1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * inode.c - NTFS kernel inode handling. 4 * 5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 6 */ 7 8 #include <linux/buffer_head.h> 9 #include <linux/fs.h> 10 #include <linux/mm.h> 11 #include <linux/mount.h> 12 #include <linux/mutex.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/slab.h> 16 #include <linux/log2.h> 17 18 #include "aops.h" 19 #include "attrib.h" 20 #include "bitmap.h" 21 #include "dir.h" 22 #include "debug.h" 23 #include "inode.h" 24 #include "lcnalloc.h" 25 #include "malloc.h" 26 #include "mft.h" 27 #include "time.h" 28 #include "ntfs.h" 29 30 /** 31 * ntfs_test_inode - compare two (possibly fake) inodes for equality 32 * @vi: vfs inode which to test 33 * @data: data which is being tested with 34 * 35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 36 * inode @vi for equality with the ntfs attribute @data. 37 * 38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 39 * @na->name and @na->name_len are then ignored. 40 * 41 * Return 1 if the attributes match and 0 if not. 42 * 43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not 44 * allowed to sleep. 45 */ 46 int ntfs_test_inode(struct inode *vi, void *data) 47 { 48 ntfs_attr *na = (ntfs_attr *)data; 49 ntfs_inode *ni; 50 51 if (vi->i_ino != na->mft_no) 52 return 0; 53 ni = NTFS_I(vi); 54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 55 if (likely(!NInoAttr(ni))) { 56 /* If not looking for a normal inode this is a mismatch. */ 57 if (unlikely(na->type != AT_UNUSED)) 58 return 0; 59 } else { 60 /* A fake inode describing an attribute. */ 61 if (ni->type != na->type) 62 return 0; 63 if (ni->name_len != na->name_len) 64 return 0; 65 if (na->name_len && memcmp(ni->name, na->name, 66 na->name_len * sizeof(ntfschar))) 67 return 0; 68 } 69 /* Match! */ 70 return 1; 71 } 72 73 /** 74 * ntfs_init_locked_inode - initialize an inode 75 * @vi: vfs inode to initialize 76 * @data: data which to initialize @vi to 77 * 78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in 79 * order to enable ntfs_test_inode() to do its work. 80 * 81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 82 * In that case, @na->name and @na->name_len should be set to NULL and 0, 83 * respectively. Although that is not strictly necessary as 84 * ntfs_read_locked_inode() will fill them in later. 85 * 86 * Return 0 on success and -errno on error. 87 * 88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 90 */ 91 static int ntfs_init_locked_inode(struct inode *vi, void *data) 92 { 93 ntfs_attr *na = (ntfs_attr *)data; 94 ntfs_inode *ni = NTFS_I(vi); 95 96 vi->i_ino = na->mft_no; 97 98 ni->type = na->type; 99 if (na->type == AT_INDEX_ALLOCATION) 100 NInoSetMstProtected(ni); 101 102 ni->name = na->name; 103 ni->name_len = na->name_len; 104 105 /* If initializing a normal inode, we are done. */ 106 if (likely(na->type == AT_UNUSED)) { 107 BUG_ON(na->name); 108 BUG_ON(na->name_len); 109 return 0; 110 } 111 112 /* It is a fake inode. */ 113 NInoSetAttr(ni); 114 115 /* 116 * We have I30 global constant as an optimization as it is the name 117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 118 * allocation but that is ok. And most attributes are unnamed anyway, 119 * thus the fraction of named attributes with name != I30 is actually 120 * absolutely tiny. 121 */ 122 if (na->name_len && na->name != I30) { 123 unsigned int i; 124 125 BUG_ON(!na->name); 126 i = na->name_len * sizeof(ntfschar); 127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 128 if (!ni->name) 129 return -ENOMEM; 130 memcpy(ni->name, na->name, i); 131 ni->name[na->name_len] = 0; 132 } 133 return 0; 134 } 135 136 static int ntfs_read_locked_inode(struct inode *vi); 137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 138 static int ntfs_read_locked_index_inode(struct inode *base_vi, 139 struct inode *vi); 140 141 /** 142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 143 * @sb: super block of mounted volume 144 * @mft_no: mft record number / inode number to obtain 145 * 146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 147 * file or directory). 148 * 149 * If the inode is in the cache, it is just returned with an increased 150 * reference count. Otherwise, a new struct inode is allocated and initialized, 151 * and finally ntfs_read_locked_inode() is called to read in the inode and 152 * fill in the remainder of the inode structure. 153 * 154 * Return the struct inode on success. Check the return value with IS_ERR() and 155 * if true, the function failed and the error code is obtained from PTR_ERR(). 156 */ 157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 158 { 159 struct inode *vi; 160 int err; 161 ntfs_attr na; 162 163 na.mft_no = mft_no; 164 na.type = AT_UNUSED; 165 na.name = NULL; 166 na.name_len = 0; 167 168 vi = iget5_locked(sb, mft_no, ntfs_test_inode, 169 ntfs_init_locked_inode, &na); 170 if (unlikely(!vi)) 171 return ERR_PTR(-ENOMEM); 172 173 err = 0; 174 175 /* If this is a freshly allocated inode, need to read it now. */ 176 if (vi->i_state & I_NEW) { 177 err = ntfs_read_locked_inode(vi); 178 unlock_new_inode(vi); 179 } 180 /* 181 * There is no point in keeping bad inodes around if the failure was 182 * due to ENOMEM. We want to be able to retry again later. 183 */ 184 if (unlikely(err == -ENOMEM)) { 185 iput(vi); 186 vi = ERR_PTR(err); 187 } 188 return vi; 189 } 190 191 /** 192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 193 * @base_vi: vfs base inode containing the attribute 194 * @type: attribute type 195 * @name: Unicode name of the attribute (NULL if unnamed) 196 * @name_len: length of @name in Unicode characters (0 if unnamed) 197 * 198 * Obtain the (fake) struct inode corresponding to the attribute specified by 199 * @type, @name, and @name_len, which is present in the base mft record 200 * specified by the vfs inode @base_vi. 201 * 202 * If the attribute inode is in the cache, it is just returned with an 203 * increased reference count. Otherwise, a new struct inode is allocated and 204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 205 * attribute and fill in the inode structure. 206 * 207 * Note, for index allocation attributes, you need to use ntfs_index_iget() 208 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 209 * 210 * Return the struct inode of the attribute inode on success. Check the return 211 * value with IS_ERR() and if true, the function failed and the error code is 212 * obtained from PTR_ERR(). 213 */ 214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 215 ntfschar *name, u32 name_len) 216 { 217 struct inode *vi; 218 int err; 219 ntfs_attr na; 220 221 /* Make sure no one calls ntfs_attr_iget() for indices. */ 222 BUG_ON(type == AT_INDEX_ALLOCATION); 223 224 na.mft_no = base_vi->i_ino; 225 na.type = type; 226 na.name = name; 227 na.name_len = name_len; 228 229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode, 230 ntfs_init_locked_inode, &na); 231 if (unlikely(!vi)) 232 return ERR_PTR(-ENOMEM); 233 234 err = 0; 235 236 /* If this is a freshly allocated inode, need to read it now. */ 237 if (vi->i_state & I_NEW) { 238 err = ntfs_read_locked_attr_inode(base_vi, vi); 239 unlock_new_inode(vi); 240 } 241 /* 242 * There is no point in keeping bad attribute inodes around. This also 243 * simplifies things in that we never need to check for bad attribute 244 * inodes elsewhere. 245 */ 246 if (unlikely(err)) { 247 iput(vi); 248 vi = ERR_PTR(err); 249 } 250 return vi; 251 } 252 253 /** 254 * ntfs_index_iget - obtain a struct inode corresponding to an index 255 * @base_vi: vfs base inode containing the index related attributes 256 * @name: Unicode name of the index 257 * @name_len: length of @name in Unicode characters 258 * 259 * Obtain the (fake) struct inode corresponding to the index specified by @name 260 * and @name_len, which is present in the base mft record specified by the vfs 261 * inode @base_vi. 262 * 263 * If the index inode is in the cache, it is just returned with an increased 264 * reference count. Otherwise, a new struct inode is allocated and 265 * initialized, and finally ntfs_read_locked_index_inode() is called to read 266 * the index related attributes and fill in the inode structure. 267 * 268 * Return the struct inode of the index inode on success. Check the return 269 * value with IS_ERR() and if true, the function failed and the error code is 270 * obtained from PTR_ERR(). 271 */ 272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 273 u32 name_len) 274 { 275 struct inode *vi; 276 int err; 277 ntfs_attr na; 278 279 na.mft_no = base_vi->i_ino; 280 na.type = AT_INDEX_ALLOCATION; 281 na.name = name; 282 na.name_len = name_len; 283 284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode, 285 ntfs_init_locked_inode, &na); 286 if (unlikely(!vi)) 287 return ERR_PTR(-ENOMEM); 288 289 err = 0; 290 291 /* If this is a freshly allocated inode, need to read it now. */ 292 if (vi->i_state & I_NEW) { 293 err = ntfs_read_locked_index_inode(base_vi, vi); 294 unlock_new_inode(vi); 295 } 296 /* 297 * There is no point in keeping bad index inodes around. This also 298 * simplifies things in that we never need to check for bad index 299 * inodes elsewhere. 300 */ 301 if (unlikely(err)) { 302 iput(vi); 303 vi = ERR_PTR(err); 304 } 305 return vi; 306 } 307 308 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 309 { 310 ntfs_inode *ni; 311 312 ntfs_debug("Entering."); 313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 314 if (likely(ni != NULL)) { 315 ni->state = 0; 316 return VFS_I(ni); 317 } 318 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 319 return NULL; 320 } 321 322 void ntfs_free_big_inode(struct inode *inode) 323 { 324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 325 } 326 327 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 328 { 329 ntfs_inode *ni; 330 331 ntfs_debug("Entering."); 332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 333 if (likely(ni != NULL)) { 334 ni->state = 0; 335 return ni; 336 } 337 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 338 return NULL; 339 } 340 341 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 342 { 343 ntfs_debug("Entering."); 344 BUG_ON(ni->page); 345 if (!atomic_dec_and_test(&ni->count)) 346 BUG(); 347 kmem_cache_free(ntfs_inode_cache, ni); 348 } 349 350 /* 351 * The attribute runlist lock has separate locking rules from the 352 * normal runlist lock, so split the two lock-classes: 353 */ 354 static struct lock_class_key attr_list_rl_lock_class; 355 356 /** 357 * __ntfs_init_inode - initialize ntfs specific part of an inode 358 * @sb: super block of mounted volume 359 * @ni: freshly allocated ntfs inode which to initialize 360 * 361 * Initialize an ntfs inode to defaults. 362 * 363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 364 * untouched. Make sure to initialize them elsewhere. 365 * 366 * Return zero on success and -ENOMEM on error. 367 */ 368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 369 { 370 ntfs_debug("Entering."); 371 rwlock_init(&ni->size_lock); 372 ni->initialized_size = ni->allocated_size = 0; 373 ni->seq_no = 0; 374 atomic_set(&ni->count, 1); 375 ni->vol = NTFS_SB(sb); 376 ntfs_init_runlist(&ni->runlist); 377 mutex_init(&ni->mrec_lock); 378 ni->page = NULL; 379 ni->page_ofs = 0; 380 ni->attr_list_size = 0; 381 ni->attr_list = NULL; 382 ntfs_init_runlist(&ni->attr_list_rl); 383 lockdep_set_class(&ni->attr_list_rl.lock, 384 &attr_list_rl_lock_class); 385 ni->itype.index.block_size = 0; 386 ni->itype.index.vcn_size = 0; 387 ni->itype.index.collation_rule = 0; 388 ni->itype.index.block_size_bits = 0; 389 ni->itype.index.vcn_size_bits = 0; 390 mutex_init(&ni->extent_lock); 391 ni->nr_extents = 0; 392 ni->ext.base_ntfs_ino = NULL; 393 } 394 395 /* 396 * Extent inodes get MFT-mapped in a nested way, while the base inode 397 * is still mapped. Teach this nesting to the lock validator by creating 398 * a separate class for nested inode's mrec_lock's: 399 */ 400 static struct lock_class_key extent_inode_mrec_lock_key; 401 402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 403 unsigned long mft_no) 404 { 405 ntfs_inode *ni = ntfs_alloc_extent_inode(); 406 407 ntfs_debug("Entering."); 408 if (likely(ni != NULL)) { 409 __ntfs_init_inode(sb, ni); 410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 411 ni->mft_no = mft_no; 412 ni->type = AT_UNUSED; 413 ni->name = NULL; 414 ni->name_len = 0; 415 } 416 return ni; 417 } 418 419 /** 420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 421 * @ctx: initialized attribute search context 422 * 423 * Search all file name attributes in the inode described by the attribute 424 * search context @ctx and check if any of the names are in the $Extend system 425 * directory. 