1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * inode.c - NTFS kernel inode handling. 4 * 5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 6 */ 7 8 #include <linux/buffer_head.h> 9 #include <linux/fs.h> 10 #include <linux/mm.h> 11 #include <linux/mount.h> 12 #include <linux/mutex.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/slab.h> 16 #include <linux/log2.h> 17 18 #include "aops.h" 19 #include "attrib.h" 20 #include "bitmap.h" 21 #include "dir.h" 22 #include "debug.h" 23 #include "inode.h" 24 #include "lcnalloc.h" 25 #include "malloc.h" 26 #include "mft.h" 27 #include "time.h" 28 #include "ntfs.h" 29 30 /** 31 * ntfs_test_inode - compare two (possibly fake) inodes for equality 32 * @vi: vfs inode which to test 33 * @na: ntfs attribute which is being tested with 34 * 35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 36 * inode @vi for equality with the ntfs attribute @na. 37 * 38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 39 * @na->name and @na->name_len are then ignored. 40 * 41 * Return 1 if the attributes match and 0 if not. 42 * 43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not 44 * allowed to sleep. 45 */ 46 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 47 { 48 ntfs_inode *ni; 49 50 if (vi->i_ino != na->mft_no) 51 return 0; 52 ni = NTFS_I(vi); 53 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 54 if (likely(!NInoAttr(ni))) { 55 /* If not looking for a normal inode this is a mismatch. */ 56 if (unlikely(na->type != AT_UNUSED)) 57 return 0; 58 } else { 59 /* A fake inode describing an attribute. */ 60 if (ni->type != na->type) 61 return 0; 62 if (ni->name_len != na->name_len) 63 return 0; 64 if (na->name_len && memcmp(ni->name, na->name, 65 na->name_len * sizeof(ntfschar))) 66 return 0; 67 } 68 /* Match! */ 69 return 1; 70 } 71 72 /** 73 * ntfs_init_locked_inode - initialize an inode 74 * @vi: vfs inode to initialize 75 * @na: ntfs attribute which to initialize @vi to 76 * 77 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 78 * order to enable ntfs_test_inode() to do its work. 79 * 80 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 81 * In that case, @na->name and @na->name_len should be set to NULL and 0, 82 * respectively. Although that is not strictly necessary as 83 * ntfs_read_locked_inode() will fill them in later. 84 * 85 * Return 0 on success and -errno on error. 86 * 87 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 88 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 89 */ 90 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 91 { 92 ntfs_inode *ni = NTFS_I(vi); 93 94 vi->i_ino = na->mft_no; 95 96 ni->type = na->type; 97 if (na->type == AT_INDEX_ALLOCATION) 98 NInoSetMstProtected(ni); 99 100 ni->name = na->name; 101 ni->name_len = na->name_len; 102 103 /* If initializing a normal inode, we are done. */ 104 if (likely(na->type == AT_UNUSED)) { 105 BUG_ON(na->name); 106 BUG_ON(na->name_len); 107 return 0; 108 } 109 110 /* It is a fake inode. */ 111 NInoSetAttr(ni); 112 113 /* 114 * We have I30 global constant as an optimization as it is the name 115 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 116 * allocation but that is ok. And most attributes are unnamed anyway, 117 * thus the fraction of named attributes with name != I30 is actually 118 * absolutely tiny. 119 */ 120 if (na->name_len && na->name != I30) { 121 unsigned int i; 122 123 BUG_ON(!na->name); 124 i = na->name_len * sizeof(ntfschar); 125 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 126 if (!ni->name) 127 return -ENOMEM; 128 memcpy(ni->name, na->name, i); 129 ni->name[na->name_len] = 0; 130 } 131 return 0; 132 } 133 134 typedef int (*set_t)(struct inode *, void *); 135 static int ntfs_read_locked_inode(struct inode *vi); 136 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 137 static int ntfs_read_locked_index_inode(struct inode *base_vi, 138 struct inode *vi); 139 140 /** 141 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 142 * @sb: super block of mounted volume 143 * @mft_no: mft record number / inode number to obtain 144 * 145 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 146 * file or directory). 147 * 148 * If the inode is in the cache, it is just returned with an increased 149 * reference count. Otherwise, a new struct inode is allocated and initialized, 150 * and finally ntfs_read_locked_inode() is called to read in the inode and 151 * fill in the remainder of the inode structure. 152 * 153 * Return the struct inode on success. Check the return value with IS_ERR() and 154 * if true, the function failed and the error code is obtained from PTR_ERR(). 155 */ 156 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 157 { 158 struct inode *vi; 159 int err; 160 ntfs_attr na; 161 162 na.mft_no = mft_no; 163 na.type = AT_UNUSED; 164 na.name = NULL; 165 na.name_len = 0; 166 167 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 168 (set_t)ntfs_init_locked_inode, &na); 169 if (unlikely(!vi)) 170 return ERR_PTR(-ENOMEM); 171 172 err = 0; 173 174 /* If this is a freshly allocated inode, need to read it now. */ 175 if (vi->i_state & I_NEW) { 176 err = ntfs_read_locked_inode(vi); 177 unlock_new_inode(vi); 178 } 179 /* 180 * There is no point in keeping bad inodes around if the failure was 181 * due to ENOMEM. We want to be able to retry again later. 182 */ 183 if (unlikely(err == -ENOMEM)) { 184 iput(vi); 185 vi = ERR_PTR(err); 186 } 187 return vi; 188 } 189 190 /** 191 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 192 * @base_vi: vfs base inode containing the attribute 193 * @type: attribute type 194 * @name: Unicode name of the attribute (NULL if unnamed) 195 * @name_len: length of @name in Unicode characters (0 if unnamed) 196 * 197 * Obtain the (fake) struct inode corresponding to the attribute specified by 198 * @type, @name, and @name_len, which is present in the base mft record 199 * specified by the vfs inode @base_vi. 200 * 201 * If the attribute inode is in the cache, it is just returned with an 202 * increased reference count. Otherwise, a new struct inode is allocated and 203 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 204 * attribute and fill in the inode structure. 205 * 206 * Note, for index allocation attributes, you need to use ntfs_index_iget() 207 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 208 * 209 * Return the struct inode of the attribute inode on success. Check the return 210 * value with IS_ERR() and if true, the function failed and the error code is 211 * obtained from PTR_ERR(). 212 */ 213 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 214 ntfschar *name, u32 name_len) 215 { 216 struct inode *vi; 217 int err; 218 ntfs_attr na; 219 220 /* Make sure no one calls ntfs_attr_iget() for indices. */ 221 BUG_ON(type == AT_INDEX_ALLOCATION); 222 223 na.mft_no = base_vi->i_ino; 224 na.type = type; 225 na.name = name; 226 na.name_len = name_len; 227 228 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 229 (set_t)ntfs_init_locked_inode, &na); 230 if (unlikely(!vi)) 231 return ERR_PTR(-ENOMEM); 232 233 err = 0; 234 235 /* If this is a freshly allocated inode, need to read it now. */ 236 if (vi->i_state & I_NEW) { 237 err = ntfs_read_locked_attr_inode(base_vi, vi); 238 unlock_new_inode(vi); 239 } 240 /* 241 * There is no point in keeping bad attribute inodes around. This also 242 * simplifies things in that we never need to check for bad attribute 243 * inodes elsewhere. 244 */ 245 if (unlikely(err)) { 246 iput(vi); 247 vi = ERR_PTR(err); 248 } 249 return vi; 250 } 251 252 /** 253 * ntfs_index_iget - obtain a struct inode corresponding to an index 254 * @base_vi: vfs base inode containing the index related attributes 255 * @name: Unicode name of the index 256 * @name_len: length of @name in Unicode characters 257 * 258 * Obtain the (fake) struct inode corresponding to the index specified by @name 259 * and @name_len, which is present in the base mft record specified by the vfs 260 * inode @base_vi. 261 * 262 * If the index inode is in the cache, it is just returned with an increased 263 * reference count. Otherwise, a new struct inode is allocated and 264 * initialized, and finally ntfs_read_locked_index_inode() is called to read 265 * the index related attributes and fill in the inode structure. 266 * 267 * Return the struct inode of the index inode on success. Check the return 268 * value with IS_ERR() and if true, the function failed and the error code is 269 * obtained from PTR_ERR(). 270 */ 271 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 272 u32 name_len) 273 { 274 struct inode *vi; 275 int err; 276 ntfs_attr na; 277 278 na.mft_no = base_vi->i_ino; 279 na.type = AT_INDEX_ALLOCATION; 280 na.name = name; 281 na.name_len = name_len; 282 283 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 284 (set_t)ntfs_init_locked_inode, &na); 285 if (unlikely(!vi)) 286 return ERR_PTR(-ENOMEM); 287 288 err = 0; 289 290 /* If this is a freshly allocated inode, need to read it now. */ 291 if (vi->i_state & I_NEW) { 292 err = ntfs_read_locked_index_inode(base_vi, vi); 293 unlock_new_inode(vi); 294 } 295 /* 296 * There is no point in keeping bad index inodes around. This also 297 * simplifies things in that we never need to check for bad index 298 * inodes elsewhere. 299 */ 300 if (unlikely(err)) { 301 iput(vi); 302 vi = ERR_PTR(err); 303 } 304 return vi; 305 } 306 307 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 308 { 309 ntfs_inode *ni; 310 311 ntfs_debug("Entering."); 312 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 313 if (likely(ni != NULL)) { 314 ni->state = 0; 315 return VFS_I(ni); 316 } 317 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 318 return NULL; 319 } 320 321 void ntfs_free_big_inode(struct inode *inode) 322 { 323 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 324 } 325 326 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 327 { 328 ntfs_inode *ni; 329 330 ntfs_debug("Entering."); 331 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 332 if (likely(ni != NULL)) { 333 ni->state = 0; 334 return ni; 335 } 336 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 337 return NULL; 338 } 339 340 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 341 { 342 ntfs_debug("Entering."); 343 BUG_ON(ni->page); 344 if (!atomic_dec_and_test(&ni->count)) 345 BUG(); 346 kmem_cache_free(ntfs_inode_cache, ni); 347 } 348 349 /* 350 * The attribute runlist lock has separate locking rules from the 351 * normal runlist lock, so split the two lock-classes: 352 */ 353 static struct lock_class_key attr_list_rl_lock_class; 354 355 /** 356 * __ntfs_init_inode - initialize ntfs specific part of an inode 357 * @sb: super block of mounted volume 358 * @ni: freshly allocated ntfs inode which to initialize 359 * 360 * Initialize an ntfs inode to defaults. 361 * 362 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 363 * untouched. Make sure to initialize them elsewhere. 364 * 365 * Return zero on success and -ENOMEM on error. 366 */ 367 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 368 { 369 ntfs_debug("Entering."); 370 rwlock_init(&ni->size_lock); 371 ni->initialized_size = ni->allocated_size = 0; 372 ni->seq_no = 0; 373 atomic_set(&ni->count, 1); 374 ni->vol = NTFS_SB(sb); 375 ntfs_init_runlist(&ni->runlist); 376 mutex_init(&ni->mrec_lock); 377 ni->page = NULL; 378 ni->page_ofs = 0; 379 ni->attr_list_size = 0; 380 ni->attr_list = NULL; 381 ntfs_init_runlist(&ni->attr_list_rl); 382 lockdep_set_class(&ni->attr_list_rl.lock, 383 &attr_list_rl_lock_class); 384 ni->itype.index.block_size = 0; 385 ni->itype.index.vcn_size = 0; 386 ni->itype.index.collation_rule = 0; 387 ni->itype.index.block_size_bits = 0; 388 ni->itype.index.vcn_size_bits = 0; 389 mutex_init(&ni->extent_lock); 390 ni->nr_extents = 0; 391 ni->ext.base_ntfs_ino = NULL; 392 } 393 394 /* 395 * Extent inodes get MFT-mapped in a nested way, while the base inode 396 * is still mapped. Teach this nesting to the lock validator by creating 397 * a separate class for nested inode's mrec_lock's: 398 */ 399 static struct lock_class_key extent_inode_mrec_lock_key; 400 401 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 402 unsigned long mft_no) 403 { 404 ntfs_inode *ni = ntfs_alloc_extent_inode(); 405 406 ntfs_debug("Entering."); 407 if (likely(ni != NULL)) { 408 __ntfs_init_inode(sb, ni); 409 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 410 ni->mft_no = mft_no; 411 ni->type = AT_UNUSED; 412 ni->name = NULL; 413 ni->name_len = 0; 414 } 415 return ni; 416 } 417 418 /** 419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 420 * @ctx: initialized attribute search context 421 * 422 * Search all file name attributes in the inode described by the attribute 423 * search context @ctx and check if any of the names are in the $Extend system 424 * directory. 