1 /** 2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/mount.h> 26 #include <linux/mutex.h> 27 #include <linux/pagemap.h> 28 #include <linux/quotaops.h> 29 #include <linux/slab.h> 30 31 #include "aops.h" 32 #include "attrib.h" 33 #include "bitmap.h" 34 #include "dir.h" 35 #include "debug.h" 36 #include "inode.h" 37 #include "lcnalloc.h" 38 #include "malloc.h" 39 #include "mft.h" 40 #include "time.h" 41 #include "ntfs.h" 42 43 /** 44 * ntfs_test_inode - compare two (possibly fake) inodes for equality 45 * @vi: vfs inode which to test 46 * @na: ntfs attribute which is being tested with 47 * 48 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 49 * inode @vi for equality with the ntfs attribute @na. 50 * 51 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 52 * @na->name and @na->name_len are then ignored. 53 * 54 * Return 1 if the attributes match and 0 if not. 55 * 56 * NOTE: This function runs with the inode_lock spin lock held so it is not 57 * allowed to sleep. 58 */ 59 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 60 { 61 ntfs_inode *ni; 62 63 if (vi->i_ino != na->mft_no) 64 return 0; 65 ni = NTFS_I(vi); 66 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 67 if (likely(!NInoAttr(ni))) { 68 /* If not looking for a normal inode this is a mismatch. */ 69 if (unlikely(na->type != AT_UNUSED)) 70 return 0; 71 } else { 72 /* A fake inode describing an attribute. */ 73 if (ni->type != na->type) 74 return 0; 75 if (ni->name_len != na->name_len) 76 return 0; 77 if (na->name_len && memcmp(ni->name, na->name, 78 na->name_len * sizeof(ntfschar))) 79 return 0; 80 } 81 /* Match! */ 82 return 1; 83 } 84 85 /** 86 * ntfs_init_locked_inode - initialize an inode 87 * @vi: vfs inode to initialize 88 * @na: ntfs attribute which to initialize @vi to 89 * 90 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 91 * order to enable ntfs_test_inode() to do its work. 92 * 93 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 94 * In that case, @na->name and @na->name_len should be set to NULL and 0, 95 * respectively. Although that is not strictly necessary as 96 * ntfs_read_locked_inode() will fill them in later. 97 * 98 * Return 0 on success and -errno on error. 99 * 100 * NOTE: This function runs with the inode_lock spin lock held so it is not 101 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 102 */ 103 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 104 { 105 ntfs_inode *ni = NTFS_I(vi); 106 107 vi->i_ino = na->mft_no; 108 109 ni->type = na->type; 110 if (na->type == AT_INDEX_ALLOCATION) 111 NInoSetMstProtected(ni); 112 113 ni->name = na->name; 114 ni->name_len = na->name_len; 115 116 /* If initializing a normal inode, we are done. */ 117 if (likely(na->type == AT_UNUSED)) { 118 BUG_ON(na->name); 119 BUG_ON(na->name_len); 120 return 0; 121 } 122 123 /* It is a fake inode. */ 124 NInoSetAttr(ni); 125 126 /* 127 * We have I30 global constant as an optimization as it is the name 128 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 129 * allocation but that is ok. And most attributes are unnamed anyway, 130 * thus the fraction of named attributes with name != I30 is actually 131 * absolutely tiny. 132 */ 133 if (na->name_len && na->name != I30) { 134 unsigned int i; 135 136 BUG_ON(!na->name); 137 i = na->name_len * sizeof(ntfschar); 138 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 139 if (!ni->name) 140 return -ENOMEM; 141 memcpy(ni->name, na->name, i); 142 ni->name[na->name_len] = 0; 143 } 144 return 0; 145 } 146 147 typedef int (*set_t)(struct inode *, void *); 148 static int ntfs_read_locked_inode(struct inode *vi); 149 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 150 static int ntfs_read_locked_index_inode(struct inode *base_vi, 151 struct inode *vi); 152 153 /** 154 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 155 * @sb: super block of mounted volume 156 * @mft_no: mft record number / inode number to obtain 157 * 158 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 159 * file or directory). 160 * 161 * If the inode is in the cache, it is just returned with an increased 162 * reference count. Otherwise, a new struct inode is allocated and initialized, 163 * and finally ntfs_read_locked_inode() is called to read in the inode and 164 * fill in the remainder of the inode structure. 165 * 166 * Return the struct inode on success. Check the return value with IS_ERR() and 167 * if true, the function failed and the error code is obtained from PTR_ERR(). 168 */ 169 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 170 { 171 struct inode *vi; 172 int err; 173 ntfs_attr na; 174 175 na.mft_no = mft_no; 176 na.type = AT_UNUSED; 177 na.name = NULL; 178 na.name_len = 0; 179 180 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 181 (set_t)ntfs_init_locked_inode, &na); 182 if (unlikely(!vi)) 183 return ERR_PTR(-ENOMEM); 184 185 err = 0; 186 187 /* If this is a freshly allocated inode, need to read it now. */ 188 if (vi->i_state & I_NEW) { 189 err = ntfs_read_locked_inode(vi); 190 unlock_new_inode(vi); 191 } 192 /* 193 * There is no point in keeping bad inodes around if the failure was 194 * due to ENOMEM. We want to be able to retry again later. 195 */ 196 if (unlikely(err == -ENOMEM)) { 197 iput(vi); 198 vi = ERR_PTR(err); 199 } 200 return vi; 201 } 202 203 /** 204 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 205 * @base_vi: vfs base inode containing the attribute 206 * @type: attribute type 207 * @name: Unicode name of the attribute (NULL if unnamed) 208 * @name_len: length of @name in Unicode characters (0 if unnamed) 209 * 210 * Obtain the (fake) struct inode corresponding to the attribute specified by 211 * @type, @name, and @name_len, which is present in the base mft record 212 * specified by the vfs inode @base_vi. 213 * 214 * If the attribute inode is in the cache, it is just returned with an 215 * increased reference count. Otherwise, a new struct inode is allocated and 216 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 217 * attribute and fill in the inode structure. 218 * 219 * Note, for index allocation attributes, you need to use ntfs_index_iget() 220 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 221 * 222 * Return the struct inode of the attribute inode on success. Check the return 223 * value with IS_ERR() and if true, the function failed and the error code is 224 * obtained from PTR_ERR(). 225 */ 226 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 227 ntfschar *name, u32 name_len) 228 { 229 struct inode *vi; 230 int err; 231 ntfs_attr na; 232 233 /* Make sure no one calls ntfs_attr_iget() for indices. */ 234 BUG_ON(type == AT_INDEX_ALLOCATION); 235 236 na.mft_no = base_vi->i_ino; 237 na.type = type; 238 na.name = name; 239 na.name_len = name_len; 240 241 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 242 (set_t)ntfs_init_locked_inode, &na); 243 if (unlikely(!vi)) 244 return ERR_PTR(-ENOMEM); 245 246 err = 0; 247 248 /* If this is a freshly allocated inode, need to read it now. */ 249 if (vi->i_state & I_NEW) { 250 err = ntfs_read_locked_attr_inode(base_vi, vi); 251 unlock_new_inode(vi); 252 } 253 /* 254 * There is no point in keeping bad attribute inodes around. This also 255 * simplifies things in that we never need to check for bad attribute 256 * inodes elsewhere. 257 */ 258 if (unlikely(err)) { 259 iput(vi); 260 vi = ERR_PTR(err); 261 } 262 return vi; 263 } 264 265 /** 266 * ntfs_index_iget - obtain a struct inode corresponding to an index 267 * @base_vi: vfs base inode containing the index related attributes 268 * @name: Unicode name of the index 269 * @name_len: length of @name in Unicode characters 270 * 271 * Obtain the (fake) struct inode corresponding to the index specified by @name 272 * and @name_len, which is present in the base mft record specified by the vfs 273 * inode @base_vi. 274 * 275 * If the index inode is in the cache, it is just returned with an increased 276 * reference count. Otherwise, a new struct inode is allocated and 277 * initialized, and finally ntfs_read_locked_index_inode() is called to read 278 * the index related attributes and fill in the inode structure. 279 * 280 * Return the struct inode of the index inode on success. Check the return 281 * value with IS_ERR() and if true, the function failed and the error code is 282 * obtained from PTR_ERR(). 283 */ 284 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 285 u32 name_len) 286 { 287 struct inode *vi; 288 int err; 289 ntfs_attr na; 290 291 na.mft_no = base_vi->i_ino; 292 na.type = AT_INDEX_ALLOCATION; 293 na.name = name; 294 na.name_len = name_len; 295 296 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 297 (set_t)ntfs_init_locked_inode, &na); 298 if (unlikely(!vi)) 299 return ERR_PTR(-ENOMEM); 300 301 err = 0; 302 303 /* If this is a freshly allocated inode, need to read it now. */ 304 if (vi->i_state & I_NEW) { 305 err = ntfs_read_locked_index_inode(base_vi, vi); 306 unlock_new_inode(vi); 307 } 308 /* 309 * There is no point in keeping bad index inodes around. This also 310 * simplifies things in that we never need to check for bad index 311 * inodes elsewhere. 312 */ 313 if (unlikely(err)) { 314 iput(vi); 315 vi = ERR_PTR(err); 316 } 317 return vi; 318 } 319 320 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 321 { 322 ntfs_inode *ni; 323 324 ntfs_debug("Entering."); 325 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 326 if (likely(ni != NULL)) { 327 ni->state = 0; 328 return VFS_I(ni); 329 } 330 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 331 return NULL; 332 } 333 334 void ntfs_destroy_big_inode(struct inode *inode) 335 { 336 ntfs_inode *ni = NTFS_I(inode); 337 338 ntfs_debug("Entering."); 339 BUG_ON(ni->page); 340 if (!atomic_dec_and_test(&ni->count)) 341 BUG(); 342 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 343 } 344 345 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 346 { 347 ntfs_inode *ni; 348 349 ntfs_debug("Entering."); 350 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 351 if (likely(ni != NULL)) { 352 ni->state = 0; 353 return ni; 354 } 355 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 356 return NULL; 357 } 358 359 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 360 { 361 ntfs_debug("Entering."); 362 BUG_ON(ni->page); 363 if (!atomic_dec_and_test(&ni->count)) 364 BUG(); 365 kmem_cache_free(ntfs_inode_cache, ni); 366 } 367 368 /* 369 * The attribute runlist lock has separate locking rules from the 370 * normal runlist lock, so split the two lock-classes: 371 */ 372 static struct lock_class_key attr_list_rl_lock_class; 373 374 /** 375 * __ntfs_init_inode - initialize ntfs specific part of an inode 376 * @sb: super block of mounted volume 377 * @ni: freshly allocated ntfs inode which to initialize 378 * 379 * Initialize an ntfs inode to defaults. 380 * 381 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 382 * untouched. Make sure to initialize them elsewhere. 383 * 384 * Return zero on success and -ENOMEM on error. 385 */ 386 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 387 { 388 ntfs_debug("Entering."); 389 rwlock_init(&ni->size_lock); 390 ni->initialized_size = ni->allocated_size = 0; 391 ni->seq_no = 0; 392 atomic_set(&ni->count, 1); 393 ni->vol = NTFS_SB(sb); 394 ntfs_init_runlist(&ni->runlist); 395 mutex_init(&ni->mrec_lock); 396 ni->page = NULL; 397 ni->page_ofs = 0; 398 ni->attr_list_size = 0; 399 ni->attr_list = NULL; 400 ntfs_init_runlist(&ni->attr_list_rl); 401 lockdep_set_class(&ni->attr_list_rl.lock, 402 &attr_list_rl_lock_class); 403 ni->itype.index.block_size = 0; 404 ni->itype.index.vcn_size = 0; 405 ni->itype.index.collation_rule = 0; 406 ni->itype.index.block_size_bits = 0; 407 ni->itype.index.vcn_size_bits = 0; 408 mutex_init(&ni->extent_lock); 409 ni->nr_extents = 0; 410 ni->ext.base_ntfs_ino = NULL; 411 } 412 413 /* 414 * Extent inodes get MFT-mapped in a nested way, while the base inode 415 * is still mapped. Teach this nesting to the lock validator by creating 416 * a separate class for nested inode's mrec_lock's: 417 */ 418 static struct lock_class_key extent_inode_mrec_lock_key; 419 420 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 421 unsigned long mft_no) 422 { 423 ntfs_inode *ni = ntfs_alloc_extent_inode(); 424 425 ntfs_debug("Entering."); 426 if (likely(ni != NULL)) { 427 __ntfs_init_inode(sb, ni); 428 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 429 ni->mft_no = mft_no; 430 ni->type = AT_UNUSED; 431 ni->name = NULL; 432 ni->name_len = 0; 433 } 434 return ni; 435 } 436 437 /** 438 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 439 * @ctx: initialized attribute search context 440 * 441 * Search all file name attributes in the inode described by the attribute 442 * search context @ctx and check if any of the names are in the $Extend system 443 * directory. 