426 * 427 * Return values: 428 * 1: file is in $Extend directory 429 * 0: file is not in $Extend directory 430 * -errno: failed to determine if the file is in the $Extend directory 431 */ 432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 433 { 434 int nr_links, err; 435 436 /* Restart search. */ 437 ntfs_attr_reinit_search_ctx(ctx); 438 439 /* Get number of hard links. */ 440 nr_links = le16_to_cpu(ctx->mrec->link_count); 441 442 /* Loop through all hard links. */ 443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 444 ctx))) { 445 FILE_NAME_ATTR *file_name_attr; 446 ATTR_RECORD *attr = ctx->attr; 447 u8 *p, *p2; 448 449 nr_links--; 450 /* 451 * Maximum sanity checking as we are called on an inode that 452 * we suspect might be corrupt. 453 */ 454 p = (u8*)attr + le32_to_cpu(attr->length); 455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 456 le32_to_cpu(ctx->mrec->bytes_in_use)) { 457 err_corrupt_attr: 458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 459 "attribute. You should run chkdsk."); 460 return -EIO; 461 } 462 if (attr->non_resident) { 463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 464 "name. You should run chkdsk."); 465 return -EIO; 466 } 467 if (attr->flags) { 468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 469 "invalid flags. You should run " 470 "chkdsk."); 471 return -EIO; 472 } 473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 475 "name. You should run chkdsk."); 476 return -EIO; 477 } 478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 479 le16_to_cpu(attr->data.resident.value_offset)); 480 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length); 481 if (p2 < (u8*)attr || p2 > p) 482 goto err_corrupt_attr; 483 /* This attribute is ok, but is it in the $Extend directory? */ 484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 485 return 1; /* YES, it's an extended system file. */ 486 } 487 if (unlikely(err != -ENOENT)) 488 return err; 489 if (unlikely(nr_links)) { 490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 491 "doesn't match number of name attributes. You " 492 "should run chkdsk."); 493 return -EIO; 494 } 495 return 0; /* NO, it is not an extended system file. */ 496 } 497 498 /** 499 * ntfs_read_locked_inode - read an inode from its device 500 * @vi: inode to read 501 * 502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 503 * described by @vi into memory from the device. 504 * 505 * The only fields in @vi that we need to/can look at when the function is 506 * called are i_sb, pointing to the mounted device's super block, and i_ino, 507 * the number of the inode to load. 508 * 509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 510 * for reading and sets up the necessary @vi fields as well as initializing 511 * the ntfs inode. 512 * 513 * Q: What locks are held when the function is called? 514 * A: i_state has I_NEW set, hence the inode is locked, also 515 * i_count is set to 1, so it is not going to go away 516 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 517 * is allowed to write to them. We should of course be honouring them but 518 * we need to do that using the IS_* macros defined in include/linux/fs.h. 519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 520 * 521 * Return 0 on success and -errno on error. In the error case, the inode will 522 * have had make_bad_inode() executed on it. 523 */ 524 static int ntfs_read_locked_inode(struct inode *vi) 525 { 526 ntfs_volume *vol = NTFS_SB(vi->i_sb); 527 ntfs_inode *ni; 528 struct inode *bvi; 529 MFT_RECORD *m; 530 ATTR_RECORD *a; 531 STANDARD_INFORMATION *si; 532 ntfs_attr_search_ctx *ctx; 533 int err = 0; 534 535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 536 537 /* Setup the generic vfs inode parts now. */ 538 vi->i_uid = vol->uid; 539 vi->i_gid = vol->gid; 540 vi->i_mode = 0; 541 542 /* 543 * Initialize the ntfs specific part of @vi special casing 544 * FILE_MFT which we need to do at mount time. 545 */ 546 if (vi->i_ino != FILE_MFT) 547 ntfs_init_big_inode(vi); 548 ni = NTFS_I(vi); 549 550 m = map_mft_record(ni); 551 if (IS_ERR(m)) { 552 err = PTR_ERR(m); 553 goto err_out; 554 } 555 ctx = ntfs_attr_get_search_ctx(ni, m); 556 if (!ctx) { 557 err = -ENOMEM; 558 goto unm_err_out; 559 } 560 561 if (!(m->flags & MFT_RECORD_IN_USE)) { 562 ntfs_error(vi->i_sb, "Inode is not in use!"); 563 goto unm_err_out; 564 } 565 if (m->base_mft_record) { 566 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 567 goto unm_err_out; 568 } 569 570 /* Transfer information from mft record into vfs and ntfs inodes. */ 571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 572 573 /* 574 * FIXME: Keep in mind that link_count is two for files which have both 575 * a long file name and a short file name as separate entries, so if 576 * we are hiding short file names this will be too high. Either we need 577 * to account for the short file names by subtracting them or we need 578 * to make sure we delete files even though i_nlink is not zero which 579 * might be tricky due to vfs interactions. Need to think about this 580 * some more when implementing the unlink command. 581 */ 582 set_nlink(vi, le16_to_cpu(m->link_count)); 583 /* 584 * FIXME: Reparse points can have the directory bit set even though 585 * they would be S_IFLNK. Need to deal with this further below when we 586 * implement reparse points / symbolic links but it will do for now. 587 * Also if not a directory, it could be something else, rather than 588 * a regular file. But again, will do for now. 589 */ 590 /* Everyone gets all permissions. */ 591 vi->i_mode |= S_IRWXUGO; 592 /* If read-only, no one gets write permissions. */ 593 if (IS_RDONLY(vi)) 594 vi->i_mode &= ~S_IWUGO; 595 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 596 vi->i_mode |= S_IFDIR; 597 /* 598 * Apply the directory permissions mask set in the mount 599 * options. 600 */ 601 vi->i_mode &= ~vol->dmask; 602 /* Things break without this kludge! */ 603 if (vi->i_nlink > 1) 604 set_nlink(vi, 1); 605 } else { 606 vi->i_mode |= S_IFREG; 607 /* Apply the file permissions mask set in the mount options. */ 608 vi->i_mode &= ~vol->fmask; 609 } 610 /* 611 * Find the standard information attribute in the mft record. At this 612 * stage we haven't setup the attribute list stuff yet, so this could 613 * in fact fail if the standard information is in an extent record, but 614 * I don't think this actually ever happens. 615 */ 616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 617 ctx); 618 if (unlikely(err)) { 619 if (err == -ENOENT) { 620 /* 621 * TODO: We should be performing a hot fix here (if the 622 * recover mount option is set) by creating a new 623 * attribute. 624 */ 625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 626 "is missing."); 627 } 628 goto unm_err_out; 629 } 630 a = ctx->attr; 631 /* Get the standard information attribute value. */ 632 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset) 633 + le32_to_cpu(a->data.resident.value_length) > 634 (u8 *)ctx->mrec + vol->mft_record_size) { 635 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode."); 636 goto unm_err_out; 637 } 638 si = (STANDARD_INFORMATION*)((u8*)a + 639 le16_to_cpu(a->data.resident.value_offset)); 640 641 /* Transfer information from the standard information into vi. */ 642 /* 643 * Note: The i_?times do not quite map perfectly onto the NTFS times, 644 * but they are close enough, and in the end it doesn't really matter 645 * that much... 646 */ 647 /* 648 * mtime is the last change of the data within the file. Not changed 649 * when only metadata is changed, e.g. a rename doesn't affect mtime. 650 */ 651 vi->i_mtime = ntfs2utc(si->last_data_change_time); 652 /* 653 * ctime is the last change of the metadata of the file. This obviously 654 * always changes, when mtime is changed. ctime can be changed on its 655 * own, mtime is then not changed, e.g. when a file is renamed. 656 */ 657 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 658 /* 659 * Last access to the data within the file. Not changed during a rename 660 * for example but changed whenever the file is written to. 661 */ 662 vi->i_atime = ntfs2utc(si->last_access_time); 663 664 /* Find the attribute list attribute if present. */ 665 ntfs_attr_reinit_search_ctx(ctx); 666 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 667 if (err) { 668 if (unlikely(err != -ENOENT)) { 669 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 670 "attribute."); 671 goto unm_err_out; 672 } 673 } else /* if (!err) */ { 674 if (vi->i_ino == FILE_MFT) 675 goto skip_attr_list_load; 676 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 677 NInoSetAttrList(ni); 678 a = ctx->attr; 679 if (a->flags & ATTR_COMPRESSION_MASK) { 680 ntfs_error(vi->i_sb, "Attribute list attribute is " 681 "compressed."); 682 goto unm_err_out; 683 } 684 if (a->flags & ATTR_IS_ENCRYPTED || 685 a->flags & ATTR_IS_SPARSE) { 686 if (a->non_resident) { 687 ntfs_error(vi->i_sb, "Non-resident attribute " 688 "list attribute is encrypted/" 689 "sparse."); 690 goto unm_err_out; 691 } 692 ntfs_warning(vi->i_sb, "Resident attribute list " 693 "attribute in inode 0x%lx is marked " 694 "encrypted/sparse which is not true. " 695 "However, Windows allows this and " 696 "chkdsk does not detect or correct it " 697 "so we will just ignore the invalid " 698 "flags and pretend they are not set.", 699 vi->i_ino); 700 } 701 /* Now allocate memory for the attribute list. */ 702 ni->attr_list_size = (u32)ntfs_attr_size(a); 703 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 704 if (!ni->attr_list) { 705 ntfs_error(vi->i_sb, "Not enough memory to allocate " 706 "buffer for attribute list."); 707 err = -ENOMEM; 708 goto unm_err_out; 709 } 710 if (a->non_resident) { 711 NInoSetAttrListNonResident(ni); 712 if (a->data.non_resident.lowest_vcn) { 713 ntfs_error(vi->i_sb, "Attribute list has non " 714 "zero lowest_vcn."); 715 goto unm_err_out; 716 } 717 /* 718 * Setup the runlist. No need for locking as we have 719 * exclusive access to the inode at this time. 720 */ 721 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 722 a, NULL); 723 if (IS_ERR(ni->attr_list_rl.rl)) { 724 err = PTR_ERR(ni->attr_list_rl.rl); 725 ni->attr_list_rl.rl = NULL; 726 ntfs_error(vi->i_sb, "Mapping pairs " 727 "decompression failed."); 728 goto unm_err_out; 729 } 730 /* Now load the attribute list. */ 731 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 732 ni->attr_list, ni->attr_list_size, 733 sle64_to_cpu(a->data.non_resident. 734 initialized_size)))) { 735 ntfs_error(vi->i_sb, "Failed to load " 736 "attribute list attribute."); 737 goto unm_err_out; 738 } 739 } else /* if (!a->non_resident) */ { 740 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 741 + le32_to_cpu( 742 a->data.resident.value_length) > 743 (u8*)ctx->mrec + vol->mft_record_size) { 744 ntfs_error(vi->i_sb, "Corrupt attribute list " 745 "in inode."); 746 goto unm_err_out; 747 } 748 /* Now copy the attribute list. */ 749 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 750 a->data.resident.value_offset), 751 le32_to_cpu( 752 a->data.resident.value_length)); 753 } 754 } 755 skip_attr_list_load: 756 /* 757 * If an attribute list is present we now have the attribute list value 758 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 759 */ 760 if (S_ISDIR(vi->i_mode)) { 761 loff_t bvi_size; 762 ntfs_inode *bni; 763 INDEX_ROOT *ir; 764 u8 *ir_end, *index_end; 765 766 /* It is a directory, find index root attribute. */ 767 ntfs_attr_reinit_search_ctx(ctx); 768 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 769 0, NULL, 0, ctx); 770 if (unlikely(err)) { 771 if (err == -ENOENT) { 772 // FIXME: File is corrupt! Hot-fix with empty 773 // index root attribute if recovery option is 774 // set. 775 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 776 "is missing."); 777 } 778 goto unm_err_out; 779 } 780 a = ctx->attr; 781 /* Set up the state. */ 782 if (unlikely(a->non_resident)) { 783 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 784 "resident."); 785 goto unm_err_out; 786 } 787 /* Ensure the attribute name is placed before the value. */ 788 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 789 le16_to_cpu(a->data.resident.value_offset)))) { 790 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 791 "placed after the attribute value."); 792 goto unm_err_out; 793 } 794 /* 795 * Compressed/encrypted index root just means that the newly 796 * created files in that directory should be created compressed/ 797 * encrypted. However index root cannot be both compressed and 798 * encrypted. 