xref: /openbmc/linux/fs/ntfs/inode.c (revision 8bd1369b)
1 /**
2  * inode.c - NTFS kernel inode handling.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_test_inode - compare two (possibly fake) inodes for equality
46  * @vi:		vfs inode which to test
47  * @na:		ntfs attribute which is being tested with
48  *
49  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50  * inode @vi for equality with the ntfs attribute @na.
51  *
52  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53  * @na->name and @na->name_len are then ignored.
54  *
55  * Return 1 if the attributes match and 0 if not.
56  *
57  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58  * allowed to sleep.
59  */
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 	ntfs_inode *ni;
63 
64 	if (vi->i_ino != na->mft_no)
65 		return 0;
66 	ni = NTFS_I(vi);
67 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 	if (likely(!NInoAttr(ni))) {
69 		/* If not looking for a normal inode this is a mismatch. */
70 		if (unlikely(na->type != AT_UNUSED))
71 			return 0;
72 	} else {
73 		/* A fake inode describing an attribute. */
74 		if (ni->type != na->type)
75 			return 0;
76 		if (ni->name_len != na->name_len)
77 			return 0;
78 		if (na->name_len && memcmp(ni->name, na->name,
79 				na->name_len * sizeof(ntfschar)))
80 			return 0;
81 	}
82 	/* Match! */
83 	return 1;
84 }
85 
86 /**
87  * ntfs_init_locked_inode - initialize an inode
88  * @vi:		vfs inode to initialize
89  * @na:		ntfs attribute which to initialize @vi to
90  *
91  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92  * order to enable ntfs_test_inode() to do its work.
93  *
94  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95  * In that case, @na->name and @na->name_len should be set to NULL and 0,
96  * respectively. Although that is not strictly necessary as
97  * ntfs_read_locked_inode() will fill them in later.
98  *
99  * Return 0 on success and -errno on error.
100  *
101  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103  */
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 	ntfs_inode *ni = NTFS_I(vi);
107 
108 	vi->i_ino = na->mft_no;
109 
110 	ni->type = na->type;
111 	if (na->type == AT_INDEX_ALLOCATION)
112 		NInoSetMstProtected(ni);
113 
114 	ni->name = na->name;
115 	ni->name_len = na->name_len;
116 
117 	/* If initializing a normal inode, we are done. */
118 	if (likely(na->type == AT_UNUSED)) {
119 		BUG_ON(na->name);
120 		BUG_ON(na->name_len);
121 		return 0;
122 	}
123 
124 	/* It is a fake inode. */
125 	NInoSetAttr(ni);
126 
127 	/*
128 	 * We have I30 global constant as an optimization as it is the name
129 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 	 * allocation but that is ok. And most attributes are unnamed anyway,
131 	 * thus the fraction of named attributes with name != I30 is actually
132 	 * absolutely tiny.
133 	 */
134 	if (na->name_len && na->name != I30) {
135 		unsigned int i;
136 
137 		BUG_ON(!na->name);
138 		i = na->name_len * sizeof(ntfschar);
139 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 		if (!ni->name)
141 			return -ENOMEM;
142 		memcpy(ni->name, na->name, i);
143 		ni->name[na->name_len] = 0;
144 	}
145 	return 0;
146 }
147 
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 		struct inode *vi);
153 
154 /**
155  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156  * @sb:		super block of mounted volume
157  * @mft_no:	mft record number / inode number to obtain
158  *
159  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160  * file or directory).
161  *
162  * If the inode is in the cache, it is just returned with an increased
163  * reference count. Otherwise, a new struct inode is allocated and initialized,
164  * and finally ntfs_read_locked_inode() is called to read in the inode and
165  * fill in the remainder of the inode structure.
166  *
167  * Return the struct inode on success. Check the return value with IS_ERR() and
168  * if true, the function failed and the error code is obtained from PTR_ERR().
169  */
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 	struct inode *vi;
173 	int err;
174 	ntfs_attr na;
175 
176 	na.mft_no = mft_no;
177 	na.type = AT_UNUSED;
178 	na.name = NULL;
179 	na.name_len = 0;
180 
181 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 			(set_t)ntfs_init_locked_inode, &na);
183 	if (unlikely(!vi))
184 		return ERR_PTR(-ENOMEM);
185 
186 	err = 0;
187 
188 	/* If this is a freshly allocated inode, need to read it now. */
189 	if (vi->i_state & I_NEW) {
190 		err = ntfs_read_locked_inode(vi);
191 		unlock_new_inode(vi);
192 	}
193 	/*
194 	 * There is no point in keeping bad inodes around if the failure was
195 	 * due to ENOMEM. We want to be able to retry again later.
196 	 */
197 	if (unlikely(err == -ENOMEM)) {
198 		iput(vi);
199 		vi = ERR_PTR(err);
200 	}
201 	return vi;
202 }
203 
204 /**
205  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206  * @base_vi:	vfs base inode containing the attribute
207  * @type:	attribute type
208  * @name:	Unicode name of the attribute (NULL if unnamed)
209  * @name_len:	length of @name in Unicode characters (0 if unnamed)
210  *
211  * Obtain the (fake) struct inode corresponding to the attribute specified by
212  * @type, @name, and @name_len, which is present in the base mft record
213  * specified by the vfs inode @base_vi.
214  *
215  * If the attribute inode is in the cache, it is just returned with an
216  * increased reference count. Otherwise, a new struct inode is allocated and
217  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218  * attribute and fill in the inode structure.
219  *
220  * Note, for index allocation attributes, you need to use ntfs_index_iget()
221  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222  *
223  * Return the struct inode of the attribute inode on success. Check the return
224  * value with IS_ERR() and if true, the function failed and the error code is
225  * obtained from PTR_ERR().
226  */
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 		ntfschar *name, u32 name_len)
229 {
230 	struct inode *vi;
231 	int err;
232 	ntfs_attr na;
233 
234 	/* Make sure no one calls ntfs_attr_iget() for indices. */
235 	BUG_ON(type == AT_INDEX_ALLOCATION);
236 
237 	na.mft_no = base_vi->i_ino;
238 	na.type = type;
239 	na.name = name;
240 	na.name_len = name_len;
241 
242 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 			(set_t)ntfs_init_locked_inode, &na);
244 	if (unlikely(!vi))
245 		return ERR_PTR(-ENOMEM);
246 
247 	err = 0;
248 
249 	/* If this is a freshly allocated inode, need to read it now. */
250 	if (vi->i_state & I_NEW) {
251 		err = ntfs_read_locked_attr_inode(base_vi, vi);
252 		unlock_new_inode(vi);
253 	}
254 	/*
255 	 * There is no point in keeping bad attribute inodes around. This also
256 	 * simplifies things in that we never need to check for bad attribute
257 	 * inodes elsewhere.
258 	 */
259 	if (unlikely(err)) {
260 		iput(vi);
261 		vi = ERR_PTR(err);
262 	}
263 	return vi;
264 }
265 
266 /**
267  * ntfs_index_iget - obtain a struct inode corresponding to an index
268  * @base_vi:	vfs base inode containing the index related attributes
269  * @name:	Unicode name of the index
270  * @name_len:	length of @name in Unicode characters
271  *
272  * Obtain the (fake) struct inode corresponding to the index specified by @name
273  * and @name_len, which is present in the base mft record specified by the vfs
274  * inode @base_vi.
275  *
276  * If the index inode is in the cache, it is just returned with an increased
277  * reference count.  Otherwise, a new struct inode is allocated and
278  * initialized, and finally ntfs_read_locked_index_inode() is called to read
279  * the index related attributes and fill in the inode structure.
280  *
281  * Return the struct inode of the index inode on success. Check the return
282  * value with IS_ERR() and if true, the function failed and the error code is
283  * obtained from PTR_ERR().
284  */
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 		u32 name_len)
287 {
288 	struct inode *vi;
289 	int err;
290 	ntfs_attr na;
291 
292 	na.mft_no = base_vi->i_ino;
293 	na.type = AT_INDEX_ALLOCATION;
294 	na.name = name;
295 	na.name_len = name_len;
296 
297 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 			(set_t)ntfs_init_locked_inode, &na);
299 	if (unlikely(!vi))
300 		return ERR_PTR(-ENOMEM);
301 
302 	err = 0;
303 
304 	/* If this is a freshly allocated inode, need to read it now. */
305 	if (vi->i_state & I_NEW) {
306 		err = ntfs_read_locked_index_inode(base_vi, vi);
307 		unlock_new_inode(vi);
308 	}
309 	/*
310 	 * There is no point in keeping bad index inodes around.  This also
311 	 * simplifies things in that we never need to check for bad index
312 	 * inodes elsewhere.
313 	 */
314 	if (unlikely(err)) {
315 		iput(vi);
316 		vi = ERR_PTR(err);
317 	}
318 	return vi;
319 }
320 
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 	ntfs_inode *ni;
324 
325 	ntfs_debug("Entering.");
326 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 	if (likely(ni != NULL)) {
328 		ni->state = 0;
329 		return VFS_I(ni);
330 	}
331 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 	return NULL;
333 }
334 
335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 	struct inode *inode = container_of(head, struct inode, i_rcu);
338 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340 
341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 	ntfs_inode *ni = NTFS_I(inode);
344 
345 	ntfs_debug("Entering.");
346 	BUG_ON(ni->page);
347 	if (!atomic_dec_and_test(&ni->count))
348 		BUG();
349 	call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351 
352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 	ntfs_inode *ni;
355 
356 	ntfs_debug("Entering.");
357 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 	if (likely(ni != NULL)) {
359 		ni->state = 0;
360 		return ni;
361 	}
362 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 	return NULL;
364 }
365 
366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 	ntfs_debug("Entering.");
369 	BUG_ON(ni->page);
370 	if (!atomic_dec_and_test(&ni->count))
371 		BUG();
372 	kmem_cache_free(ntfs_inode_cache, ni);
373 }
374 
375 /*
376  * The attribute runlist lock has separate locking rules from the
377  * normal runlist lock, so split the two lock-classes:
378  */
379 static struct lock_class_key attr_list_rl_lock_class;
380 
381 /**
382  * __ntfs_init_inode - initialize ntfs specific part of an inode
383  * @sb:		super block of mounted volume
384  * @ni:		freshly allocated ntfs inode which to initialize
385  *
386  * Initialize an ntfs inode to defaults.
387  *
388  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389  * untouched. Make sure to initialize them elsewhere.
390  *
391  * Return zero on success and -ENOMEM on error.
392  */
393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 	ntfs_debug("Entering.");
396 	rwlock_init(&ni->size_lock);
397 	ni->initialized_size = ni->allocated_size = 0;
398 	ni->seq_no = 0;
399 	atomic_set(&ni->count, 1);
400 	ni->vol = NTFS_SB(sb);
401 	ntfs_init_runlist(&ni->runlist);
402 	mutex_init(&ni->mrec_lock);
403 	ni->page = NULL;
404 	ni->page_ofs = 0;
405 	ni->attr_list_size = 0;
406 	ni->attr_list = NULL;
407 	ntfs_init_runlist(&ni->attr_list_rl);
408 	lockdep_set_class(&ni->attr_list_rl.lock,
409 				&attr_list_rl_lock_class);
410 	ni->itype.index.block_size = 0;
411 	ni->itype.index.vcn_size = 0;
412 	ni->itype.index.collation_rule = 0;
413 	ni->itype.index.block_size_bits = 0;
414 	ni->itype.index.vcn_size_bits = 0;
415 	mutex_init(&ni->extent_lock);
416 	ni->nr_extents = 0;
417 	ni->ext.base_ntfs_ino = NULL;
418 }
419 
420 /*
421  * Extent inodes get MFT-mapped in a nested way, while the base inode
422  * is still mapped. Teach this nesting to the lock validator by creating
423  * a separate class for nested inode's mrec_lock's:
424  */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426 
427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 		unsigned long mft_no)
429 {
430 	ntfs_inode *ni = ntfs_alloc_extent_inode();
431 
432 	ntfs_debug("Entering.");
433 	if (likely(ni != NULL)) {
434 		__ntfs_init_inode(sb, ni);
435 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 		ni->mft_no = mft_no;
437 		ni->type = AT_UNUSED;
438 		ni->name = NULL;
439 		ni->name_len = 0;
440 	}
441 	return ni;
442 }
443 
444 /**
445  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446  * @ctx:	initialized attribute search context
447  *
448  * Search all file name attributes in the inode described by the attribute
449  * search context @ctx and check if any of the names are in the $Extend system
450  * directory.
451  *
452  * Return values:
453  *	   1: file is in $Extend directory
454  *	   0: file is not in $Extend directory
455  *    -errno: failed to determine if the file is in the $Extend directory
456  */
457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 	int nr_links, err;
460 
461 	/* Restart search. */
462 	ntfs_attr_reinit_search_ctx(ctx);
463 
464 	/* Get number of hard links. */
465 	nr_links = le16_to_cpu(ctx->mrec->link_count);
466 
467 	/* Loop through all hard links. */
468 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 			ctx))) {
470 		FILE_NAME_ATTR *file_name_attr;
471 		ATTR_RECORD *attr = ctx->attr;
472 		u8 *p, *p2;
473 
474 		nr_links--;
475 		/*
476 		 * Maximum sanity checking as we are called on an inode that
477 		 * we suspect might be corrupt.
