1 /** 2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/mount.h> 26 #include <linux/mutex.h> 27 #include <linux/pagemap.h> 28 #include <linux/quotaops.h> 29 #include <linux/slab.h> 30 #include <linux/log2.h> 31 32 #include "aops.h" 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "dir.h" 36 #include "debug.h" 37 #include "inode.h" 38 #include "lcnalloc.h" 39 #include "malloc.h" 40 #include "mft.h" 41 #include "time.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_test_inode - compare two (possibly fake) inodes for equality 46 * @vi: vfs inode which to test 47 * @na: ntfs attribute which is being tested with 48 * 49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 50 * inode @vi for equality with the ntfs attribute @na. 51 * 52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 53 * @na->name and @na->name_len are then ignored. 54 * 55 * Return 1 if the attributes match and 0 if not. 56 * 57 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 58 * allowed to sleep. 59 */ 60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 61 { 62 ntfs_inode *ni; 63 64 if (vi->i_ino != na->mft_no) 65 return 0; 66 ni = NTFS_I(vi); 67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 68 if (likely(!NInoAttr(ni))) { 69 /* If not looking for a normal inode this is a mismatch. */ 70 if (unlikely(na->type != AT_UNUSED)) 71 return 0; 72 } else { 73 /* A fake inode describing an attribute. */ 74 if (ni->type != na->type) 75 return 0; 76 if (ni->name_len != na->name_len) 77 return 0; 78 if (na->name_len && memcmp(ni->name, na->name, 79 na->name_len * sizeof(ntfschar))) 80 return 0; 81 } 82 /* Match! */ 83 return 1; 84 } 85 86 /** 87 * ntfs_init_locked_inode - initialize an inode 88 * @vi: vfs inode to initialize 89 * @na: ntfs attribute which to initialize @vi to 90 * 91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 92 * order to enable ntfs_test_inode() to do its work. 93 * 94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 95 * In that case, @na->name and @na->name_len should be set to NULL and 0, 96 * respectively. Although that is not strictly necessary as 97 * ntfs_read_locked_inode() will fill them in later. 98 * 99 * Return 0 on success and -errno on error. 100 * 101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 103 */ 104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 105 { 106 ntfs_inode *ni = NTFS_I(vi); 107 108 vi->i_ino = na->mft_no; 109 110 ni->type = na->type; 111 if (na->type == AT_INDEX_ALLOCATION) 112 NInoSetMstProtected(ni); 113 114 ni->name = na->name; 115 ni->name_len = na->name_len; 116 117 /* If initializing a normal inode, we are done. */ 118 if (likely(na->type == AT_UNUSED)) { 119 BUG_ON(na->name); 120 BUG_ON(na->name_len); 121 return 0; 122 } 123 124 /* It is a fake inode. */ 125 NInoSetAttr(ni); 126 127 /* 128 * We have I30 global constant as an optimization as it is the name 129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 130 * allocation but that is ok. And most attributes are unnamed anyway, 131 * thus the fraction of named attributes with name != I30 is actually 132 * absolutely tiny. 133 */ 134 if (na->name_len && na->name != I30) { 135 unsigned int i; 136 137 BUG_ON(!na->name); 138 i = na->name_len * sizeof(ntfschar); 139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 140 if (!ni->name) 141 return -ENOMEM; 142 memcpy(ni->name, na->name, i); 143 ni->name[na->name_len] = 0; 144 } 145 return 0; 146 } 147 148 typedef int (*set_t)(struct inode *, void *); 149 static int ntfs_read_locked_inode(struct inode *vi); 150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 151 static int ntfs_read_locked_index_inode(struct inode *base_vi, 152 struct inode *vi); 153 154 /** 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 156 * @sb: super block of mounted volume 157 * @mft_no: mft record number / inode number to obtain 158 * 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 160 * file or directory). 161 * 162 * If the inode is in the cache, it is just returned with an increased 163 * reference count. Otherwise, a new struct inode is allocated and initialized, 164 * and finally ntfs_read_locked_inode() is called to read in the inode and 165 * fill in the remainder of the inode structure. 166 * 167 * Return the struct inode on success. Check the return value with IS_ERR() and 168 * if true, the function failed and the error code is obtained from PTR_ERR(). 169 */ 170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 171 { 172 struct inode *vi; 173 int err; 174 ntfs_attr na; 175 176 na.mft_no = mft_no; 177 na.type = AT_UNUSED; 178 na.name = NULL; 179 na.name_len = 0; 180 181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 182 (set_t)ntfs_init_locked_inode, &na); 183 if (unlikely(!vi)) 184 return ERR_PTR(-ENOMEM); 185 186 err = 0; 187 188 /* If this is a freshly allocated inode, need to read it now. */ 189 if (vi->i_state & I_NEW) { 190 err = ntfs_read_locked_inode(vi); 191 unlock_new_inode(vi); 192 } 193 /* 194 * There is no point in keeping bad inodes around if the failure was 195 * due to ENOMEM. We want to be able to retry again later. 196 */ 197 if (unlikely(err == -ENOMEM)) { 198 iput(vi); 199 vi = ERR_PTR(err); 200 } 201 return vi; 202 } 203 204 /** 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 206 * @base_vi: vfs base inode containing the attribute 207 * @type: attribute type 208 * @name: Unicode name of the attribute (NULL if unnamed) 209 * @name_len: length of @name in Unicode characters (0 if unnamed) 210 * 211 * Obtain the (fake) struct inode corresponding to the attribute specified by 212 * @type, @name, and @name_len, which is present in the base mft record 213 * specified by the vfs inode @base_vi. 214 * 215 * If the attribute inode is in the cache, it is just returned with an 216 * increased reference count. Otherwise, a new struct inode is allocated and 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 218 * attribute and fill in the inode structure. 219 * 220 * Note, for index allocation attributes, you need to use ntfs_index_iget() 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 222 * 223 * Return the struct inode of the attribute inode on success. Check the return 224 * value with IS_ERR() and if true, the function failed and the error code is 225 * obtained from PTR_ERR(). 226 */ 227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 228 ntfschar *name, u32 name_len) 229 { 230 struct inode *vi; 231 int err; 232 ntfs_attr na; 233 234 /* Make sure no one calls ntfs_attr_iget() for indices. */ 235 BUG_ON(type == AT_INDEX_ALLOCATION); 236 237 na.mft_no = base_vi->i_ino; 238 na.type = type; 239 na.name = name; 240 na.name_len = name_len; 241 242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 243 (set_t)ntfs_init_locked_inode, &na); 244 if (unlikely(!vi)) 245 return ERR_PTR(-ENOMEM); 246 247 err = 0; 248 249 /* If this is a freshly allocated inode, need to read it now. */ 250 if (vi->i_state & I_NEW) { 251 err = ntfs_read_locked_attr_inode(base_vi, vi); 252 unlock_new_inode(vi); 253 } 254 /* 255 * There is no point in keeping bad attribute inodes around. This also 256 * simplifies things in that we never need to check for bad attribute 257 * inodes elsewhere. 258 */ 259 if (unlikely(err)) { 260 iput(vi); 261 vi = ERR_PTR(err); 262 } 263 return vi; 264 } 265 266 /** 267 * ntfs_index_iget - obtain a struct inode corresponding to an index 268 * @base_vi: vfs base inode containing the index related attributes 269 * @name: Unicode name of the index 270 * @name_len: length of @name in Unicode characters 271 * 272 * Obtain the (fake) struct inode corresponding to the index specified by @name 273 * and @name_len, which is present in the base mft record specified by the vfs 274 * inode @base_vi. 275 * 276 * If the index inode is in the cache, it is just returned with an increased 277 * reference count. Otherwise, a new struct inode is allocated and 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read 279 * the index related attributes and fill in the inode structure. 280 * 281 * Return the struct inode of the index inode on success. Check the return 282 * value with IS_ERR() and if true, the function failed and the error code is 283 * obtained from PTR_ERR(). 284 */ 285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 286 u32 name_len) 287 { 288 struct inode *vi; 289 int err; 290 ntfs_attr na; 291 292 na.mft_no = base_vi->i_ino; 293 na.type = AT_INDEX_ALLOCATION; 294 na.name = name; 295 na.name_len = name_len; 296 297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 298 (set_t)ntfs_init_locked_inode, &na); 299 if (unlikely(!vi)) 300 return ERR_PTR(-ENOMEM); 301 302 err = 0; 303 304 /* If this is a freshly allocated inode, need to read it now. */ 305 if (vi->i_state & I_NEW) { 306 err = ntfs_read_locked_index_inode(base_vi, vi); 307 unlock_new_inode(vi); 308 } 309 /* 310 * There is no point in keeping bad index inodes around. This also 311 * simplifies things in that we never need to check for bad index 312 * inodes elsewhere. 313 */ 314 if (unlikely(err)) { 315 iput(vi); 316 vi = ERR_PTR(err); 317 } 318 return vi; 319 } 320 321 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 322 { 323 ntfs_inode *ni; 324 325 ntfs_debug("Entering."); 326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 327 if (likely(ni != NULL)) { 328 ni->state = 0; 329 return VFS_I(ni); 330 } 331 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 332 return NULL; 333 } 334 335 static void ntfs_i_callback(struct rcu_head *head) 336 { 337 struct inode *inode = container_of(head, struct inode, i_rcu); 338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 339 } 340 341 void ntfs_destroy_big_inode(struct inode *inode) 342 { 343 ntfs_inode *ni = NTFS_I(inode); 344 345 ntfs_debug("Entering."); 346 BUG_ON(ni->page); 347 if (!atomic_dec_and_test(&ni->count)) 348 BUG(); 349 call_rcu(&inode->i_rcu, ntfs_i_callback); 350 } 351 352 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 353 { 354 ntfs_inode *ni; 355 356 ntfs_debug("Entering."); 357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 358 if (likely(ni != NULL)) { 359 ni->state = 0; 360 return ni; 361 } 362 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 363 return NULL; 364 } 365 366 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 367 { 368 ntfs_debug("Entering."); 369 BUG_ON(ni->page); 370 if (!atomic_dec_and_test(&ni->count)) 371 BUG(); 372 kmem_cache_free(ntfs_inode_cache, ni); 373 } 374 375 /* 376 * The attribute runlist lock has separate locking rules from the 377 * normal runlist lock, so split the two lock-classes: 378 */ 379 static struct lock_class_key attr_list_rl_lock_class; 380 381 /** 382 * __ntfs_init_inode - initialize ntfs specific part of an inode 383 * @sb: super block of mounted volume 384 * @ni: freshly allocated ntfs inode which to initialize 385 * 386 * Initialize an ntfs inode to defaults. 387 * 388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 389 * untouched. Make sure to initialize them elsewhere. 390 * 391 * Return zero on success and -ENOMEM on error. 392 */ 393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 394 { 395 ntfs_debug("Entering."); 396 rwlock_init(&ni->size_lock); 397 ni->initialized_size = ni->allocated_size = 0; 398 ni->seq_no = 0; 399 atomic_set(&ni->count, 1); 400 ni->vol = NTFS_SB(sb); 401 ntfs_init_runlist(&ni->runlist); 402 mutex_init(&ni->mrec_lock); 403 ni->page = NULL; 404 ni->page_ofs = 0; 405 ni->attr_list_size = 0; 406 ni->attr_list = NULL; 407 ntfs_init_runlist(&ni->attr_list_rl); 408 lockdep_set_class(&ni->attr_list_rl.lock, 409 &attr_list_rl_lock_class); 410 ni->itype.index.block_size = 0; 411 ni->itype.index.vcn_size = 0; 412 ni->itype.index.collation_rule = 0; 413 ni->itype.index.block_size_bits = 0; 414 ni->itype.index.vcn_size_bits = 0; 415 mutex_init(&ni->extent_lock); 416 ni->nr_extents = 0; 417 ni->ext.base_ntfs_ino = NULL; 418 } 419 420 /* 421 * Extent inodes get MFT-mapped in a nested way, while the base inode 422 * is still mapped. Teach this nesting to the lock validator by creating 423 * a separate class for nested inode's mrec_lock's: 424 */ 425 static struct lock_class_key extent_inode_mrec_lock_key; 426 427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 428 unsigned long mft_no) 429 { 430 ntfs_inode *ni = ntfs_alloc_extent_inode(); 431 432 ntfs_debug("Entering."); 433 if (likely(ni != NULL)) { 434 __ntfs_init_inode(sb, ni); 435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 436 ni->mft_no = mft_no; 437 ni->type = AT_UNUSED; 438 ni->name = NULL; 439 ni->name_len = 0; 440 } 441 return ni; 442 } 443 444 /** 445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 446 * @ctx: initialized attribute search context 447 * 448 * Search all file name attributes in the inode described by the attribute 449 * search context @ctx and check if any of the names are in the $Extend system 450 * directory. 