425 * 426 * Return values: 427 * 1: file is in $Extend directory 428 * 0: file is not in $Extend directory 429 * -errno: failed to determine if the file is in the $Extend directory 430 */ 431 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 432 { 433 int nr_links, err; 434 435 /* Restart search. */ 436 ntfs_attr_reinit_search_ctx(ctx); 437 438 /* Get number of hard links. */ 439 nr_links = le16_to_cpu(ctx->mrec->link_count); 440 441 /* Loop through all hard links. */ 442 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 443 ctx))) { 444 FILE_NAME_ATTR *file_name_attr; 445 ATTR_RECORD *attr = ctx->attr; 446 u8 *p, *p2; 447 448 nr_links--; 449 /* 450 * Maximum sanity checking as we are called on an inode that 451 * we suspect might be corrupt. 452 */ 453 p = (u8*)attr + le32_to_cpu(attr->length); 454 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 455 le32_to_cpu(ctx->mrec->bytes_in_use)) { 456 err_corrupt_attr: 457 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 458 "attribute. You should run chkdsk."); 459 return -EIO; 460 } 461 if (attr->non_resident) { 462 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 463 "name. You should run chkdsk."); 464 return -EIO; 465 } 466 if (attr->flags) { 467 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 468 "invalid flags. You should run " 469 "chkdsk."); 470 return -EIO; 471 } 472 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 473 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 474 "name. You should run chkdsk."); 475 return -EIO; 476 } 477 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 478 le16_to_cpu(attr->data.resident.value_offset)); 479 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 480 if (p2 < (u8*)attr || p2 > p) 481 goto err_corrupt_attr; 482 /* This attribute is ok, but is it in the $Extend directory? */ 483 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 484 return 1; /* YES, it's an extended system file. */ 485 } 486 if (unlikely(err != -ENOENT)) 487 return err; 488 if (unlikely(nr_links)) { 489 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 490 "doesn't match number of name attributes. You " 491 "should run chkdsk."); 492 return -EIO; 493 } 494 return 0; /* NO, it is not an extended system file. */ 495 } 496 497 /** 498 * ntfs_read_locked_inode - read an inode from its device 499 * @vi: inode to read 500 * 501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 502 * described by @vi into memory from the device. 503 * 504 * The only fields in @vi that we need to/can look at when the function is 505 * called are i_sb, pointing to the mounted device's super block, and i_ino, 506 * the number of the inode to load. 507 * 508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 509 * for reading and sets up the necessary @vi fields as well as initializing 510 * the ntfs inode. 511 * 512 * Q: What locks are held when the function is called? 513 * A: i_state has I_NEW set, hence the inode is locked, also 514 * i_count is set to 1, so it is not going to go away 515 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 516 * is allowed to write to them. We should of course be honouring them but 517 * we need to do that using the IS_* macros defined in include/linux/fs.h. 518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 519 * 520 * Return 0 on success and -errno on error. In the error case, the inode will 521 * have had make_bad_inode() executed on it. 522 */ 523 static int ntfs_read_locked_inode(struct inode *vi) 524 { 525 ntfs_volume *vol = NTFS_SB(vi->i_sb); 526 ntfs_inode *ni; 527 struct inode *bvi; 528 MFT_RECORD *m; 529 ATTR_RECORD *a; 530 STANDARD_INFORMATION *si; 531 ntfs_attr_search_ctx *ctx; 532 int err = 0; 533 534 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 535 536 /* Setup the generic vfs inode parts now. */ 537 vi->i_uid = vol->uid; 538 vi->i_gid = vol->gid; 539 vi->i_mode = 0; 540 541 /* 542 * Initialize the ntfs specific part of @vi special casing 543 * FILE_MFT which we need to do at mount time. 544 */ 545 if (vi->i_ino != FILE_MFT) 546 ntfs_init_big_inode(vi); 547 ni = NTFS_I(vi); 548 549 m = map_mft_record(ni); 550 if (IS_ERR(m)) { 551 err = PTR_ERR(m); 552 goto err_out; 553 } 554 ctx = ntfs_attr_get_search_ctx(ni, m); 555 if (!ctx) { 556 err = -ENOMEM; 557 goto unm_err_out; 558 } 559 560 if (!(m->flags & MFT_RECORD_IN_USE)) { 561 ntfs_error(vi->i_sb, "Inode is not in use!"); 562 goto unm_err_out; 563 } 564 if (m->base_mft_record) { 565 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 566 goto unm_err_out; 567 } 568 569 /* Transfer information from mft record into vfs and ntfs inodes. */ 570 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 571 572 /* 573 * FIXME: Keep in mind that link_count is two for files which have both 574 * a long file name and a short file name as separate entries, so if 575 * we are hiding short file names this will be too high. Either we need 576 * to account for the short file names by subtracting them or we need 577 * to make sure we delete files even though i_nlink is not zero which 578 * might be tricky due to vfs interactions. Need to think about this 579 * some more when implementing the unlink command. 580 */ 581 set_nlink(vi, le16_to_cpu(m->link_count)); 582 /* 583 * FIXME: Reparse points can have the directory bit set even though 584 * they would be S_IFLNK. Need to deal with this further below when we 585 * implement reparse points / symbolic links but it will do for now. 586 * Also if not a directory, it could be something else, rather than 587 * a regular file. But again, will do for now. 588 */ 589 /* Everyone gets all permissions. */ 590 vi->i_mode |= S_IRWXUGO; 591 /* If read-only, no one gets write permissions. */ 592 if (IS_RDONLY(vi)) 593 vi->i_mode &= ~S_IWUGO; 594 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 595 vi->i_mode |= S_IFDIR; 596 /* 597 * Apply the directory permissions mask set in the mount 598 * options. 599 */ 600 vi->i_mode &= ~vol->dmask; 601 /* Things break without this kludge! */ 602 if (vi->i_nlink > 1) 603 set_nlink(vi, 1); 604 } else { 605 vi->i_mode |= S_IFREG; 606 /* Apply the file permissions mask set in the mount options. */ 607 vi->i_mode &= ~vol->fmask; 608 } 609 /* 610 * Find the standard information attribute in the mft record. At this 611 * stage we haven't setup the attribute list stuff yet, so this could 612 * in fact fail if the standard information is in an extent record, but 613 * I don't think this actually ever happens. 614 */ 615 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 616 ctx); 617 if (unlikely(err)) { 618 if (err == -ENOENT) { 619 /* 620 * TODO: We should be performing a hot fix here (if the 621 * recover mount option is set) by creating a new 622 * attribute. 623 */ 624 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 625 "is missing."); 626 } 627 goto unm_err_out; 628 } 629 a = ctx->attr; 630 /* Get the standard information attribute value. */ 631 si = (STANDARD_INFORMATION*)((u8*)a + 632 le16_to_cpu(a->data.resident.value_offset)); 633 634 /* Transfer information from the standard information into vi. */ 635 /* 636 * Note: The i_?times do not quite map perfectly onto the NTFS times, 637 * but they are close enough, and in the end it doesn't really matter 638 * that much... 639 */ 640 /* 641 * mtime is the last change of the data within the file. Not changed 642 * when only metadata is changed, e.g. a rename doesn't affect mtime. 643 */ 644 vi->i_mtime = ntfs2utc(si->last_data_change_time); 645 /* 646 * ctime is the last change of the metadata of the file. This obviously 647 * always changes, when mtime is changed. ctime can be changed on its 648 * own, mtime is then not changed, e.g. when a file is renamed. 649 */ 650 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 651 /* 652 * Last access to the data within the file. Not changed during a rename 653 * for example but changed whenever the file is written to. 654 */ 655 vi->i_atime = ntfs2utc(si->last_access_time); 656 657 /* Find the attribute list attribute if present. */ 658 ntfs_attr_reinit_search_ctx(ctx); 659 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 660 if (err) { 661 if (unlikely(err != -ENOENT)) { 662 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 663 "attribute."); 664 goto unm_err_out; 665 } 666 } else /* if (!err) */ { 667 if (vi->i_ino == FILE_MFT) 668 goto skip_attr_list_load; 669 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 670 NInoSetAttrList(ni); 671 a = ctx->attr; 672 if (a->flags & ATTR_COMPRESSION_MASK) { 673 ntfs_error(vi->i_sb, "Attribute list attribute is " 674 "compressed."); 675 goto unm_err_out; 676 } 677 if (a->flags & ATTR_IS_ENCRYPTED || 678 a->flags & ATTR_IS_SPARSE) { 679 if (a->non_resident) { 680 ntfs_error(vi->i_sb, "Non-resident attribute " 681 "list attribute is encrypted/" 682 "sparse."); 683 goto unm_err_out; 684 } 685 ntfs_warning(vi->i_sb, "Resident attribute list " 686 "attribute in inode 0x%lx is marked " 687 "encrypted/sparse which is not true. " 688 "However, Windows allows this and " 689 "chkdsk does not detect or correct it " 690 "so we will just ignore the invalid " 691 "flags and pretend they are not set.", 692 vi->i_ino); 693 } 694 /* Now allocate memory for the attribute list. */ 695 ni->attr_list_size = (u32)ntfs_attr_size(a); 696 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 697 if (!ni->attr_list) { 698 ntfs_error(vi->i_sb, "Not enough memory to allocate " 699 "buffer for attribute list."); 700 err = -ENOMEM; 701 goto unm_err_out; 702 } 703 if (a->non_resident) { 704 NInoSetAttrListNonResident(ni); 705 if (a->data.non_resident.lowest_vcn) { 706 ntfs_error(vi->i_sb, "Attribute list has non " 707 "zero lowest_vcn."); 708 goto unm_err_out; 709 } 710 /* 711 * Setup the runlist. No need for locking as we have 712 * exclusive access to the inode at this time. 713 */ 714 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 715 a, NULL); 716 if (IS_ERR(ni->attr_list_rl.rl)) { 717 err = PTR_ERR(ni->attr_list_rl.rl); 718 ni->attr_list_rl.rl = NULL; 719 ntfs_error(vi->i_sb, "Mapping pairs " 720 "decompression failed."); 721 goto unm_err_out; 722 } 723 /* Now load the attribute list. */ 724 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 725 ni->attr_list, ni->attr_list_size, 726 sle64_to_cpu(a->data.non_resident. 727 initialized_size)))) { 728 ntfs_error(vi->i_sb, "Failed to load " 729 "attribute list attribute."); 730 goto unm_err_out; 731 } 732 } else /* if (!a->non_resident) */ { 733 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 734 + le32_to_cpu( 735 a->data.resident.value_length) > 736 (u8*)ctx->mrec + vol->mft_record_size) { 737 ntfs_error(vi->i_sb, "Corrupt attribute list " 738 "in inode."); 739 goto unm_err_out; 740 } 741 /* Now copy the attribute list. */ 742 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 743 a->data.resident.value_offset), 744 le32_to_cpu( 745 a->data.resident.value_length)); 746 } 747 } 748 skip_attr_list_load: 749 /* 750 * If an attribute list is present we now have the attribute list value 751 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 752 */ 753 if (S_ISDIR(vi->i_mode)) { 754 loff_t bvi_size; 755 ntfs_inode *bni; 756 INDEX_ROOT *ir; 757 u8 *ir_end, *index_end; 758 759 /* It is a directory, find index root attribute. */ 760 ntfs_attr_reinit_search_ctx(ctx); 761 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 762 0, NULL, 0, ctx); 763 if (unlikely(err)) { 764 if (err == -ENOENT) { 765 // FIXME: File is corrupt! Hot-fix with empty 766 // index root attribute if recovery option is 767 // set. 768 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 769 "is missing."); 770 } 771 goto unm_err_out; 772 } 773 a = ctx->attr; 774 /* Set up the state. */ 775 if (unlikely(a->non_resident)) { 776 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 777 "resident."); 778 goto unm_err_out; 779 } 780 /* Ensure the attribute name is placed before the value. */ 781 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 782 le16_to_cpu(a->data.resident.value_offset)))) { 783 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 784 "placed after the attribute value."); 785 goto unm_err_out; 786 } 787 /* 788 * Compressed/encrypted index root just means that the newly 789 * created files in that directory should be created compressed/ 790 * encrypted. However index root cannot be both compressed and 791 * encrypted. 