1 /** 2 * inode.c - NTFS kernel inode handling. 3 * 4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/mount.h> 26 #include <linux/mutex.h> 27 #include <linux/pagemap.h> 28 #include <linux/quotaops.h> 29 #include <linux/slab.h> 30 #include <linux/log2.h> 31 32 #include "aops.h" 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "dir.h" 36 #include "debug.h" 37 #include "inode.h" 38 #include "lcnalloc.h" 39 #include "malloc.h" 40 #include "mft.h" 41 #include "time.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_test_inode - compare two (possibly fake) inodes for equality 46 * @vi: vfs inode which to test 47 * @na: ntfs attribute which is being tested with 48 * 49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 50 * inode @vi for equality with the ntfs attribute @na. 51 * 52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 53 * @na->name and @na->name_len are then ignored. 54 * 55 * Return 1 if the attributes match and 0 if not. 56 * 57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not 58 * allowed to sleep. 59 */ 60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 61 { 62 ntfs_inode *ni; 63 64 if (vi->i_ino != na->mft_no) 65 return 0; 66 ni = NTFS_I(vi); 67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 68 if (likely(!NInoAttr(ni))) { 69 /* If not looking for a normal inode this is a mismatch. */ 70 if (unlikely(na->type != AT_UNUSED)) 71 return 0; 72 } else { 73 /* A fake inode describing an attribute. */ 74 if (ni->type != na->type) 75 return 0; 76 if (ni->name_len != na->name_len) 77 return 0; 78 if (na->name_len && memcmp(ni->name, na->name, 79 na->name_len * sizeof(ntfschar))) 80 return 0; 81 } 82 /* Match! */ 83 return 1; 84 } 85 86 /** 87 * ntfs_init_locked_inode - initialize an inode 88 * @vi: vfs inode to initialize 89 * @na: ntfs attribute which to initialize @vi to 90 * 91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 92 * order to enable ntfs_test_inode() to do its work. 93 * 94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 95 * In that case, @na->name and @na->name_len should be set to NULL and 0, 96 * respectively. Although that is not strictly necessary as 97 * ntfs_read_locked_inode() will fill them in later. 98 * 99 * Return 0 on success and -errno on error. 100 * 101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 103 */ 104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 105 { 106 ntfs_inode *ni = NTFS_I(vi); 107 108 vi->i_ino = na->mft_no; 109 110 ni->type = na->type; 111 if (na->type == AT_INDEX_ALLOCATION) 112 NInoSetMstProtected(ni); 113 114 ni->name = na->name; 115 ni->name_len = na->name_len; 116 117 /* If initializing a normal inode, we are done. */ 118 if (likely(na->type == AT_UNUSED)) { 119 BUG_ON(na->name); 120 BUG_ON(na->name_len); 121 return 0; 122 } 123 124 /* It is a fake inode. */ 125 NInoSetAttr(ni); 126 127 /* 128 * We have I30 global constant as an optimization as it is the name 129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 130 * allocation but that is ok. And most attributes are unnamed anyway, 131 * thus the fraction of named attributes with name != I30 is actually 132 * absolutely tiny. 133 */ 134 if (na->name_len && na->name != I30) { 135 unsigned int i; 136 137 BUG_ON(!na->name); 138 i = na->name_len * sizeof(ntfschar); 139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 140 if (!ni->name) 141 return -ENOMEM; 142 memcpy(ni->name, na->name, i); 143 ni->name[na->name_len] = 0; 144 } 145 return 0; 146 } 147 148 typedef int (*set_t)(struct inode *, void *); 149 static int ntfs_read_locked_inode(struct inode *vi); 150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 151 static int ntfs_read_locked_index_inode(struct inode *base_vi, 152 struct inode *vi); 153 154 /** 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 156 * @sb: super block of mounted volume 157 * @mft_no: mft record number / inode number to obtain 158 * 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 160 * file or directory). 