *a;
1473 	ntfs_attr_search_ctx *ctx;
1474 	INDEX_ROOT *ir;
1475 	u8 *ir_end, *index_end;
1476 	int err = 0;
1477 
1478 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479 	ntfs_init_big_inode(vi);
1480 	ni	= NTFS_I(vi);
1481 	base_ni = NTFS_I(base_vi);
1482 	/* Just mirror the values from the base inode. */
1483 	vi->i_uid	= base_vi->i_uid;
1484 	vi->i_gid	= base_vi->i_gid;
1485 	set_nlink(vi, base_vi->i_nlink);
1486 	vi->i_mtime	= base_vi->i_mtime;
1487 	vi->i_ctime	= base_vi->i_ctime;
1488 	vi->i_atime	= base_vi->i_atime;
1489 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1490 	/* Set inode type to zero but preserve permissions. */
1491 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1492 	/* Map the mft record for the base inode. */
1493 	m = map_mft_record(base_ni);
1494 	if (IS_ERR(m)) {
1495 		err = PTR_ERR(m);
1496 		goto err_out;
1497 	}
1498 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1499 	if (!ctx) {
1500 		err = -ENOMEM;
1501 		goto unm_err_out;
1502 	}
1503 	/* Find the index root attribute. */
1504 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1505 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1506 	if (unlikely(err)) {
1507 		if (err == -ENOENT)
1508 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1509 					"missing.");
1510 		goto unm_err_out;
1511 	}
1512 	a = ctx->attr;
1513 	/* Set up the state. */
1514 	if (unlikely(a->non_resident)) {
1515 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1516 		goto unm_err_out;
1517 	}
1518 	/* Ensure the attribute name is placed before the value. */
1519 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1520 			le16_to_cpu(a->data.resident.value_offset)))) {
1521 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1522 				"after the attribute value.");
1523 		goto unm_err_out;
1524 	}
1525 	/*
1526 	 * Compressed/encrypted/sparse index root is not allowed, except for
1527 	 * directories of course but those are not dealt with here.
1528 	 */
1529 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1530 			ATTR_IS_SPARSE)) {
1531 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1532 				"root attribute.");
1533 		goto unm_err_out;
1534 	}
1535 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1536 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1537 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1538 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1539 		goto unm_err_out;
1540 	}
1541 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1542 	if (index_end > ir_end) {
1543 		ntfs_error(vi->i_sb, "Index is corrupt.");
1544 		goto unm_err_out;
1545 	}
1546 	if (ir->type) {
1547 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1548 				le32_to_cpu(ir->type));
1549 		goto unm_err_out;
1550 	}
1551 	ni->itype.index.collation_rule = ir->collation_rule;
1552 	ntfs_debug("Index collation rule is 0x%x.",
1553 			le32_to_cpu(ir->collation_rule));
1554 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1555 	if (!is_power_of_2(ni->itype.index.block_size)) {
1556 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1557 				"two.", ni->itype.index.block_size);
1558 		goto unm_err_out;
1559 	}
1560 	if (ni->itype.index.block_size > PAGE_SIZE) {
1561 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1562 				"(%ld) is not supported.  Sorry.",
1563 				ni->itype.index.block_size, PAGE_SIZE);
1564 		err = -EOPNOTSUPP;
1565 		goto unm_err_out;
1566 	}
1567 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1568 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1569 				"(%i) is not supported.  Sorry.",
1570 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1571 		err = -EOPNOTSUPP;
1572 		goto unm_err_out;
1573 	}
1574 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1575 	/* Determine the size of a vcn in the index. */
1576 	if (vol->cluster_size <= ni->itype.index.block_size) {
1577 		ni->itype.index.vcn_size = vol->cluster_size;
1578 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1579 	} else {
1580 		ni->itype.index.vcn_size = vol->sector_size;
1581 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1582 	}
1583 	/* Check for presence of index allocation attribute. */
1584 	if (!(ir->index.flags & LARGE_INDEX)) {
1585 		/* No index allocation. */
1586 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1587 		/* We are done with the mft record, so we release it. */
1588 		ntfs_attr_put_search_ctx(ctx);
1589 		unmap_mft_record(base_ni);
1590 		m = NULL;
1591 		ctx = NULL;
1592 		goto skip_large_index_stuff;
1593 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1594 	NInoSetIndexAllocPresent(ni);
1595 	/* Find index allocation attribute. */
1596 	ntfs_attr_reinit_search_ctx(ctx);
1597 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1598 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1599 	if (unlikely(err)) {
1600 		if (err == -ENOENT)
1601 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1602 					"not present but $INDEX_ROOT "
1603 					"indicated it is.");
1604 		else
1605 			ntfs_error(vi->i_sb, "Failed to lookup "
1606 					"$INDEX_ALLOCATION attribute.");
1607 		goto unm_err_out;
1608 	}
1609 	a = ctx->attr;
1610 	if (!a->non_resident) {
1611 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1612 				"resident.");
1613 		goto unm_err_out;
1614 	}
1615 	/*
1616 	 * Ensure the attribute name is placed before the mapping pairs array.
1617 	 */
1618 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1619 			le16_to_cpu(
1620 			a->data.non_resident.mapping_pairs_offset)))) {
1621 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1622 				"placed after the mapping pairs array.");
1623 		goto unm_err_out;
1624 	}
1625 	if (a->flags & ATTR_IS_ENCRYPTED) {
1626 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 				"encrypted.");
1628 		goto unm_err_out;
1629 	}
1630 	if (a->flags & ATTR_IS_SPARSE) {
1631 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1632 		goto unm_err_out;
1633 	}
1634 	if (a->flags & ATTR_COMPRESSION_MASK) {
1635 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1636 				"compressed.");
1637 		goto unm_err_out;
1638 	}
1639 	if (a->data.non_resident.lowest_vcn) {
1640 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1641 				"attribute has non zero lowest_vcn.");
1642 		goto unm_err_out;
1643 	}
1644 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1645 	ni->initialized_size = sle64_to_cpu(
1646 			a->data.non_resident.initialized_size);
1647 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1648 	/*
1649 	 * We are done with the mft record, so we release it.  Otherwise
1650 	 * we would deadlock in ntfs_attr_iget().
1651 	 */
1652 	ntfs_attr_put_search_ctx(ctx);
1653 	unmap_mft_record(base_ni);
1654 	m = NULL;
1655 	ctx = NULL;
1656 	/* Get the index bitmap attribute inode. */
1657 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1658 	if (IS_ERR(bvi)) {
1659 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1660 		err = PTR_ERR(bvi);
1661 		goto unm_err_out;
1662 	}
1663 	bni = NTFS_I(bvi);
1664 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1665 			NInoSparse(bni)) {
1666 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1667 				"encrypted and/or sparse.");
1668 		goto iput_unm_err_out;
1669 	}
1670 	/* Consistency check bitmap size vs. index allocation size. */
1671 	bvi_size = i_size_read(bvi);
1672 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1673 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1674 				"index allocation (0x%llx).", bvi_size << 3,
1675 				vi->i_size);
1676 		goto iput_unm_err_out;
1677 	}
1678 	iput(bvi);
1679 skip_large_index_stuff:
1680 	/* Setup the operations for this index inode. */
1681 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1682 	vi->i_blocks = ni->allocated_size >> 9;
1683 	/*
1684 	 * Make sure the base inode doesn't go away and attach it to the
1685 	 * index inode.