444 * 445 * Return values: 446 * 1: file is in $Extend directory 447 * 0: file is not in $Extend directory 448 * -errno: failed to determine if the file is in the $Extend directory 449 */ 450 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 451 { 452 int nr_links, err; 453 454 /* Restart search. */ 455 ntfs_attr_reinit_search_ctx(ctx); 456 457 /* Get number of hard links. */ 458 nr_links = le16_to_cpu(ctx->mrec->link_count); 459 460 /* Loop through all hard links. */ 461 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 462 ctx))) { 463 FILE_NAME_ATTR *file_name_attr; 464 ATTR_RECORD *attr = ctx->attr; 465 u8 *p, *p2; 466 467 nr_links--; 468 /* 469 * Maximum sanity checking as we are called on an inode that 470 * we suspect might be corrupt. 471 */ 472 p = (u8*)attr + le32_to_cpu(attr->length); 473 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 474 le32_to_cpu(ctx->mrec->bytes_in_use)) { 475 err_corrupt_attr: 476 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 477 "attribute. You should run chkdsk."); 478 return -EIO; 479 } 480 if (attr->non_resident) { 481 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 482 "name. You should run chkdsk."); 483 return -EIO; 484 } 485 if (attr->flags) { 486 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 487 "invalid flags. You should run " 488 "chkdsk."); 489 return -EIO; 490 } 491 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 492 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 493 "name. You should run chkdsk."); 494 return -EIO; 495 } 496 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 497 le16_to_cpu(attr->data.resident.value_offset)); 498 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 499 if (p2 < (u8*)attr || p2 > p) 500 goto err_corrupt_attr; 501 /* This attribute is ok, but is it in the $Extend directory? */ 502 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 503 return 1; /* YES, it's an extended system file. */ 504 } 505 if (unlikely(err != -ENOENT)) 506 return err; 507 if (unlikely(nr_links)) { 508 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 509 "doesn't match number of name attributes. You " 510 "should run chkdsk."); 511 return -EIO; 512 } 513 return 0; /* NO, it is not an extended system file. */ 514 } 515 516 /** 517 * ntfs_read_locked_inode - read an inode from its device 518 * @vi: inode to read 519 * 520 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 521 * described by @vi into memory from the device. 522 * 523 * The only fields in @vi that we need to/can look at when the function is 524 * called are i_sb, pointing to the mounted device's super block, and i_ino, 525 * the number of the inode to load. 526 * 527 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 528 * for reading and sets up the necessary @vi fields as well as initializing 529 * the ntfs inode. 530 * 531 * Q: What locks are held when the function is called? 532 * A: i_state has I_LOCK set, hence the inode is locked, also 533 * i_count is set to 1, so it is not going to go away 534 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 535 * is allowed to write to them. We should of course be honouring them but 536 * we need to do that using the IS_* macros defined in include/linux/fs.h. 537 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 538 * 539 * Return 0 on success and -errno on error. In the error case, the inode will 540 * have had make_bad_inode() executed on it. 541 */ 542 static int ntfs_read_locked_inode(struct inode *vi) 543 { 544 ntfs_volume *vol = NTFS_SB(vi->i_sb); 545 ntfs_inode *ni; 546 struct inode *bvi; 547 MFT_RECORD *m; 548 ATTR_RECORD *a; 549 STANDARD_INFORMATION *si; 550 ntfs_attr_search_ctx *ctx; 551 int err = 0; 552 553 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 554 555 /* Setup the generic vfs inode parts now. */ 556 557 /* 558 * This is for checking whether an inode has changed w.r.t. a file so 559 * that the file can be updated if necessary (compare with f_version). 560 */ 561 vi->i_version = 1; 562 563 vi->i_uid = vol->uid; 564 vi->i_gid = vol->gid; 565 vi->i_mode = 0; 566 567 /* 568 * Initialize the ntfs specific part of @vi special casing 569 * FILE_MFT which we need to do at mount time. 570 */ 571 if (vi->i_ino != FILE_MFT) 572 ntfs_init_big_inode(vi); 573 ni = NTFS_I(vi); 574 575 m = map_mft_record(ni); 576 if (IS_ERR(m)) { 577 err = PTR_ERR(m); 578 goto err_out; 579 } 580 ctx = ntfs_attr_get_search_ctx(ni, m); 581 if (!ctx) { 582 err = -ENOMEM; 583 goto unm_err_out; 584 } 585 586 if (!(m->flags & MFT_RECORD_IN_USE)) { 587 ntfs_error(vi->i_sb, "Inode is not in use!"); 588 goto unm_err_out; 589 } 590 if (m->base_mft_record) { 591 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 592 goto unm_err_out; 593 } 594 595 /* Transfer information from mft record into vfs and ntfs inodes. */ 596 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 597 598 /* 599 * FIXME: Keep in mind that link_count is two for files which have both 600 * a long file name and a short file name as separate entries, so if 601 * we are hiding short file names this will be too high. Either we need 602 * to account for the short file names by subtracting them or we need 603 * to make sure we delete files even though i_nlink is not zero which 604 * might be tricky due to vfs interactions. Need to think about this 605 * some more when implementing the unlink command. 606 */ 607 vi->i_nlink = le16_to_cpu(m->link_count); 608 /* 609 * FIXME: Reparse points can have the directory bit set even though 610 * they would be S_IFLNK. Need to deal with this further below when we 611 * implement reparse points / symbolic links but it will do for now. 612 * Also if not a directory, it could be something else, rather than 613 * a regular file. But again, will do for now. 614 */ 615 /* Everyone gets all permissions. */ 616 vi->i_mode |= S_IRWXUGO; 617 /* If read-only, noone gets write permissions. */ 618 if (IS_RDONLY(vi)) 619 vi->i_mode &= ~S_IWUGO; 620 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 621 vi->i_mode |= S_IFDIR; 622 /* 623 * Apply the directory permissions mask set in the mount 624 * options. 625 */ 626 vi->i_mode &= ~vol->dmask; 627 /* Things break without this kludge! */ 628 if (vi->i_nlink > 1) 629 vi->i_nlink = 1; 630 } else { 631 vi->i_mode |= S_IFREG; 632 /* Apply the file permissions mask set in the mount options. */ 633 vi->i_mode &= ~vol->fmask; 634 } 635 /* 636 * Find the standard information attribute in the mft record. At this 637 * stage we haven't setup the attribute list stuff yet, so this could 638 * in fact fail if the standard information is in an extent record, but 639 * I don't think this actually ever happens. 640 */ 641 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 642 ctx); 643 if (unlikely(err)) { 644 if (err == -ENOENT) { 645 /* 646 * TODO: We should be performing a hot fix here (if the 647 * recover mount option is set) by creating a new 648 * attribute. 649 */ 650 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 651 "is missing."); 652 } 653 goto unm_err_out; 654 } 655 a = ctx->attr; 656 /* Get the standard information attribute value. */ 657 si = (STANDARD_INFORMATION*)((u8*)a + 658 le16_to_cpu(a->data.resident.value_offset)); 659 660 /* Transfer information from the standard information into vi. */ 661 /* 662 * Note: The i_?times do not quite map perfectly onto the NTFS times, 663 * but they are close enough, and in the end it doesn't really matter 664 * that much... 665 */ 666 /* 667 * mtime is the last change of the data within the file. Not changed 668 * when only metadata is changed, e.g. a rename doesn't affect mtime. 669 */ 670 vi->i_mtime = ntfs2utc(si->last_data_change_time); 671 /* 672 * ctime is the last change of the metadata of the file. This obviously 673 * always changes, when mtime is changed. ctime can be changed on its 674 * own, mtime is then not changed, e.g. when a file is renamed. 675 */ 676 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 677 /* 678 * Last access to the data within the file. Not changed during a rename 679 * for example but changed whenever the file is written to. 680 */ 681 vi->i_atime = ntfs2utc(si->last_access_time); 682 683 /* Find the attribute list attribute if present. */ 684 ntfs_attr_reinit_search_ctx(ctx); 685 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 686 if (err) { 687 if (unlikely(err != -ENOENT)) { 688 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 689 "attribute."); 690 goto unm_err_out; 691 } 692 } else /* if (!err) */ { 693 if (vi->i_ino == FILE_MFT) 694 goto skip_attr_list_load; 695 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 696 NInoSetAttrList(ni); 697 a = ctx->attr; 698 if (a->flags & ATTR_COMPRESSION_MASK) { 699 ntfs_error(vi->i_sb, "Attribute list attribute is " 700 "compressed."); 701 goto unm_err_out; 702 } 703 if (a->flags & ATTR_IS_ENCRYPTED || 704 a->flags & ATTR_IS_SPARSE) { 705 if (a->non_resident) { 706 ntfs_error(vi->i_sb, "Non-resident attribute " 707 "list attribute is encrypted/" 708 "sparse."); 709 goto unm_err_out; 710 } 711 ntfs_warning(vi->i_sb, "Resident attribute list " 712 "attribute in inode 0x%lx is marked " 713 "encrypted/sparse which is not true. " 714 "However, Windows allows this and " 715 "chkdsk does not detect or correct it " 716 "so we will just ignore the invalid " 717 "flags and pretend they are not set.", 718 vi->i_ino); 719 } 720 /* Now allocate memory for the attribute list. */ 721 ni->attr_list_size = (u32)ntfs_attr_size(a); 722 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 723 if (!ni->attr_list) { 724 ntfs_error(vi->i_sb, "Not enough memory to allocate " 725 "buffer for attribute list."); 726 err = -ENOMEM; 727 goto unm_err_out; 728 } 729 if (a->non_resident) { 730 NInoSetAttrListNonResident(ni); 731 if (a->data.non_resident.lowest_vcn) { 732 ntfs_error(vi->i_sb, "Attribute list has non " 733 "zero lowest_vcn."); 734 goto unm_err_out; 735 } 736 /* 737 * Setup the runlist. No need for locking as we have 738 * exclusive access to the inode at this time. 739 */ 740 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 741 a, NULL); 742 if (IS_ERR(ni->attr_list_rl.rl)) { 743 err = PTR_ERR(ni->attr_list_rl.rl); 744 ni->attr_list_rl.rl = NULL; 745 ntfs_error(vi->i_sb, "Mapping pairs " 746 "decompression failed."); 747 goto unm_err_out; 748 } 749 /* Now load the attribute list. */ 750 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 751 ni->attr_list, ni->attr_list_size, 752 sle64_to_cpu(a->data.non_resident. 753 initialized_size)))) { 754 ntfs_error(vi->i_sb, "Failed to load " 755 "attribute list attribute."); 756 goto unm_err_out; 757 } 758 } else /* if (!a->non_resident) */ { 759 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 760 + le32_to_cpu( 761 a->data.resident.value_length) > 762 (u8*)ctx->mrec + vol->mft_record_size) { 763 ntfs_error(vi->i_sb, "Corrupt attribute list " 764 "in inode."); 765 goto unm_err_out; 766 } 767 /* Now copy the attribute list. */ 768 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 769 a->data.resident.value_offset), 770 le32_to_cpu( 771 a->data.resident.value_length)); 772 } 773 } 774 skip_attr_list_load: 775 /* 776 * If an attribute list is present we now have the attribute list value 777 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 778 */ 779 if (S_ISDIR(vi->i_mode)) { 780 loff_t bvi_size; 781 ntfs_inode *bni; 782 INDEX_ROOT *ir; 783 u8 *ir_end, *index_end; 784 785 /* It is a directory, find index root attribute. */ 786 ntfs_attr_reinit_search_ctx(ctx); 787 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 788 0, NULL, 0, ctx); 789 if (unlikely(err)) { 790 if (err == -ENOENT) { 791 // FIXME: File is corrupt! Hot-fix with empty 792 // index root attribute if recovery option is 793 // set. 794 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 795 "is missing."); 796 } 797 goto unm_err_out; 798 } 799 a = ctx->attr; 800 /* Set up the state. */ 801 if (unlikely(a->non_resident)) { 802 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 803 "resident."); 804 goto unm_err_out; 805 } 806 /* Ensure the attribute name is placed before the value. */ 807 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 808 le16_to_cpu(a->data.resident.value_offset)))) { 809 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 810 "placed after the attribute value."); 811 goto unm_err_out; 812 } 813 /* 814 * Compressed/encrypted index root just means that the newly 815 * created files in that directory should be created compressed/ 816 * encrypted. However index root cannot be both compressed and 817 * encrypted. 