799 */ 800 if (a->flags & ATTR_COMPRESSION_MASK) 801 NInoSetCompressed(ni); 802 if (a->flags & ATTR_IS_ENCRYPTED) { 803 if (a->flags & ATTR_COMPRESSION_MASK) { 804 ntfs_error(vi->i_sb, "Found encrypted and " 805 "compressed attribute."); 806 goto unm_err_out; 807 } 808 NInoSetEncrypted(ni); 809 } 810 if (a->flags & ATTR_IS_SPARSE) 811 NInoSetSparse(ni); 812 ir = (INDEX_ROOT*)((u8*)a + 813 le16_to_cpu(a->data.resident.value_offset)); 814 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 815 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 816 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 817 "corrupt."); 818 goto unm_err_out; 819 } 820 index_end = (u8*)&ir->index + 821 le32_to_cpu(ir->index.index_length); 822 if (index_end > ir_end) { 823 ntfs_error(vi->i_sb, "Directory index is corrupt."); 824 goto unm_err_out; 825 } 826 if (ir->type != AT_FILE_NAME) { 827 ntfs_error(vi->i_sb, "Indexed attribute is not " 828 "$FILE_NAME."); 829 goto unm_err_out; 830 } 831 if (ir->collation_rule != COLLATION_FILE_NAME) { 832 ntfs_error(vi->i_sb, "Index collation rule is not " 833 "COLLATION_FILE_NAME."); 834 goto unm_err_out; 835 } 836 ni->itype.index.collation_rule = ir->collation_rule; 837 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 838 if (ni->itype.index.block_size & 839 (ni->itype.index.block_size - 1)) { 840 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 841 "power of two.", 842 ni->itype.index.block_size); 843 goto unm_err_out; 844 } 845 if (ni->itype.index.block_size > PAGE_SIZE) { 846 ntfs_error(vi->i_sb, "Index block size (%u) > " 847 "PAGE_SIZE (%ld) is not " 848 "supported. Sorry.", 849 ni->itype.index.block_size, 850 PAGE_SIZE); 851 err = -EOPNOTSUPP; 852 goto unm_err_out; 853 } 854 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 855 ntfs_error(vi->i_sb, "Index block size (%u) < " 856 "NTFS_BLOCK_SIZE (%i) is not " 857 "supported. Sorry.", 858 ni->itype.index.block_size, 859 NTFS_BLOCK_SIZE); 860 err = -EOPNOTSUPP; 861 goto unm_err_out; 862 } 863 ni->itype.index.block_size_bits = 864 ffs(ni->itype.index.block_size) - 1; 865 /* Determine the size of a vcn in the directory index. */ 866 if (vol->cluster_size <= ni->itype.index.block_size) { 867 ni->itype.index.vcn_size = vol->cluster_size; 868 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 869 } else { 870 ni->itype.index.vcn_size = vol->sector_size; 871 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 872 } 873 874 /* Setup the index allocation attribute, even if not present. */ 875 NInoSetMstProtected(ni); 876 ni->type = AT_INDEX_ALLOCATION; 877 ni->name = I30; 878 ni->name_len = 4; 879 880 if (!(ir->index.flags & LARGE_INDEX)) { 881 /* No index allocation. */ 882 vi->i_size = ni->initialized_size = 883 ni->allocated_size = 0; 884 /* We are done with the mft record, so we release it. */ 885 ntfs_attr_put_search_ctx(ctx); 886 unmap_mft_record(ni); 887 m = NULL; 888 ctx = NULL; 889 goto skip_large_dir_stuff; 890 } /* LARGE_INDEX: Index allocation present. Setup state. */ 891 NInoSetIndexAllocPresent(ni); 892 /* Find index allocation attribute. */ 893 ntfs_attr_reinit_search_ctx(ctx); 894 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 895 CASE_SENSITIVE, 0, NULL, 0, ctx); 896 if (unlikely(err)) { 897 if (err == -ENOENT) 898 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 899 "attribute is not present but " 900 "$INDEX_ROOT indicated it is."); 901 else 902 ntfs_error(vi->i_sb, "Failed to lookup " 903 "$INDEX_ALLOCATION " 904 "attribute."); 905 goto unm_err_out; 906 } 907 a = ctx->attr; 908 if (!a->non_resident) { 909 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 910 "is resident."); 911 goto unm_err_out; 912 } 913 /* 914 * Ensure the attribute name is placed before the mapping pairs 915 * array. 916 */ 917 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 918 le16_to_cpu( 919 a->data.non_resident.mapping_pairs_offset)))) { 920 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 921 "is placed after the mapping pairs " 922 "array."); 923 goto unm_err_out; 924 } 925 if (a->flags & ATTR_IS_ENCRYPTED) { 926 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 927 "is encrypted."); 928 goto unm_err_out; 929 } 930 if (a->flags & ATTR_IS_SPARSE) { 931 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 932 "is sparse."); 933 goto unm_err_out; 934 } 935 if (a->flags & ATTR_COMPRESSION_MASK) { 936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 937 "is compressed."); 938 goto unm_err_out; 939 } 940 if (a->data.non_resident.lowest_vcn) { 941 ntfs_error(vi->i_sb, "First extent of " 942 "$INDEX_ALLOCATION attribute has non " 943 "zero lowest_vcn."); 944 goto unm_err_out; 945 } 946 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 947 ni->initialized_size = sle64_to_cpu( 948 a->data.non_resident.initialized_size); 949 ni->allocated_size = sle64_to_cpu( 950 a->data.non_resident.allocated_size); 951 /* 952 * We are done with the mft record, so we release it. Otherwise 953 * we would deadlock in ntfs_attr_iget(). 954 */ 955 ntfs_attr_put_search_ctx(ctx); 956 unmap_mft_record(ni); 957 m = NULL; 958 ctx = NULL; 959 /* Get the index bitmap attribute inode. */ 960 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 961 if (IS_ERR(bvi)) { 962 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 963 err = PTR_ERR(bvi); 964 goto unm_err_out; 965 } 966 bni = NTFS_I(bvi); 967 if (NInoCompressed(bni) || NInoEncrypted(bni) || 968 NInoSparse(bni)) { 969 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 970 "and/or encrypted and/or sparse."); 971 goto iput_unm_err_out; 972 } 973 /* Consistency check bitmap size vs. index allocation size. */ 974 bvi_size = i_size_read(bvi); 975 if ((bvi_size << 3) < (vi->i_size >> 976 ni->itype.index.block_size_bits)) { 977 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 978 "for index allocation (0x%llx).", 979 bvi_size << 3, vi->i_size); 980 goto iput_unm_err_out; 981 } 982 /* No longer need the bitmap attribute inode. */ 983 iput(bvi); 984 skip_large_dir_stuff: 985 /* Setup the operations for this inode. */ 986 vi->i_op = &ntfs_dir_inode_ops; 987 vi->i_fop = &ntfs_dir_ops; 988 vi->i_mapping->a_ops = &ntfs_mst_aops; 989 } else { 990 /* It is a file. */ 991 ntfs_attr_reinit_search_ctx(ctx); 992 993 /* Setup the data attribute, even if not present. */ 994 ni->type = AT_DATA; 995 ni->name = NULL; 996 ni->name_len = 0; 997 998 /* Find first extent of the unnamed data attribute. */ 999 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1000 if (unlikely(err)) { 1001 vi->i_size = ni->initialized_size = 1002 ni->allocated_size = 0; 1003 if (err != -ENOENT) { 1004 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1005 "attribute."); 1006 goto unm_err_out; 1007 } 1008 /* 1009 * FILE_Secure does not have an unnamed $DATA 1010 * attribute, so we special case it here. 1011 */ 1012 if (vi->i_ino == FILE_Secure) 1013 goto no_data_attr_special_case; 1014 /* 1015 * Most if not all the system files in the $Extend 1016 * system directory do not have unnamed data 1017 * attributes so we need to check if the parent 1018 * directory of the file is FILE_Extend and if it is 1019 * ignore this error. To do this we need to get the 1020 * name of this inode from the mft record as the name 1021 * contains the back reference to the parent directory. 1022 */ 1023 if (ntfs_is_extended_system_file(ctx) > 0) 1024 goto no_data_attr_special_case; 1025 // FIXME: File is corrupt! Hot-fix with empty data 1026 // attribute if recovery option is set. 1027 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1028 goto unm_err_out; 1029 } 1030 a = ctx->attr; 1031 /* Setup the state. */ 1032 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1033 if (a->flags & ATTR_COMPRESSION_MASK) { 1034 NInoSetCompressed(ni); 1035 if (vol->cluster_size > 4096) { 1036 ntfs_error(vi->i_sb, "Found " 1037 "compressed data but " 1038 "compression is " 1039 "disabled due to " 1040 "cluster size (%i) > " 1041 "4kiB.", 1042 vol->cluster_size); 1043 goto unm_err_out; 1044 } 1045 if ((a->flags & ATTR_COMPRESSION_MASK) 1046 != ATTR_IS_COMPRESSED) { 1047 ntfs_error(vi->i_sb, "Found unknown " 1048 "compression method " 1049 "or corrupt file."); 1050 goto unm_err_out; 1051 } 1052 } 1053 if (a->flags & ATTR_IS_SPARSE) 1054 NInoSetSparse(ni); 1055 } 1056 if (a->flags & ATTR_IS_ENCRYPTED) { 1057 if (NInoCompressed(ni)) { 1058 ntfs_error(vi->i_sb, "Found encrypted and " 1059 "compressed data."); 1060 goto unm_err_out; 1061 } 1062 NInoSetEncrypted(ni); 1063 } 1064 if (a->non_resident) { 1065 NInoSetNonResident(ni); 1066 if (NInoCompressed(ni) || NInoSparse(ni)) { 1067 if (NInoCompressed(ni) && a->data.non_resident. 1068 compression_unit != 4) { 1069 ntfs_error(vi->i_sb, "Found " 1070 "non-standard " 1071 "compression unit (%u " 1072 "instead of 4). " 1073 "Cannot handle this.", 1074 a->data.non_resident. 1075 compression_unit); 1076 err = -EOPNOTSUPP; 1077 goto unm_err_out; 1078 } 1079 if (a->data.non_resident.compression_unit) { 1080 ni->itype.compressed.block_size = 1U << 1081 (a->data.non_resident. 1082 compression_unit + 1083 vol->cluster_size_bits); 1084 ni->itype.compressed.block_size_bits = 1085 ffs(ni->itype. 1086 compressed. 1087 block_size) - 1; 1088 ni->itype.compressed.block_clusters = 1089 1U << a->data. 1090 non_resident. 1091 compression_unit; 1092 } else { 1093 ni->itype.compressed.block_size = 0; 1094 ni->itype.compressed.block_size_bits = 1095 0; 1096 ni->itype.compressed.block_clusters = 1097 0; 1098 } 1099 ni->itype.compressed.size = sle64_to_cpu( 1100 a->data.non_resident. 1101 compressed_size); 1102 } 1103 if (a->data.non_resident.lowest_vcn) { 1104 ntfs_error(vi->i_sb, "First extent of $DATA " 1105 "attribute has non zero " 1106 "lowest_vcn."); 1107 goto unm_err_out; 1108 } 1109 vi->i_size = sle64_to_cpu( 1110 a->data.non_resident.data_size); 1111 ni->initialized_size = sle64_to_cpu( 1112 a->data.non_resident.initialized_size); 1113 ni->allocated_size = sle64_to_cpu( 1114 a->data.non_resident.allocated_size); 1115 } else { /* Resident attribute. */ 1116 vi->i_size = ni->initialized_size = le32_to_cpu( 1117 a->data.resident.value_length); 1118 ni->allocated_size = le32_to_cpu(a->length) - 1119 le16_to_cpu( 1120 a->data.resident.value_offset); 1121 if (vi->i_size > ni->allocated_size) { 1122 ntfs_error(vi->i_sb, "Resident data attribute " 1123 "is corrupt (size exceeds " 1124 "allocation)."); 1125 goto unm_err_out; 1126 } 1127 } 1128 no_data_attr_special_case: 1129 /* We are done with the mft record, so we release it. */ 1130 ntfs_attr_put_search_ctx(ctx); 1131 unmap_mft_record(ni); 1132 m = NULL; 1133 ctx = NULL; 1134 /* Setup the operations for this inode. */ 1135 vi->i_op = &ntfs_file_inode_ops; 1136 vi->i_fop = &ntfs_file_ops; 1137 vi->i_mapping->a_ops = &ntfs_normal_aops; 1138 if (NInoMstProtected(ni)) 1139 vi->i_mapping->a_ops = &ntfs_mst_aops; 1140 else if (NInoCompressed(ni)) 1141 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1142 } 1143 /* 1144 * The number of 512-byte blocks used on disk (for stat). This is in so 1145 * far inaccurate as it doesn't account for any named streams or other 1146 * special non-resident attributes, but that is how Windows works, too, 1147 * so we are at least consistent with Windows, if not entirely 1148 * consistent with the Linux Way. Doing it the Linux Way would cause a 1149 * significant slowdown as it would involve iterating over all 1150 * attributes in the mft record and adding the allocated/compressed 1151 * sizes of all non-resident attributes present to give us the Linux 1152 * correct size that should go into i_blocks (after division by 512). 1153 */ 1154 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1155 vi->i_blocks = ni->itype.compressed.size >> 9; 1156 else 1157 vi->i_blocks = ni->allocated_size >> 9; 1158 ntfs_debug("Done."); 1159 return 0; 1160 iput_unm_err_out: 1161 iput(bvi); 1162 unm_err_out: 1163 if (!err) 1164 err = -EIO; 1165 if (ctx) 1166 ntfs_attr_put_search_ctx(ctx); 1167 if (m) 1168 unmap_mft_record(ni); 1169 err_out: 1170 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1171 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1172 make_bad_inode(vi); 1173 if (err != -EOPNOTSUPP && err != -ENOMEM) 1174 NVolSetErrors(vol); 1175 return err; 1176 } 1177 1178 /** 1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1180 * @base_vi: base inode 1181 * @vi: attribute inode to read 1182 * 1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1184 * attribute inode described by @vi into memory from the base mft record 1185 * described by @base_ni. 1186 * 1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1188 * reading and looks up the attribute described by @vi before setting up the 1189 * necessary fields in @vi as well as initializing the ntfs inode. 1190 * 1191 * Q: What locks are held when the function is called? 1192 * A: i_state has I_NEW set, hence the inode is locked, also 1193 * i_count is set to 1, so it is not going to go away 1194 * 1195 * Return 0 on success and -errno on error. In the error case, the inode will 1196 * have had make_bad_inode() executed on it. 1197 * 1198 * Note this cannot be called for AT_INDEX_ALLOCATION. 