1686 	 */
1687 	igrab(base_vi);
1688 	ni->ext.base_ntfs_ino = base_ni;
1689 	ni->nr_extents = -1;
1690 
1691 	ntfs_debug("Done.");
1692 	return 0;
1693 iput_unm_err_out:
1694 	iput(bvi);
1695 unm_err_out:
1696 	if (!err)
1697 		err = -EIO;
1698 	if (ctx)
1699 		ntfs_attr_put_search_ctx(ctx);
1700 	if (m)
1701 		unmap_mft_record(base_ni);
1702 err_out:
1703 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1704 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1705 			ni->name_len);
1706 	make_bad_inode(vi);
1707 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1708 		NVolSetErrors(vol);
1709 	return err;
1710 }
1711 
1712 /*
1713  * The MFT inode has special locking, so teach the lock validator
1714  * about this by splitting off the locking rules of the MFT from
1715  * the locking rules of other inodes. The MFT inode can never be
1716  * accessed from the VFS side (or even internally), only by the
1717  * map_mft functions.
1718  */
1719 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1720 
1721 /**
1722  * ntfs_read_inode_mount - special read_inode for mount time use only
1723  * @vi:		inode to read
1724  *
1725  * Read inode FILE_MFT at mount time, only called with super_block lock
1726  * held from within the read_super() code path.
1727  *
1728  * This function exists because when it is called the page cache for $MFT/$DATA
1729  * is not initialized and hence we cannot get at the contents of mft records
1730  * by calling map_mft_record*().
1731  *
1732  * Further it needs to cope with the circular references problem, i.e. cannot
1733  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1734  * we do not know where the other extent mft records are yet and again, because
1735  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1736  * attribute list is actually present in $MFT inode.
1737  *
1738  * We solve these problems by starting with the $DATA attribute before anything
1739  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1740  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1741  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1742  * sufficient information for the next step to complete.
1743  *
1744  * This should work but there are two possible pit falls (see inline comments
1745  * below), but only time will tell if they are real pits or just smoke...
1746  */
1747 int ntfs_read_inode_mount(struct inode *vi)
1748 {
1749 	VCN next_vcn, last_vcn, highest_vcn;
1750 	s64 block;
1751 	struct super_block *sb = vi->i_sb;
1752 	ntfs_volume *vol = NTFS_SB(sb);
1753 	struct buffer_head *bh;
1754 	ntfs_inode *ni;
1755 	MFT_RECORD *m = NULL;
1756 	ATTR_RECORD *a;
1757 	ntfs_attr_search_ctx *ctx;
1758 	unsigned int i, nr_blocks;
1759 	int err;
1760 
1761 	ntfs_debug("Entering.");
1762 
1763 	/* Initialize the ntfs specific part of @vi. */
1764 	ntfs_init_big_inode(vi);
1765 
1766 	ni = NTFS_I(vi);
1767 
1768 	/* Setup the data attribute. It is special as it is mst protected. */
1769 	NInoSetNonResident(ni);
1770 	NInoSetMstProtected(ni);
1771 	NInoSetSparseDisabled(ni);
1772 	ni->type = AT_DATA;
1773 	ni->name = NULL;
1774 	ni->name_len = 0;
1775 	/*
1776 	 * This sets up our little cheat allowing us to reuse the async read io
1777 	 * completion handler for directories.
1778 	 */
1779 	ni->itype.index.block_size = vol->mft_record_size;
1780 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1781 
1782 	/* Very important! Needed to be able to call map_mft_record*(). */
1783 	vol->mft_ino = vi;
1784 
1785 	/* Allocate enough memory to read the first mft record. */
1786 	if (vol->mft_record_size > 64 * 1024) {
1787 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1788 				vol->mft_record_size);
1789 		goto err_out;
1790 	}
1791 	i = vol->mft_record_size;
1792 	if (i < sb->s_blocksize)
1793 		i = sb->s_blocksize;
1794 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1795 	if (!m) {
1796 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1797 		goto err_out;
1798 	}
1799 
1800 	/* Determine the first block of the $MFT/$DATA attribute. */
1801 	block = vol->mft_lcn << vol->cluster_size_bits >>
1802 			sb->s_blocksize_bits;
1803 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1804 	if (!nr_blocks)
1805 		nr_blocks = 1;
1806 
1807 	/* Load $MFT/$DATA's first mft record. */
1808 	for (i = 0; i < nr_blocks; i++) {
1809 		bh = sb_bread(sb, block++);
1810 		if (!bh) {
1811 			ntfs_error(sb, "Device read failed.");
1812 			goto err_out;
1813 		}
1814 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1815 				sb->s_blocksize);
1816 		brelse(bh);
1817 	}
1818 
1819 	if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1820 		ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1821 				le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1822 		goto err_out;
1823 	}
1824 
1825 	/* Apply the mst fixups. */
1826 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1827 		/* FIXME: Try to use the $MFTMirr now. */
1828 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1829 		goto err_out;
1830 	}
1831 
1832 	/* Need this to sanity check attribute list references to $MFT. */
1833 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1834 
1835 	/* Provides readpage() for map_mft_record(). */
1836 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1837 
1838 	ctx = ntfs_attr_get_search_ctx(ni, m);
1839 	if (!ctx) {
1840 		err = -ENOMEM;
1841 		goto err_out;
1842 	}
1843 
1844 	/* Find the attribute list attribute if present. */
1845 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1846 	if (err) {
1847 		if (unlikely(err != -ENOENT)) {
1848 			ntfs_error(sb, "Failed to lookup attribute list "
1849 					"attribute. You should run chkdsk.");
1850 			goto put_err_out;
1851 		}
1852 	} else /* if (!err) */ {
1853 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1854 		u8 *al_end;
1855 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1856 				"You should run chkdsk.";
1857 
1858 		ntfs_debug("Attribute list attribute found in $MFT.");
1859 		NInoSetAttrList(ni);
1860 		a = ctx->attr;
1861 		if (a->flags & ATTR_COMPRESSION_MASK) {
1862 			ntfs_error(sb, "Attribute list attribute is "
1863 					"compressed.%s", es);
1864 			goto put_err_out;
1865 		}
1866 		if (a->flags & ATTR_IS_ENCRYPTED ||
1867 				a->flags & ATTR_IS_SPARSE) {
1868 			if (a->non_resident) {
1869 				ntfs_error(sb, "Non-resident attribute list "
1870 						"attribute is encrypted/"
1871 						"sparse.%s", es);
1872 				goto put_err_out;
1873 			}
1874 			ntfs_warning(sb, "Resident attribute list attribute "
1875 					"in $MFT system file is marked "
1876 					"encrypted/sparse which is not true.  "
1877 					"However, Windows allows this and "
1878 					"chkdsk does not detect or correct it "
1879 					"so we will just ignore the invalid "
1880 					"flags and pretend they are not set.");
1881 		}
1882 		/* Now allocate memory for the attribute list. */
1883 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1884 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1885 		if (!ni->attr_list) {
1886 			ntfs_error(sb, "Not enough memory to allocate buffer "
1887 					"for attribute list.");
1888 			goto put_err_out;
1889 		}
1890 		if (a->non_resident) {
1891 			NInoSetAttrListNonResident(ni);
1892 			if (a->data.non_resident.lowest_vcn) {
1893 				ntfs_error(sb, "Attribute list has non zero "
1894 						"lowest_vcn. $MFT is corrupt. "
1895 						"You should run chkdsk.");
1896 				goto put_err_out;
1897 			}
1898 			/* Setup the runlist. */
1899 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1900 					a, NULL);
1901 			if (IS_ERR(ni->attr_list_rl.rl)) {
1902 				err = PTR_ERR(ni->attr_list_rl.rl);
1903 				ni->attr_list_rl.rl = NULL;
1904 				ntfs_error(sb, "Mapping pairs decompression "
1905 						"failed with error code %i.",
1906 						-err);
1907 				goto put_err_out;
1908 			}
1909 			/* Now load the attribute list. */
1910 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1911 					ni->attr_list, ni->attr_list_size,
1912 					sle64_to_cpu(a->data.