451 * 452 * Return values: 453 * 1: file is in $Extend directory 454 * 0: file is not in $Extend directory 455 * -errno: failed to determine if the file is in the $Extend directory 456 */ 457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 458 { 459 int nr_links, err; 460 461 /* Restart search. */ 462 ntfs_attr_reinit_search_ctx(ctx); 463 464 /* Get number of hard links. */ 465 nr_links = le16_to_cpu(ctx->mrec->link_count); 466 467 /* Loop through all hard links. */ 468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 469 ctx))) { 470 FILE_NAME_ATTR *file_name_attr; 471 ATTR_RECORD *attr = ctx->attr; 472 u8 *p, *p2; 473 474 nr_links--; 475 /* 476 * Maximum sanity checking as we are called on an inode that 477 * we suspect might be corrupt. 478 */ 479 p = (u8*)attr + le32_to_cpu(attr->length); 480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 481 le32_to_cpu(ctx->mrec->bytes_in_use)) { 482 err_corrupt_attr: 483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 484 "attribute. You should run chkdsk."); 485 return -EIO; 486 } 487 if (attr->non_resident) { 488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 489 "name. You should run chkdsk."); 490 return -EIO; 491 } 492 if (attr->flags) { 493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 494 "invalid flags. You should run " 495 "chkdsk."); 496 return -EIO; 497 } 498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 500 "name. You should run chkdsk."); 501 return -EIO; 502 } 503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 504 le16_to_cpu(attr->data.resident.value_offset)); 505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 506 if (p2 < (u8*)attr || p2 > p) 507 goto err_corrupt_attr; 508 /* This attribute is ok, but is it in the $Extend directory? */ 509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 510 return 1; /* YES, it's an extended system file. */ 511 } 512 if (unlikely(err != -ENOENT)) 513 return err; 514 if (unlikely(nr_links)) { 515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 516 "doesn't match number of name attributes. You " 517 "should run chkdsk."); 518 return -EIO; 519 } 520 return 0; /* NO, it is not an extended system file. */ 521 } 522 523 /** 524 * ntfs_read_locked_inode - read an inode from its device 525 * @vi: inode to read 526 * 527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 528 * described by @vi into memory from the device. 529 * 530 * The only fields in @vi that we need to/can look at when the function is 531 * called are i_sb, pointing to the mounted device's super block, and i_ino, 532 * the number of the inode to load. 533 * 534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 535 * for reading and sets up the necessary @vi fields as well as initializing 536 * the ntfs inode. 537 * 538 * Q: What locks are held when the function is called? 539 * A: i_state has I_NEW set, hence the inode is locked, also 540 * i_count is set to 1, so it is not going to go away 541 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 542 * is allowed to write to them. We should of course be honouring them but 543 * we need to do that using the IS_* macros defined in include/linux/fs.h. 544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 545 * 546 * Return 0 on success and -errno on error. In the error case, the inode will 547 * have had make_bad_inode() executed on it. 548 */ 549 static int ntfs_read_locked_inode(struct inode *vi) 550 { 551 ntfs_volume *vol = NTFS_SB(vi->i_sb); 552 ntfs_inode *ni; 553 struct inode *bvi; 554 MFT_RECORD *m; 555 ATTR_RECORD *a; 556 STANDARD_INFORMATION *si; 557 ntfs_attr_search_ctx *ctx; 558 int err = 0; 559 560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 561 562 /* Setup the generic vfs inode parts now. */ 563 564 /* 565 * This is for checking whether an inode has changed w.r.t. a file so 566 * that the file can be updated if necessary (compare with f_version). 567 */ 568 vi->i_version = 1; 569 570 vi->i_uid = vol->uid; 571 vi->i_gid = vol->gid; 572 vi->i_mode = 0; 573 574 /* 575 * Initialize the ntfs specific part of @vi special casing 576 * FILE_MFT which we need to do at mount time. 577 */ 578 if (vi->i_ino != FILE_MFT) 579 ntfs_init_big_inode(vi); 580 ni = NTFS_I(vi); 581 582 m = map_mft_record(ni); 583 if (IS_ERR(m)) { 584 err = PTR_ERR(m); 585 goto err_out; 586 } 587 ctx = ntfs_attr_get_search_ctx(ni, m); 588 if (!ctx) { 589 err = -ENOMEM; 590 goto unm_err_out; 591 } 592 593 if (!(m->flags & MFT_RECORD_IN_USE)) { 594 ntfs_error(vi->i_sb, "Inode is not in use!"); 595 goto unm_err_out; 596 } 597 if (m->base_mft_record) { 598 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 599 goto unm_err_out; 600 } 601 602 /* Transfer information from mft record into vfs and ntfs inodes. */ 603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 604 605 /* 606 * FIXME: Keep in mind that link_count is two for files which have both 607 * a long file name and a short file name as separate entries, so if 608 * we are hiding short file names this will be too high. Either we need 609 * to account for the short file names by subtracting them or we need 610 * to make sure we delete files even though i_nlink is not zero which 611 * might be tricky due to vfs interactions. Need to think about this 612 * some more when implementing the unlink command. 613 */ 614 set_nlink(vi, le16_to_cpu(m->link_count)); 615 /* 616 * FIXME: Reparse points can have the directory bit set even though 617 * they would be S_IFLNK. Need to deal with this further below when we 618 * implement reparse points / symbolic links but it will do for now. 619 * Also if not a directory, it could be something else, rather than 620 * a regular file. But again, will do for now. 621 */ 622 /* Everyone gets all permissions. */ 623 vi->i_mode |= S_IRWXUGO; 624 /* If read-only, no one gets write permissions. */ 625 if (IS_RDONLY(vi)) 626 vi->i_mode &= ~S_IWUGO; 627 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 628 vi->i_mode |= S_IFDIR; 629 /* 630 * Apply the directory permissions mask set in the mount 631 * options. 632 */ 633 vi->i_mode &= ~vol->dmask; 634 /* Things break without this kludge! */ 635 if (vi->i_nlink > 1) 636 set_nlink(vi, 1); 637 } else { 638 vi->i_mode |= S_IFREG; 639 /* Apply the file permissions mask set in the mount options. */ 640 vi->i_mode &= ~vol->fmask; 641 } 642 /* 643 * Find the standard information attribute in the mft record. At this 644 * stage we haven't setup the attribute list stuff yet, so this could 645 * in fact fail if the standard information is in an extent record, but 646 * I don't think this actually ever happens. 647 */ 648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 649 ctx); 650 if (unlikely(err)) { 651 if (err == -ENOENT) { 652 /* 653 * TODO: We should be performing a hot fix here (if the 654 * recover mount option is set) by creating a new 655 * attribute. 656 */ 657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 658 "is missing."); 659 } 660 goto unm_err_out; 661 } 662 a = ctx->attr; 663 /* Get the standard information attribute value. */ 664 si = (STANDARD_INFORMATION*)((u8*)a + 665 le16_to_cpu(a->data.resident.value_offset)); 666 667 /* Transfer information from the standard information into vi. */ 668 /* 669 * Note: The i_?times do not quite map perfectly onto the NTFS times, 670 * but they are close enough, and in the end it doesn't really matter 671 * that much... 672 */ 673 /* 674 * mtime is the last change of the data within the file. Not changed 675 * when only metadata is changed, e.g. a rename doesn't affect mtime. 676 */ 677 vi->i_mtime = ntfs2utc(si->last_data_change_time); 678 /* 679 * ctime is the last change of the metadata of the file. This obviously 680 * always changes, when mtime is changed. ctime can be changed on its 681 * own, mtime is then not changed, e.g. when a file is renamed. 682 */ 683 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 684 /* 685 * Last access to the data within the file. Not changed during a rename 686 * for example but changed whenever the file is written to. 687 */ 688 vi->i_atime = ntfs2utc(si->last_access_time); 689 690 /* Find the attribute list attribute if present. */ 691 ntfs_attr_reinit_search_ctx(ctx); 692 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 693 if (err) { 694 if (unlikely(err != -ENOENT)) { 695 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 696 "attribute."); 697 goto unm_err_out; 698 } 699 } else /* if (!err) */ { 700 if (vi->i_ino == FILE_MFT) 701 goto skip_attr_list_load; 702 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 703 NInoSetAttrList(ni); 704 a = ctx->attr; 705 if (a->flags & ATTR_COMPRESSION_MASK) { 706 ntfs_error(vi->i_sb, "Attribute list attribute is " 707 "compressed."); 708 goto unm_err_out; 709 } 710 if (a->flags & ATTR_IS_ENCRYPTED || 711 a->flags & ATTR_IS_SPARSE) { 712 if (a->non_resident) { 713 ntfs_error(vi->i_sb, "Non-resident attribute " 714 "list attribute is encrypted/" 715 "sparse."); 716 goto unm_err_out; 717 } 718 ntfs_warning(vi->i_sb, "Resident attribute list " 719 "attribute in inode 0x%lx is marked " 720 "encrypted/sparse which is not true. " 721 "However, Windows allows this and " 722 "chkdsk does not detect or correct it " 723 "so we will just ignore the invalid " 724 "flags and pretend they are not set.", 725 vi->i_ino); 726 } 727 /* Now allocate memory for the attribute list. */ 728 ni->attr_list_size = (u32)ntfs_attr_size(a); 729 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 730 if (!ni->attr_list) { 731 ntfs_error(vi->i_sb, "Not enough memory to allocate " 732 "buffer for attribute list."); 733 err = -ENOMEM; 734 goto unm_err_out; 735 } 736 if (a->non_resident) { 737 NInoSetAttrListNonResident(ni); 738 if (a->data.non_resident.lowest_vcn) { 739 ntfs_error(vi->i_sb, "Attribute list has non " 740 "zero lowest_vcn."); 741 goto unm_err_out; 742 } 743 /* 744 * Setup the runlist. No need for locking as we have 745 * exclusive access to the inode at this time. 746 */ 747 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 748 a, NULL); 749 if (IS_ERR(ni->attr_list_rl.rl)) { 750 err = PTR_ERR(ni->attr_list_rl.rl); 751 ni->attr_list_rl.rl = NULL; 752 ntfs_error(vi->i_sb, "Mapping pairs " 753 "decompression failed."); 754 goto unm_err_out; 755 } 756 /* Now load the attribute list. */ 757 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 758 ni->attr_list, ni->attr_list_size, 759 sle64_to_cpu(a->data.non_resident. 760 initialized_size)))) { 761 ntfs_error(vi->i_sb, "Failed to load " 762 "attribute list attribute."); 763 goto unm_err_out; 764 } 765 } else /* if (!a->non_resident) */ { 766 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 767 + le32_to_cpu( 768 a->data.resident.value_length) > 769 (u8*)ctx->mrec + vol->mft_record_size) { 770 ntfs_error(vi->i_sb, "Corrupt attribute list " 771 "in inode."); 772 goto unm_err_out; 773 } 774 /* Now copy the attribute list. */ 775 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 776 a->data.resident.value_offset), 777 le32_to_cpu( 778 a->data.resident.value_length)); 779 } 780 } 781 skip_attr_list_load: 782 /* 783 * If an attribute list is present we now have the attribute list value 784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 785 */ 786 if (S_ISDIR(vi->i_mode)) { 787 loff_t bvi_size; 788 ntfs_inode *bni; 789 INDEX_ROOT *ir; 790 u8 *ir_end, *index_end; 791 792 /* It is a directory, find index root attribute. */ 793 ntfs_attr_reinit_search_ctx(ctx); 794 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 795 0, NULL, 0, ctx); 796 if (unlikely(err)) { 797 if (err == -ENOENT) { 798 // FIXME: File is corrupt! Hot-fix with empty 799 // index root attribute if recovery option is 800 // set. 801 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 802 "is missing."); 803 } 804 goto unm_err_out; 805 } 806 a = ctx->attr; 807 /* Set up the state. */ 808 if (unlikely(a->non_resident)) { 809 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 810 "resident."); 811 goto unm_err_out; 812 } 813 /* Ensure the attribute name is placed before the value. */ 814 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 815 le16_to_cpu(a->data.resident.value_offset)))) { 816 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 817 "placed after the attribute value."); 818 goto unm_err_out; 819 } 820 /* 821 * Compressed/encrypted index root just means that the newly 822 * created files in that directory should be created compressed/ 823 * encrypted. However index root cannot be both compressed and 824 * encrypted. 