478 		 */
479 		p = (u8*)attr + le32_to_cpu(attr->length);
480 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 					"attribute. You should run chkdsk.");
485 			return -EIO;
486 		}
487 		if (attr->non_resident) {
488 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 					"name. You should run chkdsk.");
490 			return -EIO;
491 		}
492 		if (attr->flags) {
493 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 					"invalid flags. You should run "
495 					"chkdsk.");
496 			return -EIO;
497 		}
498 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 					"name. You should run chkdsk.");
501 			return -EIO;
502 		}
503 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 				le16_to_cpu(attr->data.resident.value_offset));
505 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 		if (p2 < (u8*)attr || p2 > p)
507 			goto err_corrupt_attr;
508 		/* This attribute is ok, but is it in the $Extend directory? */
509 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 			return 1;	/* YES, it's an extended system file. */
511 	}
512 	if (unlikely(err != -ENOENT))
513 		return err;
514 	if (unlikely(nr_links)) {
515 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 				"doesn't match number of name attributes. You "
517 				"should run chkdsk.");
518 		return -EIO;
519 	}
520 	return 0;	/* NO, it is not an extended system file. */
521 }
522 
523 /**
524  * ntfs_read_locked_inode - read an inode from its device
525  * @vi:		inode to read
526  *
527  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528  * described by @vi into memory from the device.
529  *
530  * The only fields in @vi that we need to/can look at when the function is
531  * called are i_sb, pointing to the mounted device's super block, and i_ino,
532  * the number of the inode to load.
533  *
534  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535  * for reading and sets up the necessary @vi fields as well as initializing
536  * the ntfs inode.
537  *
538  * Q: What locks are held when the function is called?
539  * A: i_state has I_NEW set, hence the inode is locked, also
540  *    i_count is set to 1, so it is not going to go away
541  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
542  *    is allowed to write to them. We should of course be honouring them but
543  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
544  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545  *
546  * Return 0 on success and -errno on error.  In the error case, the inode will
547  * have had make_bad_inode() executed on it.
548  */
549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 	ntfs_inode *ni;
553 	struct inode *bvi;
554 	MFT_RECORD *m;
555 	ATTR_RECORD *a;
556 	STANDARD_INFORMATION *si;
557 	ntfs_attr_search_ctx *ctx;
558 	int err = 0;
559 
560 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561 
562 	/* Setup the generic vfs inode parts now. */
563 	vi->i_uid = vol->uid;
564 	vi->i_gid = vol->gid;
565 	vi->i_mode = 0;
566 
567 	/*
568 	 * Initialize the ntfs specific part of @vi special casing
569 	 * FILE_MFT which we need to do at mount time.
570 	 */
571 	if (vi->i_ino != FILE_MFT)
572 		ntfs_init_big_inode(vi);
573 	ni = NTFS_I(vi);
574 
575 	m = map_mft_record(ni);
576 	if (IS_ERR(m)) {
577 		err = PTR_ERR(m);
578 		goto err_out;
579 	}
580 	ctx = ntfs_attr_get_search_ctx(ni, m);
581 	if (!ctx) {
582 		err = -ENOMEM;
583 		goto unm_err_out;
584 	}
585 
586 	if (!(m->flags & MFT_RECORD_IN_USE)) {
587 		ntfs_error(vi->i_sb, "Inode is not in use!");
588 		goto unm_err_out;
589 	}
590 	if (m->base_mft_record) {
591 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
592 		goto unm_err_out;
593 	}
594 
595 	/* Transfer information from mft record into vfs and ntfs inodes. */
596 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
597 
598 	/*
599 	 * FIXME: Keep in mind that link_count is two for files which have both
600 	 * a long file name and a short file name as separate entries, so if
601 	 * we are hiding short file names this will be too high. Either we need
602 	 * to account for the short file names by subtracting them or we need
603 	 * to make sure we delete files even though i_nlink is not zero which
604 	 * might be tricky due to vfs interactions. Need to think about this
605 	 * some more when implementing the unlink command.
606 	 */
607 	set_nlink(vi, le16_to_cpu(m->link_count));
608 	/*
609 	 * FIXME: Reparse points can have the directory bit set even though
610 	 * they would be S_IFLNK. Need to deal with this further below when we
611 	 * implement reparse points / symbolic links but it will do for now.
612 	 * Also if not a directory, it could be something else, rather than
613 	 * a regular file. But again, will do for now.
614 	 */
615 	/* Everyone gets all permissions. */
616 	vi->i_mode |= S_IRWXUGO;
617 	/* If read-only, no one gets write permissions. */
618 	if (IS_RDONLY(vi))
619 		vi->i_mode &= ~S_IWUGO;
620 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
621 		vi->i_mode |= S_IFDIR;
622 		/*
623 		 * Apply the directory permissions mask set in the mount
624 		 * options.
625 		 */
626 		vi->i_mode &= ~vol->dmask;
627 		/* Things break without this kludge! */
628 		if (vi->i_nlink > 1)
629 			set_nlink(vi, 1);
630 	} else {
631 		vi->i_mode |= S_IFREG;
632 		/* Apply the file permissions mask set in the mount options. */
633 		vi->i_mode &= ~vol->fmask;
634 	}
635 	/*
636 	 * Find the standard information attribute in the mft record. At this
637 	 * stage we haven't setup the attribute list stuff yet, so this could
638 	 * in fact fail if the standard information is in an extent record, but
639 	 * I don't think this actually ever happens.
640 	 */
641 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
642 			ctx);
643 	if (unlikely(err)) {
644 		if (err == -ENOENT) {
645 			/*
646 			 * TODO: We should be performing a hot fix here (if the
647 			 * recover mount option is set) by creating a new
648 			 * attribute.
649 			 */
650 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
651 					"is missing.");
652 		}
653 		goto unm_err_out;
654 	}
655 	a = ctx->attr;
656 	/* Get the standard information attribute value. */
657 	si = (STANDARD_INFORMATION*)((u8*)a +
658 			le16_to_cpu(a->data.resident.value_offset));
659 
660 	/* Transfer information from the standard information into vi. */
661 	/*
662 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
663 	 * but they are close enough, and in the end it doesn't really matter
664 	 * that much...
665 	 */
666 	/*
667 	 * mtime is the last change of the data within the file. Not changed
668 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
669 	 */
670 	vi->i_mtime = timespec_to_timespec64(ntfs2utc(si->last_data_change_time));
671 	/*
672 	 * ctime is the last change of the metadata of the file. This obviously
673 	 * always changes, when mtime is changed. ctime can be changed on its
674 	 * own, mtime is then not changed, e.g. when a file is renamed.
675 	 */
676 	vi->i_ctime = timespec_to_timespec64(ntfs2utc(si->last_mft_change_time));
677 	/*
678 	 * Last access to the data within the file. Not changed during a rename
679 	 * for example but changed whenever the file is written to.
680 	 */
681 	vi->i_atime = timespec_to_timespec64(ntfs2utc(si->last_access_time));
682 
683 	/* Find the attribute list attribute if present. */
684 	ntfs_attr_reinit_search_ctx(ctx);
685 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
686 	if (err) {
687 		if (unlikely(err != -ENOENT)) {
688 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
689 					"attribute.");
690 			goto unm_err_out;
691 		}
692 	} else /* if (!err) */ {
693 		if (vi->i_ino == FILE_MFT)
694 			goto skip_attr_list_load;
695 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
696 		NInoSetAttrList(ni);
697 		a = ctx->attr;
698 		if (a->flags & ATTR_COMPRESSION_MASK) {
699 			ntfs_error(vi->i_sb, "Attribute list attribute is "
700 					"compressed.");
701 			goto unm_err_out;
702 		}
703 		if (a->flags & ATTR_IS_ENCRYPTED ||
704 				a->flags & ATTR_IS_SPARSE) {
705 			if (a->non_resident) {
706 				ntfs_error(vi->i_sb, "Non-resident attribute "
707 						"list attribute is encrypted/"
708 						"sparse.");
709 				goto unm_err_out;
710 			}
711 			ntfs_warning(vi->i_sb, "Resident attribute list "
712 					"attribute in inode 0x%lx is marked "
713 					"encrypted/sparse which is not true.  "
714 					"However, Windows allows this and "
715 					"chkdsk does not detect or correct it "
716 					"so we will just ignore the invalid "
717 					"flags and pretend they are not set.",
718 					vi->i_ino);
719 		}
720 		/* Now allocate memory for the attribute list. */
721 		ni->attr_list_size = (u32)ntfs_attr_size(a);
722 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
723 		if (!ni->attr_list) {
724 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
725 					"buffer for attribute list.");
726 			err = -ENOMEM;
727 			goto unm_err_out;
728 		}
729 		if (a->non_resident) {
730 			NInoSetAttrListNonResident(ni);
731 			if (a->data.non_resident.lowest_vcn) {
732 				ntfs_error(vi->i_sb, "Attribute list has non "
733 						"zero lowest_vcn.");
734 				goto unm_err_out;
735 			}
736 			/*
737 			 * Setup the runlist. No need for locking as we have
738 			 * exclusive access to the inode at this time.
739 			 */
740 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
741 					a, NULL);
742 			if (IS_ERR(ni->attr_list_rl.rl)) {
743 				err = PTR_ERR(ni->attr_list_rl.rl);
744 				ni->attr_list_rl.rl = NULL;
745 				ntfs_error(vi->i_sb, "Mapping pairs "
746 						"decompression failed.");
747 				goto unm_err_out;
748 			}
749 			/* Now load the attribute list. */
750 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
751 					ni->attr_list, ni->attr_list_size,
752 					sle64_to_cpu(a->data.non_resident.
753 					initialized_size)))) {
754 				ntfs_error(vi->i_sb, "Failed to load "
755 						"attribute list attribute.");
756 				goto unm_err_out;
757 			}
758 		} else /* if (!a->non_resident) */ {
759 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
760 					+ le32_to_cpu(
761 					a->data.resident.value_length) >
762 					(u8*)ctx->mrec + vol->mft_record_size) {
763 				ntfs_error(vi->i_sb, "Corrupt attribute list "
764 						"in inode.");
765 				goto unm_err_out;
766 			}
767 			/* Now copy the attribute list. */
768 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
769 					a->data.resident.value_offset),
770 					le32_to_cpu(
771 					a->data.resident.value_length));
772 		}
773 	}
774 skip_attr_list_load:
775 	/*
776 	 * If an attribute list is present we now have the attribute list value
777 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
778 	 */
779 	if (S_ISDIR(vi->i_mode)) {
780 		loff_t bvi_size;
781 		ntfs_inode *bni;
782 		INDEX_ROOT *ir;
783 		u8 *ir_end, *index_end;
784 
785 		/* It is a directory, find index root attribute. */
786 		ntfs_attr_reinit_search_ctx(ctx);
787 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
788 				0, NULL, 0, ctx);
789 		if (unlikely(err)) {
790 			if (err == -ENOENT) {
791 				// FIXME: File is corrupt! Hot-fix with empty
792 				// index root attribute if recovery option is
793 				// set.
794 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
795 						"is missing.");
796 			}
797 			goto unm_err_out;
798 		}
799 		a = ctx->attr;
800 		/* Set up the state. */
801 		if (unlikely(a->non_resident)) {
802 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
803 					"resident.");
804 			goto unm_err_out;
805 		}
806 		/* Ensure the attribute name is placed before the value. */
807 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
808 				le16_to_cpu(a->data.resident.value_offset)))) {
809 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
810 					"placed after the attribute value.");
811 			goto unm_err_out;
812 		}
813 		/*
814 		 * Compressed/encrypted index root just means that the newly
815 		 * created files in that directory should be created compressed/
816 		 * encrypted. However index root cannot be both compressed and
817 		 * encrypted.
818 		 */
819 		if (a->flags & ATTR_COMPRESSION_MASK)
820 			NInoSetCompressed(ni);
821 		if (a->flags & ATTR_IS_ENCRYPTED) {
822 			if (a->flags & ATTR_COMPRESSION_MASK) {
823 				ntfs_error(vi->i_sb, "Found encrypted and "
824 						"compressed attribute.");
825 				goto unm_err_out;
826 			}
827 			NInoSetEncrypted(ni);
828 		}
829 		if (a->flags & ATTR_IS_SPARSE)
830 			NInoSetSparse(ni);
831 		ir = (INDEX_ROOT*)((u8*)a +
832 				le16_to_cpu(a->data.resident.value_offset));
833 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
834 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
835 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
836 					"corrupt.");
837 			goto unm_err_out;
838 		}
839 		index_end = (u8*)&ir->index +
840 				le32_to_cpu(ir->index.index_length);
841 		if (index_end > ir_end) {
842 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
843 			goto unm_err_out;
844 		}
845 		if (ir->type != AT_FILE_NAME) {
846 			ntfs_error(vi->i_sb, "Indexed attribute is not "
847 					"$FILE_NAME.");
848 			goto unm_err_out;
849 		}
850 		if (ir->collation_rule != COLLATION_FILE_NAME) {
851 			ntfs_error(vi->i_sb, "Index collation rule is not "
852 					"COLLATION_FILE_NAME.");
853 			goto unm_err_out;
854 		}
855 		ni->itype.index.collation_rule = ir->collation_rule;
856 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
857 		if (ni->itype.index.block_size &
858 				(ni->itype.index.block_size - 1)) {
859 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
860 					"power of two.",
861 					ni->itype.index.block_size);
862 			goto unm_err_out;
863 		}
864 		if (ni->itype.index.block_size > PAGE_SIZE) {
865 			ntfs_error(vi->i_sb, "Index block size (%u) > "
866 					"PAGE_SIZE (%ld) is not "
867 					"supported.  Sorry.",
868 					ni->itype.index.block_size,
869 					PAGE_SIZE);
870 			err = -EOPNOTSUPP;
871 			goto unm_err_out;
872 		}
873 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
874 			ntfs_error(vi->i_sb, "Index block size (%u) < "
875 					"NTFS_BLOCK_SIZE (%i) is not "
876 					"supported.  Sorry.",
877 					ni->itype.index.block_size,
878 					NTFS_BLOCK_SIZE);
879 			err = -EOPNOTSUPP;
880 			goto unm_err_out;
881 		}
882 		ni->itype.index.block_size_bits =
883 				ffs(ni->itype.index.block_size) - 1;
884 		/* Determine the size of a vcn in the directory index. */
885 		if (vol->cluster_size <= ni->itype.index.block_size) {
886 			ni->itype.index.vcn_size = vol->cluster_size;
887 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
888 		} else {
889 			ni->itype.index.vcn_size = vol->sector_size;
890 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
891 		}
892 
893 		/* Setup the index allocation attribute, even if not present. */
894 		NInoSetMstProtected(ni);
895 		ni->type = AT_INDEX_ALLOCATION;
896 		ni->name = I30;
897 		ni->name_len = 4;
898 
899 		if (!(ir->index.flags & LARGE_INDEX)) {
900 			/* No index allocation. */
901 			vi->i_size = ni->initialized_size =
902 					ni->allocated_size = 0;
903 			/* We are done with the mft record, so we release it. */
904 			ntfs_attr_put_search_ctx(ctx);
905 			unmap_mft_record(ni);
906 			m = NULL;
907 			ctx = NULL;
908 			goto skip_large_dir_stuff;
909 		} /* LARGE_INDEX: Index allocation present. Setup state. */
910 		NInoSetIndexAllocPresent(ni);
911 		/* Find index allocation attribute. */
912 		ntfs_attr_reinit_search_ctx(ctx);
913 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
914 				CASE_SENSITIVE, 0, NULL, 0, ctx);
915 		if (unlikely(err)) {
916 			if (err == -ENOENT)
917 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
918 						"attribute is not present but "
919 						"$INDEX_ROOT indicated it is.");
920 			else
921 				ntfs_error(vi->i_sb, "Failed to lookup "
922 						"$INDEX_ALLOCATION "
923 						"attribute.");
924 			goto unm_err_out;
925 		}
926 		a = ctx->attr;
927 		if (!a->non_resident) {
928 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
929 					"is resident.");
930 			goto unm_err_out;
931 		}
932 		/*
933 		 * Ensure the attribute name is placed before the mapping pairs
934 		 * array.