1913 					non_resident.initialized_size)))) {
1914 				ntfs_error(sb, "Failed to load attribute list "
1915 						"attribute with error code %i.",
1916 						-err);
1917 				goto put_err_out;
1918 			}
1919 		} else /* if (!ctx.attr->non_resident) */ {
1920 			if ((u8*)a + le16_to_cpu(
1921 					a->data.resident.value_offset) +
1922 					le32_to_cpu(
1923 					a->data.resident.value_length) >
1924 					(u8*)ctx->mrec + vol->mft_record_size) {
1925 				ntfs_error(sb, "Corrupt attribute list "
1926 						"attribute.");
1927 				goto put_err_out;
1928 			}
1929 			/* Now copy the attribute list. */
1930 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1931 					a->data.resident.value_offset),
1932 					le32_to_cpu(
1933 					a->data.resident.value_length));
1934 		}
1935 		/* The attribute list is now setup in memory. */
1936 		/*
1937 		 * FIXME: I don't know if this case is actually possible.
1938 		 * According to logic it is not possible but I have seen too
1939 		 * many weird things in MS software to rely on logic... Thus we
1940 		 * perform a manual search and make sure the first $MFT/$DATA
1941 		 * extent is in the base inode. If it is not we abort with an
1942 		 * error and if we ever see a report of this error we will need
1943 		 * to do some magic in order to have the necessary mft record
1944 		 * loaded and in the right place in the page cache. But
1945 		 * hopefully logic will prevail and this never happens...
1946 		 */
1947 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1948 		al_end = (u8*)al_entry + ni->attr_list_size;
1949 		for (;; al_entry = next_al_entry) {
1950 			/* Out of bounds check. */
1951 			if ((u8*)al_entry < ni->attr_list ||
1952 					(u8*)al_entry > al_end)
1953 				goto em_put_err_out;
1954 			/* Catch the end of the attribute list. */
1955 			if ((u8*)al_entry == al_end)
1956 				goto em_put_err_out;
1957 			if (!al_entry->length)
1958 				goto em_put_err_out;
1959 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1960 					le16_to_cpu(al_entry->length) > al_end)
1961 				goto em_put_err_out;
1962 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1963 					le16_to_cpu(al_entry->length));
1964 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1965 				goto em_put_err_out;
1966 			if (AT_DATA != al_entry->type)
1967 				continue;
1968 			/* We want an unnamed attribute. */
1969 			if (al_entry->name_length)
1970 				goto em_put_err_out;
1971 			/* Want the first entry, i.e. lowest_vcn == 0. */
1972 			if (al_entry->lowest_vcn)
1973 				goto em_put_err_out;
1974 			/* First entry has to be in the base mft record. */
1975 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1976 				/* MFT references do not match, logic fails. */
1977 				ntfs_error(sb, "BUG: The first $DATA extent "
1978 						"of $MFT is not in the base "
1979 						"mft record. Please report "
1980 						"you saw this message to "
1981 						"linux-ntfs-dev@lists."
1982 						"sourceforge.net");
1983 				goto put_err_out;
1984 			} else {
1985 				/* Sequence numbers must match. */
1986 				if (MSEQNO_LE(al_entry->mft_reference) !=
1987 						ni->seq_no)
1988 					goto em_put_err_out;
1989 				/* Got it. All is ok. We can stop now. */
1990 				break;
1991 			}
1992 		}
1993 	}
1994 
1995 	ntfs_attr_reinit_search_ctx(ctx);
1996 
1997 	/* Now load all attribute extents. */
1998 	a = NULL;
1999 	next_vcn = last_vcn = highest_vcn = 0;
2000 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2001 			ctx))) {
2002 		runlist_element *nrl;
2003 
2004 		/* Cache the current attribute. */
2005 		a = ctx->attr;
2006 		/* $MFT must be non-resident. */
2007 		if (!a->non_resident) {
2008 			ntfs_error(sb, "$MFT must be non-resident but a "
2009 					"resident extent was found. $MFT is "
2010 					"corrupt. Run chkdsk.");
2011 			goto put_err_out;
2012 		}
2013 		/* $MFT must be uncompressed and unencrypted. */
2014 		if (a->flags & ATTR_COMPRESSION_MASK ||
2015 				a->flags & ATTR_IS_ENCRYPTED ||
2016 				a->flags & ATTR_IS_SPARSE) {
2017 			ntfs_error(sb, "$MFT must be uncompressed, "
2018 					"non-sparse, and unencrypted but a "
2019 					"compressed/sparse/encrypted extent "
2020 					"was found. $MFT is corrupt. Run "
2021 					"chkdsk.");
2022 			goto put_err_out;
2023 		}
2024 		/*
2025 		 * Decompress the mapping pairs array of this extent and merge
2026 		 * the result into the existing runlist. No need for locking
2027 		 * as we have exclusive access to the inode at this time and we
2028 		 * are a mount in progress task, too.
2029 		 */
2030 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2031 		if (IS_ERR(nrl)) {
2032 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2033 					"failed with error code %ld.  $MFT is "
2034 					"corrupt.", PTR_ERR(nrl));
2035 			goto put_err_out;
2036 		}
2037 		ni->runlist.rl = nrl;
2038 
2039 		/* Are we in the first extent? */
2040 		if (!next_vcn) {
2041 			if (a->data.non_resident.lowest_vcn) {
2042 				ntfs_error(sb, "First extent of $DATA "
2043 						"attribute has non zero "
2044 						"lowest_vcn. $MFT is corrupt. "
2045 						"You should run chkdsk.");
2046 				goto put_err_out;
2047 			}
2048 			/* Get the last vcn in the $DATA attribute. */
2049 			last_vcn = sle64_to_cpu(
2050 					a->data.non_resident.allocated_size)
2051 					>> vol->cluster_size_bits;
2052 			/* Fill in the inode size. */
2053 			vi->i_size = sle64_to_cpu(
2054 					a->data.non_resident.data_size);
2055 			ni->initialized_size = sle64_to_cpu(
2056 					a->data.non_resident.initialized_size);
2057 			ni->allocated_size = sle64_to_cpu(
2058 					a->data.non_resident.allocated_size);
2059 			/*
2060 			 * Verify the number of mft records does not exceed
2061 			 * 2^32 - 1.
2062 			 */
2063 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2064 					(1ULL << 32)) {
2065 				ntfs_error(sb, "$MFT is too big! Aborting.");
2066 				goto put_err_out;
2067 			}
2068 			/*
2069 			 * We have got the first extent of the runlist for
2070 			 * $MFT which means it is now relatively safe to call
2071 			 * the normal ntfs_read_inode() function.
2072 			 * Complete reading the inode, this will actually
2073 			 * re-read the mft record for $MFT, this time entering
2074 			 * it into the page cache with which we complete the
2075 			 * kick start of the volume. It should be safe to do
2076 			 * this now as the first extent of $MFT/$DATA is
2077 			 * already known and we would hope that we don't need
2078 			 * further extents in order to find the other
2079 			 * attributes belonging to $MFT. Only time will tell if
2080 			 * this is really the case. If not we will have to play
2081 			 * magic at this point, possibly duplicating a lot of
2082 			 * ntfs_read_inode() at this point. We will need to
2083 			 * ensure we do enough of its work to be able to call
2084 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2085 			 * hope this never happens...