825 */ 826 if (a->flags & ATTR_COMPRESSION_MASK) 827 NInoSetCompressed(ni); 828 if (a->flags & ATTR_IS_ENCRYPTED) { 829 if (a->flags & ATTR_COMPRESSION_MASK) { 830 ntfs_error(vi->i_sb, "Found encrypted and " 831 "compressed attribute."); 832 goto unm_err_out; 833 } 834 NInoSetEncrypted(ni); 835 } 836 if (a->flags & ATTR_IS_SPARSE) 837 NInoSetSparse(ni); 838 ir = (INDEX_ROOT*)((u8*)a + 839 le16_to_cpu(a->data.resident.value_offset)); 840 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 841 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 842 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 843 "corrupt."); 844 goto unm_err_out; 845 } 846 index_end = (u8*)&ir->index + 847 le32_to_cpu(ir->index.index_length); 848 if (index_end > ir_end) { 849 ntfs_error(vi->i_sb, "Directory index is corrupt."); 850 goto unm_err_out; 851 } 852 if (ir->type != AT_FILE_NAME) { 853 ntfs_error(vi->i_sb, "Indexed attribute is not " 854 "$FILE_NAME."); 855 goto unm_err_out; 856 } 857 if (ir->collation_rule != COLLATION_FILE_NAME) { 858 ntfs_error(vi->i_sb, "Index collation rule is not " 859 "COLLATION_FILE_NAME."); 860 goto unm_err_out; 861 } 862 ni->itype.index.collation_rule = ir->collation_rule; 863 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 864 if (ni->itype.index.block_size & 865 (ni->itype.index.block_size - 1)) { 866 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 867 "power of two.", 868 ni->itype.index.block_size); 869 goto unm_err_out; 870 } 871 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 872 ntfs_error(vi->i_sb, "Index block size (%u) > " 873 "PAGE_CACHE_SIZE (%ld) is not " 874 "supported. Sorry.", 875 ni->itype.index.block_size, 876 PAGE_CACHE_SIZE); 877 err = -EOPNOTSUPP; 878 goto unm_err_out; 879 } 880 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 881 ntfs_error(vi->i_sb, "Index block size (%u) < " 882 "NTFS_BLOCK_SIZE (%i) is not " 883 "supported. Sorry.", 884 ni->itype.index.block_size, 885 NTFS_BLOCK_SIZE); 886 err = -EOPNOTSUPP; 887 goto unm_err_out; 888 } 889 ni->itype.index.block_size_bits = 890 ffs(ni->itype.index.block_size) - 1; 891 /* Determine the size of a vcn in the directory index. */ 892 if (vol->cluster_size <= ni->itype.index.block_size) { 893 ni->itype.index.vcn_size = vol->cluster_size; 894 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 895 } else { 896 ni->itype.index.vcn_size = vol->sector_size; 897 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 898 } 899 900 /* Setup the index allocation attribute, even if not present. */ 901 NInoSetMstProtected(ni); 902 ni->type = AT_INDEX_ALLOCATION; 903 ni->name = I30; 904 ni->name_len = 4; 905 906 if (!(ir->index.flags & LARGE_INDEX)) { 907 /* No index allocation. */ 908 vi->i_size = ni->initialized_size = 909 ni->allocated_size = 0; 910 /* We are done with the mft record, so we release it. */ 911 ntfs_attr_put_search_ctx(ctx); 912 unmap_mft_record(ni); 913 m = NULL; 914 ctx = NULL; 915 goto skip_large_dir_stuff; 916 } /* LARGE_INDEX: Index allocation present. Setup state. */ 917 NInoSetIndexAllocPresent(ni); 918 /* Find index allocation attribute. */ 919 ntfs_attr_reinit_search_ctx(ctx); 920 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 921 CASE_SENSITIVE, 0, NULL, 0, ctx); 922 if (unlikely(err)) { 923 if (err == -ENOENT) 924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 925 "attribute is not present but " 926 "$INDEX_ROOT indicated it is."); 927 else 928 ntfs_error(vi->i_sb, "Failed to lookup " 929 "$INDEX_ALLOCATION " 930 "attribute."); 931 goto unm_err_out; 932 } 933 a = ctx->attr; 934 if (!a->non_resident) { 935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 936 "is resident."); 937 goto unm_err_out; 938 } 939 /* 940 * Ensure the attribute name is placed before the mapping pairs 941 * array. 942 */ 943 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 944 le16_to_cpu( 945 a->data.non_resident.mapping_pairs_offset)))) { 946 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 947 "is placed after the mapping pairs " 948 "array."); 949 goto unm_err_out; 950 } 951 if (a->flags & ATTR_IS_ENCRYPTED) { 952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 953 "is encrypted."); 954 goto unm_err_out; 955 } 956 if (a->flags & ATTR_IS_SPARSE) { 957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 958 "is sparse."); 959 goto unm_err_out; 960 } 961 if (a->flags & ATTR_COMPRESSION_MASK) { 962 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 963 "is compressed."); 964 goto unm_err_out; 965 } 966 if (a->data.non_resident.lowest_vcn) { 967 ntfs_error(vi->i_sb, "First extent of " 968 "$INDEX_ALLOCATION attribute has non " 969 "zero lowest_vcn."); 970 goto unm_err_out; 971 } 972 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 973 ni->initialized_size = sle64_to_cpu( 974 a->data.non_resident.initialized_size); 975 ni->allocated_size = sle64_to_cpu( 976 a->data.non_resident.allocated_size); 977 /* 978 * We are done with the mft record, so we release it. Otherwise 979 * we would deadlock in ntfs_attr_iget(). 980 */ 981 ntfs_attr_put_search_ctx(ctx); 982 unmap_mft_record(ni); 983 m = NULL; 984 ctx = NULL; 985 /* Get the index bitmap attribute inode. */ 986 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 987 if (IS_ERR(bvi)) { 988 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 989 err = PTR_ERR(bvi); 990 goto unm_err_out; 991 } 992 bni = NTFS_I(bvi); 993 if (NInoCompressed(bni) || NInoEncrypted(bni) || 994 NInoSparse(bni)) { 995 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 996 "and/or encrypted and/or sparse."); 997 goto iput_unm_err_out; 998 } 999 /* Consistency check bitmap size vs. index allocation size. */ 1000 bvi_size = i_size_read(bvi); 1001 if ((bvi_size << 3) < (vi->i_size >> 1002 ni->itype.index.block_size_bits)) { 1003 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 1004 "for index allocation (0x%llx).", 1005 bvi_size << 3, vi->i_size); 1006 goto iput_unm_err_out; 1007 } 1008 /* No longer need the bitmap attribute inode. */ 1009 iput(bvi); 1010 skip_large_dir_stuff: 1011 /* Setup the operations for this inode. */ 1012 vi->i_op = &ntfs_dir_inode_ops; 1013 vi->i_fop = &ntfs_dir_ops; 1014 } else { 1015 /* It is a file. */ 1016 ntfs_attr_reinit_search_ctx(ctx); 1017 1018 /* Setup the data attribute, even if not present. */ 1019 ni->type = AT_DATA; 1020 ni->name = NULL; 1021 ni->name_len = 0; 1022 1023 /* Find first extent of the unnamed data attribute. */ 1024 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1025 if (unlikely(err)) { 1026 vi->i_size = ni->initialized_size = 1027 ni->allocated_size = 0; 1028 if (err != -ENOENT) { 1029 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1030 "attribute."); 1031 goto unm_err_out; 1032 } 1033 /* 1034 * FILE_Secure does not have an unnamed $DATA 1035 * attribute, so we special case it here. 1036 */ 1037 if (vi->i_ino == FILE_Secure) 1038 goto no_data_attr_special_case; 1039 /* 1040 * Most if not all the system files in the $Extend 1041 * system directory do not have unnamed data 1042 * attributes so we need to check if the parent 1043 * directory of the file is FILE_Extend and if it is 1044 * ignore this error. To do this we need to get the 1045 * name of this inode from the mft record as the name 1046 * contains the back reference to the parent directory. 1047 */ 1048 if (ntfs_is_extended_system_file(ctx) > 0) 1049 goto no_data_attr_special_case; 1050 // FIXME: File is corrupt! Hot-fix with empty data 1051 // attribute if recovery option is set. 1052 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1053 goto unm_err_out; 1054 } 1055 a = ctx->attr; 1056 /* Setup the state. */ 1057 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1058 if (a->flags & ATTR_COMPRESSION_MASK) { 1059 NInoSetCompressed(ni); 1060 if (vol->cluster_size > 4096) { 1061 ntfs_error(vi->i_sb, "Found " 1062 "compressed data but " 1063 "compression is " 1064 "disabled due to " 1065 "cluster size (%i) > " 1066 "4kiB.", 1067 vol->cluster_size); 1068 goto unm_err_out; 1069 } 1070 if ((a->flags & ATTR_COMPRESSION_MASK) 1071 != ATTR_IS_COMPRESSED) { 1072 ntfs_error(vi->i_sb, "Found unknown " 1073 "compression method " 1074 "or corrupt file."); 1075 goto unm_err_out; 1076 } 1077 } 1078 if (a->flags & ATTR_IS_SPARSE) 1079 NInoSetSparse(ni); 1080 } 1081 if (a->flags & ATTR_IS_ENCRYPTED) { 1082 if (NInoCompressed(ni)) { 1083 ntfs_error(vi->i_sb, "Found encrypted and " 1084 "compressed data."); 1085 goto unm_err_out; 1086 } 1087 NInoSetEncrypted(ni); 1088 } 1089 if (a->non_resident) { 1090 NInoSetNonResident(ni); 1091 if (NInoCompressed(ni) || NInoSparse(ni)) { 1092 if (NInoCompressed(ni) && a->data.non_resident. 1093 compression_unit != 4) { 1094 ntfs_error(vi->i_sb, "Found " 1095 "non-standard " 1096 "compression unit (%u " 1097 "instead of 4). " 1098 "Cannot handle this.", 1099 a->data.non_resident. 1100 compression_unit); 1101 err = -EOPNOTSUPP; 1102 goto unm_err_out; 1103 } 1104 if (a->data.non_resident.compression_unit) { 1105 ni->itype.compressed.block_size = 1U << 1106 (a->data.non_resident. 1107 compression_unit + 1108 vol->cluster_size_bits); 1109 ni->itype.compressed.block_size_bits = 1110 ffs(ni->itype. 1111 compressed. 1112 block_size) - 1; 1113 ni->itype.compressed.block_clusters = 1114 1U << a->data. 1115 non_resident. 1116 compression_unit; 1117 } else { 1118 ni->itype.compressed.block_size = 0; 1119 ni->itype.compressed.block_size_bits = 1120 0; 1121 ni->itype.compressed.block_clusters = 1122 0; 1123 } 1124 ni->itype.compressed.size = sle64_to_cpu( 1125 a->data.non_resident. 1126 compressed_size); 1127 } 1128 if (a->data.non_resident.lowest_vcn) { 1129 ntfs_error(vi->i_sb, "First extent of $DATA " 1130 "attribute has non zero " 1131 "lowest_vcn."); 1132 goto unm_err_out; 1133 } 1134 vi->i_size = sle64_to_cpu( 1135 a->data.non_resident.data_size); 1136 ni->initialized_size = sle64_to_cpu( 1137 a->data.non_resident.initialized_size); 1138 ni->allocated_size = sle64_to_cpu( 1139 a->data.non_resident.allocated_size); 1140 } else { /* Resident attribute. */ 1141 vi->i_size = ni->initialized_size = le32_to_cpu( 1142 a->data.resident.value_length); 1143 ni->allocated_size = le32_to_cpu(a->length) - 1144 le16_to_cpu( 1145 a->data.resident.value_offset); 1146 if (vi->i_size > ni->allocated_size) { 1147 ntfs_error(vi->i_sb, "Resident data attribute " 1148 "is corrupt (size exceeds " 1149 "allocation)."); 1150 goto unm_err_out; 1151 } 1152 } 1153 no_data_attr_special_case: 1154 /* We are done with the mft record, so we release it. */ 1155 ntfs_attr_put_search_ctx(ctx); 1156 unmap_mft_record(ni); 1157 m = NULL; 1158 ctx = NULL; 1159 /* Setup the operations for this inode. */ 1160 vi->i_op = &ntfs_file_inode_ops; 1161 vi->i_fop = &ntfs_file_ops; 1162 } 1163 if (NInoMstProtected(ni)) 1164 vi->i_mapping->a_ops = &ntfs_mst_aops; 1165 else 1166 vi->i_mapping->a_ops = &ntfs_aops; 1167 /* 1168 * The number of 512-byte blocks used on disk (for stat). This is in so 1169 * far inaccurate as it doesn't account for any named streams or other 1170 * special non-resident attributes, but that is how Windows works, too, 1171 * so we are at least consistent with Windows, if not entirely 1172 * consistent with the Linux Way. Doing it the Linux Way would cause a 1173 * significant slowdown as it would involve iterating over all 1174 * attributes in the mft record and adding the allocated/compressed 1175 * sizes of all non-resident attributes present to give us the Linux 1176 * correct size that should go into i_blocks (after division by 512). 1177 */ 1178 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1179 vi->i_blocks = ni->itype.compressed.size >> 9; 1180 else 1181 vi->i_blocks = ni->allocated_size >> 9; 1182 ntfs_debug("Done."); 1183 return 0; 1184 iput_unm_err_out: 1185 iput(bvi); 1186 unm_err_out: 1187 if (!err) 1188 err = -EIO; 1189 if (ctx) 1190 ntfs_attr_put_search_ctx(ctx); 1191 if (m) 1192 unmap_mft_record(ni); 1193 err_out: 1194 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1195 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1196 make_bad_inode(vi); 1197 if (err != -EOPNOTSUPP && err != -ENOMEM) 1198 NVolSetErrors(vol); 1199 return err; 1200 } 1201 1202 /** 1203 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1204 * @base_vi: base inode 1205 * @vi: attribute inode to read 1206 * 1207 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1208 * attribute inode described by @vi into memory from the base mft record 1209 * described by @base_ni. 1210 * 1211 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1212 * reading and looks up the attribute described by @vi before setting up the 1213 * necessary fields in @vi as well as initializing the ntfs inode. 1214 * 1215 * Q: What locks are held when the function is called? 1216 * A: i_state has I_NEW set, hence the inode is locked, also 1217 * i_count is set to 1, so it is not going to go away 1218 * 1219 * Return 0 on success and -errno on error. In the error case, the inode will 1220 * have had make_bad_inode() executed on it. 1221 * 1222 * Note this cannot be called for AT_INDEX_ALLOCATION. 