xref: /openbmc/linux/fs/ntfs/inode.c (revision 93dc544c)
1 /**
2  * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2007 Anton Altaparmakov
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 
31 #include "aops.h"
32 #include "attrib.h"
33 #include "bitmap.h"
34 #include "dir.h"
35 #include "debug.h"
36 #include "inode.h"
37 #include "lcnalloc.h"
38 #include "malloc.h"
39 #include "mft.h"
40 #include "time.h"
41 #include "ntfs.h"
42 
43 /**
44  * ntfs_test_inode - compare two (possibly fake) inodes for equality
45  * @vi:		vfs inode which to test
46  * @na:		ntfs attribute which is being tested with
47  *
48  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
49  * inode @vi for equality with the ntfs attribute @na.
50  *
51  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
52  * @na->name and @na->name_len are then ignored.
53  *
54  * Return 1 if the attributes match and 0 if not.
55  *
56  * NOTE: This function runs with the inode_lock spin lock held so it is not
57  * allowed to sleep.
58  */
59 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
60 {
61 	ntfs_inode *ni;
62 
63 	if (vi->i_ino != na->mft_no)
64 		return 0;
65 	ni = NTFS_I(vi);
66 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
67 	if (likely(!NInoAttr(ni))) {
68 		/* If not looking for a normal inode this is a mismatch. */
69 		if (unlikely(na->type != AT_UNUSED))
70 			return 0;
71 	} else {
72 		/* A fake inode describing an attribute. */
73 		if (ni->type != na->type)
74 			return 0;
75 		if (ni->name_len != na->name_len)
76 			return 0;
77 		if (na->name_len && memcmp(ni->name, na->name,
78 				na->name_len * sizeof(ntfschar)))
79 			return 0;
80 	}
81 	/* Match! */
82 	return 1;
83 }
84 
85 /**
86  * ntfs_init_locked_inode - initialize an inode
87  * @vi:		vfs inode to initialize
88  * @na:		ntfs attribute which to initialize @vi to
89  *
90  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
91  * order to enable ntfs_test_inode() to do its work.
92  *
93  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
94  * In that case, @na->name and @na->name_len should be set to NULL and 0,
95  * respectively. Although that is not strictly necessary as
96  * ntfs_read_locked_inode() will fill them in later.
97  *
98  * Return 0 on success and -errno on error.
99  *
100  * NOTE: This function runs with the inode_lock spin lock held so it is not
101  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
102  */
103 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
104 {
105 	ntfs_inode *ni = NTFS_I(vi);
106 
107 	vi->i_ino = na->mft_no;
108 
109 	ni->type = na->type;
110 	if (na->type == AT_INDEX_ALLOCATION)
111 		NInoSetMstProtected(ni);
112 
113 	ni->name = na->name;
114 	ni->name_len = na->name_len;
115 
116 	/* If initializing a normal inode, we are done. */
117 	if (likely(na->type == AT_UNUSED)) {
118 		BUG_ON(na->name);
119 		BUG_ON(na->name_len);
120 		return 0;
121 	}
122 
123 	/* It is a fake inode. */
124 	NInoSetAttr(ni);
125 
126 	/*
127 	 * We have I30 global constant as an optimization as it is the name
128 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
129 	 * allocation but that is ok. And most attributes are unnamed anyway,
130 	 * thus the fraction of named attributes with name != I30 is actually
131 	 * absolutely tiny.
132 	 */
133 	if (na->name_len && na->name != I30) {
134 		unsigned int i;
135 
136 		BUG_ON(!na->name);
137 		i = na->name_len * sizeof(ntfschar);
138 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
139 		if (!ni->name)
140 			return -ENOMEM;
141 		memcpy(ni->name, na->name, i);
142 		ni->name[na->name_len] = 0;
143 	}
144 	return 0;
145 }
146 
147 typedef int (*set_t)(struct inode *, void *);
148 static int ntfs_read_locked_inode(struct inode *vi);
149 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
150 static int ntfs_read_locked_index_inode(struct inode *base_vi,
151 		struct inode *vi);
152 
153 /**
154  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
155  * @sb:		super block of mounted volume
156  * @mft_no:	mft record number / inode number to obtain
157  *
158  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
159  * file or directory).
160  *
161  * If the inode is in the cache, it is just returned with an increased
162  * reference count. Otherwise, a new struct inode is allocated and initialized,
163  * and finally ntfs_read_locked_inode() is called to read in the inode and
164  * fill in the remainder of the inode structure.
165  *
166  * Return the struct inode on success. Check the return value with IS_ERR() and
167  * if true, the function failed and the error code is obtained from PTR_ERR().
168  */
169 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
170 {
171 	struct inode *vi;
172 	int err;
173 	ntfs_attr na;
174 
175 	na.mft_no = mft_no;
176 	na.type = AT_UNUSED;
177 	na.name = NULL;
178 	na.name_len = 0;
179 
180 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
181 			(set_t)ntfs_init_locked_inode, &na);
182 	if (unlikely(!vi))
183 		return ERR_PTR(-ENOMEM);
184 
185 	err = 0;
186 
187 	/* If this is a freshly allocated inode, need to read it now. */
188 	if (vi->i_state & I_NEW) {
189 		err = ntfs_read_locked_inode(vi);
190 		unlock_new_inode(vi);
191 	}
192 	/*
193 	 * There is no point in keeping bad inodes around if the failure was
194 	 * due to ENOMEM. We want to be able to retry again later.
195 	 */
196 	if (unlikely(err == -ENOMEM)) {
197 		iput(vi);
198 		vi = ERR_PTR(err);
199 	}
200 	return vi;
201 }
202 
203 /**
204  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
205  * @base_vi:	vfs base inode containing the attribute
206  * @type:	attribute type
207  * @name:	Unicode name of the attribute (NULL if unnamed)
208  * @name_len:	length of @name in Unicode characters (0 if unnamed)
209  *
210  * Obtain the (fake) struct inode corresponding to the attribute specified by
211  * @type, @name, and @name_len, which is present in the base mft record
212  * specified by the vfs inode @base_vi.
213  *
214  * If the attribute inode is in the cache, it is just returned with an
215  * increased reference count. Otherwise, a new struct inode is allocated and
216  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
217  * attribute and fill in the inode structure.
218  *
219  * Note, for index allocation attributes, you need to use ntfs_index_iget()
220  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
221  *
222  * Return the struct inode of the attribute inode on success. Check the return
223  * value with IS_ERR() and if true, the function failed and the error code is
224  * obtained from PTR_ERR().
225  */
226 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
227 		ntfschar *name, u32 name_len)
228 {
229 	struct inode *vi;
230 	int err;
231 	ntfs_attr na;
232 
233 	/* Make sure no one calls ntfs_attr_iget() for indices. */
234 	BUG_ON(type == AT_INDEX_ALLOCATION);
235 
236 	na.mft_no = base_vi->i_ino;
237 	na.type = type;
238 	na.name = name;
239 	na.name_len = name_len;
240 
241 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
242 			(set_t)ntfs_init_locked_inode, &na);
243 	if (unlikely(!vi))
244 		return ERR_PTR(-ENOMEM);
245 
246 	err = 0;
247 
248 	/* If this is a freshly allocated inode, need to read it now. */
249 	if (vi->i_state & I_NEW) {
250 		err = ntfs_read_locked_attr_inode(base_vi, vi);
251 		unlock_new_inode(vi);
252 	}
253 	/*
254 	 * There is no point in keeping bad attribute inodes around. This also
255 	 * simplifies things in that we never need to check for bad attribute
256 	 * inodes elsewhere.
257 	 */
258 	if (unlikely(err)) {
259 		iput(vi);
260 		vi = ERR_PTR(err);
261 	}
262 	return vi;
263 }
264 
265 /**
266  * ntfs_index_iget - obtain a struct inode corresponding to an index
267  * @base_vi:	vfs base inode containing the index related attributes
268  * @name:	Unicode name of the index
269  * @name_len:	length of @name in Unicode characters
270  *
271  * Obtain the (fake) struct inode corresponding to the index specified by @name
272  * and @name_len, which is present in the base mft record specified by the vfs
273  * inode @base_vi.
274  *
275  * If the index inode is in the cache, it is just returned with an increased
276  * reference count.  Otherwise, a new struct inode is allocated and
277  * initialized, and finally ntfs_read_locked_index_inode() is called to read
278  * the index related attributes and fill in the inode structure.
279  *
280  * Return the struct inode of the index inode on success. Check the return
281  * value with IS_ERR() and if true, the function failed and the error code is
282  * obtained from PTR_ERR().
283  */
284 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
285 		u32 name_len)
286 {
287 	struct inode *vi;
288 	int err;
289 	ntfs_attr na;
290 
291 	na.mft_no = base_vi->i_ino;
292 	na.type = AT_INDEX_ALLOCATION;
293 	na.name = name;
294 	na.name_len = name_len;
295 
296 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
297 			(set_t)ntfs_init_locked_inode, &na);
298 	if (unlikely(!vi))
299 		return ERR_PTR(-ENOMEM);
300 
301 	err = 0;
302 
303 	/* If this is a freshly allocated inode, need to read it now. */
304 	if (vi->i_state & I_NEW) {
305 		err = ntfs_read_locked_index_inode(base_vi, vi);
306 		unlock_new_inode(vi);
307 	}
308 	/*
309 	 * There is no point in keeping bad index inodes around.  This also
310 	 * simplifies things in that we never need to check for bad index
311 	 * inodes elsewhere.
312 	 */
313 	if (unlikely(err)) {
314 		iput(vi);
315 		vi = ERR_PTR(err);
316 	}
317 	return vi;
318 }
319 
320 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
321 {
322 	ntfs_inode *ni;
323 
324 	ntfs_debug("Entering.");
325 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
326 	if (likely(ni != NULL)) {
327 		ni->state = 0;
328 		return VFS_I(ni);
329 	}
330 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
331 	return NULL;
332 }
333 
334 void ntfs_destroy_big_inode(struct inode *inode)
335 {
336 	ntfs_inode *ni = NTFS_I(inode);
337 
338 	ntfs_debug("Entering.");
339 	BUG_ON(ni->page);
340 	if (!atomic_dec_and_test(&ni->count))
341 		BUG();
342 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
343 }
344 
345 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
346 {
347 	ntfs_inode *ni;
348 
349 	ntfs_debug("Entering.");
350 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
351 	if (likely(ni != NULL)) {
352 		ni->state = 0;
353 		return ni;
354 	}
355 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
356 	return NULL;
357 }
358 
359 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
360 {
361 	ntfs_debug("Entering.");
362 	BUG_ON(ni->page);
363 	if (!atomic_dec_and_test(&ni->count))
364 		BUG();
365 	kmem_cache_free(ntfs_inode_cache, ni);
366 }
367 
368 /*
369  * The attribute runlist lock has separate locking rules from the
370  * normal runlist lock, so split the two lock-classes:
371  */
372 static struct lock_class_key attr_list_rl_lock_class;
373 
374 /**
375  * __ntfs_init_inode - initialize ntfs specific part of an inode
376  * @sb:		super block of mounted volume
377  * @ni:		freshly allocated ntfs inode which to initialize
378  *
379  * Initialize an ntfs inode to defaults.
380  *
381  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
382  * untouched. Make sure to initialize them elsewhere.
383  *
384  * Return zero on success and -ENOMEM on error.
385  */
386 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
387 {
388 	ntfs_debug("Entering.");
389 	rwlock_init(&ni->size_lock);
390 	ni->initialized_size = ni->allocated_size = 0;
391 	ni->seq_no = 0;
392 	atomic_set(&ni->count, 1);
393 	ni->vol = NTFS_SB(sb);
394 	ntfs_init_runlist(&ni->runlist);
395 	mutex_init(&ni->mrec_lock);
396 	ni->page = NULL;
397 	ni->page_ofs = 0;
398 	ni->attr_list_size = 0;
399 	ni->attr_list = NULL;
400 	ntfs_init_runlist(&ni->attr_list_rl);
401 	lockdep_set_class(&ni->attr_list_rl.lock,
402 				&attr_list_rl_lock_class);
403 	ni->itype.index.block_size = 0;
404 	ni->itype.index.vcn_size = 0;
405 	ni->itype.index.collation_rule = 0;
406 	ni->itype.index.block_size_bits = 0;
407 	ni->itype.index.vcn_size_bits = 0;
408 	mutex_init(&ni->extent_lock);
409 	ni->nr_extents = 0;
410 	ni->ext.base_ntfs_ino = NULL;
411 }
412 
413 /*
414  * Extent inodes get MFT-mapped in a nested way, while the base inode
415  * is still mapped. Teach this nesting to the lock validator by creating
416  * a separate class for nested inode's mrec_lock's:
417  */
418 static struct lock_class_key extent_inode_mrec_lock_key;
419 
420 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
421 		unsigned long mft_no)
422 {
423 	ntfs_inode *ni = ntfs_alloc_extent_inode();
424 
425 	ntfs_debug("Entering.");
426 	if (likely(ni != NULL)) {
427 		__ntfs_init_inode(sb, ni);
428 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
429 		ni->mft_no = mft_no;
430 		ni->type = AT_UNUSED;
431 		ni->name = NULL;
432 		ni->name_len = 0;
433 	}
434 	return ni;
435 }
436 
437 /**
438  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
439  * @ctx:	initialized attribute search context
440  *
441  * Search all file name attributes in the inode described by the attribute
442  * search context @ctx and check if any of the names are in the $Extend system
443  * directory.
444  *
445  * Return values:
446  *	   1: file is in $Extend directory
447  *	   0: file is not in $Extend directory
448  *    -errno: failed to determine if the file is in the $Extend directory
449  */
450 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
451 {
452 	int nr_links, err;
453 
454 	/* Restart search. */
455 	ntfs_attr_reinit_search_ctx(ctx);
456 
457 	/* Get number of hard links. */
458 	nr_links = le16_to_cpu(ctx->mrec->link_count);
459 
460 	/* Loop through all hard links. */
461 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
462 			ctx))) {
463 		FILE_NAME_ATTR *file_name_attr;
464 		ATTR_RECORD *attr = ctx->attr;
465 		u8 *p, *p2;
466 
467 		nr_links--;
468 		/*
469 		 * Maximum sanity checking as we are called on an inode that
470 		 * we suspect might be corrupt.