161 * 162 * If the inode is in the cache, it is just returned with an increased 163 * reference count. Otherwise, a new struct inode is allocated and initialized, 164 * and finally ntfs_read_locked_inode() is called to read in the inode and 165 * fill in the remainder of the inode structure. 166 * 167 * Return the struct inode on success. Check the return value with IS_ERR() and 168 * if true, the function failed and the error code is obtained from PTR_ERR(). 169 */ 170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 171 { 172 struct inode *vi; 173 int err; 174 ntfs_attr na; 175 176 na.mft_no = mft_no; 177 na.type = AT_UNUSED; 178 na.name = NULL; 179 na.name_len = 0; 180 181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 182 (set_t)ntfs_init_locked_inode, &na); 183 if (unlikely(!vi)) 184 return ERR_PTR(-ENOMEM); 185 186 err = 0; 187 188 /* If this is a freshly allocated inode, need to read it now. */ 189 if (vi->i_state & I_NEW) { 190 err = ntfs_read_locked_inode(vi); 191 unlock_new_inode(vi); 192 } 193 /* 194 * There is no point in keeping bad inodes around if the failure was 195 * due to ENOMEM. We want to be able to retry again later. 196 */ 197 if (unlikely(err == -ENOMEM)) { 198 iput(vi); 199 vi = ERR_PTR(err); 200 } 201 return vi; 202 } 203 204 /** 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 206 * @base_vi: vfs base inode containing the attribute 207 * @type: attribute type 208 * @name: Unicode name of the attribute (NULL if unnamed) 209 * @name_len: length of @name in Unicode characters (0 if unnamed) 210 * 211 * Obtain the (fake) struct inode corresponding to the attribute specified by 212 * @type, @name, and @name_len, which is present in the base mft record 213 * specified by the vfs inode @base_vi. 214 * 215 * If the attribute inode is in the cache, it is just returned with an 216 * increased reference count. Otherwise, a new struct inode is allocated and 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 218 * attribute and fill in the inode structure. 219 * 220 * Note, for index allocation attributes, you need to use ntfs_index_iget() 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 222 * 223 * Return the struct inode of the attribute inode on success. Check the return 224 * value with IS_ERR() and if true, the function failed and the error code is 225 * obtained from PTR_ERR(). 226 */ 227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 228 ntfschar *name, u32 name_len) 229 { 230 struct inode *vi; 231 int err; 232 ntfs_attr na; 233 234 /* Make sure no one calls ntfs_attr_iget() for indices. */ 235 BUG_ON(type == AT_INDEX_ALLOCATION); 236 237 na.mft_no = base_vi->i_ino; 238 na.type = type; 239 na.name = name; 240 na.name_len = name_len; 241 242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 243 (set_t)ntfs_init_locked_inode, &na); 244 if (unlikely(!vi)) 245 return ERR_PTR(-ENOMEM); 246 247 err = 0; 248 249 /* If this is a freshly allocated inode, need to read it now. */ 250 if (vi->i_state & I_NEW) { 251 err = ntfs_read_locked_attr_inode(base_vi, vi); 252 unlock_new_inode(vi); 253 } 254 /* 255 * There is no point in keeping bad attribute inodes around. This also 256 * simplifies things in that we never need to check for bad attribute 257 * inodes elsewhere. 