1223 */ 1224 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1225 { 1226 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1227 ntfs_inode *ni, *base_ni; 1228 MFT_RECORD *m; 1229 ATTR_RECORD *a; 1230 ntfs_attr_search_ctx *ctx; 1231 int err = 0; 1232 1233 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1234 1235 ntfs_init_big_inode(vi); 1236 1237 ni = NTFS_I(vi); 1238 base_ni = NTFS_I(base_vi); 1239 1240 /* Just mirror the values from the base inode. */ 1241 vi->i_version = base_vi->i_version; 1242 vi->i_uid = base_vi->i_uid; 1243 vi->i_gid = base_vi->i_gid; 1244 set_nlink(vi, base_vi->i_nlink); 1245 vi->i_mtime = base_vi->i_mtime; 1246 vi->i_ctime = base_vi->i_ctime; 1247 vi->i_atime = base_vi->i_atime; 1248 vi->i_generation = ni->seq_no = base_ni->seq_no; 1249 1250 /* Set inode type to zero but preserve permissions. */ 1251 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1252 1253 m = map_mft_record(base_ni); 1254 if (IS_ERR(m)) { 1255 err = PTR_ERR(m); 1256 goto err_out; 1257 } 1258 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1259 if (!ctx) { 1260 err = -ENOMEM; 1261 goto unm_err_out; 1262 } 1263 /* Find the attribute. */ 1264 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1265 CASE_SENSITIVE, 0, NULL, 0, ctx); 1266 if (unlikely(err)) 1267 goto unm_err_out; 1268 a = ctx->attr; 1269 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1270 if (a->flags & ATTR_COMPRESSION_MASK) { 1271 NInoSetCompressed(ni); 1272 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1273 ni->name_len)) { 1274 ntfs_error(vi->i_sb, "Found compressed " 1275 "non-data or named data " 1276 "attribute. Please report " 1277 "you saw this message to " 1278 "linux-ntfs-dev@lists." 1279 "sourceforge.net"); 1280 goto unm_err_out; 1281 } 1282 if (vol->cluster_size > 4096) { 1283 ntfs_error(vi->i_sb, "Found compressed " 1284 "attribute but compression is " 1285 "disabled due to cluster size " 1286 "(%i) > 4kiB.", 1287 vol->cluster_size); 1288 goto unm_err_out; 1289 } 1290 if ((a->flags & ATTR_COMPRESSION_MASK) != 1291 ATTR_IS_COMPRESSED) { 1292 ntfs_error(vi->i_sb, "Found unknown " 1293 "compression method."); 1294 goto unm_err_out; 1295 } 1296 } 1297 /* 1298 * The compressed/sparse flag set in an index root just means 1299 * to compress all files. 1300 */ 1301 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1302 ntfs_error(vi->i_sb, "Found mst protected attribute " 1303 "but the attribute is %s. Please " 1304 "report you saw this message to " 1305 "linux-ntfs-dev@lists.sourceforge.net", 1306 NInoCompressed(ni) ? "compressed" : 1307 "sparse"); 1308 goto unm_err_out; 1309 } 1310 if (a->flags & ATTR_IS_SPARSE) 1311 NInoSetSparse(ni); 1312 } 1313 if (a->flags & ATTR_IS_ENCRYPTED) { 1314 if (NInoCompressed(ni)) { 1315 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1316 "data."); 1317 goto unm_err_out; 1318 } 1319 /* 1320 * The encryption flag set in an index root just means to 1321 * encrypt all files. 1322 */ 1323 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1324 ntfs_error(vi->i_sb, "Found mst protected attribute " 1325 "but the attribute is encrypted. " 1326 "Please report you saw this message " 1327 "to linux-ntfs-dev@lists.sourceforge." 1328 "net"); 1329 goto unm_err_out; 1330 } 1331 if (ni->type != AT_DATA) { 1332 ntfs_error(vi->i_sb, "Found encrypted non-data " 1333 "attribute."); 1334 goto unm_err_out; 1335 } 1336 NInoSetEncrypted(ni); 1337 } 1338 if (!a->non_resident) { 1339 /* Ensure the attribute name is placed before the value. */ 1340 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1341 le16_to_cpu(a->data.resident.value_offset)))) { 1342 ntfs_error(vol->sb, "Attribute name is placed after " 1343 "the attribute value."); 1344 goto unm_err_out; 1345 } 1346 if (NInoMstProtected(ni)) { 1347 ntfs_error(vi->i_sb, "Found mst protected attribute " 1348 "but the attribute is resident. " 1349 "Please report you saw this message to " 1350 "linux-ntfs-dev@lists.sourceforge.net"); 1351 goto unm_err_out; 1352 } 1353 vi->i_size = ni->initialized_size = le32_to_cpu( 1354 a->data.resident.value_length); 1355 ni->allocated_size = le32_to_cpu(a->length) - 1356 le16_to_cpu(a->data.resident.value_offset); 1357 if (vi->i_size > ni->allocated_size) { 1358 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1359 "(size exceeds allocation)."); 1360 goto unm_err_out; 1361 } 1362 } else { 1363 NInoSetNonResident(ni); 1364 /* 1365 * Ensure the attribute name is placed before the mapping pairs 1366 * array. 1367 */ 1368 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1369 le16_to_cpu( 1370 a->data.non_resident.mapping_pairs_offset)))) { 1371 ntfs_error(vol->sb, "Attribute name is placed after " 1372 "the mapping pairs array."); 1373 goto unm_err_out; 1374 } 1375 if (NInoCompressed(ni) || NInoSparse(ni)) { 1376 if (NInoCompressed(ni) && a->data.non_resident. 1377 compression_unit != 4) { 1378 ntfs_error(vi->i_sb, "Found non-standard " 1379 "compression unit (%u instead " 1380 "of 4). Cannot handle this.", 1381 a->data.non_resident. 1382 compression_unit); 1383 err = -EOPNOTSUPP; 1384 goto unm_err_out; 1385 } 1386 if (a->data.non_resident.compression_unit) { 1387 ni->itype.compressed.block_size = 1U << 1388 (a->data.non_resident. 1389 compression_unit + 1390 vol->cluster_size_bits); 1391 ni->itype.compressed.block_size_bits = 1392 ffs(ni->itype.compressed. 1393 block_size) - 1; 1394 ni->itype.compressed.block_clusters = 1U << 1395 a->data.non_resident. 1396 compression_unit; 1397 } else { 1398 ni->itype.compressed.block_size = 0; 1399 ni->itype.compressed.block_size_bits = 0; 1400 ni->itype.compressed.block_clusters = 0; 1401 } 1402 ni->itype.compressed.size = sle64_to_cpu( 1403 a->data.non_resident.compressed_size); 1404 } 1405 if (a->data.non_resident.lowest_vcn) { 1406 ntfs_error(vi->i_sb, "First extent of attribute has " 1407 "non-zero lowest_vcn."); 1408 goto unm_err_out; 1409 } 1410 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1411 ni->initialized_size = sle64_to_cpu( 1412 a->data.non_resident.initialized_size); 1413 ni->allocated_size = sle64_to_cpu( 1414 a->data.non_resident.allocated_size); 1415 } 1416 if (NInoMstProtected(ni)) 1417 vi->i_mapping->a_ops = &ntfs_mst_aops; 1418 else 1419 vi->i_mapping->a_ops = &ntfs_aops; 1420 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1421 vi->i_blocks = ni->itype.compressed.size >> 9; 1422 else 1423 vi->i_blocks = ni->allocated_size >> 9; 1424 /* 1425 * Make sure the base inode does not go away and attach it to the 1426 * attribute inode. 1427 */ 1428 igrab(base_vi); 1429 ni->ext.base_ntfs_ino = base_ni; 1430 ni->nr_extents = -1; 1431 1432 ntfs_attr_put_search_ctx(ctx); 1433 unmap_mft_record(base_ni); 1434 1435 ntfs_debug("Done."); 1436 return 0; 1437 1438 unm_err_out: 1439 if (!err) 1440 err = -EIO; 1441 if (ctx) 1442 ntfs_attr_put_search_ctx(ctx); 1443 unmap_mft_record(base_ni); 1444 err_out: 1445 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1446 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1447 "Marking corrupt inode and base inode 0x%lx as bad. " 1448 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1449 base_vi->i_ino); 1450 make_bad_inode(vi); 1451 if (err != -ENOMEM) 1452 NVolSetErrors(vol); 1453 return err; 1454 } 1455 1456 /** 1457 * ntfs_read_locked_index_inode - read an index inode from its base inode 1458 * @base_vi: base inode 1459 * @vi: index inode to read 1460 * 1461 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1462 * index inode described by @vi into memory from the base mft record described 1463 * by @base_ni. 1464 * 1465 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1466 * reading and looks up the attributes relating to the index described by @vi 1467 * before setting up the necessary fields in @vi as well as initializing the 1468 * ntfs inode. 1469 * 1470 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1471 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1472 * are setup like directory inodes since directories are a special case of 1473 * indices ao they need to be treated in much the same way. Most importantly, 1474 * for small indices the index allocation attribute might not actually exist. 1475 * However, the index root attribute always exists but this does not need to 1476 * have an inode associated with it and this is why we define a new inode type 1477 * index. Also, like for directories, we need to have an attribute inode for 1478 * the bitmap attribute corresponding to the index allocation attribute and we 1479 * can store this in the appropriate field of the inode, just like we do for 1480 * normal directory inodes. 1481 * 1482 * Q: What locks are held when the function is called? 1483 * A: i_state has I_NEW set, hence the inode is locked, also 1484 * i_count is set to 1, so it is not going to go away 1485 * 1486 * Return 0 on success and -errno on error. In the error case, the inode will 1487 * have had make_bad_inode() executed on it. 1488 */ 1489 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1490 { 1491 loff_t bvi_size; 1492 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1493 ntfs_inode *ni, *base_ni, *bni; 1494 struct inode *bvi; 1495 MFT_RECORD *m; 1496 ATTR_RECORD *a; 1497 ntfs_attr_search_ctx *ctx; 1498 INDEX_ROOT *ir; 1499 u8 *ir_end, *index_end; 1500 int err = 0; 1501 1502 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1503 ntfs_init_big_inode(vi); 1504 ni = NTFS_I(vi); 1505 base_ni = NTFS_I(base_vi); 1506 /* Just mirror the values from the base inode. */ 1507 vi->i_version = base_vi->i_version; 1508 vi->i_uid = base_vi->i_uid; 1509 vi->i_gid = base_vi->i_gid; 1510 set_nlink(vi, base_vi->i_nlink); 1511 vi->i_mtime = base_vi->i_mtime; 1512 vi->i_ctime = base_vi->i_ctime; 1513 vi->i_atime = base_vi->i_atime; 1514 vi->i_generation = ni->seq_no = base_ni->seq_no; 1515 /* Set inode type to zero but preserve permissions. */ 1516 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1517 /* Map the mft record for the base inode. */ 1518 m = map_mft_record(base_ni); 1519 if (IS_ERR(m)) { 1520 err = PTR_ERR(m); 1521 goto err_out; 1522 } 1523 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1524 if (!ctx) { 1525 err = -ENOMEM; 1526 goto unm_err_out; 1527 } 1528 /* Find the index root attribute. */ 1529 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1530 CASE_SENSITIVE, 0, NULL, 0, ctx); 1531 if (unlikely(err)) { 1532 if (err == -ENOENT) 1533 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1534 "missing."); 1535 goto unm_err_out; 1536 } 1537 a = ctx->attr; 1538 /* Set up the state. */ 1539 if (unlikely(a->non_resident)) { 1540 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1541 goto unm_err_out; 1542 } 1543 /* Ensure the attribute name is placed before the value. */ 1544 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1545 le16_to_cpu(a->data.resident.value_offset)))) { 1546 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1547 "after the attribute value."); 1548 goto unm_err_out; 1549 } 1550 /* 1551 * Compressed/encrypted/sparse index root is not allowed, except for 1552 * directories of course but those are not dealt with here. 1553 */ 1554 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1555 ATTR_IS_SPARSE)) { 1556 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1557 "root attribute."); 1558 goto unm_err_out; 1559 } 1560 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1561 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1562 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1563 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1564 goto unm_err_out; 1565 } 1566 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1567 if (index_end > ir_end) { 1568 ntfs_error(vi->i_sb, "Index is corrupt."); 1569 goto unm_err_out; 1570 } 1571 if (ir->type) { 1572 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1573 le32_to_cpu(ir->type)); 1574 goto unm_err_out; 1575 } 1576 ni->itype.index.collation_rule = ir->collation_rule; 1577 ntfs_debug("Index collation rule is 0x%x.", 1578 le32_to_cpu(ir->collation_rule)); 1579 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1580 if (!is_power_of_2(ni->itype.index.block_size)) { 1581 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1582 "two.", ni->itype.index.block_size); 1583 goto unm_err_out; 1584 } 1585 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 1586 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " 1587 "(%ld) is not supported. Sorry.", 1588 ni->itype.index.block_size, PAGE_CACHE_SIZE); 1589 err = -EOPNOTSUPP; 1590 goto unm_err_out; 1591 } 1592 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1593 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1594 "(%i) is not supported. Sorry.", 1595 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1596 err = -EOPNOTSUPP; 1597 goto unm_err_out; 1598 } 1599 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1600 /* Determine the size of a vcn in the index. */ 1601 if (vol->cluster_size <= ni->itype.index.block_size) { 1602 ni->itype.index.vcn_size = vol->cluster_size; 1603 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1604 } else { 1605 ni->itype.index.vcn_size = vol->sector_size; 1606 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1607 } 1608 /* Check for presence of index allocation attribute. */ 1609 if (!