935 		 */
936 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
937 				le16_to_cpu(
938 				a->data.non_resident.mapping_pairs_offset)))) {
939 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
940 					"is placed after the mapping pairs "
941 					"array.");
942 			goto unm_err_out;
943 		}
944 		if (a->flags & ATTR_IS_ENCRYPTED) {
945 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
946 					"is encrypted.");
947 			goto unm_err_out;
948 		}
949 		if (a->flags & ATTR_IS_SPARSE) {
950 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
951 					"is sparse.");
952 			goto unm_err_out;
953 		}
954 		if (a->flags & ATTR_COMPRESSION_MASK) {
955 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
956 					"is compressed.");
957 			goto unm_err_out;
958 		}
959 		if (a->data.non_resident.lowest_vcn) {
960 			ntfs_error(vi->i_sb, "First extent of "
961 					"$INDEX_ALLOCATION attribute has non "
962 					"zero lowest_vcn.");
963 			goto unm_err_out;
964 		}
965 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
966 		ni->initialized_size = sle64_to_cpu(
967 				a->data.non_resident.initialized_size);
968 		ni->allocated_size = sle64_to_cpu(
969 				a->data.non_resident.allocated_size);
970 		/*
971 		 * We are done with the mft record, so we release it. Otherwise
972 		 * we would deadlock in ntfs_attr_iget().
973 		 */
974 		ntfs_attr_put_search_ctx(ctx);
975 		unmap_mft_record(ni);
976 		m = NULL;
977 		ctx = NULL;
978 		/* Get the index bitmap attribute inode. */
979 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
980 		if (IS_ERR(bvi)) {
981 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
982 			err = PTR_ERR(bvi);
983 			goto unm_err_out;
984 		}
985 		bni = NTFS_I(bvi);
986 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
987 				NInoSparse(bni)) {
988 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
989 					"and/or encrypted and/or sparse.");
990 			goto iput_unm_err_out;
991 		}
992 		/* Consistency check bitmap size vs. index allocation size. */
993 		bvi_size = i_size_read(bvi);
994 		if ((bvi_size << 3) < (vi->i_size >>
995 				ni->itype.index.block_size_bits)) {
996 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
997 					"for index allocation (0x%llx).",
998 					bvi_size << 3, vi->i_size);
999 			goto iput_unm_err_out;
1000 		}
1001 		/* No longer need the bitmap attribute inode. */
1002 		iput(bvi);
1003 skip_large_dir_stuff:
1004 		/* Setup the operations for this inode. */
1005 		vi->i_op = &ntfs_dir_inode_ops;
1006 		vi->i_fop = &ntfs_dir_ops;
1007 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1008 	} else {
1009 		/* It is a file. */
1010 		ntfs_attr_reinit_search_ctx(ctx);
1011 
1012 		/* Setup the data attribute, even if not present. */
1013 		ni->type = AT_DATA;
1014 		ni->name = NULL;
1015 		ni->name_len = 0;
1016 
1017 		/* Find first extent of the unnamed data attribute. */
1018 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1019 		if (unlikely(err)) {
1020 			vi->i_size = ni->initialized_size =
1021 					ni->allocated_size = 0;
1022 			if (err != -ENOENT) {
1023 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1024 						"attribute.");
1025 				goto unm_err_out;
1026 			}
1027 			/*
1028 			 * FILE_Secure does not have an unnamed $DATA
1029 			 * attribute, so we special case it here.
1030 			 */
1031 			if (vi->i_ino == FILE_Secure)
1032 				goto no_data_attr_special_case;
1033 			/*
1034 			 * Most if not all the system files in the $Extend
1035 			 * system directory do not have unnamed data
1036 			 * attributes so we need to check if the parent
1037 			 * directory of the file is FILE_Extend and if it is
1038 			 * ignore this error. To do this we need to get the
1039 			 * name of this inode from the mft record as the name
1040 			 * contains the back reference to the parent directory.
1041 			 */
1042 			if (ntfs_is_extended_system_file(ctx) > 0)
1043 				goto no_data_attr_special_case;
1044 			// FIXME: File is corrupt! Hot-fix with empty data
1045 			// attribute if recovery option is set.
1046 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1047 			goto unm_err_out;
1048 		}
1049 		a = ctx->attr;
1050 		/* Setup the state. */
1051 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1052 			if (a->flags & ATTR_COMPRESSION_MASK) {
1053 				NInoSetCompressed(ni);
1054 				if (vol->cluster_size > 4096) {
1055 					ntfs_error(vi->i_sb, "Found "
1056 							"compressed data but "
1057 							"compression is "
1058 							"disabled due to "
1059 							"cluster size (%i) > "
1060 							"4kiB.",
1061 							vol->cluster_size);
1062 					goto unm_err_out;
1063 				}
1064 				if ((a->flags & ATTR_COMPRESSION_MASK)
1065 						!= ATTR_IS_COMPRESSED) {
1066 					ntfs_error(vi->i_sb, "Found unknown "
1067 							"compression method "
1068 							"or corrupt file.");
1069 					goto unm_err_out;
1070 				}
1071 			}
1072 			if (a->flags & ATTR_IS_SPARSE)
1073 				NInoSetSparse(ni);
1074 		}
1075 		if (a->flags & ATTR_IS_ENCRYPTED) {
1076 			if (NInoCompressed(ni)) {
1077 				ntfs_error(vi->i_sb, "Found encrypted and "
1078 						"compressed data.");
1079 				goto unm_err_out;
1080 			}
1081 			NInoSetEncrypted(ni);
1082 		}
1083 		if (a->non_resident) {
1084 			NInoSetNonResident(ni);
1085 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1086 				if (NInoCompressed(ni) && a->data.non_resident.
1087 						compression_unit != 4) {
1088 					ntfs_error(vi->i_sb, "Found "
1089 							"non-standard "
1090 							"compression unit (%u "
1091 							"instead of 4).  "
1092 							"Cannot handle this.",
1093 							a->data.non_resident.
1094 							compression_unit);
1095 					err = -EOPNOTSUPP;
1096 					goto unm_err_out;
1097 				}
1098 				if (a->data.non_resident.compression_unit) {
1099 					ni->itype.compressed.block_size = 1U <<
1100 							(a->data.non_resident.
1101 							compression_unit +
1102 							vol->cluster_size_bits);
1103 					ni->itype.compressed.block_size_bits =
1104 							ffs(ni->itype.
1105 							compressed.
1106 							block_size) - 1;
1107 					ni->itype.compressed.block_clusters =
1108 							1U << a->data.
1109 							non_resident.
1110 							compression_unit;
1111 				} else {
1112 					ni->itype.compressed.block_size = 0;
1113 					ni->itype.compressed.block_size_bits =
1114 							0;
1115 					ni->itype.compressed.block_clusters =
1116 							0;
1117 				}
1118 				ni->itype.compressed.size = sle64_to_cpu(
1119 						a->data.non_resident.
1120 						compressed_size);
1121 			}
1122 			if (a->data.non_resident.lowest_vcn) {
1123 				ntfs_error(vi->i_sb, "First extent of $DATA "
1124 						"attribute has non zero "
1125 						"lowest_vcn.");
1126 				goto unm_err_out;
1127 			}
1128 			vi->i_size = sle64_to_cpu(
1129 					a->data.non_resident.data_size);
1130 			ni->initialized_size = sle64_to_cpu(
1131 					a->data.non_resident.initialized_size);
1132 			ni->allocated_size = sle64_to_cpu(
1133 					a->data.non_resident.allocated_size);
1134 		} else { /* Resident attribute. */
1135 			vi->i_size = ni->initialized_size = le32_to_cpu(
1136 					a->data.resident.value_length);
1137 			ni->allocated_size = le32_to_cpu(a->length) -
1138 					le16_to_cpu(
1139 					a->data.resident.value_offset);
1140 			if (vi->i_size > ni->allocated_size) {
1141 				ntfs_error(vi->i_sb, "Resident data attribute "
1142 						"is corrupt (size exceeds "
1143 						"allocation).");
1144 				goto unm_err_out;
1145 			}
1146 		}
1147 no_data_attr_special_case:
1148 		/* We are done with the mft record, so we release it. */
1149 		ntfs_attr_put_search_ctx(ctx);
1150 		unmap_mft_record(ni);
1151 		m = NULL;
1152 		ctx = NULL;
1153 		/* Setup the operations for this inode. */
1154 		vi->i_op = &ntfs_file_inode_ops;
1155 		vi->i_fop = &ntfs_file_ops;
1156 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1157 		if (NInoMstProtected(ni))
1158 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1159 		else if (NInoCompressed(ni))
1160 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1161 	}
1162 	/*
1163 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1164 	 * far inaccurate as it doesn't account for any named streams or other
1165 	 * special non-resident attributes, but that is how Windows works, too,
1166 	 * so we are at least consistent with Windows, if not entirely
1167 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1168 	 * significant slowdown as it would involve iterating over all
1169 	 * attributes in the mft record and adding the allocated/compressed
1170 	 * sizes of all non-resident attributes present to give us the Linux
1171 	 * correct size that should go into i_blocks (after division by 512).
1172 	 */
1173 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1174 		vi->i_blocks = ni->itype.compressed.size >> 9;
1175 	else
1176 		vi->i_blocks = ni->allocated_size >> 9;
1177 	ntfs_debug("Done.");
1178 	return 0;
1179 iput_unm_err_out:
1180 	iput(bvi);
1181 unm_err_out:
1182 	if (!err)
1183 		err = -EIO;
1184 	if (ctx)
1185 		ntfs_attr_put_search_ctx(ctx);
1186 	if (m)
1187 		unmap_mft_record(ni);
1188 err_out:
1189 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1190 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1191 	make_bad_inode(vi);
1192 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1193 		NVolSetErrors(vol);
1194 	return err;
1195 }
1196 
1197 /**
1198  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1199  * @base_vi:	base inode
1200  * @vi:		attribute inode to read
1201  *
1202  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1203  * attribute inode described by @vi into memory from the base mft record
1204  * described by @base_ni.
1205  *
1206  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1207  * reading and looks up the attribute described by @vi before setting up the
1208  * necessary fields in @vi as well as initializing the ntfs inode.
1209  *
1210  * Q: What locks are held when the function is called?
1211  * A: i_state has I_NEW set, hence the inode is locked, also
1212  *    i_count is set to 1, so it is not going to go away
1213  *
1214  * Return 0 on success and -errno on error.  In the error case, the inode will
1215  * have had make_bad_inode() executed on it.
1216  *
1217  * Note this cannot be called for AT_INDEX_ALLOCATION.
1218  */
1219 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1220 {
1221 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1222 	ntfs_inode *ni, *base_ni;
1223 	MFT_RECORD *m;
1224 	ATTR_RECORD *a;
1225 	ntfs_attr_search_ctx *ctx;
1226 	int err = 0;
1227 
1228 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1229 
1230 	ntfs_init_big_inode(vi);
1231 
1232 	ni	= NTFS_I(vi);
1233 	base_ni = NTFS_I(base_vi);
1234 
1235 	/* Just mirror the values from the base inode. */
1236 	vi->i_uid	= base_vi->i_uid;
1237 	vi->i_gid	= base_vi->i_gid;
1238 	set_nlink(vi, base_vi->i_nlink);
1239 	vi->i_mtime	= base_vi->i_mtime;
1240 	vi->i_ctime	= base_vi->i_ctime;
1241 	vi->i_atime	= base_vi->i_atime;
1242 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1243 
1244 	/* Set inode type to zero but preserve permissions. */
1245 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1246 
1247 	m = map_mft_record(base_ni);
1248 	if (IS_ERR(m)) {
1249 		err = PTR_ERR(m);
1250 		goto err_out;
1251 	}
1252 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1253 	if (!ctx) {
1254 		err = -ENOMEM;
1255 		goto unm_err_out;
1256 	}
1257 	/* Find the attribute. */
1258 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1259 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1260 	if (unlikely(err))
1261 		goto unm_err_out;
1262 	a = ctx->attr;
1263 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1264 		if (a->flags & ATTR_COMPRESSION_MASK) {
1265 			NInoSetCompressed(ni);
1266 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1267 					ni->name_len)) {
1268 				ntfs_error(vi->i_sb, "Found compressed "
1269 						"non-data or named data "
1270 						"attribute.  Please report "
1271 						"you saw this message to "
1272 						"linux-ntfs-dev@lists."