1199 */ 1200 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1201 { 1202 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1203 ntfs_inode *ni, *base_ni; 1204 MFT_RECORD *m; 1205 ATTR_RECORD *a; 1206 ntfs_attr_search_ctx *ctx; 1207 int err = 0; 1208 1209 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1210 1211 ntfs_init_big_inode(vi); 1212 1213 ni = NTFS_I(vi); 1214 base_ni = NTFS_I(base_vi); 1215 1216 /* Just mirror the values from the base inode. */ 1217 vi->i_uid = base_vi->i_uid; 1218 vi->i_gid = base_vi->i_gid; 1219 set_nlink(vi, base_vi->i_nlink); 1220 vi->i_mtime = base_vi->i_mtime; 1221 vi->i_ctime = base_vi->i_ctime; 1222 vi->i_atime = base_vi->i_atime; 1223 vi->i_generation = ni->seq_no = base_ni->seq_no; 1224 1225 /* Set inode type to zero but preserve permissions. */ 1226 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1227 1228 m = map_mft_record(base_ni); 1229 if (IS_ERR(m)) { 1230 err = PTR_ERR(m); 1231 goto err_out; 1232 } 1233 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1234 if (!ctx) { 1235 err = -ENOMEM; 1236 goto unm_err_out; 1237 } 1238 /* Find the attribute. */ 1239 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1240 CASE_SENSITIVE, 0, NULL, 0, ctx); 1241 if (unlikely(err)) 1242 goto unm_err_out; 1243 a = ctx->attr; 1244 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1245 if (a->flags & ATTR_COMPRESSION_MASK) { 1246 NInoSetCompressed(ni); 1247 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1248 ni->name_len)) { 1249 ntfs_error(vi->i_sb, "Found compressed " 1250 "non-data or named data " 1251 "attribute. Please report " 1252 "you saw this message to " 1253 "linux-ntfs-dev@lists." 1254 "sourceforge.net"); 1255 goto unm_err_out; 1256 } 1257 if (vol->cluster_size > 4096) { 1258 ntfs_error(vi->i_sb, "Found compressed " 1259 "attribute but compression is " 1260 "disabled due to cluster size " 1261 "(%i) > 4kiB.", 1262 vol->cluster_size); 1263 goto unm_err_out; 1264 } 1265 if ((a->flags & ATTR_COMPRESSION_MASK) != 1266 ATTR_IS_COMPRESSED) { 1267 ntfs_error(vi->i_sb, "Found unknown " 1268 "compression method."); 1269 goto unm_err_out; 1270 } 1271 } 1272 /* 1273 * The compressed/sparse flag set in an index root just means 1274 * to compress all files. 1275 */ 1276 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1277 ntfs_error(vi->i_sb, "Found mst protected attribute " 1278 "but the attribute is %s. Please " 1279 "report you saw this message to " 1280 "linux-ntfs-dev@lists.sourceforge.net", 1281 NInoCompressed(ni) ? "compressed" : 1282 "sparse"); 1283 goto unm_err_out; 1284 } 1285 if (a->flags & ATTR_IS_SPARSE) 1286 NInoSetSparse(ni); 1287 } 1288 if (a->flags & ATTR_IS_ENCRYPTED) { 1289 if (NInoCompressed(ni)) { 1290 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1291 "data."); 1292 goto unm_err_out; 1293 } 1294 /* 1295 * The encryption flag set in an index root just means to 1296 * encrypt all files. 1297 */ 1298 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1299 ntfs_error(vi->i_sb, "Found mst protected attribute " 1300 "but the attribute is encrypted. " 1301 "Please report you saw this message " 1302 "to linux-ntfs-dev@lists.sourceforge." 1303 "net"); 1304 goto unm_err_out; 1305 } 1306 if (ni->type != AT_DATA) { 1307 ntfs_error(vi->i_sb, "Found encrypted non-data " 1308 "attribute."); 1309 goto unm_err_out; 1310 } 1311 NInoSetEncrypted(ni); 1312 } 1313 if (!a->non_resident) { 1314 /* Ensure the attribute name is placed before the value. */ 1315 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1316 le16_to_cpu(a->data.resident.value_offset)))) { 1317 ntfs_error(vol->sb, "Attribute name is placed after " 1318 "the attribute value."); 1319 goto unm_err_out; 1320 } 1321 if (NInoMstProtected(ni)) { 1322 ntfs_error(vi->i_sb, "Found mst protected attribute " 1323 "but the attribute is resident. " 1324 "Please report you saw this message to " 1325 "linux-ntfs-dev@lists.sourceforge.net"); 1326 goto unm_err_out; 1327 } 1328 vi->i_size = ni->initialized_size = le32_to_cpu( 1329 a->data.resident.value_length); 1330 ni->allocated_size = le32_to_cpu(a->length) - 1331 le16_to_cpu(a->data.resident.value_offset); 1332 if (vi->i_size > ni->allocated_size) { 1333 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1334 "(size exceeds allocation)."); 1335 goto unm_err_out; 1336 } 1337 } else { 1338 NInoSetNonResident(ni); 1339 /* 1340 * Ensure the attribute name is placed before the mapping pairs 1341 * array. 1342 */ 1343 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1344 le16_to_cpu( 1345 a->data.non_resident.mapping_pairs_offset)))) { 1346 ntfs_error(vol->sb, "Attribute name is placed after " 1347 "the mapping pairs array."); 1348 goto unm_err_out; 1349 } 1350 if (NInoCompressed(ni) || NInoSparse(ni)) { 1351 if (NInoCompressed(ni) && a->data.non_resident. 1352 compression_unit != 4) { 1353 ntfs_error(vi->i_sb, "Found non-standard " 1354 "compression unit (%u instead " 1355 "of 4). Cannot handle this.", 1356 a->data.non_resident. 1357 compression_unit); 1358 err = -EOPNOTSUPP; 1359 goto unm_err_out; 1360 } 1361 if (a->data.non_resident.compression_unit) { 1362 ni->itype.compressed.block_size = 1U << 1363 (a->data.non_resident. 1364 compression_unit + 1365 vol->cluster_size_bits); 1366 ni->itype.compressed.block_size_bits = 1367 ffs(ni->itype.compressed. 1368 block_size) - 1; 1369 ni->itype.compressed.block_clusters = 1U << 1370 a->data.non_resident. 1371 compression_unit; 1372 } else { 1373 ni->itype.compressed.block_size = 0; 1374 ni->itype.compressed.block_size_bits = 0; 1375 ni->itype.compressed.block_clusters = 0; 1376 } 1377 ni->itype.compressed.size = sle64_to_cpu( 1378 a->data.non_resident.compressed_size); 1379 } 1380 if (a->data.non_resident.lowest_vcn) { 1381 ntfs_error(vi->i_sb, "First extent of attribute has " 1382 "non-zero lowest_vcn."); 1383 goto unm_err_out; 1384 } 1385 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1386 ni->initialized_size = sle64_to_cpu( 1387 a->data.non_resident.initialized_size); 1388 ni->allocated_size = sle64_to_cpu( 1389 a->data.non_resident.allocated_size); 1390 } 1391 vi->i_mapping->a_ops = &ntfs_normal_aops; 1392 if (NInoMstProtected(ni)) 1393 vi->i_mapping->a_ops = &ntfs_mst_aops; 1394 else if (NInoCompressed(ni)) 1395 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1396 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1397 vi->i_blocks = ni->itype.compressed.size >> 9; 1398 else 1399 vi->i_blocks = ni->allocated_size >> 9; 1400 /* 1401 * Make sure the base inode does not go away and attach it to the 1402 * attribute inode. 1403 */ 1404 igrab(base_vi); 1405 ni->ext.base_ntfs_ino = base_ni; 1406 ni->nr_extents = -1; 1407 1408 ntfs_attr_put_search_ctx(ctx); 1409 unmap_mft_record(base_ni); 1410 1411 ntfs_debug("Done."); 1412 return 0; 1413 1414 unm_err_out: 1415 if (!err) 1416 err = -EIO; 1417 if (ctx) 1418 ntfs_attr_put_search_ctx(ctx); 1419 unmap_mft_record(base_ni); 1420 err_out: 1421 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1422 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1423 "Marking corrupt inode and base inode 0x%lx as bad. " 1424 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1425 base_vi->i_ino); 1426 make_bad_inode(vi); 1427 if (err != -ENOMEM) 1428 NVolSetErrors(vol); 1429 return err; 1430 } 1431 1432 /** 1433 * ntfs_read_locked_index_inode - read an index inode from its base inode 1434 * @base_vi: base inode 1435 * @vi: index inode to read 1436 * 1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1438 * index inode described by @vi into memory from the base mft record described 1439 * by @base_ni. 1440 * 1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1442 * reading and looks up the attributes relating to the index described by @vi 1443 * before setting up the necessary fields in @vi as well as initializing the 1444 * ntfs inode. 1445 * 1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1447 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1448 * are setup like directory inodes since directories are a special case of 1449 * indices ao they need to be treated in much the same way. Most importantly, 1450 * for small indices the index allocation attribute might not actually exist. 1451 * However, the index root attribute always exists but this does not need to 1452 * have an inode associated with it and this is why we define a new inode type 1453 * index. Also, like for directories, we need to have an attribute inode for 1454 * the bitmap attribute corresponding to the index allocation attribute and we 1455 * can store this in the appropriate field of the inode, just like we do for 1456 * normal directory inodes. 1457 * 1458 * Q: What locks are held when the function is called? 1459 * A: i_state has I_NEW set, hence the inode is locked, also 1460 * i_count is set to 1, so it is not going to go away 1461 * 1462 * Return 0 on success and -errno on error. In the error case, the inode will 1463 * have had make_bad_inode() executed on it. 1464 */ 1465 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1466 { 1467 loff_t bvi_size; 1468 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1469 ntfs_inode *ni, *base_ni, *bni; 1470 struct inode *bvi; 1471 MFT_RECORD *m; 1472 ATTR_RECORD *a; 1473 ntfs_attr_search_ctx *ctx; 1474 INDEX_ROOT *ir; 1475 u8 *ir_end, *index_end; 1476 int err = 0; 1477 1478 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1479 ntfs_init_big_inode(vi); 1480 ni = NTFS_I(vi); 1481 base_ni = NTFS_I(base_vi); 1482 /* Just mirror the values from the base inode. */ 1483 vi->i_uid = base_vi->i_uid; 1484 vi->i_gid = base_vi->i_gid; 1485 set_nlink(vi, base_vi->i_nlink); 1486 vi->i_mtime = base_vi->i_mtime; 1487 vi->i_ctime = base_vi->i_ctime; 1488 vi->i_atime = base_vi->i_atime; 1489 vi->i_generation = ni->seq_no = base_ni->seq_no; 1490 /* Set inode type to zero but preserve permissions. */ 1491 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1492 /* Map the mft record for the base inode. */ 1493 m = map_mft_record(base_ni); 1494 if (IS_ERR(m)) { 1495 err = PTR_ERR(m); 1496 goto err_out; 1497 } 1498 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1499 if (!ctx) { 1500 err = -ENOMEM; 1501 goto unm_err_out; 1502 } 1503 /* Find the index root attribute. */ 1504 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1505 CASE_SENSITIVE, 0, NULL, 0, ctx); 1506 if (unlikely(err)) { 1507 if (err == -ENOENT) 1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1509 "missing."); 1510 goto unm_err_out; 1511 } 1512 a = ctx->attr; 1513 /* Set up the state. */ 1514 if (unlikely(a->non_resident)) { 1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1516 goto unm_err_out; 1517 } 1518 /* Ensure the attribute name is placed before the value. */ 1519 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1520 le16_to_cpu(a->data.resident.value_offset)))) { 1521 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1522 "after the attribute value."); 1523 goto unm_err_out; 1524 } 1525 /* 1526 * Compressed/encrypted/sparse index root is not allowed, except for 1527 * directories of course but those are not dealt with here. 1528 */ 1529 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1530 ATTR_IS_SPARSE)) { 1531 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1532 "root attribute."); 1533 goto unm_err_out; 1534 } 1535 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1536 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1537 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1538 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1539 goto unm_err_out; 1540 } 1541 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1542 if (index_end > ir_end) { 1543 ntfs_error(vi->i_sb, "Index is corrupt."); 1544 goto unm_err_out; 1545 } 1546 if (ir->type) { 1547 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1548 le32_to_cpu(ir->type)); 1549 goto unm_err_out; 1550 } 1551 ni->itype.index.collation_rule = ir->collation_rule; 1552 ntfs_debug("Index collation rule is 0x%x.", 1553 le32_to_cpu(ir->collation_rule)); 1554 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1555 if (!is_power_of_2(ni->itype.index.block_size)) { 1556 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1557 "two.", ni->itype.index.block_size); 1558 goto unm_err_out; 1559 } 1560 if (ni->itype.index.block_size > PAGE_SIZE) { 1561 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " 1562 "(%ld) is not supported. Sorry.", 1563 ni->itype.index.block_size, PAGE_SIZE); 1564 err = -EOPNOTSUPP; 1565 goto unm_err_out; 1566 } 1567 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1568 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1569 "(%i) is not supported. Sorry.", 1570 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1571 err = -EOPNOTSUPP; 1572 goto unm_err_out; 1573 } 1574 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1575 /* Determine the size of a vcn in the index. */ 1576 if (vol->cluster_size <= ni->itype.index.block_size) { 1577 ni->itype.index.vcn_size = vol->cluster_size; 1578 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1579 } else { 1580 ni->itype.index.vcn_size = vol->sector_size; 1581 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1582 } 1583 /* Check for presence of index allocation attribute. */ 1584 if (!