471 		 */
472 		p = (u8*)attr + le32_to_cpu(attr->length);
473 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
474 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
475 err_corrupt_attr:
476 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
477 					"attribute. You should run chkdsk.");
478 			return -EIO;
479 		}
480 		if (attr->non_resident) {
481 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
482 					"name. You should run chkdsk.");
483 			return -EIO;
484 		}
485 		if (attr->flags) {
486 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
487 					"invalid flags. You should run "
488 					"chkdsk.");
489 			return -EIO;
490 		}
491 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
492 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
493 					"name. You should run chkdsk.");
494 			return -EIO;
495 		}
496 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
497 				le16_to_cpu(attr->data.resident.value_offset));
498 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
499 		if (p2 < (u8*)attr || p2 > p)
500 			goto err_corrupt_attr;
501 		/* This attribute is ok, but is it in the $Extend directory? */
502 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
503 			return 1;	/* YES, it's an extended system file. */
504 	}
505 	if (unlikely(err != -ENOENT))
506 		return err;
507 	if (unlikely(nr_links)) {
508 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
509 				"doesn't match number of name attributes. You "
510 				"should run chkdsk.");
511 		return -EIO;
512 	}
513 	return 0;	/* NO, it is not an extended system file. */
514 }
515 
516 /**
517  * ntfs_read_locked_inode - read an inode from its device
518  * @vi:		inode to read
519  *
520  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
521  * described by @vi into memory from the device.
522  *
523  * The only fields in @vi that we need to/can look at when the function is
524  * called are i_sb, pointing to the mounted device's super block, and i_ino,
525  * the number of the inode to load.
526  *
527  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
528  * for reading and sets up the necessary @vi fields as well as initializing
529  * the ntfs inode.
530  *
531  * Q: What locks are held when the function is called?
532  * A: i_state has I_LOCK set, hence the inode is locked, also
533  *    i_count is set to 1, so it is not going to go away
534  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
535  *    is allowed to write to them. We should of course be honouring them but
536  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
537  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
538  *
539  * Return 0 on success and -errno on error.  In the error case, the inode will
540  * have had make_bad_inode() executed on it.
541  */
542 static int ntfs_read_locked_inode(struct inode *vi)
543 {
544 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
545 	ntfs_inode *ni;
546 	struct inode *bvi;
547 	MFT_RECORD *m;
548 	ATTR_RECORD *a;
549 	STANDARD_INFORMATION *si;
550 	ntfs_attr_search_ctx *ctx;
551 	int err = 0;
552 
553 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
554 
555 	/* Setup the generic vfs inode parts now. */
556 
557 	/*
558 	 * This is for checking whether an inode has changed w.r.t. a file so
559 	 * that the file can be updated if necessary (compare with f_version).
560 	 */
561 	vi->i_version = 1;
562 
563 	vi->i_uid = vol->uid;
564 	vi->i_gid = vol->gid;
565 	vi->i_mode = 0;
566 
567 	/*
568 	 * Initialize the ntfs specific part of @vi special casing
569 	 * FILE_MFT which we need to do at mount time.
570 	 */
571 	if (vi->i_ino != FILE_MFT)
572 		ntfs_init_big_inode(vi);
573 	ni = NTFS_I(vi);
574 
575 	m = map_mft_record(ni);
576 	if (IS_ERR(m)) {
577 		err = PTR_ERR(m);
578 		goto err_out;
579 	}
580 	ctx = ntfs_attr_get_search_ctx(ni, m);
581 	if (!ctx) {
582 		err = -ENOMEM;
583 		goto unm_err_out;
584 	}
585 
586 	if (!(m->flags & MFT_RECORD_IN_USE)) {
587 		ntfs_error(vi->i_sb, "Inode is not in use!");
588 		goto unm_err_out;
589 	}
590 	if (m->base_mft_record) {
591 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
592 		goto unm_err_out;
593 	}
594 
595 	/* Transfer information from mft record into vfs and ntfs inodes. */
596 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
597 
598 	/*
599 	 * FIXME: Keep in mind that link_count is two for files which have both
600 	 * a long file name and a short file name as separate entries, so if
601 	 * we are hiding short file names this will be too high. Either we need
602 	 * to account for the short file names by subtracting them or we need
603 	 * to make sure we delete files even though i_nlink is not zero which
604 	 * might be tricky due to vfs interactions. Need to think about this
605 	 * some more when implementing the unlink command.
606 	 */
607 	vi->i_nlink = le16_to_cpu(m->link_count);
608 	/*
609 	 * FIXME: Reparse points can have the directory bit set even though
610 	 * they would be S_IFLNK. Need to deal with this further below when we
611 	 * implement reparse points / symbolic links but it will do for now.
612 	 * Also if not a directory, it could be something else, rather than
613 	 * a regular file. But again, will do for now.
614 	 */
615 	/* Everyone gets all permissions. */
616 	vi->i_mode |= S_IRWXUGO;
617 	/* If read-only, noone gets write permissions. */
618 	if (IS_RDONLY(vi))
619 		vi->i_mode &= ~S_IWUGO;
620 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
621 		vi->i_mode |= S_IFDIR;
622 		/*
623 		 * Apply the directory permissions mask set in the mount
624 		 * options.
625 		 */
626 		vi->i_mode &= ~vol->dmask;
627 		/* Things break without this kludge! */
628 		if (vi->i_nlink > 1)
629 			vi->i_nlink = 1;
630 	} else {
631 		vi->i_mode |= S_IFREG;
632 		/* Apply the file permissions mask set in the mount options. */
633 		vi->i_mode &= ~vol->fmask;
634 	}
635 	/*
636 	 * Find the standard information attribute in the mft record. At this
637 	 * stage we haven't setup the attribute list stuff yet, so this could
638 	 * in fact fail if the standard information is in an extent record, but
639 	 * I don't think this actually ever happens.
640 	 */
641 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
642 			ctx);
643 	if (unlikely(err)) {
644 		if (err == -ENOENT) {
645 			/*
646 			 * TODO: We should be performing a hot fix here (if the
647 			 * recover mount option is set) by creating a new
648 			 * attribute.
649 			 */
650 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
651 					"is missing.");
652 		}
653 		goto unm_err_out;
654 	}
655 	a = ctx->attr;
656 	/* Get the standard information attribute value. */
657 	si = (STANDARD_INFORMATION*)((u8*)a +
658 			le16_to_cpu(a->data.resident.value_offset));
659 
660 	/* Transfer information from the standard information into vi. */
661 	/*
662 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
663 	 * but they are close enough, and in the end it doesn't really matter
664 	 * that much...
665 	 */
666 	/*
667 	 * mtime is the last change of the data within the file. Not changed
668 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
669 	 */
670 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
671 	/*
672 	 * ctime is the last change of the metadata of the file. This obviously
673 	 * always changes, when mtime is changed. ctime can be changed on its
674 	 * own, mtime is then not changed, e.g. when a file is renamed.
675 	 */
676 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
677 	/*
678 	 * Last access to the data within the file. Not changed during a rename
679 	 * for example but changed whenever the file is written to.
680 	 */
681 	vi->i_atime = ntfs2utc(si->last_access_time);
682 
683 	/* Find the attribute list attribute if present. */
684 	ntfs_attr_reinit_search_ctx(ctx);
685 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
686 	if (err) {
687 		if (unlikely(err != -ENOENT)) {
688 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
689 					"attribute.");
690 			goto unm_err_out;
691 		}
692 	} else /* if (!err) */ {
693 		if (vi->i_ino == FILE_MFT)
694 			goto skip_attr_list_load;
695 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
696 		NInoSetAttrList(ni);
697 		a = ctx->attr;
698 		if (a->flags & ATTR_COMPRESSION_MASK) {
699 			ntfs_error(vi->i_sb, "Attribute list attribute is "
700 					"compressed.");
701 			goto unm_err_out;
702 		}
703 		if (a->flags & ATTR_IS_ENCRYPTED ||
704 				a->flags & ATTR_IS_SPARSE) {
705 			if (a->non_resident) {
706 				ntfs_error(vi->i_sb, "Non-resident attribute "
707 						"list attribute is encrypted/"
708 						"sparse.");
709 				goto unm_err_out;
710 			}
711 			ntfs_warning(vi->i_sb, "Resident attribute list "
712 					"attribute in inode 0x%lx is marked "
713 					"encrypted/sparse which is not true.  "
714 					"However, Windows allows this and "
715 					"chkdsk does not detect or correct it "
716 					"so we will just ignore the invalid "
717 					"flags and pretend they are not set.",
718 					vi->i_ino);
719 		}
720 		/* Now allocate memory for the attribute list. */
721 		ni->attr_list_size = (u32)ntfs_attr_size(a);
722 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
723 		if (!ni->attr_list) {
724 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
725 					"buffer for attribute list.");
726 			err = -ENOMEM;
727 			goto unm_err_out;
728 		}
729 		if (a->non_resident) {
730 			NInoSetAttrListNonResident(ni);
731 			if (a->data.non_resident.lowest_vcn) {
732 				ntfs_error(vi->i_sb, "Attribute list has non "
733 						"zero lowest_vcn.");
734 				goto unm_err_out;
735 			}
736 			/*
737 			 * Setup the runlist. No need for locking as we have
738 			 * exclusive access to the inode at this time.
739 			 */
740 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
741 					a, NULL);
742 			if (IS_ERR(ni->attr_list_rl.rl)) {
743 				err = PTR_ERR(ni->attr_list_rl.rl);
744 				ni->attr_list_rl.rl = NULL;
745 				ntfs_error(vi->i_sb, "Mapping pairs "
746 						"decompression failed.");
747 				goto unm_err_out;
748 			}
749 			/* Now load the attribute list. */
750 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
751 					ni->attr_list, ni->attr_list_size,
752 					sle64_to_cpu(a->data.non_resident.
753 					initialized_size)))) {
754 				ntfs_error(vi->i_sb, "Failed to load "
755 						"attribute list attribute.");
756 				goto unm_err_out;
757 			}
758 		} else /* if (!a->non_resident) */ {
759 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
760 					+ le32_to_cpu(
761 					a->data.resident.value_length) >
762 					(u8*)ctx->mrec + vol->mft_record_size) {
763 				ntfs_error(vi->i_sb, "Corrupt attribute list "
764 						"in inode.");
765 				goto unm_err_out;
766 			}
767 			/* Now copy the attribute list. */
768 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
769 					a->data.resident.value_offset),
770 					le32_to_cpu(
771 					a->data.resident.value_length));
772 		}
773 	}
774 skip_attr_list_load:
775 	/*
776 	 * If an attribute list is present we now have the attribute list value
777 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
778 	 */
779 	if (S_ISDIR(vi->i_mode)) {
780 		loff_t bvi_size;
781 		ntfs_inode *bni;
782 		INDEX_ROOT *ir;
783 		u8 *ir_end, *index_end;
784 
785 		/* It is a directory, find index root attribute. */
786 		ntfs_attr_reinit_search_ctx(ctx);
787 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
788 				0, NULL, 0, ctx);
789 		if (unlikely(err)) {
790 			if (err == -ENOENT) {
791 				// FIXME: File is corrupt! Hot-fix with empty
792 				// index root attribute if recovery option is
793 				// set.
794 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
795 						"is missing.");
796 			}
797 			goto unm_err_out;
798 		}
799 		a = ctx->attr;
800 		/* Set up the state. */
801 		if (unlikely(a->non_resident)) {
802 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
803 					"resident.");
804 			goto unm_err_out;
805 		}
806 		/* Ensure the attribute name is placed before the value. */
807 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
808 				le16_to_cpu(a->data.resident.value_offset)))) {
809 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
810 					"placed after the attribute value.");
811 			goto unm_err_out;
812 		}
813 		/*
814 		 * Compressed/encrypted index root just means that the newly
815 		 * created files in that directory should be created compressed/
816 		 * encrypted. However index root cannot be both compressed and
817 		 * encrypted.
