1 /** 2 * inode.c - NTFS kernel inode handling. 3 * 4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/mount.h> 26 #include <linux/mutex.h> 27 #include <linux/pagemap.h> 28 #include <linux/quotaops.h> 29 #include <linux/slab.h> 30 #include <linux/log2.h> 31 32 #include "aops.h" 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "dir.h" 36 #include "debug.h" 37 #include "inode.h" 38 #include "lcnalloc.h" 39 #include "malloc.h" 40 #include "mft.h" 41 #include "time.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_test_inode - compare two (possibly fake) inodes for equality 46 * @vi: vfs inode which to test 47 * @na: ntfs attribute which is being tested with 48 * 49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 50 * inode @vi for equality with the ntfs attribute @na. 51 * 52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 53 * @na->name and @na->name_len are then ignored. 54 * 55 * Return 1 if the attributes match and 0 if not. 56 * 57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not 58 * allowed to sleep. 59 */ 60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 61 { 62 ntfs_inode *ni; 63 64 if (vi->i_ino != na->mft_no) 65 return 0; 66 ni = NTFS_I(vi); 67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 68 if (likely(!NInoAttr(ni))) { 69 /* If not looking for a normal inode this is a mismatch. */ 70 if (unlikely(na->type != AT_UNUSED)) 71 return 0; 72 } else { 73 /* A fake inode describing an attribute. */ 74 if (ni->type != na->type) 75 return 0; 76 if (ni->name_len != na->name_len) 77 return 0; 78 if (na->name_len && memcmp(ni->name, na->name, 79 na->name_len * sizeof(ntfschar))) 80 return 0; 81 } 82 /* Match! */ 83 return 1; 84 } 85 86 /** 87 * ntfs_init_locked_inode - initialize an inode 88 * @vi: vfs inode to initialize 89 * @na: ntfs attribute which to initialize @vi to 90 * 91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 92 * order to enable ntfs_test_inode() to do its work. 93 * 94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 95 * In that case, @na->name and @na->name_len should be set to NULL and 0, 96 * respectively. Although that is not strictly necessary as 97 * ntfs_read_locked_inode() will fill them in later. 98 * 99 * Return 0 on success and -errno on error. 100 * 101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 103 */ 104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 105 { 106 ntfs_inode *ni = NTFS_I(vi); 107 108 vi->i_ino = na->mft_no; 109 110 ni->type = na->type; 111 if (na->type == AT_INDEX_ALLOCATION) 112 NInoSetMstProtected(ni); 113 114 ni->name = na->name; 115 ni->name_len = na->name_len; 116 117 /* If initializing a normal inode, we are done. */ 118 if (likely(na->type == AT_UNUSED)) { 119 BUG_ON(na->name); 120 BUG_ON(na->name_len); 121 return 0; 122 } 123 124 /* It is a fake inode. */ 125 NInoSetAttr(ni); 126 127 /* 128 * We have I30 global constant as an optimization as it is the name 129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 130 * allocation but that is ok. And most attributes are unnamed anyway, 131 * thus the fraction of named attributes with name != I30 is actually 132 * absolutely tiny. 133 */ 134 if (na->name_len && na->name != I30) { 135 unsigned int i; 136 137 BUG_ON(!na->name); 138 i = na->name_len * sizeof(ntfschar); 139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 140 if (!ni->name) 141 return -ENOMEM; 142 memcpy(ni->name, na->name, i); 143 ni->name[na->name_len] = 0; 144 } 145 return 0; 146 } 147 148 typedef int (*set_t)(struct inode *, void *); 149 static int ntfs_read_locked_inode(struct inode *vi); 150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 151 static int ntfs_read_locked_index_inode(struct inode *base_vi, 152 struct inode *vi); 153 154 /** 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 156 * @sb: super block of mounted volume 157 * @mft_no: mft record number / inode number to obtain 158 * 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 160 * file or directory). 161 * 162 * If the inode is in the cache, it is just returned with an increased 163 * reference count. Otherwise, a new struct inode is allocated and initialized, 164 * and finally ntfs_read_locked_inode() is called to read in the inode and 165 * fill in the remainder of the inode structure. 166 * 167 * Return the struct inode on success. Check the return value with IS_ERR() and 168 * if true, the function failed and the error code is obtained from PTR_ERR(). 169 */ 170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 171 { 172 struct inode *vi; 173 int err; 174 ntfs_attr na; 175 176 na.mft_no = mft_no; 177 na.type = AT_UNUSED; 178 na.name = NULL; 179 na.name_len = 0; 180 181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 182 (set_t)ntfs_init_locked_inode, &na); 183 if (unlikely(!vi)) 184 return ERR_PTR(-ENOMEM); 185 186 err = 0; 187 188 /* If this is a freshly allocated inode, need to read it now. */ 189 if (vi->i_state & I_NEW) { 190 err = ntfs_read_locked_inode(vi); 191 unlock_new_inode(vi); 192 } 193 /* 194 * There is no point in keeping bad inodes around if the failure was 195 * due to ENOMEM. We want to be able to retry again later. 196 */ 197 if (unlikely(err == -ENOMEM)) { 198 iput(vi); 199 vi = ERR_PTR(err); 200 } 201 return vi; 202 } 203 204 /** 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 206 * @base_vi: vfs base inode containing the attribute 207 * @type: attribute type 208 * @name: Unicode name of the attribute (NULL if unnamed) 209 * @name_len: length of @name in Unicode characters (0 if unnamed) 210 * 211 * Obtain the (fake) struct inode corresponding to the attribute specified by 212 * @type, @name, and @name_len, which is present in the base mft record 213 * specified by the vfs inode @base_vi. 214 * 215 * If the attribute inode is in the cache, it is just returned with an 216 * increased reference count. Otherwise, a new struct inode is allocated and 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 218 * attribute and fill in the inode structure. 219 * 220 * Note, for index allocation attributes, you need to use ntfs_index_iget() 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 222 * 223 * Return the struct inode of the attribute inode on success. Check the return 224 * value with IS_ERR() and if true, the function failed and the error code is 225 * obtained from PTR_ERR(). 226 */ 227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 228 ntfschar *name, u32 name_len) 229 { 230 struct inode *vi; 231 int err; 232 ntfs_attr na; 233 234 /* Make sure no one calls ntfs_attr_iget() for indices. */ 235 BUG_ON(type == AT_INDEX_ALLOCATION); 236 237 na.mft_no = base_vi->i_ino; 238 na.type = type; 239 na.name = name; 240 na.name_len = name_len; 241 242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 243 (set_t)ntfs_init_locked_inode, &na); 244 if (unlikely(!vi)) 245 return ERR_PTR(-ENOMEM); 246 247 err = 0; 248 249 /* If this is a freshly allocated inode, need to read it now. */ 250 if (vi->i_state & I_NEW) { 251 err = ntfs_read_locked_attr_inode(base_vi, vi); 252 unlock_new_inode(vi); 253 } 254 /* 255 * There is no point in keeping bad attribute inodes around. This also 256 * simplifies things in that we never need to check for bad attribute 257 * inodes elsewhere. 258 */ 259 if (unlikely(err)) { 260 iput(vi); 261 vi = ERR_PTR(err); 262 } 263 return vi; 264 } 265 266 /** 267 * ntfs_index_iget - obtain a struct inode corresponding to an index 268 * @base_vi: vfs base inode containing the index related attributes 269 * @name: Unicode name of the index 270 * @name_len: length of @name in Unicode characters 271 * 272 * Obtain the (fake) struct inode corresponding to the index specified by @name 273 * and @name_len, which is present in the base mft record specified by the vfs 274 * inode @base_vi. 275 * 276 * If the index inode is in the cache, it is just returned with an increased 277 * reference count. Otherwise, a new struct inode is allocated and 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read 279 * the index related attributes and fill in the inode structure. 280 * 281 * Return the struct inode of the index inode on success. Check the return 282 * value with IS_ERR() and if true, the function failed and the error code is 283 * obtained from PTR_ERR(). 284 */ 285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 286 u32 name_len) 287 { 288 struct inode *vi; 289 int err; 290 ntfs_attr na; 291 292 na.mft_no = base_vi->i_ino; 293 na.type = AT_INDEX_ALLOCATION; 294 na.name = name; 295 na.name_len = name_len; 296 297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 298 (set_t)ntfs_init_locked_inode, &na); 299 if (unlikely(!vi)) 300 return ERR_PTR(-ENOMEM); 301 302 err = 0; 303 304 /* If this is a freshly allocated inode, need to read it now. */ 305 if (vi->i_state & I_NEW) { 306 err = ntfs_read_locked_index_inode(base_vi, vi); 307 unlock_new_inode(vi); 308 } 309 /* 310 * There is no point in keeping bad index inodes around. This also 311 * simplifies things in that we never need to check for bad index 312 * inodes elsewhere. 313 */ 314 if (unlikely(err)) { 315 iput(vi); 316 vi = ERR_PTR(err); 317 } 318 return vi; 319 } 320 321 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 322 { 323 ntfs_inode *ni; 324 325 ntfs_debug("Entering."); 326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 327 if (likely(ni != NULL)) { 328 ni->state = 0; 329 return VFS_I(ni); 330 } 331 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 332 return NULL; 333 } 334 335 static void ntfs_i_callback(struct rcu_head *head) 336 { 337 struct inode *inode = container_of(head, struct inode, i_rcu); 338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 339 } 340 341 void ntfs_destroy_big_inode(struct inode *inode) 342 { 343 ntfs_inode *ni = NTFS_I(inode); 344 345 ntfs_debug("Entering."); 346 BUG_ON(ni->page); 347 if (!atomic_dec_and_test(&ni->count)) 348 BUG(); 349 call_rcu(&inode->i_rcu, ntfs_i_callback); 350 } 351 352 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 353 { 354 ntfs_inode *ni; 355 356 ntfs_debug("Entering."); 357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 358 if (likely(ni != NULL)) { 359 ni->state = 0; 360 return ni; 361 } 362 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 363 return NULL; 364 } 365 366 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 367 { 368 ntfs_debug("Entering."); 369 BUG_ON(ni->page); 370 if (!atomic_dec_and_test(&ni->count)) 371 BUG(); 372 kmem_cache_free(ntfs_inode_cache, ni); 373 } 374 375 /* 376 * The attribute runlist lock has separate locking rules from the 377 * normal runlist lock, so split the two lock-classes: 378 */ 379 static struct lock_class_key attr_list_rl_lock_class; 380 381 /** 382 * __ntfs_init_inode - initialize ntfs specific part of an inode 383 * @sb: super block of mounted volume 384 * @ni: freshly allocated ntfs inode which to initialize 385 * 386 * Initialize an ntfs inode to defaults. 387 * 388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 389 * untouched. Make sure to initialize them elsewhere. 390 * 391 * Return zero on success and -ENOMEM on error. 392 */ 393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 394 { 395 ntfs_debug("Entering."); 396 rwlock_init(&ni->size_lock); 397 ni->initialized_size = ni->allocated_size = 0; 398 ni->seq_no = 0; 399 atomic_set(&ni->count, 1); 400 ni->vol = NTFS_SB(sb); 401 ntfs_init_runlist(&ni->runlist); 402 mutex_init(&ni->mrec_lock); 403 ni->page = NULL; 404 ni->page_ofs = 0; 405 ni->attr_list_size = 0; 406 ni->attr_list = NULL; 407 ntfs_init_runlist(&ni->attr_list_rl); 408 lockdep_set_class(&ni->attr_list_rl.lock, 409 &attr_list_rl_lock_class); 410 ni->itype.index.block_size = 0; 411 ni->itype.index.vcn_size = 0; 412 ni->itype.index.collation_rule = 0; 413 ni->itype.index.block_size_bits = 0; 414 ni->itype.index.vcn_size_bits = 0; 415 mutex_init(&ni->extent_lock); 416 ni->nr_extents = 0; 417 ni->ext.base_ntfs_ino = NULL; 418 } 419 420 /* 421 * Extent inodes get MFT-mapped in a nested way, while the base inode 422 * is still mapped. Teach this nesting to the lock validator by creating 423 * a separate class for nested inode's mrec_lock's: 424 */ 425 static struct lock_class_key extent_inode_mrec_lock_key; 426 427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 428 unsigned long mft_no) 429 { 430 ntfs_inode *ni = ntfs_alloc_extent_inode(); 431 432 ntfs_debug("Entering."); 433 if (likely(ni != NULL)) { 434 __ntfs_init_inode(sb, ni); 435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 436 ni->mft_no = mft_no; 437 ni->type = AT_UNUSED; 438 ni->name = NULL; 439 ni->name_len = 0; 440 } 441 return ni; 442 } 443 444 /** 445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 446 * @ctx: initialized attribute search context 447 * 448 * Search all file name attributes in the inode described by the attribute 449 * search context @ctx and check if any of the names are in the $Extend system 450 * directory. 