792 */ 793 if (a->flags & ATTR_COMPRESSION_MASK) 794 NInoSetCompressed(ni); 795 if (a->flags & ATTR_IS_ENCRYPTED) { 796 if (a->flags & ATTR_COMPRESSION_MASK) { 797 ntfs_error(vi->i_sb, "Found encrypted and " 798 "compressed attribute."); 799 goto unm_err_out; 800 } 801 NInoSetEncrypted(ni); 802 } 803 if (a->flags & ATTR_IS_SPARSE) 804 NInoSetSparse(ni); 805 ir = (INDEX_ROOT*)((u8*)a + 806 le16_to_cpu(a->data.resident.value_offset)); 807 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 808 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 809 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 810 "corrupt."); 811 goto unm_err_out; 812 } 813 index_end = (u8*)&ir->index + 814 le32_to_cpu(ir->index.index_length); 815 if (index_end > ir_end) { 816 ntfs_error(vi->i_sb, "Directory index is corrupt."); 817 goto unm_err_out; 818 } 819 if (ir->type != AT_FILE_NAME) { 820 ntfs_error(vi->i_sb, "Indexed attribute is not " 821 "$FILE_NAME."); 822 goto unm_err_out; 823 } 824 if (ir->collation_rule != COLLATION_FILE_NAME) { 825 ntfs_error(vi->i_sb, "Index collation rule is not " 826 "COLLATION_FILE_NAME."); 827 goto unm_err_out; 828 } 829 ni->itype.index.collation_rule = ir->collation_rule; 830 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 831 if (ni->itype.index.block_size & 832 (ni->itype.index.block_size - 1)) { 833 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 834 "power of two.", 835 ni->itype.index.block_size); 836 goto unm_err_out; 837 } 838 if (ni->itype.index.block_size > PAGE_SIZE) { 839 ntfs_error(vi->i_sb, "Index block size (%u) > " 840 "PAGE_SIZE (%ld) is not " 841 "supported. Sorry.", 842 ni->itype.index.block_size, 843 PAGE_SIZE); 844 err = -EOPNOTSUPP; 845 goto unm_err_out; 846 } 847 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 848 ntfs_error(vi->i_sb, "Index block size (%u) < " 849 "NTFS_BLOCK_SIZE (%i) is not " 850 "supported. Sorry.", 851 ni->itype.index.block_size, 852 NTFS_BLOCK_SIZE); 853 err = -EOPNOTSUPP; 854 goto unm_err_out; 855 } 856 ni->itype.index.block_size_bits = 857 ffs(ni->itype.index.block_size) - 1; 858 /* Determine the size of a vcn in the directory index. */ 859 if (vol->cluster_size <= ni->itype.index.block_size) { 860 ni->itype.index.vcn_size = vol->cluster_size; 861 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 862 } else { 863 ni->itype.index.vcn_size = vol->sector_size; 864 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 865 } 866 867 /* Setup the index allocation attribute, even if not present. */ 868 NInoSetMstProtected(ni); 869 ni->type = AT_INDEX_ALLOCATION; 870 ni->name = I30; 871 ni->name_len = 4; 872 873 if (!(ir->index.flags & LARGE_INDEX)) { 874 /* No index allocation. */ 875 vi->i_size = ni->initialized_size = 876 ni->allocated_size = 0; 877 /* We are done with the mft record, so we release it. */ 878 ntfs_attr_put_search_ctx(ctx); 879 unmap_mft_record(ni); 880 m = NULL; 881 ctx = NULL; 882 goto skip_large_dir_stuff; 883 } /* LARGE_INDEX: Index allocation present. Setup state. */ 884 NInoSetIndexAllocPresent(ni); 885 /* Find index allocation attribute. */ 886 ntfs_attr_reinit_search_ctx(ctx); 887 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 888 CASE_SENSITIVE, 0, NULL, 0, ctx); 889 if (unlikely(err)) { 890 if (err == -ENOENT) 891 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 892 "attribute is not present but " 893 "$INDEX_ROOT indicated it is."); 894 else 895 ntfs_error(vi->i_sb, "Failed to lookup " 896 "$INDEX_ALLOCATION " 897 "attribute."); 898 goto unm_err_out; 899 } 900 a = ctx->attr; 901 if (!a->non_resident) { 902 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 903 "is resident."); 904 goto unm_err_out; 905 } 906 /* 907 * Ensure the attribute name is placed before the mapping pairs 908 * array. 909 */ 910 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 911 le16_to_cpu( 912 a->data.non_resident.mapping_pairs_offset)))) { 913 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 914 "is placed after the mapping pairs " 915 "array."); 916 goto unm_err_out; 917 } 918 if (a->flags & ATTR_IS_ENCRYPTED) { 919 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 920 "is encrypted."); 921 goto unm_err_out; 922 } 923 if (a->flags & ATTR_IS_SPARSE) { 924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 925 "is sparse."); 926 goto unm_err_out; 927 } 928 if (a->flags & ATTR_COMPRESSION_MASK) { 929 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 930 "is compressed."); 931 goto unm_err_out; 932 } 933 if (a->data.non_resident.lowest_vcn) { 934 ntfs_error(vi->i_sb, "First extent of " 935 "$INDEX_ALLOCATION attribute has non " 936 "zero lowest_vcn."); 937 goto unm_err_out; 938 } 939 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 940 ni->initialized_size = sle64_to_cpu( 941 a->data.non_resident.initialized_size); 942 ni->allocated_size = sle64_to_cpu( 943 a->data.non_resident.allocated_size); 944 /* 945 * We are done with the mft record, so we release it. Otherwise 946 * we would deadlock in ntfs_attr_iget(). 947 */ 948 ntfs_attr_put_search_ctx(ctx); 949 unmap_mft_record(ni); 950 m = NULL; 951 ctx = NULL; 952 /* Get the index bitmap attribute inode. */ 953 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 954 if (IS_ERR(bvi)) { 955 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 956 err = PTR_ERR(bvi); 957 goto unm_err_out; 958 } 959 bni = NTFS_I(bvi); 960 if (NInoCompressed(bni) || NInoEncrypted(bni) || 961 NInoSparse(bni)) { 962 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 963 "and/or encrypted and/or sparse."); 964 goto iput_unm_err_out; 965 } 966 /* Consistency check bitmap size vs. index allocation size. */ 967 bvi_size = i_size_read(bvi); 968 if ((bvi_size << 3) < (vi->i_size >> 969 ni->itype.index.block_size_bits)) { 970 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 971 "for index allocation (0x%llx).", 972 bvi_size << 3, vi->i_size); 973 goto iput_unm_err_out; 974 } 975 /* No longer need the bitmap attribute inode. */ 976 iput(bvi); 977 skip_large_dir_stuff: 978 /* Setup the operations for this inode. */ 979 vi->i_op = &ntfs_dir_inode_ops; 980 vi->i_fop = &ntfs_dir_ops; 981 vi->i_mapping->a_ops = &ntfs_mst_aops; 982 } else { 983 /* It is a file. */ 984 ntfs_attr_reinit_search_ctx(ctx); 985 986 /* Setup the data attribute, even if not present. */ 987 ni->type = AT_DATA; 988 ni->name = NULL; 989 ni->name_len = 0; 990 991 /* Find first extent of the unnamed data attribute. */ 992 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 993 if (unlikely(err)) { 994 vi->i_size = ni->initialized_size = 995 ni->allocated_size = 0; 996 if (err != -ENOENT) { 997 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 998 "attribute."); 999 goto unm_err_out; 1000 } 1001 /* 1002 * FILE_Secure does not have an unnamed $DATA 1003 * attribute, so we special case it here. 1004 */ 1005 if (vi->i_ino == FILE_Secure) 1006 goto no_data_attr_special_case; 1007 /* 1008 * Most if not all the system files in the $Extend 1009 * system directory do not have unnamed data 1010 * attributes so we need to check if the parent 1011 * directory of the file is FILE_Extend and if it is 1012 * ignore this error. To do this we need to get the 1013 * name of this inode from the mft record as the name 1014 * contains the back reference to the parent directory. 1015 */ 1016 if (ntfs_is_extended_system_file(ctx) > 0) 1017 goto no_data_attr_special_case; 1018 // FIXME: File is corrupt! Hot-fix with empty data 1019 // attribute if recovery option is set. 1020 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1021 goto unm_err_out; 1022 } 1023 a = ctx->attr; 1024 /* Setup the state. */ 1025 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1026 if (a->flags & ATTR_COMPRESSION_MASK) { 1027 NInoSetCompressed(ni); 1028 if (vol->cluster_size > 4096) { 1029 ntfs_error(vi->i_sb, "Found " 1030 "compressed data but " 1031 "compression is " 1032 "disabled due to " 1033 "cluster size (%i) > " 1034 "4kiB.", 1035 vol->cluster_size); 1036 goto unm_err_out; 1037 } 1038 if ((a->flags & ATTR_COMPRESSION_MASK) 1039 != ATTR_IS_COMPRESSED) { 1040 ntfs_error(vi->i_sb, "Found unknown " 1041 "compression method " 1042 "or corrupt file."); 1043 goto unm_err_out; 1044 } 1045 } 1046 if (a->flags & ATTR_IS_SPARSE) 1047 NInoSetSparse(ni); 1048 } 1049 if (a->flags & ATTR_IS_ENCRYPTED) { 1050 if (NInoCompressed(ni)) { 1051 ntfs_error(vi->i_sb, "Found encrypted and " 1052 "compressed data."); 1053 goto unm_err_out; 1054 } 1055 NInoSetEncrypted(ni); 1056 } 1057 if (a->non_resident) { 1058 NInoSetNonResident(ni); 1059 if (NInoCompressed(ni) || NInoSparse(ni)) { 1060 if (NInoCompressed(ni) && a->data.non_resident. 1061 compression_unit != 4) { 1062 ntfs_error(vi->i_sb, "Found " 1063 "non-standard " 1064 "compression unit (%u " 1065 "instead of 4). " 1066 "Cannot handle this.", 1067 a->data.non_resident. 1068 compression_unit); 1069 err = -EOPNOTSUPP; 1070 goto unm_err_out; 1071 } 1072 if (a->data.non_resident.compression_unit) { 1073 ni->itype.compressed.block_size = 1U << 1074 (a->data.non_resident. 1075 compression_unit + 1076 vol->cluster_size_bits); 1077 ni->itype.compressed.block_size_bits = 1078 ffs(ni->itype. 1079 compressed. 1080 block_size) - 1; 1081 ni->itype.compressed.block_clusters = 1082 1U << a->data. 1083 non_resident. 1084 compression_unit; 1085 } else { 1086 ni->itype.compressed.block_size = 0; 1087 ni->itype.compressed.block_size_bits = 1088 0; 1089 ni->itype.compressed.block_clusters = 1090 0; 1091 } 1092 ni->itype.compressed.size = sle64_to_cpu( 1093 a->data.non_resident. 1094 compressed_size); 1095 } 1096 if (a->data.non_resident.lowest_vcn) { 1097 ntfs_error(vi->i_sb, "First extent of $DATA " 1098 "attribute has non zero " 1099 "lowest_vcn."); 1100 goto unm_err_out; 1101 } 1102 vi->i_size = sle64_to_cpu( 1103 a->data.non_resident.data_size); 1104 ni->initialized_size = sle64_to_cpu( 1105 a->data.non_resident.initialized_size); 1106 ni->allocated_size = sle64_to_cpu( 1107 a->data.non_resident.allocated_size); 1108 } else { /* Resident attribute. */ 1109 vi->i_size = ni->initialized_size = le32_to_cpu( 1110 a->data.resident.value_length); 1111 ni->allocated_size = le32_to_cpu(a->length) - 1112 le16_to_cpu( 1113 a->data.resident.value_offset); 1114 if (vi->i_size > ni->allocated_size) { 1115 ntfs_error(vi->i_sb, "Resident data attribute " 1116 "is corrupt (size exceeds " 1117 "allocation)."); 1118 goto unm_err_out; 1119 } 1120 } 1121 no_data_attr_special_case: 1122 /* We are done with the mft record, so we release it. */ 1123 ntfs_attr_put_search_ctx(ctx); 1124 unmap_mft_record(ni); 1125 m = NULL; 1126 ctx = NULL; 1127 /* Setup the operations for this inode. */ 1128 vi->i_op = &ntfs_file_inode_ops; 1129 vi->i_fop = &ntfs_file_ops; 1130 vi->i_mapping->a_ops = &ntfs_normal_aops; 1131 if (NInoMstProtected(ni)) 1132 vi->i_mapping->a_ops = &ntfs_mst_aops; 1133 else if (NInoCompressed(ni)) 1134 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1135 } 1136 /* 1137 * The number of 512-byte blocks used on disk (for stat). This is in so 1138 * far inaccurate as it doesn't account for any named streams or other 1139 * special non-resident attributes, but that is how Windows works, too, 1140 * so we are at least consistent with Windows, if not entirely 1141 * consistent with the Linux Way. Doing it the Linux Way would cause a 1142 * significant slowdown as it would involve iterating over all 1143 * attributes in the mft record and adding the allocated/compressed 1144 * sizes of all non-resident attributes present to give us the Linux 1145 * correct size that should go into i_blocks (after division by 512). 1146 */ 1147 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1148 vi->i_blocks = ni->itype.compressed.size >> 9; 1149 else 1150 vi->i_blocks = ni->allocated_size >> 9; 1151 ntfs_debug("Done."); 1152 return 0; 1153 iput_unm_err_out: 1154 iput(bvi); 1155 unm_err_out: 1156 if (!err) 1157 err = -EIO; 1158 if (ctx) 1159 ntfs_attr_put_search_ctx(ctx); 1160 if (m) 1161 unmap_mft_record(ni); 1162 err_out: 1163 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1164 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1165 make_bad_inode(vi); 1166 if (err != -EOPNOTSUPP && err != -ENOMEM) 1167 NVolSetErrors(vol); 1168 return err; 1169 } 1170 1171 /** 1172 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1173 * @base_vi: base inode 1174 * @vi: attribute inode to read 1175 * 1176 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1177 * attribute inode described by @vi into memory from the base mft record 1178 * described by @base_ni. 1179 * 1180 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1181 * reading and looks up the attribute described by @vi before setting up the 1182 * necessary fields in @vi as well as initializing the ntfs inode. 1183 * 1184 * Q: What locks are held when the function is called? 1185 * A: i_state has I_NEW set, hence the inode is locked, also 1186 * i_count is set to 1, so it is not going to go away 1187 * 1188 * Return 0 on success and -errno on error. In the error case, the inode will 1189 * have had make_bad_inode() executed on it. 1190 * 1191 * Note this cannot be called for AT_INDEX_ALLOCATION. 