818 		 */
819 		if (a->flags & ATTR_COMPRESSION_MASK)
820 			NInoSetCompressed(ni);
821 		if (a->flags & ATTR_IS_ENCRYPTED) {
822 			if (a->flags & ATTR_COMPRESSION_MASK) {
823 				ntfs_error(vi->i_sb, "Found encrypted and "
824 						"compressed attribute.");
825 				goto unm_err_out;
826 			}
827 			NInoSetEncrypted(ni);
828 		}
829 		if (a->flags & ATTR_IS_SPARSE)
830 			NInoSetSparse(ni);
831 		ir = (INDEX_ROOT*)((u8*)a +
832 				le16_to_cpu(a->data.resident.value_offset));
833 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
834 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
835 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
836 					"corrupt.");
837 			goto unm_err_out;
838 		}
839 		index_end = (u8*)&ir->index +
840 				le32_to_cpu(ir->index.index_length);
841 		if (index_end > ir_end) {
842 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
843 			goto unm_err_out;
844 		}
845 		if (ir->type != AT_FILE_NAME) {
846 			ntfs_error(vi->i_sb, "Indexed attribute is not "
847 					"$FILE_NAME.");
848 			goto unm_err_out;
849 		}
850 		if (ir->collation_rule != COLLATION_FILE_NAME) {
851 			ntfs_error(vi->i_sb, "Index collation rule is not "
852 					"COLLATION_FILE_NAME.");
853 			goto unm_err_out;
854 		}
855 		ni->itype.index.collation_rule = ir->collation_rule;
856 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
857 		if (ni->itype.index.block_size &
858 				(ni->itype.index.block_size - 1)) {
859 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
860 					"power of two.",
861 					ni->itype.index.block_size);
862 			goto unm_err_out;
863 		}
864 		if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
865 			ntfs_error(vi->i_sb, "Index block size (%u) > "
866 					"PAGE_CACHE_SIZE (%ld) is not "
867 					"supported.  Sorry.",
868 					ni->itype.index.block_size,
869 					PAGE_CACHE_SIZE);
870 			err = -EOPNOTSUPP;
871 			goto unm_err_out;
872 		}
873 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
874 			ntfs_error(vi->i_sb, "Index block size (%u) < "
875 					"NTFS_BLOCK_SIZE (%i) is not "
876 					"supported.  Sorry.",
877 					ni->itype.index.block_size,
878 					NTFS_BLOCK_SIZE);
879 			err = -EOPNOTSUPP;
880 			goto unm_err_out;
881 		}
882 		ni->itype.index.block_size_bits =
883 				ffs(ni->itype.index.block_size) - 1;
884 		/* Determine the size of a vcn in the directory index. */
885 		if (vol->cluster_size <= ni->itype.index.block_size) {
886 			ni->itype.index.vcn_size = vol->cluster_size;
887 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
888 		} else {
889 			ni->itype.index.vcn_size = vol->sector_size;
890 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
891 		}
892 
893 		/* Setup the index allocation attribute, even if not present. */
894 		NInoSetMstProtected(ni);
895 		ni->type = AT_INDEX_ALLOCATION;
896 		ni->name = I30;
897 		ni->name_len = 4;
898 
899 		if (!(ir->index.flags & LARGE_INDEX)) {
900 			/* No index allocation. */
901 			vi->i_size = ni->initialized_size =
902 					ni->allocated_size = 0;
903 			/* We are done with the mft record, so we release it. */
904 			ntfs_attr_put_search_ctx(ctx);
905 			unmap_mft_record(ni);
906 			m = NULL;
907 			ctx = NULL;
908 			goto skip_large_dir_stuff;
909 		} /* LARGE_INDEX: Index allocation present. Setup state. */
910 		NInoSetIndexAllocPresent(ni);
911 		/* Find index allocation attribute. */
912 		ntfs_attr_reinit_search_ctx(ctx);
913 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
914 				CASE_SENSITIVE, 0, NULL, 0, ctx);
915 		if (unlikely(err)) {
916 			if (err == -ENOENT)
917 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
918 						"attribute is not present but "
919 						"$INDEX_ROOT indicated it is.");
920 			else
921 				ntfs_error(vi->i_sb, "Failed to lookup "
922 						"$INDEX_ALLOCATION "
923 						"attribute.");
924 			goto unm_err_out;
925 		}
926 		a = ctx->attr;
927 		if (!a->non_resident) {
928 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
929 					"is resident.");
930 			goto unm_err_out;
931 		}
932 		/*
933 		 * Ensure the attribute name is placed before the mapping pairs
934 		 * array.
935 		 */
936 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
937 				le16_to_cpu(
938 				a->data.non_resident.mapping_pairs_offset)))) {
939 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
940 					"is placed after the mapping pairs "
941 					"array.");
942 			goto unm_err_out;
943 		}
944 		if (a->flags & ATTR_IS_ENCRYPTED) {
945 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
946 					"is encrypted.");
947 			goto unm_err_out;
948 		}
949 		if (a->flags & ATTR_IS_SPARSE) {
950 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
951 					"is sparse.");
952 			goto unm_err_out;
953 		}
954 		if (a->flags & ATTR_COMPRESSION_MASK) {
955 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
956 					"is compressed.");
957 			goto unm_err_out;
958 		}
959 		if (a->data.non_resident.lowest_vcn) {
960 			ntfs_error(vi->i_sb, "First extent of "
961 					"$INDEX_ALLOCATION attribute has non "
962 					"zero lowest_vcn.");
963 			goto unm_err_out;
964 		}
965 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
966 		ni->initialized_size = sle64_to_cpu(
967 				a->data.non_resident.initialized_size);
968 		ni->allocated_size = sle64_to_cpu(
969 				a->data.non_resident.allocated_size);
970 		/*
971 		 * We are done with the mft record, so we release it. Otherwise
972 		 * we would deadlock in ntfs_attr_iget().
973 		 */
974 		ntfs_attr_put_search_ctx(ctx);
975 		unmap_mft_record(ni);
976 		m = NULL;
977 		ctx = NULL;
978 		/* Get the index bitmap attribute inode. */
979 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
980 		if (IS_ERR(bvi)) {
981 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
982 			err = PTR_ERR(bvi);
983 			goto unm_err_out;
984 		}
985 		bni = NTFS_I(bvi);
986 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
987 				NInoSparse(bni)) {
988 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
989 					"and/or encrypted and/or sparse.");
990 			goto iput_unm_err_out;
991 		}
992 		/* Consistency check bitmap size vs. index allocation size. */
993 		bvi_size = i_size_read(bvi);
994 		if ((bvi_size << 3) < (vi->i_size >>
995 				ni->itype.index.block_size_bits)) {
996 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
997 					"for index allocation (0x%llx).",
998 					bvi_size << 3, vi->i_size);
999 			goto iput_unm_err_out;
1000 		}
1001 		/* No longer need the bitmap attribute inode. */
1002 		iput(bvi);
1003 skip_large_dir_stuff:
1004 		/* Setup the operations for this inode. */
1005 		vi->i_op = &ntfs_dir_inode_ops;
1006 		vi->i_fop = &ntfs_dir_ops;
1007 	} else {
1008 		/* It is a file. */
1009 		ntfs_attr_reinit_search_ctx(ctx);
1010 
1011 		/* Setup the data attribute, even if not present. */
1012 		ni->type = AT_DATA;
1013 		ni->name = NULL;
1014 		ni->name_len = 0;
1015 
1016 		/* Find first extent of the unnamed data attribute. */
1017 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1018 		if (unlikely(err)) {
1019 			vi->i_size = ni->initialized_size =
1020 					ni->allocated_size = 0;
1021 			if (err != -ENOENT) {
1022 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1023 						"attribute.");
1024 				goto unm_err_out;
1025 			}
1026 			/*
1027 			 * FILE_Secure does not have an unnamed $DATA
1028 			 * attribute, so we special case it here.
1029 			 */
1030 			if (vi->i_ino == FILE_Secure)
1031 				goto no_data_attr_special_case;
1032 			/*
1033 			 * Most if not all the system files in the $Extend
1034 			 * system directory do not have unnamed data
1035 			 * attributes so we need to check if the parent
1036 			 * directory of the file is FILE_Extend and if it is
1037 			 * ignore this error. To do this we need to get the
1038 			 * name of this inode from the mft record as the name
1039 			 * contains the back reference to the parent directory.
1040 			 */
1041 			if (ntfs_is_extended_system_file(ctx) > 0)
1042 				goto no_data_attr_special_case;
1043 			// FIXME: File is corrupt! Hot-fix with empty data
1044 			// attribute if recovery option is set.
1045 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1046 			goto unm_err_out;
1047 		}
1048 		a = ctx->attr;
1049 		/* Setup the state. */
1050 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1051 			if (a->flags & ATTR_COMPRESSION_MASK) {
1052 				NInoSetCompressed(ni);
1053 				if (vol->cluster_size > 4096) {
1054 					ntfs_error(vi->i_sb, "Found "
1055 							"compressed data but "
1056 							"compression is "
1057 							"disabled due to "
1058 							"cluster size (%i) > "
1059 							"4kiB.",
1060 							vol->cluster_size);
1061 					goto unm_err_out;
1062 				}
1063 				if ((a->flags & ATTR_COMPRESSION_MASK)
1064 						!= ATTR_IS_COMPRESSED) {
1065 					ntfs_error(vi->i_sb, "Found unknown "
1066 							"compression method "
1067 							"or corrupt file.");
1068 					goto unm_err_out;
1069 				}
1070 			}
1071 			if (a->flags & ATTR_IS_SPARSE)
1072 				NInoSetSparse(ni);
1073 		}
1074 		if (a->flags & ATTR_IS_ENCRYPTED) {
1075 			if (NInoCompressed(ni)) {
1076 				ntfs_error(vi->i_sb, "Found encrypted and "
1077 						"compressed data.");
1078 				goto unm_err_out;
1079 			}
1080 			NInoSetEncrypted(ni);
1081 		}
1082 		if (a->non_resident) {
1083 			NInoSetNonResident(ni);
1084 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1085 				if (NInoCompressed(ni) && a->data.non_resident.
1086 						compression_unit != 4) {
1087 					ntfs_error(vi->i_sb, "Found "
1088 							"non-standard "
1089 							"compression unit (%u "
1090 							"instead of 4).  "
1091 							"Cannot handle this.",
1092 							a->data.non_resident.
1093 							compression_unit);
1094 					err = -EOPNOTSUPP;
1095 					goto unm_err_out;
1096 				}
1097 				if (a->data.non_resident.compression_unit) {
1098 					ni->itype.compressed.block_size = 1U <<
1099 							(a->data.non_resident.
1100 							compression_unit +
1101 							vol->cluster_size_bits);
1102 					ni->itype.compressed.block_size_bits =
1103 							ffs(ni->itype.
1104 							compressed.
1105 							block_size) - 1;
1106 					ni->itype.compressed.block_clusters =
1107 							1U << a->data.
1108 							non_resident.
1109 							compression_unit;
1110 				} else {
1111 					ni->itype.compressed.block_size = 0;
1112 					ni->itype.compressed.block_size_bits =
1113 							0;
1114 					ni->itype.compressed.block_clusters =
1115 							0;
1116 				}
1117 				ni->itype.compressed.size = sle64_to_cpu(
1118 						a->data.non_resident.
1119 						compressed_size);
1120 			}
1121 			if (a->data.non_resident.lowest_vcn) {
1122 				ntfs_error(vi->i_sb, "First extent of $DATA "
1123 						"attribute has non zero "
1124 						"lowest_vcn.");
1125 				goto unm_err_out;
1126 			}
1127 			vi->i_size = sle64_to_cpu(
1128 					a->data.non_resident.data_size);
1129 			ni->initialized_size = sle64_to_cpu(
1130 					a->data.non_resident.initialized_size);
1131 			ni->allocated_size = sle64_to_cpu(
1132 					a->data.non_resident.allocated_size);
1133 		} else { /* Resident attribute. */
1134 			vi->i_size = ni->initialized_size = le32_to_cpu(
1135 					a->data.resident.value_length);
1136 			ni->allocated_size = le32_to_cpu(a->length) -
1137 					le16_to_cpu(
1138 					a->data.resident.value_offset);
1139 			if (vi->i_size > ni->allocated_size) {
1140 				ntfs_error(vi->i_sb, "Resident data attribute "
1141 						"is corrupt (size exceeds "
1142 						"allocation).");
1143 				goto unm_err_out;
1144 			}
1145 		}
1146 no_data_attr_special_case:
1147 		/* We are done with the mft record, so we release it. */
1148 		ntfs_attr_put_search_ctx(ctx);
1149 		unmap_mft_record(ni);
1150 		m = NULL;
1151 		ctx = NULL;
1152 		/* Setup the operations for this inode. */
1153 		vi->i_op = &ntfs_file_inode_ops;
1154 		vi->i_fop = &ntfs_file_ops;
1155 	}
1156 	if (NInoMstProtected(ni))
1157 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1158 	else
1159 		vi->i_mapping->a_ops = &ntfs_aops;
1160 	/*
1161 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1162 	 * far inaccurate as it doesn't account for any named streams or other
1163 	 * special non-resident attributes, but that is how Windows works, too,
1164 	 * so we are at least consistent with Windows, if not entirely
1165 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1166 	 * significant slowdown as it would involve iterating over all
1167 	 * attributes in the mft record and adding the allocated/compressed
1168 	 * sizes of all non-resident attributes present to give us the Linux
1169 	 * correct size that should go into i_blocks (after division by 512).
1170 	 */
1171 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1172 		vi->i_blocks = ni->itype.compressed.size >> 9;
1173 	else
1174 		vi->i_blocks = ni->allocated_size >> 9;
1175 	ntfs_debug("Done.");
1176 	return 0;
1177 iput_unm_err_out:
1178 	iput(bvi);
1179 unm_err_out:
1180 	if (!err)
1181 		err = -EIO;
1182 	if (ctx)
1183 		ntfs_attr_put_search_ctx(ctx);
1184 	if (m)
1185 		unmap_mft_record(ni);
1186 err_out:
1187 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1188 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1189 	make_bad_inode(vi);
1190 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1191 		NVolSetErrors(vol);
1192 	return err;
1193 }
1194 
1195 /**
1196  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1197  * @base_vi:	base inode
1198  * @vi:		attribute inode to read
1199  *
1200  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1201  * attribute inode described by @vi into memory from the base mft record
1202  * described by @base_ni.
1203  *
1204  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1205  * reading and looks up the attribute described by @vi before setting up the
1206  * necessary fields in @vi as well as initializing the ntfs inode.
1207  *
1208  * Q: What locks are held when the function is called?
1209  * A: i_state has I_LOCK set, hence the inode is locked, also
1210  *    i_count is set to 1, so it is not going to go away
1211  *
1212  * Return 0 on success and -errno on error.  In the error case, the inode will
1213  * have had make_bad_inode() executed on it.
1214  *
1215  * Note this cannot be called for AT_INDEX_ALLOCATION.