451 * 452 * Return values: 453 * 1: file is in $Extend directory 454 * 0: file is not in $Extend directory 455 * -errno: failed to determine if the file is in the $Extend directory 456 */ 457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 458 { 459 int nr_links, err; 460 461 /* Restart search. */ 462 ntfs_attr_reinit_search_ctx(ctx); 463 464 /* Get number of hard links. */ 465 nr_links = le16_to_cpu(ctx->mrec->link_count); 466 467 /* Loop through all hard links. */ 468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 469 ctx))) { 470 FILE_NAME_ATTR *file_name_attr; 471 ATTR_RECORD *attr = ctx->attr; 472 u8 *p, *p2; 473 474 nr_links--; 475 /* 476 * Maximum sanity checking as we are called on an inode that 477 * we suspect might be corrupt. 478 */ 479 p = (u8*)attr + le32_to_cpu(attr->length); 480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 481 le32_to_cpu(ctx->mrec->bytes_in_use)) { 482 err_corrupt_attr: 483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 484 "attribute. You should run chkdsk."); 485 return -EIO; 486 } 487 if (attr->non_resident) { 488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 489 "name. You should run chkdsk."); 490 return -EIO; 491 } 492 if (attr->flags) { 493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 494 "invalid flags. You should run " 495 "chkdsk."); 496 return -EIO; 497 } 498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 500 "name. You should run chkdsk."); 501 return -EIO; 502 } 503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 504 le16_to_cpu(attr->data.resident.value_offset)); 505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 506 if (p2 < (u8*)attr || p2 > p) 507 goto err_corrupt_attr; 508 /* This attribute is ok, but is it in the $Extend directory? */ 509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 510 return 1; /* YES, it's an extended system file. */ 511 } 512 if (unlikely(err != -ENOENT)) 513 return err; 514 if (unlikely(nr_links)) { 515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 516 "doesn't match number of name attributes. You " 517 "should run chkdsk."); 518 return -EIO; 519 } 520 return 0; /* NO, it is not an extended system file. */ 521 } 522 523 /** 524 * ntfs_read_locked_inode - read an inode from its device 525 * @vi: inode to read 526 * 527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 528 * described by @vi into memory from the device. 529 * 530 * The only fields in @vi that we need to/can look at when the function is 531 * called are i_sb, pointing to the mounted device's super block, and i_ino, 532 * the number of the inode to load. 533 * 534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 535 * for reading and sets up the necessary @vi fields as well as initializing 536 * the ntfs inode. 537 * 538 * Q: What locks are held when the function is called? 539 * A: i_state has I_NEW set, hence the inode is locked, also 540 * i_count is set to 1, so it is not going to go away 541 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 542 * is allowed to write to them. We should of course be honouring them but 543 * we need to do that using the IS_* macros defined in include/linux/fs.h. 544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 545 * 546 * Return 0 on success and -errno on error. In the error case, the inode will 547 * have had make_bad_inode() executed on it. 548 */ 549 static int ntfs_read_locked_inode(struct inode *vi) 550 { 551 ntfs_volume *vol = NTFS_SB(vi->i_sb); 552 ntfs_inode *ni; 553 struct inode *bvi; 554 MFT_RECORD *m; 555 ATTR_RECORD *a; 556 STANDARD_INFORMATION *si; 557 ntfs_attr_search_ctx *ctx; 558 int err = 0; 559 560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 561 562 /* Setup the generic vfs inode parts now. */ 563 vi->i_uid = vol->uid; 564 vi->i_gid = vol->gid; 565 vi->i_mode = 0; 566 567 /* 568 * Initialize the ntfs specific part of @vi special casing 569 * FILE_MFT which we need to do at mount time. 570 */ 571 if (vi->i_ino != FILE_MFT) 572 ntfs_init_big_inode(vi); 573 ni = NTFS_I(vi); 574 575 m = map_mft_record(ni); 576 if (IS_ERR(m)) { 577 err = PTR_ERR(m); 578 goto err_out; 579 } 580 ctx = ntfs_attr_get_search_ctx(ni, m); 581 if (!ctx) { 582 err = -ENOMEM; 583 goto unm_err_out; 584 } 585 586 if (!(m->flags & MFT_RECORD_IN_USE)) { 587 ntfs_error(vi->i_sb, "Inode is not in use!"); 588 goto unm_err_out; 589 } 590 if (m->base_mft_record) { 591 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 592 goto unm_err_out; 593 } 594 595 /* Transfer information from mft record into vfs and ntfs inodes. */ 596 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 597 598 /* 599 * FIXME: Keep in mind that link_count is two for files which have both 600 * a long file name and a short file name as separate entries, so if 601 * we are hiding short file names this will be too high. Either we need 602 * to account for the short file names by subtracting them or we need 603 * to make sure we delete files even though i_nlink is not zero which 604 * might be tricky due to vfs interactions. Need to think about this 605 * some more when implementing the unlink command. 606 */ 607 set_nlink(vi, le16_to_cpu(m->link_count)); 608 /* 609 * FIXME: Reparse points can have the directory bit set even though 610 * they would be S_IFLNK. Need to deal with this further below when we 611 * implement reparse points / symbolic links but it will do for now. 612 * Also if not a directory, it could be something else, rather than 613 * a regular file. But again, will do for now. 614 */ 615 /* Everyone gets all permissions. */ 616 vi->i_mode |= S_IRWXUGO; 617 /* If read-only, no one gets write permissions. */ 618 if (IS_RDONLY(vi)) 619 vi->i_mode &= ~S_IWUGO; 620 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 621 vi->i_mode |= S_IFDIR; 622 /* 623 * Apply the directory permissions mask set in the mount 624 * options. 625 */ 626 vi->i_mode &= ~vol->dmask; 627 /* Things break without this kludge! */ 628 if (vi->i_nlink > 1) 629 set_nlink(vi, 1); 630 } else { 631 vi->i_mode |= S_IFREG; 632 /* Apply the file permissions mask set in the mount options. */ 633 vi->i_mode &= ~vol->fmask; 634 } 635 /* 636 * Find the standard information attribute in the mft record. At this 637 * stage we haven't setup the attribute list stuff yet, so this could 638 * in fact fail if the standard information is in an extent record, but 639 * I don't think this actually ever happens. 640 */ 641 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 642 ctx); 643 if (unlikely(err)) { 644 if (err == -ENOENT) { 645 /* 646 * TODO: We should be performing a hot fix here (if the 647 * recover mount option is set) by creating a new 648 * attribute. 649 */ 650 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 651 "is missing."); 652 } 653 goto unm_err_out; 654 } 655 a = ctx->attr; 656 /* Get the standard information attribute value. */ 657 si = (STANDARD_INFORMATION*)((u8*)a + 658 le16_to_cpu(a->data.resident.value_offset)); 659 660 /* Transfer information from the standard information into vi. */ 661 /* 662 * Note: The i_?times do not quite map perfectly onto the NTFS times, 663 * but they are close enough, and in the end it doesn't really matter 664 * that much... 665 */ 666 /* 667 * mtime is the last change of the data within the file. Not changed 668 * when only metadata is changed, e.g. a rename doesn't affect mtime. 669 */ 670 vi->i_mtime = timespec_to_timespec64(ntfs2utc(si->last_data_change_time)); 671 /* 672 * ctime is the last change of the metadata of the file. This obviously 673 * always changes, when mtime is changed. ctime can be changed on its 674 * own, mtime is then not changed, e.g. when a file is renamed. 675 */ 676 vi->i_ctime = timespec_to_timespec64(ntfs2utc(si->last_mft_change_time)); 677 /* 678 * Last access to the data within the file. Not changed during a rename 679 * for example but changed whenever the file is written to. 680 */ 681 vi->i_atime = timespec_to_timespec64(ntfs2utc(si->last_access_time)); 682 683 /* Find the attribute list attribute if present. */ 684 ntfs_attr_reinit_search_ctx(ctx); 685 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 686 if (err) { 687 if (unlikely(err != -ENOENT)) { 688 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 689 "attribute."); 690 goto unm_err_out; 691 } 692 } else /* if (!err) */ { 693 if (vi->i_ino == FILE_MFT) 694 goto skip_attr_list_load; 695 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 696 NInoSetAttrList(ni); 697 a = ctx->attr; 698 if (a->flags & ATTR_COMPRESSION_MASK) { 699 ntfs_error(vi->i_sb, "Attribute list attribute is " 700 "compressed."); 701 goto unm_err_out; 702 } 703 if (a->flags & ATTR_IS_ENCRYPTED || 704 a->flags & ATTR_IS_SPARSE) { 705 if (a->non_resident) { 706 ntfs_error(vi->i_sb, "Non-resident attribute " 707 "list attribute is encrypted/" 708 "sparse."); 709 goto unm_err_out; 710 } 711 ntfs_warning(vi->i_sb, "Resident attribute list " 712 "attribute in inode 0x%lx is marked " 713 "encrypted/sparse which is not true. " 714 "However, Windows allows this and " 715 "chkdsk does not detect or correct it " 716 "so we will just ignore the invalid " 717 "flags and pretend they are not set.", 718 vi->i_ino); 719 } 720 /* Now allocate memory for the attribute list. */ 721 ni->attr_list_size = (u32)ntfs_attr_size(a); 722 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 723 if (!ni->attr_list) { 724 ntfs_error(vi->i_sb, "Not enough memory to allocate " 725 "buffer for attribute list."); 726 err = -ENOMEM; 727 goto unm_err_out; 728 } 729 if (a->non_resident) { 730 NInoSetAttrListNonResident(ni); 731 if (a->data.non_resident.lowest_vcn) { 732 ntfs_error(vi->i_sb, "Attribute list has non " 733 "zero lowest_vcn."); 734 goto unm_err_out; 735 } 736 /* 737 * Setup the runlist. No need for locking as we have 738 * exclusive access to the inode at this time. 739 */ 740 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 741 a, NULL); 742 if (IS_ERR(ni->attr_list_rl.rl)) { 743 err = PTR_ERR(ni->attr_list_rl.rl); 744 ni->attr_list_rl.rl = NULL; 745 ntfs_error(vi->i_sb, "Mapping pairs " 746 "decompression failed."); 747 goto unm_err_out; 748 } 749 /* Now load the attribute list. */ 750 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 751 ni->attr_list, ni->attr_list_size, 752 sle64_to_cpu(a->data.non_resident. 753 initialized_size)))) { 754 ntfs_error(vi->i_sb, "Failed to load " 755 "attribute list attribute."); 756 goto unm_err_out; 757 } 758 } else /* if (!a->non_resident) */ { 759 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 760 + le32_to_cpu( 761 a->data.resident.value_length) > 762 (u8*)ctx->mrec + vol->mft_record_size) { 763 ntfs_error(vi->i_sb, "Corrupt attribute list " 764 "in inode."); 765 goto unm_err_out; 766 } 767 /* Now copy the attribute list. */ 768 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 769 a->data.resident.value_offset), 770 le32_to_cpu( 771 a->data.resident.value_length)); 772 } 773 } 774 skip_attr_list_load: 775 /* 776 * If an attribute list is present we now have the attribute list value 777 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 778 */ 779 if (S_ISDIR(vi->i_mode)) { 780 loff_t bvi_size; 781 ntfs_inode *bni; 782 INDEX_ROOT *ir; 783 u8 *ir_end, *index_end; 784 785 /* It is a directory, find index root attribute. */ 786 ntfs_attr_reinit_search_ctx(ctx); 787 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 788 0, NULL, 0, ctx); 789 if (unlikely(err)) { 790 if (err == -ENOENT) { 791 // FIXME: File is corrupt! Hot-fix with empty 792 // index root attribute if recovery option is 793 // set. 794 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 795 "is missing."); 796 } 797 goto unm_err_out; 798 } 799 a = ctx->attr; 800 /* Set up the state. */ 801 if (unlikely(a->non_resident)) { 802 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 803 "resident."); 804 goto unm_err_out; 805 } 806 /* Ensure the attribute name is placed before the value. */ 807 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 808 le16_to_cpu(a->data.resident.value_offset)))) { 809 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 810 "placed after the attribute value."); 811 goto unm_err_out; 812 } 813 /* 814 * Compressed/encrypted index root just means that the newly 815 * created files in that directory should be created compressed/ 816 * encrypted. However index root cannot be both compressed and 817 * encrypted. 