258 */ 259 if (unlikely(err)) { 260 iput(vi); 261 vi = ERR_PTR(err); 262 } 263 return vi; 264 } 265 266 /** 267 * ntfs_index_iget - obtain a struct inode corresponding to an index 268 * @base_vi: vfs base inode containing the index related attributes 269 * @name: Unicode name of the index 270 * @name_len: length of @name in Unicode characters 271 * 272 * Obtain the (fake) struct inode corresponding to the index specified by @name 273 * and @name_len, which is present in the base mft record specified by the vfs 274 * inode @base_vi. 275 * 276 * If the index inode is in the cache, it is just returned with an increased 277 * reference count. Otherwise, a new struct inode is allocated and 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read 279 * the index related attributes and fill in the inode structure. 280 * 281 * Return the struct inode of the index inode on success. Check the return 282 * value with IS_ERR() and if true, the function failed and the error code is 283 * obtained from PTR_ERR(). 284 */ 285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 286 u32 name_len) 287 { 288 struct inode *vi; 289 int err; 290 ntfs_attr na; 291 292 na.mft_no = base_vi->i_ino; 293 na.type = AT_INDEX_ALLOCATION; 294 na.name = name; 295 na.name_len = name_len; 296 297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 298 (set_t)ntfs_init_locked_inode, &na); 299 if (unlikely(!vi)) 300 return ERR_PTR(-ENOMEM); 301 302 err = 0; 303 304 /* If this is a freshly allocated inode, need to read it now. */ 305 if (vi->i_state & I_NEW) { 306 err = ntfs_read_locked_index_inode(base_vi, vi); 307 unlock_new_inode(vi); 308 } 309 /* 310 * There is no point in keeping bad index inodes around. This also 311 * simplifies things in that we never need to check for bad index 312 * inodes elsewhere. 313 */ 314 if (unlikely(err)) { 315 iput(vi); 316 vi = ERR_PTR(err); 317 } 318 return vi; 319 } 320 321 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 322 { 323 ntfs_inode *ni; 324 325 ntfs_debug("Entering."); 326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 327 if (likely(ni != NULL)) { 328 ni->state = 0; 329 return VFS_I(ni); 330 } 331 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 332 return NULL; 333 } 334 335 static void ntfs_i_callback(struct rcu_head *head) 336 { 337 struct inode *inode = container_of(head, struct inode, i_rcu); 338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 339 } 340 341 void ntfs_destroy_big_inode(struct inode *inode) 342 { 343 ntfs_inode *ni = NTFS_I(inode); 344 345 ntfs_debug("Entering."); 346 BUG_ON(ni->page); 347 if (!atomic_dec_and_test(&ni->count)) 348 BUG(); 349 call_rcu(&inode->i_rcu, ntfs_i_callback); 350 } 351 352 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 353 { 354 ntfs_inode *ni; 355 356 ntfs_debug("Entering."); 357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 358 if (likely(ni != NULL)) { 359 ni->state = 0; 360 return ni; 361 } 362 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 363 return NULL; 364 } 365 366 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 367 { 368 ntfs_debug("Entering."); 369 BUG_ON(ni->page); 370 if (!atomic_dec_and_test(&ni->count)) 371 BUG(); 372 kmem_cache_free(ntfs_inode_cache, ni); 373 } 374 375 /* 376 * The attribute runlist lock has separate locking rules from the 377 * normal runlist lock, so split the two lock-classes: 378 */ 379 static struct lock_class_key attr_list_rl_lock_class; 380 381 /** 382 * __ntfs_init_inode - initialize ntfs specific part of an inode 383 * @sb: super block of mounted volume 384 * @ni: freshly allocated ntfs inode which to initialize 385 * 386 * Initialize an ntfs inode to defaults. 387 * 388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 389 * untouched. Make sure to initialize them elsewhere. 390 * 391 * Return zero on success and -ENOMEM on error. 