1216  */
1217 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1218 {
1219 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1220 	ntfs_inode *ni, *base_ni;
1221 	MFT_RECORD *m;
1222 	ATTR_RECORD *a;
1223 	ntfs_attr_search_ctx *ctx;
1224 	int err = 0;
1225 
1226 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1227 
1228 	ntfs_init_big_inode(vi);
1229 
1230 	ni	= NTFS_I(vi);
1231 	base_ni = NTFS_I(base_vi);
1232 
1233 	/* Just mirror the values from the base inode. */
1234 	vi->i_version	= base_vi->i_version;
1235 	vi->i_uid	= base_vi->i_uid;
1236 	vi->i_gid	= base_vi->i_gid;
1237 	vi->i_nlink	= base_vi->i_nlink;
1238 	vi->i_mtime	= base_vi->i_mtime;
1239 	vi->i_ctime	= base_vi->i_ctime;
1240 	vi->i_atime	= base_vi->i_atime;
1241 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1242 
1243 	/* Set inode type to zero but preserve permissions. */
1244 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1245 
1246 	m = map_mft_record(base_ni);
1247 	if (IS_ERR(m)) {
1248 		err = PTR_ERR(m);
1249 		goto err_out;
1250 	}
1251 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1252 	if (!ctx) {
1253 		err = -ENOMEM;
1254 		goto unm_err_out;
1255 	}
1256 	/* Find the attribute. */
1257 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1258 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1259 	if (unlikely(err))
1260 		goto unm_err_out;
1261 	a = ctx->attr;
1262 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1263 		if (a->flags & ATTR_COMPRESSION_MASK) {
1264 			NInoSetCompressed(ni);
1265 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1266 					ni->name_len)) {
1267 				ntfs_error(vi->i_sb, "Found compressed "
1268 						"non-data or named data "
1269 						"attribute.  Please report "
1270 						"you saw this message to "
1271 						"linux-ntfs-dev@lists."
1272 						"sourceforge.net");
1273 				goto unm_err_out;
1274 			}
1275 			if (vol->cluster_size > 4096) {
1276 				ntfs_error(vi->i_sb, "Found compressed "
1277 						"attribute but compression is "
1278 						"disabled due to cluster size "
1279 						"(%i) > 4kiB.",
1280 						vol->cluster_size);
1281 				goto unm_err_out;
1282 			}
1283 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1284 					ATTR_IS_COMPRESSED) {
1285 				ntfs_error(vi->i_sb, "Found unknown "
1286 						"compression method.");
1287 				goto unm_err_out;
1288 			}
1289 		}
1290 		/*
1291 		 * The compressed/sparse flag set in an index root just means
1292 		 * to compress all files.
1293 		 */
1294 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1295 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1296 					"but the attribute is %s.  Please "
1297 					"report you saw this message to "
1298 					"linux-ntfs-dev@lists.sourceforge.net",
1299 					NInoCompressed(ni) ? "compressed" :
1300 					"sparse");
1301 			goto unm_err_out;
1302 		}
1303 		if (a->flags & ATTR_IS_SPARSE)
1304 			NInoSetSparse(ni);
1305 	}
1306 	if (a->flags & ATTR_IS_ENCRYPTED) {
1307 		if (NInoCompressed(ni)) {
1308 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1309 					"data.");
1310 			goto unm_err_out;
1311 		}
1312 		/*
1313 		 * The encryption flag set in an index root just means to
1314 		 * encrypt all files.
1315 		 */
1316 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1317 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1318 					"but the attribute is encrypted.  "
1319 					"Please report you saw this message "
1320 					"to linux-ntfs-dev@lists.sourceforge."
1321 					"net");
1322 			goto unm_err_out;
1323 		}
1324 		if (ni->type != AT_DATA) {
1325 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1326 					"attribute.");
1327 			goto unm_err_out;
1328 		}
1329 		NInoSetEncrypted(ni);
1330 	}
1331 	if (!a->non_resident) {
1332 		/* Ensure the attribute name is placed before the value. */
1333 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1334 				le16_to_cpu(a->data.resident.value_offset)))) {
1335 			ntfs_error(vol->sb, "Attribute name is placed after "
1336 					"the attribute value.");
1337 			goto unm_err_out;
1338 		}
1339 		if (NInoMstProtected(ni)) {
1340 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1341 					"but the attribute is resident.  "
1342 					"Please report you saw this message to "
1343 					"linux-ntfs-dev@lists.sourceforge.net");
1344 			goto unm_err_out;
1345 		}
1346 		vi->i_size = ni->initialized_size = le32_to_cpu(
1347 				a->data.resident.value_length);
1348 		ni->allocated_size = le32_to_cpu(a->length) -
1349 				le16_to_cpu(a->data.resident.value_offset);
1350 		if (vi->i_size > ni->allocated_size) {
1351 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1352 					"(size exceeds allocation).");
1353 			goto unm_err_out;
1354 		}
1355 	} else {
1356 		NInoSetNonResident(ni);
1357 		/*
1358 		 * Ensure the attribute name is placed before the mapping pairs
1359 		 * array.
1360 		 */
1361 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1362 				le16_to_cpu(
1363 				a->data.non_resident.mapping_pairs_offset)))) {
1364 			ntfs_error(vol->sb, "Attribute name is placed after "
1365 					"the mapping pairs array.");
1366 			goto unm_err_out;
1367 		}
1368 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1369 			if (NInoCompressed(ni) && a->data.non_resident.
1370 					compression_unit != 4) {
1371 				ntfs_error(vi->i_sb, "Found non-standard "
1372 						"compression unit (%u instead "
1373 						"of 4).  Cannot handle this.",
1374 						a->data.non_resident.
1375 						compression_unit);
1376 				err = -EOPNOTSUPP;
1377 				goto unm_err_out;
1378 			}
1379 			if (a->data.non_resident.compression_unit) {
1380 				ni->itype.compressed.block_size = 1U <<
1381 						(a->data.non_resident.
1382 						compression_unit +
1383 						vol->cluster_size_bits);
1384 				ni->itype.compressed.block_size_bits =
1385 						ffs(ni->itype.compressed.
1386 						block_size) - 1;
1387 				ni->itype.compressed.block_clusters = 1U <<
1388 						a->data.non_resident.
1389 						compression_unit;
1390 			} else {
1391 				ni->itype.compressed.block_size = 0;
1392 				ni->itype.compressed.block_size_bits = 0;
1393 				ni->itype.compressed.block_clusters = 0;
1394 			}
1395 			ni->itype.compressed.size = sle64_to_cpu(
1396 					a->data.non_resident.compressed_size);
1397 		}
1398 		if (a->data.non_resident.lowest_vcn) {
1399 			ntfs_error(vi->i_sb, "First extent of attribute has "
1400 					"non-zero lowest_vcn.");
1401 			goto unm_err_out;
1402 		}
1403 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1404 		ni->initialized_size = sle64_to_cpu(
1405 				a->data.non_resident.initialized_size);
1406 		ni->allocated_size = sle64_to_cpu(
1407 				a->data.non_resident.allocated_size);
1408 	}
1409 	/* Setup the operations for this attribute inode. */
1410 	vi->i_op = NULL;
1411 	vi->i_fop = NULL;
1412 	if (NInoMstProtected(ni))
1413 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1414 	else
1415 		vi->i_mapping->a_ops = &ntfs_aops;
1416 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1417 		vi->i_blocks = ni->itype.compressed.size >> 9;
1418 	else
1419 		vi->i_blocks = ni->allocated_size >> 9;
1420 	/*
1421 	 * Make sure the base inode does not go away and attach it to the
1422 	 * attribute inode.
1423 	 */
1424 	igrab(base_vi);
1425 	ni->ext.base_ntfs_ino = base_ni;
1426 	ni->nr_extents = -1;
1427 
1428 	ntfs_attr_put_search_ctx(ctx);
1429 	unmap_mft_record(base_ni);
1430 
1431 	ntfs_debug("Done.");
1432 	return 0;
1433 
1434 unm_err_out:
1435 	if (!err)
1436 		err = -EIO;
1437 	if (ctx)
1438 		ntfs_attr_put_search_ctx(ctx);
1439 	unmap_mft_record(base_ni);
1440 err_out:
1441 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1442 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1443 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1444 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1445 			base_vi->i_ino);
1446 	make_bad_inode(vi);
1447 	if (err != -ENOMEM)
1448 		NVolSetErrors(vol);
1449 	return err;
1450 }
1451 
1452 /**
1453  * ntfs_read_locked_index_inode - read an index inode from its base inode
1454  * @base_vi:	base inode
1455  * @vi:		index inode to read
1456  *
1457  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1458  * index inode described by @vi into memory from the base mft record described
1459  * by @base_ni.
1460  *
1461  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1462  * reading and looks up the attributes relating to the index described by @vi
1463  * before setting up the necessary fields in @vi as well as initializing the
1464  * ntfs inode.
1465  *
1466  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1467  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1468  * are setup like directory inodes since directories are a special case of
1469  * indices ao they need to be treated in much the same way.  Most importantly,
1470  * for small indices the index allocation attribute might not actually exist.
1471  * However, the index root attribute always exists but this does not need to
1472  * have an inode associated with it and this is why we define a new inode type
1473  * index.  Also, like for directories, we need to have an attribute inode for
1474  * the bitmap attribute corresponding to the index allocation attribute and we
1475  * can store this in the appropriate field of the inode, just like we do for
1476  * normal directory inodes.
1477  *
1478  * Q: What locks are held when the function is called?
1479  * A: i_state has I_LOCK set, hence the inode is locked, also
1480  *    i_count is set to 1, so it is not going to go away
1481  *
1482  * Return 0 on success and -errno on error.  In the error case, the inode will
1483  * have had make_bad_inode() executed on it.
1484  */
1485 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1486 {
1487 	loff_t bvi_size;
1488 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1489 	ntfs_inode *ni, *base_ni, *bni;
1490 	struct inode *bvi;
1491 	MFT_RECORD *m;
1492 	ATTR_RECORD *a;
1493 	ntfs_attr_search_ctx *ctx;
1494 	INDEX_ROOT *ir;
1495 	u8 *ir_end, *index_end;
1496 	int err = 0;
1497 
1498 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1499 	ntfs_init_big_inode(vi);
1500 	ni	= NTFS_I(vi);
1501 	base_ni = NTFS_I(base_vi);
1502 	/* Just mirror the values from the base inode. */
1503 	vi->i_version	= base_vi->i_version;
1504 	vi->i_uid	= base_vi->i_uid;
1505 	vi->i_gid	= base_vi->i_gid;
1506 	vi->i_nlink	= base_vi->i_nlink;
1507 	vi->i_mtime	= base_vi->i_mtime;
1508 	vi->i_ctime	= base_vi->i_ctime;
1509 	vi->i_atime	= base_vi->i_atime;
1510 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1511 	/* Set inode type to zero but preserve permissions. */
1512 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1513 	/* Map the mft record for the base inode. */
1514 	m = map_mft_record(base_ni);
1515 	if (IS_ERR(m)) {
1516 		err = PTR_ERR(m);
1517 		goto err_out;
1518 	}
1519 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1520 	if (!ctx) {
1521 		err = -ENOMEM;
1522 		goto unm_err_out;
1523 	}
1524 	/* Find the index root attribute. */
1525 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1526 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1527 	if (unlikely(err)) {
1528 		if (err == -ENOENT)
1529 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1530 					"missing.");
1531 		goto unm_err_out;
1532 	}
1533 	a = ctx->attr;
1534 	/* Set up the state. */
1535 	if (unlikely(a->non_resident)) {
1536 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1537 		goto unm_err_out;
1538 	}
1539 	/* Ensure the attribute name is placed before the value. */
1540 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1541 			le16_to_cpu(a->data.resident.value_offset)))) {
1542 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1543 				"after the attribute value.");
1544 		goto unm_err_out;
1545 	}
1546 	/*
1547 	 * Compressed/encrypted/sparse index root is not allowed, except for
1548 	 * directories of course but those are not dealt with here.
1549 	 */
1550 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1551 			ATTR_IS_SPARSE)) {
1552 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1553 				"root attribute.");
1554 		goto unm_err_out;
1555 	}
1556 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1557 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1558 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1559 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1560 		goto unm_err_out;
1561 	}
1562 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1563 	if (index_end > ir_end) {
1564 		ntfs_error(vi->i_sb, "Index is corrupt.");
1565 		goto unm_err_out;
1566 	}
1567 	if (ir->type) {
1568 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1569 				le32_to_cpu(ir->type));
1570 		goto unm_err_out;
1571 	}
1572 	ni->itype.index.collation_rule = ir->collation_rule;
1573 	ntfs_debug("Index collation rule is 0x%x.",
1574 			le32_to_cpu(ir->collation_rule));
1575 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1576 	if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) {
1577 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1578 				"two.", ni->itype.index.block_size);
1579 		goto unm_err_out;
1580 	}
1581 	if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1582 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1583 				"(%ld) is not supported.  Sorry.",
1584 				ni->itype.index.block_size, PAGE_CACHE_SIZE);
1585 		err = -EOPNOTSUPP;
1586 		goto unm_err_out;
1587 	}
1588 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1589 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1590 				"(%i) is not supported.  Sorry.",
1591 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1592 		err = -EOPNOTSUPP;
1593 		goto unm_err_out;
1594 	}
1595 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1596 	/* Determine the size of a vcn in the index. */
1597 	if (vol->cluster_size <= ni->itype.index.block_size) {
1598 		ni->itype.index.vcn_size = vol->cluster_size;
1599 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1600 	} else {
1601 		ni->itype.index.vcn_size = vol->sector_size;
1602 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1603 	}
1604 	/* Check for presence of index allocation attribute. */
1605 	if (!(ir->index.flags & LARGE_INDEX)) {
1606 		/* No index allocation. */
1607 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1608 		/* We are done with the mft record, so we release it. */
1609 		ntfs_attr_put_search_ctx(ctx);
1610 		unmap_mft_record(base_ni);
1611 		m = NULL;
1612 		ctx = NULL;
1613 		goto skip_large_index_stuff;
1614 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1615 	NInoSetIndexAllocPresent(ni);
1616 	/* Find index allocation attribute. */
1617 	ntfs_attr_reinit_search_ctx(ctx);
1618 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1619 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1620 	if (unlikely(err)) {
1621 		if (err == -ENOENT)
1622 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1623 					"not present but $INDEX_ROOT "
1624 					"indicated it is.");
1625 		else
1626 			ntfs_error(vi->i_sb, "Failed to lookup "
1627 					"$INDEX_ALLOCATION attribute.");
1628 		goto unm_err_out;
1629 	}
1630 	a = ctx->attr;
1631 	if (!a->non_resident) {
1632 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1633 				"resident.");
1634 		goto unm_err_out;
1635 	}
1636 	/*
1637 	 * Ensure the attribute name is placed before the mapping pairs array.