1192 */ 1193 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1194 { 1195 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1196 ntfs_inode *ni, *base_ni; 1197 MFT_RECORD *m; 1198 ATTR_RECORD *a; 1199 ntfs_attr_search_ctx *ctx; 1200 int err = 0; 1201 1202 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1203 1204 ntfs_init_big_inode(vi); 1205 1206 ni = NTFS_I(vi); 1207 base_ni = NTFS_I(base_vi); 1208 1209 /* Just mirror the values from the base inode. */ 1210 vi->i_uid = base_vi->i_uid; 1211 vi->i_gid = base_vi->i_gid; 1212 set_nlink(vi, base_vi->i_nlink); 1213 vi->i_mtime = base_vi->i_mtime; 1214 vi->i_ctime = base_vi->i_ctime; 1215 vi->i_atime = base_vi->i_atime; 1216 vi->i_generation = ni->seq_no = base_ni->seq_no; 1217 1218 /* Set inode type to zero but preserve permissions. */ 1219 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1220 1221 m = map_mft_record(base_ni); 1222 if (IS_ERR(m)) { 1223 err = PTR_ERR(m); 1224 goto err_out; 1225 } 1226 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1227 if (!ctx) { 1228 err = -ENOMEM; 1229 goto unm_err_out; 1230 } 1231 /* Find the attribute. */ 1232 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1233 CASE_SENSITIVE, 0, NULL, 0, ctx); 1234 if (unlikely(err)) 1235 goto unm_err_out; 1236 a = ctx->attr; 1237 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1238 if (a->flags & ATTR_COMPRESSION_MASK) { 1239 NInoSetCompressed(ni); 1240 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1241 ni->name_len)) { 1242 ntfs_error(vi->i_sb, "Found compressed " 1243 "non-data or named data " 1244 "attribute. Please report " 1245 "you saw this message to " 1246 "linux-ntfs-dev@lists." 1247 "sourceforge.net"); 1248 goto unm_err_out; 1249 } 1250 if (vol->cluster_size > 4096) { 1251 ntfs_error(vi->i_sb, "Found compressed " 1252 "attribute but compression is " 1253 "disabled due to cluster size " 1254 "(%i) > 4kiB.", 1255 vol->cluster_size); 1256 goto unm_err_out; 1257 } 1258 if ((a->flags & ATTR_COMPRESSION_MASK) != 1259 ATTR_IS_COMPRESSED) { 1260 ntfs_error(vi->i_sb, "Found unknown " 1261 "compression method."); 1262 goto unm_err_out; 1263 } 1264 } 1265 /* 1266 * The compressed/sparse flag set in an index root just means 1267 * to compress all files. 1268 */ 1269 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1270 ntfs_error(vi->i_sb, "Found mst protected attribute " 1271 "but the attribute is %s. Please " 1272 "report you saw this message to " 1273 "linux-ntfs-dev@lists.sourceforge.net", 1274 NInoCompressed(ni) ? "compressed" : 1275 "sparse"); 1276 goto unm_err_out; 1277 } 1278 if (a->flags & ATTR_IS_SPARSE) 1279 NInoSetSparse(ni); 1280 } 1281 if (a->flags & ATTR_IS_ENCRYPTED) { 1282 if (NInoCompressed(ni)) { 1283 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1284 "data."); 1285 goto unm_err_out; 1286 } 1287 /* 1288 * The encryption flag set in an index root just means to 1289 * encrypt all files. 1290 */ 1291 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1292 ntfs_error(vi->i_sb, "Found mst protected attribute " 1293 "but the attribute is encrypted. " 1294 "Please report you saw this message " 1295 "to linux-ntfs-dev@lists.sourceforge." 1296 "net"); 1297 goto unm_err_out; 1298 } 1299 if (ni->type != AT_DATA) { 1300 ntfs_error(vi->i_sb, "Found encrypted non-data " 1301 "attribute."); 1302 goto unm_err_out; 1303 } 1304 NInoSetEncrypted(ni); 1305 } 1306 if (!a->non_resident) { 1307 /* Ensure the attribute name is placed before the value. */ 1308 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1309 le16_to_cpu(a->data.resident.value_offset)))) { 1310 ntfs_error(vol->sb, "Attribute name is placed after " 1311 "the attribute value."); 1312 goto unm_err_out; 1313 } 1314 if (NInoMstProtected(ni)) { 1315 ntfs_error(vi->i_sb, "Found mst protected attribute " 1316 "but the attribute is resident. " 1317 "Please report you saw this message to " 1318 "linux-ntfs-dev@lists.sourceforge.net"); 1319 goto unm_err_out; 1320 } 1321 vi->i_size = ni->initialized_size = le32_to_cpu( 1322 a->data.resident.value_length); 1323 ni->allocated_size = le32_to_cpu(a->length) - 1324 le16_to_cpu(a->data.resident.value_offset); 1325 if (vi->i_size > ni->allocated_size) { 1326 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1327 "(size exceeds allocation)."); 1328 goto unm_err_out; 1329 } 1330 } else { 1331 NInoSetNonResident(ni); 1332 /* 1333 * Ensure the attribute name is placed before the mapping pairs 1334 * array. 1335 */ 1336 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1337 le16_to_cpu( 1338 a->data.non_resident.mapping_pairs_offset)))) { 1339 ntfs_error(vol->sb, "Attribute name is placed after " 1340 "the mapping pairs array."); 1341 goto unm_err_out; 1342 } 1343 if (NInoCompressed(ni) || NInoSparse(ni)) { 1344 if (NInoCompressed(ni) && a->data.non_resident. 1345 compression_unit != 4) { 1346 ntfs_error(vi->i_sb, "Found non-standard " 1347 "compression unit (%u instead " 1348 "of 4). Cannot handle this.", 1349 a->data.non_resident. 1350 compression_unit); 1351 err = -EOPNOTSUPP; 1352 goto unm_err_out; 1353 } 1354 if (a->data.non_resident.compression_unit) { 1355 ni->itype.compressed.block_size = 1U << 1356 (a->data.non_resident. 1357 compression_unit + 1358 vol->cluster_size_bits); 1359 ni->itype.compressed.block_size_bits = 1360 ffs(ni->itype.compressed. 1361 block_size) - 1; 1362 ni->itype.compressed.block_clusters = 1U << 1363 a->data.non_resident. 1364 compression_unit; 1365 } else { 1366 ni->itype.compressed.block_size = 0; 1367 ni->itype.compressed.block_size_bits = 0; 1368 ni->itype.compressed.block_clusters = 0; 1369 } 1370 ni->itype.compressed.size = sle64_to_cpu( 1371 a->data.non_resident.compressed_size); 1372 } 1373 if (a->data.non_resident.lowest_vcn) { 1374 ntfs_error(vi->i_sb, "First extent of attribute has " 1375 "non-zero lowest_vcn."); 1376 goto unm_err_out; 1377 } 1378 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1379 ni->initialized_size = sle64_to_cpu( 1380 a->data.non_resident.initialized_size); 1381 ni->allocated_size = sle64_to_cpu( 1382 a->data.non_resident.allocated_size); 1383 } 1384 vi->i_mapping->a_ops = &ntfs_normal_aops; 1385 if (NInoMstProtected(ni)) 1386 vi->i_mapping->a_ops = &ntfs_mst_aops; 1387 else if (NInoCompressed(ni)) 1388 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1389 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1390 vi->i_blocks = ni->itype.compressed.size >> 9; 1391 else 1392 vi->i_blocks = ni->allocated_size >> 9; 1393 /* 1394 * Make sure the base inode does not go away and attach it to the 1395 * attribute inode. 1396 */ 1397 igrab(base_vi); 1398 ni->ext.base_ntfs_ino = base_ni; 1399 ni->nr_extents = -1; 1400 1401 ntfs_attr_put_search_ctx(ctx); 1402 unmap_mft_record(base_ni); 1403 1404 ntfs_debug("Done."); 1405 return 0; 1406 1407 unm_err_out: 1408 if (!err) 1409 err = -EIO; 1410 if (ctx) 1411 ntfs_attr_put_search_ctx(ctx); 1412 unmap_mft_record(base_ni); 1413 err_out: 1414 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1415 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1416 "Marking corrupt inode and base inode 0x%lx as bad. " 1417 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1418 base_vi->i_ino); 1419 make_bad_inode(vi); 1420 if (err != -ENOMEM) 1421 NVolSetErrors(vol); 1422 return err; 1423 } 1424 1425 /** 1426 * ntfs_read_locked_index_inode - read an index inode from its base inode 1427 * @base_vi: base inode 1428 * @vi: index inode to read 1429 * 1430 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1431 * index inode described by @vi into memory from the base mft record described 1432 * by @base_ni. 1433 * 1434 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1435 * reading and looks up the attributes relating to the index described by @vi 1436 * before setting up the necessary fields in @vi as well as initializing the 1437 * ntfs inode. 1438 * 1439 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1440 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1441 * are setup like directory inodes since directories are a special case of 1442 * indices ao they need to be treated in much the same way. Most importantly, 1443 * for small indices the index allocation attribute might not actually exist. 1444 * However, the index root attribute always exists but this does not need to 1445 * have an inode associated with it and this is why we define a new inode type 1446 * index. Also, like for directories, we need to have an attribute inode for 1447 * the bitmap attribute corresponding to the index allocation attribute and we 1448 * can store this in the appropriate field of the inode, just like we do for 1449 * normal directory inodes. 1450 * 1451 * Q: What locks are held when the function is called? 1452 * A: i_state has I_NEW set, hence the inode is locked, also 1453 * i_count is set to 1, so it is not going to go away 1454 * 1455 * Return 0 on success and -errno on error. In the error case, the inode will 1456 * have had make_bad_inode() executed on it. 1457 */ 1458 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1459 { 1460 loff_t bvi_size; 1461 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1462 ntfs_inode *ni, *base_ni, *bni; 1463 struct inode *bvi; 1464 MFT_RECORD *m; 1465 ATTR_RECORD *a; 1466 ntfs_attr_search_ctx *ctx; 1467 INDEX_ROOT *ir; 1468 u8 *ir_end, *index_end; 1469 int err = 0; 1470 1471 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1472 ntfs_init_big_inode(vi); 1473 ni = NTFS_I(vi); 1474 base_ni = NTFS_I(base_vi); 1475 /* Just mirror the values from the base inode. */ 1476 vi->i_uid = base_vi->i_uid; 1477 vi->i_gid = base_vi->i_gid; 1478 set_nlink(vi, base_vi->i_nlink); 1479 vi->i_mtime = base_vi->i_mtime; 1480 vi->i_ctime = base_vi->i_ctime; 1481 vi->i_atime = base_vi->i_atime; 1482 vi->i_generation = ni->seq_no = base_ni->seq_no; 1483 /* Set inode type to zero but preserve permissions. */ 1484 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1485 /* Map the mft record for the base inode. */ 1486 m = map_mft_record(base_ni); 1487 if (IS_ERR(m)) { 1488 err = PTR_ERR(m); 1489 goto err_out; 1490 } 1491 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1492 if (!ctx) { 1493 err = -ENOMEM; 1494 goto unm_err_out; 1495 } 1496 /* Find the index root attribute. */ 1497 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1498 CASE_SENSITIVE, 0, NULL, 0, ctx); 1499 if (unlikely(err)) { 1500 if (err == -ENOENT) 1501 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1502 "missing."); 1503 goto unm_err_out; 1504 } 1505 a = ctx->attr; 1506 /* Set up the state. */ 1507 if (unlikely(a->non_resident)) { 1508 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1509 goto unm_err_out; 1510 } 1511 /* Ensure the attribute name is placed before the value. */ 1512 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1513 le16_to_cpu(a->data.resident.value_offset)))) { 1514 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1515 "after the attribute value."); 1516 goto unm_err_out; 1517 } 1518 /* 1519 * Compressed/encrypted/sparse index root is not allowed, except for 1520 * directories of course but those are not dealt with here. 1521 */ 1522 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1523 ATTR_IS_SPARSE)) { 1524 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1525 "root attribute."); 1526 goto unm_err_out; 1527 } 1528 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1529 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1530 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1531 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1532 goto unm_err_out; 1533 } 1534 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1535 if (index_end > ir_end) { 1536 ntfs_error(vi->i_sb, "Index is corrupt."); 1537 goto unm_err_out; 1538 } 1539 if (ir->type) { 1540 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1541 le32_to_cpu(ir->type)); 1542 goto unm_err_out; 1543 } 1544 ni->itype.index.collation_rule = ir->collation_rule; 1545 ntfs_debug("Index collation rule is 0x%x.", 1546 le32_to_cpu(ir->collation_rule)); 1547 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1548 if (!is_power_of_2(ni->itype.index.block_size)) { 1549 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1550 "two.", ni->itype.index.block_size); 1551 goto unm_err_out; 1552 } 1553 if (ni->itype.index.block_size > PAGE_SIZE) { 1554 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " 1555 "(%ld) is not supported. Sorry.", 1556 ni->itype.index.block_size, PAGE_SIZE); 1557 err = -EOPNOTSUPP; 1558 goto unm_err_out; 1559 } 1560 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1561 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1562 "(%i) is not supported. Sorry.", 1563 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1564 err = -EOPNOTSUPP; 1565 goto unm_err_out; 1566 } 1567 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1568 /* Determine the size of a vcn in the index. */ 1569 if (vol->cluster_size <= ni->itype.index.block_size) { 1570 ni->itype.index.vcn_size = vol->cluster_size; 1571 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1572 } else { 1573 ni->itype.index.vcn_size = vol->sector_size; 1574 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1575 } 1576 /* Check for presence of index allocation attribute. */ 1577 if (!