392 */ 393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 394 { 395 ntfs_debug("Entering."); 396 rwlock_init(&ni->size_lock); 397 ni->initialized_size = ni->allocated_size = 0; 398 ni->seq_no = 0; 399 atomic_set(&ni->count, 1); 400 ni->vol = NTFS_SB(sb); 401 ntfs_init_runlist(&ni->runlist); 402 mutex_init(&ni->mrec_lock); 403 ni->page = NULL; 404 ni->page_ofs = 0; 405 ni->attr_list_size = 0; 406 ni->attr_list = NULL; 407 ntfs_init_runlist(&ni->attr_list_rl); 408 lockdep_set_class(&ni->attr_list_rl.lock, 409 &attr_list_rl_lock_class); 410 ni->itype.index.block_size = 0; 411 ni->itype.index.vcn_size = 0; 412 ni->itype.index.collation_rule = 0; 413 ni->itype.index.block_size_bits = 0; 414 ni->itype.index.vcn_size_bits = 0; 415 mutex_init(&ni->extent_lock); 416 ni->nr_extents = 0; 417 ni->ext.base_ntfs_ino = NULL; 418 } 419 420 /* 421 * Extent inodes get MFT-mapped in a nested way, while the base inode 422 * is still mapped. Teach this nesting to the lock validator by creating 423 * a separate class for nested inode's mrec_lock's: 424 */ 425 static struct lock_class_key extent_inode_mrec_lock_key; 426 427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 428 unsigned long mft_no) 429 { 430 ntfs_inode *ni = ntfs_alloc_extent_inode(); 431 432 ntfs_debug("Entering."); 433 if (likely(ni != NULL)) { 434 __ntfs_init_inode(sb, ni); 435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 436 ni->mft_no = mft_no; 437 ni->type = AT_UNUSED; 438 ni->name = NULL; 439 ni->name_len = 0; 440 } 441 return ni; 442 } 443 444 /** 445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 446 * @ctx: initialized attribute search context 447 * 448 * Search all file name attributes in the inode described by the attribute 449 * search context @ctx and check if any of the names are in the $Extend system 450 * directory. 451 * 452 * Return values: 453 * 1: file is in $Extend directory 454 * 0: file is not in $Extend directory 455 * -errno: failed to determine if the file is in the $Extend directory 456 */ 457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 458 { 459 int nr_links, err; 460 461 /* Restart search. */ 462 ntfs_attr_reinit_search_ctx(ctx); 463 464 /* Get number of hard links. */ 465 nr_links = le16_to_cpu(ctx->mrec->link_count); 466 467 /* Loop through all hard links. */ 468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 469 ctx))) { 470 FILE_NAME_ATTR *file_name_attr; 471 ATTR_RECORD *attr = ctx->attr; 472 u8 *p, *p2; 473 474 nr_links--; 475 /* 476 * Maximum sanity checking as we are called on an inode that 477 * we suspect might be corrupt. 478 */ 479 p = (u8*)attr + le32_to_cpu(attr->length); 480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 481 le32_to_cpu(ctx->mrec->bytes_in_use)) { 482 err_corrupt_attr: 483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 484 "attribute. You should run chkdsk."); 485 return -EIO; 486 } 487 if (attr->non_resident) { 488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 489 "name. You should run chkdsk."); 490 return -EIO; 491 } 492 if (attr->flags) { 493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 494 "invalid flags. You should run " 495 "chkdsk."); 496 return -EIO; 497 } 498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 500 "name. You should run chkdsk."); 501 return -EIO; 502 } 503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 504 le16_to_cpu(attr->data.resident.value_offset)); 505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 506 if (p2 < (u8*)attr || p2 > p) 507 goto err_corrupt_attr; 508 /* This attribute is ok, but is it in the $Extend directory? */ 509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 510 return 1; /* YES, it's an extended system file. */ 511 } 512 if (unlikely(err != -ENOENT)) 513 return err; 514 if (unlikely(nr_links)) { 515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 516 "doesn't match number of name attributes. You " 517 "should run chkdsk."); 518 return -EIO; 519 } 520 return 0; /* NO, it is not an extended system file. */ 521 } 522 523 /** 524 * ntfs_read_locked_inode - read an inode from its device 525 * @vi: inode to read 526 * 527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 528 * described by @vi into memory from the device. 