(ir->index.flags & LARGE_INDEX)) { 1610 /* No index allocation. */ 1611 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1612 /* We are done with the mft record, so we release it. */ 1613 ntfs_attr_put_search_ctx(ctx); 1614 unmap_mft_record(base_ni); 1615 m = NULL; 1616 ctx = NULL; 1617 goto skip_large_index_stuff; 1618 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1619 NInoSetIndexAllocPresent(ni); 1620 /* Find index allocation attribute. */ 1621 ntfs_attr_reinit_search_ctx(ctx); 1622 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1623 CASE_SENSITIVE, 0, NULL, 0, ctx); 1624 if (unlikely(err)) { 1625 if (err == -ENOENT) 1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1627 "not present but $INDEX_ROOT " 1628 "indicated it is."); 1629 else 1630 ntfs_error(vi->i_sb, "Failed to lookup " 1631 "$INDEX_ALLOCATION attribute."); 1632 goto unm_err_out; 1633 } 1634 a = ctx->attr; 1635 if (!a->non_resident) { 1636 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1637 "resident."); 1638 goto unm_err_out; 1639 } 1640 /* 1641 * Ensure the attribute name is placed before the mapping pairs array. 1642 */ 1643 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1644 le16_to_cpu( 1645 a->data.non_resident.mapping_pairs_offset)))) { 1646 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1647 "placed after the mapping pairs array."); 1648 goto unm_err_out; 1649 } 1650 if (a->flags & ATTR_IS_ENCRYPTED) { 1651 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1652 "encrypted."); 1653 goto unm_err_out; 1654 } 1655 if (a->flags & ATTR_IS_SPARSE) { 1656 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1657 goto unm_err_out; 1658 } 1659 if (a->flags & ATTR_COMPRESSION_MASK) { 1660 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1661 "compressed."); 1662 goto unm_err_out; 1663 } 1664 if (a->data.non_resident.lowest_vcn) { 1665 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1666 "attribute has non zero lowest_vcn."); 1667 goto unm_err_out; 1668 } 1669 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1670 ni->initialized_size = sle64_to_cpu( 1671 a->data.non_resident.initialized_size); 1672 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1673 /* 1674 * We are done with the mft record, so we release it. Otherwise 1675 * we would deadlock in ntfs_attr_iget(). 1676 */ 1677 ntfs_attr_put_search_ctx(ctx); 1678 unmap_mft_record(base_ni); 1679 m = NULL; 1680 ctx = NULL; 1681 /* Get the index bitmap attribute inode. */ 1682 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1683 if (IS_ERR(bvi)) { 1684 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1685 err = PTR_ERR(bvi); 1686 goto unm_err_out; 1687 } 1688 bni = NTFS_I(bvi); 1689 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1690 NInoSparse(bni)) { 1691 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1692 "encrypted and/or sparse."); 1693 goto iput_unm_err_out; 1694 } 1695 /* Consistency check bitmap size vs. index allocation size. */ 1696 bvi_size = i_size_read(bvi); 1697 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1698 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1699 "index allocation (0x%llx).", bvi_size << 3, 1700 vi->i_size); 1701 goto iput_unm_err_out; 1702 } 1703 iput(bvi); 1704 skip_large_index_stuff: 1705 /* Setup the operations for this index inode. */ 1706 vi->i_op = NULL; 1707 vi->i_fop = NULL; 1708 vi->i_mapping->a_ops = &ntfs_mst_aops; 1709 vi->i_blocks = ni->allocated_size >> 9; 1710 /* 1711 * Make sure the base inode doesn't go away and attach it to the 1712 * index inode. 1713 */ 1714 igrab(base_vi); 1715 ni->ext.base_ntfs_ino = base_ni; 1716 ni->nr_extents = -1; 1717 1718 ntfs_debug("Done."); 1719 return 0; 1720 iput_unm_err_out: 1721 iput(bvi); 1722 unm_err_out: 1723 if (!err) 1724 err = -EIO; 1725 if (ctx) 1726 ntfs_attr_put_search_ctx(ctx); 1727 if (m) 1728 unmap_mft_record(base_ni); 1729 err_out: 1730 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1731 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1732 ni->name_len); 1733 make_bad_inode(vi); 1734 if (err != -EOPNOTSUPP && err != -ENOMEM) 1735 NVolSetErrors(vol); 1736 return err; 1737 } 1738 1739 /* 1740 * The MFT inode has special locking, so teach the lock validator 1741 * about this by splitting off the locking rules of the MFT from 1742 * the locking rules of other inodes. The MFT inode can never be 1743 * accessed from the VFS side (or even internally), only by the 1744 * map_mft functions. 1745 */ 1746 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1747 1748 /** 1749 * ntfs_read_inode_mount - special read_inode for mount time use only 1750 * @vi: inode to read 1751 * 1752 * Read inode FILE_MFT at mount time, only called with super_block lock 1753 * held from within the read_super() code path. 1754 * 1755 * This function exists because when it is called the page cache for $MFT/$DATA 1756 * is not initialized and hence we cannot get at the contents of mft records 1757 * by calling map_mft_record*(). 1758 * 1759 * Further it needs to cope with the circular references problem, i.e. cannot 1760 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1761 * we do not know where the other extent mft records are yet and again, because 1762 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1763 * attribute list is actually present in $MFT inode. 1764 * 1765 * We solve these problems by starting with the $DATA attribute before anything 1766 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1767 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1768 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1769 * sufficient information for the next step to complete. 1770 * 1771 * This should work but there are two possible pit falls (see inline comments 1772 * below), but only time will tell if they are real pits or just smoke... 1773 */ 1774 int ntfs_read_inode_mount(struct inode *vi) 1775 { 1776 VCN next_vcn, last_vcn, highest_vcn; 1777 s64 block; 1778 struct super_block *sb = vi->i_sb; 1779 ntfs_volume *vol = NTFS_SB(sb); 1780 struct buffer_head *bh; 1781 ntfs_inode *ni; 1782 MFT_RECORD *m = NULL; 1783 ATTR_RECORD *a; 1784 ntfs_attr_search_ctx *ctx; 1785 unsigned int i, nr_blocks; 1786 int err; 1787 1788 ntfs_debug("Entering."); 1789 1790 /* Initialize the ntfs specific part of @vi. */ 1791 ntfs_init_big_inode(vi); 1792 1793 ni = NTFS_I(vi); 1794 1795 /* Setup the data attribute. It is special as it is mst protected. */ 1796 NInoSetNonResident(ni); 1797 NInoSetMstProtected(ni); 1798 NInoSetSparseDisabled(ni); 1799 ni->type = AT_DATA; 1800 ni->name = NULL; 1801 ni->name_len = 0; 1802 /* 1803 * This sets up our little cheat allowing us to reuse the async read io 1804 * completion handler for directories. 1805 */ 1806 ni->itype.index.block_size = vol->mft_record_size; 1807 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1808 1809 /* Very important! Needed to be able to call map_mft_record*(). */ 1810 vol->mft_ino = vi; 1811 1812 /* Allocate enough memory to read the first mft record. */ 1813 if (vol->mft_record_size > 64 * 1024) { 1814 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1815 vol->mft_record_size); 1816 goto err_out; 1817 } 1818 i = vol->mft_record_size; 1819 if (i < sb->s_blocksize) 1820 i = sb->s_blocksize; 1821 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1822 if (!m) { 1823 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1824 goto err_out; 1825 } 1826 1827 /* Determine the first block of the $MFT/$DATA attribute. */ 1828 block = vol->mft_lcn << vol->cluster_size_bits >> 1829 sb->s_blocksize_bits; 1830 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1831 if (!nr_blocks) 1832 nr_blocks = 1; 1833 1834 /* Load $MFT/$DATA's first mft record. */ 1835 for (i = 0; i < nr_blocks; i++) { 1836 bh = sb_bread(sb, block++); 1837 if (!bh) { 1838 ntfs_error(sb, "Device read failed."); 1839 goto err_out; 1840 } 1841 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1842 sb->s_blocksize); 1843 brelse(bh); 1844 } 1845 1846 /* Apply the mst fixups. */ 1847 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1848 /* FIXME: Try to use the $MFTMirr now. */ 1849 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1850 goto err_out; 1851 } 1852 1853 /* Need this to sanity check attribute list references to $MFT. */ 1854 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1855 1856 /* Provides readpage() and sync_page() for map_mft_record(). */ 1857 vi->i_mapping->a_ops = &ntfs_mst_aops; 1858 1859 ctx = ntfs_attr_get_search_ctx(ni, m); 1860 if (!ctx) { 1861 err = -ENOMEM; 1862 goto err_out; 1863 } 1864 1865 /* Find the attribute list attribute if present. */ 1866 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1867 if (err) { 1868 if (unlikely(err != -ENOENT)) { 1869 ntfs_error(sb, "Failed to lookup attribute list " 1870 "attribute. You should run chkdsk."); 1871 goto put_err_out; 1872 } 1873 } else /* if (!err) */ { 1874 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1875 u8 *al_end; 1876 static const char *es = " Not allowed. $MFT is corrupt. " 1877 "You should run chkdsk."; 1878 1879 ntfs_debug("Attribute list attribute found in $MFT."); 1880 NInoSetAttrList(ni); 1881 a = ctx->attr; 1882 if (a->flags & ATTR_COMPRESSION_MASK) { 1883 ntfs_error(sb, "Attribute list attribute is " 1884 "compressed.%s", es); 1885 goto put_err_out; 1886 } 1887 if (a->flags & ATTR_IS_ENCRYPTED || 1888 a->flags & ATTR_IS_SPARSE) { 1889 if (a->non_resident) { 1890 ntfs_error(sb, "Non-resident attribute list " 1891 "attribute is encrypted/" 1892 "sparse.%s", es); 1893 goto put_err_out; 1894 } 1895 ntfs_warning(sb, "Resident attribute list attribute " 1896 "in $MFT system file is marked " 1897 "encrypted/sparse which is not true. " 1898 "However, Windows allows this and " 1899 "chkdsk does not detect or correct it " 1900 "so we will just ignore the invalid " 1901 "flags and pretend they are not set."); 1902 } 1903 /* Now allocate memory for the attribute list. */ 1904 ni->attr_list_size = (u32)ntfs_attr_size(a); 1905 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1906 if (!ni->attr_list) { 1907 ntfs_error(sb, "Not enough memory to allocate buffer " 1908 "for attribute list."); 1909 goto put_err_out; 1910 } 1911 if (a->non_resident) { 1912 NInoSetAttrListNonResident(ni); 1913 if (a->data.non_resident.lowest_vcn) { 1914 ntfs_error(sb, "Attribute list has non zero " 1915 "lowest_vcn. $MFT is corrupt. " 1916 "You should run chkdsk."); 1917 goto put_err_out; 1918 } 1919 /* Setup the runlist. */ 1920 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1921 a, NULL); 1922 if (IS_ERR(ni->attr_list_rl.rl)) { 1923 err = PTR_ERR(ni->attr_list_rl.rl); 1924 ni->attr_list_rl.rl = NULL; 1925 ntfs_error(sb, "Mapping pairs decompression " 1926 "failed with error code %i.", 1927 -err); 1928 goto put_err_out; 1929 } 1930 /* Now load the attribute list. */ 1931 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1932 ni->attr_list, ni->attr_list_size, 1933 sle64_to_cpu(a->data. 1934 non_resident.initialized_size)))) { 1935 ntfs_error(sb, "Failed to load attribute list " 1936 "attribute with error code %i.", 1937 -err); 1938 goto put_err_out; 1939 } 1940 } else /* if (!ctx.attr->non_resident) */ { 1941 if ((u8*)a + le16_to_cpu( 1942 a->data.resident.value_offset) + 1943 le32_to_cpu( 1944 a->data.resident.value_length) > 1945 (u8*)ctx->mrec + vol->mft_record_size) { 1946 ntfs_error(sb, "Corrupt attribute list " 1947 "attribute."); 1948 goto put_err_out; 1949 } 1950 /* Now copy the attribute list. */ 1951 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1952 a->data.resident.value_offset), 1953 le32_to_cpu( 1954 a->data.resident.value_length)); 1955 } 1956 /* The attribute list is now setup in memory. */ 1957 /* 1958 * FIXME: I don't know if this case is actually possible. 1959 * According to logic it is not possible but I have seen too 1960 * many weird things in MS software to rely on logic... Thus we 1961 * perform a manual search and make sure the first $MFT/$DATA 1962 * extent is in the base inode. If it is not we abort with an 1963 * error and if we ever see a report of this error we will need 1964 * to do some magic in order to have the necessary mft record 1965 * loaded and in the right place in the page cache. But 1966 * hopefully logic will prevail and this never happens... 