(ir->index.flags & LARGE_INDEX)) { 1585 /* No index allocation. */ 1586 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1587 /* We are done with the mft record, so we release it. */ 1588 ntfs_attr_put_search_ctx(ctx); 1589 unmap_mft_record(base_ni); 1590 m = NULL; 1591 ctx = NULL; 1592 goto skip_large_index_stuff; 1593 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1594 NInoSetIndexAllocPresent(ni); 1595 /* Find index allocation attribute. */ 1596 ntfs_attr_reinit_search_ctx(ctx); 1597 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1598 CASE_SENSITIVE, 0, NULL, 0, ctx); 1599 if (unlikely(err)) { 1600 if (err == -ENOENT) 1601 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1602 "not present but $INDEX_ROOT " 1603 "indicated it is."); 1604 else 1605 ntfs_error(vi->i_sb, "Failed to lookup " 1606 "$INDEX_ALLOCATION attribute."); 1607 goto unm_err_out; 1608 } 1609 a = ctx->attr; 1610 if (!a->non_resident) { 1611 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1612 "resident."); 1613 goto unm_err_out; 1614 } 1615 /* 1616 * Ensure the attribute name is placed before the mapping pairs array. 1617 */ 1618 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1619 le16_to_cpu( 1620 a->data.non_resident.mapping_pairs_offset)))) { 1621 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1622 "placed after the mapping pairs array."); 1623 goto unm_err_out; 1624 } 1625 if (a->flags & ATTR_IS_ENCRYPTED) { 1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1627 "encrypted."); 1628 goto unm_err_out; 1629 } 1630 if (a->flags & ATTR_IS_SPARSE) { 1631 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1632 goto unm_err_out; 1633 } 1634 if (a->flags & ATTR_COMPRESSION_MASK) { 1635 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1636 "compressed."); 1637 goto unm_err_out; 1638 } 1639 if (a->data.non_resident.lowest_vcn) { 1640 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1641 "attribute has non zero lowest_vcn."); 1642 goto unm_err_out; 1643 } 1644 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1645 ni->initialized_size = sle64_to_cpu( 1646 a->data.non_resident.initialized_size); 1647 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1648 /* 1649 * We are done with the mft record, so we release it. Otherwise 1650 * we would deadlock in ntfs_attr_iget(). 1651 */ 1652 ntfs_attr_put_search_ctx(ctx); 1653 unmap_mft_record(base_ni); 1654 m = NULL; 1655 ctx = NULL; 1656 /* Get the index bitmap attribute inode. */ 1657 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1658 if (IS_ERR(bvi)) { 1659 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1660 err = PTR_ERR(bvi); 1661 goto unm_err_out; 1662 } 1663 bni = NTFS_I(bvi); 1664 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1665 NInoSparse(bni)) { 1666 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1667 "encrypted and/or sparse."); 1668 goto iput_unm_err_out; 1669 } 1670 /* Consistency check bitmap size vs. index allocation size. */ 1671 bvi_size = i_size_read(bvi); 1672 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1673 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1674 "index allocation (0x%llx).", bvi_size << 3, 1675 vi->i_size); 1676 goto iput_unm_err_out; 1677 } 1678 iput(bvi); 1679 skip_large_index_stuff: 1680 /* Setup the operations for this index inode. */ 1681 vi->i_mapping->a_ops = &ntfs_mst_aops; 1682 vi->i_blocks = ni->allocated_size >> 9; 1683 /* 1684 * Make sure the base inode doesn't go away and attach it to the 1685 * index inode. 1686 */ 1687 igrab(base_vi); 1688 ni->ext.base_ntfs_ino = base_ni; 1689 ni->nr_extents = -1; 1690 1691 ntfs_debug("Done."); 1692 return 0; 1693 iput_unm_err_out: 1694 iput(bvi); 1695 unm_err_out: 1696 if (!err) 1697 err = -EIO; 1698 if (ctx) 1699 ntfs_attr_put_search_ctx(ctx); 1700 if (m) 1701 unmap_mft_record(base_ni); 1702 err_out: 1703 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1704 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1705 ni->name_len); 1706 make_bad_inode(vi); 1707 if (err != -EOPNOTSUPP && err != -ENOMEM) 1708 NVolSetErrors(vol); 1709 return err; 1710 } 1711 1712 /* 1713 * The MFT inode has special locking, so teach the lock validator 1714 * about this by splitting off the locking rules of the MFT from 1715 * the locking rules of other inodes. The MFT inode can never be 1716 * accessed from the VFS side (or even internally), only by the 1717 * map_mft functions. 1718 */ 1719 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1720 1721 /** 1722 * ntfs_read_inode_mount - special read_inode for mount time use only 1723 * @vi: inode to read 1724 * 1725 * Read inode FILE_MFT at mount time, only called with super_block lock 1726 * held from within the read_super() code path. 1727 * 1728 * This function exists because when it is called the page cache for $MFT/$DATA 1729 * is not initialized and hence we cannot get at the contents of mft records 1730 * by calling map_mft_record*(). 1731 * 1732 * Further it needs to cope with the circular references problem, i.e. cannot 1733 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1734 * we do not know where the other extent mft records are yet and again, because 1735 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1736 * attribute list is actually present in $MFT inode. 1737 * 1738 * We solve these problems by starting with the $DATA attribute before anything 1739 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1740 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1741 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1742 * sufficient information for the next step to complete. 1743 * 1744 * This should work but there are two possible pit falls (see inline comments 1745 * below), but only time will tell if they are real pits or just smoke... 1746 */ 1747 int ntfs_read_inode_mount(struct inode *vi) 1748 { 1749 VCN next_vcn, last_vcn, highest_vcn; 1750 s64 block; 1751 struct super_block *sb = vi->i_sb; 1752 ntfs_volume *vol = NTFS_SB(sb); 1753 struct buffer_head *bh; 1754 ntfs_inode *ni; 1755 MFT_RECORD *m = NULL; 1756 ATTR_RECORD *a; 1757 ntfs_attr_search_ctx *ctx; 1758 unsigned int i, nr_blocks; 1759 int err; 1760 1761 ntfs_debug("Entering."); 1762 1763 /* Initialize the ntfs specific part of @vi. */ 1764 ntfs_init_big_inode(vi); 1765 1766 ni = NTFS_I(vi); 1767 1768 /* Setup the data attribute. It is special as it is mst protected. */ 1769 NInoSetNonResident(ni); 1770 NInoSetMstProtected(ni); 1771 NInoSetSparseDisabled(ni); 1772 ni->type = AT_DATA; 1773 ni->name = NULL; 1774 ni->name_len = 0; 1775 /* 1776 * This sets up our little cheat allowing us to reuse the async read io 1777 * completion handler for directories. 1778 */ 1779 ni->itype.index.block_size = vol->mft_record_size; 1780 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1781 1782 /* Very important! Needed to be able to call map_mft_record*(). */ 1783 vol->mft_ino = vi; 1784 1785 /* Allocate enough memory to read the first mft record. */ 1786 if (vol->mft_record_size > 64 * 1024) { 1787 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1788 vol->mft_record_size); 1789 goto err_out; 1790 } 1791 i = vol->mft_record_size; 1792 if (i < sb->s_blocksize) 1793 i = sb->s_blocksize; 1794 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1795 if (!m) { 1796 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1797 goto err_out; 1798 } 1799 1800 /* Determine the first block of the $MFT/$DATA attribute. */ 1801 block = vol->mft_lcn << vol->cluster_size_bits >> 1802 sb->s_blocksize_bits; 1803 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1804 if (!nr_blocks) 1805 nr_blocks = 1; 1806 1807 /* Load $MFT/$DATA's first mft record. */ 1808 for (i = 0; i < nr_blocks; i++) { 1809 bh = sb_bread(sb, block++); 1810 if (!bh) { 1811 ntfs_error(sb, "Device read failed."); 1812 goto err_out; 1813 } 1814 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1815 sb->s_blocksize); 1816 brelse(bh); 1817 } 1818 1819 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) { 1820 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.", 1821 le32_to_cpu(m->bytes_allocated), vol->mft_record_size); 1822 goto err_out; 1823 } 1824 1825 /* Apply the mst fixups. */ 1826 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1827 /* FIXME: Try to use the $MFTMirr now. */ 1828 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1829 goto err_out; 1830 } 1831 1832 /* Need this to sanity check attribute list references to $MFT. */ 1833 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1834 1835 /* Provides readpage() for map_mft_record(). */ 1836 vi->i_mapping->a_ops = &ntfs_mst_aops; 1837 1838 ctx = ntfs_attr_get_search_ctx(ni, m); 1839 if (!ctx) { 1840 err = -ENOMEM; 1841 goto err_out; 1842 } 1843 1844 /* Find the attribute list attribute if present. */ 1845 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1846 if (err) { 1847 if (unlikely(err != -ENOENT)) { 1848 ntfs_error(sb, "Failed to lookup attribute list " 1849 "attribute. You should run chkdsk."); 1850 goto put_err_out; 1851 } 1852 } else /* if (!err) */ { 1853 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1854 u8 *al_end; 1855 static const char *es = " Not allowed. $MFT is corrupt. " 1856 "You should run chkdsk."; 1857 1858 ntfs_debug("Attribute list attribute found in $MFT."); 1859 NInoSetAttrList(ni); 1860 a = ctx->attr; 1861 if (a->flags & ATTR_COMPRESSION_MASK) { 1862 ntfs_error(sb, "Attribute list attribute is " 1863 "compressed.%s", es); 1864 goto put_err_out; 1865 } 1866 if (a->flags & ATTR_IS_ENCRYPTED || 1867 a->flags & ATTR_IS_SPARSE) { 1868 if (a->non_resident) { 1869 ntfs_error(sb, "Non-resident attribute list " 1870 "attribute is encrypted/" 1871 "sparse.%s", es); 1872 goto put_err_out; 1873 } 1874 ntfs_warning(sb, "Resident attribute list attribute " 1875 "in $MFT system file is marked " 1876 "encrypted/sparse which is not true. " 1877 "However, Windows allows this and " 1878 "chkdsk does not detect or correct it " 1879 "so we will just ignore the invalid " 1880 "flags and pretend they are not set."); 1881 } 1882 /* Now allocate memory for the attribute list. */ 1883 ni->attr_list_size = (u32)ntfs_attr_size(a); 1884 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1885 if (!ni->attr_list) { 1886 ntfs_error(sb, "Not enough memory to allocate buffer " 1887 "for attribute list."); 1888 goto put_err_out; 1889 } 1890 if (a->non_resident) { 1891 NInoSetAttrListNonResident(ni); 1892 if (a->data.non_resident.lowest_vcn) { 1893 ntfs_error(sb, "Attribute list has non zero " 1894 "lowest_vcn. $MFT is corrupt. " 1895 "You should run chkdsk."); 1896 goto put_err_out; 1897 } 1898 /* Setup the runlist. */ 1899 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1900 a, NULL); 1901 if (IS_ERR(ni->attr_list_rl.rl)) { 1902 err = PTR_ERR(ni->attr_list_rl.rl); 1903 ni->attr_list_rl.rl = NULL; 1904 ntfs_error(sb, "Mapping pairs decompression " 1905 "failed with error code %i.", 1906 -err); 1907 goto put_err_out; 1908 } 1909 /* Now load the attribute list. */ 1910 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1911 ni->attr_list, ni->attr_list_size, 1912 sle64_to_cpu(a->data. 1913 non_resident.initialized_size)))) { 1914 ntfs_error(sb, "Failed to load attribute list " 1915 "attribute with error code %i.", 1916 -err); 1917 goto put_err_out; 1918 } 1919 } else /* if (!ctx.attr->non_resident) */ { 1920 if ((u8*)a + le16_to_cpu( 1921 a->data.resident.value_offset) + 1922 le32_to_cpu( 1923 a->data.resident.value_length) > 1924 (u8*)ctx->mrec + vol->mft_record_size) { 1925 ntfs_error(sb, "Corrupt attribute list " 1926 "attribute."); 1927 goto put_err_out; 1928 } 1929 /* Now copy the attribute list. */ 1930 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1931 a->data.resident.value_offset), 1932 le32_to_cpu( 1933 a->data.resident.value_length)); 1934 } 1935 /* The attribute list is now setup in memory. */ 1936 /* 1937 * FIXME: I don't know if this case is actually possible. 1938 * According to logic it is not possible but I have seen too 1939 * many weird things in MS software to rely on logic... Thus we 1940 * perform a manual search and make sure the first $MFT/$DATA 1941 * extent is in the base inode. If it is not we abort with an 1942 * error and if we ever see a report of this error we will need 1943 * to do some magic in order to have the necessary mft record 1944 * loaded and in the right place in the page cache. But 1945 * hopefully logic will prevail and this never happens... 