818 */ 819 if (a->flags & ATTR_COMPRESSION_MASK) 820 NInoSetCompressed(ni); 821 if (a->flags & ATTR_IS_ENCRYPTED) { 822 if (a->flags & ATTR_COMPRESSION_MASK) { 823 ntfs_error(vi->i_sb, "Found encrypted and " 824 "compressed attribute."); 825 goto unm_err_out; 826 } 827 NInoSetEncrypted(ni); 828 } 829 if (a->flags & ATTR_IS_SPARSE) 830 NInoSetSparse(ni); 831 ir = (INDEX_ROOT*)((u8*)a + 832 le16_to_cpu(a->data.resident.value_offset)); 833 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 834 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 835 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 836 "corrupt."); 837 goto unm_err_out; 838 } 839 index_end = (u8*)&ir->index + 840 le32_to_cpu(ir->index.index_length); 841 if (index_end > ir_end) { 842 ntfs_error(vi->i_sb, "Directory index is corrupt."); 843 goto unm_err_out; 844 } 845 if (ir->type != AT_FILE_NAME) { 846 ntfs_error(vi->i_sb, "Indexed attribute is not " 847 "$FILE_NAME."); 848 goto unm_err_out; 849 } 850 if (ir->collation_rule != COLLATION_FILE_NAME) { 851 ntfs_error(vi->i_sb, "Index collation rule is not " 852 "COLLATION_FILE_NAME."); 853 goto unm_err_out; 854 } 855 ni->itype.index.collation_rule = ir->collation_rule; 856 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 857 if (ni->itype.index.block_size & 858 (ni->itype.index.block_size - 1)) { 859 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 860 "power of two.", 861 ni->itype.index.block_size); 862 goto unm_err_out; 863 } 864 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 865 ntfs_error(vi->i_sb, "Index block size (%u) > " 866 "PAGE_CACHE_SIZE (%ld) is not " 867 "supported. Sorry.", 868 ni->itype.index.block_size, 869 PAGE_CACHE_SIZE); 870 err = -EOPNOTSUPP; 871 goto unm_err_out; 872 } 873 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 874 ntfs_error(vi->i_sb, "Index block size (%u) < " 875 "NTFS_BLOCK_SIZE (%i) is not " 876 "supported. Sorry.", 877 ni->itype.index.block_size, 878 NTFS_BLOCK_SIZE); 879 err = -EOPNOTSUPP; 880 goto unm_err_out; 881 } 882 ni->itype.index.block_size_bits = 883 ffs(ni->itype.index.block_size) - 1; 884 /* Determine the size of a vcn in the directory index. */ 885 if (vol->cluster_size <= ni->itype.index.block_size) { 886 ni->itype.index.vcn_size = vol->cluster_size; 887 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 888 } else { 889 ni->itype.index.vcn_size = vol->sector_size; 890 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 891 } 892 893 /* Setup the index allocation attribute, even if not present. */ 894 NInoSetMstProtected(ni); 895 ni->type = AT_INDEX_ALLOCATION; 896 ni->name = I30; 897 ni->name_len = 4; 898 899 if (!(ir->index.flags & LARGE_INDEX)) { 900 /* No index allocation. */ 901 vi->i_size = ni->initialized_size = 902 ni->allocated_size = 0; 903 /* We are done with the mft record, so we release it. */ 904 ntfs_attr_put_search_ctx(ctx); 905 unmap_mft_record(ni); 906 m = NULL; 907 ctx = NULL; 908 goto skip_large_dir_stuff; 909 } /* LARGE_INDEX: Index allocation present. Setup state. */ 910 NInoSetIndexAllocPresent(ni); 911 /* Find index allocation attribute. */ 912 ntfs_attr_reinit_search_ctx(ctx); 913 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 914 CASE_SENSITIVE, 0, NULL, 0, ctx); 915 if (unlikely(err)) { 916 if (err == -ENOENT) 917 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 918 "attribute is not present but " 919 "$INDEX_ROOT indicated it is."); 920 else 921 ntfs_error(vi->i_sb, "Failed to lookup " 922 "$INDEX_ALLOCATION " 923 "attribute."); 924 goto unm_err_out; 925 } 926 a = ctx->attr; 927 if (!a->non_resident) { 928 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 929 "is resident."); 930 goto unm_err_out; 931 } 932 /* 933 * Ensure the attribute name is placed before the mapping pairs 934 * array. 935 */ 936 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 937 le16_to_cpu( 938 a->data.non_resident.mapping_pairs_offset)))) { 939 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 940 "is placed after the mapping pairs " 941 "array."); 942 goto unm_err_out; 943 } 944 if (a->flags & ATTR_IS_ENCRYPTED) { 945 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 946 "is encrypted."); 947 goto unm_err_out; 948 } 949 if (a->flags & ATTR_IS_SPARSE) { 950 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 951 "is sparse."); 952 goto unm_err_out; 953 } 954 if (a->flags & ATTR_COMPRESSION_MASK) { 955 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 956 "is compressed."); 957 goto unm_err_out; 958 } 959 if (a->data.non_resident.lowest_vcn) { 960 ntfs_error(vi->i_sb, "First extent of " 961 "$INDEX_ALLOCATION attribute has non " 962 "zero lowest_vcn."); 963 goto unm_err_out; 964 } 965 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 966 ni->initialized_size = sle64_to_cpu( 967 a->data.non_resident.initialized_size); 968 ni->allocated_size = sle64_to_cpu( 969 a->data.non_resident.allocated_size); 970 /* 971 * We are done with the mft record, so we release it. Otherwise 972 * we would deadlock in ntfs_attr_iget(). 973 */ 974 ntfs_attr_put_search_ctx(ctx); 975 unmap_mft_record(ni); 976 m = NULL; 977 ctx = NULL; 978 /* Get the index bitmap attribute inode. */ 979 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 980 if (IS_ERR(bvi)) { 981 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 982 err = PTR_ERR(bvi); 983 goto unm_err_out; 984 } 985 bni = NTFS_I(bvi); 986 if (NInoCompressed(bni) || NInoEncrypted(bni) || 987 NInoSparse(bni)) { 988 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 989 "and/or encrypted and/or sparse."); 990 goto iput_unm_err_out; 991 } 992 /* Consistency check bitmap size vs. index allocation size. */ 993 bvi_size = i_size_read(bvi); 994 if ((bvi_size << 3) < (vi->i_size >> 995 ni->itype.index.block_size_bits)) { 996 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 997 "for index allocation (0x%llx).", 998 bvi_size << 3, vi->i_size); 999 goto iput_unm_err_out; 1000 } 1001 /* No longer need the bitmap attribute inode. */ 1002 iput(bvi); 1003 skip_large_dir_stuff: 1004 /* Setup the operations for this inode. */ 1005 vi->i_op = &ntfs_dir_inode_ops; 1006 vi->i_fop = &ntfs_dir_ops; 1007 } else { 1008 /* It is a file. */ 1009 ntfs_attr_reinit_search_ctx(ctx); 1010 1011 /* Setup the data attribute, even if not present. */ 1012 ni->type = AT_DATA; 1013 ni->name = NULL; 1014 ni->name_len = 0; 1015 1016 /* Find first extent of the unnamed data attribute. */ 1017 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1018 if (unlikely(err)) { 1019 vi->i_size = ni->initialized_size = 1020 ni->allocated_size = 0; 1021 if (err != -ENOENT) { 1022 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1023 "attribute."); 1024 goto unm_err_out; 1025 } 1026 /* 1027 * FILE_Secure does not have an unnamed $DATA 1028 * attribute, so we special case it here. 1029 */ 1030 if (vi->i_ino == FILE_Secure) 1031 goto no_data_attr_special_case; 1032 /* 1033 * Most if not all the system files in the $Extend 1034 * system directory do not have unnamed data 1035 * attributes so we need to check if the parent 1036 * directory of the file is FILE_Extend and if it is 1037 * ignore this error. To do this we need to get the 1038 * name of this inode from the mft record as the name 1039 * contains the back reference to the parent directory. 1040 */ 1041 if (ntfs_is_extended_system_file(ctx) > 0) 1042 goto no_data_attr_special_case; 1043 // FIXME: File is corrupt! Hot-fix with empty data 1044 // attribute if recovery option is set. 1045 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1046 goto unm_err_out; 1047 } 1048 a = ctx->attr; 1049 /* Setup the state. */ 1050 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1051 if (a->flags & ATTR_COMPRESSION_MASK) { 1052 NInoSetCompressed(ni); 1053 if (vol->cluster_size > 4096) { 1054 ntfs_error(vi->i_sb, "Found " 1055 "compressed data but " 1056 "compression is " 1057 "disabled due to " 1058 "cluster size (%i) > " 1059 "4kiB.", 1060 vol->cluster_size); 1061 goto unm_err_out; 1062 } 1063 if ((a->flags & ATTR_COMPRESSION_MASK) 1064 != ATTR_IS_COMPRESSED) { 1065 ntfs_error(vi->i_sb, "Found unknown " 1066 "compression method " 1067 "or corrupt file."); 1068 goto unm_err_out; 1069 } 1070 } 1071 if (a->flags & ATTR_IS_SPARSE) 1072 NInoSetSparse(ni); 1073 } 1074 if (a->flags & ATTR_IS_ENCRYPTED) { 1075 if (NInoCompressed(ni)) { 1076 ntfs_error(vi->i_sb, "Found encrypted and " 1077 "compressed data."); 1078 goto unm_err_out; 1079 } 1080 NInoSetEncrypted(ni); 1081 } 1082 if (a->non_resident) { 1083 NInoSetNonResident(ni); 1084 if (NInoCompressed(ni) || NInoSparse(ni)) { 1085 if (NInoCompressed(ni) && a->data.non_resident. 1086 compression_unit != 4) { 1087 ntfs_error(vi->i_sb, "Found " 1088 "non-standard " 1089 "compression unit (%u " 1090 "instead of 4). " 1091 "Cannot handle this.", 1092 a->data.non_resident. 1093 compression_unit); 1094 err = -EOPNOTSUPP; 1095 goto unm_err_out; 1096 } 1097 if (a->data.non_resident.compression_unit) { 1098 ni->itype.compressed.block_size = 1U << 1099 (a->data.non_resident. 1100 compression_unit + 1101 vol->cluster_size_bits); 1102 ni->itype.compressed.block_size_bits = 1103 ffs(ni->itype. 1104 compressed. 1105 block_size) - 1; 1106 ni->itype.compressed.block_clusters = 1107 1U << a->data. 1108 non_resident. 1109 compression_unit; 1110 } else { 1111 ni->itype.compressed.block_size = 0; 1112 ni->itype.compressed.block_size_bits = 1113 0; 1114 ni->itype.compressed.block_clusters = 1115 0; 1116 } 1117 ni->itype.compressed.size = sle64_to_cpu( 1118 a->data.non_resident. 1119 compressed_size); 1120 } 1121 if (a->data.non_resident.lowest_vcn) { 1122 ntfs_error(vi->i_sb, "First extent of $DATA " 1123 "attribute has non zero " 1124 "lowest_vcn."); 1125 goto unm_err_out; 1126 } 1127 vi->i_size = sle64_to_cpu( 1128 a->data.non_resident.data_size); 1129 ni->initialized_size = sle64_to_cpu( 1130 a->data.non_resident.initialized_size); 1131 ni->allocated_size = sle64_to_cpu( 1132 a->data.non_resident.allocated_size); 1133 } else { /* Resident attribute. */ 1134 vi->i_size = ni->initialized_size = le32_to_cpu( 1135 a->data.resident.value_length); 1136 ni->allocated_size = le32_to_cpu(a->length) - 1137 le16_to_cpu( 1138 a->data.resident.value_offset); 1139 if (vi->i_size > ni->allocated_size) { 1140 ntfs_error(vi->i_sb, "Resident data attribute " 1141 "is corrupt (size exceeds " 1142 "allocation)."); 1143 goto unm_err_out; 1144 } 1145 } 1146 no_data_attr_special_case: 1147 /* We are done with the mft record, so we release it. */ 1148 ntfs_attr_put_search_ctx(ctx); 1149 unmap_mft_record(ni); 1150 m = NULL; 1151 ctx = NULL; 1152 /* Setup the operations for this inode. */ 1153 vi->i_op = &ntfs_file_inode_ops; 1154 vi->i_fop = &ntfs_file_ops; 1155 } 1156 if (NInoMstProtected(ni)) 1157 vi->i_mapping->a_ops = &ntfs_mst_aops; 1158 else 1159 vi->i_mapping->a_ops = &ntfs_aops; 1160 /* 1161 * The number of 512-byte blocks used on disk (for stat). This is in so 1162 * far inaccurate as it doesn't account for any named streams or other 1163 * special non-resident attributes, but that is how Windows works, too, 1164 * so we are at least consistent with Windows, if not entirely 1165 * consistent with the Linux Way. Doing it the Linux Way would cause a 1166 * significant slowdown as it would involve iterating over all 1167 * attributes in the mft record and adding the allocated/compressed 1168 * sizes of all non-resident attributes present to give us the Linux 1169 * correct size that should go into i_blocks (after division by 512). 1170 */ 1171 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1172 vi->i_blocks = ni->itype.compressed.size >> 9; 1173 else 1174 vi->i_blocks = ni->allocated_size >> 9; 1175 ntfs_debug("Done."); 1176 return 0; 1177 iput_unm_err_out: 1178 iput(bvi); 1179 unm_err_out: 1180 if (!err) 1181 err = -EIO; 1182 if (ctx) 1183 ntfs_attr_put_search_ctx(ctx); 1184 if (m) 1185 unmap_mft_record(ni); 1186 err_out: 1187 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1188 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1189 make_bad_inode(vi); 1190 if (err != -EOPNOTSUPP && err != -ENOMEM) 1191 NVolSetErrors(vol); 1192 return err; 1193 } 1194 1195 /** 1196 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1197 * @base_vi: base inode 1198 * @vi: attribute inode to read 1199 * 1200 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1201 * attribute inode described by @vi into memory from the base mft record 1202 * described by @base_ni. 1203 * 1204 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1205 * reading and looks up the attribute described by @vi before setting up the 1206 * necessary fields in @vi as well as initializing the ntfs inode. 1207 * 1208 * Q: What locks are held when the function is called? 1209 * A: i_state has I_LOCK set, hence the inode is locked, also 1210 * i_count is set to 1, so it is not going to go away 1211 * 1212 * Return 0 on success and -errno on error. In the error case, the inode will 1213 * have had make_bad_inode() executed on it. 1214 * 1215 * Note this cannot be called for AT_INDEX_ALLOCATION. 