818 */ 819 if (a->flags & ATTR_COMPRESSION_MASK) 820 NInoSetCompressed(ni); 821 if (a->flags & ATTR_IS_ENCRYPTED) { 822 if (a->flags & ATTR_COMPRESSION_MASK) { 823 ntfs_error(vi->i_sb, "Found encrypted and " 824 "compressed attribute."); 825 goto unm_err_out; 826 } 827 NInoSetEncrypted(ni); 828 } 829 if (a->flags & ATTR_IS_SPARSE) 830 NInoSetSparse(ni); 831 ir = (INDEX_ROOT*)((u8*)a + 832 le16_to_cpu(a->data.resident.value_offset)); 833 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 834 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 835 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 836 "corrupt."); 837 goto unm_err_out; 838 } 839 index_end = (u8*)&ir->index + 840 le32_to_cpu(ir->index.index_length); 841 if (index_end > ir_end) { 842 ntfs_error(vi->i_sb, "Directory index is corrupt."); 843 goto unm_err_out; 844 } 845 if (ir->type != AT_FILE_NAME) { 846 ntfs_error(vi->i_sb, "Indexed attribute is not " 847 "$FILE_NAME."); 848 goto unm_err_out; 849 } 850 if (ir->collation_rule != COLLATION_FILE_NAME) { 851 ntfs_error(vi->i_sb, "Index collation rule is not " 852 "COLLATION_FILE_NAME."); 853 goto unm_err_out; 854 } 855 ni->itype.index.collation_rule = ir->collation_rule; 856 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 857 if (ni->itype.index.block_size & 858 (ni->itype.index.block_size - 1)) { 859 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 860 "power of two.", 861 ni->itype.index.block_size); 862 goto unm_err_out; 863 } 864 if (ni->itype.index.block_size > PAGE_SIZE) { 865 ntfs_error(vi->i_sb, "Index block size (%u) > " 866 "PAGE_SIZE (%ld) is not " 867 "supported. Sorry.", 868 ni->itype.index.block_size, 869 PAGE_SIZE); 870 err = -EOPNOTSUPP; 871 goto unm_err_out; 872 } 873 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 874 ntfs_error(vi->i_sb, "Index block size (%u) < " 875 "NTFS_BLOCK_SIZE (%i) is not " 876 "supported. Sorry.", 877 ni->itype.index.block_size, 878 NTFS_BLOCK_SIZE); 879 err = -EOPNOTSUPP; 880 goto unm_err_out; 881 } 882 ni->itype.index.block_size_bits = 883 ffs(ni->itype.index.block_size) - 1; 884 /* Determine the size of a vcn in the directory index. */ 885 if (vol->cluster_size <= ni->itype.index.block_size) { 886 ni->itype.index.vcn_size = vol->cluster_size; 887 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 888 } else { 889 ni->itype.index.vcn_size = vol->sector_size; 890 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 891 } 892 893 /* Setup the index allocation attribute, even if not present. */ 894 NInoSetMstProtected(ni); 895 ni->type = AT_INDEX_ALLOCATION; 896 ni->name = I30; 897 ni->name_len = 4; 898 899 if (!(ir->index.flags & LARGE_INDEX)) { 900 /* No index allocation. */ 901 vi->i_size = ni->initialized_size = 902 ni->allocated_size = 0; 903 /* We are done with the mft record, so we release it. */ 904 ntfs_attr_put_search_ctx(ctx); 905 unmap_mft_record(ni); 906 m = NULL; 907 ctx = NULL; 908 goto skip_large_dir_stuff; 909 } /* LARGE_INDEX: Index allocation present. Setup state. */ 910 NInoSetIndexAllocPresent(ni); 911 /* Find index allocation attribute. */ 912 ntfs_attr_reinit_search_ctx(ctx); 913 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 914 CASE_SENSITIVE, 0, NULL, 0, ctx); 915 if (unlikely(err)) { 916 if (err == -ENOENT) 917 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 918 "attribute is not present but " 919 "$INDEX_ROOT indicated it is."); 920 else 921 ntfs_error(vi->i_sb, "Failed to lookup " 922 "$INDEX_ALLOCATION " 923 "attribute."); 924 goto unm_err_out; 925 } 926 a = ctx->attr; 927 if (!a->non_resident) { 928 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 929 "is resident."); 930 goto unm_err_out; 931 } 932 /* 933 * Ensure the attribute name is placed before the mapping pairs 934 * array. 935 */ 936 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 937 le16_to_cpu( 938 a->data.non_resident.mapping_pairs_offset)))) { 939 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 940 "is placed after the mapping pairs " 941 "array."); 942 goto unm_err_out; 943 } 944 if (a->flags & ATTR_IS_ENCRYPTED) { 945 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 946 "is encrypted."); 947 goto unm_err_out; 948 } 949 if (a->flags & ATTR_IS_SPARSE) { 950 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 951 "is sparse."); 952 goto unm_err_out; 953 } 954 if (a->flags & ATTR_COMPRESSION_MASK) { 955 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 956 "is compressed."); 957 goto unm_err_out; 958 } 959 if (a->data.non_resident.lowest_vcn) { 960 ntfs_error(vi->i_sb, "First extent of " 961 "$INDEX_ALLOCATION attribute has non " 962 "zero lowest_vcn."); 963 goto unm_err_out; 964 } 965 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 966 ni->initialized_size = sle64_to_cpu( 967 a->data.non_resident.initialized_size); 968 ni->allocated_size = sle64_to_cpu( 969 a->data.non_resident.allocated_size); 970 /* 971 * We are done with the mft record, so we release it. Otherwise 972 * we would deadlock in ntfs_attr_iget(). 973 */ 974 ntfs_attr_put_search_ctx(ctx); 975 unmap_mft_record(ni); 976 m = NULL; 977 ctx = NULL; 978 /* Get the index bitmap attribute inode. */ 979 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 980 if (IS_ERR(bvi)) { 981 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 982 err = PTR_ERR(bvi); 983 goto unm_err_out; 984 } 985 bni = NTFS_I(bvi); 986 if (NInoCompressed(bni) || NInoEncrypted(bni) || 987 NInoSparse(bni)) { 988 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 989 "and/or encrypted and/or sparse."); 990 goto iput_unm_err_out; 991 } 992 /* Consistency check bitmap size vs. index allocation size. */ 993 bvi_size = i_size_read(bvi); 994 if ((bvi_size << 3) < (vi->i_size >> 995 ni->itype.index.block_size_bits)) { 996 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 997 "for index allocation (0x%llx).", 998 bvi_size << 3, vi->i_size); 999 goto iput_unm_err_out; 1000 } 1001 /* No longer need the bitmap attribute inode. */ 1002 iput(bvi); 1003 skip_large_dir_stuff: 1004 /* Setup the operations for this inode. */ 1005 vi->i_op = &ntfs_dir_inode_ops; 1006 vi->i_fop = &ntfs_dir_ops; 1007 vi->i_mapping->a_ops = &ntfs_mst_aops; 1008 } else { 1009 /* It is a file. */ 1010 ntfs_attr_reinit_search_ctx(ctx); 1011 1012 /* Setup the data attribute, even if not present. */ 1013 ni->type = AT_DATA; 1014 ni->name = NULL; 1015 ni->name_len = 0; 1016 1017 /* Find first extent of the unnamed data attribute. */ 1018 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1019 if (unlikely(err)) { 1020 vi->i_size = ni->initialized_size = 1021 ni->allocated_size = 0; 1022 if (err != -ENOENT) { 1023 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1024 "attribute."); 1025 goto unm_err_out; 1026 } 1027 /* 1028 * FILE_Secure does not have an unnamed $DATA 1029 * attribute, so we special case it here. 1030 */ 1031 if (vi->i_ino == FILE_Secure) 1032 goto no_data_attr_special_case; 1033 /* 1034 * Most if not all the system files in the $Extend 1035 * system directory do not have unnamed data 1036 * attributes so we need to check if the parent 1037 * directory of the file is FILE_Extend and if it is 1038 * ignore this error. To do this we need to get the 1039 * name of this inode from the mft record as the name 1040 * contains the back reference to the parent directory. 1041 */ 1042 if (ntfs_is_extended_system_file(ctx) > 0) 1043 goto no_data_attr_special_case; 1044 // FIXME: File is corrupt! Hot-fix with empty data 1045 // attribute if recovery option is set. 1046 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1047 goto unm_err_out; 1048 } 1049 a = ctx->attr; 1050 /* Setup the state. */ 1051 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1052 if (a->flags & ATTR_COMPRESSION_MASK) { 1053 NInoSetCompressed(ni); 1054 if (vol->cluster_size > 4096) { 1055 ntfs_error(vi->i_sb, "Found " 1056 "compressed data but " 1057 "compression is " 1058 "disabled due to " 1059 "cluster size (%i) > " 1060 "4kiB.", 1061 vol->cluster_size); 1062 goto unm_err_out; 1063 } 1064 if ((a->flags & ATTR_COMPRESSION_MASK) 1065 != ATTR_IS_COMPRESSED) { 1066 ntfs_error(vi->i_sb, "Found unknown " 1067 "compression method " 1068 "or corrupt file."); 1069 goto unm_err_out; 1070 } 1071 } 1072 if (a->flags & ATTR_IS_SPARSE) 1073 NInoSetSparse(ni); 1074 } 1075 if (a->flags & ATTR_IS_ENCRYPTED) { 1076 if (NInoCompressed(ni)) { 1077 ntfs_error(vi->i_sb, "Found encrypted and " 1078 "compressed data."); 1079 goto unm_err_out; 1080 } 1081 NInoSetEncrypted(ni); 1082 } 1083 if (a->non_resident) { 1084 NInoSetNonResident(ni); 1085 if (NInoCompressed(ni) || NInoSparse(ni)) { 1086 if (NInoCompressed(ni) && a->data.non_resident. 1087 compression_unit != 4) { 1088 ntfs_error(vi->i_sb, "Found " 1089 "non-standard " 1090 "compression unit (%u " 1091 "instead of 4). " 1092 "Cannot handle this.", 1093 a->data.non_resident. 1094 compression_unit); 1095 err = -EOPNOTSUPP; 1096 goto unm_err_out; 1097 } 1098 if (a->data.non_resident.compression_unit) { 1099 ni->itype.compressed.block_size = 1U << 1100 (a->data.non_resident. 1101 compression_unit + 1102 vol->cluster_size_bits); 1103 ni->itype.compressed.block_size_bits = 1104 ffs(ni->itype. 1105 compressed. 1106 block_size) - 1; 1107 ni->itype.compressed.block_clusters = 1108 1U << a->data. 1109 non_resident. 1110 compression_unit; 1111 } else { 1112 ni->itype.compressed.block_size = 0; 1113 ni->itype.compressed.block_size_bits = 1114 0; 1115 ni->itype.compressed.block_clusters = 1116 0; 1117 } 1118 ni->itype.compressed.size = sle64_to_cpu( 1119 a->data.non_resident. 1120 compressed_size); 1121 } 1122 if (a->data.non_resident.lowest_vcn) { 1123 ntfs_error(vi->i_sb, "First extent of $DATA " 1124 "attribute has non zero " 1125 "lowest_vcn."); 1126 goto unm_err_out; 1127 } 1128 vi->i_size = sle64_to_cpu( 1129 a->data.non_resident.data_size); 1130 ni->initialized_size = sle64_to_cpu( 1131 a->data.non_resident.initialized_size); 1132 ni->allocated_size = sle64_to_cpu( 1133 a->data.non_resident.allocated_size); 1134 } else { /* Resident attribute. */ 1135 vi->i_size = ni->initialized_size = le32_to_cpu( 1136 a->data.resident.value_length); 1137 ni->allocated_size = le32_to_cpu(a->length) - 1138 le16_to_cpu( 1139 a->data.resident.value_offset); 1140 if (vi->i_size > ni->allocated_size) { 1141 ntfs_error(vi->i_sb, "Resident data attribute " 1142 "is corrupt (size exceeds " 1143 "allocation)."); 1144 goto unm_err_out; 1145 } 1146 } 1147 no_data_attr_special_case: 1148 /* We are done with the mft record, so we release it. */ 1149 ntfs_attr_put_search_ctx(ctx); 1150 unmap_mft_record(ni); 1151 m = NULL; 1152 ctx = NULL; 1153 /* Setup the operations for this inode. */ 1154 vi->i_op = &ntfs_file_inode_ops; 1155 vi->i_fop = &ntfs_file_ops; 1156 vi->i_mapping->a_ops = &ntfs_normal_aops; 1157 if (NInoMstProtected(ni)) 1158 vi->i_mapping->a_ops = &ntfs_mst_aops; 1159 else if (NInoCompressed(ni)) 1160 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1161 } 1162 /* 1163 * The number of 512-byte blocks used on disk (for stat). This is in so 1164 * far inaccurate as it doesn't account for any named streams or other 1165 * special non-resident attributes, but that is how Windows works, too, 1166 * so we are at least consistent with Windows, if not entirely 1167 * consistent with the Linux Way. Doing it the Linux Way would cause a 1168 * significant slowdown as it would involve iterating over all 1169 * attributes in the mft record and adding the allocated/compressed 1170 * sizes of all non-resident attributes present to give us the Linux 1171 * correct size that should go into i_blocks (after division by 512). 1172 */ 1173 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1174 vi->i_blocks = ni->itype.compressed.size >> 9; 1175 else 1176 vi->i_blocks = ni->allocated_size >> 9; 1177 ntfs_debug("Done."); 1178 return 0; 1179 iput_unm_err_out: 1180 iput(bvi); 1181 unm_err_out: 1182 if (!err) 1183 err = -EIO; 1184 if (ctx) 1185 ntfs_attr_put_search_ctx(ctx); 1186 if (m) 1187 unmap_mft_record(ni); 1188 err_out: 1189 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1190 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1191 make_bad_inode(vi); 1192 if (err != -EOPNOTSUPP && err != -ENOMEM) 1193 NVolSetErrors(vol); 1194 return err; 1195 } 1196 1197 /** 1198 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1199 * @base_vi: base inode 1200 * @vi: attribute inode to read 1201 * 1202 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1203 * attribute inode described by @vi into memory from the base mft record 1204 * described by @base_ni. 1205 * 1206 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1207 * reading and looks up the attribute described by @vi before setting up the 1208 * necessary fields in @vi as well as initializing the ntfs inode. 1209 * 1210 * Q: What locks are held when the function is called? 1211 * A: i_state has I_NEW set, hence the inode is locked, also 1212 * i_count is set to 1, so it is not going to go away 1213 * 1214 * Return 0 on success and -errno on error. In the error case, the inode will 1215 * have had make_bad_inode() executed on it. 1216 * 1217 * Note this cannot be called for AT_INDEX_ALLOCATION. 