1273 						"sourceforge.net");
1274 				goto unm_err_out;
1275 			}
1276 			if (vol->cluster_size > 4096) {
1277 				ntfs_error(vi->i_sb, "Found compressed "
1278 						"attribute but compression is "
1279 						"disabled due to cluster size "
1280 						"(%i) > 4kiB.",
1281 						vol->cluster_size);
1282 				goto unm_err_out;
1283 			}
1284 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1285 					ATTR_IS_COMPRESSED) {
1286 				ntfs_error(vi->i_sb, "Found unknown "
1287 						"compression method.");
1288 				goto unm_err_out;
1289 			}
1290 		}
1291 		/*
1292 		 * The compressed/sparse flag set in an index root just means
1293 		 * to compress all files.
1294 		 */
1295 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1296 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1297 					"but the attribute is %s.  Please "
1298 					"report you saw this message to "
1299 					"linux-ntfs-dev@lists.sourceforge.net",
1300 					NInoCompressed(ni) ? "compressed" :
1301 					"sparse");
1302 			goto unm_err_out;
1303 		}
1304 		if (a->flags & ATTR_IS_SPARSE)
1305 			NInoSetSparse(ni);
1306 	}
1307 	if (a->flags & ATTR_IS_ENCRYPTED) {
1308 		if (NInoCompressed(ni)) {
1309 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1310 					"data.");
1311 			goto unm_err_out;
1312 		}
1313 		/*
1314 		 * The encryption flag set in an index root just means to
1315 		 * encrypt all files.
1316 		 */
1317 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1318 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1319 					"but the attribute is encrypted.  "
1320 					"Please report you saw this message "
1321 					"to linux-ntfs-dev@lists.sourceforge."
1322 					"net");
1323 			goto unm_err_out;
1324 		}
1325 		if (ni->type != AT_DATA) {
1326 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1327 					"attribute.");
1328 			goto unm_err_out;
1329 		}
1330 		NInoSetEncrypted(ni);
1331 	}
1332 	if (!a->non_resident) {
1333 		/* Ensure the attribute name is placed before the value. */
1334 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1335 				le16_to_cpu(a->data.resident.value_offset)))) {
1336 			ntfs_error(vol->sb, "Attribute name is placed after "
1337 					"the attribute value.");
1338 			goto unm_err_out;
1339 		}
1340 		if (NInoMstProtected(ni)) {
1341 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1342 					"but the attribute is resident.  "
1343 					"Please report you saw this message to "
1344 					"linux-ntfs-dev@lists.sourceforge.net");
1345 			goto unm_err_out;
1346 		}
1347 		vi->i_size = ni->initialized_size = le32_to_cpu(
1348 				a->data.resident.value_length);
1349 		ni->allocated_size = le32_to_cpu(a->length) -
1350 				le16_to_cpu(a->data.resident.value_offset);
1351 		if (vi->i_size > ni->allocated_size) {
1352 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1353 					"(size exceeds allocation).");
1354 			goto unm_err_out;
1355 		}
1356 	} else {
1357 		NInoSetNonResident(ni);
1358 		/*
1359 		 * Ensure the attribute name is placed before the mapping pairs
1360 		 * array.
1361 		 */
1362 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1363 				le16_to_cpu(
1364 				a->data.non_resident.mapping_pairs_offset)))) {
1365 			ntfs_error(vol->sb, "Attribute name is placed after "
1366 					"the mapping pairs array.");
1367 			goto unm_err_out;
1368 		}
1369 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1370 			if (NInoCompressed(ni) && a->data.non_resident.
1371 					compression_unit != 4) {
1372 				ntfs_error(vi->i_sb, "Found non-standard "
1373 						"compression unit (%u instead "
1374 						"of 4).  Cannot handle this.",
1375 						a->data.non_resident.
1376 						compression_unit);
1377 				err = -EOPNOTSUPP;
1378 				goto unm_err_out;
1379 			}
1380 			if (a->data.non_resident.compression_unit) {
1381 				ni->itype.compressed.block_size = 1U <<
1382 						(a->data.non_resident.
1383 						compression_unit +
1384 						vol->cluster_size_bits);
1385 				ni->itype.compressed.block_size_bits =
1386 						ffs(ni->itype.compressed.
1387 						block_size) - 1;
1388 				ni->itype.compressed.block_clusters = 1U <<
1389 						a->data.non_resident.
1390 						compression_unit;
1391 			} else {
1392 				ni->itype.compressed.block_size = 0;
1393 				ni->itype.compressed.block_size_bits = 0;
1394 				ni->itype.compressed.block_clusters = 0;
1395 			}
1396 			ni->itype.compressed.size = sle64_to_cpu(
1397 					a->data.non_resident.compressed_size);
1398 		}
1399 		if (a->data.non_resident.lowest_vcn) {
1400 			ntfs_error(vi->i_sb, "First extent of attribute has "
1401 					"non-zero lowest_vcn.");
1402 			goto unm_err_out;
1403 		}
1404 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1405 		ni->initialized_size = sle64_to_cpu(
1406 				a->data.non_resident.initialized_size);
1407 		ni->allocated_size = sle64_to_cpu(
1408 				a->data.non_resident.allocated_size);
1409 	}
1410 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1411 	if (NInoMstProtected(ni))
1412 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1413 	else if (NInoCompressed(ni))
1414 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1415 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1416 		vi->i_blocks = ni->itype.compressed.size >> 9;
1417 	else
1418 		vi->i_blocks = ni->allocated_size >> 9;
1419 	/*
1420 	 * Make sure the base inode does not go away and attach it to the
1421 	 * attribute inode.
1422 	 */
1423 	igrab(base_vi);
1424 	ni->ext.base_ntfs_ino = base_ni;
1425 	ni->nr_extents = -1;
1426 
1427 	ntfs_attr_put_search_ctx(ctx);
1428 	unmap_mft_record(base_ni);
1429 
1430 	ntfs_debug("Done.");
1431 	return 0;
1432 
1433 unm_err_out:
1434 	if (!err)
1435 		err = -EIO;
1436 	if (ctx)
1437 		ntfs_attr_put_search_ctx(ctx);
1438 	unmap_mft_record(base_ni);
1439 err_out:
1440 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1441 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1442 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1443 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1444 			base_vi->i_ino);
1445 	make_bad_inode(vi);
1446 	if (err != -ENOMEM)
1447 		NVolSetErrors(vol);
1448 	return err;
1449 }
1450 
1451 /**
1452  * ntfs_read_locked_index_inode - read an index inode from its base inode
1453  * @base_vi:	base inode
1454  * @vi:		index inode to read
1455  *
1456  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1457  * index inode described by @vi into memory from the base mft record described
1458  * by @base_ni.
1459  *
1460  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1461  * reading and looks up the attributes relating to the index described by @vi
1462  * before setting up the necessary fields in @vi as well as initializing the
1463  * ntfs inode.
1464  *
1465  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1466  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1467  * are setup like directory inodes since directories are a special case of
1468  * indices ao they need to be treated in much the same way.  Most importantly,
1469  * for small indices the index allocation attribute might not actually exist.
1470  * However, the index root attribute always exists but this does not need to
1471  * have an inode associated with it and this is why we define a new inode type
1472  * index.  Also, like for directories, we need to have an attribute inode for
1473  * the bitmap attribute corresponding to the index allocation attribute and we
1474  * can store this in the appropriate field of the inode, just like we do for
1475  * normal directory inodes.
1476  *
1477  * Q: What locks are held when the function is called?
1478  * A: i_state has I_NEW set, hence the inode is locked, also
1479  *    i_count is set to 1, so it is not going to go away
1480  *
1481  * Return 0 on success and -errno on error.  In the error case, the inode will
1482  * have had make_bad_inode() executed on it.
1483  */
1484 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1485 {
1486 	loff_t bvi_size;
1487 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1488 	ntfs_inode *ni, *base_ni, *bni;
1489 	struct inode *bvi;
1490 	MFT_RECORD *m;
1491 	ATTR_RECORD *a;
1492 	ntfs_attr_search_ctx *ctx;
1493 	INDEX_ROOT *ir;
1494 	u8 *ir_end, *index_end;
1495 	int err = 0;
1496 
1497 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1498 	ntfs_init_big_inode(vi);
1499 	ni	= NTFS_I(vi);
1500 	base_ni = NTFS_I(base_vi);
1501 	/* Just mirror the values from the base inode. */
1502 	vi->i_uid	= base_vi->i_uid;
1503 	vi->i_gid	= base_vi->i_gid;
1504 	set_nlink(vi, base_vi->i_nlink);
1505 	vi->i_mtime	= base_vi->i_mtime;
1506 	vi->i_ctime	= base_vi->i_ctime;
1507 	vi->i_atime	= base_vi->i_atime;
1508 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1509 	/* Set inode type to zero but preserve permissions. */
1510 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1511 	/* Map the mft record for the base inode. */
1512 	m = map_mft_record(base_ni);
1513 	if (IS_ERR(m)) {
1514 		err = PTR_ERR(m);
1515 		goto err_out;
1516 	}
1517 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1518 	if (!ctx) {
1519 		err = -ENOMEM;
1520 		goto unm_err_out;
1521 	}
1522 	/* Find the index root attribute. */
1523 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1524 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1525 	if (unlikely(err)) {
1526 		if (err == -ENOENT)
1527 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1528 					"missing.");
1529 		goto unm_err_out;
1530 	}
1531 	a = ctx->attr;
1532 	/* Set up the state. */
1533 	if (unlikely(a->non_resident)) {
1534 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1535 		goto unm_err_out;
1536 	}
1537 	/* Ensure the attribute name is placed before the value. */
1538 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1539 			le16_to_cpu(a->data.resident.value_offset)))) {
1540 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1541 				"after the attribute value.");
1542 		goto unm_err_out;
1543 	}
1544 	/*
1545 	 * Compressed/encrypted/sparse index root is not allowed, except for
1546 	 * directories of course but those are not dealt with here.
1547 	 */
1548 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1549 			ATTR_IS_SPARSE)) {
1550 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1551 				"root attribute.");
1552 		goto unm_err_out;
1553 	}
1554 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1555 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1556 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1557 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1558 		goto unm_err_out;
1559 	}
1560 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1561 	if (index_end > ir_end) {
1562 		ntfs_error(vi->i_sb, "Index is corrupt.");
1563 		goto unm_err_out;
1564 	}
1565 	if (ir->type) {
1566 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1567 				le32_to_cpu(ir->type));
1568 		goto unm_err_out;
1569 	}
1570 	ni->itype.index.collation_rule = ir->collation_rule;
1571 	ntfs_debug("Index collation rule is 0x%x.",
1572 			le32_to_cpu(ir->collation_rule));
1573 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1574 	if (!is_power_of_2(ni->itype.index.block_size)) {
1575 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1576 				"two.", ni->itype.index.block_size);
1577 		goto unm_err_out;
1578 	}
1579 	if (ni->itype.index.block_size > PAGE_SIZE) {
1580 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1581 				"(%ld) is not supported.  Sorry.",
1582 				ni->itype.index.block_size, PAGE_SIZE);
1583 		err = -EOPNOTSUPP;
1584 		goto unm_err_out;
1585 	}
1586 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1587 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1588 				"(%i) is not supported.  Sorry.",
1589 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1590 		err = -EOPNOTSUPP;
1591 		goto unm_err_out;
1592 	}
1593 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1594 	/* Determine the size of a vcn in the index. */
1595 	if (vol->cluster_size <= ni->itype.index.block_size) {
1596 		ni->itype.index.vcn_size = vol->cluster_size;
1597 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1598 	} else {
1599 		ni->itype.index.vcn_size = vol->sector_size;
1600 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1601 	}
1602 	/* Check for presence of index allocation attribute. */
1603 	if (!(ir->index.flags & LARGE_INDEX)) {
1604 		/* No index allocation. */
1605 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1606 		/* We are done with the mft record, so we release it. */
1607 		ntfs_attr_put_search_ctx(ctx);
1608 		unmap_mft_record(base_ni);
1609 		m = NULL;
1610 		ctx = NULL;
1611 		goto skip_large_index_stuff;
1612 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1613 	NInoSetIndexAllocPresent(ni);
1614 	/* Find index allocation attribute. */
1615 	ntfs_attr_reinit_search_ctx(ctx);
1616 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1617 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1618 	if (unlikely(err)) {
1619 		if (err == -ENOENT)
1620 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1621 					"not present but $INDEX_ROOT "
1622 					"indicated it is.");
1623 		else
1624 			ntfs_error(vi->i_sb, "Failed to lookup "
1625 					"$INDEX_ALLOCATION attribute.");
1626 		goto unm_err_out;
1627 	}
1628 	a = ctx->attr;
1629 	if (!a->non_resident) {
1630 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1631 				"resident.");
1632 		goto unm_err_out;
1633 	}
1634 	/*
1635 	 * Ensure the attribute name is placed before the mapping pairs array.