(ir->index.flags & LARGE_INDEX)) { 1578 /* No index allocation. */ 1579 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1580 /* We are done with the mft record, so we release it. */ 1581 ntfs_attr_put_search_ctx(ctx); 1582 unmap_mft_record(base_ni); 1583 m = NULL; 1584 ctx = NULL; 1585 goto skip_large_index_stuff; 1586 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1587 NInoSetIndexAllocPresent(ni); 1588 /* Find index allocation attribute. */ 1589 ntfs_attr_reinit_search_ctx(ctx); 1590 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1591 CASE_SENSITIVE, 0, NULL, 0, ctx); 1592 if (unlikely(err)) { 1593 if (err == -ENOENT) 1594 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1595 "not present but $INDEX_ROOT " 1596 "indicated it is."); 1597 else 1598 ntfs_error(vi->i_sb, "Failed to lookup " 1599 "$INDEX_ALLOCATION attribute."); 1600 goto unm_err_out; 1601 } 1602 a = ctx->attr; 1603 if (!a->non_resident) { 1604 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1605 "resident."); 1606 goto unm_err_out; 1607 } 1608 /* 1609 * Ensure the attribute name is placed before the mapping pairs array. 1610 */ 1611 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1612 le16_to_cpu( 1613 a->data.non_resident.mapping_pairs_offset)))) { 1614 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1615 "placed after the mapping pairs array."); 1616 goto unm_err_out; 1617 } 1618 if (a->flags & ATTR_IS_ENCRYPTED) { 1619 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1620 "encrypted."); 1621 goto unm_err_out; 1622 } 1623 if (a->flags & ATTR_IS_SPARSE) { 1624 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1625 goto unm_err_out; 1626 } 1627 if (a->flags & ATTR_COMPRESSION_MASK) { 1628 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1629 "compressed."); 1630 goto unm_err_out; 1631 } 1632 if (a->data.non_resident.lowest_vcn) { 1633 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1634 "attribute has non zero lowest_vcn."); 1635 goto unm_err_out; 1636 } 1637 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1638 ni->initialized_size = sle64_to_cpu( 1639 a->data.non_resident.initialized_size); 1640 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1641 /* 1642 * We are done with the mft record, so we release it. Otherwise 1643 * we would deadlock in ntfs_attr_iget(). 1644 */ 1645 ntfs_attr_put_search_ctx(ctx); 1646 unmap_mft_record(base_ni); 1647 m = NULL; 1648 ctx = NULL; 1649 /* Get the index bitmap attribute inode. */ 1650 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1651 if (IS_ERR(bvi)) { 1652 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1653 err = PTR_ERR(bvi); 1654 goto unm_err_out; 1655 } 1656 bni = NTFS_I(bvi); 1657 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1658 NInoSparse(bni)) { 1659 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1660 "encrypted and/or sparse."); 1661 goto iput_unm_err_out; 1662 } 1663 /* Consistency check bitmap size vs. index allocation size. */ 1664 bvi_size = i_size_read(bvi); 1665 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1666 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1667 "index allocation (0x%llx).", bvi_size << 3, 1668 vi->i_size); 1669 goto iput_unm_err_out; 1670 } 1671 iput(bvi); 1672 skip_large_index_stuff: 1673 /* Setup the operations for this index inode. */ 1674 vi->i_mapping->a_ops = &ntfs_mst_aops; 1675 vi->i_blocks = ni->allocated_size >> 9; 1676 /* 1677 * Make sure the base inode doesn't go away and attach it to the 1678 * index inode. 1679 */ 1680 igrab(base_vi); 1681 ni->ext.base_ntfs_ino = base_ni; 1682 ni->nr_extents = -1; 1683 1684 ntfs_debug("Done."); 1685 return 0; 1686 iput_unm_err_out: 1687 iput(bvi); 1688 unm_err_out: 1689 if (!err) 1690 err = -EIO; 1691 if (ctx) 1692 ntfs_attr_put_search_ctx(ctx); 1693 if (m) 1694 unmap_mft_record(base_ni); 1695 err_out: 1696 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1697 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1698 ni->name_len); 1699 make_bad_inode(vi); 1700 if (err != -EOPNOTSUPP && err != -ENOMEM) 1701 NVolSetErrors(vol); 1702 return err; 1703 } 1704 1705 /* 1706 * The MFT inode has special locking, so teach the lock validator 1707 * about this by splitting off the locking rules of the MFT from 1708 * the locking rules of other inodes. The MFT inode can never be 1709 * accessed from the VFS side (or even internally), only by the 1710 * map_mft functions. 1711 */ 1712 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1713 1714 /** 1715 * ntfs_read_inode_mount - special read_inode for mount time use only 1716 * @vi: inode to read 1717 * 1718 * Read inode FILE_MFT at mount time, only called with super_block lock 1719 * held from within the read_super() code path. 1720 * 1721 * This function exists because when it is called the page cache for $MFT/$DATA 1722 * is not initialized and hence we cannot get at the contents of mft records 1723 * by calling map_mft_record*(). 1724 * 1725 * Further it needs to cope with the circular references problem, i.e. cannot 1726 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1727 * we do not know where the other extent mft records are yet and again, because 1728 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1729 * attribute list is actually present in $MFT inode. 1730 * 1731 * We solve these problems by starting with the $DATA attribute before anything 1732 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1733 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1734 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1735 * sufficient information for the next step to complete. 1736 * 1737 * This should work but there are two possible pit falls (see inline comments 1738 * below), but only time will tell if they are real pits or just smoke... 1739 */ 1740 int ntfs_read_inode_mount(struct inode *vi) 1741 { 1742 VCN next_vcn, last_vcn, highest_vcn; 1743 s64 block; 1744 struct super_block *sb = vi->i_sb; 1745 ntfs_volume *vol = NTFS_SB(sb); 1746 struct buffer_head *bh; 1747 ntfs_inode *ni; 1748 MFT_RECORD *m = NULL; 1749 ATTR_RECORD *a; 1750 ntfs_attr_search_ctx *ctx; 1751 unsigned int i, nr_blocks; 1752 int err; 1753 1754 ntfs_debug("Entering."); 1755 1756 /* Initialize the ntfs specific part of @vi. */ 1757 ntfs_init_big_inode(vi); 1758 1759 ni = NTFS_I(vi); 1760 1761 /* Setup the data attribute. It is special as it is mst protected. */ 1762 NInoSetNonResident(ni); 1763 NInoSetMstProtected(ni); 1764 NInoSetSparseDisabled(ni); 1765 ni->type = AT_DATA; 1766 ni->name = NULL; 1767 ni->name_len = 0; 1768 /* 1769 * This sets up our little cheat allowing us to reuse the async read io 1770 * completion handler for directories. 1771 */ 1772 ni->itype.index.block_size = vol->mft_record_size; 1773 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1774 1775 /* Very important! Needed to be able to call map_mft_record*(). */ 1776 vol->mft_ino = vi; 1777 1778 /* Allocate enough memory to read the first mft record. */ 1779 if (vol->mft_record_size > 64 * 1024) { 1780 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1781 vol->mft_record_size); 1782 goto err_out; 1783 } 1784 i = vol->mft_record_size; 1785 if (i < sb->s_blocksize) 1786 i = sb->s_blocksize; 1787 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1788 if (!m) { 1789 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1790 goto err_out; 1791 } 1792 1793 /* Determine the first block of the $MFT/$DATA attribute. */ 1794 block = vol->mft_lcn << vol->cluster_size_bits >> 1795 sb->s_blocksize_bits; 1796 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1797 if (!nr_blocks) 1798 nr_blocks = 1; 1799 1800 /* Load $MFT/$DATA's first mft record. */ 1801 for (i = 0; i < nr_blocks; i++) { 1802 bh = sb_bread(sb, block++); 1803 if (!bh) { 1804 ntfs_error(sb, "Device read failed."); 1805 goto err_out; 1806 } 1807 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1808 sb->s_blocksize); 1809 brelse(bh); 1810 } 1811 1812 /* Apply the mst fixups. */ 1813 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1814 /* FIXME: Try to use the $MFTMirr now. */ 1815 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1816 goto err_out; 1817 } 1818 1819 /* Need this to sanity check attribute list references to $MFT. */ 1820 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1821 1822 /* Provides readpage() for map_mft_record(). */ 1823 vi->i_mapping->a_ops = &ntfs_mst_aops; 1824 1825 ctx = ntfs_attr_get_search_ctx(ni, m); 1826 if (!ctx) { 1827 err = -ENOMEM; 1828 goto err_out; 1829 } 1830 1831 /* Find the attribute list attribute if present. */ 1832 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1833 if (err) { 1834 if (unlikely(err != -ENOENT)) { 1835 ntfs_error(sb, "Failed to lookup attribute list " 1836 "attribute. You should run chkdsk."); 1837 goto put_err_out; 1838 } 1839 } else /* if (!err) */ { 1840 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1841 u8 *al_end; 1842 static const char *es = " Not allowed. $MFT is corrupt. " 1843 "You should run chkdsk."; 1844 1845 ntfs_debug("Attribute list attribute found in $MFT."); 1846 NInoSetAttrList(ni); 1847 a = ctx->attr; 1848 if (a->flags & ATTR_COMPRESSION_MASK) { 1849 ntfs_error(sb, "Attribute list attribute is " 1850 "compressed.%s", es); 1851 goto put_err_out; 1852 } 1853 if (a->flags & ATTR_IS_ENCRYPTED || 1854 a->flags & ATTR_IS_SPARSE) { 1855 if (a->non_resident) { 1856 ntfs_error(sb, "Non-resident attribute list " 1857 "attribute is encrypted/" 1858 "sparse.%s", es); 1859 goto put_err_out; 1860 } 1861 ntfs_warning(sb, "Resident attribute list attribute " 1862 "in $MFT system file is marked " 1863 "encrypted/sparse which is not true. " 1864 "However, Windows allows this and " 1865 "chkdsk does not detect or correct it " 1866 "so we will just ignore the invalid " 1867 "flags and pretend they are not set."); 1868 } 1869 /* Now allocate memory for the attribute list. */ 1870 ni->attr_list_size = (u32)ntfs_attr_size(a); 1871 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1872 if (!ni->attr_list) { 1873 ntfs_error(sb, "Not enough memory to allocate buffer " 1874 "for attribute list."); 1875 goto put_err_out; 1876 } 1877 if (a->non_resident) { 1878 NInoSetAttrListNonResident(ni); 1879 if (a->data.non_resident.lowest_vcn) { 1880 ntfs_error(sb, "Attribute list has non zero " 1881 "lowest_vcn. $MFT is corrupt. " 1882 "You should run chkdsk."); 1883 goto put_err_out; 1884 } 1885 /* Setup the runlist. */ 1886 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1887 a, NULL); 1888 if (IS_ERR(ni->attr_list_rl.rl)) { 1889 err = PTR_ERR(ni->attr_list_rl.rl); 1890 ni->attr_list_rl.rl = NULL; 1891 ntfs_error(sb, "Mapping pairs decompression " 1892 "failed with error code %i.", 1893 -err); 1894 goto put_err_out; 1895 } 1896 /* Now load the attribute list. */ 1897 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1898 ni->attr_list, ni->attr_list_size, 1899 sle64_to_cpu(a->data. 1900 non_resident.initialized_size)))) { 1901 ntfs_error(sb, "Failed to load attribute list " 1902 "attribute with error code %i.", 1903 -err); 1904 goto put_err_out; 1905 } 1906 } else /* if (!ctx.attr->non_resident) */ { 1907 if ((u8*)a + le16_to_cpu( 1908 a->data.resident.value_offset) + 1909 le32_to_cpu( 1910 a->data.resident.value_length) > 1911 (u8*)ctx->mrec + vol->mft_record_size) { 1912 ntfs_error(sb, "Corrupt attribute list " 1913 "attribute."); 1914 goto put_err_out; 1915 } 1916 /* Now copy the attribute list. */ 1917 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1918 a->data.resident.value_offset), 1919 le32_to_cpu( 1920 a->data.resident.value_length)); 1921 } 1922 /* The attribute list is now setup in memory. */ 1923 /* 1924 * FIXME: I don't know if this case is actually possible. 1925 * According to logic it is not possible but I have seen too 1926 * many weird things in MS software to rely on logic... Thus we 1927 * perform a manual search and make sure the first $MFT/$DATA 1928 * extent is in the base inode. If it is not we abort with an 1929 * error and if we ever see a report of this error we will need 1930 * to do some magic in order to have the necessary mft record 1931 * loaded and in the right place in the page cache. But 1932 * hopefully logic will prevail and this never happens... 1933 */ 1934 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1935 al_end = (u8*)al_entry + ni->attr_list_size; 1936 for (;; al_entry = next_al_entry) { 1937 /* Out of bounds check. */ 1938 if ((u8*)al_entry < ni->attr_list || 1939 (u8*)al_entry > al_end) 1940 goto em_put_err_out; 1941 /* Catch the end of the attribute list. */ 1942 if ((u8*)al_entry == al_end) 1943 goto em_put_err_out; 1944 if (!al_entry->length) 1945 goto em_put_err_out; 1946 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1947 le16_to_cpu(al_entry->length) > al_end) 1948 goto em_put_err_out; 1949 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1950 le16_to_cpu(al_entry->length)); 1951 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1952 goto em_put_err_out; 1953 if (AT_DATA != al_entry->type) 1954 continue; 1955 /* We want an unnamed attribute. */ 1956 if (al_entry->name_length) 1957 goto em_put_err_out; 1958 /* Want the first entry, i.e. lowest_vcn == 0. */ 1959 if (al_entry->lowest_vcn) 1960 goto em_put_err_out; 1961 /* First entry has to be in the base mft record. */ 1962 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1963 /* MFT references do not match, logic fails. */ 1964 ntfs_error(sb, "BUG: The first $DATA extent " 1965 "of $MFT is not in the base " 1966 "mft record. Please report " 1967 "you saw this message to " 1968 "linux-ntfs-dev@lists." 