2086 			 */
2087 			ntfs_read_locked_inode(vi);
2088 			if (is_bad_inode(vi)) {
2089 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2090 						"failed. BUG or corrupt $MFT. "
2091 						"Run chkdsk and if no errors "
2092 						"are found, please report you "
2093 						"saw this message to "
2094 						"linux-ntfs-dev@lists."
2095 						"sourceforge.net");
2096 				ntfs_attr_put_search_ctx(ctx);
2097 				/* Revert to the safe super operations. */
2098 				ntfs_free(m);
2099 				return -1;
2100 			}
2101 			/*
2102 			 * Re-initialize some specifics about $MFT's inode as
2103 			 * ntfs_read_inode() will have set up the default ones.
2104 			 */
2105 			/* Set uid and gid to root. */
2106 			vi->i_uid = GLOBAL_ROOT_UID;
2107 			vi->i_gid = GLOBAL_ROOT_GID;
2108 			/* Regular file. No access for anyone. */
2109 			vi->i_mode = S_IFREG;
2110 			/* No VFS initiated operations allowed for $MFT. */
2111 			vi->i_op = &ntfs_empty_inode_ops;
2112 			vi->i_fop = &ntfs_empty_file_ops;
2113 		}
2114 
2115 		/* Get the lowest vcn for the next extent. */
2116 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2117 		next_vcn = highest_vcn + 1;
2118 
2119 		/* Only one extent or error, which we catch below. */
2120 		if (next_vcn <= 0)
2121 			break;
2122 
2123 		/* Avoid endless loops due to corruption. */
2124 		if (next_vcn < sle64_to_cpu(
2125 				a->data.non_resident.lowest_vcn)) {
2126 			ntfs_error(sb, "$MFT has corrupt attribute list "
2127 					"attribute. Run chkdsk.");
2128 			goto put_err_out;
2129 		}
2130 	}
2131 	if (err != -ENOENT) {
2132 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2133 				"$MFT is corrupt. Run chkdsk.");
2134 		goto put_err_out;
2135 	}
2136 	if (!a) {
2137 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2138 				"corrupt. Run chkdsk.");
2139 		goto put_err_out;
2140 	}
2141 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2142 		ntfs_error(sb, "Failed to load the complete runlist for "
2143 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2144 				"Run chkdsk.");
2145 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2146 				(unsigned long long)highest_vcn,
2147 				(unsigned long long)last_vcn - 1);
2148 		goto put_err_out;
2149 	}
2150 	ntfs_attr_put_search_ctx(ctx);
2151 	ntfs_debug("Done.");
2152 	ntfs_free(m);
2153 
2154 	/*
2155 	 * Split the locking rules of the MFT inode from the
2156 	 * locking rules of other inodes:
2157 	 */
2158 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2159 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2160 
2161 	return 0;
2162 
2163 em_put_err_out:
2164 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2165 			"attribute list. $MFT is corrupt. Run chkdsk.");
2166 put_err_out:
2167 	ntfs_attr_put_search_ctx(ctx);
2168 err_out:
2169 	ntfs_error(sb, "Failed. Marking inode as bad.");
2170 	make_bad_inode(vi);
2171 	ntfs_free(m);
2172 	return -1;
2173 }
2174 
2175 static void __ntfs_clear_inode(ntfs_inode *ni)
2176 {
2177 	/* Free all alocated memory. */
2178 	down_write(&ni->runlist.lock);
2179 	if (ni->runlist.rl) {
2180 		ntfs_free(ni->runlist.rl);
2181 		ni->runlist.rl = NULL;
2182 	}
2183 	up_write(&ni->runlist.lock);
2184 
2185 	if (ni->attr_list) {
2186 		ntfs_free(ni->attr_list);
2187 		ni->attr_list = NULL;
2188 	}
2189 
2190 	down_write(&ni->attr_list_rl.lock);
2191 	if (ni->attr_list_rl.rl) {
2192 		ntfs_free(ni->attr_list_rl.rl);
2193 		ni->attr_list_rl.rl = NULL;
2194 	}
2195 	up_write(&ni->attr_list_rl.lock);
2196 
2197 	if (ni->name_len && ni->name != I30) {
2198 		/* Catch bugs... */
2199 		BUG_ON(!ni->name);
2200 		kfree(ni->name);
2201 	}
2202 }
2203 
2204 void ntfs_clear_extent_inode(ntfs_inode *ni)
2205 {
2206 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2207 
2208 	BUG_ON(NInoAttr(ni));
2209 	BUG_ON(ni->nr_extents != -1);
2210 
2211 #ifdef NTFS_RW
2212 	if (NInoDirty(ni)) {
2213 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2214 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2215 					"Losing data!  This is a BUG!!!");
2216 		// FIXME:  Do something!!!
2217 	}
2218 #endif /* NTFS_RW */
2219 
2220 	__ntfs_clear_inode(ni);
2221 
2222 	/* Bye, bye... */
2223 	ntfs_destroy_extent_inode(ni);
2224 }
2225 
2226 /**
2227  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2228  * @vi:		vfs inode pending annihilation
2229  *
2230  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2231  * is called, which deallocates all memory belonging to the NTFS specific part
2232  * of the inode and returns.
2233  *
2234  * If the MFT record is dirty, we commit it before doing anything else.
2235  */
2236 void ntfs_evict_big_inode(struct inode *vi)
2237 {
2238 	ntfs_inode *ni = NTFS_I(vi);
2239 
2240 	truncate_inode_pages_final(&vi->i_data);
2241 	clear_inode(vi);
2242 
2243 #ifdef NTFS_RW
2244 	if (NInoDirty(ni)) {
2245 		bool was_bad = (is_bad_inode(vi));
2246 
2247 		/* Committing the inode also commits all extent inodes. */
2248 		ntfs_commit_inode(vi);
2249 
2250 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2251 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2252 					"0x%lx.  Losing data!", vi->i_ino);
2253 			// FIXME:  Do something!!!
2254 		}
2255 	}
2256 #endif /* NTFS_RW */
2257 
2258 	/* No need to lock at this stage as no one else has a reference. */
2259 	if (ni->nr_extents > 0) {
2260 		int i;
2261 
2262 		for (i = 0; i < ni->nr_extents; i++)
2263 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2264 		kfree(ni->ext.extent_ntfs_inos);
2265 	}
2266 
2267 	__ntfs_clear_inode(ni);
2268 
2269 	if (NInoAttr(ni)) {
2270 		/* Release the base inode if we are holding it. */
2271 		if (ni->nr_extents == -1) {
2272 			iput(VFS_I(ni->ext.base_ntfs_ino));
2273 			ni->nr_extents = 0;
2274 			ni->ext.base_ntfs_ino = NULL;
2275 		}
2276 	}
2277 	BUG_ON(ni->page);
2278 	if (!atomic_dec_and_test(&ni->count))
2279 		BUG();
2280 	return;
2281 }
2282 
2283 /**
2284  * ntfs_show_options - show mount options in /proc/mounts
2285  * @sf:		seq_file in which to write our mount options
2286  * @root:	root of the mounted tree whose mount options to display
2287  *
2288  * Called by the VFS once for each mounted ntfs volume when someone reads
2289  * /proc/mounts in order to display the NTFS specific mount options of each
2290  * mount. The mount options of fs specified by @root are written to the seq file
2291  * @sf and success is returned.