1638 	 */
1639 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1640 			le16_to_cpu(
1641 			a->data.non_resident.mapping_pairs_offset)))) {
1642 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1643 				"placed after the mapping pairs array.");
1644 		goto unm_err_out;
1645 	}
1646 	if (a->flags & ATTR_IS_ENCRYPTED) {
1647 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1648 				"encrypted.");
1649 		goto unm_err_out;
1650 	}
1651 	if (a->flags & ATTR_IS_SPARSE) {
1652 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1653 		goto unm_err_out;
1654 	}
1655 	if (a->flags & ATTR_COMPRESSION_MASK) {
1656 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1657 				"compressed.");
1658 		goto unm_err_out;
1659 	}
1660 	if (a->data.non_resident.lowest_vcn) {
1661 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1662 				"attribute has non zero lowest_vcn.");
1663 		goto unm_err_out;
1664 	}
1665 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1666 	ni->initialized_size = sle64_to_cpu(
1667 			a->data.non_resident.initialized_size);
1668 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1669 	/*
1670 	 * We are done with the mft record, so we release it.  Otherwise
1671 	 * we would deadlock in ntfs_attr_iget().
1672 	 */
1673 	ntfs_attr_put_search_ctx(ctx);
1674 	unmap_mft_record(base_ni);
1675 	m = NULL;
1676 	ctx = NULL;
1677 	/* Get the index bitmap attribute inode. */
1678 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1679 	if (IS_ERR(bvi)) {
1680 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1681 		err = PTR_ERR(bvi);
1682 		goto unm_err_out;
1683 	}
1684 	bni = NTFS_I(bvi);
1685 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1686 			NInoSparse(bni)) {
1687 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1688 				"encrypted and/or sparse.");
1689 		goto iput_unm_err_out;
1690 	}
1691 	/* Consistency check bitmap size vs. index allocation size. */
1692 	bvi_size = i_size_read(bvi);
1693 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1694 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1695 				"index allocation (0x%llx).", bvi_size << 3,
1696 				vi->i_size);
1697 		goto iput_unm_err_out;
1698 	}
1699 	iput(bvi);
1700 skip_large_index_stuff:
1701 	/* Setup the operations for this index inode. */
1702 	vi->i_op = NULL;
1703 	vi->i_fop = NULL;
1704 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1705 	vi->i_blocks = ni->allocated_size >> 9;
1706 	/*
1707 	 * Make sure the base inode doesn't go away and attach it to the
1708 	 * index inode.
1709 	 */
1710 	igrab(base_vi);
1711 	ni->ext.base_ntfs_ino = base_ni;
1712 	ni->nr_extents = -1;
1713 
1714 	ntfs_debug("Done.");
1715 	return 0;
1716 iput_unm_err_out:
1717 	iput(bvi);
1718 unm_err_out:
1719 	if (!err)
1720 		err = -EIO;
1721 	if (ctx)
1722 		ntfs_attr_put_search_ctx(ctx);
1723 	if (m)
1724 		unmap_mft_record(base_ni);
1725 err_out:
1726 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1727 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1728 			ni->name_len);
1729 	make_bad_inode(vi);
1730 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1731 		NVolSetErrors(vol);
1732 	return err;
1733 }
1734 
1735 /*
1736  * The MFT inode has special locking, so teach the lock validator
1737  * about this by splitting off the locking rules of the MFT from
1738  * the locking rules of other inodes. The MFT inode can never be
1739  * accessed from the VFS side (or even internally), only by the
1740  * map_mft functions.
1741  */
1742 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1743 
1744 /**
1745  * ntfs_read_inode_mount - special read_inode for mount time use only
1746  * @vi:		inode to read
1747  *
1748  * Read inode FILE_MFT at mount time, only called with super_block lock
1749  * held from within the read_super() code path.
1750  *
1751  * This function exists because when it is called the page cache for $MFT/$DATA
1752  * is not initialized and hence we cannot get at the contents of mft records
1753  * by calling map_mft_record*().
1754  *
1755  * Further it needs to cope with the circular references problem, i.e. cannot
1756  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1757  * we do not know where the other extent mft records are yet and again, because
1758  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1759  * attribute list is actually present in $MFT inode.
1760  *
1761  * We solve these problems by starting with the $DATA attribute before anything
1762  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1763  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1764  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1765  * sufficient information for the next step to complete.
1766  *
1767  * This should work but there are two possible pit falls (see inline comments
1768  * below), but only time will tell if they are real pits or just smoke...
1769  */
1770 int ntfs_read_inode_mount(struct inode *vi)
1771 {
1772 	VCN next_vcn, last_vcn, highest_vcn;
1773 	s64 block;
1774 	struct super_block *sb = vi->i_sb;
1775 	ntfs_volume *vol = NTFS_SB(sb);
1776 	struct buffer_head *bh;
1777 	ntfs_inode *ni;
1778 	MFT_RECORD *m = NULL;
1779 	ATTR_RECORD *a;
1780 	ntfs_attr_search_ctx *ctx;
1781 	unsigned int i, nr_blocks;
1782 	int err;
1783 
1784 	ntfs_debug("Entering.");
1785 
1786 	/* Initialize the ntfs specific part of @vi. */
1787 	ntfs_init_big_inode(vi);
1788 
1789 	ni = NTFS_I(vi);
1790 
1791 	/* Setup the data attribute. It is special as it is mst protected. */
1792 	NInoSetNonResident(ni);
1793 	NInoSetMstProtected(ni);
1794 	NInoSetSparseDisabled(ni);
1795 	ni->type = AT_DATA;
1796 	ni->name = NULL;
1797 	ni->name_len = 0;
1798 	/*
1799 	 * This sets up our little cheat allowing us to reuse the async read io
1800 	 * completion handler for directories.
1801 	 */
1802 	ni->itype.index.block_size = vol->mft_record_size;
1803 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1804 
1805 	/* Very important! Needed to be able to call map_mft_record*(). */
1806 	vol->mft_ino = vi;
1807 
1808 	/* Allocate enough memory to read the first mft record. */
1809 	if (vol->mft_record_size > 64 * 1024) {
1810 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1811 				vol->mft_record_size);
1812 		goto err_out;
1813 	}
1814 	i = vol->mft_record_size;
1815 	if (i < sb->s_blocksize)
1816 		i = sb->s_blocksize;
1817 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1818 	if (!m) {
1819 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1820 		goto err_out;
1821 	}
1822 
1823 	/* Determine the first block of the $MFT/$DATA attribute. */
1824 	block = vol->mft_lcn << vol->cluster_size_bits >>
1825 			sb->s_blocksize_bits;
1826 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1827 	if (!nr_blocks)
1828 		nr_blocks = 1;
1829 
1830 	/* Load $MFT/$DATA's first mft record. */
1831 	for (i = 0; i < nr_blocks; i++) {
1832 		bh = sb_bread(sb, block++);
1833 		if (!bh) {
1834 			ntfs_error(sb, "Device read failed.");
1835 			goto err_out;
1836 		}
1837 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1838 				sb->s_blocksize);
1839 		brelse(bh);
1840 	}
1841 
1842 	/* Apply the mst fixups. */
1843 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1844 		/* FIXME: Try to use the $MFTMirr now. */
1845 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1846 		goto err_out;
1847 	}
1848 
1849 	/* Need this to sanity check attribute list references to $MFT. */
1850 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1851 
1852 	/* Provides readpage() and sync_page() for map_mft_record(). */
1853 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1854 
1855 	ctx = ntfs_attr_get_search_ctx(ni, m);
1856 	if (!ctx) {
1857 		err = -ENOMEM;
1858 		goto err_out;
1859 	}
1860 
1861 	/* Find the attribute list attribute if present. */
1862 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1863 	if (err) {
1864 		if (unlikely(err != -ENOENT)) {
1865 			ntfs_error(sb, "Failed to lookup attribute list "
1866 					"attribute. You should run chkdsk.");
1867 			goto put_err_out;
1868 		}
1869 	} else /* if (!err) */ {
1870 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1871 		u8 *al_end;
1872 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1873 				"You should run chkdsk.";
1874 
1875 		ntfs_debug("Attribute list attribute found in $MFT.");
1876 		NInoSetAttrList(ni);
1877 		a = ctx->attr;
1878 		if (a->flags & ATTR_COMPRESSION_MASK) {
1879 			ntfs_error(sb, "Attribute list attribute is "
1880 					"compressed.%s", es);
1881 			goto put_err_out;
1882 		}
1883 		if (a->flags & ATTR_IS_ENCRYPTED ||
1884 				a->flags & ATTR_IS_SPARSE) {
1885 			if (a->non_resident) {
1886 				ntfs_error(sb, "Non-resident attribute list "
1887 						"attribute is encrypted/"
1888 						"sparse.%s", es);
1889 				goto put_err_out;
1890 			}
1891 			ntfs_warning(sb, "Resident attribute list attribute "
1892 					"in $MFT system file is marked "
1893 					"encrypted/sparse which is not true.  "
1894 					"However, Windows allows this and "
1895 					"chkdsk does not detect or correct it "
1896 					"so we will just ignore the invalid "
1897 					"flags and pretend they are not set.");
1898 		}
1899 		/* Now allocate memory for the attribute list. */
1900 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1901 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1902 		if (!ni->attr_list) {
1903 			ntfs_error(sb, "Not enough memory to allocate buffer "
1904 					"for attribute list.");
1905 			goto put_err_out;
1906 		}
1907 		if (a->non_resident) {
1908 			NInoSetAttrListNonResident(ni);
1909 			if (a->data.non_resident.lowest_vcn) {
1910 				ntfs_error(sb, "Attribute list has non zero "
1911 						"lowest_vcn. $MFT is corrupt. "
1912 						"You should run chkdsk.");
1913 				goto put_err_out;
1914 			}
1915 			/* Setup the runlist. */
1916 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1917 					a, NULL);
1918 			if (IS_ERR(ni->attr_list_rl.rl)) {
1919 				err = PTR_ERR(ni->attr_list_rl.rl);
1920 				ni->attr_list_rl.rl = NULL;
1921 				ntfs_error(sb, "Mapping pairs decompression "
1922 						"failed with error code %i.",
1923 						-err);
1924 				goto put_err_out;
1925 			}
1926 			/* Now load the attribute list. */
1927 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1928 					ni->attr_list, ni->attr_list_size,
1929 					sle64_to_cpu(a->data.
1930 					non_resident.initialized_size)))) {
1931 				ntfs_error(sb, "Failed to load attribute list "
1932 						"attribute with error code %i.",
1933 						-err);
1934 				goto put_err_out;
1935 			}
1936 		} else /* if (!ctx.attr->non_resident) */ {
1937 			if ((u8*)a + le16_to_cpu(
1938 					a->data.resident.value_offset) +
1939 					le32_to_cpu(
1940 					a->data.resident.value_length) >
1941 					(u8*)ctx->mrec + vol->mft_record_size) {
1942 				ntfs_error(sb, "Corrupt attribute list "
1943 						"attribute.");
1944 				goto put_err_out;
1945 			}
1946 			/* Now copy the attribute list. */
1947 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1948 					a->data.resident.value_offset),
1949 					le32_to_cpu(
1950 					a->data.resident.value_length));
1951 		}
1952 		/* The attribute list is now setup in memory. */
1953 		/*
1954 		 * FIXME: I don't know if this case is actually possible.
1955 		 * According to logic it is not possible but I have seen too
1956 		 * many weird things in MS software to rely on logic... Thus we
1957 		 * perform a manual search and make sure the first $MFT/$DATA
1958 		 * extent is in the base inode. If it is not we abort with an
1959 		 * error and if we ever see a report of this error we will need
1960 		 * to do some magic in order to have the necessary mft record
1961 		 * loaded and in the right place in the page cache. But
1962 		 * hopefully logic will prevail and this never happens...
1963 		 */
1964 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1965 		al_end = (u8*)al_entry + ni->attr_list_size;
1966 		for (;; al_entry = next_al_entry) {
1967 			/* Out of bounds check. */
1968 			if ((u8*)al_entry < ni->attr_list ||
1969 					(u8*)al_entry > al_end)
1970 				goto em_put_err_out;
1971 			/* Catch the end of the attribute list. */
1972 			if ((u8*)al_entry == al_end)
1973 				goto em_put_err_out;
1974 			if (!al_entry->length)
1975 				goto em_put_err_out;
1976 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1977 					le16_to_cpu(al_entry->length) > al_end)
1978 				goto em_put_err_out;
1979 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1980 					le16_to_cpu(al_entry->length));
1981 			if (le32_to_cpu(al_entry->type) >
1982 					const_le32_to_cpu(AT_DATA))
1983 				goto em_put_err_out;
1984 			if (AT_DATA != al_entry->type)
1985 				continue;
1986 			/* We want an unnamed attribute. */
1987 			if (al_entry->name_length)
1988 				goto em_put_err_out;
1989 			/* Want the first entry, i.e. lowest_vcn == 0. */
1990 			if (al_entry->lowest_vcn)
1991 				goto em_put_err_out;
1992 			/* First entry has to be in the base mft record. */
1993 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1994 				/* MFT references do not match, logic fails. */
1995 				ntfs_error(sb, "BUG: The first $DATA extent "
1996 						"of $MFT is not in the base "
1997 						"mft record. Please report "
1998 						"you saw this message to "
1999 						"linux-ntfs-dev@lists."