1969 "sourceforge.net"); 1970 goto put_err_out; 1971 } else { 1972 /* Sequence numbers must match. */ 1973 if (MSEQNO_LE(al_entry->mft_reference) != 1974 ni->seq_no) 1975 goto em_put_err_out; 1976 /* Got it. All is ok. We can stop now. */ 1977 break; 1978 } 1979 } 1980 } 1981 1982 ntfs_attr_reinit_search_ctx(ctx); 1983 1984 /* Now load all attribute extents. */ 1985 a = NULL; 1986 next_vcn = last_vcn = highest_vcn = 0; 1987 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 1988 ctx))) { 1989 runlist_element *nrl; 1990 1991 /* Cache the current attribute. */ 1992 a = ctx->attr; 1993 /* $MFT must be non-resident. */ 1994 if (!a->non_resident) { 1995 ntfs_error(sb, "$MFT must be non-resident but a " 1996 "resident extent was found. $MFT is " 1997 "corrupt. Run chkdsk."); 1998 goto put_err_out; 1999 } 2000 /* $MFT must be uncompressed and unencrypted. */ 2001 if (a->flags & ATTR_COMPRESSION_MASK || 2002 a->flags & ATTR_IS_ENCRYPTED || 2003 a->flags & ATTR_IS_SPARSE) { 2004 ntfs_error(sb, "$MFT must be uncompressed, " 2005 "non-sparse, and unencrypted but a " 2006 "compressed/sparse/encrypted extent " 2007 "was found. $MFT is corrupt. Run " 2008 "chkdsk."); 2009 goto put_err_out; 2010 } 2011 /* 2012 * Decompress the mapping pairs array of this extent and merge 2013 * the result into the existing runlist. No need for locking 2014 * as we have exclusive access to the inode at this time and we 2015 * are a mount in progress task, too. 2016 */ 2017 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2018 if (IS_ERR(nrl)) { 2019 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2020 "failed with error code %ld. $MFT is " 2021 "corrupt.", PTR_ERR(nrl)); 2022 goto put_err_out; 2023 } 2024 ni->runlist.rl = nrl; 2025 2026 /* Are we in the first extent? */ 2027 if (!next_vcn) { 2028 if (a->data.non_resident.lowest_vcn) { 2029 ntfs_error(sb, "First extent of $DATA " 2030 "attribute has non zero " 2031 "lowest_vcn. $MFT is corrupt. " 2032 "You should run chkdsk."); 2033 goto put_err_out; 2034 } 2035 /* Get the last vcn in the $DATA attribute. */ 2036 last_vcn = sle64_to_cpu( 2037 a->data.non_resident.allocated_size) 2038 >> vol->cluster_size_bits; 2039 /* Fill in the inode size. */ 2040 vi->i_size = sle64_to_cpu( 2041 a->data.non_resident.data_size); 2042 ni->initialized_size = sle64_to_cpu( 2043 a->data.non_resident.initialized_size); 2044 ni->allocated_size = sle64_to_cpu( 2045 a->data.non_resident.allocated_size); 2046 /* 2047 * Verify the number of mft records does not exceed 2048 * 2^32 - 1. 2049 */ 2050 if ((vi->i_size >> vol->mft_record_size_bits) >= 2051 (1ULL << 32)) { 2052 ntfs_error(sb, "$MFT is too big! Aborting."); 2053 goto put_err_out; 2054 } 2055 /* 2056 * We have got the first extent of the runlist for 2057 * $MFT which means it is now relatively safe to call 2058 * the normal ntfs_read_inode() function. 2059 * Complete reading the inode, this will actually 2060 * re-read the mft record for $MFT, this time entering 2061 * it into the page cache with which we complete the 2062 * kick start of the volume. It should be safe to do 2063 * this now as the first extent of $MFT/$DATA is 2064 * already known and we would hope that we don't need 2065 * further extents in order to find the other 2066 * attributes belonging to $MFT. Only time will tell if 2067 * this is really the case. If not we will have to play 2068 * magic at this point, possibly duplicating a lot of 2069 * ntfs_read_inode() at this point. We will need to 2070 * ensure we do enough of its work to be able to call 2071 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2072 * hope this never happens... 2073 */ 2074 ntfs_read_locked_inode(vi); 2075 if (is_bad_inode(vi)) { 2076 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2077 "failed. BUG or corrupt $MFT. " 2078 "Run chkdsk and if no errors " 2079 "are found, please report you " 2080 "saw this message to " 2081 "linux-ntfs-dev@lists." 2082 "sourceforge.net"); 2083 ntfs_attr_put_search_ctx(ctx); 2084 /* Revert to the safe super operations. */ 2085 ntfs_free(m); 2086 return -1; 2087 } 2088 /* 2089 * Re-initialize some specifics about $MFT's inode as 2090 * ntfs_read_inode() will have set up the default ones. 2091 */ 2092 /* Set uid and gid to root. */ 2093 vi->i_uid = GLOBAL_ROOT_UID; 2094 vi->i_gid = GLOBAL_ROOT_GID; 2095 /* Regular file. No access for anyone. */ 2096 vi->i_mode = S_IFREG; 2097 /* No VFS initiated operations allowed for $MFT. */ 2098 vi->i_op = &ntfs_empty_inode_ops; 2099 vi->i_fop = &ntfs_empty_file_ops; 2100 } 2101 2102 /* Get the lowest vcn for the next extent. */ 2103 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2104 next_vcn = highest_vcn + 1; 2105 2106 /* Only one extent or error, which we catch below. */ 2107 if (next_vcn <= 0) 2108 break; 2109 2110 /* Avoid endless loops due to corruption. */ 2111 if (next_vcn < sle64_to_cpu( 2112 a->data.non_resident.lowest_vcn)) { 2113 ntfs_error(sb, "$MFT has corrupt attribute list " 2114 "attribute. Run chkdsk."); 2115 goto put_err_out; 2116 } 2117 } 2118 if (err != -ENOENT) { 2119 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2120 "$MFT is corrupt. Run chkdsk."); 2121 goto put_err_out; 2122 } 2123 if (!a) { 2124 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2125 "corrupt. Run chkdsk."); 2126 goto put_err_out; 2127 } 2128 if (highest_vcn && highest_vcn != last_vcn - 1) { 2129 ntfs_error(sb, "Failed to load the complete runlist for " 2130 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2131 "Run chkdsk."); 2132 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2133 (unsigned long long)highest_vcn, 2134 (unsigned long long)last_vcn - 1); 2135 goto put_err_out; 2136 } 2137 ntfs_attr_put_search_ctx(ctx); 2138 ntfs_debug("Done."); 2139 ntfs_free(m); 2140 2141 /* 2142 * Split the locking rules of the MFT inode from the 2143 * locking rules of other inodes: 2144 */ 2145 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2146 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2147 2148 return 0; 2149 2150 em_put_err_out: 2151 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2152 "attribute list. $MFT is corrupt. Run chkdsk."); 2153 put_err_out: 2154 ntfs_attr_put_search_ctx(ctx); 2155 err_out: 2156 ntfs_error(sb, "Failed. Marking inode as bad."); 2157 make_bad_inode(vi); 2158 ntfs_free(m); 2159 return -1; 2160 } 2161 2162 static void __ntfs_clear_inode(ntfs_inode *ni) 2163 { 2164 /* Free all alocated memory. */ 2165 down_write(&ni->runlist.lock); 2166 if (ni->runlist.rl) { 2167 ntfs_free(ni->runlist.rl); 2168 ni->runlist.rl = NULL; 2169 } 2170 up_write(&ni->runlist.lock); 2171 2172 if (ni->attr_list) { 2173 ntfs_free(ni->attr_list); 2174 ni->attr_list = NULL; 2175 } 2176 2177 down_write(&ni->attr_list_rl.lock); 2178 if (ni->attr_list_rl.rl) { 2179 ntfs_free(ni->attr_list_rl.rl); 2180 ni->attr_list_rl.rl = NULL; 2181 } 2182 up_write(&ni->attr_list_rl.lock); 2183 2184 if (ni->name_len && ni->name != I30) { 2185 /* Catch bugs... */ 2186 BUG_ON(!ni->name); 2187 kfree(ni->name); 2188 } 2189 } 2190 2191 void ntfs_clear_extent_inode(ntfs_inode *ni) 2192 { 2193 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2194 2195 BUG_ON(NInoAttr(ni)); 2196 BUG_ON(ni->nr_extents != -1); 2197 2198 #ifdef NTFS_RW 2199 if (NInoDirty(ni)) { 2200 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2201 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2202 "Losing data! This is a BUG!!!"); 2203 // FIXME: Do something!!! 2204 } 2205 #endif /* NTFS_RW */ 2206 2207 __ntfs_clear_inode(ni); 2208 2209 /* Bye, bye... */ 2210 ntfs_destroy_extent_inode(ni); 2211 } 2212 2213 /** 2214 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2215 * @vi: vfs inode pending annihilation 2216 * 2217 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2218 * is called, which deallocates all memory belonging to the NTFS specific part 2219 * of the inode and returns. 2220 * 2221 * If the MFT record is dirty, we commit it before doing anything else. 2222 */ 2223 void ntfs_evict_big_inode(struct inode *vi) 2224 { 2225 ntfs_inode *ni = NTFS_I(vi); 2226 2227 truncate_inode_pages_final(&vi->i_data); 2228 clear_inode(vi); 2229 2230 #ifdef NTFS_RW 2231 if (NInoDirty(ni)) { 2232 bool was_bad = (is_bad_inode(vi)); 2233 2234 /* Committing the inode also commits all extent inodes. */ 2235 ntfs_commit_inode(vi); 2236 2237 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2238 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2239 "0x%lx. Losing data!", vi->i_ino); 2240 // FIXME: Do something!!! 2241 } 2242 } 2243 #endif /* NTFS_RW */ 2244 2245 /* No need to lock at this stage as no one else has a reference. */ 2246 if (ni->nr_extents > 0) { 2247 int i; 2248 2249 for (i = 0; i < ni->nr_extents; i++) 2250 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2251 kfree(ni->ext.extent_ntfs_inos); 2252 } 2253 2254 __ntfs_clear_inode(ni); 2255 2256 if (NInoAttr(ni)) { 2257 /* Release the base inode if we are holding it. */ 2258 if (ni->nr_extents == -1) { 2259 iput(VFS_I(ni->ext.base_ntfs_ino)); 2260 ni->nr_extents = 0; 2261 ni->ext.base_ntfs_ino = NULL; 2262 } 2263 } 2264 BUG_ON(ni->page); 2265 if (!atomic_dec_and_test(&ni->count)) 2266 BUG(); 2267 return; 2268 } 2269 2270 /** 2271 * ntfs_show_options - show mount options in /proc/mounts 2272 * @sf: seq_file in which to write our mount options 2273 * @root: root of the mounted tree whose mount options to display 2274 * 2275 * Called by the VFS once for each mounted ntfs volume when someone reads 2276 * /proc/mounts in order to display the NTFS specific mount options of each 2277 * mount. The mount options of fs specified by @root are written to the seq file 2278 * @sf and success is returned. 2279 */ 2280 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2281 { 2282 ntfs_volume *vol = NTFS_SB(root->d_sb); 2283 int i; 2284 2285 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); 2286 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); 2287 if (vol->fmask == vol->dmask) 2288 seq_printf(sf, ",umask=0%o", vol->fmask); 2289 else { 2290 seq_printf(sf, ",fmask=0%o", vol->fmask); 2291 seq_printf(sf, ",dmask=0%o", vol->dmask); 2292 } 2293 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2294 if (NVolCaseSensitive(vol)) 2295 seq_printf(sf, ",case_sensitive"); 2296 if (NVolShowSystemFiles(vol)) 2297 seq_printf(sf, ",show_sys_files"); 2298 if (!NVolSparseEnabled(vol)) 2299 seq_printf(sf, ",disable_sparse"); 2300 for (i = 0; on_errors_arr[i].val; i++) { 2301 if (on_errors_arr[i].val & vol->on_errors) 2302 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2303 } 2304 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2305 return 0; 2306 } 2307 2308 #ifdef NTFS_RW 2309 2310 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2311 "chkdsk."; 2312 2313 /** 2314 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2315 * @vi: inode for which the i_size was changed 2316 * 2317 * We only support i_size changes for normal files at present, i.e. not 2318 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2319 * below. 2320 * 2321 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2322 * that the change is allowed. 2323 * 2324 * This implies for us that @vi is a file inode rather than a directory, index, 2325 * or attribute inode as well as that @vi is a base inode. 2326 * 2327 * Returns 0 on success or -errno on error. 2328 * 2329 * Called with ->i_mutex held. 2330 */ 2331 int ntfs_truncate(struct inode *vi) 2332 { 2333 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2334 VCN highest_vcn; 2335 unsigned long flags; 2336 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2337 ntfs_volume *vol = ni->vol; 2338 ntfs_attr_search_ctx *ctx; 2339 MFT_RECORD *m; 2340 ATTR_RECORD *a; 2341 const char *te = " Leaving file length out of sync with i_size."; 2342 int err, mp_size, size_change, alloc_change; 2343 u32 attr_len; 2344 2345 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2346 BUG_ON(NInoAttr(ni)); 2347 BUG_ON(S_ISDIR(vi->i_mode)); 2348 BUG_ON(NInoMstProtected(ni)); 2349 BUG_ON(ni->nr_extents < 0); 2350 retry_truncate: 2351 /* 2352 * Lock the runlist for writing and map the mft record to ensure it is 2353 * safe to mess with the attribute runlist and sizes. 