1946 */ 1947 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1948 al_end = (u8*)al_entry + ni->attr_list_size; 1949 for (;; al_entry = next_al_entry) { 1950 /* Out of bounds check. */ 1951 if ((u8*)al_entry < ni->attr_list || 1952 (u8*)al_entry > al_end) 1953 goto em_put_err_out; 1954 /* Catch the end of the attribute list. */ 1955 if ((u8*)al_entry == al_end) 1956 goto em_put_err_out; 1957 if (!al_entry->length) 1958 goto em_put_err_out; 1959 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1960 le16_to_cpu(al_entry->length) > al_end) 1961 goto em_put_err_out; 1962 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1963 le16_to_cpu(al_entry->length)); 1964 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1965 goto em_put_err_out; 1966 if (AT_DATA != al_entry->type) 1967 continue; 1968 /* We want an unnamed attribute. */ 1969 if (al_entry->name_length) 1970 goto em_put_err_out; 1971 /* Want the first entry, i.e. lowest_vcn == 0. */ 1972 if (al_entry->lowest_vcn) 1973 goto em_put_err_out; 1974 /* First entry has to be in the base mft record. */ 1975 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1976 /* MFT references do not match, logic fails. */ 1977 ntfs_error(sb, "BUG: The first $DATA extent " 1978 "of $MFT is not in the base " 1979 "mft record. Please report " 1980 "you saw this message to " 1981 "linux-ntfs-dev@lists." 1982 "sourceforge.net"); 1983 goto put_err_out; 1984 } else { 1985 /* Sequence numbers must match. */ 1986 if (MSEQNO_LE(al_entry->mft_reference) != 1987 ni->seq_no) 1988 goto em_put_err_out; 1989 /* Got it. All is ok. We can stop now. */ 1990 break; 1991 } 1992 } 1993 } 1994 1995 ntfs_attr_reinit_search_ctx(ctx); 1996 1997 /* Now load all attribute extents. */ 1998 a = NULL; 1999 next_vcn = last_vcn = highest_vcn = 0; 2000 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2001 ctx))) { 2002 runlist_element *nrl; 2003 2004 /* Cache the current attribute. */ 2005 a = ctx->attr; 2006 /* $MFT must be non-resident. */ 2007 if (!a->non_resident) { 2008 ntfs_error(sb, "$MFT must be non-resident but a " 2009 "resident extent was found. $MFT is " 2010 "corrupt. Run chkdsk."); 2011 goto put_err_out; 2012 } 2013 /* $MFT must be uncompressed and unencrypted. */ 2014 if (a->flags & ATTR_COMPRESSION_MASK || 2015 a->flags & ATTR_IS_ENCRYPTED || 2016 a->flags & ATTR_IS_SPARSE) { 2017 ntfs_error(sb, "$MFT must be uncompressed, " 2018 "non-sparse, and unencrypted but a " 2019 "compressed/sparse/encrypted extent " 2020 "was found. $MFT is corrupt. Run " 2021 "chkdsk."); 2022 goto put_err_out; 2023 } 2024 /* 2025 * Decompress the mapping pairs array of this extent and merge 2026 * the result into the existing runlist. No need for locking 2027 * as we have exclusive access to the inode at this time and we 2028 * are a mount in progress task, too. 2029 */ 2030 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2031 if (IS_ERR(nrl)) { 2032 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2033 "failed with error code %ld. $MFT is " 2034 "corrupt.", PTR_ERR(nrl)); 2035 goto put_err_out; 2036 } 2037 ni->runlist.rl = nrl; 2038 2039 /* Are we in the first extent? */ 2040 if (!next_vcn) { 2041 if (a->data.non_resident.lowest_vcn) { 2042 ntfs_error(sb, "First extent of $DATA " 2043 "attribute has non zero " 2044 "lowest_vcn. $MFT is corrupt. " 2045 "You should run chkdsk."); 2046 goto put_err_out; 2047 } 2048 /* Get the last vcn in the $DATA attribute. */ 2049 last_vcn = sle64_to_cpu( 2050 a->data.non_resident.allocated_size) 2051 >> vol->cluster_size_bits; 2052 /* Fill in the inode size. */ 2053 vi->i_size = sle64_to_cpu( 2054 a->data.non_resident.data_size); 2055 ni->initialized_size = sle64_to_cpu( 2056 a->data.non_resident.initialized_size); 2057 ni->allocated_size = sle64_to_cpu( 2058 a->data.non_resident.allocated_size); 2059 /* 2060 * Verify the number of mft records does not exceed 2061 * 2^32 - 1. 2062 */ 2063 if ((vi->i_size >> vol->mft_record_size_bits) >= 2064 (1ULL << 32)) { 2065 ntfs_error(sb, "$MFT is too big! Aborting."); 2066 goto put_err_out; 2067 } 2068 /* 2069 * We have got the first extent of the runlist for 2070 * $MFT which means it is now relatively safe to call 2071 * the normal ntfs_read_inode() function. 2072 * Complete reading the inode, this will actually 2073 * re-read the mft record for $MFT, this time entering 2074 * it into the page cache with which we complete the 2075 * kick start of the volume. It should be safe to do 2076 * this now as the first extent of $MFT/$DATA is 2077 * already known and we would hope that we don't need 2078 * further extents in order to find the other 2079 * attributes belonging to $MFT. Only time will tell if 2080 * this is really the case. If not we will have to play 2081 * magic at this point, possibly duplicating a lot of 2082 * ntfs_read_inode() at this point. We will need to 2083 * ensure we do enough of its work to be able to call 2084 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2085 * hope this never happens... 2086 */ 2087 ntfs_read_locked_inode(vi); 2088 if (is_bad_inode(vi)) { 2089 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2090 "failed. BUG or corrupt $MFT. " 2091 "Run chkdsk and if no errors " 2092 "are found, please report you " 2093 "saw this message to " 2094 "linux-ntfs-dev@lists." 2095 "sourceforge.net"); 2096 ntfs_attr_put_search_ctx(ctx); 2097 /* Revert to the safe super operations. */ 2098 ntfs_free(m); 2099 return -1; 2100 } 2101 /* 2102 * Re-initialize some specifics about $MFT's inode as 2103 * ntfs_read_inode() will have set up the default ones. 2104 */ 2105 /* Set uid and gid to root. */ 2106 vi->i_uid = GLOBAL_ROOT_UID; 2107 vi->i_gid = GLOBAL_ROOT_GID; 2108 /* Regular file. No access for anyone. */ 2109 vi->i_mode = S_IFREG; 2110 /* No VFS initiated operations allowed for $MFT. */ 2111 vi->i_op = &ntfs_empty_inode_ops; 2112 vi->i_fop = &ntfs_empty_file_ops; 2113 } 2114 2115 /* Get the lowest vcn for the next extent. */ 2116 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2117 next_vcn = highest_vcn + 1; 2118 2119 /* Only one extent or error, which we catch below. */ 2120 if (next_vcn <= 0) 2121 break; 2122 2123 /* Avoid endless loops due to corruption. */ 2124 if (next_vcn < sle64_to_cpu( 2125 a->data.non_resident.lowest_vcn)) { 2126 ntfs_error(sb, "$MFT has corrupt attribute list " 2127 "attribute. Run chkdsk."); 2128 goto put_err_out; 2129 } 2130 } 2131 if (err != -ENOENT) { 2132 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2133 "$MFT is corrupt. Run chkdsk."); 2134 goto put_err_out; 2135 } 2136 if (!a) { 2137 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2138 "corrupt. Run chkdsk."); 2139 goto put_err_out; 2140 } 2141 if (highest_vcn && highest_vcn != last_vcn - 1) { 2142 ntfs_error(sb, "Failed to load the complete runlist for " 2143 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2144 "Run chkdsk."); 2145 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2146 (unsigned long long)highest_vcn, 2147 (unsigned long long)last_vcn - 1); 2148 goto put_err_out; 2149 } 2150 ntfs_attr_put_search_ctx(ctx); 2151 ntfs_debug("Done."); 2152 ntfs_free(m); 2153 2154 /* 2155 * Split the locking rules of the MFT inode from the 2156 * locking rules of other inodes: 2157 */ 2158 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2159 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2160 2161 return 0; 2162 2163 em_put_err_out: 2164 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2165 "attribute list. $MFT is corrupt. Run chkdsk."); 2166 put_err_out: 2167 ntfs_attr_put_search_ctx(ctx); 2168 err_out: 2169 ntfs_error(sb, "Failed. Marking inode as bad."); 2170 make_bad_inode(vi); 2171 ntfs_free(m); 2172 return -1; 2173 } 2174 2175 static void __ntfs_clear_inode(ntfs_inode *ni) 2176 { 2177 /* Free all alocated memory. */ 2178 down_write(&ni->runlist.lock); 2179 if (ni->runlist.rl) { 2180 ntfs_free(ni->runlist.rl); 2181 ni->runlist.rl = NULL; 2182 } 2183 up_write(&ni->runlist.lock); 2184 2185 if (ni->attr_list) { 2186 ntfs_free(ni->attr_list); 2187 ni->attr_list = NULL; 2188 } 2189 2190 down_write(&ni->attr_list_rl.lock); 2191 if (ni->attr_list_rl.rl) { 2192 ntfs_free(ni->attr_list_rl.rl); 2193 ni->attr_list_rl.rl = NULL; 2194 } 2195 up_write(&ni->attr_list_rl.lock); 2196 2197 if (ni->name_len && ni->name != I30) { 2198 /* Catch bugs... */ 2199 BUG_ON(!ni->name); 2200 kfree(ni->name); 2201 } 2202 } 2203 2204 void ntfs_clear_extent_inode(ntfs_inode *ni) 2205 { 2206 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2207 2208 BUG_ON(NInoAttr(ni)); 2209 BUG_ON(ni->nr_extents != -1); 2210 2211 #ifdef NTFS_RW 2212 if (NInoDirty(ni)) { 2213 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2214 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2215 "Losing data! This is a BUG!!!"); 2216 // FIXME: Do something!!! 2217 } 2218 #endif /* NTFS_RW */ 2219 2220 __ntfs_clear_inode(ni); 2221 2222 /* Bye, bye... */ 2223 ntfs_destroy_extent_inode(ni); 2224 } 2225 2226 /** 2227 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2228 * @vi: vfs inode pending annihilation 2229 * 2230 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2231 * is called, which deallocates all memory belonging to the NTFS specific part 2232 * of the inode and returns. 2233 * 2234 * If the MFT record is dirty, we commit it before doing anything else. 2235 */ 2236 void ntfs_evict_big_inode(struct inode *vi) 2237 { 2238 ntfs_inode *ni = NTFS_I(vi); 2239 2240 truncate_inode_pages_final(&vi->i_data); 2241 clear_inode(vi); 2242 2243 #ifdef NTFS_RW 2244 if (NInoDirty(ni)) { 2245 bool was_bad = (is_bad_inode(vi)); 2246 2247 /* Committing the inode also commits all extent inodes. */ 2248 ntfs_commit_inode(vi); 2249 2250 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2251 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2252 "0x%lx. Losing data!", vi->i_ino); 2253 // FIXME: Do something!!! 2254 } 2255 } 2256 #endif /* NTFS_RW */ 2257 2258 /* No need to lock at this stage as no one else has a reference. */ 2259 if (ni->nr_extents > 0) { 2260 int i; 2261 2262 for (i = 0; i < ni->nr_extents; i++) 2263 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2264 kfree(ni->ext.extent_ntfs_inos); 2265 } 2266 2267 __ntfs_clear_inode(ni); 2268 2269 if (NInoAttr(ni)) { 2270 /* Release the base inode if we are holding it. */ 2271 if (ni->nr_extents == -1) { 2272 iput(VFS_I(ni->ext.base_ntfs_ino)); 2273 ni->nr_extents = 0; 2274 ni->ext.base_ntfs_ino = NULL; 2275 } 2276 } 2277 BUG_ON(ni->page); 2278 if (!atomic_dec_and_test(&ni->count)) 2279 BUG(); 2280 return; 2281 } 2282 2283 /** 2284 * ntfs_show_options - show mount options in /proc/mounts 2285 * @sf: seq_file in which to write our mount options 2286 * @root: root of the mounted tree whose mount options to display 2287 * 2288 * Called by the VFS once for each mounted ntfs volume when someone reads 2289 * /proc/mounts in order to display the NTFS specific mount options of each 2290 * mount. The mount options of fs specified by @root are written to the seq file 2291 * @sf and success is returned. 2292 */ 2293 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2294 { 2295 ntfs_volume *vol = NTFS_SB(root->d_sb); 2296 int i; 2297 2298 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); 2299 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); 2300 if (vol->fmask == vol->dmask) 2301 seq_printf(sf, ",umask=0%o", vol->fmask); 2302 else { 2303 seq_printf(sf, ",fmask=0%o", vol->fmask); 2304 seq_printf(sf, ",dmask=0%o", vol->dmask); 2305 } 2306 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2307 if (NVolCaseSensitive(vol)) 2308 seq_printf(sf, ",case_sensitive"); 2309 if (NVolShowSystemFiles(vol)) 2310 seq_printf(sf, ",show_sys_files"); 2311 if (!NVolSparseEnabled(vol)) 2312 seq_printf(sf, ",disable_sparse"); 2313 for (i = 0; on_errors_arr[i].val; i++) { 2314 if (on_errors_arr[i].val & vol->on_errors) 2315 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2316 } 2317 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2318 return 0; 2319 } 2320 2321 #ifdef NTFS_RW 2322 2323 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2324 "chkdsk."; 2325 2326 /** 2327 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2328 * @vi: inode for which the i_size was changed 2329 * 2330 * We only support i_size changes for normal files at present, i.e. not 2331 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2332 * below. 2333 * 2334 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2335 * that the change is allowed. 2336 * 2337 * This implies for us that @vi is a file inode rather than a directory, index, 2338 * or attribute inode as well as that @vi is a base inode. 2339 * 2340 * Returns 0 on success or -errno on error. 2341 * 2342 * Called with ->i_mutex held. 2343 */ 2344 int ntfs_truncate(struct inode *vi) 2345 { 2346 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2347 VCN highest_vcn; 2348 unsigned long flags; 2349 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2350 ntfs_volume *vol = ni->vol; 2351 ntfs_attr_search_ctx *ctx; 2352 MFT_RECORD *m; 2353 ATTR_RECORD *a; 2354 const char *te = " Leaving file length out of sync with i_size."; 2355 int err, mp_size, size_change, alloc_change; 2356 2357 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2358 BUG_ON(NInoAttr(ni)); 2359 BUG_ON(S_ISDIR(vi->i_mode)); 2360 BUG_ON(NInoMstProtected(ni)); 2361 BUG_ON(ni->nr_extents < 0); 2362 retry_truncate: 2363 /* 2364 * Lock the runlist for writing and map the mft record to ensure it is 2365 * safe to mess with the attribute runlist and sizes. 