529 * 530 * The only fields in @vi that we need to/can look at when the function is 531 * called are i_sb, pointing to the mounted device's super block, and i_ino, 532 * the number of the inode to load. 533 * 534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 535 * for reading and sets up the necessary @vi fields as well as initializing 536 * the ntfs inode. 537 * 538 * Q: What locks are held when the function is called? 539 * A: i_state has I_NEW set, hence the inode is locked, also 540 * i_count is set to 1, so it is not going to go away 541 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 542 * is allowed to write to them. We should of course be honouring them but 543 * we need to do that using the IS_* macros defined in include/linux/fs.h. 544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 545 * 546 * Return 0 on success and -errno on error. In the error case, the inode will 547 * have had make_bad_inode() executed on it. 548 */ 549 static int ntfs_read_locked_inode(struct inode *vi) 550 { 551 ntfs_volume *vol = NTFS_SB(vi->i_sb); 552 ntfs_inode *ni; 553 struct inode *bvi; 554 MFT_RECORD *m; 555 ATTR_RECORD *a; 556 STANDARD_INFORMATION *si; 557 ntfs_attr_search_ctx *ctx; 558 int err = 0; 559 560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 561 562 /* Setup the generic vfs inode parts now. */ 563 564 /* 565 * This is for checking whether an inode has changed w.r.t. a file so 566 * that the file can be updated if necessary (compare with f_version). 567 */ 568 vi->i_version = 1; 569 570 vi->i_uid = vol->uid; 571 vi->i_gid = vol->gid; 572 vi->i_mode = 0; 573 574 /* 575 * Initialize the ntfs specific part of @vi special casing 576 * FILE_MFT which we need to do at mount time. 577 */ 578 if (vi->i_ino != FILE_MFT) 579 ntfs_init_big_inode(vi); 580 ni = NTFS_I(vi); 581 582 m = map_mft_record(ni); 583 if (IS_ERR(m)) { 584 err = PTR_ERR(m); 585 goto err_out; 586 } 587 ctx = ntfs_attr_get_search_ctx(ni, m); 588 if (!ctx) { 589 err = -ENOMEM; 590 goto unm_err_out; 591 } 592 593 if (!(m->flags & MFT_RECORD_IN_USE)) { 594 ntfs_error(vi->i_sb, "Inode is not in use!"); 595 goto unm_err_out; 596 } 597 if (m->base_mft_record) { 598 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 599 goto unm_err_out; 600 } 601 602 /* Transfer information from mft record into vfs and ntfs inodes. */ 603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 604 605 /* 606 * FIXME: Keep in mind that link_count is two for files which have both 607 * a long file name and a short file name as separate entries, so if 608 * we are hiding short file names this will be too high. Either we need 609 * to account for the short file names by subtracting them or we need 610 * to make sure we delete files even though i_nlink is not zero which 611 * might be tricky due to vfs interactions. Need to think about this 612 * some more when implementing the unlink command. 613 */ 614 set_nlink(vi, le16_to_cpu(m->link_count)); 615 /* 616 * FIXME: Reparse points can have the directory bit set even though 617 * they would be S_IFLNK. Need to deal with this further below when we 618 * implement reparse points / symbolic links but it will do for now. 619 * Also if not a directory, it could be something else, rather than 620 * a regular file. But again, will do for now. 621 */ 622 /* Everyone gets all permissions. */ 623 vi->i_mode |= S_IRWXUGO; 624 /* If read-only, no one gets write permissions. */ 625 if (IS_RDONLY(vi)) 626 vi->i_mode &= ~S_IWUGO; 627 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 628 vi->i_mode |= S_IFDIR; 629 /* 630 * Apply the directory permissions mask set in the mount 631 * options. 