1218 */ 1219 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1220 { 1221 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1222 ntfs_inode *ni, *base_ni; 1223 MFT_RECORD *m; 1224 ATTR_RECORD *a; 1225 ntfs_attr_search_ctx *ctx; 1226 int err = 0; 1227 1228 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1229 1230 ntfs_init_big_inode(vi); 1231 1232 ni = NTFS_I(vi); 1233 base_ni = NTFS_I(base_vi); 1234 1235 /* Just mirror the values from the base inode. */ 1236 vi->i_uid = base_vi->i_uid; 1237 vi->i_gid = base_vi->i_gid; 1238 set_nlink(vi, base_vi->i_nlink); 1239 vi->i_mtime = base_vi->i_mtime; 1240 vi->i_ctime = base_vi->i_ctime; 1241 vi->i_atime = base_vi->i_atime; 1242 vi->i_generation = ni->seq_no = base_ni->seq_no; 1243 1244 /* Set inode type to zero but preserve permissions. */ 1245 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1246 1247 m = map_mft_record(base_ni); 1248 if (IS_ERR(m)) { 1249 err = PTR_ERR(m); 1250 goto err_out; 1251 } 1252 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1253 if (!ctx) { 1254 err = -ENOMEM; 1255 goto unm_err_out; 1256 } 1257 /* Find the attribute. */ 1258 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1259 CASE_SENSITIVE, 0, NULL, 0, ctx); 1260 if (unlikely(err)) 1261 goto unm_err_out; 1262 a = ctx->attr; 1263 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1264 if (a->flags & ATTR_COMPRESSION_MASK) { 1265 NInoSetCompressed(ni); 1266 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1267 ni->name_len)) { 1268 ntfs_error(vi->i_sb, "Found compressed " 1269 "non-data or named data " 1270 "attribute. Please report " 1271 "you saw this message to " 1272 "linux-ntfs-dev@lists." 1273 "sourceforge.net"); 1274 goto unm_err_out; 1275 } 1276 if (vol->cluster_size > 4096) { 1277 ntfs_error(vi->i_sb, "Found compressed " 1278 "attribute but compression is " 1279 "disabled due to cluster size " 1280 "(%i) > 4kiB.", 1281 vol->cluster_size); 1282 goto unm_err_out; 1283 } 1284 if ((a->flags & ATTR_COMPRESSION_MASK) != 1285 ATTR_IS_COMPRESSED) { 1286 ntfs_error(vi->i_sb, "Found unknown " 1287 "compression method."); 1288 goto unm_err_out; 1289 } 1290 } 1291 /* 1292 * The compressed/sparse flag set in an index root just means 1293 * to compress all files. 1294 */ 1295 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1296 ntfs_error(vi->i_sb, "Found mst protected attribute " 1297 "but the attribute is %s. Please " 1298 "report you saw this message to " 1299 "linux-ntfs-dev@lists.sourceforge.net", 1300 NInoCompressed(ni) ? "compressed" : 1301 "sparse"); 1302 goto unm_err_out; 1303 } 1304 if (a->flags & ATTR_IS_SPARSE) 1305 NInoSetSparse(ni); 1306 } 1307 if (a->flags & ATTR_IS_ENCRYPTED) { 1308 if (NInoCompressed(ni)) { 1309 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1310 "data."); 1311 goto unm_err_out; 1312 } 1313 /* 1314 * The encryption flag set in an index root just means to 1315 * encrypt all files. 1316 */ 1317 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1318 ntfs_error(vi->i_sb, "Found mst protected attribute " 1319 "but the attribute is encrypted. " 1320 "Please report you saw this message " 1321 "to linux-ntfs-dev@lists.sourceforge." 1322 "net"); 1323 goto unm_err_out; 1324 } 1325 if (ni->type != AT_DATA) { 1326 ntfs_error(vi->i_sb, "Found encrypted non-data " 1327 "attribute."); 1328 goto unm_err_out; 1329 } 1330 NInoSetEncrypted(ni); 1331 } 1332 if (!a->non_resident) { 1333 /* Ensure the attribute name is placed before the value. */ 1334 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1335 le16_to_cpu(a->data.resident.value_offset)))) { 1336 ntfs_error(vol->sb, "Attribute name is placed after " 1337 "the attribute value."); 1338 goto unm_err_out; 1339 } 1340 if (NInoMstProtected(ni)) { 1341 ntfs_error(vi->i_sb, "Found mst protected attribute " 1342 "but the attribute is resident. " 1343 "Please report you saw this message to " 1344 "linux-ntfs-dev@lists.sourceforge.net"); 1345 goto unm_err_out; 1346 } 1347 vi->i_size = ni->initialized_size = le32_to_cpu( 1348 a->data.resident.value_length); 1349 ni->allocated_size = le32_to_cpu(a->length) - 1350 le16_to_cpu(a->data.resident.value_offset); 1351 if (vi->i_size > ni->allocated_size) { 1352 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1353 "(size exceeds allocation)."); 1354 goto unm_err_out; 1355 } 1356 } else { 1357 NInoSetNonResident(ni); 1358 /* 1359 * Ensure the attribute name is placed before the mapping pairs 1360 * array. 1361 */ 1362 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1363 le16_to_cpu( 1364 a->data.non_resident.mapping_pairs_offset)))) { 1365 ntfs_error(vol->sb, "Attribute name is placed after " 1366 "the mapping pairs array."); 1367 goto unm_err_out; 1368 } 1369 if (NInoCompressed(ni) || NInoSparse(ni)) { 1370 if (NInoCompressed(ni) && a->data.non_resident. 1371 compression_unit != 4) { 1372 ntfs_error(vi->i_sb, "Found non-standard " 1373 "compression unit (%u instead " 1374 "of 4). Cannot handle this.", 1375 a->data.non_resident. 1376 compression_unit); 1377 err = -EOPNOTSUPP; 1378 goto unm_err_out; 1379 } 1380 if (a->data.non_resident.compression_unit) { 1381 ni->itype.compressed.block_size = 1U << 1382 (a->data.non_resident. 1383 compression_unit + 1384 vol->cluster_size_bits); 1385 ni->itype.compressed.block_size_bits = 1386 ffs(ni->itype.compressed. 1387 block_size) - 1; 1388 ni->itype.compressed.block_clusters = 1U << 1389 a->data.non_resident. 1390 compression_unit; 1391 } else { 1392 ni->itype.compressed.block_size = 0; 1393 ni->itype.compressed.block_size_bits = 0; 1394 ni->itype.compressed.block_clusters = 0; 1395 } 1396 ni->itype.compressed.size = sle64_to_cpu( 1397 a->data.non_resident.compressed_size); 1398 } 1399 if (a->data.non_resident.lowest_vcn) { 1400 ntfs_error(vi->i_sb, "First extent of attribute has " 1401 "non-zero lowest_vcn."); 1402 goto unm_err_out; 1403 } 1404 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1405 ni->initialized_size = sle64_to_cpu( 1406 a->data.non_resident.initialized_size); 1407 ni->allocated_size = sle64_to_cpu( 1408 a->data.non_resident.allocated_size); 1409 } 1410 vi->i_mapping->a_ops = &ntfs_normal_aops; 1411 if (NInoMstProtected(ni)) 1412 vi->i_mapping->a_ops = &ntfs_mst_aops; 1413 else if (NInoCompressed(ni)) 1414 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1415 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1416 vi->i_blocks = ni->itype.compressed.size >> 9; 1417 else 1418 vi->i_blocks = ni->allocated_size >> 9; 1419 /* 1420 * Make sure the base inode does not go away and attach it to the 1421 * attribute inode. 1422 */ 1423 igrab(base_vi); 1424 ni->ext.base_ntfs_ino = base_ni; 1425 ni->nr_extents = -1; 1426 1427 ntfs_attr_put_search_ctx(ctx); 1428 unmap_mft_record(base_ni); 1429 1430 ntfs_debug("Done."); 1431 return 0; 1432 1433 unm_err_out: 1434 if (!err) 1435 err = -EIO; 1436 if (ctx) 1437 ntfs_attr_put_search_ctx(ctx); 1438 unmap_mft_record(base_ni); 1439 err_out: 1440 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1441 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1442 "Marking corrupt inode and base inode 0x%lx as bad. " 1443 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1444 base_vi->i_ino); 1445 make_bad_inode(vi); 1446 if (err != -ENOMEM) 1447 NVolSetErrors(vol); 1448 return err; 1449 } 1450 1451 /** 1452 * ntfs_read_locked_index_inode - read an index inode from its base inode 1453 * @base_vi: base inode 1454 * @vi: index inode to read 1455 * 1456 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1457 * index inode described by @vi into memory from the base mft record described 1458 * by @base_ni. 1459 * 1460 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1461 * reading and looks up the attributes relating to the index described by @vi 1462 * before setting up the necessary fields in @vi as well as initializing the 1463 * ntfs inode. 1464 * 1465 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1466 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1467 * are setup like directory inodes since directories are a special case of 1468 * indices ao they need to be treated in much the same way. Most importantly, 1469 * for small indices the index allocation attribute might not actually exist. 1470 * However, the index root attribute always exists but this does not need to 1471 * have an inode associated with it and this is why we define a new inode type 1472 * index. Also, like for directories, we need to have an attribute inode for 1473 * the bitmap attribute corresponding to the index allocation attribute and we 1474 * can store this in the appropriate field of the inode, just like we do for 1475 * normal directory inodes. 1476 * 1477 * Q: What locks are held when the function is called? 1478 * A: i_state has I_NEW set, hence the inode is locked, also 1479 * i_count is set to 1, so it is not going to go away 1480 * 1481 * Return 0 on success and -errno on error. In the error case, the inode will 1482 * have had make_bad_inode() executed on it. 1483 */ 1484 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1485 { 1486 loff_t bvi_size; 1487 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1488 ntfs_inode *ni, *base_ni, *bni; 1489 struct inode *bvi; 1490 MFT_RECORD *m; 1491 ATTR_RECORD *a; 1492 ntfs_attr_search_ctx *ctx; 1493 INDEX_ROOT *ir; 1494 u8 *ir_end, *index_end; 1495 int err = 0; 1496 1497 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1498 ntfs_init_big_inode(vi); 1499 ni = NTFS_I(vi); 1500 base_ni = NTFS_I(base_vi); 1501 /* Just mirror the values from the base inode. */ 1502 vi->i_uid = base_vi->i_uid; 1503 vi->i_gid = base_vi->i_gid; 1504 set_nlink(vi, base_vi->i_nlink); 1505 vi->i_mtime = base_vi->i_mtime; 1506 vi->i_ctime = base_vi->i_ctime; 1507 vi->i_atime = base_vi->i_atime; 1508 vi->i_generation = ni->seq_no = base_ni->seq_no; 1509 /* Set inode type to zero but preserve permissions. */ 1510 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1511 /* Map the mft record for the base inode. */ 1512 m = map_mft_record(base_ni); 1513 if (IS_ERR(m)) { 1514 err = PTR_ERR(m); 1515 goto err_out; 1516 } 1517 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1518 if (!ctx) { 1519 err = -ENOMEM; 1520 goto unm_err_out; 1521 } 1522 /* Find the index root attribute. */ 1523 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1524 CASE_SENSITIVE, 0, NULL, 0, ctx); 1525 if (unlikely(err)) { 1526 if (err == -ENOENT) 1527 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1528 "missing."); 1529 goto unm_err_out; 1530 } 1531 a = ctx->attr; 1532 /* Set up the state. */ 1533 if (unlikely(a->non_resident)) { 1534 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1535 goto unm_err_out; 1536 } 1537 /* Ensure the attribute name is placed before the value. */ 1538 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1539 le16_to_cpu(a->data.resident.value_offset)))) { 1540 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1541 "after the attribute value."); 1542 goto unm_err_out; 1543 } 1544 /* 1545 * Compressed/encrypted/sparse index root is not allowed, except for 1546 * directories of course but those are not dealt with here. 1547 */ 1548 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1549 ATTR_IS_SPARSE)) { 1550 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1551 "root attribute."); 1552 goto unm_err_out; 1553 } 1554 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1555 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1556 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1557 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1558 goto unm_err_out; 1559 } 1560 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1561 if (index_end > ir_end) { 1562 ntfs_error(vi->i_sb, "Index is corrupt."); 1563 goto unm_err_out; 1564 } 1565 if (ir->type) { 1566 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1567 le32_to_cpu(ir->type)); 1568 goto unm_err_out; 1569 } 1570 ni->itype.index.collation_rule = ir->collation_rule; 1571 ntfs_debug("Index collation rule is 0x%x.", 1572 le32_to_cpu(ir->collation_rule)); 1573 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1574 if (!is_power_of_2(ni->itype.index.block_size)) { 1575 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1576 "two.", ni->itype.index.block_size); 1577 goto unm_err_out; 1578 } 1579 if (ni->itype.index.block_size > PAGE_SIZE) { 1580 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " 1581 "(%ld) is not supported. Sorry.", 1582 ni->itype.index.block_size, PAGE_SIZE); 1583 err = -EOPNOTSUPP; 1584 goto unm_err_out; 1585 } 1586 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1587 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1588 "(%i) is not supported. Sorry.", 1589 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1590 err = -EOPNOTSUPP; 1591 goto unm_err_out; 1592 } 1593 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1594 /* Determine the size of a vcn in the index. */ 1595 if (vol->cluster_size <= ni->itype.index.block_size) { 1596 ni->itype.index.vcn_size = vol->cluster_size; 1597 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1598 } else { 1599 ni->itype.index.vcn_size = vol->sector_size; 1600 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1601 } 1602 /* Check for presence of index allocation attribute. */ 1603 if (!