1216 */ 1217 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1218 { 1219 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1220 ntfs_inode *ni, *base_ni; 1221 MFT_RECORD *m; 1222 ATTR_RECORD *a; 1223 ntfs_attr_search_ctx *ctx; 1224 int err = 0; 1225 1226 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1227 1228 ntfs_init_big_inode(vi); 1229 1230 ni = NTFS_I(vi); 1231 base_ni = NTFS_I(base_vi); 1232 1233 /* Just mirror the values from the base inode. */ 1234 vi->i_version = base_vi->i_version; 1235 vi->i_uid = base_vi->i_uid; 1236 vi->i_gid = base_vi->i_gid; 1237 vi->i_nlink = base_vi->i_nlink; 1238 vi->i_mtime = base_vi->i_mtime; 1239 vi->i_ctime = base_vi->i_ctime; 1240 vi->i_atime = base_vi->i_atime; 1241 vi->i_generation = ni->seq_no = base_ni->seq_no; 1242 1243 /* Set inode type to zero but preserve permissions. */ 1244 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1245 1246 m = map_mft_record(base_ni); 1247 if (IS_ERR(m)) { 1248 err = PTR_ERR(m); 1249 goto err_out; 1250 } 1251 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1252 if (!ctx) { 1253 err = -ENOMEM; 1254 goto unm_err_out; 1255 } 1256 /* Find the attribute. */ 1257 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1258 CASE_SENSITIVE, 0, NULL, 0, ctx); 1259 if (unlikely(err)) 1260 goto unm_err_out; 1261 a = ctx->attr; 1262 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1263 if (a->flags & ATTR_COMPRESSION_MASK) { 1264 NInoSetCompressed(ni); 1265 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1266 ni->name_len)) { 1267 ntfs_error(vi->i_sb, "Found compressed " 1268 "non-data or named data " 1269 "attribute. Please report " 1270 "you saw this message to " 1271 "linux-ntfs-dev@lists." 1272 "sourceforge.net"); 1273 goto unm_err_out; 1274 } 1275 if (vol->cluster_size > 4096) { 1276 ntfs_error(vi->i_sb, "Found compressed " 1277 "attribute but compression is " 1278 "disabled due to cluster size " 1279 "(%i) > 4kiB.", 1280 vol->cluster_size); 1281 goto unm_err_out; 1282 } 1283 if ((a->flags & ATTR_COMPRESSION_MASK) != 1284 ATTR_IS_COMPRESSED) { 1285 ntfs_error(vi->i_sb, "Found unknown " 1286 "compression method."); 1287 goto unm_err_out; 1288 } 1289 } 1290 /* 1291 * The compressed/sparse flag set in an index root just means 1292 * to compress all files. 1293 */ 1294 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1295 ntfs_error(vi->i_sb, "Found mst protected attribute " 1296 "but the attribute is %s. Please " 1297 "report you saw this message to " 1298 "linux-ntfs-dev@lists.sourceforge.net", 1299 NInoCompressed(ni) ? "compressed" : 1300 "sparse"); 1301 goto unm_err_out; 1302 } 1303 if (a->flags & ATTR_IS_SPARSE) 1304 NInoSetSparse(ni); 1305 } 1306 if (a->flags & ATTR_IS_ENCRYPTED) { 1307 if (NInoCompressed(ni)) { 1308 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1309 "data."); 1310 goto unm_err_out; 1311 } 1312 /* 1313 * The encryption flag set in an index root just means to 1314 * encrypt all files. 1315 */ 1316 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1317 ntfs_error(vi->i_sb, "Found mst protected attribute " 1318 "but the attribute is encrypted. " 1319 "Please report you saw this message " 1320 "to linux-ntfs-dev@lists.sourceforge." 1321 "net"); 1322 goto unm_err_out; 1323 } 1324 if (ni->type != AT_DATA) { 1325 ntfs_error(vi->i_sb, "Found encrypted non-data " 1326 "attribute."); 1327 goto unm_err_out; 1328 } 1329 NInoSetEncrypted(ni); 1330 } 1331 if (!a->non_resident) { 1332 /* Ensure the attribute name is placed before the value. */ 1333 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1334 le16_to_cpu(a->data.resident.value_offset)))) { 1335 ntfs_error(vol->sb, "Attribute name is placed after " 1336 "the attribute value."); 1337 goto unm_err_out; 1338 } 1339 if (NInoMstProtected(ni)) { 1340 ntfs_error(vi->i_sb, "Found mst protected attribute " 1341 "but the attribute is resident. " 1342 "Please report you saw this message to " 1343 "linux-ntfs-dev@lists.sourceforge.net"); 1344 goto unm_err_out; 1345 } 1346 vi->i_size = ni->initialized_size = le32_to_cpu( 1347 a->data.resident.value_length); 1348 ni->allocated_size = le32_to_cpu(a->length) - 1349 le16_to_cpu(a->data.resident.value_offset); 1350 if (vi->i_size > ni->allocated_size) { 1351 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1352 "(size exceeds allocation)."); 1353 goto unm_err_out; 1354 } 1355 } else { 1356 NInoSetNonResident(ni); 1357 /* 1358 * Ensure the attribute name is placed before the mapping pairs 1359 * array. 1360 */ 1361 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1362 le16_to_cpu( 1363 a->data.non_resident.mapping_pairs_offset)))) { 1364 ntfs_error(vol->sb, "Attribute name is placed after " 1365 "the mapping pairs array."); 1366 goto unm_err_out; 1367 } 1368 if (NInoCompressed(ni) || NInoSparse(ni)) { 1369 if (NInoCompressed(ni) && a->data.non_resident. 1370 compression_unit != 4) { 1371 ntfs_error(vi->i_sb, "Found non-standard " 1372 "compression unit (%u instead " 1373 "of 4). Cannot handle this.", 1374 a->data.non_resident. 1375 compression_unit); 1376 err = -EOPNOTSUPP; 1377 goto unm_err_out; 1378 } 1379 if (a->data.non_resident.compression_unit) { 1380 ni->itype.compressed.block_size = 1U << 1381 (a->data.non_resident. 1382 compression_unit + 1383 vol->cluster_size_bits); 1384 ni->itype.compressed.block_size_bits = 1385 ffs(ni->itype.compressed. 1386 block_size) - 1; 1387 ni->itype.compressed.block_clusters = 1U << 1388 a->data.non_resident. 1389 compression_unit; 1390 } else { 1391 ni->itype.compressed.block_size = 0; 1392 ni->itype.compressed.block_size_bits = 0; 1393 ni->itype.compressed.block_clusters = 0; 1394 } 1395 ni->itype.compressed.size = sle64_to_cpu( 1396 a->data.non_resident.compressed_size); 1397 } 1398 if (a->data.non_resident.lowest_vcn) { 1399 ntfs_error(vi->i_sb, "First extent of attribute has " 1400 "non-zero lowest_vcn."); 1401 goto unm_err_out; 1402 } 1403 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1404 ni->initialized_size = sle64_to_cpu( 1405 a->data.non_resident.initialized_size); 1406 ni->allocated_size = sle64_to_cpu( 1407 a->data.non_resident.allocated_size); 1408 } 1409 /* Setup the operations for this attribute inode. */ 1410 vi->i_op = NULL; 1411 vi->i_fop = NULL; 1412 if (NInoMstProtected(ni)) 1413 vi->i_mapping->a_ops = &ntfs_mst_aops; 1414 else 1415 vi->i_mapping->a_ops = &ntfs_aops; 1416 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1417 vi->i_blocks = ni->itype.compressed.size >> 9; 1418 else 1419 vi->i_blocks = ni->allocated_size >> 9; 1420 /* 1421 * Make sure the base inode does not go away and attach it to the 1422 * attribute inode. 1423 */ 1424 igrab(base_vi); 1425 ni->ext.base_ntfs_ino = base_ni; 1426 ni->nr_extents = -1; 1427 1428 ntfs_attr_put_search_ctx(ctx); 1429 unmap_mft_record(base_ni); 1430 1431 ntfs_debug("Done."); 1432 return 0; 1433 1434 unm_err_out: 1435 if (!err) 1436 err = -EIO; 1437 if (ctx) 1438 ntfs_attr_put_search_ctx(ctx); 1439 unmap_mft_record(base_ni); 1440 err_out: 1441 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1442 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1443 "Marking corrupt inode and base inode 0x%lx as bad. " 1444 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1445 base_vi->i_ino); 1446 make_bad_inode(vi); 1447 if (err != -ENOMEM) 1448 NVolSetErrors(vol); 1449 return err; 1450 } 1451 1452 /** 1453 * ntfs_read_locked_index_inode - read an index inode from its base inode 1454 * @base_vi: base inode 1455 * @vi: index inode to read 1456 * 1457 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1458 * index inode described by @vi into memory from the base mft record described 1459 * by @base_ni. 1460 * 1461 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1462 * reading and looks up the attributes relating to the index described by @vi 1463 * before setting up the necessary fields in @vi as well as initializing the 1464 * ntfs inode. 1465 * 1466 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1467 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1468 * are setup like directory inodes since directories are a special case of 1469 * indices ao they need to be treated in much the same way. Most importantly, 1470 * for small indices the index allocation attribute might not actually exist. 1471 * However, the index root attribute always exists but this does not need to 1472 * have an inode associated with it and this is why we define a new inode type 1473 * index. Also, like for directories, we need to have an attribute inode for 1474 * the bitmap attribute corresponding to the index allocation attribute and we 1475 * can store this in the appropriate field of the inode, just like we do for 1476 * normal directory inodes. 1477 * 1478 * Q: What locks are held when the function is called? 1479 * A: i_state has I_LOCK set, hence the inode is locked, also 1480 * i_count is set to 1, so it is not going to go away 1481 * 1482 * Return 0 on success and -errno on error. In the error case, the inode will 1483 * have had make_bad_inode() executed on it. 1484 */ 1485 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1486 { 1487 loff_t bvi_size; 1488 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1489 ntfs_inode *ni, *base_ni, *bni; 1490 struct inode *bvi; 1491 MFT_RECORD *m; 1492 ATTR_RECORD *a; 1493 ntfs_attr_search_ctx *ctx; 1494 INDEX_ROOT *ir; 1495 u8 *ir_end, *index_end; 1496 int err = 0; 1497 1498 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1499 ntfs_init_big_inode(vi); 1500 ni = NTFS_I(vi); 1501 base_ni = NTFS_I(base_vi); 1502 /* Just mirror the values from the base inode. */ 1503 vi->i_version = base_vi->i_version; 1504 vi->i_uid = base_vi->i_uid; 1505 vi->i_gid = base_vi->i_gid; 1506 vi->i_nlink = base_vi->i_nlink; 1507 vi->i_mtime = base_vi->i_mtime; 1508 vi->i_ctime = base_vi->i_ctime; 1509 vi->i_atime = base_vi->i_atime; 1510 vi->i_generation = ni->seq_no = base_ni->seq_no; 1511 /* Set inode type to zero but preserve permissions. */ 1512 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1513 /* Map the mft record for the base inode. */ 1514 m = map_mft_record(base_ni); 1515 if (IS_ERR(m)) { 1516 err = PTR_ERR(m); 1517 goto err_out; 1518 } 1519 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1520 if (!ctx) { 1521 err = -ENOMEM; 1522 goto unm_err_out; 1523 } 1524 /* Find the index root attribute. */ 1525 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1526 CASE_SENSITIVE, 0, NULL, 0, ctx); 1527 if (unlikely(err)) { 1528 if (err == -ENOENT) 1529 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1530 "missing."); 1531 goto unm_err_out; 1532 } 1533 a = ctx->attr; 1534 /* Set up the state. */ 1535 if (unlikely(a->non_resident)) { 1536 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1537 goto unm_err_out; 1538 } 1539 /* Ensure the attribute name is placed before the value. */ 1540 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1541 le16_to_cpu(a->data.resident.value_offset)))) { 1542 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1543 "after the attribute value."); 1544 goto unm_err_out; 1545 } 1546 /* 1547 * Compressed/encrypted/sparse index root is not allowed, except for 1548 * directories of course but those are not dealt with here. 1549 */ 1550 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1551 ATTR_IS_SPARSE)) { 1552 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1553 "root attribute."); 1554 goto unm_err_out; 1555 } 1556 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1557 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1558 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1559 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1560 goto unm_err_out; 1561 } 1562 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1563 if (index_end > ir_end) { 1564 ntfs_error(vi->i_sb, "Index is corrupt."); 1565 goto unm_err_out; 1566 } 1567 if (ir->type) { 1568 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1569 le32_to_cpu(ir->type)); 1570 goto unm_err_out; 1571 } 1572 ni->itype.index.collation_rule = ir->collation_rule; 1573 ntfs_debug("Index collation rule is 0x%x.", 1574 le32_to_cpu(ir->collation_rule)); 1575 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1576 if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) { 1577 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1578 "two.", ni->itype.index.block_size); 1579 goto unm_err_out; 1580 } 1581 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 1582 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " 1583 "(%ld) is not supported. Sorry.", 1584 ni->itype.index.block_size, PAGE_CACHE_SIZE); 1585 err = -EOPNOTSUPP; 1586 goto unm_err_out; 1587 } 1588 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1589 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1590 "(%i) is not supported. Sorry.", 1591 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1592 err = -EOPNOTSUPP; 1593 goto unm_err_out; 1594 } 1595 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1596 /* Determine the size of a vcn in the index. */ 1597 if (vol->cluster_size <= ni->itype.index.block_size) { 1598 ni->itype.index.vcn_size = vol->cluster_size; 1599 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1600 } else { 1601 ni->itype.index.vcn_size = vol->sector_size; 1602 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1603 } 1604 /* Check for presence of index allocation attribute. */ 1605 if (!