1967 */ 1968 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1969 al_end = (u8*)al_entry + ni->attr_list_size; 1970 for (;; al_entry = next_al_entry) { 1971 /* Out of bounds check. */ 1972 if ((u8*)al_entry < ni->attr_list || 1973 (u8*)al_entry > al_end) 1974 goto em_put_err_out; 1975 /* Catch the end of the attribute list. */ 1976 if ((u8*)al_entry == al_end) 1977 goto em_put_err_out; 1978 if (!al_entry->length) 1979 goto em_put_err_out; 1980 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1981 le16_to_cpu(al_entry->length) > al_end) 1982 goto em_put_err_out; 1983 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1984 le16_to_cpu(al_entry->length)); 1985 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1986 goto em_put_err_out; 1987 if (AT_DATA != al_entry->type) 1988 continue; 1989 /* We want an unnamed attribute. */ 1990 if (al_entry->name_length) 1991 goto em_put_err_out; 1992 /* Want the first entry, i.e. lowest_vcn == 0. */ 1993 if (al_entry->lowest_vcn) 1994 goto em_put_err_out; 1995 /* First entry has to be in the base mft record. */ 1996 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1997 /* MFT references do not match, logic fails. */ 1998 ntfs_error(sb, "BUG: The first $DATA extent " 1999 "of $MFT is not in the base " 2000 "mft record. Please report " 2001 "you saw this message to " 2002 "linux-ntfs-dev@lists." 2003 "sourceforge.net"); 2004 goto put_err_out; 2005 } else { 2006 /* Sequence numbers must match. */ 2007 if (MSEQNO_LE(al_entry->mft_reference) != 2008 ni->seq_no) 2009 goto em_put_err_out; 2010 /* Got it. All is ok. We can stop now. */ 2011 break; 2012 } 2013 } 2014 } 2015 2016 ntfs_attr_reinit_search_ctx(ctx); 2017 2018 /* Now load all attribute extents. */ 2019 a = NULL; 2020 next_vcn = last_vcn = highest_vcn = 0; 2021 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2022 ctx))) { 2023 runlist_element *nrl; 2024 2025 /* Cache the current attribute. */ 2026 a = ctx->attr; 2027 /* $MFT must be non-resident. */ 2028 if (!a->non_resident) { 2029 ntfs_error(sb, "$MFT must be non-resident but a " 2030 "resident extent was found. $MFT is " 2031 "corrupt. Run chkdsk."); 2032 goto put_err_out; 2033 } 2034 /* $MFT must be uncompressed and unencrypted. */ 2035 if (a->flags & ATTR_COMPRESSION_MASK || 2036 a->flags & ATTR_IS_ENCRYPTED || 2037 a->flags & ATTR_IS_SPARSE) { 2038 ntfs_error(sb, "$MFT must be uncompressed, " 2039 "non-sparse, and unencrypted but a " 2040 "compressed/sparse/encrypted extent " 2041 "was found. $MFT is corrupt. Run " 2042 "chkdsk."); 2043 goto put_err_out; 2044 } 2045 /* 2046 * Decompress the mapping pairs array of this extent and merge 2047 * the result into the existing runlist. No need for locking 2048 * as we have exclusive access to the inode at this time and we 2049 * are a mount in progress task, too. 2050 */ 2051 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2052 if (IS_ERR(nrl)) { 2053 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2054 "failed with error code %ld. $MFT is " 2055 "corrupt.", PTR_ERR(nrl)); 2056 goto put_err_out; 2057 } 2058 ni->runlist.rl = nrl; 2059 2060 /* Are we in the first extent? */ 2061 if (!next_vcn) { 2062 if (a->data.non_resident.lowest_vcn) { 2063 ntfs_error(sb, "First extent of $DATA " 2064 "attribute has non zero " 2065 "lowest_vcn. $MFT is corrupt. " 2066 "You should run chkdsk."); 2067 goto put_err_out; 2068 } 2069 /* Get the last vcn in the $DATA attribute. */ 2070 last_vcn = sle64_to_cpu( 2071 a->data.non_resident.allocated_size) 2072 >> vol->cluster_size_bits; 2073 /* Fill in the inode size. */ 2074 vi->i_size = sle64_to_cpu( 2075 a->data.non_resident.data_size); 2076 ni->initialized_size = sle64_to_cpu( 2077 a->data.non_resident.initialized_size); 2078 ni->allocated_size = sle64_to_cpu( 2079 a->data.non_resident.allocated_size); 2080 /* 2081 * Verify the number of mft records does not exceed 2082 * 2^32 - 1. 2083 */ 2084 if ((vi->i_size >> vol->mft_record_size_bits) >= 2085 (1ULL << 32)) { 2086 ntfs_error(sb, "$MFT is too big! Aborting."); 2087 goto put_err_out; 2088 } 2089 /* 2090 * We have got the first extent of the runlist for 2091 * $MFT which means it is now relatively safe to call 2092 * the normal ntfs_read_inode() function. 2093 * Complete reading the inode, this will actually 2094 * re-read the mft record for $MFT, this time entering 2095 * it into the page cache with which we complete the 2096 * kick start of the volume. It should be safe to do 2097 * this now as the first extent of $MFT/$DATA is 2098 * already known and we would hope that we don't need 2099 * further extents in order to find the other 2100 * attributes belonging to $MFT. Only time will tell if 2101 * this is really the case. If not we will have to play 2102 * magic at this point, possibly duplicating a lot of 2103 * ntfs_read_inode() at this point. We will need to 2104 * ensure we do enough of its work to be able to call 2105 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2106 * hope this never happens... 2107 */ 2108 ntfs_read_locked_inode(vi); 2109 if (is_bad_inode(vi)) { 2110 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2111 "failed. BUG or corrupt $MFT. " 2112 "Run chkdsk and if no errors " 2113 "are found, please report you " 2114 "saw this message to " 2115 "linux-ntfs-dev@lists." 2116 "sourceforge.net"); 2117 ntfs_attr_put_search_ctx(ctx); 2118 /* Revert to the safe super operations. */ 2119 ntfs_free(m); 2120 return -1; 2121 } 2122 /* 2123 * Re-initialize some specifics about $MFT's inode as 2124 * ntfs_read_inode() will have set up the default ones. 2125 */ 2126 /* Set uid and gid to root. */ 2127 vi->i_uid = vi->i_gid = 0; 2128 /* Regular file. No access for anyone. */ 2129 vi->i_mode = S_IFREG; 2130 /* No VFS initiated operations allowed for $MFT. */ 2131 vi->i_op = &ntfs_empty_inode_ops; 2132 vi->i_fop = &ntfs_empty_file_ops; 2133 } 2134 2135 /* Get the lowest vcn for the next extent. */ 2136 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2137 next_vcn = highest_vcn + 1; 2138 2139 /* Only one extent or error, which we catch below. */ 2140 if (next_vcn <= 0) 2141 break; 2142 2143 /* Avoid endless loops due to corruption. */ 2144 if (next_vcn < sle64_to_cpu( 2145 a->data.non_resident.lowest_vcn)) { 2146 ntfs_error(sb, "$MFT has corrupt attribute list " 2147 "attribute. Run chkdsk."); 2148 goto put_err_out; 2149 } 2150 } 2151 if (err != -ENOENT) { 2152 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2153 "$MFT is corrupt. Run chkdsk."); 2154 goto put_err_out; 2155 } 2156 if (!a) { 2157 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2158 "corrupt. Run chkdsk."); 2159 goto put_err_out; 2160 } 2161 if (highest_vcn && highest_vcn != last_vcn - 1) { 2162 ntfs_error(sb, "Failed to load the complete runlist for " 2163 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2164 "Run chkdsk."); 2165 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2166 (unsigned long long)highest_vcn, 2167 (unsigned long long)last_vcn - 1); 2168 goto put_err_out; 2169 } 2170 ntfs_attr_put_search_ctx(ctx); 2171 ntfs_debug("Done."); 2172 ntfs_free(m); 2173 2174 /* 2175 * Split the locking rules of the MFT inode from the 2176 * locking rules of other inodes: 2177 */ 2178 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2179 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2180 2181 return 0; 2182 2183 em_put_err_out: 2184 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2185 "attribute list. $MFT is corrupt. Run chkdsk."); 2186 put_err_out: 2187 ntfs_attr_put_search_ctx(ctx); 2188 err_out: 2189 ntfs_error(sb, "Failed. Marking inode as bad."); 2190 make_bad_inode(vi); 2191 ntfs_free(m); 2192 return -1; 2193 } 2194 2195 static void __ntfs_clear_inode(ntfs_inode *ni) 2196 { 2197 /* Free all alocated memory. */ 2198 down_write(&ni->runlist.lock); 2199 if (ni->runlist.rl) { 2200 ntfs_free(ni->runlist.rl); 2201 ni->runlist.rl = NULL; 2202 } 2203 up_write(&ni->runlist.lock); 2204 2205 if (ni->attr_list) { 2206 ntfs_free(ni->attr_list); 2207 ni->attr_list = NULL; 2208 } 2209 2210 down_write(&ni->attr_list_rl.lock); 2211 if (ni->attr_list_rl.rl) { 2212 ntfs_free(ni->attr_list_rl.rl); 2213 ni->attr_list_rl.rl = NULL; 2214 } 2215 up_write(&ni->attr_list_rl.lock); 2216 2217 if (ni->name_len && ni->name != I30) { 2218 /* Catch bugs... */ 2219 BUG_ON(!ni->name); 2220 kfree(ni->name); 2221 } 2222 } 2223 2224 void ntfs_clear_extent_inode(ntfs_inode *ni) 2225 { 2226 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2227 2228 BUG_ON(NInoAttr(ni)); 2229 BUG_ON(ni->nr_extents != -1); 2230 2231 #ifdef NTFS_RW 2232 if (NInoDirty(ni)) { 2233 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2234 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2235 "Losing data! This is a BUG!!!"); 2236 // FIXME: Do something!!! 2237 } 2238 #endif /* NTFS_RW */ 2239 2240 __ntfs_clear_inode(ni); 2241 2242 /* Bye, bye... */ 2243 ntfs_destroy_extent_inode(ni); 2244 } 2245 2246 /** 2247 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2248 * @vi: vfs inode pending annihilation 2249 * 2250 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2251 * is called, which deallocates all memory belonging to the NTFS specific part 2252 * of the inode and returns. 2253 * 2254 * If the MFT record is dirty, we commit it before doing anything else. 2255 */ 2256 void ntfs_evict_big_inode(struct inode *vi) 2257 { 2258 ntfs_inode *ni = NTFS_I(vi); 2259 2260 truncate_inode_pages(&vi->i_data, 0); 2261 clear_inode(vi); 2262 2263 #ifdef NTFS_RW 2264 if (NInoDirty(ni)) { 2265 bool was_bad = (is_bad_inode(vi)); 2266 2267 /* Committing the inode also commits all extent inodes. */ 2268 ntfs_commit_inode(vi); 2269 2270 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2271 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2272 "0x%lx. Losing data!", vi->i_ino); 2273 // FIXME: Do something!!! 2274 } 2275 } 2276 #endif /* NTFS_RW */ 2277 2278 /* No need to lock at this stage as no one else has a reference. */ 2279 if (ni->nr_extents > 0) { 2280 int i; 2281 2282 for (i = 0; i < ni->nr_extents; i++) 2283 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2284 kfree(ni->ext.extent_ntfs_inos); 2285 } 2286 2287 __ntfs_clear_inode(ni); 2288 2289 if (NInoAttr(ni)) { 2290 /* Release the base inode if we are holding it. */ 2291 if (ni->nr_extents == -1) { 2292 iput(VFS_I(ni->ext.base_ntfs_ino)); 2293 ni->nr_extents = 0; 2294 ni->ext.base_ntfs_ino = NULL; 2295 } 2296 } 2297 return; 2298 } 2299 2300 /** 2301 * ntfs_show_options - show mount options in /proc/mounts 2302 * @sf: seq_file in which to write our mount options 2303 * @root: root of the mounted tree whose mount options to display 2304 * 2305 * Called by the VFS once for each mounted ntfs volume when someone reads 2306 * /proc/mounts in order to display the NTFS specific mount options of each 2307 * mount. The mount options of fs specified by @root are written to the seq file 2308 * @sf and success is returned. 2309 */ 2310 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2311 { 2312 ntfs_volume *vol = NTFS_SB(root->d_sb); 2313 int i; 2314 2315 seq_printf(sf, ",uid=%i", vol->uid); 2316 seq_printf(sf, ",gid=%i", vol->gid); 2317 if (vol->fmask == vol->dmask) 2318 seq_printf(sf, ",umask=0%o", vol->fmask); 2319 else { 2320 seq_printf(sf, ",fmask=0%o", vol->fmask); 2321 seq_printf(sf, ",dmask=0%o", vol->dmask); 2322 } 2323 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2324 if (NVolCaseSensitive(vol)) 2325 seq_printf(sf, ",case_sensitive"); 2326 if (NVolShowSystemFiles(vol)) 2327 seq_printf(sf, ",show_sys_files"); 2328 if (!NVolSparseEnabled(vol)) 2329 seq_printf(sf, ",disable_sparse"); 2330 for (i = 0; on_errors_arr[i].val; i++) { 2331 if (on_errors_arr[i].val & vol->on_errors) 2332 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2333 } 2334 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2335 return 0; 2336 } 2337 2338 #ifdef NTFS_RW 2339 2340 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2341 "chkdsk."; 2342 2343 /** 2344 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2345 * @vi: inode for which the i_size was changed 2346 * 2347 * We only support i_size changes for normal files at present, i.e. not 2348 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2349 * below. 2350 * 2351 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2352 * that the change is allowed. 2353 * 2354 * This implies for us that @vi is a file inode rather than a directory, index, 2355 * or attribute inode as well as that @vi is a base inode. 2356 * 2357 * Returns 0 on success or -errno on error. 2358 * 2359 * Called with ->i_mutex held. 2360 */ 2361 int ntfs_truncate(struct inode *vi) 2362 { 2363 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2364 VCN highest_vcn; 2365 unsigned long flags; 2366 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2367 ntfs_volume *vol = ni->vol; 2368 ntfs_attr_search_ctx *ctx; 2369 MFT_RECORD *m; 2370 ATTR_RECORD *a; 2371 const char *te = " Leaving file length out of sync with i_size."; 2372 int err, mp_size, size_change, alloc_change; 2373 u32 attr_len; 2374 2375 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2376 BUG_ON(NInoAttr(ni)); 2377 BUG_ON(S_ISDIR(vi->i_mode)); 2378 BUG_ON(NInoMstProtected(ni)); 2379 BUG_ON(ni->nr_extents < 0); 2380 retry_truncate: 2381 /* 2382 * Lock the runlist for writing and map the mft record to ensure it is 2383 * safe to mess with the attribute runlist and sizes. 