(ir->index.flags & LARGE_INDEX)) { 1604 /* No index allocation. */ 1605 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1606 /* We are done with the mft record, so we release it. */ 1607 ntfs_attr_put_search_ctx(ctx); 1608 unmap_mft_record(base_ni); 1609 m = NULL; 1610 ctx = NULL; 1611 goto skip_large_index_stuff; 1612 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1613 NInoSetIndexAllocPresent(ni); 1614 /* Find index allocation attribute. */ 1615 ntfs_attr_reinit_search_ctx(ctx); 1616 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1617 CASE_SENSITIVE, 0, NULL, 0, ctx); 1618 if (unlikely(err)) { 1619 if (err == -ENOENT) 1620 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1621 "not present but $INDEX_ROOT " 1622 "indicated it is."); 1623 else 1624 ntfs_error(vi->i_sb, "Failed to lookup " 1625 "$INDEX_ALLOCATION attribute."); 1626 goto unm_err_out; 1627 } 1628 a = ctx->attr; 1629 if (!a->non_resident) { 1630 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1631 "resident."); 1632 goto unm_err_out; 1633 } 1634 /* 1635 * Ensure the attribute name is placed before the mapping pairs array. 1636 */ 1637 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1638 le16_to_cpu( 1639 a->data.non_resident.mapping_pairs_offset)))) { 1640 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1641 "placed after the mapping pairs array."); 1642 goto unm_err_out; 1643 } 1644 if (a->flags & ATTR_IS_ENCRYPTED) { 1645 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1646 "encrypted."); 1647 goto unm_err_out; 1648 } 1649 if (a->flags & ATTR_IS_SPARSE) { 1650 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1651 goto unm_err_out; 1652 } 1653 if (a->flags & ATTR_COMPRESSION_MASK) { 1654 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1655 "compressed."); 1656 goto unm_err_out; 1657 } 1658 if (a->data.non_resident.lowest_vcn) { 1659 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1660 "attribute has non zero lowest_vcn."); 1661 goto unm_err_out; 1662 } 1663 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1664 ni->initialized_size = sle64_to_cpu( 1665 a->data.non_resident.initialized_size); 1666 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1667 /* 1668 * We are done with the mft record, so we release it. Otherwise 1669 * we would deadlock in ntfs_attr_iget(). 1670 */ 1671 ntfs_attr_put_search_ctx(ctx); 1672 unmap_mft_record(base_ni); 1673 m = NULL; 1674 ctx = NULL; 1675 /* Get the index bitmap attribute inode. */ 1676 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1677 if (IS_ERR(bvi)) { 1678 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1679 err = PTR_ERR(bvi); 1680 goto unm_err_out; 1681 } 1682 bni = NTFS_I(bvi); 1683 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1684 NInoSparse(bni)) { 1685 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1686 "encrypted and/or sparse."); 1687 goto iput_unm_err_out; 1688 } 1689 /* Consistency check bitmap size vs. index allocation size. */ 1690 bvi_size = i_size_read(bvi); 1691 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1692 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1693 "index allocation (0x%llx).", bvi_size << 3, 1694 vi->i_size); 1695 goto iput_unm_err_out; 1696 } 1697 iput(bvi); 1698 skip_large_index_stuff: 1699 /* Setup the operations for this index inode. */ 1700 vi->i_mapping->a_ops = &ntfs_mst_aops; 1701 vi->i_blocks = ni->allocated_size >> 9; 1702 /* 1703 * Make sure the base inode doesn't go away and attach it to the 1704 * index inode. 1705 */ 1706 igrab(base_vi); 1707 ni->ext.base_ntfs_ino = base_ni; 1708 ni->nr_extents = -1; 1709 1710 ntfs_debug("Done."); 1711 return 0; 1712 iput_unm_err_out: 1713 iput(bvi); 1714 unm_err_out: 1715 if (!err) 1716 err = -EIO; 1717 if (ctx) 1718 ntfs_attr_put_search_ctx(ctx); 1719 if (m) 1720 unmap_mft_record(base_ni); 1721 err_out: 1722 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1723 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1724 ni->name_len); 1725 make_bad_inode(vi); 1726 if (err != -EOPNOTSUPP && err != -ENOMEM) 1727 NVolSetErrors(vol); 1728 return err; 1729 } 1730 1731 /* 1732 * The MFT inode has special locking, so teach the lock validator 1733 * about this by splitting off the locking rules of the MFT from 1734 * the locking rules of other inodes. The MFT inode can never be 1735 * accessed from the VFS side (or even internally), only by the 1736 * map_mft functions. 1737 */ 1738 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1739 1740 /** 1741 * ntfs_read_inode_mount - special read_inode for mount time use only 1742 * @vi: inode to read 1743 * 1744 * Read inode FILE_MFT at mount time, only called with super_block lock 1745 * held from within the read_super() code path. 1746 * 1747 * This function exists because when it is called the page cache for $MFT/$DATA 1748 * is not initialized and hence we cannot get at the contents of mft records 1749 * by calling map_mft_record*(). 1750 * 1751 * Further it needs to cope with the circular references problem, i.e. cannot 1752 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1753 * we do not know where the other extent mft records are yet and again, because 1754 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1755 * attribute list is actually present in $MFT inode. 1756 * 1757 * We solve these problems by starting with the $DATA attribute before anything 1758 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1759 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1760 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1761 * sufficient information for the next step to complete. 1762 * 1763 * This should work but there are two possible pit falls (see inline comments 1764 * below), but only time will tell if they are real pits or just smoke... 1765 */ 1766 int ntfs_read_inode_mount(struct inode *vi) 1767 { 1768 VCN next_vcn, last_vcn, highest_vcn; 1769 s64 block; 1770 struct super_block *sb = vi->i_sb; 1771 ntfs_volume *vol = NTFS_SB(sb); 1772 struct buffer_head *bh; 1773 ntfs_inode *ni; 1774 MFT_RECORD *m = NULL; 1775 ATTR_RECORD *a; 1776 ntfs_attr_search_ctx *ctx; 1777 unsigned int i, nr_blocks; 1778 int err; 1779 1780 ntfs_debug("Entering."); 1781 1782 /* Initialize the ntfs specific part of @vi. */ 1783 ntfs_init_big_inode(vi); 1784 1785 ni = NTFS_I(vi); 1786 1787 /* Setup the data attribute. It is special as it is mst protected. */ 1788 NInoSetNonResident(ni); 1789 NInoSetMstProtected(ni); 1790 NInoSetSparseDisabled(ni); 1791 ni->type = AT_DATA; 1792 ni->name = NULL; 1793 ni->name_len = 0; 1794 /* 1795 * This sets up our little cheat allowing us to reuse the async read io 1796 * completion handler for directories. 1797 */ 1798 ni->itype.index.block_size = vol->mft_record_size; 1799 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1800 1801 /* Very important! Needed to be able to call map_mft_record*(). */ 1802 vol->mft_ino = vi; 1803 1804 /* Allocate enough memory to read the first mft record. */ 1805 if (vol->mft_record_size > 64 * 1024) { 1806 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1807 vol->mft_record_size); 1808 goto err_out; 1809 } 1810 i = vol->mft_record_size; 1811 if (i < sb->s_blocksize) 1812 i = sb->s_blocksize; 1813 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1814 if (!m) { 1815 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1816 goto err_out; 1817 } 1818 1819 /* Determine the first block of the $MFT/$DATA attribute. */ 1820 block = vol->mft_lcn << vol->cluster_size_bits >> 1821 sb->s_blocksize_bits; 1822 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1823 if (!nr_blocks) 1824 nr_blocks = 1; 1825 1826 /* Load $MFT/$DATA's first mft record. */ 1827 for (i = 0; i < nr_blocks; i++) { 1828 bh = sb_bread(sb, block++); 1829 if (!bh) { 1830 ntfs_error(sb, "Device read failed."); 1831 goto err_out; 1832 } 1833 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1834 sb->s_blocksize); 1835 brelse(bh); 1836 } 1837 1838 /* Apply the mst fixups. */ 1839 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1840 /* FIXME: Try to use the $MFTMirr now. */ 1841 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1842 goto err_out; 1843 } 1844 1845 /* Need this to sanity check attribute list references to $MFT. */ 1846 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1847 1848 /* Provides readpage() for map_mft_record(). */ 1849 vi->i_mapping->a_ops = &ntfs_mst_aops; 1850 1851 ctx = ntfs_attr_get_search_ctx(ni, m); 1852 if (!ctx) { 1853 err = -ENOMEM; 1854 goto err_out; 1855 } 1856 1857 /* Find the attribute list attribute if present. */ 1858 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1859 if (err) { 1860 if (unlikely(err != -ENOENT)) { 1861 ntfs_error(sb, "Failed to lookup attribute list " 1862 "attribute. You should run chkdsk."); 1863 goto put_err_out; 1864 } 1865 } else /* if (!err) */ { 1866 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1867 u8 *al_end; 1868 static const char *es = " Not allowed. $MFT is corrupt. " 1869 "You should run chkdsk."; 1870 1871 ntfs_debug("Attribute list attribute found in $MFT."); 1872 NInoSetAttrList(ni); 1873 a = ctx->attr; 1874 if (a->flags & ATTR_COMPRESSION_MASK) { 1875 ntfs_error(sb, "Attribute list attribute is " 1876 "compressed.%s", es); 1877 goto put_err_out; 1878 } 1879 if (a->flags & ATTR_IS_ENCRYPTED || 1880 a->flags & ATTR_IS_SPARSE) { 1881 if (a->non_resident) { 1882 ntfs_error(sb, "Non-resident attribute list " 1883 "attribute is encrypted/" 1884 "sparse.%s", es); 1885 goto put_err_out; 1886 } 1887 ntfs_warning(sb, "Resident attribute list attribute " 1888 "in $MFT system file is marked " 1889 "encrypted/sparse which is not true. " 1890 "However, Windows allows this and " 1891 "chkdsk does not detect or correct it " 1892 "so we will just ignore the invalid " 1893 "flags and pretend they are not set."); 1894 } 1895 /* Now allocate memory for the attribute list. */ 1896 ni->attr_list_size = (u32)ntfs_attr_size(a); 1897 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1898 if (!ni->attr_list) { 1899 ntfs_error(sb, "Not enough memory to allocate buffer " 1900 "for attribute list."); 1901 goto put_err_out; 1902 } 1903 if (a->non_resident) { 1904 NInoSetAttrListNonResident(ni); 1905 if (a->data.non_resident.lowest_vcn) { 1906 ntfs_error(sb, "Attribute list has non zero " 1907 "lowest_vcn. $MFT is corrupt. " 1908 "You should run chkdsk."); 1909 goto put_err_out; 1910 } 1911 /* Setup the runlist. */ 1912 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1913 a, NULL); 1914 if (IS_ERR(ni->attr_list_rl.rl)) { 1915 err = PTR_ERR(ni->attr_list_rl.rl); 1916 ni->attr_list_rl.rl = NULL; 1917 ntfs_error(sb, "Mapping pairs decompression " 1918 "failed with error code %i.", 1919 -err); 1920 goto put_err_out; 1921 } 1922 /* Now load the attribute list. */ 1923 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1924 ni->attr_list, ni->attr_list_size, 1925 sle64_to_cpu(a->data. 1926 non_resident.initialized_size)))) { 1927 ntfs_error(sb, "Failed to load attribute list " 1928 "attribute with error code %i.", 1929 -err); 1930 goto put_err_out; 1931 } 1932 } else /* if (!ctx.attr->non_resident) */ { 1933 if ((u8*)a + le16_to_cpu( 1934 a->data.resident.value_offset) + 1935 le32_to_cpu( 1936 a->data.resident.value_length) > 1937 (u8*)ctx->mrec + vol->mft_record_size) { 1938 ntfs_error(sb, "Corrupt attribute list " 1939 "attribute."); 1940 goto put_err_out; 1941 } 1942 /* Now copy the attribute list. */ 1943 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1944 a->data.resident.value_offset), 1945 le32_to_cpu( 1946 a->data.resident.value_length)); 1947 } 1948 /* The attribute list is now setup in memory. */ 1949 /* 1950 * FIXME: I don't know if this case is actually possible. 1951 * According to logic it is not possible but I have seen too 1952 * many weird things in MS software to rely on logic... Thus we 1953 * perform a manual search and make sure the first $MFT/$DATA 1954 * extent is in the base inode. If it is not we abort with an 1955 * error and if we ever see a report of this error we will need 1956 * to do some magic in order to have the necessary mft record 1957 * loaded and in the right place in the page cache. But 1958 * hopefully logic will prevail and this never happens... 