2366 */ 2367 down_write(&ni->runlist.lock); 2368 if (!NInoAttr(ni)) 2369 base_ni = ni; 2370 else 2371 base_ni = ni->ext.base_ntfs_ino; 2372 m = map_mft_record(base_ni); 2373 if (IS_ERR(m)) { 2374 err = PTR_ERR(m); 2375 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2376 "(error code %d).%s", vi->i_ino, err, te); 2377 ctx = NULL; 2378 m = NULL; 2379 goto old_bad_out; 2380 } 2381 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2382 if (unlikely(!ctx)) { 2383 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2384 "inode 0x%lx (not enough memory).%s", 2385 vi->i_ino, te); 2386 err = -ENOMEM; 2387 goto old_bad_out; 2388 } 2389 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2390 CASE_SENSITIVE, 0, NULL, 0, ctx); 2391 if (unlikely(err)) { 2392 if (err == -ENOENT) { 2393 ntfs_error(vi->i_sb, "Open attribute is missing from " 2394 "mft record. Inode 0x%lx is corrupt. " 2395 "Run chkdsk.%s", vi->i_ino, te); 2396 err = -EIO; 2397 } else 2398 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2399 "inode 0x%lx (error code %d).%s", 2400 vi->i_ino, err, te); 2401 goto old_bad_out; 2402 } 2403 m = ctx->mrec; 2404 a = ctx->attr; 2405 /* 2406 * The i_size of the vfs inode is the new size for the attribute value. 2407 */ 2408 new_size = i_size_read(vi); 2409 /* The current size of the attribute value is the old size. */ 2410 old_size = ntfs_attr_size(a); 2411 /* Calculate the new allocated size. */ 2412 if (NInoNonResident(ni)) 2413 new_alloc_size = (new_size + vol->cluster_size - 1) & 2414 ~(s64)vol->cluster_size_mask; 2415 else 2416 new_alloc_size = (new_size + 7) & ~7; 2417 /* The current allocated size is the old allocated size. */ 2418 read_lock_irqsave(&ni->size_lock, flags); 2419 old_alloc_size = ni->allocated_size; 2420 read_unlock_irqrestore(&ni->size_lock, flags); 2421 /* 2422 * The change in the file size. This will be 0 if no change, >0 if the 2423 * size is growing, and <0 if the size is shrinking. 2424 */ 2425 size_change = -1; 2426 if (new_size - old_size >= 0) { 2427 size_change = 1; 2428 if (new_size == old_size) 2429 size_change = 0; 2430 } 2431 /* As above for the allocated size. */ 2432 alloc_change = -1; 2433 if (new_alloc_size - old_alloc_size >= 0) { 2434 alloc_change = 1; 2435 if (new_alloc_size == old_alloc_size) 2436 alloc_change = 0; 2437 } 2438 /* 2439 * If neither the size nor the allocation are being changed there is 2440 * nothing to do. 2441 */ 2442 if (!size_change && !alloc_change) 2443 goto unm_done; 2444 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2445 if (size_change) { 2446 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2447 if (unlikely(err)) { 2448 if (err == -ERANGE) { 2449 ntfs_error(vol->sb, "Truncate would cause the " 2450 "inode 0x%lx to %simum size " 2451 "for its attribute type " 2452 "(0x%x). Aborting truncate.", 2453 vi->i_ino, 2454 new_size > old_size ? "exceed " 2455 "the max" : "go under the min", 2456 le32_to_cpu(ni->type)); 2457 err = -EFBIG; 2458 } else { 2459 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2460 "attribute type 0x%x. " 2461 "Aborting truncate.", 2462 vi->i_ino, 2463 le32_to_cpu(ni->type)); 2464 err = -EIO; 2465 } 2466 /* Reset the vfs inode size to the old size. */ 2467 i_size_write(vi, old_size); 2468 goto err_out; 2469 } 2470 } 2471 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2472 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2473 "supported yet for %s files, ignoring.", 2474 NInoCompressed(ni) ? "compressed" : 2475 "encrypted"); 2476 err = -EOPNOTSUPP; 2477 goto bad_out; 2478 } 2479 if (a->non_resident) 2480 goto do_non_resident_truncate; 2481 BUG_ON(NInoNonResident(ni)); 2482 /* Resize the attribute record to best fit the new attribute size. */ 2483 if (new_size < vol->mft_record_size && 2484 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2485 /* The resize succeeded! */ 2486 flush_dcache_mft_record_page(ctx->ntfs_ino); 2487 mark_mft_record_dirty(ctx->ntfs_ino); 2488 write_lock_irqsave(&ni->size_lock, flags); 2489 /* Update the sizes in the ntfs inode and all is done. */ 2490 ni->allocated_size = le32_to_cpu(a->length) - 2491 le16_to_cpu(a->data.resident.value_offset); 2492 /* 2493 * Note ntfs_resident_attr_value_resize() has already done any 2494 * necessary data clearing in the attribute record. When the 2495 * file is being shrunk vmtruncate() will already have cleared 2496 * the top part of the last partial page, i.e. since this is 2497 * the resident case this is the page with index 0. However, 2498 * when the file is being expanded, the page cache page data 2499 * between the old data_size, i.e. old_size, and the new_size 2500 * has not been zeroed. Fortunately, we do not need to zero it 2501 * either since on one hand it will either already be zero due 2502 * to both readpage and writepage clearing partial page data 2503 * beyond i_size in which case there is nothing to do or in the 2504 * case of the file being mmap()ped at the same time, POSIX 2505 * specifies that the behaviour is unspecified thus we do not 2506 * have to do anything. This means that in our implementation 2507 * in the rare case that the file is mmap()ped and a write 2508 * occurred into the mmap()ped region just beyond the file size 2509 * and writepage has not yet been called to write out the page 2510 * (which would clear the area beyond the file size) and we now 2511 * extend the file size to incorporate this dirty region 2512 * outside the file size, a write of the page would result in 2513 * this data being written to disk instead of being cleared. 2514 * Given both POSIX and the Linux mmap(2) man page specify that 2515 * this corner case is undefined, we choose to leave it like 2516 * that as this is much simpler for us as we cannot lock the 2517 * relevant page now since we are holding too many ntfs locks 2518 * which would result in a lock reversal deadlock. 2519 */ 2520 ni->initialized_size = new_size; 2521 write_unlock_irqrestore(&ni->size_lock, flags); 2522 goto unm_done; 2523 } 2524 /* If the above resize failed, this must be an attribute extension. */ 2525 BUG_ON(size_change < 0); 2526 /* 2527 * We have to drop all the locks so we can call 2528 * ntfs_attr_make_non_resident(). This could be optimised by try- 2529 * locking the first page cache page and only if that fails dropping 2530 * the locks, locking the page, and redoing all the locking and 2531 * lookups. While this would be a huge optimisation, it is not worth 2532 * it as this is definitely a slow code path as it only ever can happen 2533 * once for any given file. 2534 */ 2535 ntfs_attr_put_search_ctx(ctx); 2536 unmap_mft_record(base_ni); 2537 up_write(&ni->runlist.lock); 2538 /* 2539 * Not enough space in the mft record, try to make the attribute 2540 * non-resident and if successful restart the truncation process. 2541 */ 2542 err = ntfs_attr_make_non_resident(ni, old_size); 2543 if (likely(!err)) 2544 goto retry_truncate; 2545 /* 2546 * Could not make non-resident. If this is due to this not being 2547 * permitted for this attribute type or there not being enough space, 2548 * try to make other attributes non-resident. Otherwise fail. 2549 */ 2550 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2551 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2552 "type 0x%x, because the conversion from " 2553 "resident to non-resident attribute failed " 2554 "with error code %i.", vi->i_ino, 2555 (unsigned)le32_to_cpu(ni->type), err); 2556 if (err != -ENOMEM) 2557 err = -EIO; 2558 goto conv_err_out; 2559 } 2560 /* TODO: Not implemented from here, abort. */ 2561 if (err == -ENOSPC) 2562 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2563 "disk for the non-resident attribute value. " 2564 "This case is not implemented yet."); 2565 else /* if (err == -EPERM) */ 2566 ntfs_error(vol->sb, "This attribute type may not be " 2567 "non-resident. This case is not implemented " 2568 "yet."); 2569 err = -EOPNOTSUPP; 2570 goto conv_err_out; 2571 #if 0 2572 // TODO: Attempt to make other attributes non-resident. 2573 if (!err) 2574 goto do_resident_extend; 2575 /* 2576 * Both the attribute list attribute and the standard information 2577 * attribute must remain in the base inode. Thus, if this is one of 2578 * these attributes, we have to try to move other attributes out into 2579 * extent mft records instead. 2580 */ 2581 if (ni->type == AT_ATTRIBUTE_LIST || 2582 ni->type == AT_STANDARD_INFORMATION) { 2583 // TODO: Attempt to move other attributes into extent mft 2584 // records. 2585 err = -EOPNOTSUPP; 2586 if (!err) 2587 goto do_resident_extend; 2588 goto err_out; 2589 } 2590 // TODO: Attempt to move this attribute to an extent mft record, but 2591 // only if it is not already the only attribute in an mft record in 2592 // which case there would be nothing to gain. 2593 err = -EOPNOTSUPP; 2594 if (!err) 2595 goto do_resident_extend; 2596 /* There is nothing we can do to make enough space. )-: */ 2597 goto err_out; 2598 #endif 2599 do_non_resident_truncate: 2600 BUG_ON(!NInoNonResident(ni)); 2601 if (alloc_change < 0) { 2602 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2603 if (highest_vcn > 0 && 2604 old_alloc_size >> vol->cluster_size_bits > 2605 highest_vcn + 1) { 2606 /* 2607 * This attribute has multiple extents. Not yet 2608 * supported. 2609 */ 2610 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2611 "attribute type 0x%x, because the " 2612 "attribute is highly fragmented (it " 2613 "consists of multiple extents) and " 2614 "this case is not implemented yet.", 2615 vi->i_ino, 2616 (unsigned)le32_to_cpu(ni->type)); 2617 err = -EOPNOTSUPP; 2618 goto bad_out; 2619 } 2620 } 2621 /* 2622 * If the size is shrinking, need to reduce the initialized_size and 2623 * the data_size before reducing the allocation. 2624 */ 2625 if (size_change < 0) { 2626 /* 2627 * Make the valid size smaller (i_size is already up-to-date). 2628 */ 2629 write_lock_irqsave(&ni->size_lock, flags); 2630 if (new_size < ni->initialized_size) { 2631 ni->initialized_size = new_size; 2632 a->data.non_resident.initialized_size = 2633 cpu_to_sle64(new_size); 2634 } 2635 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2636 write_unlock_irqrestore(&ni->size_lock, flags); 2637 flush_dcache_mft_record_page(ctx->ntfs_ino); 2638 mark_mft_record_dirty(ctx->ntfs_ino); 2639 /* If the allocated size is not changing, we are done. */ 2640 if (!alloc_change) 2641 goto unm_done; 2642 /* 2643 * If the size is shrinking it makes no sense for the 2644 * allocation to be growing. 2645 */ 2646 BUG_ON(alloc_change > 0); 2647 } else /* if (size_change >= 0) */ { 2648 /* 2649 * The file size is growing or staying the same but the 2650 * allocation can be shrinking, growing or staying the same. 2651 */ 2652 if (alloc_change > 0) { 2653 /* 2654 * We need to extend the allocation and possibly update 2655 * the data size. If we are updating the data size, 2656 * since we are not touching the initialized_size we do 2657 * not need to worry about the actual data on disk. 2658 * And as far as the page cache is concerned, there 2659 * will be no pages beyond the old data size and any 2660 * partial region in the last page between the old and 2661 * new data size (or the end of the page if the new 2662 * data size is outside the page) does not need to be 2663 * modified as explained above for the resident 2664 * attribute truncate case. To do this, we simply drop 2665 * the locks we hold and leave all the work to our 2666 * friendly helper ntfs_attr_extend_allocation(). 2667 */ 2668 ntfs_attr_put_search_ctx(ctx); 2669 unmap_mft_record(base_ni); 2670 up_write(&ni->runlist.lock); 2671 err = ntfs_attr_extend_allocation(ni, new_size, 2672 size_change > 0 ? new_size : -1, -1); 2673 /* 2674 * ntfs_attr_extend_allocation() will have done error 2675 * output already. 2676 */ 2677 goto done; 2678 } 2679 if (!alloc_change) 2680 goto alloc_done; 2681 } 2682 /* alloc_change < 0 */ 2683 /* Free the clusters. */ 2684 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2685 vol->cluster_size_bits, -1, ctx); 2686 m = ctx->mrec; 2687 a = ctx->attr; 2688 if (unlikely(nr_freed < 0)) { 2689 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2690 "%lli). Unmount and run chkdsk to recover " 2691 "the lost cluster(s).", (long long)nr_freed); 2692 NVolSetErrors(vol); 2693 nr_freed = 0; 2694 } 2695 /* Truncate the runlist. */ 2696 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2697 new_alloc_size >> vol->cluster_size_bits); 2698 /* 2699 * If the runlist truncation failed and/or the search context is no 2700 * longer valid, we cannot resize the attribute record or build the 2701 * mapping pairs array thus we mark the inode bad so that no access to 2702 * the freed clusters can happen. 2703 */ 2704 if (unlikely(err || IS_ERR(m))) { 2705 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2706 IS_ERR(m) ? 