2000 						"sourceforge.net");
2001 				goto put_err_out;
2002 			} else {
2003 				/* Sequence numbers must match. */
2004 				if (MSEQNO_LE(al_entry->mft_reference) !=
2005 						ni->seq_no)
2006 					goto em_put_err_out;
2007 				/* Got it. All is ok. We can stop now. */
2008 				break;
2009 			}
2010 		}
2011 	}
2012 
2013 	ntfs_attr_reinit_search_ctx(ctx);
2014 
2015 	/* Now load all attribute extents. */
2016 	a = NULL;
2017 	next_vcn = last_vcn = highest_vcn = 0;
2018 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2019 			ctx))) {
2020 		runlist_element *nrl;
2021 
2022 		/* Cache the current attribute. */
2023 		a = ctx->attr;
2024 		/* $MFT must be non-resident. */
2025 		if (!a->non_resident) {
2026 			ntfs_error(sb, "$MFT must be non-resident but a "
2027 					"resident extent was found. $MFT is "
2028 					"corrupt. Run chkdsk.");
2029 			goto put_err_out;
2030 		}
2031 		/* $MFT must be uncompressed and unencrypted. */
2032 		if (a->flags & ATTR_COMPRESSION_MASK ||
2033 				a->flags & ATTR_IS_ENCRYPTED ||
2034 				a->flags & ATTR_IS_SPARSE) {
2035 			ntfs_error(sb, "$MFT must be uncompressed, "
2036 					"non-sparse, and unencrypted but a "
2037 					"compressed/sparse/encrypted extent "
2038 					"was found. $MFT is corrupt. Run "
2039 					"chkdsk.");
2040 			goto put_err_out;
2041 		}
2042 		/*
2043 		 * Decompress the mapping pairs array of this extent and merge
2044 		 * the result into the existing runlist. No need for locking
2045 		 * as we have exclusive access to the inode at this time and we
2046 		 * are a mount in progress task, too.
2047 		 */
2048 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2049 		if (IS_ERR(nrl)) {
2050 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2051 					"failed with error code %ld.  $MFT is "
2052 					"corrupt.", PTR_ERR(nrl));
2053 			goto put_err_out;
2054 		}
2055 		ni->runlist.rl = nrl;
2056 
2057 		/* Are we in the first extent? */
2058 		if (!next_vcn) {
2059 			if (a->data.non_resident.lowest_vcn) {
2060 				ntfs_error(sb, "First extent of $DATA "
2061 						"attribute has non zero "
2062 						"lowest_vcn. $MFT is corrupt. "
2063 						"You should run chkdsk.");
2064 				goto put_err_out;
2065 			}
2066 			/* Get the last vcn in the $DATA attribute. */
2067 			last_vcn = sle64_to_cpu(
2068 					a->data.non_resident.allocated_size)
2069 					>> vol->cluster_size_bits;
2070 			/* Fill in the inode size. */
2071 			vi->i_size = sle64_to_cpu(
2072 					a->data.non_resident.data_size);
2073 			ni->initialized_size = sle64_to_cpu(
2074 					a->data.non_resident.initialized_size);
2075 			ni->allocated_size = sle64_to_cpu(
2076 					a->data.non_resident.allocated_size);
2077 			/*
2078 			 * Verify the number of mft records does not exceed
2079 			 * 2^32 - 1.
2080 			 */
2081 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2082 					(1ULL << 32)) {
2083 				ntfs_error(sb, "$MFT is too big! Aborting.");
2084 				goto put_err_out;
2085 			}
2086 			/*
2087 			 * We have got the first extent of the runlist for
2088 			 * $MFT which means it is now relatively safe to call
2089 			 * the normal ntfs_read_inode() function.
2090 			 * Complete reading the inode, this will actually
2091 			 * re-read the mft record for $MFT, this time entering
2092 			 * it into the page cache with which we complete the
2093 			 * kick start of the volume. It should be safe to do
2094 			 * this now as the first extent of $MFT/$DATA is
2095 			 * already known and we would hope that we don't need
2096 			 * further extents in order to find the other
2097 			 * attributes belonging to $MFT. Only time will tell if
2098 			 * this is really the case. If not we will have to play
2099 			 * magic at this point, possibly duplicating a lot of
2100 			 * ntfs_read_inode() at this point. We will need to
2101 			 * ensure we do enough of its work to be able to call
2102 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2103 			 * hope this never happens...
2104 			 */
2105 			ntfs_read_locked_inode(vi);
2106 			if (is_bad_inode(vi)) {
2107 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2108 						"failed. BUG or corrupt $MFT. "
2109 						"Run chkdsk and if no errors "
2110 						"are found, please report you "
2111 						"saw this message to "
2112 						"linux-ntfs-dev@lists."
2113 						"sourceforge.net");
2114 				ntfs_attr_put_search_ctx(ctx);
2115 				/* Revert to the safe super operations. */
2116 				ntfs_free(m);
2117 				return -1;
2118 			}
2119 			/*
2120 			 * Re-initialize some specifics about $MFT's inode as
2121 			 * ntfs_read_inode() will have set up the default ones.
2122 			 */
2123 			/* Set uid and gid to root. */
2124 			vi->i_uid = vi->i_gid = 0;
2125 			/* Regular file. No access for anyone. */
2126 			vi->i_mode = S_IFREG;
2127 			/* No VFS initiated operations allowed for $MFT. */
2128 			vi->i_op = &ntfs_empty_inode_ops;
2129 			vi->i_fop = &ntfs_empty_file_ops;
2130 		}
2131 
2132 		/* Get the lowest vcn for the next extent. */
2133 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2134 		next_vcn = highest_vcn + 1;
2135 
2136 		/* Only one extent or error, which we catch below. */
2137 		if (next_vcn <= 0)
2138 			break;
2139 
2140 		/* Avoid endless loops due to corruption. */
2141 		if (next_vcn < sle64_to_cpu(
2142 				a->data.non_resident.lowest_vcn)) {
2143 			ntfs_error(sb, "$MFT has corrupt attribute list "
2144 					"attribute. Run chkdsk.");
2145 			goto put_err_out;
2146 		}
2147 	}
2148 	if (err != -ENOENT) {
2149 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2150 				"$MFT is corrupt. Run chkdsk.");
2151 		goto put_err_out;
2152 	}
2153 	if (!a) {
2154 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2155 				"corrupt. Run chkdsk.");
2156 		goto put_err_out;
2157 	}
2158 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2159 		ntfs_error(sb, "Failed to load the complete runlist for "
2160 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2161 				"Run chkdsk.");
2162 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2163 				(unsigned long long)highest_vcn,
2164 				(unsigned long long)last_vcn - 1);
2165 		goto put_err_out;
2166 	}
2167 	ntfs_attr_put_search_ctx(ctx);
2168 	ntfs_debug("Done.");
2169 	ntfs_free(m);
2170 
2171 	/*
2172 	 * Split the locking rules of the MFT inode from the
2173 	 * locking rules of other inodes:
2174 	 */
2175 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2176 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2177 
2178 	return 0;
2179 
2180 em_put_err_out:
2181 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2182 			"attribute list. $MFT is corrupt. Run chkdsk.");
2183 put_err_out:
2184 	ntfs_attr_put_search_ctx(ctx);
2185 err_out:
2186 	ntfs_error(sb, "Failed. Marking inode as bad.");
2187 	make_bad_inode(vi);
2188 	ntfs_free(m);
2189 	return -1;
2190 }
2191 
2192 static void __ntfs_clear_inode(ntfs_inode *ni)
2193 {
2194 	/* Free all alocated memory. */
2195 	down_write(&ni->runlist.lock);
2196 	if (ni->runlist.rl) {
2197 		ntfs_free(ni->runlist.rl);
2198 		ni->runlist.rl = NULL;
2199 	}
2200 	up_write(&ni->runlist.lock);
2201 
2202 	if (ni->attr_list) {
2203 		ntfs_free(ni->attr_list);
2204 		ni->attr_list = NULL;
2205 	}
2206 
2207 	down_write(&ni->attr_list_rl.lock);
2208 	if (ni->attr_list_rl.rl) {
2209 		ntfs_free(ni->attr_list_rl.rl);
2210 		ni->attr_list_rl.rl = NULL;
2211 	}
2212 	up_write(&ni->attr_list_rl.lock);
2213 
2214 	if (ni->name_len && ni->name != I30) {
2215 		/* Catch bugs... */
2216 		BUG_ON(!ni->name);
2217 		kfree(ni->name);
2218 	}
2219 }
2220 
2221 void ntfs_clear_extent_inode(ntfs_inode *ni)
2222 {
2223 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2224 
2225 	BUG_ON(NInoAttr(ni));
2226 	BUG_ON(ni->nr_extents != -1);
2227 
2228 #ifdef NTFS_RW
2229 	if (NInoDirty(ni)) {
2230 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2231 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2232 					"Losing data!  This is a BUG!!!");
2233 		// FIXME:  Do something!!!
2234 	}
2235 #endif /* NTFS_RW */
2236 
2237 	__ntfs_clear_inode(ni);
2238 
2239 	/* Bye, bye... */
2240 	ntfs_destroy_extent_inode(ni);
2241 }
2242 
2243 /**
2244  * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2245  * @vi:		vfs inode pending annihilation
2246  *
2247  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2248  * is called, which deallocates all memory belonging to the NTFS specific part
2249  * of the inode and returns.
2250  *
2251  * If the MFT record is dirty, we commit it before doing anything else.
2252  */
2253 void ntfs_clear_big_inode(struct inode *vi)
2254 {
2255 	ntfs_inode *ni = NTFS_I(vi);
2256 
2257 #ifdef NTFS_RW
2258 	if (NInoDirty(ni)) {
2259 		bool was_bad = (is_bad_inode(vi));
2260 
2261 		/* Committing the inode also commits all extent inodes. */
2262 		ntfs_commit_inode(vi);
2263 
2264 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2265 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2266 					"0x%lx.  Losing data!", vi->i_ino);
2267 			// FIXME:  Do something!!!
2268 		}
2269 	}
2270 #endif /* NTFS_RW */
2271 
2272 	/* No need to lock at this stage as no one else has a reference. */
2273 	if (ni->nr_extents > 0) {
2274 		int i;
2275 
2276 		for (i = 0; i < ni->nr_extents; i++)
2277 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2278 		kfree(ni->ext.extent_ntfs_inos);
2279 	}
2280 
2281 	__ntfs_clear_inode(ni);
2282 
2283 	if (NInoAttr(ni)) {
2284 		/* Release the base inode if we are holding it. */
2285 		if (ni->nr_extents == -1) {
2286 			iput(VFS_I(ni->ext.base_ntfs_ino));
2287 			ni->nr_extents = 0;
2288 			ni->ext.base_ntfs_ino = NULL;
2289 		}
2290 	}
2291 	return;
2292 }
2293 
2294 /**
2295  * ntfs_show_options - show mount options in /proc/mounts
2296  * @sf:		seq_file in which to write our mount options
2297  * @mnt:	vfs mount whose mount options to display
2298  *
2299  * Called by the VFS once for each mounted ntfs volume when someone reads
2300  * /proc/mounts in order to display the NTFS specific mount options of each
2301  * mount. The mount options of the vfs mount @mnt are written to the seq file
2302  * @sf and success is returned.
2303  */
2304 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2305 {
2306 	ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2307 	int i;
2308 
2309 	seq_printf(sf, ",uid=%i", vol->uid);
2310 	seq_printf(sf, ",gid=%i", vol->gid);
2311 	if (vol->fmask == vol->dmask)
2312 		seq_printf(sf, ",umask=0%o", vol->fmask);
2313 	else {
2314 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2315 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2316 	}
2317 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2318 	if (NVolCaseSensitive(vol))
2319 		seq_printf(sf, ",case_sensitive");
2320 	if (NVolShowSystemFiles(vol))
2321 		seq_printf(sf, ",show_sys_files");
2322 	if (!NVolSparseEnabled(vol))
2323 		seq_printf(sf, ",disable_sparse");
2324 	for (i = 0; on_errors_arr[i].val; i++) {
2325 		if (on_errors_arr[i].val & vol->on_errors)
2326 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2327 	}
2328 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2329 	return 0;
2330 }
2331 
2332 #ifdef NTFS_RW
2333 
2334 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2335 		"chkdsk.";
2336 
2337 /**
2338  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2339  * @vi:		inode for which the i_size was changed
2340  *
2341  * We only support i_size changes for normal files at present, i.e. not
2342  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2343  * below.
2344  *
2345  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2346  * that the change is allowed.
2347  *
2348  * This implies for us that @vi is a file inode rather than a directory, index,
2349  * or attribute inode as well as that @vi is a base inode.
2350  *
2351  * Returns 0 on success or -errno on error.
2352  *
2353  * Called with ->i_mutex held.  In all but one case ->i_alloc_sem is held for
2354  * writing.  The only case in the kernel where ->i_alloc_sem is not held is
2355  * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2356  * with the current i_size as the offset.  The analogous place in NTFS is in
2357  * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2358  * without holding ->i_alloc_sem.
2359  */
2360 int ntfs_truncate(struct inode *vi)
2361 {
2362 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2363 	VCN highest_vcn;
2364 	unsigned long flags;
2365 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2366 	ntfs_volume *vol = ni->vol;
2367 	ntfs_attr_search_ctx *ctx;
2368 	MFT_RECORD *m;
2369 	ATTR_RECORD *a;
2370 	const char *te = "  Leaving file length out of sync with i_size.";
2371 	int err, mp_size, size_change, alloc_change;
2372 	u32 attr_len;
2373 
2374 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2375 	BUG_ON(NInoAttr(ni));
2376 	BUG_ON(S_ISDIR(vi->i_mode));
2377 	BUG_ON(NInoMstProtected(ni));
2378 	BUG_ON(ni->nr_extents < 0);
2379 retry_truncate:
2380 	/*
2381 	 * Lock the runlist for writing and map the mft record to ensure it is
2382 	 * safe to mess with the attribute runlist and sizes.