2354 */ 2355 down_write(&ni->runlist.lock); 2356 if (!NInoAttr(ni)) 2357 base_ni = ni; 2358 else 2359 base_ni = ni->ext.base_ntfs_ino; 2360 m = map_mft_record(base_ni); 2361 if (IS_ERR(m)) { 2362 err = PTR_ERR(m); 2363 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2364 "(error code %d).%s", vi->i_ino, err, te); 2365 ctx = NULL; 2366 m = NULL; 2367 goto old_bad_out; 2368 } 2369 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2370 if (unlikely(!ctx)) { 2371 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2372 "inode 0x%lx (not enough memory).%s", 2373 vi->i_ino, te); 2374 err = -ENOMEM; 2375 goto old_bad_out; 2376 } 2377 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2378 CASE_SENSITIVE, 0, NULL, 0, ctx); 2379 if (unlikely(err)) { 2380 if (err == -ENOENT) { 2381 ntfs_error(vi->i_sb, "Open attribute is missing from " 2382 "mft record. Inode 0x%lx is corrupt. " 2383 "Run chkdsk.%s", vi->i_ino, te); 2384 err = -EIO; 2385 } else 2386 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2387 "inode 0x%lx (error code %d).%s", 2388 vi->i_ino, err, te); 2389 goto old_bad_out; 2390 } 2391 m = ctx->mrec; 2392 a = ctx->attr; 2393 /* 2394 * The i_size of the vfs inode is the new size for the attribute value. 2395 */ 2396 new_size = i_size_read(vi); 2397 /* The current size of the attribute value is the old size. */ 2398 old_size = ntfs_attr_size(a); 2399 /* Calculate the new allocated size. */ 2400 if (NInoNonResident(ni)) 2401 new_alloc_size = (new_size + vol->cluster_size - 1) & 2402 ~(s64)vol->cluster_size_mask; 2403 else 2404 new_alloc_size = (new_size + 7) & ~7; 2405 /* The current allocated size is the old allocated size. */ 2406 read_lock_irqsave(&ni->size_lock, flags); 2407 old_alloc_size = ni->allocated_size; 2408 read_unlock_irqrestore(&ni->size_lock, flags); 2409 /* 2410 * The change in the file size. This will be 0 if no change, >0 if the 2411 * size is growing, and <0 if the size is shrinking. 2412 */ 2413 size_change = -1; 2414 if (new_size - old_size >= 0) { 2415 size_change = 1; 2416 if (new_size == old_size) 2417 size_change = 0; 2418 } 2419 /* As above for the allocated size. */ 2420 alloc_change = -1; 2421 if (new_alloc_size - old_alloc_size >= 0) { 2422 alloc_change = 1; 2423 if (new_alloc_size == old_alloc_size) 2424 alloc_change = 0; 2425 } 2426 /* 2427 * If neither the size nor the allocation are being changed there is 2428 * nothing to do. 2429 */ 2430 if (!size_change && !alloc_change) 2431 goto unm_done; 2432 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2433 if (size_change) { 2434 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2435 if (unlikely(err)) { 2436 if (err == -ERANGE) { 2437 ntfs_error(vol->sb, "Truncate would cause the " 2438 "inode 0x%lx to %simum size " 2439 "for its attribute type " 2440 "(0x%x). Aborting truncate.", 2441 vi->i_ino, 2442 new_size > old_size ? "exceed " 2443 "the max" : "go under the min", 2444 le32_to_cpu(ni->type)); 2445 err = -EFBIG; 2446 } else { 2447 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2448 "attribute type 0x%x. " 2449 "Aborting truncate.", 2450 vi->i_ino, 2451 le32_to_cpu(ni->type)); 2452 err = -EIO; 2453 } 2454 /* Reset the vfs inode size to the old size. */ 2455 i_size_write(vi, old_size); 2456 goto err_out; 2457 } 2458 } 2459 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2460 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2461 "supported yet for %s files, ignoring.", 2462 NInoCompressed(ni) ? "compressed" : 2463 "encrypted"); 2464 err = -EOPNOTSUPP; 2465 goto bad_out; 2466 } 2467 if (a->non_resident) 2468 goto do_non_resident_truncate; 2469 BUG_ON(NInoNonResident(ni)); 2470 /* Resize the attribute record to best fit the new attribute size. */ 2471 if (new_size < vol->mft_record_size && 2472 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2473 /* The resize succeeded! */ 2474 flush_dcache_mft_record_page(ctx->ntfs_ino); 2475 mark_mft_record_dirty(ctx->ntfs_ino); 2476 write_lock_irqsave(&ni->size_lock, flags); 2477 /* Update the sizes in the ntfs inode and all is done. */ 2478 ni->allocated_size = le32_to_cpu(a->length) - 2479 le16_to_cpu(a->data.resident.value_offset); 2480 /* 2481 * Note ntfs_resident_attr_value_resize() has already done any 2482 * necessary data clearing in the attribute record. When the 2483 * file is being shrunk vmtruncate() will already have cleared 2484 * the top part of the last partial page, i.e. since this is 2485 * the resident case this is the page with index 0. However, 2486 * when the file is being expanded, the page cache page data 2487 * between the old data_size, i.e. old_size, and the new_size 2488 * has not been zeroed. Fortunately, we do not need to zero it 2489 * either since on one hand it will either already be zero due 2490 * to both readpage and writepage clearing partial page data 2491 * beyond i_size in which case there is nothing to do or in the 2492 * case of the file being mmap()ped at the same time, POSIX 2493 * specifies that the behaviour is unspecified thus we do not 2494 * have to do anything. This means that in our implementation 2495 * in the rare case that the file is mmap()ped and a write 2496 * occurred into the mmap()ped region just beyond the file size 2497 * and writepage has not yet been called to write out the page 2498 * (which would clear the area beyond the file size) and we now 2499 * extend the file size to incorporate this dirty region 2500 * outside the file size, a write of the page would result in 2501 * this data being written to disk instead of being cleared. 2502 * Given both POSIX and the Linux mmap(2) man page specify that 2503 * this corner case is undefined, we choose to leave it like 2504 * that as this is much simpler for us as we cannot lock the 2505 * relevant page now since we are holding too many ntfs locks 2506 * which would result in a lock reversal deadlock. 2507 */ 2508 ni->initialized_size = new_size; 2509 write_unlock_irqrestore(&ni->size_lock, flags); 2510 goto unm_done; 2511 } 2512 /* If the above resize failed, this must be an attribute extension. */ 2513 BUG_ON(size_change < 0); 2514 /* 2515 * We have to drop all the locks so we can call 2516 * ntfs_attr_make_non_resident(). This could be optimised by try- 2517 * locking the first page cache page and only if that fails dropping 2518 * the locks, locking the page, and redoing all the locking and 2519 * lookups. While this would be a huge optimisation, it is not worth 2520 * it as this is definitely a slow code path as it only ever can happen 2521 * once for any given file. 2522 */ 2523 ntfs_attr_put_search_ctx(ctx); 2524 unmap_mft_record(base_ni); 2525 up_write(&ni->runlist.lock); 2526 /* 2527 * Not enough space in the mft record, try to make the attribute 2528 * non-resident and if successful restart the truncation process. 2529 */ 2530 err = ntfs_attr_make_non_resident(ni, old_size); 2531 if (likely(!err)) 2532 goto retry_truncate; 2533 /* 2534 * Could not make non-resident. If this is due to this not being 2535 * permitted for this attribute type or there not being enough space, 2536 * try to make other attributes non-resident. Otherwise fail. 2537 */ 2538 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2539 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2540 "type 0x%x, because the conversion from " 2541 "resident to non-resident attribute failed " 2542 "with error code %i.", vi->i_ino, 2543 (unsigned)le32_to_cpu(ni->type), err); 2544 if (err != -ENOMEM) 2545 err = -EIO; 2546 goto conv_err_out; 2547 } 2548 /* TODO: Not implemented from here, abort. */ 2549 if (err == -ENOSPC) 2550 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2551 "disk for the non-resident attribute value. " 2552 "This case is not implemented yet."); 2553 else /* if (err == -EPERM) */ 2554 ntfs_error(vol->sb, "This attribute type may not be " 2555 "non-resident. This case is not implemented " 2556 "yet."); 2557 err = -EOPNOTSUPP; 2558 goto conv_err_out; 2559 #if 0 2560 // TODO: Attempt to make other attributes non-resident. 2561 if (!err) 2562 goto do_resident_extend; 2563 /* 2564 * Both the attribute list attribute and the standard information 2565 * attribute must remain in the base inode. Thus, if this is one of 2566 * these attributes, we have to try to move other attributes out into 2567 * extent mft records instead. 2568 */ 2569 if (ni->type == AT_ATTRIBUTE_LIST || 2570 ni->type == AT_STANDARD_INFORMATION) { 2571 // TODO: Attempt to move other attributes into extent mft 2572 // records. 2573 err = -EOPNOTSUPP; 2574 if (!err) 2575 goto do_resident_extend; 2576 goto err_out; 2577 } 2578 // TODO: Attempt to move this attribute to an extent mft record, but 2579 // only if it is not already the only attribute in an mft record in 2580 // which case there would be nothing to gain. 2581 err = -EOPNOTSUPP; 2582 if (!err) 2583 goto do_resident_extend; 2584 /* There is nothing we can do to make enough space. )-: */ 2585 goto err_out; 2586 #endif 2587 do_non_resident_truncate: 2588 BUG_ON(!NInoNonResident(ni)); 2589 if (alloc_change < 0) { 2590 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2591 if (highest_vcn > 0 && 2592 old_alloc_size >> vol->cluster_size_bits > 2593 highest_vcn + 1) { 2594 /* 2595 * This attribute has multiple extents. Not yet 2596 * supported. 2597 */ 2598 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2599 "attribute type 0x%x, because the " 2600 "attribute is highly fragmented (it " 2601 "consists of multiple extents) and " 2602 "this case is not implemented yet.", 2603 vi->i_ino, 2604 (unsigned)le32_to_cpu(ni->type)); 2605 err = -EOPNOTSUPP; 2606 goto bad_out; 2607 } 2608 } 2609 /* 2610 * If the size is shrinking, need to reduce the initialized_size and 2611 * the data_size before reducing the allocation. 2612 */ 2613 if (size_change < 0) { 2614 /* 2615 * Make the valid size smaller (i_size is already up-to-date). 2616 */ 2617 write_lock_irqsave(&ni->size_lock, flags); 2618 if (new_size < ni->initialized_size) { 2619 ni->initialized_size = new_size; 2620 a->data.non_resident.initialized_size = 2621 cpu_to_sle64(new_size); 2622 } 2623 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2624 write_unlock_irqrestore(&ni->size_lock, flags); 2625 flush_dcache_mft_record_page(ctx->ntfs_ino); 2626 mark_mft_record_dirty(ctx->ntfs_ino); 2627 /* If the allocated size is not changing, we are done. */ 2628 if (!alloc_change) 2629 goto unm_done; 2630 /* 2631 * If the size is shrinking it makes no sense for the 2632 * allocation to be growing. 2633 */ 2634 BUG_ON(alloc_change > 0); 2635 } else /* if (size_change >= 0) */ { 2636 /* 2637 * The file size is growing or staying the same but the 2638 * allocation can be shrinking, growing or staying the same. 2639 */ 2640 if (alloc_change > 0) { 2641 /* 2642 * We need to extend the allocation and possibly update 2643 * the data size. If we are updating the data size, 2644 * since we are not touching the initialized_size we do 2645 * not need to worry about the actual data on disk. 2646 * And as far as the page cache is concerned, there 2647 * will be no pages beyond the old data size and any 2648 * partial region in the last page between the old and 2649 * new data size (or the end of the page if the new 2650 * data size is outside the page) does not need to be 2651 * modified as explained above for the resident 2652 * attribute truncate case. To do this, we simply drop 2653 * the locks we hold and leave all the work to our 2654 * friendly helper ntfs_attr_extend_allocation(). 2655 */ 2656 ntfs_attr_put_search_ctx(ctx); 2657 unmap_mft_record(base_ni); 2658 up_write(&ni->runlist.lock); 2659 err = ntfs_attr_extend_allocation(ni, new_size, 2660 size_change > 0 ? new_size : -1, -1); 2661 /* 2662 * ntfs_attr_extend_allocation() will have done error 2663 * output already. 2664 */ 2665 goto done; 2666 } 2667 if (!alloc_change) 2668 goto alloc_done; 2669 } 2670 /* alloc_change < 0 */ 2671 /* Free the clusters. */ 2672 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2673 vol->cluster_size_bits, -1, ctx); 2674 m = ctx->mrec; 2675 a = ctx->attr; 2676 if (unlikely(nr_freed < 0)) { 2677 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2678 "%lli). Unmount and run chkdsk to recover " 2679 "the lost cluster(s).", (long long)nr_freed); 2680 NVolSetErrors(vol); 2681 nr_freed = 0; 2682 } 2683 /* Truncate the runlist. */ 2684 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2685 new_alloc_size >> vol->cluster_size_bits); 2686 /* 2687 * If the runlist truncation failed and/or the search context is no 2688 * longer valid, we cannot resize the attribute record or build the 2689 * mapping pairs array thus we mark the inode bad so that no access to 2690 * the freed clusters can happen. 2691 */ 2692 if (unlikely(err || IS_ERR(m))) { 2693 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2694 IS_ERR(m) ? 