1636 	 */
1637 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1638 			le16_to_cpu(
1639 			a->data.non_resident.mapping_pairs_offset)))) {
1640 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1641 				"placed after the mapping pairs array.");
1642 		goto unm_err_out;
1643 	}
1644 	if (a->flags & ATTR_IS_ENCRYPTED) {
1645 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1646 				"encrypted.");
1647 		goto unm_err_out;
1648 	}
1649 	if (a->flags & ATTR_IS_SPARSE) {
1650 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1651 		goto unm_err_out;
1652 	}
1653 	if (a->flags & ATTR_COMPRESSION_MASK) {
1654 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655 				"compressed.");
1656 		goto unm_err_out;
1657 	}
1658 	if (a->data.non_resident.lowest_vcn) {
1659 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1660 				"attribute has non zero lowest_vcn.");
1661 		goto unm_err_out;
1662 	}
1663 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1664 	ni->initialized_size = sle64_to_cpu(
1665 			a->data.non_resident.initialized_size);
1666 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1667 	/*
1668 	 * We are done with the mft record, so we release it.  Otherwise
1669 	 * we would deadlock in ntfs_attr_iget().
1670 	 */
1671 	ntfs_attr_put_search_ctx(ctx);
1672 	unmap_mft_record(base_ni);
1673 	m = NULL;
1674 	ctx = NULL;
1675 	/* Get the index bitmap attribute inode. */
1676 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1677 	if (IS_ERR(bvi)) {
1678 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1679 		err = PTR_ERR(bvi);
1680 		goto unm_err_out;
1681 	}
1682 	bni = NTFS_I(bvi);
1683 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1684 			NInoSparse(bni)) {
1685 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1686 				"encrypted and/or sparse.");
1687 		goto iput_unm_err_out;
1688 	}
1689 	/* Consistency check bitmap size vs. index allocation size. */
1690 	bvi_size = i_size_read(bvi);
1691 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1692 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1693 				"index allocation (0x%llx).", bvi_size << 3,
1694 				vi->i_size);
1695 		goto iput_unm_err_out;
1696 	}
1697 	iput(bvi);
1698 skip_large_index_stuff:
1699 	/* Setup the operations for this index inode. */
1700 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1701 	vi->i_blocks = ni->allocated_size >> 9;
1702 	/*
1703 	 * Make sure the base inode doesn't go away and attach it to the
1704 	 * index inode.
1705 	 */
1706 	igrab(base_vi);
1707 	ni->ext.base_ntfs_ino = base_ni;
1708 	ni->nr_extents = -1;
1709 
1710 	ntfs_debug("Done.");
1711 	return 0;
1712 iput_unm_err_out:
1713 	iput(bvi);
1714 unm_err_out:
1715 	if (!err)
1716 		err = -EIO;
1717 	if (ctx)
1718 		ntfs_attr_put_search_ctx(ctx);
1719 	if (m)
1720 		unmap_mft_record(base_ni);
1721 err_out:
1722 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1723 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1724 			ni->name_len);
1725 	make_bad_inode(vi);
1726 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1727 		NVolSetErrors(vol);
1728 	return err;
1729 }
1730 
1731 /*
1732  * The MFT inode has special locking, so teach the lock validator
1733  * about this by splitting off the locking rules of the MFT from
1734  * the locking rules of other inodes. The MFT inode can never be
1735  * accessed from the VFS side (or even internally), only by the
1736  * map_mft functions.
1737  */
1738 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1739 
1740 /**
1741  * ntfs_read_inode_mount - special read_inode for mount time use only
1742  * @vi:		inode to read
1743  *
1744  * Read inode FILE_MFT at mount time, only called with super_block lock
1745  * held from within the read_super() code path.
1746  *
1747  * This function exists because when it is called the page cache for $MFT/$DATA
1748  * is not initialized and hence we cannot get at the contents of mft records
1749  * by calling map_mft_record*().
1750  *
1751  * Further it needs to cope with the circular references problem, i.e. cannot
1752  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1753  * we do not know where the other extent mft records are yet and again, because
1754  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1755  * attribute list is actually present in $MFT inode.
1756  *
1757  * We solve these problems by starting with the $DATA attribute before anything
1758  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1759  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1760  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1761  * sufficient information for the next step to complete.
1762  *
1763  * This should work but there are two possible pit falls (see inline comments
1764  * below), but only time will tell if they are real pits or just smoke...
1765  */
1766 int ntfs_read_inode_mount(struct inode *vi)
1767 {
1768 	VCN next_vcn, last_vcn, highest_vcn;
1769 	s64 block;
1770 	struct super_block *sb = vi->i_sb;
1771 	ntfs_volume *vol = NTFS_SB(sb);
1772 	struct buffer_head *bh;
1773 	ntfs_inode *ni;
1774 	MFT_RECORD *m = NULL;
1775 	ATTR_RECORD *a;
1776 	ntfs_attr_search_ctx *ctx;
1777 	unsigned int i, nr_blocks;
1778 	int err;
1779 
1780 	ntfs_debug("Entering.");
1781 
1782 	/* Initialize the ntfs specific part of @vi. */
1783 	ntfs_init_big_inode(vi);
1784 
1785 	ni = NTFS_I(vi);
1786 
1787 	/* Setup the data attribute. It is special as it is mst protected. */
1788 	NInoSetNonResident(ni);
1789 	NInoSetMstProtected(ni);
1790 	NInoSetSparseDisabled(ni);
1791 	ni->type = AT_DATA;
1792 	ni->name = NULL;
1793 	ni->name_len = 0;
1794 	/*
1795 	 * This sets up our little cheat allowing us to reuse the async read io
1796 	 * completion handler for directories.
1797 	 */
1798 	ni->itype.index.block_size = vol->mft_record_size;
1799 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1800 
1801 	/* Very important! Needed to be able to call map_mft_record*(). */
1802 	vol->mft_ino = vi;
1803 
1804 	/* Allocate enough memory to read the first mft record. */
1805 	if (vol->mft_record_size > 64 * 1024) {
1806 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1807 				vol->mft_record_size);
1808 		goto err_out;
1809 	}
1810 	i = vol->mft_record_size;
1811 	if (i < sb->s_blocksize)
1812 		i = sb->s_blocksize;
1813 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1814 	if (!m) {
1815 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1816 		goto err_out;
1817 	}
1818 
1819 	/* Determine the first block of the $MFT/$DATA attribute. */
1820 	block = vol->mft_lcn << vol->cluster_size_bits >>
1821 			sb->s_blocksize_bits;
1822 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1823 	if (!nr_blocks)
1824 		nr_blocks = 1;
1825 
1826 	/* Load $MFT/$DATA's first mft record. */
1827 	for (i = 0; i < nr_blocks; i++) {
1828 		bh = sb_bread(sb, block++);
1829 		if (!bh) {
1830 			ntfs_error(sb, "Device read failed.");
1831 			goto err_out;
1832 		}
1833 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1834 				sb->s_blocksize);
1835 		brelse(bh);
1836 	}
1837 
1838 	/* Apply the mst fixups. */
1839 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1840 		/* FIXME: Try to use the $MFTMirr now. */
1841 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1842 		goto err_out;
1843 	}
1844 
1845 	/* Need this to sanity check attribute list references to $MFT. */
1846 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1847 
1848 	/* Provides readpage() for map_mft_record(). */
1849 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1850 
1851 	ctx = ntfs_attr_get_search_ctx(ni, m);
1852 	if (!ctx) {
1853 		err = -ENOMEM;
1854 		goto err_out;
1855 	}
1856 
1857 	/* Find the attribute list attribute if present. */
1858 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1859 	if (err) {
1860 		if (unlikely(err != -ENOENT)) {
1861 			ntfs_error(sb, "Failed to lookup attribute list "
1862 					"attribute. You should run chkdsk.");
1863 			goto put_err_out;
1864 		}
1865 	} else /* if (!err) */ {
1866 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1867 		u8 *al_end;
1868 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1869 				"You should run chkdsk.";
1870 
1871 		ntfs_debug("Attribute list attribute found in $MFT.");
1872 		NInoSetAttrList(ni);
1873 		a = ctx->attr;
1874 		if (a->flags & ATTR_COMPRESSION_MASK) {
1875 			ntfs_error(sb, "Attribute list attribute is "
1876 					"compressed.%s", es);
1877 			goto put_err_out;
1878 		}
1879 		if (a->flags & ATTR_IS_ENCRYPTED ||
1880 				a->flags & ATTR_IS_SPARSE) {
1881 			if (a->non_resident) {
1882 				ntfs_error(sb, "Non-resident attribute list "
1883 						"attribute is encrypted/"
1884 						"sparse.%s", es);
1885 				goto put_err_out;
1886 			}
1887 			ntfs_warning(sb, "Resident attribute list attribute "
1888 					"in $MFT system file is marked "
1889 					"encrypted/sparse which is not true.  "
1890 					"However, Windows allows this and "
1891 					"chkdsk does not detect or correct it "
1892 					"so we will just ignore the invalid "
1893 					"flags and pretend they are not set.");
1894 		}
1895 		/* Now allocate memory for the attribute list. */
1896 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1897 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1898 		if (!ni->attr_list) {
1899 			ntfs_error(sb, "Not enough memory to allocate buffer "
1900 					"for attribute list.");
1901 			goto put_err_out;
1902 		}
1903 		if (a->non_resident) {
1904 			NInoSetAttrListNonResident(ni);
1905 			if (a->data.non_resident.lowest_vcn) {
1906 				ntfs_error(sb, "Attribute list has non zero "
1907 						"lowest_vcn. $MFT is corrupt. "
1908 						"You should run chkdsk.");
1909 				goto put_err_out;
1910 			}
1911 			/* Setup the runlist. */
1912 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1913 					a, NULL);
1914 			if (IS_ERR(ni->attr_list_rl.rl)) {
1915 				err = PTR_ERR(ni->attr_list_rl.rl);
1916 				ni->attr_list_rl.rl = NULL;
1917 				ntfs_error(sb, "Mapping pairs decompression "
1918 						"failed with error code %i.",
1919 						-err);
1920 				goto put_err_out;
1921 			}
1922 			/* Now load the attribute list. */
1923 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1924 					ni->attr_list, ni->attr_list_size,
1925 					sle64_to_cpu(a->data.
1926 					non_resident.initialized_size)))) {
1927 				ntfs_error(sb, "Failed to load attribute list "
1928 						"attribute with error code %i.",
1929 						-err);
1930 				goto put_err_out;
1931 			}
1932 		} else /* if (!ctx.attr->non_resident) */ {
1933 			if ((u8*)a + le16_to_cpu(
1934 					a->data.resident.value_offset) +
1935 					le32_to_cpu(
1936 					a->data.resident.value_length) >
1937 					(u8*)ctx->mrec + vol->mft_record_size) {
1938 				ntfs_error(sb, "Corrupt attribute list "
1939 						"attribute.");
1940 				goto put_err_out;
1941 			}
1942 			/* Now copy the attribute list. */
1943 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1944 					a->data.resident.value_offset),
1945 					le32_to_cpu(
1946 					a->data.resident.value_length));
1947 		}
1948 		/* The attribute list is now setup in memory. */
1949 		/*
1950 		 * FIXME: I don't know if this case is actually possible.
1951 		 * According to logic it is not possible but I have seen too
1952 		 * many weird things in MS software to rely on logic... Thus we
1953 		 * perform a manual search and make sure the first $MFT/$DATA
1954 		 * extent is in the base inode. If it is not we abort with an
1955 		 * error and if we ever see a report of this error we will need
1956 		 * to do some magic in order to have the necessary mft record
1957 		 * loaded and in the right place in the page cache. But
1958 		 * hopefully logic will prevail and this never happens...
1959 		 */
1960 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1961 		al_end = (u8*)al_entry + ni->attr_list_size;
1962 		for (;; al_entry = next_al_entry) {
1963 			/* Out of bounds check. */
1964 			if ((u8*)al_entry < ni->attr_list ||
1965 					(u8*)al_entry > al_end)
1966 				goto em_put_err_out;
1967 			/* Catch the end of the attribute list. */
1968 			if ((u8*)al_entry == al_end)
1969 				goto em_put_err_out;
1970 			if (!al_entry->length)
1971 				goto em_put_err_out;
1972 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1973 					le16_to_cpu(al_entry->length) > al_end)
1974 				goto em_put_err_out;
1975 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1976 					le16_to_cpu(al_entry->length));
1977 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1978 				goto em_put_err_out;
1979 			if (AT_DATA != al_entry->type)
1980 				continue;
1981 			/* We want an unnamed attribute. */
1982 			if (al_entry->name_length)
1983 				goto em_put_err_out;
1984 			/* Want the first entry, i.e. lowest_vcn == 0. */
1985 			if (al_entry->lowest_vcn)
1986 				goto em_put_err_out;
1987 			/* First entry has to be in the base mft record. */
1988 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1989 				/* MFT references do not match, logic fails. */
1990 				ntfs_error(sb, "BUG: The first $DATA extent "
1991 						"of $MFT is not in the base "
1992 						"mft record. Please report "
1993 						"you saw this message to "
1994 						"linux-ntfs-dev@lists."