1959 */ 1960 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1961 al_end = (u8*)al_entry + ni->attr_list_size; 1962 for (;; al_entry = next_al_entry) { 1963 /* Out of bounds check. */ 1964 if ((u8*)al_entry < ni->attr_list || 1965 (u8*)al_entry > al_end) 1966 goto em_put_err_out; 1967 /* Catch the end of the attribute list. */ 1968 if ((u8*)al_entry == al_end) 1969 goto em_put_err_out; 1970 if (!al_entry->length) 1971 goto em_put_err_out; 1972 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1973 le16_to_cpu(al_entry->length) > al_end) 1974 goto em_put_err_out; 1975 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1976 le16_to_cpu(al_entry->length)); 1977 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1978 goto em_put_err_out; 1979 if (AT_DATA != al_entry->type) 1980 continue; 1981 /* We want an unnamed attribute. */ 1982 if (al_entry->name_length) 1983 goto em_put_err_out; 1984 /* Want the first entry, i.e. lowest_vcn == 0. */ 1985 if (al_entry->lowest_vcn) 1986 goto em_put_err_out; 1987 /* First entry has to be in the base mft record. */ 1988 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1989 /* MFT references do not match, logic fails. */ 1990 ntfs_error(sb, "BUG: The first $DATA extent " 1991 "of $MFT is not in the base " 1992 "mft record. Please report " 1993 "you saw this message to " 1994 "linux-ntfs-dev@lists." 1995 "sourceforge.net"); 1996 goto put_err_out; 1997 } else { 1998 /* Sequence numbers must match. */ 1999 if (MSEQNO_LE(al_entry->mft_reference) != 2000 ni->seq_no) 2001 goto em_put_err_out; 2002 /* Got it. All is ok. We can stop now. */ 2003 break; 2004 } 2005 } 2006 } 2007 2008 ntfs_attr_reinit_search_ctx(ctx); 2009 2010 /* Now load all attribute extents. */ 2011 a = NULL; 2012 next_vcn = last_vcn = highest_vcn = 0; 2013 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2014 ctx))) { 2015 runlist_element *nrl; 2016 2017 /* Cache the current attribute. */ 2018 a = ctx->attr; 2019 /* $MFT must be non-resident. */ 2020 if (!a->non_resident) { 2021 ntfs_error(sb, "$MFT must be non-resident but a " 2022 "resident extent was found. $MFT is " 2023 "corrupt. Run chkdsk."); 2024 goto put_err_out; 2025 } 2026 /* $MFT must be uncompressed and unencrypted. */ 2027 if (a->flags & ATTR_COMPRESSION_MASK || 2028 a->flags & ATTR_IS_ENCRYPTED || 2029 a->flags & ATTR_IS_SPARSE) { 2030 ntfs_error(sb, "$MFT must be uncompressed, " 2031 "non-sparse, and unencrypted but a " 2032 "compressed/sparse/encrypted extent " 2033 "was found. $MFT is corrupt. Run " 2034 "chkdsk."); 2035 goto put_err_out; 2036 } 2037 /* 2038 * Decompress the mapping pairs array of this extent and merge 2039 * the result into the existing runlist. No need for locking 2040 * as we have exclusive access to the inode at this time and we 2041 * are a mount in progress task, too. 2042 */ 2043 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2044 if (IS_ERR(nrl)) { 2045 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2046 "failed with error code %ld. $MFT is " 2047 "corrupt.", PTR_ERR(nrl)); 2048 goto put_err_out; 2049 } 2050 ni->runlist.rl = nrl; 2051 2052 /* Are we in the first extent? */ 2053 if (!next_vcn) { 2054 if (a->data.non_resident.lowest_vcn) { 2055 ntfs_error(sb, "First extent of $DATA " 2056 "attribute has non zero " 2057 "lowest_vcn. $MFT is corrupt. " 2058 "You should run chkdsk."); 2059 goto put_err_out; 2060 } 2061 /* Get the last vcn in the $DATA attribute. */ 2062 last_vcn = sle64_to_cpu( 2063 a->data.non_resident.allocated_size) 2064 >> vol->cluster_size_bits; 2065 /* Fill in the inode size. */ 2066 vi->i_size = sle64_to_cpu( 2067 a->data.non_resident.data_size); 2068 ni->initialized_size = sle64_to_cpu( 2069 a->data.non_resident.initialized_size); 2070 ni->allocated_size = sle64_to_cpu( 2071 a->data.non_resident.allocated_size); 2072 /* 2073 * Verify the number of mft records does not exceed 2074 * 2^32 - 1. 2075 */ 2076 if ((vi->i_size >> vol->mft_record_size_bits) >= 2077 (1ULL << 32)) { 2078 ntfs_error(sb, "$MFT is too big! Aborting."); 2079 goto put_err_out; 2080 } 2081 /* 2082 * We have got the first extent of the runlist for 2083 * $MFT which means it is now relatively safe to call 2084 * the normal ntfs_read_inode() function. 2085 * Complete reading the inode, this will actually 2086 * re-read the mft record for $MFT, this time entering 2087 * it into the page cache with which we complete the 2088 * kick start of the volume. It should be safe to do 2089 * this now as the first extent of $MFT/$DATA is 2090 * already known and we would hope that we don't need 2091 * further extents in order to find the other 2092 * attributes belonging to $MFT. Only time will tell if 2093 * this is really the case. If not we will have to play 2094 * magic at this point, possibly duplicating a lot of 2095 * ntfs_read_inode() at this point. We will need to 2096 * ensure we do enough of its work to be able to call 2097 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2098 * hope this never happens... 2099 */ 2100 ntfs_read_locked_inode(vi); 2101 if (is_bad_inode(vi)) { 2102 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2103 "failed. BUG or corrupt $MFT. " 2104 "Run chkdsk and if no errors " 2105 "are found, please report you " 2106 "saw this message to " 2107 "linux-ntfs-dev@lists." 2108 "sourceforge.net"); 2109 ntfs_attr_put_search_ctx(ctx); 2110 /* Revert to the safe super operations. */ 2111 ntfs_free(m); 2112 return -1; 2113 } 2114 /* 2115 * Re-initialize some specifics about $MFT's inode as 2116 * ntfs_read_inode() will have set up the default ones. 2117 */ 2118 /* Set uid and gid to root. */ 2119 vi->i_uid = GLOBAL_ROOT_UID; 2120 vi->i_gid = GLOBAL_ROOT_GID; 2121 /* Regular file. No access for anyone. */ 2122 vi->i_mode = S_IFREG; 2123 /* No VFS initiated operations allowed for $MFT. */ 2124 vi->i_op = &ntfs_empty_inode_ops; 2125 vi->i_fop = &ntfs_empty_file_ops; 2126 } 2127 2128 /* Get the lowest vcn for the next extent. */ 2129 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2130 next_vcn = highest_vcn + 1; 2131 2132 /* Only one extent or error, which we catch below. */ 2133 if (next_vcn <= 0) 2134 break; 2135 2136 /* Avoid endless loops due to corruption. */ 2137 if (next_vcn < sle64_to_cpu( 2138 a->data.non_resident.lowest_vcn)) { 2139 ntfs_error(sb, "$MFT has corrupt attribute list " 2140 "attribute. Run chkdsk."); 2141 goto put_err_out; 2142 } 2143 } 2144 if (err != -ENOENT) { 2145 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2146 "$MFT is corrupt. Run chkdsk."); 2147 goto put_err_out; 2148 } 2149 if (!a) { 2150 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2151 "corrupt. Run chkdsk."); 2152 goto put_err_out; 2153 } 2154 if (highest_vcn && highest_vcn != last_vcn - 1) { 2155 ntfs_error(sb, "Failed to load the complete runlist for " 2156 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2157 "Run chkdsk."); 2158 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2159 (unsigned long long)highest_vcn, 2160 (unsigned long long)last_vcn - 1); 2161 goto put_err_out; 2162 } 2163 ntfs_attr_put_search_ctx(ctx); 2164 ntfs_debug("Done."); 2165 ntfs_free(m); 2166 2167 /* 2168 * Split the locking rules of the MFT inode from the 2169 * locking rules of other inodes: 2170 */ 2171 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2172 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2173 2174 return 0; 2175 2176 em_put_err_out: 2177 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2178 "attribute list. $MFT is corrupt. Run chkdsk."); 2179 put_err_out: 2180 ntfs_attr_put_search_ctx(ctx); 2181 err_out: 2182 ntfs_error(sb, "Failed. Marking inode as bad."); 2183 make_bad_inode(vi); 2184 ntfs_free(m); 2185 return -1; 2186 } 2187 2188 static void __ntfs_clear_inode(ntfs_inode *ni) 2189 { 2190 /* Free all alocated memory. */ 2191 down_write(&ni->runlist.lock); 2192 if (ni->runlist.rl) { 2193 ntfs_free(ni->runlist.rl); 2194 ni->runlist.rl = NULL; 2195 } 2196 up_write(&ni->runlist.lock); 2197 2198 if (ni->attr_list) { 2199 ntfs_free(ni->attr_list); 2200 ni->attr_list = NULL; 2201 } 2202 2203 down_write(&ni->attr_list_rl.lock); 2204 if (ni->attr_list_rl.rl) { 2205 ntfs_free(ni->attr_list_rl.rl); 2206 ni->attr_list_rl.rl = NULL; 2207 } 2208 up_write(&ni->attr_list_rl.lock); 2209 2210 if (ni->name_len && ni->name != I30) { 2211 /* Catch bugs... */ 2212 BUG_ON(!ni->name); 2213 kfree(ni->name); 2214 } 2215 } 2216 2217 void ntfs_clear_extent_inode(ntfs_inode *ni) 2218 { 2219 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2220 2221 BUG_ON(NInoAttr(ni)); 2222 BUG_ON(ni->nr_extents != -1); 2223 2224 #ifdef NTFS_RW 2225 if (NInoDirty(ni)) { 2226 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2227 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2228 "Losing data! This is a BUG!!!"); 2229 // FIXME: Do something!!! 2230 } 2231 #endif /* NTFS_RW */ 2232 2233 __ntfs_clear_inode(ni); 2234 2235 /* Bye, bye... */ 2236 ntfs_destroy_extent_inode(ni); 2237 } 2238 2239 /** 2240 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2241 * @vi: vfs inode pending annihilation 2242 * 2243 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2244 * is called, which deallocates all memory belonging to the NTFS specific part 2245 * of the inode and returns. 2246 * 2247 * If the MFT record is dirty, we commit it before doing anything else. 2248 */ 2249 void ntfs_evict_big_inode(struct inode *vi) 2250 { 2251 ntfs_inode *ni = NTFS_I(vi); 2252 2253 truncate_inode_pages_final(&vi->i_data); 2254 clear_inode(vi); 2255 2256 #ifdef NTFS_RW 2257 if (NInoDirty(ni)) { 2258 bool was_bad = (is_bad_inode(vi)); 2259 2260 /* Committing the inode also commits all extent inodes. */ 2261 ntfs_commit_inode(vi); 2262 2263 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2264 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2265 "0x%lx. Losing data!", vi->i_ino); 2266 // FIXME: Do something!!! 2267 } 2268 } 2269 #endif /* NTFS_RW */ 2270 2271 /* No need to lock at this stage as no one else has a reference. */ 2272 if (ni->nr_extents > 0) { 2273 int i; 2274 2275 for (i = 0; i < ni->nr_extents; i++) 2276 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2277 kfree(ni->ext.extent_ntfs_inos); 2278 } 2279 2280 __ntfs_clear_inode(ni); 2281 2282 if (NInoAttr(ni)) { 2283 /* Release the base inode if we are holding it. */ 2284 if (ni->nr_extents == -1) { 2285 iput(VFS_I(ni->ext.base_ntfs_ino)); 2286 ni->nr_extents = 0; 2287 ni->ext.base_ntfs_ino = NULL; 2288 } 2289 } 2290 return; 2291 } 2292 2293 /** 2294 * ntfs_show_options - show mount options in /proc/mounts 2295 * @sf: seq_file in which to write our mount options 2296 * @root: root of the mounted tree whose mount options to display 2297 * 2298 * Called by the VFS once for each mounted ntfs volume when someone reads 2299 * /proc/mounts in order to display the NTFS specific mount options of each 2300 * mount. The mount options of fs specified by @root are written to the seq file 2301 * @sf and success is returned. 2302 */ 2303 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2304 { 2305 ntfs_volume *vol = NTFS_SB(root->d_sb); 2306 int i; 2307 2308 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); 2309 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); 2310 if (vol->fmask == vol->dmask) 2311 seq_printf(sf, ",umask=0%o", vol->fmask); 2312 else { 2313 seq_printf(sf, ",fmask=0%o", vol->fmask); 2314 seq_printf(sf, ",dmask=0%o", vol->dmask); 2315 } 2316 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2317 if (NVolCaseSensitive(vol)) 2318 seq_printf(sf, ",case_sensitive"); 2319 if (NVolShowSystemFiles(vol)) 2320 seq_printf(sf, ",show_sys_files"); 2321 if (!NVolSparseEnabled(vol)) 2322 seq_printf(sf, ",disable_sparse"); 2323 for (i = 0; on_errors_arr[i].val; i++) { 2324 if (on_errors_arr[i].val & vol->on_errors) 2325 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2326 } 2327 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2328 return 0; 2329 } 2330 2331 #ifdef NTFS_RW 2332 2333 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2334 "chkdsk."; 2335 2336 /** 2337 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2338 * @vi: inode for which the i_size was changed 2339 * 2340 * We only support i_size changes for normal files at present, i.e. not 2341 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2342 * below. 2343 * 2344 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2345 * that the change is allowed. 2346 * 2347 * This implies for us that @vi is a file inode rather than a directory, index, 2348 * or attribute inode as well as that @vi is a base inode. 2349 * 2350 * Returns 0 on success or -errno on error. 2351 * 2352 * Called with ->i_mutex held. 2353 */ 2354 int ntfs_truncate(struct inode *vi) 2355 { 2356 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2357 VCN highest_vcn; 2358 unsigned long flags; 2359 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2360 ntfs_volume *vol = ni->vol; 2361 ntfs_attr_search_ctx *ctx; 2362 MFT_RECORD *m; 2363 ATTR_RECORD *a; 2364 const char *te = " Leaving file length out of sync with i_size."; 2365 int err, mp_size, size_change, alloc_change; 2366 u32 attr_len; 2367 2368 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2369 BUG_ON(NInoAttr(ni)); 2370 BUG_ON(S_ISDIR(vi->i_mode)); 2371 BUG_ON(NInoMstProtected(ni)); 2372 BUG_ON(ni->nr_extents < 0); 2373 retry_truncate: 2374 /* 2375 * Lock the runlist for writing and map the mft record to ensure it is 2376 * safe to mess with the attribute runlist and sizes. 