(ir->index.flags & LARGE_INDEX)) { 1606 /* No index allocation. */ 1607 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1608 /* We are done with the mft record, so we release it. */ 1609 ntfs_attr_put_search_ctx(ctx); 1610 unmap_mft_record(base_ni); 1611 m = NULL; 1612 ctx = NULL; 1613 goto skip_large_index_stuff; 1614 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1615 NInoSetIndexAllocPresent(ni); 1616 /* Find index allocation attribute. */ 1617 ntfs_attr_reinit_search_ctx(ctx); 1618 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1619 CASE_SENSITIVE, 0, NULL, 0, ctx); 1620 if (unlikely(err)) { 1621 if (err == -ENOENT) 1622 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1623 "not present but $INDEX_ROOT " 1624 "indicated it is."); 1625 else 1626 ntfs_error(vi->i_sb, "Failed to lookup " 1627 "$INDEX_ALLOCATION attribute."); 1628 goto unm_err_out; 1629 } 1630 a = ctx->attr; 1631 if (!a->non_resident) { 1632 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1633 "resident."); 1634 goto unm_err_out; 1635 } 1636 /* 1637 * Ensure the attribute name is placed before the mapping pairs array. 1638 */ 1639 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1640 le16_to_cpu( 1641 a->data.non_resident.mapping_pairs_offset)))) { 1642 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1643 "placed after the mapping pairs array."); 1644 goto unm_err_out; 1645 } 1646 if (a->flags & ATTR_IS_ENCRYPTED) { 1647 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1648 "encrypted."); 1649 goto unm_err_out; 1650 } 1651 if (a->flags & ATTR_IS_SPARSE) { 1652 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1653 goto unm_err_out; 1654 } 1655 if (a->flags & ATTR_COMPRESSION_MASK) { 1656 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1657 "compressed."); 1658 goto unm_err_out; 1659 } 1660 if (a->data.non_resident.lowest_vcn) { 1661 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1662 "attribute has non zero lowest_vcn."); 1663 goto unm_err_out; 1664 } 1665 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1666 ni->initialized_size = sle64_to_cpu( 1667 a->data.non_resident.initialized_size); 1668 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1669 /* 1670 * We are done with the mft record, so we release it. Otherwise 1671 * we would deadlock in ntfs_attr_iget(). 1672 */ 1673 ntfs_attr_put_search_ctx(ctx); 1674 unmap_mft_record(base_ni); 1675 m = NULL; 1676 ctx = NULL; 1677 /* Get the index bitmap attribute inode. */ 1678 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1679 if (IS_ERR(bvi)) { 1680 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1681 err = PTR_ERR(bvi); 1682 goto unm_err_out; 1683 } 1684 bni = NTFS_I(bvi); 1685 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1686 NInoSparse(bni)) { 1687 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1688 "encrypted and/or sparse."); 1689 goto iput_unm_err_out; 1690 } 1691 /* Consistency check bitmap size vs. index allocation size. */ 1692 bvi_size = i_size_read(bvi); 1693 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1694 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1695 "index allocation (0x%llx).", bvi_size << 3, 1696 vi->i_size); 1697 goto iput_unm_err_out; 1698 } 1699 iput(bvi); 1700 skip_large_index_stuff: 1701 /* Setup the operations for this index inode. */ 1702 vi->i_op = NULL; 1703 vi->i_fop = NULL; 1704 vi->i_mapping->a_ops = &ntfs_mst_aops; 1705 vi->i_blocks = ni->allocated_size >> 9; 1706 /* 1707 * Make sure the base inode doesn't go away and attach it to the 1708 * index inode. 1709 */ 1710 igrab(base_vi); 1711 ni->ext.base_ntfs_ino = base_ni; 1712 ni->nr_extents = -1; 1713 1714 ntfs_debug("Done."); 1715 return 0; 1716 iput_unm_err_out: 1717 iput(bvi); 1718 unm_err_out: 1719 if (!err) 1720 err = -EIO; 1721 if (ctx) 1722 ntfs_attr_put_search_ctx(ctx); 1723 if (m) 1724 unmap_mft_record(base_ni); 1725 err_out: 1726 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1727 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1728 ni->name_len); 1729 make_bad_inode(vi); 1730 if (err != -EOPNOTSUPP && err != -ENOMEM) 1731 NVolSetErrors(vol); 1732 return err; 1733 } 1734 1735 /* 1736 * The MFT inode has special locking, so teach the lock validator 1737 * about this by splitting off the locking rules of the MFT from 1738 * the locking rules of other inodes. The MFT inode can never be 1739 * accessed from the VFS side (or even internally), only by the 1740 * map_mft functions. 1741 */ 1742 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1743 1744 /** 1745 * ntfs_read_inode_mount - special read_inode for mount time use only 1746 * @vi: inode to read 1747 * 1748 * Read inode FILE_MFT at mount time, only called with super_block lock 1749 * held from within the read_super() code path. 1750 * 1751 * This function exists because when it is called the page cache for $MFT/$DATA 1752 * is not initialized and hence we cannot get at the contents of mft records 1753 * by calling map_mft_record*(). 1754 * 1755 * Further it needs to cope with the circular references problem, i.e. cannot 1756 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1757 * we do not know where the other extent mft records are yet and again, because 1758 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1759 * attribute list is actually present in $MFT inode. 1760 * 1761 * We solve these problems by starting with the $DATA attribute before anything 1762 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1763 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1764 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1765 * sufficient information for the next step to complete. 1766 * 1767 * This should work but there are two possible pit falls (see inline comments 1768 * below), but only time will tell if they are real pits or just smoke... 1769 */ 1770 int ntfs_read_inode_mount(struct inode *vi) 1771 { 1772 VCN next_vcn, last_vcn, highest_vcn; 1773 s64 block; 1774 struct super_block *sb = vi->i_sb; 1775 ntfs_volume *vol = NTFS_SB(sb); 1776 struct buffer_head *bh; 1777 ntfs_inode *ni; 1778 MFT_RECORD *m = NULL; 1779 ATTR_RECORD *a; 1780 ntfs_attr_search_ctx *ctx; 1781 unsigned int i, nr_blocks; 1782 int err; 1783 1784 ntfs_debug("Entering."); 1785 1786 /* Initialize the ntfs specific part of @vi. */ 1787 ntfs_init_big_inode(vi); 1788 1789 ni = NTFS_I(vi); 1790 1791 /* Setup the data attribute. It is special as it is mst protected. */ 1792 NInoSetNonResident(ni); 1793 NInoSetMstProtected(ni); 1794 NInoSetSparseDisabled(ni); 1795 ni->type = AT_DATA; 1796 ni->name = NULL; 1797 ni->name_len = 0; 1798 /* 1799 * This sets up our little cheat allowing us to reuse the async read io 1800 * completion handler for directories. 1801 */ 1802 ni->itype.index.block_size = vol->mft_record_size; 1803 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1804 1805 /* Very important! Needed to be able to call map_mft_record*(). */ 1806 vol->mft_ino = vi; 1807 1808 /* Allocate enough memory to read the first mft record. */ 1809 if (vol->mft_record_size > 64 * 1024) { 1810 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1811 vol->mft_record_size); 1812 goto err_out; 1813 } 1814 i = vol->mft_record_size; 1815 if (i < sb->s_blocksize) 1816 i = sb->s_blocksize; 1817 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1818 if (!m) { 1819 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1820 goto err_out; 1821 } 1822 1823 /* Determine the first block of the $MFT/$DATA attribute. */ 1824 block = vol->mft_lcn << vol->cluster_size_bits >> 1825 sb->s_blocksize_bits; 1826 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1827 if (!nr_blocks) 1828 nr_blocks = 1; 1829 1830 /* Load $MFT/$DATA's first mft record. */ 1831 for (i = 0; i < nr_blocks; i++) { 1832 bh = sb_bread(sb, block++); 1833 if (!bh) { 1834 ntfs_error(sb, "Device read failed."); 1835 goto err_out; 1836 } 1837 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1838 sb->s_blocksize); 1839 brelse(bh); 1840 } 1841 1842 /* Apply the mst fixups. */ 1843 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1844 /* FIXME: Try to use the $MFTMirr now. */ 1845 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1846 goto err_out; 1847 } 1848 1849 /* Need this to sanity check attribute list references to $MFT. */ 1850 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1851 1852 /* Provides readpage() and sync_page() for map_mft_record(). */ 1853 vi->i_mapping->a_ops = &ntfs_mst_aops; 1854 1855 ctx = ntfs_attr_get_search_ctx(ni, m); 1856 if (!ctx) { 1857 err = -ENOMEM; 1858 goto err_out; 1859 } 1860 1861 /* Find the attribute list attribute if present. */ 1862 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1863 if (err) { 1864 if (unlikely(err != -ENOENT)) { 1865 ntfs_error(sb, "Failed to lookup attribute list " 1866 "attribute. You should run chkdsk."); 1867 goto put_err_out; 1868 } 1869 } else /* if (!err) */ { 1870 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1871 u8 *al_end; 1872 static const char *es = " Not allowed. $MFT is corrupt. " 1873 "You should run chkdsk."; 1874 1875 ntfs_debug("Attribute list attribute found in $MFT."); 1876 NInoSetAttrList(ni); 1877 a = ctx->attr; 1878 if (a->flags & ATTR_COMPRESSION_MASK) { 1879 ntfs_error(sb, "Attribute list attribute is " 1880 "compressed.%s", es); 1881 goto put_err_out; 1882 } 1883 if (a->flags & ATTR_IS_ENCRYPTED || 1884 a->flags & ATTR_IS_SPARSE) { 1885 if (a->non_resident) { 1886 ntfs_error(sb, "Non-resident attribute list " 1887 "attribute is encrypted/" 1888 "sparse.%s", es); 1889 goto put_err_out; 1890 } 1891 ntfs_warning(sb, "Resident attribute list attribute " 1892 "in $MFT system file is marked " 1893 "encrypted/sparse which is not true. " 1894 "However, Windows allows this and " 1895 "chkdsk does not detect or correct it " 1896 "so we will just ignore the invalid " 1897 "flags and pretend they are not set."); 1898 } 1899 /* Now allocate memory for the attribute list. */ 1900 ni->attr_list_size = (u32)ntfs_attr_size(a); 1901 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1902 if (!ni->attr_list) { 1903 ntfs_error(sb, "Not enough memory to allocate buffer " 1904 "for attribute list."); 1905 goto put_err_out; 1906 } 1907 if (a->non_resident) { 1908 NInoSetAttrListNonResident(ni); 1909 if (a->data.non_resident.lowest_vcn) { 1910 ntfs_error(sb, "Attribute list has non zero " 1911 "lowest_vcn. $MFT is corrupt. " 1912 "You should run chkdsk."); 1913 goto put_err_out; 1914 } 1915 /* Setup the runlist. */ 1916 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1917 a, NULL); 1918 if (IS_ERR(ni->attr_list_rl.rl)) { 1919 err = PTR_ERR(ni->attr_list_rl.rl); 1920 ni->attr_list_rl.rl = NULL; 1921 ntfs_error(sb, "Mapping pairs decompression " 1922 "failed with error code %i.", 1923 -err); 1924 goto put_err_out; 1925 } 1926 /* Now load the attribute list. */ 1927 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1928 ni->attr_list, ni->attr_list_size, 1929 sle64_to_cpu(a->data. 1930 non_resident.initialized_size)))) { 1931 ntfs_error(sb, "Failed to load attribute list " 1932 "attribute with error code %i.", 1933 -err); 1934 goto put_err_out; 1935 } 1936 } else /* if (!ctx.attr->non_resident) */ { 1937 if ((u8*)a + le16_to_cpu( 1938 a->data.resident.value_offset) + 1939 le32_to_cpu( 1940 a->data.resident.value_length) > 1941 (u8*)ctx->mrec + vol->mft_record_size) { 1942 ntfs_error(sb, "Corrupt attribute list " 1943 "attribute."); 1944 goto put_err_out; 1945 } 1946 /* Now copy the attribute list. */ 1947 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1948 a->data.resident.value_offset), 1949 le32_to_cpu( 1950 a->data.resident.value_length)); 1951 } 1952 /* The attribute list is now setup in memory. */ 1953 /* 1954 * FIXME: I don't know if this case is actually possible. 1955 * According to logic it is not possible but I have seen too 1956 * many weird things in MS software to rely on logic... Thus we 1957 * perform a manual search and make sure the first $MFT/$DATA 1958 * extent is in the base inode. If it is not we abort with an 1959 * error and if we ever see a report of this error we will need 1960 * to do some magic in order to have the necessary mft record 1961 * loaded and in the right place in the page cache. But 1962 * hopefully logic will prevail and this never happens... 1963 */ 1964 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1965 al_end = (u8*)al_entry + ni->attr_list_size; 1966 for (;; al_entry = next_al_entry) { 1967 /* Out of bounds check. */ 1968 if ((u8*)al_entry < ni->attr_list || 1969 (u8*)al_entry > al_end) 1970 goto em_put_err_out; 1971 /* Catch the end of the attribute list. */ 1972 if ((u8*)al_entry == al_end) 1973 goto em_put_err_out; 1974 if (!al_entry->length) 1975 goto em_put_err_out; 1976 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1977 le16_to_cpu(al_entry->length) > al_end) 1978 goto em_put_err_out; 1979 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1980 le16_to_cpu(al_entry->length)); 1981 if (le32_to_cpu(al_entry->type) > 1982 const_le32_to_cpu(AT_DATA)) 1983 goto em_put_err_out; 1984 if (AT_DATA != al_entry->type) 1985 continue; 1986 /* We want an unnamed attribute. */ 1987 if (al_entry->name_length) 1988 goto em_put_err_out; 1989 /* Want the first entry, i.e. lowest_vcn == 0. */ 1990 if (al_entry->lowest_vcn) 1991 goto em_put_err_out; 1992 /* First entry has to be in the base mft record. */ 1993 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1994 /* MFT references do not match, logic fails. */ 1995 ntfs_error(sb, "BUG: The first $DATA extent " 1996 "of $MFT is not in the base " 1997 "mft record. Please report " 1998 "you saw this message to " 1999 "linux-ntfs-dev@lists." 