2292  */
2293 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2294 {
2295 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2296 	int i;
2297 
2298 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2299 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2300 	if (vol->fmask == vol->dmask)
2301 		seq_printf(sf, ",umask=0%o", vol->fmask);
2302 	else {
2303 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2304 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2305 	}
2306 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2307 	if (NVolCaseSensitive(vol))
2308 		seq_printf(sf, ",case_sensitive");
2309 	if (NVolShowSystemFiles(vol))
2310 		seq_printf(sf, ",show_sys_files");
2311 	if (!NVolSparseEnabled(vol))
2312 		seq_printf(sf, ",disable_sparse");
2313 	for (i = 0; on_errors_arr[i].val; i++) {
2314 		if (on_errors_arr[i].val & vol->on_errors)
2315 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2316 	}
2317 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2318 	return 0;
2319 }
2320 
2321 #ifdef NTFS_RW
2322 
2323 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2324 		"chkdsk.";
2325 
2326 /**
2327  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2328  * @vi:		inode for which the i_size was changed
2329  *
2330  * We only support i_size changes for normal files at present, i.e. not
2331  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2332  * below.
2333  *
2334  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2335  * that the change is allowed.
2336  *
2337  * This implies for us that @vi is a file inode rather than a directory, index,
2338  * or attribute inode as well as that @vi is a base inode.
2339  *
2340  * Returns 0 on success or -errno on error.
2341  *
2342  * Called with ->i_mutex held.
2343  */
2344 int ntfs_truncate(struct inode *vi)
2345 {
2346 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2347 	VCN highest_vcn;
2348 	unsigned long flags;
2349 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2350 	ntfs_volume *vol = ni->vol;
2351 	ntfs_attr_search_ctx *ctx;
2352 	MFT_RECORD *m;
2353 	ATTR_RECORD *a;
2354 	const char *te = "  Leaving file length out of sync with i_size.";
2355 	int err, mp_size, size_change, alloc_change;
2356 
2357 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2358 	BUG_ON(NInoAttr(ni));
2359 	BUG_ON(S_ISDIR(vi->i_mode));
2360 	BUG_ON(NInoMstProtected(ni));
2361 	BUG_ON(ni->nr_extents < 0);
2362 retry_truncate:
2363 	/*
2364 	 * Lock the runlist for writing and map the mft record to ensure it is
2365 	 * safe to mess with the attribute runlist and sizes.
2366 	 */
2367 	down_write(&ni->runlist.lock);
2368 	if (!NInoAttr(ni))
2369 		base_ni = ni;
2370 	else
2371 		base_ni = ni->ext.base_ntfs_ino;
2372 	m = map_mft_record(base_ni);
2373 	if (IS_ERR(m)) {
2374 		err = PTR_ERR(m);
2375 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2376 				"(error code %d).%s", vi->i_ino, err, te);
2377 		ctx = NULL;
2378 		m = NULL;
2379 		goto old_bad_out;
2380 	}
2381 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2382 	if (unlikely(!ctx)) {
2383 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2384 				"inode 0x%lx (not enough memory).%s",
2385 				vi->i_ino, te);
2386 		err = -ENOMEM;
2387 		goto old_bad_out;
2388 	}
2389 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2390 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2391 	if (unlikely(err)) {
2392 		if (err == -ENOENT) {
2393 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2394 					"mft record.  Inode 0x%lx is corrupt.  "
2395 					"Run chkdsk.%s", vi->i_ino, te);
2396 			err = -EIO;
2397 		} else
2398 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2399 					"inode 0x%lx (error code %d).%s",
2400 					vi->i_ino, err, te);
2401 		goto old_bad_out;
2402 	}
2403 	m = ctx->mrec;
2404 	a = ctx->attr;
2405 	/*
2406 	 * The i_size of the vfs inode is the new size for the attribute value.
2407 	 */
2408 	new_size = i_size_read(vi);
2409 	/* The current size of the attribute value is the old size. */
2410 	old_size = ntfs_attr_size(a);
2411 	/* Calculate the new allocated size. */
2412 	if (NInoNonResident(ni))
2413 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2414 				~(s64)vol->cluster_size_mask;
2415 	else
2416 		new_alloc_size = (new_size + 7) & ~7;
2417 	/* The current allocated size is the old allocated size. */
2418 	read_lock_irqsave(&ni->size_lock, flags);
2419 	old_alloc_size = ni->allocated_size;
2420 	read_unlock_irqrestore(&ni->size_lock, flags);
2421 	/*
2422 	 * The change in the file size.  This will be 0 if no change, >0 if the
2423 	 * size is growing, and <0 if the size is shrinking.
2424 	 */
2425 	size_change = -1;
2426 	if (new_size - old_size >= 0) {
2427 		size_change = 1;
2428 		if (new_size == old_size)
2429 			size_change = 0;
2430 	}
2431 	/* As above for the allocated size. */
2432 	alloc_change = -1;
2433 	if (new_alloc_size - old_alloc_size >= 0) {
2434 		alloc_change = 1;
2435 		if (new_alloc_size == old_alloc_size)
2436 			alloc_change = 0;
2437 	}
2438 	/*
2439 	 * If neither the size nor the allocation are being changed there is
2440 	 * nothing to do.
2441 	 */
2442 	if (!size_change && !alloc_change)
2443 		goto unm_done;
2444 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2445 	if (size_change) {
2446 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2447 		if (unlikely(err)) {
2448 			if (err == -ERANGE) {
2449 				ntfs_error(vol->sb, "Truncate would cause the "
2450 						"inode 0x%lx to %simum size "
2451 						"for its attribute type "
2452 						"(0x%x).  Aborting truncate.",
2453 						vi->i_ino,
2454 						new_size > old_size ? "exceed "
2455 						"the max" : "go under the min",
2456 						le32_to_cpu(ni->type));
2457 				err = -EFBIG;
2458 			} else {
2459 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2460 						"attribute type 0x%x.  "
2461 						"Aborting truncate.",
2462 						vi->i_ino,
2463 						le32_to_cpu(ni->type));
2464 				err = -EIO;
2465 			}
2466 			/* Reset the vfs inode size to the old size. */
2467 			i_size_write(vi, old_size);
2468 			goto err_out;
2469 		}
2470 	}
2471 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2472 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2473 				"supported yet for %s files, ignoring.",
2474 				NInoCompressed(ni) ? "compressed" :
2475 				"encrypted");
2476 		err = -EOPNOTSUPP;
2477 		goto bad_out;
2478 	}
2479 	if (a->non_resident)
2480 		goto do_non_resident_truncate;
2481 	BUG_ON(NInoNonResident(ni));
2482 	/* Resize the attribute record to best fit the new attribute size. */
2483 	if (new_size < vol->mft_record_size &&
2484 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2485 		/* The resize succeeded! */
2486 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2487 		mark_mft_record_dirty(ctx->ntfs_ino);
2488 		write_lock_irqsave(&ni->size_lock, flags);
2489 		/* Update the sizes in the ntfs inode and all is done. */
2490 		ni->allocated_size = le32_to_cpu(a->length) -
2491 				le16_to_cpu(a->data.resident.value_offset);
2492 		/*
2493 		 * Note ntfs_resident_attr_value_resize() has already done any
2494 		 * necessary data clearing in the attribute record.  When the
2495 		 * file is being shrunk vmtruncate() will already have cleared
2496 		 * the top part of the last partial page, i.e. since this is
2497 		 * the resident case this is the page with index 0.  However,
2498 		 * when the file is being expanded, the page cache page data
2499 		 * between the old data_size, i.e. old_size, and the new_size
2500 		 * has not been zeroed.  Fortunately, we do not need to zero it
2501 		 * either since on one hand it will either already be zero due
2502 		 * to both readpage and writepage clearing partial page data
2503 		 * beyond i_size in which case there is nothing to do or in the
2504 		 * case of the file being mmap()ped at the same time, POSIX
2505 		 * specifies that the behaviour is unspecified thus we do not
2506 		 * have to do anything.  This means that in our implementation
2507 		 * in the rare case that the file is mmap()ped and a write
2508 		 * occurred into the mmap()ped region just beyond the file size
2509 		 * and writepage has not yet been called to write out the page
2510 		 * (which would clear the area beyond the file size) and we now
2511 		 * extend the file size to incorporate this dirty region
2512 		 * outside the file size, a write of the page would result in
2513 		 * this data being written to disk instead of being cleared.