2383 	 */
2384 	down_write(&ni->runlist.lock);
2385 	if (!NInoAttr(ni))
2386 		base_ni = ni;
2387 	else
2388 		base_ni = ni->ext.base_ntfs_ino;
2389 	m = map_mft_record(base_ni);
2390 	if (IS_ERR(m)) {
2391 		err = PTR_ERR(m);
2392 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2393 				"(error code %d).%s", vi->i_ino, err, te);
2394 		ctx = NULL;
2395 		m = NULL;
2396 		goto old_bad_out;
2397 	}
2398 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2399 	if (unlikely(!ctx)) {
2400 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2401 				"inode 0x%lx (not enough memory).%s",
2402 				vi->i_ino, te);
2403 		err = -ENOMEM;
2404 		goto old_bad_out;
2405 	}
2406 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2407 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2408 	if (unlikely(err)) {
2409 		if (err == -ENOENT) {
2410 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2411 					"mft record.  Inode 0x%lx is corrupt.  "
2412 					"Run chkdsk.%s", vi->i_ino, te);
2413 			err = -EIO;
2414 		} else
2415 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2416 					"inode 0x%lx (error code %d).%s",
2417 					vi->i_ino, err, te);
2418 		goto old_bad_out;
2419 	}
2420 	m = ctx->mrec;
2421 	a = ctx->attr;
2422 	/*
2423 	 * The i_size of the vfs inode is the new size for the attribute value.
2424 	 */
2425 	new_size = i_size_read(vi);
2426 	/* The current size of the attribute value is the old size. */
2427 	old_size = ntfs_attr_size(a);
2428 	/* Calculate the new allocated size. */
2429 	if (NInoNonResident(ni))
2430 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2431 				~(s64)vol->cluster_size_mask;
2432 	else
2433 		new_alloc_size = (new_size + 7) & ~7;
2434 	/* The current allocated size is the old allocated size. */
2435 	read_lock_irqsave(&ni->size_lock, flags);
2436 	old_alloc_size = ni->allocated_size;
2437 	read_unlock_irqrestore(&ni->size_lock, flags);
2438 	/*
2439 	 * The change in the file size.  This will be 0 if no change, >0 if the
2440 	 * size is growing, and <0 if the size is shrinking.
2441 	 */
2442 	size_change = -1;
2443 	if (new_size - old_size >= 0) {
2444 		size_change = 1;
2445 		if (new_size == old_size)
2446 			size_change = 0;
2447 	}
2448 	/* As above for the allocated size. */
2449 	alloc_change = -1;
2450 	if (new_alloc_size - old_alloc_size >= 0) {
2451 		alloc_change = 1;
2452 		if (new_alloc_size == old_alloc_size)
2453 			alloc_change = 0;
2454 	}
2455 	/*
2456 	 * If neither the size nor the allocation are being changed there is
2457 	 * nothing to do.
2458 	 */
2459 	if (!size_change && !alloc_change)
2460 		goto unm_done;
2461 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2462 	if (size_change) {
2463 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2464 		if (unlikely(err)) {
2465 			if (err == -ERANGE) {
2466 				ntfs_error(vol->sb, "Truncate would cause the "
2467 						"inode 0x%lx to %simum size "
2468 						"for its attribute type "
2469 						"(0x%x).  Aborting truncate.",
2470 						vi->i_ino,
2471 						new_size > old_size ? "exceed "
2472 						"the max" : "go under the min",
2473 						le32_to_cpu(ni->type));
2474 				err = -EFBIG;
2475 			} else {
2476 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2477 						"attribute type 0x%x.  "
2478 						"Aborting truncate.",
2479 						vi->i_ino,
2480 						le32_to_cpu(ni->type));
2481 				err = -EIO;
2482 			}
2483 			/* Reset the vfs inode size to the old size. */
2484 			i_size_write(vi, old_size);
2485 			goto err_out;
2486 		}
2487 	}
2488 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2489 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2490 				"supported yet for %s files, ignoring.",
2491 				NInoCompressed(ni) ? "compressed" :
2492 				"encrypted");
2493 		err = -EOPNOTSUPP;
2494 		goto bad_out;
2495 	}
2496 	if (a->non_resident)
2497 		goto do_non_resident_truncate;
2498 	BUG_ON(NInoNonResident(ni));
2499 	/* Resize the attribute record to best fit the new attribute size. */
2500 	if (new_size < vol->mft_record_size &&
2501 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2502 		/* The resize succeeded! */
2503 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2504 		mark_mft_record_dirty(ctx->ntfs_ino);
2505 		write_lock_irqsave(&ni->size_lock, flags);
2506 		/* Update the sizes in the ntfs inode and all is done. */
2507 		ni->allocated_size = le32_to_cpu(a->length) -
2508 				le16_to_cpu(a->data.resident.value_offset);
2509 		/*
2510 		 * Note ntfs_resident_attr_value_resize() has already done any
2511 		 * necessary data clearing in the attribute record.  When the
2512 		 * file is being shrunk vmtruncate() will already have cleared
2513 		 * the top part of the last partial page, i.e. since this is
2514 		 * the resident case this is the page with index 0.  However,
2515 		 * when the file is being expanded, the page cache page data
2516 		 * between the old data_size, i.e. old_size, and the new_size
2517 		 * has not been zeroed.  Fortunately, we do not need to zero it
2518 		 * either since on one hand it will either already be zero due
2519 		 * to both readpage and writepage clearing partial page data
2520 		 * beyond i_size in which case there is nothing to do or in the
2521 		 * case of the file being mmap()ped at the same time, POSIX
2522 		 * specifies that the behaviour is unspecified thus we do not
2523 		 * have to do anything.  This means that in our implementation
2524 		 * in the rare case that the file is mmap()ped and a write
2525 		 * occured into the mmap()ped region just beyond the file size
2526 		 * and writepage has not yet been called to write out the page
2527 		 * (which would clear the area beyond the file size) and we now
2528 		 * extend the file size to incorporate this dirty region
2529 		 * outside the file size, a write of the page would result in
2530 		 * this data being written to disk instead of being cleared.
2531 		 * Given both POSIX and the Linux mmap(2) man page specify that
2532 		 * this corner case is undefined, we choose to leave it like
2533 		 * that as this is much simpler for us as we cannot lock the
2534 		 * relevant page now since we are holding too many ntfs locks
2535 		 * which would result in a lock reversal deadlock.
2536 		 */
2537 		ni->initialized_size = new_size;
2538 		write_unlock_irqrestore(&ni->size_lock, flags);
2539 		goto unm_done;
2540 	}
2541 	/* If the above resize failed, this must be an attribute extension. */
2542 	BUG_ON(size_change < 0);
2543 	/*
2544 	 * We have to drop all the locks so we can call
2545 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2546 	 * locking the first page cache page and only if that fails dropping
2547 	 * the locks, locking the page, and redoing all the locking and
2548 	 * lookups.  While this would be a huge optimisation, it is not worth
2549 	 * it as this is definitely a slow code path as it only ever can happen
2550 	 * once for any given file.
2551 	 */
2552 	ntfs_attr_put_search_ctx(ctx);
2553 	unmap_mft_record(base_ni);
2554 	up_write(&ni->runlist.lock);
2555 	/*
2556 	 * Not enough space in the mft record, try to make the attribute
2557 	 * non-resident and if successful restart the truncation process.
2558 	 */
2559 	err = ntfs_attr_make_non_resident(ni, old_size);
2560 	if (likely(!err))
2561 		goto retry_truncate;
2562 	/*
2563 	 * Could not make non-resident.  If this is due to this not being
2564 	 * permitted for this attribute type or there not being enough space,
2565 	 * try to make other attributes non-resident.  Otherwise fail.
2566 	 */
2567 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2568 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2569 				"type 0x%x, because the conversion from "
2570 				"resident to non-resident attribute failed "
2571 				"with error code %i.", vi->i_ino,
2572 				(unsigned)le32_to_cpu(ni->type), err);
2573 		if (err != -ENOMEM)
2574 			err = -EIO;
2575 		goto conv_err_out;
2576 	}
2577 	/* TODO: Not implemented from here, abort. */
2578 	if (err == -ENOSPC)
2579 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2580 				"disk for the non-resident attribute value.  "
2581 				"This case is not implemented yet.");
2582 	else /* if (err == -EPERM) */
2583 		ntfs_error(vol->sb, "This attribute type may not be "
2584 				"non-resident.  This case is not implemented "
2585 				"yet.");
2586 	err = -EOPNOTSUPP;
2587 	goto conv_err_out;
2588 #if 0
2589 	// TODO: Attempt to make other attributes non-resident.
2590 	if (!err)
2591 		goto do_resident_extend;
2592 	/*
2593 	 * Both the attribute list attribute and the standard information
2594 	 * attribute must remain in the base inode.  Thus, if this is one of
2595 	 * these attributes, we have to try to move other attributes out into
2596 	 * extent mft records instead.
2597 	 */
2598 	if (ni->type == AT_ATTRIBUTE_LIST ||
2599 			ni->type == AT_STANDARD_INFORMATION) {
2600 		// TODO: Attempt to move other attributes into extent mft
2601 		// records.
2602 		err = -EOPNOTSUPP;
2603 		if (!err)
2604 			goto do_resident_extend;
2605 		goto err_out;
2606 	}
2607 	// TODO: Attempt to move this attribute to an extent mft record, but
2608 	// only if it is not already the only attribute in an mft record in
2609 	// which case there would be nothing to gain.
2610 	err = -EOPNOTSUPP;
2611 	if (!err)
2612 		goto do_resident_extend;
2613 	/* There is nothing we can do to make enough space. )-: */
2614 	goto err_out;
2615 #endif
2616 do_non_resident_truncate:
2617 	BUG_ON(!NInoNonResident(ni));
2618 	if (alloc_change < 0) {
2619 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2620 		if (highest_vcn > 0 &&
2621 				old_alloc_size >> vol->cluster_size_bits >
2622 				highest_vcn + 1) {
2623 			/*
2624 			 * This attribute has multiple extents.  Not yet
2625 			 * supported.
2626 			 */
2627 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2628 					"attribute type 0x%x, because the "
2629 					"attribute is highly fragmented (it "
2630 					"consists of multiple extents) and "
2631 					"this case is not implemented yet.",
2632 					vi->i_ino,
2633 					(unsigned)le32_to_cpu(ni->type));
2634 			err = -EOPNOTSUPP;
2635 			goto bad_out;
2636 		}
2637 	}
2638 	/*
2639 	 * If the size is shrinking, need to reduce the initialized_size and
2640 	 * the data_size before reducing the allocation.
2641 	 */
2642 	if (size_change < 0) {
2643 		/*
2644 		 * Make the valid size smaller (i_size is already up-to-date).
2645 		 */
2646 		write_lock_irqsave(&ni->size_lock, flags);
2647 		if (new_size < ni->initialized_size) {
2648 			ni->initialized_size = new_size;
2649 			a->data.non_resident.initialized_size =
2650 					cpu_to_sle64(new_size);
2651 		}
2652 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2653 		write_unlock_irqrestore(&ni->size_lock, flags);
2654 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2655 		mark_mft_record_dirty(ctx->ntfs_ino);
2656 		/* If the allocated size is not changing, we are done. */
2657 		if (!alloc_change)
2658 			goto unm_done;
2659 		/*
2660 		 * If the size is shrinking it makes no sense for the
2661 		 * allocation to be growing.
2662 		 */
2663 		BUG_ON(alloc_change > 0);
2664 	} else /* if (size_change >= 0) */ {
2665 		/*
2666 		 * The file size is growing or staying the same but the
2667 		 * allocation can be shrinking, growing or staying the same.
2668 		 */
2669 		if (alloc_change > 0) {
2670 			/*
2671 			 * We need to extend the allocation and possibly update
2672 			 * the data size.  If we are updating the data size,
2673 			 * since we are not touching the initialized_size we do
2674 			 * not need to worry about the actual data on disk.
2675 			 * And as far as the page cache is concerned, there
2676 			 * will be no pages beyond the old data size and any
2677 			 * partial region in the last page between the old and
2678 			 * new data size (or the end of the page if the new
2679 			 * data size is outside the page) does not need to be
2680 			 * modified as explained above for the resident
2681 			 * attribute truncate case.  To do this, we simply drop
2682 			 * the locks we hold and leave all the work to our
2683 			 * friendly helper ntfs_attr_extend_allocation().
2684 			 */
2685 			ntfs_attr_put_search_ctx(ctx);
2686 			unmap_mft_record(base_ni);
2687 			up_write(&ni->runlist.lock);
2688 			err = ntfs_attr_extend_allocation(ni, new_size,
2689 					size_change > 0 ? new_size : -1, -1);
2690 			/*
2691 			 * ntfs_attr_extend_allocation() will have done error
2692 			 * output already.
2693 			 */
2694 			goto done;
2695 		}
2696 		if (!alloc_change)
2697 			goto alloc_done;
2698 	}
2699 	/* alloc_change < 0 */
2700 	/* Free the clusters. */
2701 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2702 			vol->cluster_size_bits, -1, ctx);
2703 	m = ctx->mrec;
2704 	a = ctx->attr;
2705 	if (unlikely(nr_freed < 0)) {
2706 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2707 				"%lli).  Unmount and run chkdsk to recover "
2708 				"the lost cluster(s).", (long long)nr_freed);
2709 		NVolSetErrors(vol);
2710 		nr_freed = 0;
2711 	}
2712 	/* Truncate the runlist. */
2713 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2714 			new_alloc_size >> vol->cluster_size_bits);
2715 	/*
2716 	 * If the runlist truncation failed and/or the search context is no
2717 	 * longer valid, we cannot resize the attribute record or build the
2718 	 * mapping pairs array thus we mark the inode bad so that no access to
2719 	 * the freed clusters can happen.
2720 	 */
2721 	if (unlikely(err || IS_ERR(m))) {
2722 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2723 				IS_ERR(m) ?