2000 "sourceforge.net"); 2001 goto put_err_out; 2002 } else { 2003 /* Sequence numbers must match. */ 2004 if (MSEQNO_LE(al_entry->mft_reference) != 2005 ni->seq_no) 2006 goto em_put_err_out; 2007 /* Got it. All is ok. We can stop now. */ 2008 break; 2009 } 2010 } 2011 } 2012 2013 ntfs_attr_reinit_search_ctx(ctx); 2014 2015 /* Now load all attribute extents. */ 2016 a = NULL; 2017 next_vcn = last_vcn = highest_vcn = 0; 2018 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2019 ctx))) { 2020 runlist_element *nrl; 2021 2022 /* Cache the current attribute. */ 2023 a = ctx->attr; 2024 /* $MFT must be non-resident. */ 2025 if (!a->non_resident) { 2026 ntfs_error(sb, "$MFT must be non-resident but a " 2027 "resident extent was found. $MFT is " 2028 "corrupt. Run chkdsk."); 2029 goto put_err_out; 2030 } 2031 /* $MFT must be uncompressed and unencrypted. */ 2032 if (a->flags & ATTR_COMPRESSION_MASK || 2033 a->flags & ATTR_IS_ENCRYPTED || 2034 a->flags & ATTR_IS_SPARSE) { 2035 ntfs_error(sb, "$MFT must be uncompressed, " 2036 "non-sparse, and unencrypted but a " 2037 "compressed/sparse/encrypted extent " 2038 "was found. $MFT is corrupt. Run " 2039 "chkdsk."); 2040 goto put_err_out; 2041 } 2042 /* 2043 * Decompress the mapping pairs array of this extent and merge 2044 * the result into the existing runlist. No need for locking 2045 * as we have exclusive access to the inode at this time and we 2046 * are a mount in progress task, too. 2047 */ 2048 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2049 if (IS_ERR(nrl)) { 2050 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2051 "failed with error code %ld. $MFT is " 2052 "corrupt.", PTR_ERR(nrl)); 2053 goto put_err_out; 2054 } 2055 ni->runlist.rl = nrl; 2056 2057 /* Are we in the first extent? */ 2058 if (!next_vcn) { 2059 if (a->data.non_resident.lowest_vcn) { 2060 ntfs_error(sb, "First extent of $DATA " 2061 "attribute has non zero " 2062 "lowest_vcn. $MFT is corrupt. " 2063 "You should run chkdsk."); 2064 goto put_err_out; 2065 } 2066 /* Get the last vcn in the $DATA attribute. */ 2067 last_vcn = sle64_to_cpu( 2068 a->data.non_resident.allocated_size) 2069 >> vol->cluster_size_bits; 2070 /* Fill in the inode size. */ 2071 vi->i_size = sle64_to_cpu( 2072 a->data.non_resident.data_size); 2073 ni->initialized_size = sle64_to_cpu( 2074 a->data.non_resident.initialized_size); 2075 ni->allocated_size = sle64_to_cpu( 2076 a->data.non_resident.allocated_size); 2077 /* 2078 * Verify the number of mft records does not exceed 2079 * 2^32 - 1. 2080 */ 2081 if ((vi->i_size >> vol->mft_record_size_bits) >= 2082 (1ULL << 32)) { 2083 ntfs_error(sb, "$MFT is too big! Aborting."); 2084 goto put_err_out; 2085 } 2086 /* 2087 * We have got the first extent of the runlist for 2088 * $MFT which means it is now relatively safe to call 2089 * the normal ntfs_read_inode() function. 2090 * Complete reading the inode, this will actually 2091 * re-read the mft record for $MFT, this time entering 2092 * it into the page cache with which we complete the 2093 * kick start of the volume. It should be safe to do 2094 * this now as the first extent of $MFT/$DATA is 2095 * already known and we would hope that we don't need 2096 * further extents in order to find the other 2097 * attributes belonging to $MFT. Only time will tell if 2098 * this is really the case. If not we will have to play 2099 * magic at this point, possibly duplicating a lot of 2100 * ntfs_read_inode() at this point. We will need to 2101 * ensure we do enough of its work to be able to call 2102 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2103 * hope this never happens... 2104 */ 2105 ntfs_read_locked_inode(vi); 2106 if (is_bad_inode(vi)) { 2107 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2108 "failed. BUG or corrupt $MFT. " 2109 "Run chkdsk and if no errors " 2110 "are found, please report you " 2111 "saw this message to " 2112 "linux-ntfs-dev@lists." 2113 "sourceforge.net"); 2114 ntfs_attr_put_search_ctx(ctx); 2115 /* Revert to the safe super operations. */ 2116 ntfs_free(m); 2117 return -1; 2118 } 2119 /* 2120 * Re-initialize some specifics about $MFT's inode as 2121 * ntfs_read_inode() will have set up the default ones. 2122 */ 2123 /* Set uid and gid to root. */ 2124 vi->i_uid = vi->i_gid = 0; 2125 /* Regular file. No access for anyone. */ 2126 vi->i_mode = S_IFREG; 2127 /* No VFS initiated operations allowed for $MFT. */ 2128 vi->i_op = &ntfs_empty_inode_ops; 2129 vi->i_fop = &ntfs_empty_file_ops; 2130 } 2131 2132 /* Get the lowest vcn for the next extent. */ 2133 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2134 next_vcn = highest_vcn + 1; 2135 2136 /* Only one extent or error, which we catch below. */ 2137 if (next_vcn <= 0) 2138 break; 2139 2140 /* Avoid endless loops due to corruption. */ 2141 if (next_vcn < sle64_to_cpu( 2142 a->data.non_resident.lowest_vcn)) { 2143 ntfs_error(sb, "$MFT has corrupt attribute list " 2144 "attribute. Run chkdsk."); 2145 goto put_err_out; 2146 } 2147 } 2148 if (err != -ENOENT) { 2149 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2150 "$MFT is corrupt. Run chkdsk."); 2151 goto put_err_out; 2152 } 2153 if (!a) { 2154 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2155 "corrupt. Run chkdsk."); 2156 goto put_err_out; 2157 } 2158 if (highest_vcn && highest_vcn != last_vcn - 1) { 2159 ntfs_error(sb, "Failed to load the complete runlist for " 2160 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2161 "Run chkdsk."); 2162 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2163 (unsigned long long)highest_vcn, 2164 (unsigned long long)last_vcn - 1); 2165 goto put_err_out; 2166 } 2167 ntfs_attr_put_search_ctx(ctx); 2168 ntfs_debug("Done."); 2169 ntfs_free(m); 2170 2171 /* 2172 * Split the locking rules of the MFT inode from the 2173 * locking rules of other inodes: 2174 */ 2175 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2176 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2177 2178 return 0; 2179 2180 em_put_err_out: 2181 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2182 "attribute list. $MFT is corrupt. Run chkdsk."); 2183 put_err_out: 2184 ntfs_attr_put_search_ctx(ctx); 2185 err_out: 2186 ntfs_error(sb, "Failed. Marking inode as bad."); 2187 make_bad_inode(vi); 2188 ntfs_free(m); 2189 return -1; 2190 } 2191 2192 static void __ntfs_clear_inode(ntfs_inode *ni) 2193 { 2194 /* Free all alocated memory. */ 2195 down_write(&ni->runlist.lock); 2196 if (ni->runlist.rl) { 2197 ntfs_free(ni->runlist.rl); 2198 ni->runlist.rl = NULL; 2199 } 2200 up_write(&ni->runlist.lock); 2201 2202 if (ni->attr_list) { 2203 ntfs_free(ni->attr_list); 2204 ni->attr_list = NULL; 2205 } 2206 2207 down_write(&ni->attr_list_rl.lock); 2208 if (ni->attr_list_rl.rl) { 2209 ntfs_free(ni->attr_list_rl.rl); 2210 ni->attr_list_rl.rl = NULL; 2211 } 2212 up_write(&ni->attr_list_rl.lock); 2213 2214 if (ni->name_len && ni->name != I30) { 2215 /* Catch bugs... */ 2216 BUG_ON(!ni->name); 2217 kfree(ni->name); 2218 } 2219 } 2220 2221 void ntfs_clear_extent_inode(ntfs_inode *ni) 2222 { 2223 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2224 2225 BUG_ON(NInoAttr(ni)); 2226 BUG_ON(ni->nr_extents != -1); 2227 2228 #ifdef NTFS_RW 2229 if (NInoDirty(ni)) { 2230 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2231 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2232 "Losing data! This is a BUG!!!"); 2233 // FIXME: Do something!!! 2234 } 2235 #endif /* NTFS_RW */ 2236 2237 __ntfs_clear_inode(ni); 2238 2239 /* Bye, bye... */ 2240 ntfs_destroy_extent_inode(ni); 2241 } 2242 2243 /** 2244 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode 2245 * @vi: vfs inode pending annihilation 2246 * 2247 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2248 * is called, which deallocates all memory belonging to the NTFS specific part 2249 * of the inode and returns. 2250 * 2251 * If the MFT record is dirty, we commit it before doing anything else. 2252 */ 2253 void ntfs_clear_big_inode(struct inode *vi) 2254 { 2255 ntfs_inode *ni = NTFS_I(vi); 2256 2257 #ifdef NTFS_RW 2258 if (NInoDirty(ni)) { 2259 bool was_bad = (is_bad_inode(vi)); 2260 2261 /* Committing the inode also commits all extent inodes. */ 2262 ntfs_commit_inode(vi); 2263 2264 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2265 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2266 "0x%lx. Losing data!", vi->i_ino); 2267 // FIXME: Do something!!! 2268 } 2269 } 2270 #endif /* NTFS_RW */ 2271 2272 /* No need to lock at this stage as no one else has a reference. */ 2273 if (ni->nr_extents > 0) { 2274 int i; 2275 2276 for (i = 0; i < ni->nr_extents; i++) 2277 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2278 kfree(ni->ext.extent_ntfs_inos); 2279 } 2280 2281 __ntfs_clear_inode(ni); 2282 2283 if (NInoAttr(ni)) { 2284 /* Release the base inode if we are holding it. */ 2285 if (ni->nr_extents == -1) { 2286 iput(VFS_I(ni->ext.base_ntfs_ino)); 2287 ni->nr_extents = 0; 2288 ni->ext.base_ntfs_ino = NULL; 2289 } 2290 } 2291 return; 2292 } 2293 2294 /** 2295 * ntfs_show_options - show mount options in /proc/mounts 2296 * @sf: seq_file in which to write our mount options 2297 * @mnt: vfs mount whose mount options to display 2298 * 2299 * Called by the VFS once for each mounted ntfs volume when someone reads 2300 * /proc/mounts in order to display the NTFS specific mount options of each 2301 * mount. The mount options of the vfs mount @mnt are written to the seq file 2302 * @sf and success is returned. 2303 */ 2304 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt) 2305 { 2306 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb); 2307 int i; 2308 2309 seq_printf(sf, ",uid=%i", vol->uid); 2310 seq_printf(sf, ",gid=%i", vol->gid); 2311 if (vol->fmask == vol->dmask) 2312 seq_printf(sf, ",umask=0%o", vol->fmask); 2313 else { 2314 seq_printf(sf, ",fmask=0%o", vol->fmask); 2315 seq_printf(sf, ",dmask=0%o", vol->dmask); 2316 } 2317 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2318 if (NVolCaseSensitive(vol)) 2319 seq_printf(sf, ",case_sensitive"); 2320 if (NVolShowSystemFiles(vol)) 2321 seq_printf(sf, ",show_sys_files"); 2322 if (!NVolSparseEnabled(vol)) 2323 seq_printf(sf, ",disable_sparse"); 2324 for (i = 0; on_errors_arr[i].val; i++) { 2325 if (on_errors_arr[i].val & vol->on_errors) 2326 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2327 } 2328 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2329 return 0; 2330 } 2331 2332 #ifdef NTFS_RW 2333 2334 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2335 "chkdsk."; 2336 2337 /** 2338 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2339 * @vi: inode for which the i_size was changed 2340 * 2341 * We only support i_size changes for normal files at present, i.e. not 2342 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2343 * below. 2344 * 2345 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2346 * that the change is allowed. 2347 * 2348 * This implies for us that @vi is a file inode rather than a directory, index, 2349 * or attribute inode as well as that @vi is a base inode. 2350 * 2351 * Returns 0 on success or -errno on error. 2352 * 2353 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for 2354 * writing. The only case in the kernel where ->i_alloc_sem is not held is 2355 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called 2356 * with the current i_size as the offset. The analogous place in NTFS is in 2357 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again 2358 * without holding ->i_alloc_sem. 2359 */ 2360 int ntfs_truncate(struct inode *vi) 2361 { 2362 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2363 VCN highest_vcn; 2364 unsigned long flags; 2365 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2366 ntfs_volume *vol = ni->vol; 2367 ntfs_attr_search_ctx *ctx; 2368 MFT_RECORD *m; 2369 ATTR_RECORD *a; 2370 const char *te = " Leaving file length out of sync with i_size."; 2371 int err, mp_size, size_change, alloc_change; 2372 u32 attr_len; 2373 2374 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2375 BUG_ON(NInoAttr(ni)); 2376 BUG_ON(S_ISDIR(vi->i_mode)); 2377 BUG_ON(NInoMstProtected(ni)); 2378 BUG_ON(ni->nr_extents < 0); 2379 retry_truncate: 2380 /* 2381 * Lock the runlist for writing and map the mft record to ensure it is 2382 * safe to mess with the attribute runlist and sizes. 