2384 */ 2385 down_write(&ni->runlist.lock); 2386 if (!NInoAttr(ni)) 2387 base_ni = ni; 2388 else 2389 base_ni = ni->ext.base_ntfs_ino; 2390 m = map_mft_record(base_ni); 2391 if (IS_ERR(m)) { 2392 err = PTR_ERR(m); 2393 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2394 "(error code %d).%s", vi->i_ino, err, te); 2395 ctx = NULL; 2396 m = NULL; 2397 goto old_bad_out; 2398 } 2399 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2400 if (unlikely(!ctx)) { 2401 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2402 "inode 0x%lx (not enough memory).%s", 2403 vi->i_ino, te); 2404 err = -ENOMEM; 2405 goto old_bad_out; 2406 } 2407 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2408 CASE_SENSITIVE, 0, NULL, 0, ctx); 2409 if (unlikely(err)) { 2410 if (err == -ENOENT) { 2411 ntfs_error(vi->i_sb, "Open attribute is missing from " 2412 "mft record. Inode 0x%lx is corrupt. " 2413 "Run chkdsk.%s", vi->i_ino, te); 2414 err = -EIO; 2415 } else 2416 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2417 "inode 0x%lx (error code %d).%s", 2418 vi->i_ino, err, te); 2419 goto old_bad_out; 2420 } 2421 m = ctx->mrec; 2422 a = ctx->attr; 2423 /* 2424 * The i_size of the vfs inode is the new size for the attribute value. 2425 */ 2426 new_size = i_size_read(vi); 2427 /* The current size of the attribute value is the old size. */ 2428 old_size = ntfs_attr_size(a); 2429 /* Calculate the new allocated size. */ 2430 if (NInoNonResident(ni)) 2431 new_alloc_size = (new_size + vol->cluster_size - 1) & 2432 ~(s64)vol->cluster_size_mask; 2433 else 2434 new_alloc_size = (new_size + 7) & ~7; 2435 /* The current allocated size is the old allocated size. */ 2436 read_lock_irqsave(&ni->size_lock, flags); 2437 old_alloc_size = ni->allocated_size; 2438 read_unlock_irqrestore(&ni->size_lock, flags); 2439 /* 2440 * The change in the file size. This will be 0 if no change, >0 if the 2441 * size is growing, and <0 if the size is shrinking. 2442 */ 2443 size_change = -1; 2444 if (new_size - old_size >= 0) { 2445 size_change = 1; 2446 if (new_size == old_size) 2447 size_change = 0; 2448 } 2449 /* As above for the allocated size. */ 2450 alloc_change = -1; 2451 if (new_alloc_size - old_alloc_size >= 0) { 2452 alloc_change = 1; 2453 if (new_alloc_size == old_alloc_size) 2454 alloc_change = 0; 2455 } 2456 /* 2457 * If neither the size nor the allocation are being changed there is 2458 * nothing to do. 2459 */ 2460 if (!size_change && !alloc_change) 2461 goto unm_done; 2462 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2463 if (size_change) { 2464 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2465 if (unlikely(err)) { 2466 if (err == -ERANGE) { 2467 ntfs_error(vol->sb, "Truncate would cause the " 2468 "inode 0x%lx to %simum size " 2469 "for its attribute type " 2470 "(0x%x). Aborting truncate.", 2471 vi->i_ino, 2472 new_size > old_size ? "exceed " 2473 "the max" : "go under the min", 2474 le32_to_cpu(ni->type)); 2475 err = -EFBIG; 2476 } else { 2477 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2478 "attribute type 0x%x. " 2479 "Aborting truncate.", 2480 vi->i_ino, 2481 le32_to_cpu(ni->type)); 2482 err = -EIO; 2483 } 2484 /* Reset the vfs inode size to the old size. */ 2485 i_size_write(vi, old_size); 2486 goto err_out; 2487 } 2488 } 2489 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2490 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2491 "supported yet for %s files, ignoring.", 2492 NInoCompressed(ni) ? "compressed" : 2493 "encrypted"); 2494 err = -EOPNOTSUPP; 2495 goto bad_out; 2496 } 2497 if (a->non_resident) 2498 goto do_non_resident_truncate; 2499 BUG_ON(NInoNonResident(ni)); 2500 /* Resize the attribute record to best fit the new attribute size. */ 2501 if (new_size < vol->mft_record_size && 2502 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2503 /* The resize succeeded! */ 2504 flush_dcache_mft_record_page(ctx->ntfs_ino); 2505 mark_mft_record_dirty(ctx->ntfs_ino); 2506 write_lock_irqsave(&ni->size_lock, flags); 2507 /* Update the sizes in the ntfs inode and all is done. */ 2508 ni->allocated_size = le32_to_cpu(a->length) - 2509 le16_to_cpu(a->data.resident.value_offset); 2510 /* 2511 * Note ntfs_resident_attr_value_resize() has already done any 2512 * necessary data clearing in the attribute record. When the 2513 * file is being shrunk vmtruncate() will already have cleared 2514 * the top part of the last partial page, i.e. since this is 2515 * the resident case this is the page with index 0. However, 2516 * when the file is being expanded, the page cache page data 2517 * between the old data_size, i.e. old_size, and the new_size 2518 * has not been zeroed. Fortunately, we do not need to zero it 2519 * either since on one hand it will either already be zero due 2520 * to both readpage and writepage clearing partial page data 2521 * beyond i_size in which case there is nothing to do or in the 2522 * case of the file being mmap()ped at the same time, POSIX 2523 * specifies that the behaviour is unspecified thus we do not 2524 * have to do anything. This means that in our implementation 2525 * in the rare case that the file is mmap()ped and a write 2526 * occurred into the mmap()ped region just beyond the file size 2527 * and writepage has not yet been called to write out the page 2528 * (which would clear the area beyond the file size) and we now 2529 * extend the file size to incorporate this dirty region 2530 * outside the file size, a write of the page would result in 2531 * this data being written to disk instead of being cleared. 2532 * Given both POSIX and the Linux mmap(2) man page specify that 2533 * this corner case is undefined, we choose to leave it like 2534 * that as this is much simpler for us as we cannot lock the 2535 * relevant page now since we are holding too many ntfs locks 2536 * which would result in a lock reversal deadlock. 2537 */ 2538 ni->initialized_size = new_size; 2539 write_unlock_irqrestore(&ni->size_lock, flags); 2540 goto unm_done; 2541 } 2542 /* If the above resize failed, this must be an attribute extension. */ 2543 BUG_ON(size_change < 0); 2544 /* 2545 * We have to drop all the locks so we can call 2546 * ntfs_attr_make_non_resident(). This could be optimised by try- 2547 * locking the first page cache page and only if that fails dropping 2548 * the locks, locking the page, and redoing all the locking and 2549 * lookups. While this would be a huge optimisation, it is not worth 2550 * it as this is definitely a slow code path as it only ever can happen 2551 * once for any given file. 2552 */ 2553 ntfs_attr_put_search_ctx(ctx); 2554 unmap_mft_record(base_ni); 2555 up_write(&ni->runlist.lock); 2556 /* 2557 * Not enough space in the mft record, try to make the attribute 2558 * non-resident and if successful restart the truncation process. 2559 */ 2560 err = ntfs_attr_make_non_resident(ni, old_size); 2561 if (likely(!err)) 2562 goto retry_truncate; 2563 /* 2564 * Could not make non-resident. If this is due to this not being 2565 * permitted for this attribute type or there not being enough space, 2566 * try to make other attributes non-resident. Otherwise fail. 2567 */ 2568 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2569 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2570 "type 0x%x, because the conversion from " 2571 "resident to non-resident attribute failed " 2572 "with error code %i.", vi->i_ino, 2573 (unsigned)le32_to_cpu(ni->type), err); 2574 if (err != -ENOMEM) 2575 err = -EIO; 2576 goto conv_err_out; 2577 } 2578 /* TODO: Not implemented from here, abort. */ 2579 if (err == -ENOSPC) 2580 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2581 "disk for the non-resident attribute value. " 2582 "This case is not implemented yet."); 2583 else /* if (err == -EPERM) */ 2584 ntfs_error(vol->sb, "This attribute type may not be " 2585 "non-resident. This case is not implemented " 2586 "yet."); 2587 err = -EOPNOTSUPP; 2588 goto conv_err_out; 2589 #if 0 2590 // TODO: Attempt to make other attributes non-resident. 2591 if (!err) 2592 goto do_resident_extend; 2593 /* 2594 * Both the attribute list attribute and the standard information 2595 * attribute must remain in the base inode. Thus, if this is one of 2596 * these attributes, we have to try to move other attributes out into 2597 * extent mft records instead. 2598 */ 2599 if (ni->type == AT_ATTRIBUTE_LIST || 2600 ni->type == AT_STANDARD_INFORMATION) { 2601 // TODO: Attempt to move other attributes into extent mft 2602 // records. 2603 err = -EOPNOTSUPP; 2604 if (!err) 2605 goto do_resident_extend; 2606 goto err_out; 2607 } 2608 // TODO: Attempt to move this attribute to an extent mft record, but 2609 // only if it is not already the only attribute in an mft record in 2610 // which case there would be nothing to gain. 2611 err = -EOPNOTSUPP; 2612 if (!err) 2613 goto do_resident_extend; 2614 /* There is nothing we can do to make enough space. )-: */ 2615 goto err_out; 2616 #endif 2617 do_non_resident_truncate: 2618 BUG_ON(!NInoNonResident(ni)); 2619 if (alloc_change < 0) { 2620 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2621 if (highest_vcn > 0 && 2622 old_alloc_size >> vol->cluster_size_bits > 2623 highest_vcn + 1) { 2624 /* 2625 * This attribute has multiple extents. Not yet 2626 * supported. 2627 */ 2628 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2629 "attribute type 0x%x, because the " 2630 "attribute is highly fragmented (it " 2631 "consists of multiple extents) and " 2632 "this case is not implemented yet.", 2633 vi->i_ino, 2634 (unsigned)le32_to_cpu(ni->type)); 2635 err = -EOPNOTSUPP; 2636 goto bad_out; 2637 } 2638 } 2639 /* 2640 * If the size is shrinking, need to reduce the initialized_size and 2641 * the data_size before reducing the allocation. 2642 */ 2643 if (size_change < 0) { 2644 /* 2645 * Make the valid size smaller (i_size is already up-to-date). 2646 */ 2647 write_lock_irqsave(&ni->size_lock, flags); 2648 if (new_size < ni->initialized_size) { 2649 ni->initialized_size = new_size; 2650 a->data.non_resident.initialized_size = 2651 cpu_to_sle64(new_size); 2652 } 2653 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2654 write_unlock_irqrestore(&ni->size_lock, flags); 2655 flush_dcache_mft_record_page(ctx->ntfs_ino); 2656 mark_mft_record_dirty(ctx->ntfs_ino); 2657 /* If the allocated size is not changing, we are done. */ 2658 if (!alloc_change) 2659 goto unm_done; 2660 /* 2661 * If the size is shrinking it makes no sense for the 2662 * allocation to be growing. 2663 */ 2664 BUG_ON(alloc_change > 0); 2665 } else /* if (size_change >= 0) */ { 2666 /* 2667 * The file size is growing or staying the same but the 2668 * allocation can be shrinking, growing or staying the same. 2669 */ 2670 if (alloc_change > 0) { 2671 /* 2672 * We need to extend the allocation and possibly update 2673 * the data size. If we are updating the data size, 2674 * since we are not touching the initialized_size we do 2675 * not need to worry about the actual data on disk. 2676 * And as far as the page cache is concerned, there 2677 * will be no pages beyond the old data size and any 2678 * partial region in the last page between the old and 2679 * new data size (or the end of the page if the new 2680 * data size is outside the page) does not need to be 2681 * modified as explained above for the resident 2682 * attribute truncate case. To do this, we simply drop 2683 * the locks we hold and leave all the work to our 2684 * friendly helper ntfs_attr_extend_allocation(). 2685 */ 2686 ntfs_attr_put_search_ctx(ctx); 2687 unmap_mft_record(base_ni); 2688 up_write(&ni->runlist.lock); 2689 err = ntfs_attr_extend_allocation(ni, new_size, 2690 size_change > 0 ? new_size : -1, -1); 2691 /* 2692 * ntfs_attr_extend_allocation() will have done error 2693 * output already. 2694 */ 2695 goto done; 2696 } 2697 if (!alloc_change) 2698 goto alloc_done; 2699 } 2700 /* alloc_change < 0 */ 2701 /* Free the clusters. */ 2702 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2703 vol->cluster_size_bits, -1, ctx); 2704 m = ctx->mrec; 2705 a = ctx->attr; 2706 if (unlikely(nr_freed < 0)) { 2707 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2708 "%lli). Unmount and run chkdsk to recover " 2709 "the lost cluster(s).", (long long)nr_freed); 2710 NVolSetErrors(vol); 2711 nr_freed = 0; 2712 } 2713 /* Truncate the runlist. */ 2714 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2715 new_alloc_size >> vol->cluster_size_bits); 2716 /* 2717 * If the runlist truncation failed and/or the search context is no 2718 * longer valid, we cannot resize the attribute record or build the 2719 * mapping pairs array thus we mark the inode bad so that no access to 2720 * the freed clusters can happen. 2721 */ 2722 if (unlikely(err || IS_ERR(m))) { 2723 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2724 IS_ERR(m) ? 