2695 "restore attribute search context" : 2696 "truncate attribute runlist", 2697 IS_ERR(m) ? PTR_ERR(m) : err, es); 2698 err = -EIO; 2699 goto bad_out; 2700 } 2701 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2702 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2703 if (unlikely(mp_size <= 0)) { 2704 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2705 "attribute type 0x%x, because determining the " 2706 "size for the mapping pairs failed with error " 2707 "code %i.%s", vi->i_ino, 2708 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2709 err = -EIO; 2710 goto bad_out; 2711 } 2712 /* 2713 * Shrink the attribute record for the new mapping pairs array. Note, 2714 * this cannot fail since we are making the attribute smaller thus by 2715 * definition there is enough space to do so. 2716 */ 2717 attr_len = le32_to_cpu(a->length); 2718 err = ntfs_attr_record_resize(m, a, mp_size + 2719 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2720 BUG_ON(err); 2721 /* 2722 * Generate the mapping pairs array directly into the attribute record. 2723 */ 2724 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2725 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2726 mp_size, ni->runlist.rl, 0, -1, NULL); 2727 if (unlikely(err)) { 2728 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2729 "attribute type 0x%x, because building the " 2730 "mapping pairs failed with error code %i.%s", 2731 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2732 err, es); 2733 err = -EIO; 2734 goto bad_out; 2735 } 2736 /* Update the allocated/compressed size as well as the highest vcn. */ 2737 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2738 vol->cluster_size_bits) - 1); 2739 write_lock_irqsave(&ni->size_lock, flags); 2740 ni->allocated_size = new_alloc_size; 2741 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2742 if (NInoSparse(ni) || NInoCompressed(ni)) { 2743 if (nr_freed) { 2744 ni->itype.compressed.size -= nr_freed << 2745 vol->cluster_size_bits; 2746 BUG_ON(ni->itype.compressed.size < 0); 2747 a->data.non_resident.compressed_size = cpu_to_sle64( 2748 ni->itype.compressed.size); 2749 vi->i_blocks = ni->itype.compressed.size >> 9; 2750 } 2751 } else 2752 vi->i_blocks = new_alloc_size >> 9; 2753 write_unlock_irqrestore(&ni->size_lock, flags); 2754 /* 2755 * We have shrunk the allocation. If this is a shrinking truncate we 2756 * have already dealt with the initialized_size and the data_size above 2757 * and we are done. If the truncate is only changing the allocation 2758 * and not the data_size, we are also done. If this is an extending 2759 * truncate, need to extend the data_size now which is ensured by the 2760 * fact that @size_change is positive. 2761 */ 2762 alloc_done: 2763 /* 2764 * If the size is growing, need to update it now. If it is shrinking, 2765 * we have already updated it above (before the allocation change). 2766 */ 2767 if (size_change > 0) 2768 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2769 /* Ensure the modified mft record is written out. */ 2770 flush_dcache_mft_record_page(ctx->ntfs_ino); 2771 mark_mft_record_dirty(ctx->ntfs_ino); 2772 unm_done: 2773 ntfs_attr_put_search_ctx(ctx); 2774 unmap_mft_record(base_ni); 2775 up_write(&ni->runlist.lock); 2776 done: 2777 /* Update the mtime and ctime on the base inode. */ 2778 /* normally ->truncate shouldn't update ctime or mtime, 2779 * but ntfs did before so it got a copy & paste version 2780 * of file_update_time. one day someone should fix this 2781 * for real. 2782 */ 2783 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2784 struct timespec64 now = current_time(VFS_I(base_ni)); 2785 int sync_it = 0; 2786 2787 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) || 2788 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now)) 2789 sync_it = 1; 2790 VFS_I(base_ni)->i_mtime = now; 2791 VFS_I(base_ni)->i_ctime = now; 2792 2793 if (sync_it) 2794 mark_inode_dirty_sync(VFS_I(base_ni)); 2795 } 2796 2797 if (likely(!err)) { 2798 NInoClearTruncateFailed(ni); 2799 ntfs_debug("Done."); 2800 } 2801 return err; 2802 old_bad_out: 2803 old_size = -1; 2804 bad_out: 2805 if (err != -ENOMEM && err != -EOPNOTSUPP) 2806 NVolSetErrors(vol); 2807 if (err != -EOPNOTSUPP) 2808 NInoSetTruncateFailed(ni); 2809 else if (old_size >= 0) 2810 i_size_write(vi, old_size); 2811 err_out: 2812 if (ctx) 2813 ntfs_attr_put_search_ctx(ctx); 2814 if (m) 2815 unmap_mft_record(base_ni); 2816 up_write(&ni->runlist.lock); 2817 out: 2818 ntfs_debug("Failed. Returning error code %i.", err); 2819 return err; 2820 conv_err_out: 2821 if (err != -ENOMEM && err != -EOPNOTSUPP) 2822 NVolSetErrors(vol); 2823 if (err != -EOPNOTSUPP) 2824 NInoSetTruncateFailed(ni); 2825 else 2826 i_size_write(vi, old_size); 2827 goto out; 2828 } 2829 2830 /** 2831 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2832 * @vi: inode for which the i_size was changed 2833 * 2834 * Wrapper for ntfs_truncate() that has no return value. 2835 * 2836 * See ntfs_truncate() description above for details. 2837 */ 2838 #ifdef NTFS_RW 2839 void ntfs_truncate_vfs(struct inode *vi) { 2840 ntfs_truncate(vi); 2841 } 2842 #endif 2843 2844 /** 2845 * ntfs_setattr - called from notify_change() when an attribute is being changed 2846 * @dentry: dentry whose attributes to change 2847 * @attr: structure describing the attributes and the changes 2848 * 2849 * We have to trap VFS attempts to truncate the file described by @dentry as 2850 * soon as possible, because we do not implement changes in i_size yet. So we 2851 * abort all i_size changes here. 2852 * 2853 * We also abort all changes of user, group, and mode as we do not implement 2854 * the NTFS ACLs yet. 2855 * 2856 * Called with ->i_mutex held. 2857 */ 2858 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2859 { 2860 struct inode *vi = d_inode(dentry); 2861 int err; 2862 unsigned int ia_valid = attr->ia_valid; 2863 2864 err = setattr_prepare(dentry, attr); 2865 if (err) 2866 goto out; 2867 /* We do not support NTFS ACLs yet. */ 2868 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2869 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2870 "supported yet, ignoring."); 2871 err = -EOPNOTSUPP; 2872 goto out; 2873 } 2874 if (ia_valid & ATTR_SIZE) { 2875 if (attr->ia_size != i_size_read(vi)) { 2876 ntfs_inode *ni = NTFS_I(vi); 2877 /* 2878 * FIXME: For now we do not support resizing of 2879 * compressed or encrypted files yet. 2880 */ 2881 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2882 ntfs_warning(vi->i_sb, "Changes in inode size " 2883 "are not supported yet for " 2884 "%s files, ignoring.", 2885 NInoCompressed(ni) ? 2886 "compressed" : "encrypted"); 2887 err = -EOPNOTSUPP; 2888 } else { 2889 truncate_setsize(vi, attr->ia_size); 2890 ntfs_truncate_vfs(vi); 2891 } 2892 if (err || ia_valid == ATTR_SIZE) 2893 goto out; 2894 } else { 2895 /* 2896 * We skipped the truncate but must still update 2897 * timestamps. 2898 */ 2899 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2900 } 2901 } 2902 if (ia_valid & ATTR_ATIME) { 2903 vi->i_atime = timestamp_truncate(attr->ia_atime, 2904 vi); 2905 } 2906 if (ia_valid & ATTR_MTIME) { 2907 vi->i_mtime = timestamp_truncate(attr->ia_mtime, 2908 vi); 2909 } 2910 if (ia_valid & ATTR_CTIME) { 2911 vi->i_ctime = timestamp_truncate(attr->ia_ctime, 2912 vi); 2913 } 2914 mark_inode_dirty(vi); 2915 out: 2916 return err; 2917 } 2918 2919 /** 2920 * ntfs_write_inode - write out a dirty inode 2921 * @vi: inode to write out 2922 * @sync: if true, write out synchronously 2923 * 2924 * Write out a dirty inode to disk including any extent inodes if present. 2925 * 2926 * If @sync is true, commit the inode to disk and wait for io completion. This 2927 * is done using write_mft_record(). 2928 * 2929 * If @sync is false, just schedule the write to happen but do not wait for i/o 2930 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2931 * marking the page (and in this case mft record) dirty but we do not implement 2932 * this yet as write_mft_record() largely ignores the @sync parameter and 2933 * always performs synchronous writes. 2934 * 2935 * Return 0 on success and -errno on error. 2936 */ 2937 int __ntfs_write_inode(struct inode *vi, int sync) 2938 { 2939 sle64 nt; 2940 ntfs_inode *ni = NTFS_I(vi); 2941 ntfs_attr_search_ctx *ctx; 2942 MFT_RECORD *m; 2943 STANDARD_INFORMATION *si; 2944 int err = 0; 2945 bool modified = false; 2946 2947 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2948 vi->i_ino); 2949 /* 2950 * Dirty attribute inodes are written via their real inodes so just 2951 * clean them here. Access time updates are taken care off when the 2952 * real inode is written. 2953 */ 2954 if (NInoAttr(ni)) { 2955 NInoClearDirty(ni); 2956 ntfs_debug("Done."); 2957 return 0; 2958 } 2959 /* Map, pin, and lock the mft record belonging to the inode. */ 2960 m = map_mft_record(ni); 2961 if (IS_ERR(m)) { 2962 err = PTR_ERR(m); 2963 goto err_out; 2964 } 2965 /* Update the access times in the standard information attribute. */ 2966 ctx = ntfs_attr_get_search_ctx(ni, m); 2967 if (unlikely(!ctx)) { 2968 err = -ENOMEM; 2969 goto unm_err_out; 2970 } 2971 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2972 CASE_SENSITIVE, 0, NULL, 0, ctx); 2973 if (unlikely(err)) { 2974 ntfs_attr_put_search_ctx(ctx); 2975 goto unm_err_out; 2976 } 2977 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 2978 le16_to_cpu(ctx->attr->data.resident.value_offset)); 2979 /* Update the access times if they have changed. */ 2980 nt = utc2ntfs(vi->i_mtime); 2981 if (si->last_data_change_time != nt) { 2982 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 2983 "new = 0x%llx", vi->i_ino, (long long) 2984 sle64_to_cpu(si->last_data_change_time), 2985 (long long)sle64_to_cpu(nt)); 2986 si->last_data_change_time = nt; 2987 modified = true; 2988 } 2989 nt = utc2ntfs(vi->i_ctime); 2990 if (si->last_mft_change_time != nt) { 2991 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 2992 "new = 0x%llx", vi->i_ino, (long long) 2993 sle64_to_cpu(si->last_mft_change_time), 2994 (long long)sle64_to_cpu(nt)); 2995 si->last_mft_change_time = nt; 2996 modified = true; 2997 } 2998 nt = utc2ntfs(vi->i_atime); 2999 if (si->last_access_time != nt) { 3000 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3001 "new = 0x%llx", vi->i_ino, 3002 (long long)sle64_to_cpu(si->last_access_time), 3003 (long long)sle64_to_cpu(nt)); 3004 si->last_access_time = nt; 3005 modified = true; 3006 } 3007 /* 3008 * If we just modified the standard information attribute we need to 3009 * mark the mft record it is in dirty. We do this manually so that 3010 * mark_inode_dirty() is not called which would redirty the inode and 3011 * hence result in an infinite loop of trying to write the inode. 3012 * There is no need to mark the base inode nor the base mft record 3013 * dirty, since we are going to write this mft record below in any case 3014 * and the base mft record may actually not have been modified so it 3015 * might not need to be written out. 3016 * NOTE: It is not a problem when the inode for $MFT itself is being 3017 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3018 * on the $MFT inode and hence ntfs_write_inode() will not be 3019 * re-invoked because of it which in turn is ok since the dirtied mft 3020 * record will be cleaned and written out to disk below, i.e. before 3021 * this function returns. 3022 */ 3023 if (modified) { 3024 flush_dcache_mft_record_page(ctx->ntfs_ino); 3025 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3026 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3027 ctx->ntfs_ino->page_ofs); 3028 } 3029 ntfs_attr_put_search_ctx(ctx); 3030 /* Now the access times are updated, write the base mft record. */ 3031 if (NInoDirty(ni)) 3032 err = write_mft_record(ni, m, sync); 3033 /* Write all attached extent mft records. */ 3034 mutex_lock(&ni->extent_lock); 3035 if (ni->nr_extents > 0) { 3036 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3037 int i; 3038 3039 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3040 for (i = 0; i < ni->nr_extents; i++) { 3041 ntfs_inode *tni = extent_nis[i]; 3042 3043 if (NInoDirty(tni)) { 3044 MFT_RECORD *tm = map_mft_record(tni); 3045 int ret; 3046 3047 if (IS_ERR(tm)) { 3048 if (!err || err == -ENOMEM) 3049 err = PTR_ERR(tm); 3050 continue; 3051 } 3052 ret = write_mft_record(tni, tm, sync); 3053 unmap_mft_record(tni); 3054 if (unlikely(ret)) { 3055 if (!err || err == -ENOMEM) 3056 err = ret; 3057 } 3058 } 3059 } 3060 } 3061 mutex_unlock(&ni->extent_lock); 3062 unmap_mft_record(ni); 3063 if (unlikely(err)) 3064 goto err_out; 3065 ntfs_debug("Done."); 3066 return 0; 3067 unm_err_out: 3068 unmap_mft_record(ni); 3069 err_out: 3070 if (err == -ENOMEM) { 3071 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3072 "Marking the inode dirty again, so the VFS " 3073 "retries later."); 3074 mark_inode_dirty(vi); 3075 } else { 3076 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3077 NVolSetErrors(ni->vol); 3078 } 3079 return err; 3080 } 3081 3082 #endif /* NTFS_RW */ 3083