2383 */ 2384 down_write(&ni->runlist.lock); 2385 if (!NInoAttr(ni)) 2386 base_ni = ni; 2387 else 2388 base_ni = ni->ext.base_ntfs_ino; 2389 m = map_mft_record(base_ni); 2390 if (IS_ERR(m)) { 2391 err = PTR_ERR(m); 2392 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2393 "(error code %d).%s", vi->i_ino, err, te); 2394 ctx = NULL; 2395 m = NULL; 2396 goto old_bad_out; 2397 } 2398 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2399 if (unlikely(!ctx)) { 2400 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2401 "inode 0x%lx (not enough memory).%s", 2402 vi->i_ino, te); 2403 err = -ENOMEM; 2404 goto old_bad_out; 2405 } 2406 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2407 CASE_SENSITIVE, 0, NULL, 0, ctx); 2408 if (unlikely(err)) { 2409 if (err == -ENOENT) { 2410 ntfs_error(vi->i_sb, "Open attribute is missing from " 2411 "mft record. Inode 0x%lx is corrupt. " 2412 "Run chkdsk.%s", vi->i_ino, te); 2413 err = -EIO; 2414 } else 2415 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2416 "inode 0x%lx (error code %d).%s", 2417 vi->i_ino, err, te); 2418 goto old_bad_out; 2419 } 2420 m = ctx->mrec; 2421 a = ctx->attr; 2422 /* 2423 * The i_size of the vfs inode is the new size for the attribute value. 2424 */ 2425 new_size = i_size_read(vi); 2426 /* The current size of the attribute value is the old size. */ 2427 old_size = ntfs_attr_size(a); 2428 /* Calculate the new allocated size. */ 2429 if (NInoNonResident(ni)) 2430 new_alloc_size = (new_size + vol->cluster_size - 1) & 2431 ~(s64)vol->cluster_size_mask; 2432 else 2433 new_alloc_size = (new_size + 7) & ~7; 2434 /* The current allocated size is the old allocated size. */ 2435 read_lock_irqsave(&ni->size_lock, flags); 2436 old_alloc_size = ni->allocated_size; 2437 read_unlock_irqrestore(&ni->size_lock, flags); 2438 /* 2439 * The change in the file size. This will be 0 if no change, >0 if the 2440 * size is growing, and <0 if the size is shrinking. 2441 */ 2442 size_change = -1; 2443 if (new_size - old_size >= 0) { 2444 size_change = 1; 2445 if (new_size == old_size) 2446 size_change = 0; 2447 } 2448 /* As above for the allocated size. */ 2449 alloc_change = -1; 2450 if (new_alloc_size - old_alloc_size >= 0) { 2451 alloc_change = 1; 2452 if (new_alloc_size == old_alloc_size) 2453 alloc_change = 0; 2454 } 2455 /* 2456 * If neither the size nor the allocation are being changed there is 2457 * nothing to do. 2458 */ 2459 if (!size_change && !alloc_change) 2460 goto unm_done; 2461 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2462 if (size_change) { 2463 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2464 if (unlikely(err)) { 2465 if (err == -ERANGE) { 2466 ntfs_error(vol->sb, "Truncate would cause the " 2467 "inode 0x%lx to %simum size " 2468 "for its attribute type " 2469 "(0x%x). Aborting truncate.", 2470 vi->i_ino, 2471 new_size > old_size ? "exceed " 2472 "the max" : "go under the min", 2473 le32_to_cpu(ni->type)); 2474 err = -EFBIG; 2475 } else { 2476 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2477 "attribute type 0x%x. " 2478 "Aborting truncate.", 2479 vi->i_ino, 2480 le32_to_cpu(ni->type)); 2481 err = -EIO; 2482 } 2483 /* Reset the vfs inode size to the old size. */ 2484 i_size_write(vi, old_size); 2485 goto err_out; 2486 } 2487 } 2488 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2489 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2490 "supported yet for %s files, ignoring.", 2491 NInoCompressed(ni) ? "compressed" : 2492 "encrypted"); 2493 err = -EOPNOTSUPP; 2494 goto bad_out; 2495 } 2496 if (a->non_resident) 2497 goto do_non_resident_truncate; 2498 BUG_ON(NInoNonResident(ni)); 2499 /* Resize the attribute record to best fit the new attribute size. */ 2500 if (new_size < vol->mft_record_size && 2501 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2502 /* The resize succeeded! */ 2503 flush_dcache_mft_record_page(ctx->ntfs_ino); 2504 mark_mft_record_dirty(ctx->ntfs_ino); 2505 write_lock_irqsave(&ni->size_lock, flags); 2506 /* Update the sizes in the ntfs inode and all is done. */ 2507 ni->allocated_size = le32_to_cpu(a->length) - 2508 le16_to_cpu(a->data.resident.value_offset); 2509 /* 2510 * Note ntfs_resident_attr_value_resize() has already done any 2511 * necessary data clearing in the attribute record. When the 2512 * file is being shrunk vmtruncate() will already have cleared 2513 * the top part of the last partial page, i.e. since this is 2514 * the resident case this is the page with index 0. However, 2515 * when the file is being expanded, the page cache page data 2516 * between the old data_size, i.e. old_size, and the new_size 2517 * has not been zeroed. Fortunately, we do not need to zero it 2518 * either since on one hand it will either already be zero due 2519 * to both readpage and writepage clearing partial page data 2520 * beyond i_size in which case there is nothing to do or in the 2521 * case of the file being mmap()ped at the same time, POSIX 2522 * specifies that the behaviour is unspecified thus we do not 2523 * have to do anything. This means that in our implementation 2524 * in the rare case that the file is mmap()ped and a write 2525 * occured into the mmap()ped region just beyond the file size 2526 * and writepage has not yet been called to write out the page 2527 * (which would clear the area beyond the file size) and we now 2528 * extend the file size to incorporate this dirty region 2529 * outside the file size, a write of the page would result in 2530 * this data being written to disk instead of being cleared. 2531 * Given both POSIX and the Linux mmap(2) man page specify that 2532 * this corner case is undefined, we choose to leave it like 2533 * that as this is much simpler for us as we cannot lock the 2534 * relevant page now since we are holding too many ntfs locks 2535 * which would result in a lock reversal deadlock. 2536 */ 2537 ni->initialized_size = new_size; 2538 write_unlock_irqrestore(&ni->size_lock, flags); 2539 goto unm_done; 2540 } 2541 /* If the above resize failed, this must be an attribute extension. */ 2542 BUG_ON(size_change < 0); 2543 /* 2544 * We have to drop all the locks so we can call 2545 * ntfs_attr_make_non_resident(). This could be optimised by try- 2546 * locking the first page cache page and only if that fails dropping 2547 * the locks, locking the page, and redoing all the locking and 2548 * lookups. While this would be a huge optimisation, it is not worth 2549 * it as this is definitely a slow code path as it only ever can happen 2550 * once for any given file. 2551 */ 2552 ntfs_attr_put_search_ctx(ctx); 2553 unmap_mft_record(base_ni); 2554 up_write(&ni->runlist.lock); 2555 /* 2556 * Not enough space in the mft record, try to make the attribute 2557 * non-resident and if successful restart the truncation process. 2558 */ 2559 err = ntfs_attr_make_non_resident(ni, old_size); 2560 if (likely(!err)) 2561 goto retry_truncate; 2562 /* 2563 * Could not make non-resident. If this is due to this not being 2564 * permitted for this attribute type or there not being enough space, 2565 * try to make other attributes non-resident. Otherwise fail. 2566 */ 2567 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2568 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2569 "type 0x%x, because the conversion from " 2570 "resident to non-resident attribute failed " 2571 "with error code %i.", vi->i_ino, 2572 (unsigned)le32_to_cpu(ni->type), err); 2573 if (err != -ENOMEM) 2574 err = -EIO; 2575 goto conv_err_out; 2576 } 2577 /* TODO: Not implemented from here, abort. */ 2578 if (err == -ENOSPC) 2579 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2580 "disk for the non-resident attribute value. " 2581 "This case is not implemented yet."); 2582 else /* if (err == -EPERM) */ 2583 ntfs_error(vol->sb, "This attribute type may not be " 2584 "non-resident. This case is not implemented " 2585 "yet."); 2586 err = -EOPNOTSUPP; 2587 goto conv_err_out; 2588 #if 0 2589 // TODO: Attempt to make other attributes non-resident. 2590 if (!err) 2591 goto do_resident_extend; 2592 /* 2593 * Both the attribute list attribute and the standard information 2594 * attribute must remain in the base inode. Thus, if this is one of 2595 * these attributes, we have to try to move other attributes out into 2596 * extent mft records instead. 2597 */ 2598 if (ni->type == AT_ATTRIBUTE_LIST || 2599 ni->type == AT_STANDARD_INFORMATION) { 2600 // TODO: Attempt to move other attributes into extent mft 2601 // records. 2602 err = -EOPNOTSUPP; 2603 if (!err) 2604 goto do_resident_extend; 2605 goto err_out; 2606 } 2607 // TODO: Attempt to move this attribute to an extent mft record, but 2608 // only if it is not already the only attribute in an mft record in 2609 // which case there would be nothing to gain. 2610 err = -EOPNOTSUPP; 2611 if (!err) 2612 goto do_resident_extend; 2613 /* There is nothing we can do to make enough space. )-: */ 2614 goto err_out; 2615 #endif 2616 do_non_resident_truncate: 2617 BUG_ON(!NInoNonResident(ni)); 2618 if (alloc_change < 0) { 2619 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2620 if (highest_vcn > 0 && 2621 old_alloc_size >> vol->cluster_size_bits > 2622 highest_vcn + 1) { 2623 /* 2624 * This attribute has multiple extents. Not yet 2625 * supported. 2626 */ 2627 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2628 "attribute type 0x%x, because the " 2629 "attribute is highly fragmented (it " 2630 "consists of multiple extents) and " 2631 "this case is not implemented yet.", 2632 vi->i_ino, 2633 (unsigned)le32_to_cpu(ni->type)); 2634 err = -EOPNOTSUPP; 2635 goto bad_out; 2636 } 2637 } 2638 /* 2639 * If the size is shrinking, need to reduce the initialized_size and 2640 * the data_size before reducing the allocation. 2641 */ 2642 if (size_change < 0) { 2643 /* 2644 * Make the valid size smaller (i_size is already up-to-date). 2645 */ 2646 write_lock_irqsave(&ni->size_lock, flags); 2647 if (new_size < ni->initialized_size) { 2648 ni->initialized_size = new_size; 2649 a->data.non_resident.initialized_size = 2650 cpu_to_sle64(new_size); 2651 } 2652 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2653 write_unlock_irqrestore(&ni->size_lock, flags); 2654 flush_dcache_mft_record_page(ctx->ntfs_ino); 2655 mark_mft_record_dirty(ctx->ntfs_ino); 2656 /* If the allocated size is not changing, we are done. */ 2657 if (!alloc_change) 2658 goto unm_done; 2659 /* 2660 * If the size is shrinking it makes no sense for the 2661 * allocation to be growing. 2662 */ 2663 BUG_ON(alloc_change > 0); 2664 } else /* if (size_change >= 0) */ { 2665 /* 2666 * The file size is growing or staying the same but the 2667 * allocation can be shrinking, growing or staying the same. 2668 */ 2669 if (alloc_change > 0) { 2670 /* 2671 * We need to extend the allocation and possibly update 2672 * the data size. If we are updating the data size, 2673 * since we are not touching the initialized_size we do 2674 * not need to worry about the actual data on disk. 2675 * And as far as the page cache is concerned, there 2676 * will be no pages beyond the old data size and any 2677 * partial region in the last page between the old and 2678 * new data size (or the end of the page if the new 2679 * data size is outside the page) does not need to be 2680 * modified as explained above for the resident 2681 * attribute truncate case. To do this, we simply drop 2682 * the locks we hold and leave all the work to our 2683 * friendly helper ntfs_attr_extend_allocation(). 2684 */ 2685 ntfs_attr_put_search_ctx(ctx); 2686 unmap_mft_record(base_ni); 2687 up_write(&ni->runlist.lock); 2688 err = ntfs_attr_extend_allocation(ni, new_size, 2689 size_change > 0 ? new_size : -1, -1); 2690 /* 2691 * ntfs_attr_extend_allocation() will have done error 2692 * output already. 2693 */ 2694 goto done; 2695 } 2696 if (!alloc_change) 2697 goto alloc_done; 2698 } 2699 /* alloc_change < 0 */ 2700 /* Free the clusters. */ 2701 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2702 vol->cluster_size_bits, -1, ctx); 2703 m = ctx->mrec; 2704 a = ctx->attr; 2705 if (unlikely(nr_freed < 0)) { 2706 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2707 "%lli). Unmount and run chkdsk to recover " 2708 "the lost cluster(s).", (long long)nr_freed); 2709 NVolSetErrors(vol); 2710 nr_freed = 0; 2711 } 2712 /* Truncate the runlist. */ 2713 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2714 new_alloc_size >> vol->cluster_size_bits); 2715 /* 2716 * If the runlist truncation failed and/or the search context is no 2717 * longer valid, we cannot resize the attribute record or build the 2718 * mapping pairs array thus we mark the inode bad so that no access to 2719 * the freed clusters can happen. 2720 */ 2721 if (unlikely(err || IS_ERR(m))) { 2722 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2723 IS_ERR(m) ? 