2725 "restore attribute search context" : 2726 "truncate attribute runlist", 2727 IS_ERR(m) ? PTR_ERR(m) : err, es); 2728 err = -EIO; 2729 goto bad_out; 2730 } 2731 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2732 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2733 if (unlikely(mp_size <= 0)) { 2734 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2735 "attribute type 0x%x, because determining the " 2736 "size for the mapping pairs failed with error " 2737 "code %i.%s", vi->i_ino, 2738 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2739 err = -EIO; 2740 goto bad_out; 2741 } 2742 /* 2743 * Shrink the attribute record for the new mapping pairs array. Note, 2744 * this cannot fail since we are making the attribute smaller thus by 2745 * definition there is enough space to do so. 2746 */ 2747 attr_len = le32_to_cpu(a->length); 2748 err = ntfs_attr_record_resize(m, a, mp_size + 2749 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2750 BUG_ON(err); 2751 /* 2752 * Generate the mapping pairs array directly into the attribute record. 2753 */ 2754 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2755 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2756 mp_size, ni->runlist.rl, 0, -1, NULL); 2757 if (unlikely(err)) { 2758 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2759 "attribute type 0x%x, because building the " 2760 "mapping pairs failed with error code %i.%s", 2761 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2762 err, es); 2763 err = -EIO; 2764 goto bad_out; 2765 } 2766 /* Update the allocated/compressed size as well as the highest vcn. */ 2767 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2768 vol->cluster_size_bits) - 1); 2769 write_lock_irqsave(&ni->size_lock, flags); 2770 ni->allocated_size = new_alloc_size; 2771 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2772 if (NInoSparse(ni) || NInoCompressed(ni)) { 2773 if (nr_freed) { 2774 ni->itype.compressed.size -= nr_freed << 2775 vol->cluster_size_bits; 2776 BUG_ON(ni->itype.compressed.size < 0); 2777 a->data.non_resident.compressed_size = cpu_to_sle64( 2778 ni->itype.compressed.size); 2779 vi->i_blocks = ni->itype.compressed.size >> 9; 2780 } 2781 } else 2782 vi->i_blocks = new_alloc_size >> 9; 2783 write_unlock_irqrestore(&ni->size_lock, flags); 2784 /* 2785 * We have shrunk the allocation. If this is a shrinking truncate we 2786 * have already dealt with the initialized_size and the data_size above 2787 * and we are done. If the truncate is only changing the allocation 2788 * and not the data_size, we are also done. If this is an extending 2789 * truncate, need to extend the data_size now which is ensured by the 2790 * fact that @size_change is positive. 2791 */ 2792 alloc_done: 2793 /* 2794 * If the size is growing, need to update it now. If it is shrinking, 2795 * we have already updated it above (before the allocation change). 2796 */ 2797 if (size_change > 0) 2798 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2799 /* Ensure the modified mft record is written out. */ 2800 flush_dcache_mft_record_page(ctx->ntfs_ino); 2801 mark_mft_record_dirty(ctx->ntfs_ino); 2802 unm_done: 2803 ntfs_attr_put_search_ctx(ctx); 2804 unmap_mft_record(base_ni); 2805 up_write(&ni->runlist.lock); 2806 done: 2807 /* Update the mtime and ctime on the base inode. */ 2808 /* normally ->truncate shouldn't update ctime or mtime, 2809 * but ntfs did before so it got a copy & paste version 2810 * of file_update_time. one day someone should fix this 2811 * for real. 2812 */ 2813 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2814 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); 2815 int sync_it = 0; 2816 2817 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || 2818 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) 2819 sync_it = 1; 2820 VFS_I(base_ni)->i_mtime = now; 2821 VFS_I(base_ni)->i_ctime = now; 2822 2823 if (sync_it) 2824 mark_inode_dirty_sync(VFS_I(base_ni)); 2825 } 2826 2827 if (likely(!err)) { 2828 NInoClearTruncateFailed(ni); 2829 ntfs_debug("Done."); 2830 } 2831 return err; 2832 old_bad_out: 2833 old_size = -1; 2834 bad_out: 2835 if (err != -ENOMEM && err != -EOPNOTSUPP) 2836 NVolSetErrors(vol); 2837 if (err != -EOPNOTSUPP) 2838 NInoSetTruncateFailed(ni); 2839 else if (old_size >= 0) 2840 i_size_write(vi, old_size); 2841 err_out: 2842 if (ctx) 2843 ntfs_attr_put_search_ctx(ctx); 2844 if (m) 2845 unmap_mft_record(base_ni); 2846 up_write(&ni->runlist.lock); 2847 out: 2848 ntfs_debug("Failed. Returning error code %i.", err); 2849 return err; 2850 conv_err_out: 2851 if (err != -ENOMEM && err != -EOPNOTSUPP) 2852 NVolSetErrors(vol); 2853 if (err != -EOPNOTSUPP) 2854 NInoSetTruncateFailed(ni); 2855 else 2856 i_size_write(vi, old_size); 2857 goto out; 2858 } 2859 2860 /** 2861 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2862 * @vi: inode for which the i_size was changed 2863 * 2864 * Wrapper for ntfs_truncate() that has no return value. 2865 * 2866 * See ntfs_truncate() description above for details. 2867 */ 2868 void ntfs_truncate_vfs(struct inode *vi) { 2869 ntfs_truncate(vi); 2870 } 2871 2872 /** 2873 * ntfs_setattr - called from notify_change() when an attribute is being changed 2874 * @dentry: dentry whose attributes to change 2875 * @attr: structure describing the attributes and the changes 2876 * 2877 * We have to trap VFS attempts to truncate the file described by @dentry as 2878 * soon as possible, because we do not implement changes in i_size yet. So we 2879 * abort all i_size changes here. 2880 * 2881 * We also abort all changes of user, group, and mode as we do not implement 2882 * the NTFS ACLs yet. 2883 * 2884 * Called with ->i_mutex held. 2885 */ 2886 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2887 { 2888 struct inode *vi = dentry->d_inode; 2889 int err; 2890 unsigned int ia_valid = attr->ia_valid; 2891 2892 err = inode_change_ok(vi, attr); 2893 if (err) 2894 goto out; 2895 /* We do not support NTFS ACLs yet. */ 2896 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2897 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2898 "supported yet, ignoring."); 2899 err = -EOPNOTSUPP; 2900 goto out; 2901 } 2902 if (ia_valid & ATTR_SIZE) { 2903 if (attr->ia_size != i_size_read(vi)) { 2904 ntfs_inode *ni = NTFS_I(vi); 2905 /* 2906 * FIXME: For now we do not support resizing of 2907 * compressed or encrypted files yet. 2908 */ 2909 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2910 ntfs_warning(vi->i_sb, "Changes in inode size " 2911 "are not supported yet for " 2912 "%s files, ignoring.", 2913 NInoCompressed(ni) ? 2914 "compressed" : "encrypted"); 2915 err = -EOPNOTSUPP; 2916 } else 2917 err = vmtruncate(vi, attr->ia_size); 2918 if (err || ia_valid == ATTR_SIZE) 2919 goto out; 2920 } else { 2921 /* 2922 * We skipped the truncate but must still update 2923 * timestamps. 2924 */ 2925 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2926 } 2927 } 2928 if (ia_valid & ATTR_ATIME) 2929 vi->i_atime = timespec_trunc(attr->ia_atime, 2930 vi->i_sb->s_time_gran); 2931 if (ia_valid & ATTR_MTIME) 2932 vi->i_mtime = timespec_trunc(attr->ia_mtime, 2933 vi->i_sb->s_time_gran); 2934 if (ia_valid & ATTR_CTIME) 2935 vi->i_ctime = timespec_trunc(attr->ia_ctime, 2936 vi->i_sb->s_time_gran); 2937 mark_inode_dirty(vi); 2938 out: 2939 return err; 2940 } 2941 2942 /** 2943 * ntfs_write_inode - write out a dirty inode 2944 * @vi: inode to write out 2945 * @sync: if true, write out synchronously 2946 * 2947 * Write out a dirty inode to disk including any extent inodes if present. 2948 * 2949 * If @sync is true, commit the inode to disk and wait for io completion. This 2950 * is done using write_mft_record(). 2951 * 2952 * If @sync is false, just schedule the write to happen but do not wait for i/o 2953 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2954 * marking the page (and in this case mft record) dirty but we do not implement 2955 * this yet as write_mft_record() largely ignores the @sync parameter and 2956 * always performs synchronous writes. 2957 * 2958 * Return 0 on success and -errno on error. 2959 */ 2960 int __ntfs_write_inode(struct inode *vi, int sync) 2961 { 2962 sle64 nt; 2963 ntfs_inode *ni = NTFS_I(vi); 2964 ntfs_attr_search_ctx *ctx; 2965 MFT_RECORD *m; 2966 STANDARD_INFORMATION *si; 2967 int err = 0; 2968 bool modified = false; 2969 2970 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2971 vi->i_ino); 2972 /* 2973 * Dirty attribute inodes are written via their real inodes so just 2974 * clean them here. Access time updates are taken care off when the 2975 * real inode is written. 2976 */ 2977 if (NInoAttr(ni)) { 2978 NInoClearDirty(ni); 2979 ntfs_debug("Done."); 2980 return 0; 2981 } 2982 /* Map, pin, and lock the mft record belonging to the inode. */ 2983 m = map_mft_record(ni); 2984 if (IS_ERR(m)) { 2985 err = PTR_ERR(m); 2986 goto err_out; 2987 } 2988 /* Update the access times in the standard information attribute. */ 2989 ctx = ntfs_attr_get_search_ctx(ni, m); 2990 if (unlikely(!ctx)) { 2991 err = -ENOMEM; 2992 goto unm_err_out; 2993 } 2994 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2995 CASE_SENSITIVE, 0, NULL, 0, ctx); 2996 if (unlikely(err)) { 2997 ntfs_attr_put_search_ctx(ctx); 2998 goto unm_err_out; 2999 } 3000 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 3001 le16_to_cpu(ctx->attr->data.resident.value_offset)); 3002 /* Update the access times if they have changed. */ 3003 nt = utc2ntfs(vi->i_mtime); 3004 if (si->last_data_change_time != nt) { 3005 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 3006 "new = 0x%llx", vi->i_ino, (long long) 3007 sle64_to_cpu(si->last_data_change_time), 3008 (long long)sle64_to_cpu(nt)); 3009 si->last_data_change_time = nt; 3010 modified = true; 3011 } 3012 nt = utc2ntfs(vi->i_ctime); 3013 if (si->last_mft_change_time != nt) { 3014 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 3015 "new = 0x%llx", vi->i_ino, (long long) 3016 sle64_to_cpu(si->last_mft_change_time), 3017 (long long)sle64_to_cpu(nt)); 3018 si->last_mft_change_time = nt; 3019 modified = true; 3020 } 3021 nt = utc2ntfs(vi->i_atime); 3022 if (si->last_access_time != nt) { 3023 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3024 "new = 0x%llx", vi->i_ino, 3025 (long long)sle64_to_cpu(si->last_access_time), 3026 (long long)sle64_to_cpu(nt)); 3027 si->last_access_time = nt; 3028 modified = true; 3029 } 3030 /* 3031 * If we just modified the standard information attribute we need to 3032 * mark the mft record it is in dirty. We do this manually so that 3033 * mark_inode_dirty() is not called which would redirty the inode and 3034 * hence result in an infinite loop of trying to write the inode. 3035 * There is no need to mark the base inode nor the base mft record 3036 * dirty, since we are going to write this mft record below in any case 3037 * and the base mft record may actually not have been modified so it 3038 * might not need to be written out. 3039 * NOTE: It is not a problem when the inode for $MFT itself is being 3040 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3041 * on the $MFT inode and hence ntfs_write_inode() will not be 3042 * re-invoked because of it which in turn is ok since the dirtied mft 3043 * record will be cleaned and written out to disk below, i.e. before 3044 * this function returns. 3045 */ 3046 if (modified) { 3047 flush_dcache_mft_record_page(ctx->ntfs_ino); 3048 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3049 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3050 ctx->ntfs_ino->page_ofs); 3051 } 3052 ntfs_attr_put_search_ctx(ctx); 3053 /* Now the access times are updated, write the base mft record. */ 3054 if (NInoDirty(ni)) 3055 err = write_mft_record(ni, m, sync); 3056 /* Write all attached extent mft records. */ 3057 mutex_lock(&ni->extent_lock); 3058 if (ni->nr_extents > 0) { 3059 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3060 int i; 3061 3062 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3063 for (i = 0; i < ni->nr_extents; i++) { 3064 ntfs_inode *tni = extent_nis[i]; 3065 3066 if (NInoDirty(tni)) { 3067 MFT_RECORD *tm = map_mft_record(tni); 3068 int ret; 3069 3070 if (IS_ERR(tm)) { 3071 if (!err || err == -ENOMEM) 3072 err = PTR_ERR(tm); 3073 continue; 3074 } 3075 ret = write_mft_record(tni, tm, sync); 3076 unmap_mft_record(tni); 3077 if (unlikely(ret)) { 3078 if (!err || err == -ENOMEM) 3079 err = ret; 3080 } 3081 } 3082 } 3083 } 3084 mutex_unlock(&ni->extent_lock); 3085 unmap_mft_record(ni); 3086 if (unlikely(err)) 3087 goto err_out; 3088 ntfs_debug("Done."); 3089 return 0; 3090 unm_err_out: 3091 unmap_mft_record(ni); 3092 err_out: 3093 if (err == -ENOMEM) { 3094 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3095 "Marking the inode dirty again, so the VFS " 3096 "retries later."); 3097 mark_inode_dirty(vi); 3098 } else { 3099 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3100 NVolSetErrors(ni->vol); 3101 } 3102 return err; 3103 } 3104 3105 #endif /* NTFS_RW */ 3106