2377 */ 2378 down_write(&ni->runlist.lock); 2379 if (!NInoAttr(ni)) 2380 base_ni = ni; 2381 else 2382 base_ni = ni->ext.base_ntfs_ino; 2383 m = map_mft_record(base_ni); 2384 if (IS_ERR(m)) { 2385 err = PTR_ERR(m); 2386 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2387 "(error code %d).%s", vi->i_ino, err, te); 2388 ctx = NULL; 2389 m = NULL; 2390 goto old_bad_out; 2391 } 2392 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2393 if (unlikely(!ctx)) { 2394 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2395 "inode 0x%lx (not enough memory).%s", 2396 vi->i_ino, te); 2397 err = -ENOMEM; 2398 goto old_bad_out; 2399 } 2400 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2401 CASE_SENSITIVE, 0, NULL, 0, ctx); 2402 if (unlikely(err)) { 2403 if (err == -ENOENT) { 2404 ntfs_error(vi->i_sb, "Open attribute is missing from " 2405 "mft record. Inode 0x%lx is corrupt. " 2406 "Run chkdsk.%s", vi->i_ino, te); 2407 err = -EIO; 2408 } else 2409 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2410 "inode 0x%lx (error code %d).%s", 2411 vi->i_ino, err, te); 2412 goto old_bad_out; 2413 } 2414 m = ctx->mrec; 2415 a = ctx->attr; 2416 /* 2417 * The i_size of the vfs inode is the new size for the attribute value. 2418 */ 2419 new_size = i_size_read(vi); 2420 /* The current size of the attribute value is the old size. */ 2421 old_size = ntfs_attr_size(a); 2422 /* Calculate the new allocated size. */ 2423 if (NInoNonResident(ni)) 2424 new_alloc_size = (new_size + vol->cluster_size - 1) & 2425 ~(s64)vol->cluster_size_mask; 2426 else 2427 new_alloc_size = (new_size + 7) & ~7; 2428 /* The current allocated size is the old allocated size. */ 2429 read_lock_irqsave(&ni->size_lock, flags); 2430 old_alloc_size = ni->allocated_size; 2431 read_unlock_irqrestore(&ni->size_lock, flags); 2432 /* 2433 * The change in the file size. This will be 0 if no change, >0 if the 2434 * size is growing, and <0 if the size is shrinking. 2435 */ 2436 size_change = -1; 2437 if (new_size - old_size >= 0) { 2438 size_change = 1; 2439 if (new_size == old_size) 2440 size_change = 0; 2441 } 2442 /* As above for the allocated size. */ 2443 alloc_change = -1; 2444 if (new_alloc_size - old_alloc_size >= 0) { 2445 alloc_change = 1; 2446 if (new_alloc_size == old_alloc_size) 2447 alloc_change = 0; 2448 } 2449 /* 2450 * If neither the size nor the allocation are being changed there is 2451 * nothing to do. 2452 */ 2453 if (!size_change && !alloc_change) 2454 goto unm_done; 2455 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2456 if (size_change) { 2457 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2458 if (unlikely(err)) { 2459 if (err == -ERANGE) { 2460 ntfs_error(vol->sb, "Truncate would cause the " 2461 "inode 0x%lx to %simum size " 2462 "for its attribute type " 2463 "(0x%x). Aborting truncate.", 2464 vi->i_ino, 2465 new_size > old_size ? "exceed " 2466 "the max" : "go under the min", 2467 le32_to_cpu(ni->type)); 2468 err = -EFBIG; 2469 } else { 2470 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2471 "attribute type 0x%x. " 2472 "Aborting truncate.", 2473 vi->i_ino, 2474 le32_to_cpu(ni->type)); 2475 err = -EIO; 2476 } 2477 /* Reset the vfs inode size to the old size. */ 2478 i_size_write(vi, old_size); 2479 goto err_out; 2480 } 2481 } 2482 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2483 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2484 "supported yet for %s files, ignoring.", 2485 NInoCompressed(ni) ? "compressed" : 2486 "encrypted"); 2487 err = -EOPNOTSUPP; 2488 goto bad_out; 2489 } 2490 if (a->non_resident) 2491 goto do_non_resident_truncate; 2492 BUG_ON(NInoNonResident(ni)); 2493 /* Resize the attribute record to best fit the new attribute size. */ 2494 if (new_size < vol->mft_record_size && 2495 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2496 /* The resize succeeded! */ 2497 flush_dcache_mft_record_page(ctx->ntfs_ino); 2498 mark_mft_record_dirty(ctx->ntfs_ino); 2499 write_lock_irqsave(&ni->size_lock, flags); 2500 /* Update the sizes in the ntfs inode and all is done. */ 2501 ni->allocated_size = le32_to_cpu(a->length) - 2502 le16_to_cpu(a->data.resident.value_offset); 2503 /* 2504 * Note ntfs_resident_attr_value_resize() has already done any 2505 * necessary data clearing in the attribute record. When the 2506 * file is being shrunk vmtruncate() will already have cleared 2507 * the top part of the last partial page, i.e. since this is 2508 * the resident case this is the page with index 0. However, 2509 * when the file is being expanded, the page cache page data 2510 * between the old data_size, i.e. old_size, and the new_size 2511 * has not been zeroed. Fortunately, we do not need to zero it 2512 * either since on one hand it will either already be zero due 2513 * to both readpage and writepage clearing partial page data 2514 * beyond i_size in which case there is nothing to do or in the 2515 * case of the file being mmap()ped at the same time, POSIX 2516 * specifies that the behaviour is unspecified thus we do not 2517 * have to do anything. This means that in our implementation 2518 * in the rare case that the file is mmap()ped and a write 2519 * occurred into the mmap()ped region just beyond the file size 2520 * and writepage has not yet been called to write out the page 2521 * (which would clear the area beyond the file size) and we now 2522 * extend the file size to incorporate this dirty region 2523 * outside the file size, a write of the page would result in 2524 * this data being written to disk instead of being cleared. 2525 * Given both POSIX and the Linux mmap(2) man page specify that 2526 * this corner case is undefined, we choose to leave it like 2527 * that as this is much simpler for us as we cannot lock the 2528 * relevant page now since we are holding too many ntfs locks 2529 * which would result in a lock reversal deadlock. 2530 */ 2531 ni->initialized_size = new_size; 2532 write_unlock_irqrestore(&ni->size_lock, flags); 2533 goto unm_done; 2534 } 2535 /* If the above resize failed, this must be an attribute extension. */ 2536 BUG_ON(size_change < 0); 2537 /* 2538 * We have to drop all the locks so we can call 2539 * ntfs_attr_make_non_resident(). This could be optimised by try- 2540 * locking the first page cache page and only if that fails dropping 2541 * the locks, locking the page, and redoing all the locking and 2542 * lookups. While this would be a huge optimisation, it is not worth 2543 * it as this is definitely a slow code path as it only ever can happen 2544 * once for any given file. 2545 */ 2546 ntfs_attr_put_search_ctx(ctx); 2547 unmap_mft_record(base_ni); 2548 up_write(&ni->runlist.lock); 2549 /* 2550 * Not enough space in the mft record, try to make the attribute 2551 * non-resident and if successful restart the truncation process. 2552 */ 2553 err = ntfs_attr_make_non_resident(ni, old_size); 2554 if (likely(!err)) 2555 goto retry_truncate; 2556 /* 2557 * Could not make non-resident. If this is due to this not being 2558 * permitted for this attribute type or there not being enough space, 2559 * try to make other attributes non-resident. Otherwise fail. 2560 */ 2561 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2562 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2563 "type 0x%x, because the conversion from " 2564 "resident to non-resident attribute failed " 2565 "with error code %i.", vi->i_ino, 2566 (unsigned)le32_to_cpu(ni->type), err); 2567 if (err != -ENOMEM) 2568 err = -EIO; 2569 goto conv_err_out; 2570 } 2571 /* TODO: Not implemented from here, abort. */ 2572 if (err == -ENOSPC) 2573 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2574 "disk for the non-resident attribute value. " 2575 "This case is not implemented yet."); 2576 else /* if (err == -EPERM) */ 2577 ntfs_error(vol->sb, "This attribute type may not be " 2578 "non-resident. This case is not implemented " 2579 "yet."); 2580 err = -EOPNOTSUPP; 2581 goto conv_err_out; 2582 #if 0 2583 // TODO: Attempt to make other attributes non-resident. 2584 if (!err) 2585 goto do_resident_extend; 2586 /* 2587 * Both the attribute list attribute and the standard information 2588 * attribute must remain in the base inode. Thus, if this is one of 2589 * these attributes, we have to try to move other attributes out into 2590 * extent mft records instead. 2591 */ 2592 if (ni->type == AT_ATTRIBUTE_LIST || 2593 ni->type == AT_STANDARD_INFORMATION) { 2594 // TODO: Attempt to move other attributes into extent mft 2595 // records. 2596 err = -EOPNOTSUPP; 2597 if (!err) 2598 goto do_resident_extend; 2599 goto err_out; 2600 } 2601 // TODO: Attempt to move this attribute to an extent mft record, but 2602 // only if it is not already the only attribute in an mft record in 2603 // which case there would be nothing to gain. 2604 err = -EOPNOTSUPP; 2605 if (!err) 2606 goto do_resident_extend; 2607 /* There is nothing we can do to make enough space. )-: */ 2608 goto err_out; 2609 #endif 2610 do_non_resident_truncate: 2611 BUG_ON(!NInoNonResident(ni)); 2612 if (alloc_change < 0) { 2613 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2614 if (highest_vcn > 0 && 2615 old_alloc_size >> vol->cluster_size_bits > 2616 highest_vcn + 1) { 2617 /* 2618 * This attribute has multiple extents. Not yet 2619 * supported. 2620 */ 2621 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2622 "attribute type 0x%x, because the " 2623 "attribute is highly fragmented (it " 2624 "consists of multiple extents) and " 2625 "this case is not implemented yet.", 2626 vi->i_ino, 2627 (unsigned)le32_to_cpu(ni->type)); 2628 err = -EOPNOTSUPP; 2629 goto bad_out; 2630 } 2631 } 2632 /* 2633 * If the size is shrinking, need to reduce the initialized_size and 2634 * the data_size before reducing the allocation. 2635 */ 2636 if (size_change < 0) { 2637 /* 2638 * Make the valid size smaller (i_size is already up-to-date). 2639 */ 2640 write_lock_irqsave(&ni->size_lock, flags); 2641 if (new_size < ni->initialized_size) { 2642 ni->initialized_size = new_size; 2643 a->data.non_resident.initialized_size = 2644 cpu_to_sle64(new_size); 2645 } 2646 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2647 write_unlock_irqrestore(&ni->size_lock, flags); 2648 flush_dcache_mft_record_page(ctx->ntfs_ino); 2649 mark_mft_record_dirty(ctx->ntfs_ino); 2650 /* If the allocated size is not changing, we are done. */ 2651 if (!alloc_change) 2652 goto unm_done; 2653 /* 2654 * If the size is shrinking it makes no sense for the 2655 * allocation to be growing. 2656 */ 2657 BUG_ON(alloc_change > 0); 2658 } else /* if (size_change >= 0) */ { 2659 /* 2660 * The file size is growing or staying the same but the 2661 * allocation can be shrinking, growing or staying the same. 2662 */ 2663 if (alloc_change > 0) { 2664 /* 2665 * We need to extend the allocation and possibly update 2666 * the data size. If we are updating the data size, 2667 * since we are not touching the initialized_size we do 2668 * not need to worry about the actual data on disk. 2669 * And as far as the page cache is concerned, there 2670 * will be no pages beyond the old data size and any 2671 * partial region in the last page between the old and 2672 * new data size (or the end of the page if the new 2673 * data size is outside the page) does not need to be 2674 * modified as explained above for the resident 2675 * attribute truncate case. To do this, we simply drop 2676 * the locks we hold and leave all the work to our 2677 * friendly helper ntfs_attr_extend_allocation(). 2678 */ 2679 ntfs_attr_put_search_ctx(ctx); 2680 unmap_mft_record(base_ni); 2681 up_write(&ni->runlist.lock); 2682 err = ntfs_attr_extend_allocation(ni, new_size, 2683 size_change > 0 ? new_size : -1, -1); 2684 /* 2685 * ntfs_attr_extend_allocation() will have done error 2686 * output already. 2687 */ 2688 goto done; 2689 } 2690 if (!alloc_change) 2691 goto alloc_done; 2692 } 2693 /* alloc_change < 0 */ 2694 /* Free the clusters. */ 2695 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2696 vol->cluster_size_bits, -1, ctx); 2697 m = ctx->mrec; 2698 a = ctx->attr; 2699 if (unlikely(nr_freed < 0)) { 2700 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2701 "%lli). Unmount and run chkdsk to recover " 2702 "the lost cluster(s).", (long long)nr_freed); 2703 NVolSetErrors(vol); 2704 nr_freed = 0; 2705 } 2706 /* Truncate the runlist. */ 2707 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2708 new_alloc_size >> vol->cluster_size_bits); 2709 /* 2710 * If the runlist truncation failed and/or the search context is no 2711 * longer valid, we cannot resize the attribute record or build the 2712 * mapping pairs array thus we mark the inode bad so that no access to 2713 * the freed clusters can happen. 2714 */ 2715 if (unlikely(err || IS_ERR(m))) { 2716 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2717 IS_ERR(m) ? 