2724 "restore attribute search context" : 2725 "truncate attribute runlist", 2726 IS_ERR(m) ? PTR_ERR(m) : err, es); 2727 err = -EIO; 2728 goto bad_out; 2729 } 2730 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2731 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2732 if (unlikely(mp_size <= 0)) { 2733 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2734 "attribute type 0x%x, because determining the " 2735 "size for the mapping pairs failed with error " 2736 "code %i.%s", vi->i_ino, 2737 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2738 err = -EIO; 2739 goto bad_out; 2740 } 2741 /* 2742 * Shrink the attribute record for the new mapping pairs array. Note, 2743 * this cannot fail since we are making the attribute smaller thus by 2744 * definition there is enough space to do so. 2745 */ 2746 attr_len = le32_to_cpu(a->length); 2747 err = ntfs_attr_record_resize(m, a, mp_size + 2748 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2749 BUG_ON(err); 2750 /* 2751 * Generate the mapping pairs array directly into the attribute record. 2752 */ 2753 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2754 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2755 mp_size, ni->runlist.rl, 0, -1, NULL); 2756 if (unlikely(err)) { 2757 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2758 "attribute type 0x%x, because building the " 2759 "mapping pairs failed with error code %i.%s", 2760 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2761 err, es); 2762 err = -EIO; 2763 goto bad_out; 2764 } 2765 /* Update the allocated/compressed size as well as the highest vcn. */ 2766 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2767 vol->cluster_size_bits) - 1); 2768 write_lock_irqsave(&ni->size_lock, flags); 2769 ni->allocated_size = new_alloc_size; 2770 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2771 if (NInoSparse(ni) || NInoCompressed(ni)) { 2772 if (nr_freed) { 2773 ni->itype.compressed.size -= nr_freed << 2774 vol->cluster_size_bits; 2775 BUG_ON(ni->itype.compressed.size < 0); 2776 a->data.non_resident.compressed_size = cpu_to_sle64( 2777 ni->itype.compressed.size); 2778 vi->i_blocks = ni->itype.compressed.size >> 9; 2779 } 2780 } else 2781 vi->i_blocks = new_alloc_size >> 9; 2782 write_unlock_irqrestore(&ni->size_lock, flags); 2783 /* 2784 * We have shrunk the allocation. If this is a shrinking truncate we 2785 * have already dealt with the initialized_size and the data_size above 2786 * and we are done. If the truncate is only changing the allocation 2787 * and not the data_size, we are also done. If this is an extending 2788 * truncate, need to extend the data_size now which is ensured by the 2789 * fact that @size_change is positive. 2790 */ 2791 alloc_done: 2792 /* 2793 * If the size is growing, need to update it now. If it is shrinking, 2794 * we have already updated it above (before the allocation change). 2795 */ 2796 if (size_change > 0) 2797 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2798 /* Ensure the modified mft record is written out. */ 2799 flush_dcache_mft_record_page(ctx->ntfs_ino); 2800 mark_mft_record_dirty(ctx->ntfs_ino); 2801 unm_done: 2802 ntfs_attr_put_search_ctx(ctx); 2803 unmap_mft_record(base_ni); 2804 up_write(&ni->runlist.lock); 2805 done: 2806 /* Update the mtime and ctime on the base inode. */ 2807 /* normally ->truncate shouldn't update ctime or mtime, 2808 * but ntfs did before so it got a copy & paste version 2809 * of file_update_time. one day someone should fix this 2810 * for real. 2811 */ 2812 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2813 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); 2814 int sync_it = 0; 2815 2816 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || 2817 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) 2818 sync_it = 1; 2819 VFS_I(base_ni)->i_mtime = now; 2820 VFS_I(base_ni)->i_ctime = now; 2821 2822 if (sync_it) 2823 mark_inode_dirty_sync(VFS_I(base_ni)); 2824 } 2825 2826 if (likely(!err)) { 2827 NInoClearTruncateFailed(ni); 2828 ntfs_debug("Done."); 2829 } 2830 return err; 2831 old_bad_out: 2832 old_size = -1; 2833 bad_out: 2834 if (err != -ENOMEM && err != -EOPNOTSUPP) 2835 NVolSetErrors(vol); 2836 if (err != -EOPNOTSUPP) 2837 NInoSetTruncateFailed(ni); 2838 else if (old_size >= 0) 2839 i_size_write(vi, old_size); 2840 err_out: 2841 if (ctx) 2842 ntfs_attr_put_search_ctx(ctx); 2843 if (m) 2844 unmap_mft_record(base_ni); 2845 up_write(&ni->runlist.lock); 2846 out: 2847 ntfs_debug("Failed. Returning error code %i.", err); 2848 return err; 2849 conv_err_out: 2850 if (err != -ENOMEM && err != -EOPNOTSUPP) 2851 NVolSetErrors(vol); 2852 if (err != -EOPNOTSUPP) 2853 NInoSetTruncateFailed(ni); 2854 else 2855 i_size_write(vi, old_size); 2856 goto out; 2857 } 2858 2859 /** 2860 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2861 * @vi: inode for which the i_size was changed 2862 * 2863 * Wrapper for ntfs_truncate() that has no return value. 2864 * 2865 * See ntfs_truncate() description above for details. 2866 */ 2867 void ntfs_truncate_vfs(struct inode *vi) { 2868 ntfs_truncate(vi); 2869 } 2870 2871 /** 2872 * ntfs_setattr - called from notify_change() when an attribute is being changed 2873 * @dentry: dentry whose attributes to change 2874 * @attr: structure describing the attributes and the changes 2875 * 2876 * We have to trap VFS attempts to truncate the file described by @dentry as 2877 * soon as possible, because we do not implement changes in i_size yet. So we 2878 * abort all i_size changes here. 2879 * 2880 * We also abort all changes of user, group, and mode as we do not implement 2881 * the NTFS ACLs yet. 2882 * 2883 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also 2884 * called with ->i_alloc_sem held for writing. 2885 * 2886 * Basically this is a copy of generic notify_change() and inode_setattr() 2887 * functionality, except we intercept and abort changes in i_size. 2888 */ 2889 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2890 { 2891 struct inode *vi = dentry->d_inode; 2892 int err; 2893 unsigned int ia_valid = attr->ia_valid; 2894 2895 err = inode_change_ok(vi, attr); 2896 if (err) 2897 goto out; 2898 /* We do not support NTFS ACLs yet. */ 2899 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2900 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2901 "supported yet, ignoring."); 2902 err = -EOPNOTSUPP; 2903 goto out; 2904 } 2905 if (ia_valid & ATTR_SIZE) { 2906 if (attr->ia_size != i_size_read(vi)) { 2907 ntfs_inode *ni = NTFS_I(vi); 2908 /* 2909 * FIXME: For now we do not support resizing of 2910 * compressed or encrypted files yet. 2911 */ 2912 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2913 ntfs_warning(vi->i_sb, "Changes in inode size " 2914 "are not supported yet for " 2915 "%s files, ignoring.", 2916 NInoCompressed(ni) ? 2917 "compressed" : "encrypted"); 2918 err = -EOPNOTSUPP; 2919 } else 2920 err = vmtruncate(vi, attr->ia_size); 2921 if (err || ia_valid == ATTR_SIZE) 2922 goto out; 2923 } else { 2924 /* 2925 * We skipped the truncate but must still update 2926 * timestamps. 2927 */ 2928 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2929 } 2930 } 2931 if (ia_valid & ATTR_ATIME) 2932 vi->i_atime = timespec_trunc(attr->ia_atime, 2933 vi->i_sb->s_time_gran); 2934 if (ia_valid & ATTR_MTIME) 2935 vi->i_mtime = timespec_trunc(attr->ia_mtime, 2936 vi->i_sb->s_time_gran); 2937 if (ia_valid & ATTR_CTIME) 2938 vi->i_ctime = timespec_trunc(attr->ia_ctime, 2939 vi->i_sb->s_time_gran); 2940 mark_inode_dirty(vi); 2941 out: 2942 return err; 2943 } 2944 2945 /** 2946 * ntfs_write_inode - write out a dirty inode 2947 * @vi: inode to write out 2948 * @sync: if true, write out synchronously 2949 * 2950 * Write out a dirty inode to disk including any extent inodes if present. 2951 * 2952 * If @sync is true, commit the inode to disk and wait for io completion. This 2953 * is done using write_mft_record(). 2954 * 2955 * If @sync is false, just schedule the write to happen but do not wait for i/o 2956 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2957 * marking the page (and in this case mft record) dirty but we do not implement 2958 * this yet as write_mft_record() largely ignores the @sync parameter and 2959 * always performs synchronous writes. 2960 * 2961 * Return 0 on success and -errno on error. 2962 */ 2963 int ntfs_write_inode(struct inode *vi, int sync) 2964 { 2965 sle64 nt; 2966 ntfs_inode *ni = NTFS_I(vi); 2967 ntfs_attr_search_ctx *ctx; 2968 MFT_RECORD *m; 2969 STANDARD_INFORMATION *si; 2970 int err = 0; 2971 bool modified = false; 2972 2973 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2974 vi->i_ino); 2975 /* 2976 * Dirty attribute inodes are written via their real inodes so just 2977 * clean them here. Access time updates are taken care off when the 2978 * real inode is written. 2979 */ 2980 if (NInoAttr(ni)) { 2981 NInoClearDirty(ni); 2982 ntfs_debug("Done."); 2983 return 0; 2984 } 2985 /* Map, pin, and lock the mft record belonging to the inode. */ 2986 m = map_mft_record(ni); 2987 if (IS_ERR(m)) { 2988 err = PTR_ERR(m); 2989 goto err_out; 2990 } 2991 /* Update the access times in the standard information attribute. */ 2992 ctx = ntfs_attr_get_search_ctx(ni, m); 2993 if (unlikely(!ctx)) { 2994 err = -ENOMEM; 2995 goto unm_err_out; 2996 } 2997 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2998 CASE_SENSITIVE, 0, NULL, 0, ctx); 2999 if (unlikely(err)) { 3000 ntfs_attr_put_search_ctx(ctx); 3001 goto unm_err_out; 3002 } 3003 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 3004 le16_to_cpu(ctx->attr->data.resident.value_offset)); 3005 /* Update the access times if they have changed. */ 3006 nt = utc2ntfs(vi->i_mtime); 3007 if (si->last_data_change_time != nt) { 3008 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 3009 "new = 0x%llx", vi->i_ino, (long long) 3010 sle64_to_cpu(si->last_data_change_time), 3011 (long long)sle64_to_cpu(nt)); 3012 si->last_data_change_time = nt; 3013 modified = true; 3014 } 3015 nt = utc2ntfs(vi->i_ctime); 3016 if (si->last_mft_change_time != nt) { 3017 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 3018 "new = 0x%llx", vi->i_ino, (long long) 3019 sle64_to_cpu(si->last_mft_change_time), 3020 (long long)sle64_to_cpu(nt)); 3021 si->last_mft_change_time = nt; 3022 modified = true; 3023 } 3024 nt = utc2ntfs(vi->i_atime); 3025 if (si->last_access_time != nt) { 3026 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3027 "new = 0x%llx", vi->i_ino, 3028 (long long)sle64_to_cpu(si->last_access_time), 3029 (long long)sle64_to_cpu(nt)); 3030 si->last_access_time = nt; 3031 modified = true; 3032 } 3033 /* 3034 * If we just modified the standard information attribute we need to 3035 * mark the mft record it is in dirty. We do this manually so that 3036 * mark_inode_dirty() is not called which would redirty the inode and 3037 * hence result in an infinite loop of trying to write the inode. 3038 * There is no need to mark the base inode nor the base mft record 3039 * dirty, since we are going to write this mft record below in any case 3040 * and the base mft record may actually not have been modified so it 3041 * might not need to be written out. 3042 * NOTE: It is not a problem when the inode for $MFT itself is being 3043 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3044 * on the $MFT inode and hence ntfs_write_inode() will not be 3045 * re-invoked because of it which in turn is ok since the dirtied mft 3046 * record will be cleaned and written out to disk below, i.e. before 3047 * this function returns. 3048 */ 3049 if (modified) { 3050 flush_dcache_mft_record_page(ctx->ntfs_ino); 3051 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3052 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3053 ctx->ntfs_ino->page_ofs); 3054 } 3055 ntfs_attr_put_search_ctx(ctx); 3056 /* Now the access times are updated, write the base mft record. */ 3057 if (NInoDirty(ni)) 3058 err = write_mft_record(ni, m, sync); 3059 /* Write all attached extent mft records. */ 3060 mutex_lock(&ni->extent_lock); 3061 if (ni->nr_extents > 0) { 3062 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3063 int i; 3064 3065 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3066 for (i = 0; i < ni->nr_extents; i++) { 3067 ntfs_inode *tni = extent_nis[i]; 3068 3069 if (NInoDirty(tni)) { 3070 MFT_RECORD *tm = map_mft_record(tni); 3071 int ret; 3072 3073 if (IS_ERR(tm)) { 3074 if (!err || err == -ENOMEM) 3075 err = PTR_ERR(tm); 3076 continue; 3077 } 3078 ret = write_mft_record(tni, tm, sync); 3079 unmap_mft_record(tni); 3080 if (unlikely(ret)) { 3081 if (!err || err == -ENOMEM) 3082 err = ret; 3083 } 3084 } 3085 } 3086 } 3087 mutex_unlock(&ni->extent_lock); 3088 unmap_mft_record(ni); 3089 if (unlikely(err)) 3090 goto err_out; 3091 ntfs_debug("Done."); 3092 return 0; 3093 unm_err_out: 3094 unmap_mft_record(ni); 3095 err_out: 3096 if (err == -ENOMEM) { 3097 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3098 "Marking the inode dirty again, so the VFS " 3099 "retries later."); 3100 mark_inode_dirty(vi); 3101 } else { 3102 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3103 NVolSetErrors(ni->vol); 3104 } 3105 return err; 3106 } 3107 3108 #endif /* NTFS_RW */ 3109