1995 						"sourceforge.net");
1996 				goto put_err_out;
1997 			} else {
1998 				/* Sequence numbers must match. */
1999 				if (MSEQNO_LE(al_entry->mft_reference) !=
2000 						ni->seq_no)
2001 					goto em_put_err_out;
2002 				/* Got it. All is ok. We can stop now. */
2003 				break;
2004 			}
2005 		}
2006 	}
2007 
2008 	ntfs_attr_reinit_search_ctx(ctx);
2009 
2010 	/* Now load all attribute extents. */
2011 	a = NULL;
2012 	next_vcn = last_vcn = highest_vcn = 0;
2013 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2014 			ctx))) {
2015 		runlist_element *nrl;
2016 
2017 		/* Cache the current attribute. */
2018 		a = ctx->attr;
2019 		/* $MFT must be non-resident. */
2020 		if (!a->non_resident) {
2021 			ntfs_error(sb, "$MFT must be non-resident but a "
2022 					"resident extent was found. $MFT is "
2023 					"corrupt. Run chkdsk.");
2024 			goto put_err_out;
2025 		}
2026 		/* $MFT must be uncompressed and unencrypted. */
2027 		if (a->flags & ATTR_COMPRESSION_MASK ||
2028 				a->flags & ATTR_IS_ENCRYPTED ||
2029 				a->flags & ATTR_IS_SPARSE) {
2030 			ntfs_error(sb, "$MFT must be uncompressed, "
2031 					"non-sparse, and unencrypted but a "
2032 					"compressed/sparse/encrypted extent "
2033 					"was found. $MFT is corrupt. Run "
2034 					"chkdsk.");
2035 			goto put_err_out;
2036 		}
2037 		/*
2038 		 * Decompress the mapping pairs array of this extent and merge
2039 		 * the result into the existing runlist. No need for locking
2040 		 * as we have exclusive access to the inode at this time and we
2041 		 * are a mount in progress task, too.
2042 		 */
2043 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2044 		if (IS_ERR(nrl)) {
2045 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2046 					"failed with error code %ld.  $MFT is "
2047 					"corrupt.", PTR_ERR(nrl));
2048 			goto put_err_out;
2049 		}
2050 		ni->runlist.rl = nrl;
2051 
2052 		/* Are we in the first extent? */
2053 		if (!next_vcn) {
2054 			if (a->data.non_resident.lowest_vcn) {
2055 				ntfs_error(sb, "First extent of $DATA "
2056 						"attribute has non zero "
2057 						"lowest_vcn. $MFT is corrupt. "
2058 						"You should run chkdsk.");
2059 				goto put_err_out;
2060 			}
2061 			/* Get the last vcn in the $DATA attribute. */
2062 			last_vcn = sle64_to_cpu(
2063 					a->data.non_resident.allocated_size)
2064 					>> vol->cluster_size_bits;
2065 			/* Fill in the inode size. */
2066 			vi->i_size = sle64_to_cpu(
2067 					a->data.non_resident.data_size);
2068 			ni->initialized_size = sle64_to_cpu(
2069 					a->data.non_resident.initialized_size);
2070 			ni->allocated_size = sle64_to_cpu(
2071 					a->data.non_resident.allocated_size);
2072 			/*
2073 			 * Verify the number of mft records does not exceed
2074 			 * 2^32 - 1.
2075 			 */
2076 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2077 					(1ULL << 32)) {
2078 				ntfs_error(sb, "$MFT is too big! Aborting.");
2079 				goto put_err_out;
2080 			}
2081 			/*
2082 			 * We have got the first extent of the runlist for
2083 			 * $MFT which means it is now relatively safe to call
2084 			 * the normal ntfs_read_inode() function.
2085 			 * Complete reading the inode, this will actually
2086 			 * re-read the mft record for $MFT, this time entering
2087 			 * it into the page cache with which we complete the
2088 			 * kick start of the volume. It should be safe to do
2089 			 * this now as the first extent of $MFT/$DATA is
2090 			 * already known and we would hope that we don't need
2091 			 * further extents in order to find the other
2092 			 * attributes belonging to $MFT. Only time will tell if
2093 			 * this is really the case. If not we will have to play
2094 			 * magic at this point, possibly duplicating a lot of
2095 			 * ntfs_read_inode() at this point. We will need to
2096 			 * ensure we do enough of its work to be able to call
2097 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2098 			 * hope this never happens...
2099 			 */
2100 			ntfs_read_locked_inode(vi);
2101 			if (is_bad_inode(vi)) {
2102 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2103 						"failed. BUG or corrupt $MFT. "
2104 						"Run chkdsk and if no errors "
2105 						"are found, please report you "
2106 						"saw this message to "
2107 						"linux-ntfs-dev@lists."
2108 						"sourceforge.net");
2109 				ntfs_attr_put_search_ctx(ctx);
2110 				/* Revert to the safe super operations. */
2111 				ntfs_free(m);
2112 				return -1;
2113 			}
2114 			/*
2115 			 * Re-initialize some specifics about $MFT's inode as
2116 			 * ntfs_read_inode() will have set up the default ones.
2117 			 */
2118 			/* Set uid and gid to root. */
2119 			vi->i_uid = GLOBAL_ROOT_UID;
2120 			vi->i_gid = GLOBAL_ROOT_GID;
2121 			/* Regular file. No access for anyone. */
2122 			vi->i_mode = S_IFREG;
2123 			/* No VFS initiated operations allowed for $MFT. */
2124 			vi->i_op = &ntfs_empty_inode_ops;
2125 			vi->i_fop = &ntfs_empty_file_ops;
2126 		}
2127 
2128 		/* Get the lowest vcn for the next extent. */
2129 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2130 		next_vcn = highest_vcn + 1;
2131 
2132 		/* Only one extent or error, which we catch below. */
2133 		if (next_vcn <= 0)
2134 			break;
2135 
2136 		/* Avoid endless loops due to corruption. */
2137 		if (next_vcn < sle64_to_cpu(
2138 				a->data.non_resident.lowest_vcn)) {
2139 			ntfs_error(sb, "$MFT has corrupt attribute list "
2140 					"attribute. Run chkdsk.");
2141 			goto put_err_out;
2142 		}
2143 	}
2144 	if (err != -ENOENT) {
2145 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2146 				"$MFT is corrupt. Run chkdsk.");
2147 		goto put_err_out;
2148 	}
2149 	if (!a) {
2150 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2151 				"corrupt. Run chkdsk.");
2152 		goto put_err_out;
2153 	}
2154 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2155 		ntfs_error(sb, "Failed to load the complete runlist for "
2156 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2157 				"Run chkdsk.");
2158 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2159 				(unsigned long long)highest_vcn,
2160 				(unsigned long long)last_vcn - 1);
2161 		goto put_err_out;
2162 	}
2163 	ntfs_attr_put_search_ctx(ctx);
2164 	ntfs_debug("Done.");
2165 	ntfs_free(m);
2166 
2167 	/*
2168 	 * Split the locking rules of the MFT inode from the
2169 	 * locking rules of other inodes:
2170 	 */
2171 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2172 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2173 
2174 	return 0;
2175 
2176 em_put_err_out:
2177 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2178 			"attribute list. $MFT is corrupt. Run chkdsk.");
2179 put_err_out:
2180 	ntfs_attr_put_search_ctx(ctx);
2181 err_out:
2182 	ntfs_error(sb, "Failed. Marking inode as bad.");
2183 	make_bad_inode(vi);
2184 	ntfs_free(m);
2185 	return -1;
2186 }
2187 
2188 static void __ntfs_clear_inode(ntfs_inode *ni)
2189 {
2190 	/* Free all alocated memory. */
2191 	down_write(&ni->runlist.lock);
2192 	if (ni->runlist.rl) {
2193 		ntfs_free(ni->runlist.rl);
2194 		ni->runlist.rl = NULL;
2195 	}
2196 	up_write(&ni->runlist.lock);
2197 
2198 	if (ni->attr_list) {
2199 		ntfs_free(ni->attr_list);
2200 		ni->attr_list = NULL;
2201 	}
2202 
2203 	down_write(&ni->attr_list_rl.lock);
2204 	if (ni->attr_list_rl.rl) {
2205 		ntfs_free(ni->attr_list_rl.rl);
2206 		ni->attr_list_rl.rl = NULL;
2207 	}
2208 	up_write(&ni->attr_list_rl.lock);
2209 
2210 	if (ni->name_len && ni->name != I30) {
2211 		/* Catch bugs... */
2212 		BUG_ON(!ni->name);
2213 		kfree(ni->name);
2214 	}
2215 }
2216 
2217 void ntfs_clear_extent_inode(ntfs_inode *ni)
2218 {
2219 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2220 
2221 	BUG_ON(NInoAttr(ni));
2222 	BUG_ON(ni->nr_extents != -1);
2223 
2224 #ifdef NTFS_RW
2225 	if (NInoDirty(ni)) {
2226 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2227 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2228 					"Losing data!  This is a BUG!!!");
2229 		// FIXME:  Do something!!!
2230 	}
2231 #endif /* NTFS_RW */
2232 
2233 	__ntfs_clear_inode(ni);
2234 
2235 	/* Bye, bye... */
2236 	ntfs_destroy_extent_inode(ni);
2237 }
2238 
2239 /**
2240  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2241  * @vi:		vfs inode pending annihilation
2242  *
2243  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2244  * is called, which deallocates all memory belonging to the NTFS specific part
2245  * of the inode and returns.
2246  *
2247  * If the MFT record is dirty, we commit it before doing anything else.
2248  */
2249 void ntfs_evict_big_inode(struct inode *vi)
2250 {
2251 	ntfs_inode *ni = NTFS_I(vi);
2252 
2253 	truncate_inode_pages_final(&vi->i_data);
2254 	clear_inode(vi);
2255 
2256 #ifdef NTFS_RW
2257 	if (NInoDirty(ni)) {
2258 		bool was_bad = (is_bad_inode(vi));
2259 
2260 		/* Committing the inode also commits all extent inodes. */
2261 		ntfs_commit_inode(vi);
2262 
2263 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2264 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2265 					"0x%lx.  Losing data!", vi->i_ino);
2266 			// FIXME:  Do something!!!
2267 		}
2268 	}
2269 #endif /* NTFS_RW */
2270 
2271 	/* No need to lock at this stage as no one else has a reference. */
2272 	if (ni->nr_extents > 0) {
2273 		int i;
2274 
2275 		for (i = 0; i < ni->nr_extents; i++)
2276 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2277 		kfree(ni->ext.extent_ntfs_inos);
2278 	}
2279 
2280 	__ntfs_clear_inode(ni);
2281 
2282 	if (NInoAttr(ni)) {
2283 		/* Release the base inode if we are holding it. */
2284 		if (ni->nr_extents == -1) {
2285 			iput(VFS_I(ni->ext.base_ntfs_ino));
2286 			ni->nr_extents = 0;
2287 			ni->ext.base_ntfs_ino = NULL;
2288 		}
2289 	}
2290 	return;
2291 }
2292 
2293 /**
2294  * ntfs_show_options - show mount options in /proc/mounts
2295  * @sf:		seq_file in which to write our mount options
2296  * @root:	root of the mounted tree whose mount options to display
2297  *
2298  * Called by the VFS once for each mounted ntfs volume when someone reads
2299  * /proc/mounts in order to display the NTFS specific mount options of each
2300  * mount. The mount options of fs specified by @root are written to the seq file
2301  * @sf and success is returned.
2302  */
2303 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2304 {
2305 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2306 	int i;
2307 
2308 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2309 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2310 	if (vol->fmask == vol->dmask)
2311 		seq_printf(sf, ",umask=0%o", vol->fmask);
2312 	else {
2313 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2314 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2315 	}
2316 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2317 	if (NVolCaseSensitive(vol))
2318 		seq_printf(sf, ",case_sensitive");
2319 	if (NVolShowSystemFiles(vol))
2320 		seq_printf(sf, ",show_sys_files");
2321 	if (!NVolSparseEnabled(vol))
2322 		seq_printf(sf, ",disable_sparse");
2323 	for (i = 0; on_errors_arr[i].val; i++) {
2324 		if (on_errors_arr[i].val & vol->on_errors)
2325 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2326 	}
2327 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2328 	return 0;
2329 }
2330 
2331 #ifdef NTFS_RW
2332 
2333 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2334 		"chkdsk.";
2335 
2336 /**
2337  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2338  * @vi:		inode for which the i_size was changed
2339  *
2340  * We only support i_size changes for normal files at present, i.e. not
2341  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2342  * below.
2343  *
2344  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2345  * that the change is allowed.
2346  *
2347  * This implies for us that @vi is a file inode rather than a directory, index,
2348  * or attribute inode as well as that @vi is a base inode.
2349  *
2350  * Returns 0 on success or -errno on error.
2351  *
2352  * Called with ->i_mutex held.
2353  */
2354 int ntfs_truncate(struct inode *vi)
2355 {
2356 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2357 	VCN highest_vcn;
2358 	unsigned long flags;
2359 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2360 	ntfs_volume *vol = ni->vol;
2361 	ntfs_attr_search_ctx *ctx;
2362 	MFT_RECORD *m;
2363 	ATTR_RECORD *a;
2364 	const char *te = "  Leaving file length out of sync with i_size.";
2365 	int err, mp_size, size_change, alloc_change;
2366 	u32 attr_len;
2367 
2368 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2369 	BUG_ON(NInoAttr(ni));
2370 	BUG_ON(S_ISDIR(vi->i_mode));
2371 	BUG_ON(NInoMstProtected(ni));
2372 	BUG_ON(ni->nr_extents < 0);
2373 retry_truncate:
2374 	/*
2375 	 * Lock the runlist for writing and map the mft record to ensure it is
2376 	 * safe to mess with the attribute runlist and sizes.