2514 		 * Given both POSIX and the Linux mmap(2) man page specify that
2515 		 * this corner case is undefined, we choose to leave it like
2516 		 * that as this is much simpler for us as we cannot lock the
2517 		 * relevant page now since we are holding too many ntfs locks
2518 		 * which would result in a lock reversal deadlock.
2519 		 */
2520 		ni->initialized_size = new_size;
2521 		write_unlock_irqrestore(&ni->size_lock, flags);
2522 		goto unm_done;
2523 	}
2524 	/* If the above resize failed, this must be an attribute extension. */
2525 	BUG_ON(size_change < 0);
2526 	/*
2527 	 * We have to drop all the locks so we can call
2528 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2529 	 * locking the first page cache page and only if that fails dropping
2530 	 * the locks, locking the page, and redoing all the locking and
2531 	 * lookups.  While this would be a huge optimisation, it is not worth
2532 	 * it as this is definitely a slow code path as it only ever can happen
2533 	 * once for any given file.
2534 	 */
2535 	ntfs_attr_put_search_ctx(ctx);
2536 	unmap_mft_record(base_ni);
2537 	up_write(&ni->runlist.lock);
2538 	/*
2539 	 * Not enough space in the mft record, try to make the attribute
2540 	 * non-resident and if successful restart the truncation process.
2541 	 */
2542 	err = ntfs_attr_make_non_resident(ni, old_size);
2543 	if (likely(!err))
2544 		goto retry_truncate;
2545 	/*
2546 	 * Could not make non-resident.  If this is due to this not being
2547 	 * permitted for this attribute type or there not being enough space,
2548 	 * try to make other attributes non-resident.  Otherwise fail.
2549 	 */
2550 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2551 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2552 				"type 0x%x, because the conversion from "
2553 				"resident to non-resident attribute failed "
2554 				"with error code %i.", vi->i_ino,
2555 				(unsigned)le32_to_cpu(ni->type), err);
2556 		if (err != -ENOMEM)
2557 			err = -EIO;
2558 		goto conv_err_out;
2559 	}
2560 	/* TODO: Not implemented from here, abort. */
2561 	if (err == -ENOSPC)
2562 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2563 				"disk for the non-resident attribute value.  "
2564 				"This case is not implemented yet.");
2565 	else /* if (err == -EPERM) */
2566 		ntfs_error(vol->sb, "This attribute type may not be "
2567 				"non-resident.  This case is not implemented "
2568 				"yet.");
2569 	err = -EOPNOTSUPP;
2570 	goto conv_err_out;
2571 #if 0
2572 	// TODO: Attempt to make other attributes non-resident.
2573 	if (!err)
2574 		goto do_resident_extend;
2575 	/*
2576 	 * Both the attribute list attribute and the standard information
2577 	 * attribute must remain in the base inode.  Thus, if this is one of
2578 	 * these attributes, we have to try to move other attributes out into
2579 	 * extent mft records instead.
2580 	 */
2581 	if (ni->type == AT_ATTRIBUTE_LIST ||
2582 			ni->type == AT_STANDARD_INFORMATION) {
2583 		// TODO: Attempt to move other attributes into extent mft
2584 		// records.
2585 		err = -EOPNOTSUPP;
2586 		if (!err)
2587 			goto do_resident_extend;
2588 		goto err_out;
2589 	}
2590 	// TODO: Attempt to move this attribute to an extent mft record, but
2591 	// only if it is not already the only attribute in an mft record in
2592 	// which case there would be nothing to gain.
2593 	err = -EOPNOTSUPP;
2594 	if (!err)
2595 		goto do_resident_extend;
2596 	/* There is nothing we can do to make enough space. )-: */
2597 	goto err_out;
2598 #endif
2599 do_non_resident_truncate:
2600 	BUG_ON(!NInoNonResident(ni));
2601 	if (alloc_change < 0) {
2602 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2603 		if (highest_vcn > 0 &&
2604 				old_alloc_size >> vol->cluster_size_bits >
2605 				highest_vcn + 1) {
2606 			/*
2607 			 * This attribute has multiple extents.  Not yet
2608 			 * supported.
2609 			 */
2610 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2611 					"attribute type 0x%x, because the "
2612 					"attribute is highly fragmented (it "
2613 					"consists of multiple extents) and "
2614 					"this case is not implemented yet.",
2615 					vi->i_ino,
2616 					(unsigned)le32_to_cpu(ni->type));
2617 			err = -EOPNOTSUPP;
2618 			goto bad_out;
2619 		}
2620 	}
2621 	/*
2622 	 * If the size is shrinking, need to reduce the initialized_size and
2623 	 * the data_size before reducing the allocation.
2624 	 */
2625 	if (size_change < 0) {
2626 		/*
2627 		 * Make the valid size smaller (i_size is already up-to-date).
2628 		 */
2629 		write_lock_irqsave(&ni->size_lock, flags);
2630 		if (new_size < ni->initialized_size) {
2631 			ni->initialized_size = new_size;
2632 			a->data.non_resident.initialized_size =
2633 					cpu_to_sle64(new_size);
2634 		}
2635 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2636 		write_unlock_irqrestore(&ni->size_lock, flags);
2637 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2638 		mark_mft_record_dirty(ctx->ntfs_ino);
2639 		/* If the allocated size is not changing, we are done. */
2640 		if (!alloc_change)
2641 			goto unm_done;
2642 		/*
2643 		 * If the size is shrinking it makes no sense for the
2644 		 * allocation to be growing.
2645 		 */
2646 		BUG_ON(alloc_change > 0);
2647 	} else /* if (size_change >= 0) */ {
2648 		/*
2649 		 * The file size is growing or staying the same but the
2650 		 * allocation can be shrinking, growing or staying the same.
2651 		 */
2652 		if (alloc_change > 0) {
2653 			/*
2654 			 * We need to extend the allocation and possibly update
2655 			 * the data size.  If we are updating the data size,
2656 			 * since we are not touching the initialized_size we do
2657 			 * not need to worry about the actual data on disk.
2658 			 * And as far as the page cache is concerned, there
2659 			 * will be no pages beyond the old data size and any
2660 			 * partial region in the last page between the old and
2661 			 * new data size (or the end of the page if the new
2662 			 * data size is outside the page) does not need to be
2663 			 * modified as explained above for the resident
2664 			 * attribute truncate case.  To do this, we simply drop
2665 			 * the locks we hold and leave all the work to our
2666 			 * friendly helper ntfs_attr_extend_allocation().
2667 			 */
2668 			ntfs_attr_put_search_ctx(ctx);
2669 			unmap_mft_record(base_ni);
2670 			up_write(&ni->runlist.lock);
2671 			err = ntfs_attr_extend_allocation(ni, new_size,
2672 					size_change > 0 ? new_size : -1, -1);
2673 			/*
2674 			 * ntfs_attr_extend_allocation() will have done error
2675 			 * output already.