2724 				"restore attribute search context" :
2725 				"truncate attribute runlist",
2726 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2727 		err = -EIO;
2728 		goto bad_out;
2729 	}
2730 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2731 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2732 	if (unlikely(mp_size <= 0)) {
2733 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2734 				"attribute type 0x%x, because determining the "
2735 				"size for the mapping pairs failed with error "
2736 				"code %i.%s", vi->i_ino,
2737 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2738 		err = -EIO;
2739 		goto bad_out;
2740 	}
2741 	/*
2742 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2743 	 * this cannot fail since we are making the attribute smaller thus by
2744 	 * definition there is enough space to do so.
2745 	 */
2746 	attr_len = le32_to_cpu(a->length);
2747 	err = ntfs_attr_record_resize(m, a, mp_size +
2748 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2749 	BUG_ON(err);
2750 	/*
2751 	 * Generate the mapping pairs array directly into the attribute record.
2752 	 */
2753 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2754 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2755 			mp_size, ni->runlist.rl, 0, -1, NULL);
2756 	if (unlikely(err)) {
2757 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2758 				"attribute type 0x%x, because building the "
2759 				"mapping pairs failed with error code %i.%s",
2760 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2761 				err, es);
2762 		err = -EIO;
2763 		goto bad_out;
2764 	}
2765 	/* Update the allocated/compressed size as well as the highest vcn. */
2766 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2767 			vol->cluster_size_bits) - 1);
2768 	write_lock_irqsave(&ni->size_lock, flags);
2769 	ni->allocated_size = new_alloc_size;
2770 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2771 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2772 		if (nr_freed) {
2773 			ni->itype.compressed.size -= nr_freed <<
2774 					vol->cluster_size_bits;
2775 			BUG_ON(ni->itype.compressed.size < 0);
2776 			a->data.non_resident.compressed_size = cpu_to_sle64(
2777 					ni->itype.compressed.size);
2778 			vi->i_blocks = ni->itype.compressed.size >> 9;
2779 		}
2780 	} else
2781 		vi->i_blocks = new_alloc_size >> 9;
2782 	write_unlock_irqrestore(&ni->size_lock, flags);
2783 	/*
2784 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2785 	 * have already dealt with the initialized_size and the data_size above
2786 	 * and we are done.  If the truncate is only changing the allocation
2787 	 * and not the data_size, we are also done.  If this is an extending
2788 	 * truncate, need to extend the data_size now which is ensured by the
2789 	 * fact that @size_change is positive.
2790 	 */
2791 alloc_done:
2792 	/*
2793 	 * If the size is growing, need to update it now.  If it is shrinking,
2794 	 * we have already updated it above (before the allocation change).
2795 	 */
2796 	if (size_change > 0)
2797 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2798 	/* Ensure the modified mft record is written out. */
2799 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2800 	mark_mft_record_dirty(ctx->ntfs_ino);
2801 unm_done:
2802 	ntfs_attr_put_search_ctx(ctx);
2803 	unmap_mft_record(base_ni);
2804 	up_write(&ni->runlist.lock);
2805 done:
2806 	/* Update the mtime and ctime on the base inode. */
2807 	/* normally ->truncate shouldn't update ctime or mtime,
2808 	 * but ntfs did before so it got a copy & paste version
2809 	 * of file_update_time.  one day someone should fix this
2810 	 * for real.
2811 	 */
2812 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2813 		struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2814 		int sync_it = 0;
2815 
2816 		if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2817 		    !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2818 			sync_it = 1;
2819 		VFS_I(base_ni)->i_mtime = now;
2820 		VFS_I(base_ni)->i_ctime = now;
2821 
2822 		if (sync_it)
2823 			mark_inode_dirty_sync(VFS_I(base_ni));
2824 	}
2825 
2826 	if (likely(!err)) {
2827 		NInoClearTruncateFailed(ni);
2828 		ntfs_debug("Done.");
2829 	}
2830 	return err;
2831 old_bad_out:
2832 	old_size = -1;
2833 bad_out:
2834 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2835 		NVolSetErrors(vol);
2836 	if (err != -EOPNOTSUPP)
2837 		NInoSetTruncateFailed(ni);
2838 	else if (old_size >= 0)
2839 		i_size_write(vi, old_size);
2840 err_out:
2841 	if (ctx)
2842 		ntfs_attr_put_search_ctx(ctx);
2843 	if (m)
2844 		unmap_mft_record(base_ni);
2845 	up_write(&ni->runlist.lock);
2846 out:
2847 	ntfs_debug("Failed.  Returning error code %i.", err);
2848 	return err;
2849 conv_err_out:
2850 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2851 		NVolSetErrors(vol);
2852 	if (err != -EOPNOTSUPP)
2853 		NInoSetTruncateFailed(ni);
2854 	else
2855 		i_size_write(vi, old_size);
2856 	goto out;
2857 }
2858 
2859 /**
2860  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2861  * @vi:		inode for which the i_size was changed
2862  *
2863  * Wrapper for ntfs_truncate() that has no return value.
2864  *
2865  * See ntfs_truncate() description above for details.
2866  */
2867 void ntfs_truncate_vfs(struct inode *vi) {
2868 	ntfs_truncate(vi);
2869 }
2870 
2871 /**
2872  * ntfs_setattr - called from notify_change() when an attribute is being changed
2873  * @dentry:	dentry whose attributes to change
2874  * @attr:	structure describing the attributes and the changes
2875  *
2876  * We have to trap VFS attempts to truncate the file described by @dentry as
2877  * soon as possible, because we do not implement changes in i_size yet.  So we
2878  * abort all i_size changes here.
2879  *
2880  * We also abort all changes of user, group, and mode as we do not implement
2881  * the NTFS ACLs yet.
2882  *
2883  * Called with ->i_mutex held.  For the ATTR_SIZE (i.e. ->truncate) case, also
2884  * called with ->i_alloc_sem held for writing.
2885  *
2886  * Basically this is a copy of generic notify_change() and inode_setattr()
2887  * functionality, except we intercept and abort changes in i_size.
2888  */
2889 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2890 {
2891 	struct inode *vi = dentry->d_inode;
2892 	int err;
2893 	unsigned int ia_valid = attr->ia_valid;
2894 
2895 	err = inode_change_ok(vi, attr);
2896 	if (err)
2897 		goto out;
2898 	/* We do not support NTFS ACLs yet. */
2899 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2900 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2901 				"supported yet, ignoring.");
2902 		err = -EOPNOTSUPP;
2903 		goto out;
2904 	}
2905 	if (ia_valid & ATTR_SIZE) {
2906 		if (attr->ia_size != i_size_read(vi)) {
2907 			ntfs_inode *ni = NTFS_I(vi);
2908 			/*
2909 			 * FIXME: For now we do not support resizing of
2910 			 * compressed or encrypted files yet.
2911 			 */
2912 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2913 				ntfs_warning(vi->i_sb, "Changes in inode size "
2914 						"are not supported yet for "
2915 						"%s files, ignoring.",
2916 						NInoCompressed(ni) ?
2917 						"compressed" : "encrypted");
2918 				err = -EOPNOTSUPP;
2919 			} else
2920 				err = vmtruncate(vi, attr->ia_size);
2921 			if (err || ia_valid == ATTR_SIZE)
2922 				goto out;
2923 		} else {
2924 			/*
2925 			 * We skipped the truncate but must still update
2926 			 * timestamps.
2927 			 */
2928 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2929 		}
2930 	}
2931 	if (ia_valid & ATTR_ATIME)
2932 		vi->i_atime = timespec_trunc(attr->ia_atime,
2933 				vi->i_sb->s_time_gran);
2934 	if (ia_valid & ATTR_MTIME)
2935 		vi->i_mtime = timespec_trunc(attr->ia_mtime,
2936 				vi->i_sb->s_time_gran);
2937 	if (ia_valid & ATTR_CTIME)
2938 		vi->i_ctime = timespec_trunc(attr->ia_ctime,
2939 				vi->i_sb->s_time_gran);
2940 	mark_inode_dirty(vi);
2941 out:
2942 	return err;
2943 }
2944 
2945 /**
2946  * ntfs_write_inode - write out a dirty inode
2947  * @vi:		inode to write out
2948  * @sync:	if true, write out synchronously
2949  *
2950  * Write out a dirty inode to disk including any extent inodes if present.
2951  *
2952  * If @sync is true, commit the inode to disk and wait for io completion.  This
2953  * is done using write_mft_record().
2954  *
2955  * If @sync is false, just schedule the write to happen but do not wait for i/o
2956  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2957  * marking the page (and in this case mft record) dirty but we do not implement
2958  * this yet as write_mft_record() largely ignores the @sync parameter and
2959  * always performs synchronous writes.
2960  *
2961  * Return 0 on success and -errno on error.
2962  */
2963 int ntfs_write_inode(struct inode *vi, int sync)
2964 {
2965 	sle64 nt;
2966 	ntfs_inode *ni = NTFS_I(vi);
2967 	ntfs_attr_search_ctx *ctx;
2968 	MFT_RECORD *m;
2969 	STANDARD_INFORMATION *si;
2970 	int err = 0;
2971 	bool modified = false;
2972 
2973 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2974 			vi->i_ino);
2975 	/*
2976 	 * Dirty attribute inodes are written via their real inodes so just
2977 	 * clean them here.  Access time updates are taken care off when the
2978 	 * real inode is written.
2979 	 */
2980 	if (NInoAttr(ni)) {
2981 		NInoClearDirty(ni);
2982 		ntfs_debug("Done.");
2983 		return 0;
2984 	}
2985 	/* Map, pin, and lock the mft record belonging to the inode. */
2986 	m = map_mft_record(ni);
2987 	if (IS_ERR(m)) {
2988 		err = PTR_ERR(m);
2989 		goto err_out;
2990 	}
2991 	/* Update the access times in the standard information attribute. */
2992 	ctx = ntfs_attr_get_search_ctx(ni, m);
2993 	if (unlikely(!ctx)) {
2994 		err = -ENOMEM;
2995 		goto unm_err_out;
2996 	}
2997 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2998 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2999 	if (unlikely(err)) {
3000 		ntfs_attr_put_search_ctx(ctx);
3001 		goto unm_err_out;
3002 	}
3003 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3004 			le16_to_cpu(ctx->attr->data.resident.value_offset));
3005 	/* Update the access times if they have changed. */
3006 	nt = utc2ntfs(vi->i_mtime);
3007 	if (si->last_data_change_time != nt) {
3008 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3009 				"new = 0x%llx", vi->i_ino, (long long)
3010 				sle64_to_cpu(si->last_data_change_time),
3011 				(long long)sle64_to_cpu(nt));
3012 		si->last_data_change_time = nt;
3013 		modified = true;
3014 	}
3015 	nt = utc2ntfs(vi->i_ctime);
3016 	if (si->last_mft_change_time != nt) {
3017 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3018 				"new = 0x%llx", vi->i_ino, (long long)
3019 				sle64_to_cpu(si->last_mft_change_time),
3020 				(long long)sle64_to_cpu(nt));
3021 		si->last_mft_change_time = nt;
3022 		modified = true;
3023 	}
3024 	nt = utc2ntfs(vi->i_atime);
3025 	if (si->last_access_time != nt) {
3026 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3027 				"new = 0x%llx", vi->i_ino,
3028 				(long long)sle64_to_cpu(si->last_access_time),
3029 				(long long)sle64_to_cpu(nt));
3030 		si->last_access_time = nt;
3031 		modified = true;
3032 	}
3033 	/*
3034 	 * If we just modified the standard information attribute we need to
3035 	 * mark the mft record it is in dirty.  We do this manually so that
3036 	 * mark_inode_dirty() is not called which would redirty the inode and
3037 	 * hence result in an infinite loop of trying to write the inode.
3038 	 * There is no need to mark the base inode nor the base mft record
3039 	 * dirty, since we are going to write this mft record below in any case
3040 	 * and the base mft record may actually not have been modified so it
3041 	 * might not need to be written out.
3042 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3043 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3044 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3045 	 * re-invoked because of it which in turn is ok since the dirtied mft
3046 	 * record will be cleaned and written out to disk below, i.e. before
3047 	 * this function returns.
3048 	 */
3049 	if (modified) {
3050 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3051 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3052 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3053 					ctx->ntfs_ino->page_ofs);
3054 	}
3055 	ntfs_attr_put_search_ctx(ctx);
3056 	/* Now the access times are updated, write the base mft record. */
3057 	if (NInoDirty(ni))
3058 		err = write_mft_record(ni, m, sync);
3059 	/* Write all attached extent mft records. */
3060 	mutex_lock(&ni->extent_lock);
3061 	if (ni->nr_extents > 0) {
3062 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3063 		int i;
3064 
3065 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3066 		for (i = 0; i < ni->nr_extents; i++) {
3067 			ntfs_inode *tni = extent_nis[i];
3068 
3069 			if (NInoDirty(tni)) {
3070 				MFT_RECORD *tm = map_mft_record(tni);
3071 				int ret;
3072 
3073 				if (IS_ERR(tm)) {
3074 					if (!err || err == -ENOMEM)
3075 						err = PTR_ERR(tm);
3076 					continue;
3077 				}
3078 				ret = write_mft_record(tni, tm, sync);
3079 				unmap_mft_record(tni);
3080 				if (unlikely(ret)) {
3081 					if (!err || err == -ENOMEM)
3082 						err = ret;
3083 				}
3084 			}
3085 		}
3086 	}
3087 	mutex_unlock(&ni->extent_lock);
3088 	unmap_mft_record(ni);
3089 	if (unlikely(err))
3090 		goto err_out;
3091 	ntfs_debug("Done.");
3092 	return 0;
3093 unm_err_out:
3094 	unmap_mft_record(ni);
3095 err_out:
3096 	if (err == -ENOMEM) {
3097 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3098 				"Marking the inode dirty again, so the VFS "
3099 				"retries later.");
3100 		mark_inode_dirty(vi);
3101 	} else {
3102 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3103 		NVolSetErrors(ni->vol);
3104 	}
3105 	return err;
3106 }
3107 
3108 #endif /* NTFS_RW */
3109