2377 	 */
2378 	down_write(&ni->runlist.lock);
2379 	if (!NInoAttr(ni))
2380 		base_ni = ni;
2381 	else
2382 		base_ni = ni->ext.base_ntfs_ino;
2383 	m = map_mft_record(base_ni);
2384 	if (IS_ERR(m)) {
2385 		err = PTR_ERR(m);
2386 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2387 				"(error code %d).%s", vi->i_ino, err, te);
2388 		ctx = NULL;
2389 		m = NULL;
2390 		goto old_bad_out;
2391 	}
2392 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2393 	if (unlikely(!ctx)) {
2394 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2395 				"inode 0x%lx (not enough memory).%s",
2396 				vi->i_ino, te);
2397 		err = -ENOMEM;
2398 		goto old_bad_out;
2399 	}
2400 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2401 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2402 	if (unlikely(err)) {
2403 		if (err == -ENOENT) {
2404 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2405 					"mft record.  Inode 0x%lx is corrupt.  "
2406 					"Run chkdsk.%s", vi->i_ino, te);
2407 			err = -EIO;
2408 		} else
2409 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2410 					"inode 0x%lx (error code %d).%s",
2411 					vi->i_ino, err, te);
2412 		goto old_bad_out;
2413 	}
2414 	m = ctx->mrec;
2415 	a = ctx->attr;
2416 	/*
2417 	 * The i_size of the vfs inode is the new size for the attribute value.
2418 	 */
2419 	new_size = i_size_read(vi);
2420 	/* The current size of the attribute value is the old size. */
2421 	old_size = ntfs_attr_size(a);
2422 	/* Calculate the new allocated size. */
2423 	if (NInoNonResident(ni))
2424 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2425 				~(s64)vol->cluster_size_mask;
2426 	else
2427 		new_alloc_size = (new_size + 7) & ~7;
2428 	/* The current allocated size is the old allocated size. */
2429 	read_lock_irqsave(&ni->size_lock, flags);
2430 	old_alloc_size = ni->allocated_size;
2431 	read_unlock_irqrestore(&ni->size_lock, flags);
2432 	/*
2433 	 * The change in the file size.  This will be 0 if no change, >0 if the
2434 	 * size is growing, and <0 if the size is shrinking.
2435 	 */
2436 	size_change = -1;
2437 	if (new_size - old_size >= 0) {
2438 		size_change = 1;
2439 		if (new_size == old_size)
2440 			size_change = 0;
2441 	}
2442 	/* As above for the allocated size. */
2443 	alloc_change = -1;
2444 	if (new_alloc_size - old_alloc_size >= 0) {
2445 		alloc_change = 1;
2446 		if (new_alloc_size == old_alloc_size)
2447 			alloc_change = 0;
2448 	}
2449 	/*
2450 	 * If neither the size nor the allocation are being changed there is
2451 	 * nothing to do.
2452 	 */
2453 	if (!size_change && !alloc_change)
2454 		goto unm_done;
2455 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2456 	if (size_change) {
2457 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2458 		if (unlikely(err)) {
2459 			if (err == -ERANGE) {
2460 				ntfs_error(vol->sb, "Truncate would cause the "
2461 						"inode 0x%lx to %simum size "
2462 						"for its attribute type "
2463 						"(0x%x).  Aborting truncate.",
2464 						vi->i_ino,
2465 						new_size > old_size ? "exceed "
2466 						"the max" : "go under the min",
2467 						le32_to_cpu(ni->type));
2468 				err = -EFBIG;
2469 			} else {
2470 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2471 						"attribute type 0x%x.  "
2472 						"Aborting truncate.",
2473 						vi->i_ino,
2474 						le32_to_cpu(ni->type));
2475 				err = -EIO;
2476 			}
2477 			/* Reset the vfs inode size to the old size. */
2478 			i_size_write(vi, old_size);
2479 			goto err_out;
2480 		}
2481 	}
2482 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2483 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2484 				"supported yet for %s files, ignoring.",
2485 				NInoCompressed(ni) ? "compressed" :
2486 				"encrypted");
2487 		err = -EOPNOTSUPP;
2488 		goto bad_out;
2489 	}
2490 	if (a->non_resident)
2491 		goto do_non_resident_truncate;
2492 	BUG_ON(NInoNonResident(ni));
2493 	/* Resize the attribute record to best fit the new attribute size. */
2494 	if (new_size < vol->mft_record_size &&
2495 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2496 		/* The resize succeeded! */
2497 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2498 		mark_mft_record_dirty(ctx->ntfs_ino);
2499 		write_lock_irqsave(&ni->size_lock, flags);
2500 		/* Update the sizes in the ntfs inode and all is done. */
2501 		ni->allocated_size = le32_to_cpu(a->length) -
2502 				le16_to_cpu(a->data.resident.value_offset);
2503 		/*
2504 		 * Note ntfs_resident_attr_value_resize() has already done any
2505 		 * necessary data clearing in the attribute record.  When the
2506 		 * file is being shrunk vmtruncate() will already have cleared
2507 		 * the top part of the last partial page, i.e. since this is
2508 		 * the resident case this is the page with index 0.  However,
2509 		 * when the file is being expanded, the page cache page data
2510 		 * between the old data_size, i.e. old_size, and the new_size
2511 		 * has not been zeroed.  Fortunately, we do not need to zero it
2512 		 * either since on one hand it will either already be zero due
2513 		 * to both readpage and writepage clearing partial page data
2514 		 * beyond i_size in which case there is nothing to do or in the
2515 		 * case of the file being mmap()ped at the same time, POSIX
2516 		 * specifies that the behaviour is unspecified thus we do not
2517 		 * have to do anything.  This means that in our implementation
2518 		 * in the rare case that the file is mmap()ped and a write
2519 		 * occurred into the mmap()ped region just beyond the file size
2520 		 * and writepage has not yet been called to write out the page
2521 		 * (which would clear the area beyond the file size) and we now
2522 		 * extend the file size to incorporate this dirty region
2523 		 * outside the file size, a write of the page would result in
2524 		 * this data being written to disk instead of being cleared.
2525 		 * Given both POSIX and the Linux mmap(2) man page specify that
2526 		 * this corner case is undefined, we choose to leave it like
2527 		 * that as this is much simpler for us as we cannot lock the
2528 		 * relevant page now since we are holding too many ntfs locks
2529 		 * which would result in a lock reversal deadlock.
2530 		 */
2531 		ni->initialized_size = new_size;
2532 		write_unlock_irqrestore(&ni->size_lock, flags);
2533 		goto unm_done;
2534 	}
2535 	/* If the above resize failed, this must be an attribute extension. */
2536 	BUG_ON(size_change < 0);
2537 	/*
2538 	 * We have to drop all the locks so we can call
2539 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2540 	 * locking the first page cache page and only if that fails dropping
2541 	 * the locks, locking the page, and redoing all the locking and
2542 	 * lookups.  While this would be a huge optimisation, it is not worth
2543 	 * it as this is definitely a slow code path as it only ever can happen
2544 	 * once for any given file.
2545 	 */
2546 	ntfs_attr_put_search_ctx(ctx);
2547 	unmap_mft_record(base_ni);
2548 	up_write(&ni->runlist.lock);
2549 	/*
2550 	 * Not enough space in the mft record, try to make the attribute
2551 	 * non-resident and if successful restart the truncation process.
2552 	 */
2553 	err = ntfs_attr_make_non_resident(ni, old_size);
2554 	if (likely(!err))
2555 		goto retry_truncate;
2556 	/*
2557 	 * Could not make non-resident.  If this is due to this not being
2558 	 * permitted for this attribute type or there not being enough space,
2559 	 * try to make other attributes non-resident.  Otherwise fail.
2560 	 */
2561 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2562 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2563 				"type 0x%x, because the conversion from "
2564 				"resident to non-resident attribute failed "
2565 				"with error code %i.", vi->i_ino,
2566 				(unsigned)le32_to_cpu(ni->type), err);
2567 		if (err != -ENOMEM)
2568 			err = -EIO;
2569 		goto conv_err_out;
2570 	}
2571 	/* TODO: Not implemented from here, abort. */
2572 	if (err == -ENOSPC)
2573 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2574 				"disk for the non-resident attribute value.  "
2575 				"This case is not implemented yet.");
2576 	else /* if (err == -EPERM) */
2577 		ntfs_error(vol->sb, "This attribute type may not be "
2578 				"non-resident.  This case is not implemented "
2579 				"yet.");
2580 	err = -EOPNOTSUPP;
2581 	goto conv_err_out;
2582 #if 0
2583 	// TODO: Attempt to make other attributes non-resident.
2584 	if (!err)
2585 		goto do_resident_extend;
2586 	/*
2587 	 * Both the attribute list attribute and the standard information
2588 	 * attribute must remain in the base inode.  Thus, if this is one of
2589 	 * these attributes, we have to try to move other attributes out into
2590 	 * extent mft records instead.
2591 	 */
2592 	if (ni->type == AT_ATTRIBUTE_LIST ||
2593 			ni->type == AT_STANDARD_INFORMATION) {
2594 		// TODO: Attempt to move other attributes into extent mft
2595 		// records.
2596 		err = -EOPNOTSUPP;
2597 		if (!err)
2598 			goto do_resident_extend;
2599 		goto err_out;
2600 	}
2601 	// TODO: Attempt to move this attribute to an extent mft record, but
2602 	// only if it is not already the only attribute in an mft record in
2603 	// which case there would be nothing to gain.
2604 	err = -EOPNOTSUPP;
2605 	if (!err)
2606 		goto do_resident_extend;
2607 	/* There is nothing we can do to make enough space. )-: */
2608 	goto err_out;
2609 #endif
2610 do_non_resident_truncate:
2611 	BUG_ON(!NInoNonResident(ni));
2612 	if (alloc_change < 0) {
2613 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2614 		if (highest_vcn > 0 &&
2615 				old_alloc_size >> vol->cluster_size_bits >
2616 				highest_vcn + 1) {
2617 			/*
2618 			 * This attribute has multiple extents.  Not yet
2619 			 * supported.
2620 			 */
2621 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2622 					"attribute type 0x%x, because the "
2623 					"attribute is highly fragmented (it "
2624 					"consists of multiple extents) and "
2625 					"this case is not implemented yet.",
2626 					vi->i_ino,
2627 					(unsigned)le32_to_cpu(ni->type));
2628 			err = -EOPNOTSUPP;
2629 			goto bad_out;
2630 		}
2631 	}
2632 	/*
2633 	 * If the size is shrinking, need to reduce the initialized_size and
2634 	 * the data_size before reducing the allocation.
2635 	 */
2636 	if (size_change < 0) {
2637 		/*
2638 		 * Make the valid size smaller (i_size is already up-to-date).
2639 		 */
2640 		write_lock_irqsave(&ni->size_lock, flags);
2641 		if (new_size < ni->initialized_size) {
2642 			ni->initialized_size = new_size;
2643 			a->data.non_resident.initialized_size =
2644 					cpu_to_sle64(new_size);
2645 		}
2646 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2647 		write_unlock_irqrestore(&ni->size_lock, flags);
2648 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2649 		mark_mft_record_dirty(ctx->ntfs_ino);
2650 		/* If the allocated size is not changing, we are done. */
2651 		if (!alloc_change)
2652 			goto unm_done;
2653 		/*
2654 		 * If the size is shrinking it makes no sense for the
2655 		 * allocation to be growing.
2656 		 */
2657 		BUG_ON(alloc_change > 0);
2658 	} else /* if (size_change >= 0) */ {
2659 		/*
2660 		 * The file size is growing or staying the same but the
2661 		 * allocation can be shrinking, growing or staying the same.
2662 		 */
2663 		if (alloc_change > 0) {
2664 			/*
2665 			 * We need to extend the allocation and possibly update
2666 			 * the data size.  If we are updating the data size,
2667 			 * since we are not touching the initialized_size we do
2668 			 * not need to worry about the actual data on disk.
2669 			 * And as far as the page cache is concerned, there
2670 			 * will be no pages beyond the old data size and any
2671 			 * partial region in the last page between the old and
2672 			 * new data size (or the end of the page if the new
2673 			 * data size is outside the page) does not need to be
2674 			 * modified as explained above for the resident
2675 			 * attribute truncate case.  To do this, we simply drop
2676 			 * the locks we hold and leave all the work to our
2677 			 * friendly helper ntfs_attr_extend_allocation().
2678 			 */
2679 			ntfs_attr_put_search_ctx(ctx);
2680 			unmap_mft_record(base_ni);
2681 			up_write(&ni->runlist.lock);
2682 			err = ntfs_attr_extend_allocation(ni, new_size,
2683 					size_change > 0 ? new_size : -1, -1);
2684 			/*
2685 			 * ntfs_attr_extend_allocation() will have done error
2686 			 * output already.
2687 			 */
2688 			goto done;
2689 		}
2690 		if (!alloc_change)
2691 			goto alloc_done;
2692 	}
2693 	/* alloc_change < 0 */
2694 	/* Free the clusters. */
2695 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2696 			vol->cluster_size_bits, -1, ctx);
2697 	m = ctx->mrec;
2698 	a = ctx->attr;
2699 	if (unlikely(nr_freed < 0)) {
2700 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2701 				"%lli).  Unmount and run chkdsk to recover "
2702 				"the lost cluster(s).", (long long)nr_freed);
2703 		NVolSetErrors(vol);
2704 		nr_freed = 0;
2705 	}
2706 	/* Truncate the runlist. */
2707 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2708 			new_alloc_size >> vol->cluster_size_bits);
2709 	/*
2710 	 * If the runlist truncation failed and/or the search context is no
2711 	 * longer valid, we cannot resize the attribute record or build the
2712 	 * mapping pairs array thus we mark the inode bad so that no access to
2713 	 * the freed clusters can happen.
2714 	 */
2715 	if (unlikely(err || IS_ERR(m))) {
2716 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2717 				IS_ERR(m) ?
2718 				"restore attribute search context" :
2719 				"truncate attribute runlist",
2720 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2721 		err = -EIO;
2722 		goto bad_out;
2723 	}
2724 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2725 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2726 	if (unlikely(mp_size <= 0)) {
2727 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2728 				"attribute type 0x%x, because determining the "
2729 				"size for the mapping pairs failed with error "
2730 				"code %i.%s", vi->i_ino,
2731 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2732 		err = -EIO;
2733 		goto bad_out;
2734 	}
2735 	/*
2736 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2737 	 * this cannot fail since we are making the attribute smaller thus by
2738 	 * definition there is enough space to do so.