2718 "restore attribute search context" : 2719 "truncate attribute runlist", 2720 IS_ERR(m) ? PTR_ERR(m) : err, es); 2721 err = -EIO; 2722 goto bad_out; 2723 } 2724 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2725 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2726 if (unlikely(mp_size <= 0)) { 2727 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2728 "attribute type 0x%x, because determining the " 2729 "size for the mapping pairs failed with error " 2730 "code %i.%s", vi->i_ino, 2731 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2732 err = -EIO; 2733 goto bad_out; 2734 } 2735 /* 2736 * Shrink the attribute record for the new mapping pairs array. Note, 2737 * this cannot fail since we are making the attribute smaller thus by 2738 * definition there is enough space to do so. 2739 */ 2740 attr_len = le32_to_cpu(a->length); 2741 err = ntfs_attr_record_resize(m, a, mp_size + 2742 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2743 BUG_ON(err); 2744 /* 2745 * Generate the mapping pairs array directly into the attribute record. 2746 */ 2747 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2748 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2749 mp_size, ni->runlist.rl, 0, -1, NULL); 2750 if (unlikely(err)) { 2751 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2752 "attribute type 0x%x, because building the " 2753 "mapping pairs failed with error code %i.%s", 2754 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2755 err, es); 2756 err = -EIO; 2757 goto bad_out; 2758 } 2759 /* Update the allocated/compressed size as well as the highest vcn. */ 2760 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2761 vol->cluster_size_bits) - 1); 2762 write_lock_irqsave(&ni->size_lock, flags); 2763 ni->allocated_size = new_alloc_size; 2764 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2765 if (NInoSparse(ni) || NInoCompressed(ni)) { 2766 if (nr_freed) { 2767 ni->itype.compressed.size -= nr_freed << 2768 vol->cluster_size_bits; 2769 BUG_ON(ni->itype.compressed.size < 0); 2770 a->data.non_resident.compressed_size = cpu_to_sle64( 2771 ni->itype.compressed.size); 2772 vi->i_blocks = ni->itype.compressed.size >> 9; 2773 } 2774 } else 2775 vi->i_blocks = new_alloc_size >> 9; 2776 write_unlock_irqrestore(&ni->size_lock, flags); 2777 /* 2778 * We have shrunk the allocation. If this is a shrinking truncate we 2779 * have already dealt with the initialized_size and the data_size above 2780 * and we are done. If the truncate is only changing the allocation 2781 * and not the data_size, we are also done. If this is an extending 2782 * truncate, need to extend the data_size now which is ensured by the 2783 * fact that @size_change is positive. 2784 */ 2785 alloc_done: 2786 /* 2787 * If the size is growing, need to update it now. If it is shrinking, 2788 * we have already updated it above (before the allocation change). 2789 */ 2790 if (size_change > 0) 2791 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2792 /* Ensure the modified mft record is written out. */ 2793 flush_dcache_mft_record_page(ctx->ntfs_ino); 2794 mark_mft_record_dirty(ctx->ntfs_ino); 2795 unm_done: 2796 ntfs_attr_put_search_ctx(ctx); 2797 unmap_mft_record(base_ni); 2798 up_write(&ni->runlist.lock); 2799 done: 2800 /* Update the mtime and ctime on the base inode. */ 2801 /* normally ->truncate shouldn't update ctime or mtime, 2802 * but ntfs did before so it got a copy & paste version 2803 * of file_update_time. one day someone should fix this 2804 * for real. 2805 */ 2806 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2807 struct timespec64 now = current_time(VFS_I(base_ni)); 2808 int sync_it = 0; 2809 2810 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) || 2811 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now)) 2812 sync_it = 1; 2813 VFS_I(base_ni)->i_mtime = now; 2814 VFS_I(base_ni)->i_ctime = now; 2815 2816 if (sync_it) 2817 mark_inode_dirty_sync(VFS_I(base_ni)); 2818 } 2819 2820 if (likely(!err)) { 2821 NInoClearTruncateFailed(ni); 2822 ntfs_debug("Done."); 2823 } 2824 return err; 2825 old_bad_out: 2826 old_size = -1; 2827 bad_out: 2828 if (err != -ENOMEM && err != -EOPNOTSUPP) 2829 NVolSetErrors(vol); 2830 if (err != -EOPNOTSUPP) 2831 NInoSetTruncateFailed(ni); 2832 else if (old_size >= 0) 2833 i_size_write(vi, old_size); 2834 err_out: 2835 if (ctx) 2836 ntfs_attr_put_search_ctx(ctx); 2837 if (m) 2838 unmap_mft_record(base_ni); 2839 up_write(&ni->runlist.lock); 2840 out: 2841 ntfs_debug("Failed. Returning error code %i.", err); 2842 return err; 2843 conv_err_out: 2844 if (err != -ENOMEM && err != -EOPNOTSUPP) 2845 NVolSetErrors(vol); 2846 if (err != -EOPNOTSUPP) 2847 NInoSetTruncateFailed(ni); 2848 else 2849 i_size_write(vi, old_size); 2850 goto out; 2851 } 2852 2853 /** 2854 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2855 * @vi: inode for which the i_size was changed 2856 * 2857 * Wrapper for ntfs_truncate() that has no return value. 2858 * 2859 * See ntfs_truncate() description above for details. 2860 */ 2861 #ifdef NTFS_RW 2862 void ntfs_truncate_vfs(struct inode *vi) { 2863 ntfs_truncate(vi); 2864 } 2865 #endif 2866 2867 /** 2868 * ntfs_setattr - called from notify_change() when an attribute is being changed 2869 * @dentry: dentry whose attributes to change 2870 * @attr: structure describing the attributes and the changes 2871 * 2872 * We have to trap VFS attempts to truncate the file described by @dentry as 2873 * soon as possible, because we do not implement changes in i_size yet. So we 2874 * abort all i_size changes here. 2875 * 2876 * We also abort all changes of user, group, and mode as we do not implement 2877 * the NTFS ACLs yet. 2878 * 2879 * Called with ->i_mutex held. 2880 */ 2881 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2882 { 2883 struct inode *vi = d_inode(dentry); 2884 int err; 2885 unsigned int ia_valid = attr->ia_valid; 2886 2887 err = setattr_prepare(dentry, attr); 2888 if (err) 2889 goto out; 2890 /* We do not support NTFS ACLs yet. */ 2891 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2892 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2893 "supported yet, ignoring."); 2894 err = -EOPNOTSUPP; 2895 goto out; 2896 } 2897 if (ia_valid & ATTR_SIZE) { 2898 if (attr->ia_size != i_size_read(vi)) { 2899 ntfs_inode *ni = NTFS_I(vi); 2900 /* 2901 * FIXME: For now we do not support resizing of 2902 * compressed or encrypted files yet. 2903 */ 2904 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2905 ntfs_warning(vi->i_sb, "Changes in inode size " 2906 "are not supported yet for " 2907 "%s files, ignoring.", 2908 NInoCompressed(ni) ? 2909 "compressed" : "encrypted"); 2910 err = -EOPNOTSUPP; 2911 } else { 2912 truncate_setsize(vi, attr->ia_size); 2913 ntfs_truncate_vfs(vi); 2914 } 2915 if (err || ia_valid == ATTR_SIZE) 2916 goto out; 2917 } else { 2918 /* 2919 * We skipped the truncate but must still update 2920 * timestamps. 2921 */ 2922 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2923 } 2924 } 2925 if (ia_valid & ATTR_ATIME) 2926 vi->i_atime = timespec64_trunc(attr->ia_atime, 2927 vi->i_sb->s_time_gran); 2928 if (ia_valid & ATTR_MTIME) 2929 vi->i_mtime = timespec64_trunc(attr->ia_mtime, 2930 vi->i_sb->s_time_gran); 2931 if (ia_valid & ATTR_CTIME) 2932 vi->i_ctime = timespec64_trunc(attr->ia_ctime, 2933 vi->i_sb->s_time_gran); 2934 mark_inode_dirty(vi); 2935 out: 2936 return err; 2937 } 2938 2939 /** 2940 * ntfs_write_inode - write out a dirty inode 2941 * @vi: inode to write out 2942 * @sync: if true, write out synchronously 2943 * 2944 * Write out a dirty inode to disk including any extent inodes if present. 2945 * 2946 * If @sync is true, commit the inode to disk and wait for io completion. This 2947 * is done using write_mft_record(). 2948 * 2949 * If @sync is false, just schedule the write to happen but do not wait for i/o 2950 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2951 * marking the page (and in this case mft record) dirty but we do not implement 2952 * this yet as write_mft_record() largely ignores the @sync parameter and 2953 * always performs synchronous writes. 2954 * 2955 * Return 0 on success and -errno on error. 2956 */ 2957 int __ntfs_write_inode(struct inode *vi, int sync) 2958 { 2959 sle64 nt; 2960 ntfs_inode *ni = NTFS_I(vi); 2961 ntfs_attr_search_ctx *ctx; 2962 MFT_RECORD *m; 2963 STANDARD_INFORMATION *si; 2964 int err = 0; 2965 bool modified = false; 2966 2967 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2968 vi->i_ino); 2969 /* 2970 * Dirty attribute inodes are written via their real inodes so just 2971 * clean them here. Access time updates are taken care off when the 2972 * real inode is written. 2973 */ 2974 if (NInoAttr(ni)) { 2975 NInoClearDirty(ni); 2976 ntfs_debug("Done."); 2977 return 0; 2978 } 2979 /* Map, pin, and lock the mft record belonging to the inode. */ 2980 m = map_mft_record(ni); 2981 if (IS_ERR(m)) { 2982 err = PTR_ERR(m); 2983 goto err_out; 2984 } 2985 /* Update the access times in the standard information attribute. */ 2986 ctx = ntfs_attr_get_search_ctx(ni, m); 2987 if (unlikely(!ctx)) { 2988 err = -ENOMEM; 2989 goto unm_err_out; 2990 } 2991 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2992 CASE_SENSITIVE, 0, NULL, 0, ctx); 2993 if (unlikely(err)) { 2994 ntfs_attr_put_search_ctx(ctx); 2995 goto unm_err_out; 2996 } 2997 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 2998 le16_to_cpu(ctx->attr->data.resident.value_offset)); 2999 /* Update the access times if they have changed. */ 3000 nt = utc2ntfs(timespec64_to_timespec(vi->i_mtime)); 3001 if (si->last_data_change_time != nt) { 3002 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 3003 "new = 0x%llx", vi->i_ino, (long long) 3004 sle64_to_cpu(si->last_data_change_time), 3005 (long long)sle64_to_cpu(nt)); 3006 si->last_data_change_time = nt; 3007 modified = true; 3008 } 3009 nt = utc2ntfs(timespec64_to_timespec(vi->i_ctime)); 3010 if (si->last_mft_change_time != nt) { 3011 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 3012 "new = 0x%llx", vi->i_ino, (long long) 3013 sle64_to_cpu(si->last_mft_change_time), 3014 (long long)sle64_to_cpu(nt)); 3015 si->last_mft_change_time = nt; 3016 modified = true; 3017 } 3018 nt = utc2ntfs(timespec64_to_timespec(vi->i_atime)); 3019 if (si->last_access_time != nt) { 3020 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3021 "new = 0x%llx", vi->i_ino, 3022 (long long)sle64_to_cpu(si->last_access_time), 3023 (long long)sle64_to_cpu(nt)); 3024 si->last_access_time = nt; 3025 modified = true; 3026 } 3027 /* 3028 * If we just modified the standard information attribute we need to 3029 * mark the mft record it is in dirty. We do this manually so that 3030 * mark_inode_dirty() is not called which would redirty the inode and 3031 * hence result in an infinite loop of trying to write the inode. 3032 * There is no need to mark the base inode nor the base mft record 3033 * dirty, since we are going to write this mft record below in any case 3034 * and the base mft record may actually not have been modified so it 3035 * might not need to be written out. 3036 * NOTE: It is not a problem when the inode for $MFT itself is being 3037 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3038 * on the $MFT inode and hence ntfs_write_inode() will not be 3039 * re-invoked because of it which in turn is ok since the dirtied mft 3040 * record will be cleaned and written out to disk below, i.e. before 3041 * this function returns. 3042 */ 3043 if (modified) { 3044 flush_dcache_mft_record_page(ctx->ntfs_ino); 3045 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3046 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3047 ctx->ntfs_ino->page_ofs); 3048 } 3049 ntfs_attr_put_search_ctx(ctx); 3050 /* Now the access times are updated, write the base mft record. */ 3051 if (NInoDirty(ni)) 3052 err = write_mft_record(ni, m, sync); 3053 /* Write all attached extent mft records. */ 3054 mutex_lock(&ni->extent_lock); 3055 if (ni->nr_extents > 0) { 3056 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3057 int i; 3058 3059 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3060 for (i = 0; i < ni->nr_extents; i++) { 3061 ntfs_inode *tni = extent_nis[i]; 3062 3063 if (NInoDirty(tni)) { 3064 MFT_RECORD *tm = map_mft_record(tni); 3065 int ret; 3066 3067 if (IS_ERR(tm)) { 3068 if (!err || err == -ENOMEM) 3069 err = PTR_ERR(tm); 3070 continue; 3071 } 3072 ret = write_mft_record(tni, tm, sync); 3073 unmap_mft_record(tni); 3074 if (unlikely(ret)) { 3075 if (!err || err == -ENOMEM) 3076 err = ret; 3077 } 3078 } 3079 } 3080 } 3081 mutex_unlock(&ni->extent_lock); 3082 unmap_mft_record(ni); 3083 if (unlikely(err)) 3084 goto err_out; 3085 ntfs_debug("Done."); 3086 return 0; 3087 unm_err_out: 3088 unmap_mft_record(ni); 3089 err_out: 3090 if (err == -ENOMEM) { 3091 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3092 "Marking the inode dirty again, so the VFS " 3093 "retries later."); 3094 mark_inode_dirty(vi); 3095 } else { 3096 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3097 NVolSetErrors(ni->vol); 3098 } 3099 return err; 3100 } 3101 3102 #endif /* NTFS_RW */ 3103