2676 			 */
2677 			goto done;
2678 		}
2679 		if (!alloc_change)
2680 			goto alloc_done;
2681 	}
2682 	/* alloc_change < 0 */
2683 	/* Free the clusters. */
2684 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2685 			vol->cluster_size_bits, -1, ctx);
2686 	m = ctx->mrec;
2687 	a = ctx->attr;
2688 	if (unlikely(nr_freed < 0)) {
2689 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2690 				"%lli).  Unmount and run chkdsk to recover "
2691 				"the lost cluster(s).", (long long)nr_freed);
2692 		NVolSetErrors(vol);
2693 		nr_freed = 0;
2694 	}
2695 	/* Truncate the runlist. */
2696 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2697 			new_alloc_size >> vol->cluster_size_bits);
2698 	/*
2699 	 * If the runlist truncation failed and/or the search context is no
2700 	 * longer valid, we cannot resize the attribute record or build the
2701 	 * mapping pairs array thus we mark the inode bad so that no access to
2702 	 * the freed clusters can happen.
2703 	 */
2704 	if (unlikely(err || IS_ERR(m))) {
2705 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2706 				IS_ERR(m) ?
2707 				"restore attribute search context" :
2708 				"truncate attribute runlist",
2709 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2710 		err = -EIO;
2711 		goto bad_out;
2712 	}
2713 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2714 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2715 	if (unlikely(mp_size <= 0)) {
2716 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2717 				"attribute type 0x%x, because determining the "
2718 				"size for the mapping pairs failed with error "
2719 				"code %i.%s", vi->i_ino,
2720 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2721 		err = -EIO;
2722 		goto bad_out;
2723 	}
2724 	/*
2725 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2726 	 * this cannot fail since we are making the attribute smaller thus by
2727 	 * definition there is enough space to do so.
2728 	 */
2729 	err = ntfs_attr_record_resize(m, a, mp_size +
2730 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2731 	BUG_ON(err);
2732 	/*
2733 	 * Generate the mapping pairs array directly into the attribute record.
2734 	 */
2735 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2736 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2737 			mp_size, ni->runlist.rl, 0, -1, NULL);
2738 	if (unlikely(err)) {
2739 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2740 				"attribute type 0x%x, because building the "
2741 				"mapping pairs failed with error code %i.%s",
2742 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2743 				err, es);
2744 		err = -EIO;
2745 		goto bad_out;
2746 	}
2747 	/* Update the allocated/compressed size as well as the highest vcn. */
2748 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2749 			vol->cluster_size_bits) - 1);
2750 	write_lock_irqsave(&ni->size_lock, flags);
2751 	ni->allocated_size = new_alloc_size;
2752 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2753 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2754 		if (nr_freed) {
2755 			ni->itype.compressed.size -= nr_freed <<
2756 					vol->cluster_size_bits;
2757 			BUG_ON(ni->itype.compressed.size < 0);
2758 			a->data.non_resident.compressed_size = cpu_to_sle64(
2759 					ni->itype.compressed.size);
2760 			vi->i_blocks = ni->itype.compressed.size >> 9;
2761 		}
2762 	} else
2763 		vi->i_blocks = new_alloc_size >> 9;
2764 	write_unlock_irqrestore(&ni->size_lock, flags);
2765 	/*
2766 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2767 	 * have already dealt with the initialized_size and the data_size above
2768 	 * and we are done.  If the truncate is only changing the allocation
2769 	 * and not the data_size, we are also done.  If this is an extending
2770 	 * truncate, need to extend the data_size now which is ensured by the
2771 	 * fact that @size_change is positive.
2772 	 */
2773 alloc_done:
2774 	/*
2775 	 * If the size is growing, need to update it now.  If it is shrinking,
2776 	 * we have already updated it above (before the allocation change).
2777 	 */
2778 	if (size_change > 0)
2779 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2780 	/* Ensure the modified mft record is written out. */
2781 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2782 	mark_mft_record_dirty(ctx->ntfs_ino);
2783 unm_done:
2784 	ntfs_attr_put_search_ctx(ctx);
2785 	unmap_mft_record(base_ni);
2786 	up_write(&ni->runlist.lock);
2787 done:
2788 	/* Update the mtime and ctime on the base inode. */
2789 	/* normally ->truncate shouldn't update ctime or mtime,
2790 	 * but ntfs did before so it got a copy & paste version
2791 	 * of file_update_time.  one day someone should fix this
2792 	 * for real.
2793 	 */
2794 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2795 		struct timespec64 now = current_time(VFS_I(base_ni));
2796 		int sync_it = 0;
2797 
2798 		if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2799 		    !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2800 			sync_it = 1;
2801 		VFS_I(base_ni)->i_mtime = now;
2802 		VFS_I(base_ni)->i_ctime = now;
2803 
2804 		if (sync_it)
2805 			mark_inode_dirty_sync(VFS_I(base_ni));
2806 	}
2807 
2808 	if (likely(!err)) {
2809 		NInoClearTruncateFailed(ni);
2810 		ntfs_debug("Done.");
2811 	}
2812 	return err;
2813 old_bad_out:
2814 	old_size = -1;
2815 bad_out:
2816 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2817 		NVolSetErrors(vol);
2818 	if (err != -EOPNOTSUPP)
2819 		NInoSetTruncateFailed(ni);
2820 	else if (old_size >= 0)
2821 		i_size_write(vi, old_size);
2822 err_out:
2823 	if (ctx)
2824 		ntfs_attr_put_search_ctx(ctx);
2825 	if (m)
2826 		unmap_mft_record(base_ni);
2827 	up_write(&ni->runlist.lock);
2828 out:
2829 	ntfs_debug("Failed.  Returning error code %i.", err);
2830 	return err;
2831 conv_err_out:
2832 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2833 		NVolSetErrors(vol);
2834 	if (err != -EOPNOTSUPP)
2835 		NInoSetTruncateFailed(ni);
2836 	else
2837 		i_size_write(vi, old_size);
2838 	goto out;
2839 }
2840 
2841 /**
2842  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2843  * @vi:		inode for which the i_size was changed
2844  *
2845  * Wrapper for ntfs_truncate() that has no return value.
2846  *
2847  * See ntfs_truncate() description above for details.
2848  */
2849 #ifdef NTFS_RW
2850 void ntfs_truncate_vfs(struct inode *vi) {
2851 	ntfs_truncate(vi);
2852 }
2853 #endif
2854 
2855 /**
2856  * ntfs_setattr - called from notify_change() when an attribute is being changed
2857  * @mnt_userns:	user namespace of the mount the inode was found from
2858  * @dentry:	dentry whose attributes to change
2859  * @attr:	structure describing the attributes and the changes
2860  *
2861  * We have to trap VFS attempts to truncate the file described by @dentry as
2862  * soon as possible, because we do not implement changes in i_size yet.  So we
2863  * abort all i_size changes here.
2864  *
2865  * We also abort all changes of user, group, and mode as we do not implement
2866  * the NTFS ACLs yet.
2867  *
2868  * Called with ->i_mutex held.
2869  */
2870 int ntfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
2871 		 struct iattr *attr)
2872 {
2873 	struct inode *vi = d_inode(dentry);
2874 	int err;
2875 	unsigned int ia_valid = attr->ia_valid;
2876 
2877 	err = setattr_prepare(&init_user_ns, dentry, attr);
2878 	if (err)
2879 		goto out;
2880 	/* We do not support NTFS ACLs yet. */
2881 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2882 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2883 				"supported yet, ignoring.");
2884 		err = -EOPNOTSUPP;
2885 		goto out;
2886 	}
2887 	if (ia_valid & ATTR_SIZE) {
2888 		if (attr->ia_size != i_size_read(vi)) {
2889 			ntfs_inode *ni = NTFS_I(vi);
2890 			/*
2891 			 * FIXME: For now we do not support resizing of
2892 			 * compressed or encrypted files yet.