2739 	 */
2740 	attr_len = le32_to_cpu(a->length);
2741 	err = ntfs_attr_record_resize(m, a, mp_size +
2742 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2743 	BUG_ON(err);
2744 	/*
2745 	 * Generate the mapping pairs array directly into the attribute record.
2746 	 */
2747 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2748 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2749 			mp_size, ni->runlist.rl, 0, -1, NULL);
2750 	if (unlikely(err)) {
2751 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2752 				"attribute type 0x%x, because building the "
2753 				"mapping pairs failed with error code %i.%s",
2754 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2755 				err, es);
2756 		err = -EIO;
2757 		goto bad_out;
2758 	}
2759 	/* Update the allocated/compressed size as well as the highest vcn. */
2760 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2761 			vol->cluster_size_bits) - 1);
2762 	write_lock_irqsave(&ni->size_lock, flags);
2763 	ni->allocated_size = new_alloc_size;
2764 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2765 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2766 		if (nr_freed) {
2767 			ni->itype.compressed.size -= nr_freed <<
2768 					vol->cluster_size_bits;
2769 			BUG_ON(ni->itype.compressed.size < 0);
2770 			a->data.non_resident.compressed_size = cpu_to_sle64(
2771 					ni->itype.compressed.size);
2772 			vi->i_blocks = ni->itype.compressed.size >> 9;
2773 		}
2774 	} else
2775 		vi->i_blocks = new_alloc_size >> 9;
2776 	write_unlock_irqrestore(&ni->size_lock, flags);
2777 	/*
2778 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2779 	 * have already dealt with the initialized_size and the data_size above
2780 	 * and we are done.  If the truncate is only changing the allocation
2781 	 * and not the data_size, we are also done.  If this is an extending
2782 	 * truncate, need to extend the data_size now which is ensured by the
2783 	 * fact that @size_change is positive.
2784 	 */
2785 alloc_done:
2786 	/*
2787 	 * If the size is growing, need to update it now.  If it is shrinking,
2788 	 * we have already updated it above (before the allocation change).
2789 	 */
2790 	if (size_change > 0)
2791 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2792 	/* Ensure the modified mft record is written out. */
2793 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2794 	mark_mft_record_dirty(ctx->ntfs_ino);
2795 unm_done:
2796 	ntfs_attr_put_search_ctx(ctx);
2797 	unmap_mft_record(base_ni);
2798 	up_write(&ni->runlist.lock);
2799 done:
2800 	/* Update the mtime and ctime on the base inode. */
2801 	/* normally ->truncate shouldn't update ctime or mtime,
2802 	 * but ntfs did before so it got a copy & paste version
2803 	 * of file_update_time.  one day someone should fix this
2804 	 * for real.
2805 	 */
2806 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2807 		struct timespec64 now = current_time(VFS_I(base_ni));
2808 		int sync_it = 0;
2809 
2810 		if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2811 		    !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2812 			sync_it = 1;
2813 		VFS_I(base_ni)->i_mtime = now;
2814 		VFS_I(base_ni)->i_ctime = now;
2815 
2816 		if (sync_it)
2817 			mark_inode_dirty_sync(VFS_I(base_ni));
2818 	}
2819 
2820 	if (likely(!err)) {
2821 		NInoClearTruncateFailed(ni);
2822 		ntfs_debug("Done.");
2823 	}
2824 	return err;
2825 old_bad_out:
2826 	old_size = -1;
2827 bad_out:
2828 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2829 		NVolSetErrors(vol);
2830 	if (err != -EOPNOTSUPP)
2831 		NInoSetTruncateFailed(ni);
2832 	else if (old_size >= 0)
2833 		i_size_write(vi, old_size);
2834 err_out:
2835 	if (ctx)
2836 		ntfs_attr_put_search_ctx(ctx);
2837 	if (m)
2838 		unmap_mft_record(base_ni);
2839 	up_write(&ni->runlist.lock);
2840 out:
2841 	ntfs_debug("Failed.  Returning error code %i.", err);
2842 	return err;
2843 conv_err_out:
2844 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2845 		NVolSetErrors(vol);
2846 	if (err != -EOPNOTSUPP)
2847 		NInoSetTruncateFailed(ni);
2848 	else
2849 		i_size_write(vi, old_size);
2850 	goto out;
2851 }
2852 
2853 /**
2854  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2855  * @vi:		inode for which the i_size was changed
2856  *
2857  * Wrapper for ntfs_truncate() that has no return value.
2858  *
2859  * See ntfs_truncate() description above for details.
2860  */
2861 #ifdef NTFS_RW
2862 void ntfs_truncate_vfs(struct inode *vi) {
2863 	ntfs_truncate(vi);
2864 }
2865 #endif
2866 
2867 /**
2868  * ntfs_setattr - called from notify_change() when an attribute is being changed
2869  * @dentry:	dentry whose attributes to change
2870  * @attr:	structure describing the attributes and the changes
2871  *
2872  * We have to trap VFS attempts to truncate the file described by @dentry as
2873  * soon as possible, because we do not implement changes in i_size yet.  So we
2874  * abort all i_size changes here.
2875  *
2876  * We also abort all changes of user, group, and mode as we do not implement
2877  * the NTFS ACLs yet.
2878  *
2879  * Called with ->i_mutex held.
2880  */
2881 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2882 {
2883 	struct inode *vi = d_inode(dentry);
2884 	int err;
2885 	unsigned int ia_valid = attr->ia_valid;
2886 
2887 	err = setattr_prepare(dentry, attr);
2888 	if (err)
2889 		goto out;
2890 	/* We do not support NTFS ACLs yet. */
2891 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2892 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2893 				"supported yet, ignoring.");
2894 		err = -EOPNOTSUPP;
2895 		goto out;
2896 	}
2897 	if (ia_valid & ATTR_SIZE) {
2898 		if (attr->ia_size != i_size_read(vi)) {
2899 			ntfs_inode *ni = NTFS_I(vi);
2900 			/*
2901 			 * FIXME: For now we do not support resizing of
2902 			 * compressed or encrypted files yet.
2903 			 */
2904 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2905 				ntfs_warning(vi->i_sb, "Changes in inode size "
2906 						"are not supported yet for "
2907 						"%s files, ignoring.",
2908 						NInoCompressed(ni) ?
2909 						"compressed" : "encrypted");
2910 				err = -EOPNOTSUPP;
2911 			} else {
2912 				truncate_setsize(vi, attr->ia_size);
2913 				ntfs_truncate_vfs(vi);
2914 			}
2915 			if (err || ia_valid == ATTR_SIZE)
2916 				goto out;
2917 		} else {
2918 			/*
2919 			 * We skipped the truncate but must still update
2920 			 * timestamps.
2921 			 */
2922 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2923 		}
2924 	}
2925 	if (ia_valid & ATTR_ATIME)
2926 		vi->i_atime = timespec64_trunc(attr->ia_atime,
2927 					       vi->i_sb->s_time_gran);
2928 	if (ia_valid & ATTR_MTIME)
2929 		vi->i_mtime = timespec64_trunc(attr->ia_mtime,
2930 					       vi->i_sb->s_time_gran);
2931 	if (ia_valid & ATTR_CTIME)
2932 		vi->i_ctime = timespec64_trunc(attr->ia_ctime,
2933 					       vi->i_sb->s_time_gran);
2934 	mark_inode_dirty(vi);
2935 out:
2936 	return err;
2937 }
2938 
2939 /**
2940  * ntfs_write_inode - write out a dirty inode
2941  * @vi:		inode to write out
2942  * @sync:	if true, write out synchronously
2943  *
2944  * Write out a dirty inode to disk including any extent inodes if present.
2945  *
2946  * If @sync is true, commit the inode to disk and wait for io completion.  This
2947  * is done using write_mft_record().
2948  *
2949  * If @sync is false, just schedule the write to happen but do not wait for i/o
2950  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2951  * marking the page (and in this case mft record) dirty but we do not implement
2952  * this yet as write_mft_record() largely ignores the @sync parameter and
2953  * always performs synchronous writes.
2954  *
2955  * Return 0 on success and -errno on error.
2956  */
2957 int __ntfs_write_inode(struct inode *vi, int sync)
2958 {
2959 	sle64 nt;
2960 	ntfs_inode *ni = NTFS_I(vi);
2961 	ntfs_attr_search_ctx *ctx;
2962 	MFT_RECORD *m;
2963 	STANDARD_INFORMATION *si;
2964 	int err = 0;
2965 	bool modified = false;
2966 
2967 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2968 			vi->i_ino);
2969 	/*
2970 	 * Dirty attribute inodes are written via their real inodes so just
2971 	 * clean them here.  Access time updates are taken care off when the
2972 	 * real inode is written.
2973 	 */
2974 	if (NInoAttr(ni)) {
2975 		NInoClearDirty(ni);
2976 		ntfs_debug("Done.");
2977 		return 0;
2978 	}
2979 	/* Map, pin, and lock the mft record belonging to the inode. */
2980 	m = map_mft_record(ni);
2981 	if (IS_ERR(m)) {
2982 		err = PTR_ERR(m);
2983 		goto err_out;
2984 	}
2985 	/* Update the access times in the standard information attribute. */
2986 	ctx = ntfs_attr_get_search_ctx(ni, m);
2987 	if (unlikely(!ctx)) {
2988 		err = -ENOMEM;
2989 		goto unm_err_out;
2990 	}
2991 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2992 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2993 	if (unlikely(err)) {
2994 		ntfs_attr_put_search_ctx(ctx);
2995 		goto unm_err_out;
2996 	}
2997 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2998 			le16_to_cpu(ctx->attr->data.resident.value_offset));
2999 	/* Update the access times if they have changed. */
3000 	nt = utc2ntfs(timespec64_to_timespec(vi->i_mtime));
3001 	if (si->last_data_change_time != nt) {
3002 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3003 				"new = 0x%llx", vi->i_ino, (long long)
3004 				sle64_to_cpu(si->last_data_change_time),
3005 				(long long)sle64_to_cpu(nt));
3006 		si->last_data_change_time = nt;
3007 		modified = true;
3008 	}
3009 	nt = utc2ntfs(timespec64_to_timespec(vi->i_ctime));
3010 	if (si->last_mft_change_time != nt) {
3011 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3012 				"new = 0x%llx", vi->i_ino, (long long)
3013 				sle64_to_cpu(si->last_mft_change_time),
3014 				(long long)sle64_to_cpu(nt));
3015 		si->last_mft_change_time = nt;
3016 		modified = true;
3017 	}
3018 	nt = utc2ntfs(timespec64_to_timespec(vi->i_atime));
3019 	if (si->last_access_time != nt) {
3020 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3021 				"new = 0x%llx", vi->i_ino,
3022 				(long long)sle64_to_cpu(si->last_access_time),
3023 				(long long)sle64_to_cpu(nt));
3024 		si->last_access_time = nt;
3025 		modified = true;
3026 	}
3027 	/*
3028 	 * If we just modified the standard information attribute we need to
3029 	 * mark the mft record it is in dirty.  We do this manually so that
3030 	 * mark_inode_dirty() is not called which would redirty the inode and
3031 	 * hence result in an infinite loop of trying to write the inode.
3032 	 * There is no need to mark the base inode nor the base mft record
3033 	 * dirty, since we are going to write this mft record below in any case
3034 	 * and the base mft record may actually not have been modified so it
3035 	 * might not need to be written out.
3036 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3037 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3038 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3039 	 * re-invoked because of it which in turn is ok since the dirtied mft
3040 	 * record will be cleaned and written out to disk below, i.e. before
3041 	 * this function returns.
3042 	 */
3043 	if (modified) {
3044 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3045 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3046 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3047 					ctx->ntfs_ino->page_ofs);
3048 	}
3049 	ntfs_attr_put_search_ctx(ctx);
3050 	/* Now the access times are updated, write the base mft record. */
3051 	if (NInoDirty(ni))
3052 		err = write_mft_record(ni, m, sync);
3053 	/* Write all attached extent mft records. */
3054 	mutex_lock(&ni->extent_lock);
3055 	if (ni->nr_extents > 0) {
3056 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3057 		int i;
3058 
3059 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3060 		for (i = 0; i < ni->nr_extents; i++) {
3061 			ntfs_inode *tni = extent_nis[i];
3062 
3063 			if (NInoDirty(tni)) {
3064 				MFT_RECORD *tm = map_mft_record(tni);
3065 				int ret;
3066 
3067 				if (IS_ERR(tm)) {
3068 					if (!err || err == -ENOMEM)
3069 						err = PTR_ERR(tm);
3070 					continue;
3071 				}
3072 				ret = write_mft_record(tni, tm, sync);
3073 				unmap_mft_record(tni);
3074 				if (unlikely(ret)) {
3075 					if (!err || err == -ENOMEM)
3076 						err = ret;
3077 				}
3078 			}
3079 		}
3080 	}
3081 	mutex_unlock(&ni->extent_lock);
3082 	unmap_mft_record(ni);
3083 	if (unlikely(err))
3084 		goto err_out;
3085 	ntfs_debug("Done.");
3086 	return 0;
3087 unm_err_out:
3088 	unmap_mft_record(ni);
3089 err_out:
3090 	if (err == -ENOMEM) {
3091 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3092 				"Marking the inode dirty again, so the VFS "
3093 				"retries later.");
3094 		mark_inode_dirty(vi);
3095 	} else {
3096 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3097 		NVolSetErrors(ni->vol);
3098 	}
3099 	return err;
3100 }
3101 
3102 #endif /* NTFS_RW */
3103