2707 "restore attribute search context" : 2708 "truncate attribute runlist", 2709 IS_ERR(m) ? PTR_ERR(m) : err, es); 2710 err = -EIO; 2711 goto bad_out; 2712 } 2713 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2714 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2715 if (unlikely(mp_size <= 0)) { 2716 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2717 "attribute type 0x%x, because determining the " 2718 "size for the mapping pairs failed with error " 2719 "code %i.%s", vi->i_ino, 2720 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2721 err = -EIO; 2722 goto bad_out; 2723 } 2724 /* 2725 * Shrink the attribute record for the new mapping pairs array. Note, 2726 * this cannot fail since we are making the attribute smaller thus by 2727 * definition there is enough space to do so. 2728 */ 2729 err = ntfs_attr_record_resize(m, a, mp_size + 2730 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2731 BUG_ON(err); 2732 /* 2733 * Generate the mapping pairs array directly into the attribute record. 2734 */ 2735 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2736 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2737 mp_size, ni->runlist.rl, 0, -1, NULL); 2738 if (unlikely(err)) { 2739 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2740 "attribute type 0x%x, because building the " 2741 "mapping pairs failed with error code %i.%s", 2742 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2743 err, es); 2744 err = -EIO; 2745 goto bad_out; 2746 } 2747 /* Update the allocated/compressed size as well as the highest vcn. */ 2748 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2749 vol->cluster_size_bits) - 1); 2750 write_lock_irqsave(&ni->size_lock, flags); 2751 ni->allocated_size = new_alloc_size; 2752 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2753 if (NInoSparse(ni) || NInoCompressed(ni)) { 2754 if (nr_freed) { 2755 ni->itype.compressed.size -= nr_freed << 2756 vol->cluster_size_bits; 2757 BUG_ON(ni->itype.compressed.size < 0); 2758 a->data.non_resident.compressed_size = cpu_to_sle64( 2759 ni->itype.compressed.size); 2760 vi->i_blocks = ni->itype.compressed.size >> 9; 2761 } 2762 } else 2763 vi->i_blocks = new_alloc_size >> 9; 2764 write_unlock_irqrestore(&ni->size_lock, flags); 2765 /* 2766 * We have shrunk the allocation. If this is a shrinking truncate we 2767 * have already dealt with the initialized_size and the data_size above 2768 * and we are done. If the truncate is only changing the allocation 2769 * and not the data_size, we are also done. If this is an extending 2770 * truncate, need to extend the data_size now which is ensured by the 2771 * fact that @size_change is positive. 2772 */ 2773 alloc_done: 2774 /* 2775 * If the size is growing, need to update it now. If it is shrinking, 2776 * we have already updated it above (before the allocation change). 2777 */ 2778 if (size_change > 0) 2779 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2780 /* Ensure the modified mft record is written out. */ 2781 flush_dcache_mft_record_page(ctx->ntfs_ino); 2782 mark_mft_record_dirty(ctx->ntfs_ino); 2783 unm_done: 2784 ntfs_attr_put_search_ctx(ctx); 2785 unmap_mft_record(base_ni); 2786 up_write(&ni->runlist.lock); 2787 done: 2788 /* Update the mtime and ctime on the base inode. */ 2789 /* normally ->truncate shouldn't update ctime or mtime, 2790 * but ntfs did before so it got a copy & paste version 2791 * of file_update_time. one day someone should fix this 2792 * for real. 2793 */ 2794 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2795 struct timespec64 now = current_time(VFS_I(base_ni)); 2796 int sync_it = 0; 2797 2798 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) || 2799 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now)) 2800 sync_it = 1; 2801 VFS_I(base_ni)->i_mtime = now; 2802 VFS_I(base_ni)->i_ctime = now; 2803 2804 if (sync_it) 2805 mark_inode_dirty_sync(VFS_I(base_ni)); 2806 } 2807 2808 if (likely(!err)) { 2809 NInoClearTruncateFailed(ni); 2810 ntfs_debug("Done."); 2811 } 2812 return err; 2813 old_bad_out: 2814 old_size = -1; 2815 bad_out: 2816 if (err != -ENOMEM && err != -EOPNOTSUPP) 2817 NVolSetErrors(vol); 2818 if (err != -EOPNOTSUPP) 2819 NInoSetTruncateFailed(ni); 2820 else if (old_size >= 0) 2821 i_size_write(vi, old_size); 2822 err_out: 2823 if (ctx) 2824 ntfs_attr_put_search_ctx(ctx); 2825 if (m) 2826 unmap_mft_record(base_ni); 2827 up_write(&ni->runlist.lock); 2828 out: 2829 ntfs_debug("Failed. Returning error code %i.", err); 2830 return err; 2831 conv_err_out: 2832 if (err != -ENOMEM && err != -EOPNOTSUPP) 2833 NVolSetErrors(vol); 2834 if (err != -EOPNOTSUPP) 2835 NInoSetTruncateFailed(ni); 2836 else 2837 i_size_write(vi, old_size); 2838 goto out; 2839 } 2840 2841 /** 2842 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2843 * @vi: inode for which the i_size was changed 2844 * 2845 * Wrapper for ntfs_truncate() that has no return value. 2846 * 2847 * See ntfs_truncate() description above for details. 2848 */ 2849 #ifdef NTFS_RW 2850 void ntfs_truncate_vfs(struct inode *vi) { 2851 ntfs_truncate(vi); 2852 } 2853 #endif 2854 2855 /** 2856 * ntfs_setattr - called from notify_change() when an attribute is being changed 2857 * @mnt_userns: user namespace of the mount the inode was found from 2858 * @dentry: dentry whose attributes to change 2859 * @attr: structure describing the attributes and the changes 2860 * 2861 * We have to trap VFS attempts to truncate the file described by @dentry as 2862 * soon as possible, because we do not implement changes in i_size yet. So we 2863 * abort all i_size changes here. 2864 * 2865 * We also abort all changes of user, group, and mode as we do not implement 2866 * the NTFS ACLs yet. 2867 * 2868 * Called with ->i_mutex held. 2869 */ 2870 int ntfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 2871 struct iattr *attr) 2872 { 2873 struct inode *vi = d_inode(dentry); 2874 int err; 2875 unsigned int ia_valid = attr->ia_valid; 2876 2877 err = setattr_prepare(&init_user_ns, dentry, attr); 2878 if (err) 2879 goto out; 2880 /* We do not support NTFS ACLs yet. */ 2881 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2882 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2883 "supported yet, ignoring."); 2884 err = -EOPNOTSUPP; 2885 goto out; 2886 } 2887 if (ia_valid & ATTR_SIZE) { 2888 if (attr->ia_size != i_size_read(vi)) { 2889 ntfs_inode *ni = NTFS_I(vi); 2890 /* 2891 * FIXME: For now we do not support resizing of 2892 * compressed or encrypted files yet. 2893 */ 2894 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2895 ntfs_warning(vi->i_sb, "Changes in inode size " 2896 "are not supported yet for " 2897 "%s files, ignoring.", 2898 NInoCompressed(ni) ? 2899 "compressed" : "encrypted"); 2900 err = -EOPNOTSUPP; 2901 } else { 2902 truncate_setsize(vi, attr->ia_size); 2903 ntfs_truncate_vfs(vi); 2904 } 2905 if (err || ia_valid == ATTR_SIZE) 2906 goto out; 2907 } else { 2908 /* 2909 * We skipped the truncate but must still update 2910 * timestamps. 2911 */ 2912 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2913 } 2914 } 2915 if (ia_valid & ATTR_ATIME) 2916 vi->i_atime = attr->ia_atime; 2917 if (ia_valid & ATTR_MTIME) 2918 vi->i_mtime = attr->ia_mtime; 2919 if (ia_valid & ATTR_CTIME) 2920 vi->i_ctime = attr->ia_ctime; 2921 mark_inode_dirty(vi); 2922 out: 2923 return err; 2924 } 2925 2926 /** 2927 * ntfs_write_inode - write out a dirty inode 2928 * @vi: inode to write out 2929 * @sync: if true, write out synchronously 2930 * 2931 * Write out a dirty inode to disk including any extent inodes if present. 2932 * 2933 * If @sync is true, commit the inode to disk and wait for io completion. This 2934 * is done using write_mft_record(). 2935 * 2936 * If @sync is false, just schedule the write to happen but do not wait for i/o 2937 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2938 * marking the page (and in this case mft record) dirty but we do not implement 2939 * this yet as write_mft_record() largely ignores the @sync parameter and 2940 * always performs synchronous writes. 2941 * 2942 * Return 0 on success and -errno on error. 2943 */ 2944 int __ntfs_write_inode(struct inode *vi, int sync) 2945 { 2946 sle64 nt; 2947 ntfs_inode *ni = NTFS_I(vi); 2948 ntfs_attr_search_ctx *ctx; 2949 MFT_RECORD *m; 2950 STANDARD_INFORMATION *si; 2951 int err = 0; 2952 bool modified = false; 2953 2954 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2955 vi->i_ino); 2956 /* 2957 * Dirty attribute inodes are written via their real inodes so just 2958 * clean them here. Access time updates are taken care off when the 2959 * real inode is written. 2960 */ 2961 if (NInoAttr(ni)) { 2962 NInoClearDirty(ni); 2963 ntfs_debug("Done."); 2964 return 0; 2965 } 2966 /* Map, pin, and lock the mft record belonging to the inode. */ 2967 m = map_mft_record(ni); 2968 if (IS_ERR(m)) { 2969 err = PTR_ERR(m); 2970 goto err_out; 2971 } 2972 /* Update the access times in the standard information attribute. */ 2973 ctx = ntfs_attr_get_search_ctx(ni, m); 2974 if (unlikely(!ctx)) { 2975 err = -ENOMEM; 2976 goto unm_err_out; 2977 } 2978 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2979 CASE_SENSITIVE, 0, NULL, 0, ctx); 2980 if (unlikely(err)) { 2981 ntfs_attr_put_search_ctx(ctx); 2982 goto unm_err_out; 2983 } 2984 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 2985 le16_to_cpu(ctx->attr->data.resident.value_offset)); 2986 /* Update the access times if they have changed. */ 2987 nt = utc2ntfs(vi->i_mtime); 2988 if (si->last_data_change_time != nt) { 2989 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 2990 "new = 0x%llx", vi->i_ino, (long long) 2991 sle64_to_cpu(si->last_data_change_time), 2992 (long long)sle64_to_cpu(nt)); 2993 si->last_data_change_time = nt; 2994 modified = true; 2995 } 2996 nt = utc2ntfs(vi->i_ctime); 2997 if (si->last_mft_change_time != nt) { 2998 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 2999 "new = 0x%llx", vi->i_ino, (long long) 3000 sle64_to_cpu(si->last_mft_change_time), 3001 (long long)sle64_to_cpu(nt)); 3002 si->last_mft_change_time = nt; 3003 modified = true; 3004 } 3005 nt = utc2ntfs(vi->i_atime); 3006 if (si->last_access_time != nt) { 3007 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3008 "new = 0x%llx", vi->i_ino, 3009 (long long)sle64_to_cpu(si->last_access_time), 3010 (long long)sle64_to_cpu(nt)); 3011 si->last_access_time = nt; 3012 modified = true; 3013 } 3014 /* 3015 * If we just modified the standard information attribute we need to 3016 * mark the mft record it is in dirty. We do this manually so that 3017 * mark_inode_dirty() is not called which would redirty the inode and 3018 * hence result in an infinite loop of trying to write the inode. 3019 * There is no need to mark the base inode nor the base mft record 3020 * dirty, since we are going to write this mft record below in any case 3021 * and the base mft record may actually not have been modified so it 3022 * might not need to be written out. 3023 * NOTE: It is not a problem when the inode for $MFT itself is being 3024 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3025 * on the $MFT inode and hence ntfs_write_inode() will not be 3026 * re-invoked because of it which in turn is ok since the dirtied mft 3027 * record will be cleaned and written out to disk below, i.e. before 3028 * this function returns. 3029 */ 3030 if (modified) { 3031 flush_dcache_mft_record_page(ctx->ntfs_ino); 3032 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3033 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3034 ctx->ntfs_ino->page_ofs); 3035 } 3036 ntfs_attr_put_search_ctx(ctx); 3037 /* Now the access times are updated, write the base mft record. */ 3038 if (NInoDirty(ni)) 3039 err = write_mft_record(ni, m, sync); 3040 /* Write all attached extent mft records. */ 3041 mutex_lock(&ni->extent_lock); 3042 if (ni->nr_extents > 0) { 3043 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3044 int i; 3045 3046 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3047 for (i = 0; i < ni->nr_extents; i++) { 3048 ntfs_inode *tni = extent_nis[i]; 3049 3050 if (NInoDirty(tni)) { 3051 MFT_RECORD *tm = map_mft_record(tni); 3052 int ret; 3053 3054 if (IS_ERR(tm)) { 3055 if (!err || err == -ENOMEM) 3056 err = PTR_ERR(tm); 3057 continue; 3058 } 3059 ret = write_mft_record(tni, tm, sync); 3060 unmap_mft_record(tni); 3061 if (unlikely(ret)) { 3062 if (!err || err == -ENOMEM) 3063 err = ret; 3064 } 3065 } 3066 } 3067 } 3068 mutex_unlock(&ni->extent_lock); 3069 unmap_mft_record(ni); 3070 if (unlikely(err)) 3071 goto err_out; 3072 ntfs_debug("Done."); 3073 return 0; 3074 unm_err_out: 3075 unmap_mft_record(ni); 3076 err_out: 3077 if (err == -ENOMEM) { 3078 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3079 "Marking the inode dirty again, so the VFS " 3080 "retries later."); 3081 mark_inode_dirty(vi); 3082 } else { 3083 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3084 NVolSetErrors(ni->vol); 3085 } 3086 return err; 3087 } 3088 3089 #endif /* NTFS_RW */ 3090