2893 			 */
2894 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2895 				ntfs_warning(vi->i_sb, "Changes in inode size "
2896 						"are not supported yet for "
2897 						"%s files, ignoring.",
2898 						NInoCompressed(ni) ?
2899 						"compressed" : "encrypted");
2900 				err = -EOPNOTSUPP;
2901 			} else {
2902 				truncate_setsize(vi, attr->ia_size);
2903 				ntfs_truncate_vfs(vi);
2904 			}
2905 			if (err || ia_valid == ATTR_SIZE)
2906 				goto out;
2907 		} else {
2908 			/*
2909 			 * We skipped the truncate but must still update
2910 			 * timestamps.
2911 			 */
2912 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2913 		}
2914 	}
2915 	if (ia_valid & ATTR_ATIME)
2916 		vi->i_atime = attr->ia_atime;
2917 	if (ia_valid & ATTR_MTIME)
2918 		vi->i_mtime = attr->ia_mtime;
2919 	if (ia_valid & ATTR_CTIME)
2920 		vi->i_ctime = attr->ia_ctime;
2921 	mark_inode_dirty(vi);
2922 out:
2923 	return err;
2924 }
2925 
2926 /**
2927  * ntfs_write_inode - write out a dirty inode
2928  * @vi:		inode to write out
2929  * @sync:	if true, write out synchronously
2930  *
2931  * Write out a dirty inode to disk including any extent inodes if present.
2932  *
2933  * If @sync is true, commit the inode to disk and wait for io completion.  This
2934  * is done using write_mft_record().
2935  *
2936  * If @sync is false, just schedule the write to happen but do not wait for i/o
2937  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2938  * marking the page (and in this case mft record) dirty but we do not implement
2939  * this yet as write_mft_record() largely ignores the @sync parameter and
2940  * always performs synchronous writes.
2941  *
2942  * Return 0 on success and -errno on error.
2943  */
2944 int __ntfs_write_inode(struct inode *vi, int sync)
2945 {
2946 	sle64 nt;
2947 	ntfs_inode *ni = NTFS_I(vi);
2948 	ntfs_attr_search_ctx *ctx;
2949 	MFT_RECORD *m;
2950 	STANDARD_INFORMATION *si;
2951 	int err = 0;
2952 	bool modified = false;
2953 
2954 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2955 			vi->i_ino);
2956 	/*
2957 	 * Dirty attribute inodes are written via their real inodes so just
2958 	 * clean them here.  Access time updates are taken care off when the
2959 	 * real inode is written.
2960 	 */
2961 	if (NInoAttr(ni)) {
2962 		NInoClearDirty(ni);
2963 		ntfs_debug("Done.");
2964 		return 0;
2965 	}
2966 	/* Map, pin, and lock the mft record belonging to the inode. */
2967 	m = map_mft_record(ni);
2968 	if (IS_ERR(m)) {
2969 		err = PTR_ERR(m);
2970 		goto err_out;
2971 	}
2972 	/* Update the access times in the standard information attribute. */
2973 	ctx = ntfs_attr_get_search_ctx(ni, m);
2974 	if (unlikely(!ctx)) {
2975 		err = -ENOMEM;
2976 		goto unm_err_out;
2977 	}
2978 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2979 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2980 	if (unlikely(err)) {
2981 		ntfs_attr_put_search_ctx(ctx);
2982 		goto unm_err_out;
2983 	}
2984 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2985 			le16_to_cpu(ctx->attr->data.resident.value_offset));
2986 	/* Update the access times if they have changed. */
2987 	nt = utc2ntfs(vi->i_mtime);
2988 	if (si->last_data_change_time != nt) {
2989 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2990 				"new = 0x%llx", vi->i_ino, (long long)
2991 				sle64_to_cpu(si->last_data_change_time),
2992 				(long long)sle64_to_cpu(nt));
2993 		si->last_data_change_time = nt;
2994 		modified = true;
2995 	}
2996 	nt = utc2ntfs(vi->i_ctime);
2997 	if (si->last_mft_change_time != nt) {
2998 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2999 				"new = 0x%llx", vi->i_ino, (long long)
3000 				sle64_to_cpu(si->last_mft_change_time),
3001 				(long long)sle64_to_cpu(nt));
3002 		si->last_mft_change_time = nt;
3003 		modified = true;
3004 	}
3005 	nt = utc2ntfs(vi->i_atime);
3006 	if (si->last_access_time != nt) {
3007 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3008 				"new = 0x%llx", vi->i_ino,
3009 				(long long)sle64_to_cpu(si->last_access_time),
3010 				(long long)sle64_to_cpu(nt));
3011 		si->last_access_time = nt;
3012 		modified = true;
3013 	}
3014 	/*
3015 	 * If we just modified the standard information attribute we need to
3016 	 * mark the mft record it is in dirty.  We do this manually so that
3017 	 * mark_inode_dirty() is not called which would redirty the inode and
3018 	 * hence result in an infinite loop of trying to write the inode.
3019 	 * There is no need to mark the base inode nor the base mft record
3020 	 * dirty, since we are going to write this mft record below in any case
3021 	 * and the base mft record may actually not have been modified so it
3022 	 * might not need to be written out.
3023 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3024 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3025 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3026 	 * re-invoked because of it which in turn is ok since the dirtied mft
3027 	 * record will be cleaned and written out to disk below, i.e. before
3028 	 * this function returns.
3029 	 */
3030 	if (modified) {
3031 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3032 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3033 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3034 					ctx->ntfs_ino->page_ofs);
3035 	}
3036 	ntfs_attr_put_search_ctx(ctx);
3037 	/* Now the access times are updated, write the base mft record. */
3038 	if (NInoDirty(ni))
3039 		err = write_mft_record(ni, m, sync);
3040 	/* Write all attached extent mft records. */
3041 	mutex_lock(&ni->extent_lock);
3042 	if (ni->nr_extents > 0) {
3043 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3044 		int i;
3045 
3046 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3047 		for (i = 0; i < ni->nr_extents; i++) {
3048 			ntfs_inode *tni = extent_nis[i];
3049 
3050 			if (NInoDirty(tni)) {
3051 				MFT_RECORD *tm = map_mft_record(tni);
3052 				int ret;
3053 
3054 				if (IS_ERR(tm)) {
3055 					if (!err || err == -ENOMEM)
3056 						err = PTR_ERR(tm);
3057 					continue;
3058 				}
3059 				ret = write_mft_record(tni, tm, sync);
3060 				unmap_mft_record(tni);
3061 				if (unlikely(ret)) {
3062 					if (!err || err == -ENOMEM)
3063 						err = ret;
3064 				}
3065 			}
3066 		}
3067 	}
3068 	mutex_unlock(&ni->extent_lock);
3069 	unmap_mft_record(ni);
3070 	if (unlikely(err))
3071 		goto err_out;
3072 	ntfs_debug("Done.");
3073 	return 0;
3074 unm_err_out:
3075 	unmap_mft_record(ni);
3076 err_out:
3077 	if (err == -ENOMEM) {
3078 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3079 				"Marking the inode dirty again, so the VFS "
3080 				"retries later.");
3081 		mark_inode_dirty(vi);
3082 	} else {
3083 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3084 		NVolSetErrors(ni->vol);
3085 	}
3086 	return err;
3087 }
3088 
3089 #endif /* NTFS_RW */
3090