632 */ 633 vi->i_mode &= ~vol->dmask; 634 /* Things break without this kludge! */ 635 if (vi->i_nlink > 1) 636 set_nlink(vi, 1); 637 } else { 638 vi->i_mode |= S_IFREG; 639 /* Apply the file permissions mask set in the mount options. */ 640 vi->i_mode &= ~vol->fmask; 641 } 642 /* 643 * Find the standard information attribute in the mft record. At this 644 * stage we haven't setup the attribute list stuff yet, so this could 645 * in fact fail if the standard information is in an extent record, but 646 * I don't think this actually ever happens. 647 */ 648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 649 ctx); 650 if (unlikely(err)) { 651 if (err == -ENOENT) { 652 /* 653 * TODO: We should be performing a hot fix here (if the 654 * recover mount option is set) by creating a new 655 * attribute. 656 */ 657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 658 "is missing."); 659 } 660 goto unm_err_out; 661 } 662 a = ctx->attr; 663 /* Get the standard information attribute value. */ 664 si = (STANDARD_INFORMATION*)((u8*)a + 665 le16_to_cpu(a->data.resident.value_offset)); 666 667 /* Transfer information from the standard information into vi. */ 668 /* 669 * Note: The i_?times do not quite map perfectly onto the NTFS times, 670 * but they are close enough, and in the end it doesn't really matter 671 * that much... 672 */ 673 /* 674 * mtime is the last change of the data within the file. Not changed 675 * when only metadata is changed, e.g. a rename doesn't affect mtime. 676 */ 677 vi->i_mtime = ntfs2utc(si->last_data_change_time); 678 /* 679 * ctime is the last change of the metadata of the file. This obviously 680 * always changes, when mtime is changed. ctime can be changed on its 681 * own, mtime is then not changed, e.g. when a file is renamed. 682 */ 683 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 684 /* 685 * Last access to the data within the file. Not changed during a rename 686 * for example but changed whenever the file is written to. 687 */ 688 vi->i_atime = ntfs2utc(si->last_access_time); 689 690 /* Find the attribute list attribute if present. */ 691 ntfs_attr_reinit_search_ctx(ctx); 692 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 693 if (err) { 694 if (unlikely(err != -ENOENT)) { 695 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 696 "attribute."); 697 goto unm_err_out; 698 } 699 } else /* if (!err) */ { 700 if (vi->i_ino == FILE_MFT) 701 goto skip_attr_list_load; 702 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 703 NInoSetAttrList(ni); 704 a = ctx->attr; 705 if (a->flags & ATTR_COMPRESSION_MASK) { 706 ntfs_error(vi->i_sb, "Attribute list attribute is " 707 "compressed."); 708 goto unm_err_out; 709 } 710 if (a->flags & ATTR_IS_ENCRYPTED || 711 a->flags & ATTR_IS_SPARSE) { 712 if (a->non_resident) { 713 ntfs_error(vi->i_sb, "Non-resident attribute " 714 "list attribute is encrypted/" 715 "sparse."); 716 goto unm_err_out; 717 } 718 ntfs_warning(vi->i_sb, "Resident attribute list " 719 "attribute in inode 0x%lx is marked " 720 "encrypted/sparse which is not true. " 721 "However, Windows allows this and " 722 "chkdsk does not detect or correct it " 723 "so we will just ignore the invalid " 724 "flags and pretend they are not set.", 725 vi->i_ino); 726 } 727 /* Now allocate memory for the attribute list. */ 728 ni->attr_list_size = (u32)ntfs_attr_size(a); 729 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 730 if (!ni->attr_list) { 731 ntfs_error(vi->i_sb, "Not enough memory to allocate " 732 "buffer for attribute list."); 733 err = -ENOMEM; 734 goto unm_err_out; 735 } 736 if (a->non_resident) { 737 NInoSetAttrListNonResident(ni); 738 if (a->data.non_resident.lowest_vcn) { 739 ntfs_error(vi->i_sb, "Attribute list has non " 740 "zero lowest_vcn."); 741 goto unm_err_out; 742 } 743 /* 744 * Setup the runlist. No need for locking as we have 745 * exclusive access to the inode at this time. 746 */ 747 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 748 a, NULL); 749 if (IS_ERR(ni->attr_list_rl.rl)) { 750 err = PTR_ERR(ni->attr_list_rl.rl); 751 ni->attr_list_rl.rl = NULL; 752 ntfs_error(vi->i_sb, "Mapping pairs " 753 "decompression failed."); 754 goto unm_err_out; 755 } 756 /* Now load the attribute list. */ 757 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 758 ni->attr_list, ni->attr_list_size, 759 sle64_to_cpu(a->data.non_resident. 760 initialized_size)))) { 761 ntfs_error(vi->i_sb, "Failed to load " 762 "attribute list attribute."); 763 goto unm_err_out; 764 } 765 } else /* if (!a->non_resident) */ { 766 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 767 + le32_to_cpu( 768 a->data.resident.value_length) > 769 (u8*)ctx->mrec + vol->mft_record_size) { 770 ntfs_error(vi->i_sb, "Corrupt attribute list " 771 "in inode."); 772 goto unm_err_out; 773 } 774 /* Now copy the attribute list. */ 775 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 776 a->data.resident.value_offset), 777 le32_to_cpu( 778 a->data.resident.value_length)); 779 } 780 } 781 skip_attr_list_load: 782 /* 783 * If an attribute list is present we now have the attribute list value 784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 785 */ 786 if (S_ISDIR(vi->i_mode)) { 787 loff_t bvi_size; 788 ntfs_inode *bni; 789 INDEX_ROOT *ir; 790 u8 *ir_end, *index_end; 791 792 /* It is a directory, find index root attribute. */ 793 ntfs_attr_reinit_search_ctx(ctx); 794 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 795 0, NULL, 0, ctx); 796 if (unlikely(err)) { 797 if (err == -ENOENT) { 798 // FIXME: File is corrupt! Hot-fix with empty 799 // index root attribute if recovery option is 800 // set. 801 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 802 "is missing."); 803 } 804 goto unm_err_out; 805 } 806 a = ctx->attr; 807 /* Set up the state. */ 808 if (unlikely(a->non_resident)) { 809 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 810 "resident."); 811 goto unm_err_out; 812 } 813 /* Ensure the attribute name is placed before the value. */ 814 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 815 le16_to_cpu(a->data.resident.value_offset)))) { 816 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 817 "placed after the attribute value."); 818 goto unm_err_out; 819 } 820 /* 821 * Compressed/encrypted index root just means that the newly 822 * created files in that directory should be created compressed/ 823 * encrypted. However index root cannot be both compressed and 824 * encrypted. 825 */ 826 if (a->flags & ATTR_COMPRESSION_MASK) 827 NInoSetCompressed(ni); 828 if (a->flags & ATTR_IS_ENCRYPTED) { 829 if (a->flags & ATTR_COMPRESSION_MASK) { 830 ntfs_error(vi->i_sb, "Found encrypted and " 831 "compressed attribute."); 832 goto unm_err_out; 833 } 834 NInoSetEncrypted(ni); 835 } 836 if (a->flags & ATTR_IS_SPARSE) 837 NInoSetSparse(ni); 838 ir = (INDEX_ROOT*)((u8*)a + 839 le16_to_cpu(a->data.resident.value_offset)); 840 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 841 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 842 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 843 "corrupt."); 844 goto unm_err_out; 845 } 846 index_end = (u8*)&ir->index + 847 le32_to_cpu(ir->index.index_length); 848 if (index_end > ir_end) { 849 ntfs_error(vi->i_sb, "Directory index is corrupt."); 850 goto unm_err_out; 851 } 852 if (ir->type != AT_FILE_NAME) { 853 ntfs_error(vi->i_sb, "Indexed attribute is not " 854 "$FILE_NAME."); 855 goto unm_err_out; 856 } 857 if (ir->collation_rule != COLLATION_FILE_NAME) { 858 ntfs_error(vi->i_sb, "Index collation rule is not " 859 "COLLATION_FILE_NAME."); 860 goto unm_err_out; 861 } 862 ni->itype.index.collation_rule = ir->collation_rule; 863 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 864 if (ni->itype.index.block_size & 865 (ni->itype.index.block_size - 1)) { 866 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 867 "power of two.", 868 ni->itype.index.block_size); 869 goto unm_err_out; 870 } 871 if (ni->itype.index.block_size > PAGE_SIZE) { 872 ntfs_error(vi->i_sb, "Index block size (%u) > " 873 "PAGE_SIZE (%ld) is not " 874 "supported. Sorry.", 875 ni->itype.index.block_size, 876 PAGE_SIZE); 877 err = -EOPNOTSUPP; 878 goto unm_err_out; 879 } 880 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 881 ntfs_error(vi->i_sb, "Index block size (%u) < " 882 "NTFS_BLOCK_SIZE (%i) is not " 883 "supported. Sorry.", 884 ni->itype.index.block_size, 885 NTFS_BLOCK_SIZE); 886 err = -EOPNOTSUPP; 887 goto unm_err_out; 888 } 889 ni->itype.index.block_size_bits = 890 ffs(ni->itype.index.block_size) - 1; 891 /* Determine the size of a vcn in the directory index. */ 892 if (vol->cluster_size <= ni->itype.index.block_size) { 893 ni->itype.index.vcn_size = vol->cluster_size; 894 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 895 } else { 896 ni->itype.index.vcn_size = vol->sector_size; 897 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 898 } 899 900 /* Setup the index allocation attribute, even if not present. */ 901 NInoSetMstProtected(ni); 902 ni->type = AT_INDEX_ALLOCATION; 903 ni->name = I30; 904 ni->name_len = 4; 905 906 if (!(ir->index.flags & LARGE_INDEX)) { 907 /* No index allocation. */ 908 vi->i_size = ni->initialized_size = 909 ni->allocated_size = 0; 910 /* We are done with the mft record, so we release it. */ 911 ntfs_attr_put_search_ctx(ctx); 912 unmap_mft_record(ni); 913 m = NULL; 914 ctx = NULL; 915 goto skip_large_dir_stuff; 916 } /* LARGE_INDEX: Index allocation present. Setup state. */ 917 NInoSetIndexAllocPresent(ni); 918 /* Find index allocation attribute. */ 919 ntfs_attr_reinit_search_ctx(ctx); 920 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 921 CASE_SENSITIVE, 0, NULL, 0, ctx); 922 if (unlikely(err)) { 923 if (err == -ENOENT) 924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 925 "attribute is not present but " 926 "$INDEX_ROOT indicated it is."); 927 else 928 ntfs_error(vi->i_sb, "Failed to lookup " 929 "$INDEX_ALLOCATION " 930 "attribute."); 931 goto unm_err_out; 932 } 933 a = ctx->attr; 934 if (!a->non_resident) { 935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 936 "is resident."); 937 goto unm_err_out; 938 } 939 /* 940 * Ensure the attribute name is placed before the mapping pairs 941 * array. 942 */ 943 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 944 le16_to_cpu( 945 a->data.non_resident.mapping_pairs_offset)))) { 946 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 947 "is placed after the mapping pairs " 948 "array."); 949 goto unm_err_out; 950 } 951 if (a->flags & ATTR_IS_ENCRYPTED) { 952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 953 "is encrypted."); 954 goto unm_err_out; 955 } 956 if (a->flags & ATTR_IS_SPARSE) { 957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 958 "is sparse."); 959 goto unm_err_out; 960 } 961 if (a->flags & ATTR_COMPRESSION_MASK) { 962 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 963 "is compressed."); 964 goto unm_err_out; 965 } 966 if (a->data.non_resident.lowest_vcn) { 967 ntfs_error(vi->i_sb, "First extent of " 968 "$INDEX_ALLOCATION attribute has non " 969 "zero lowest_vcn."); 970 goto unm_err_out; 971 } 972 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 973 ni->initialized_size = sle64_to_cpu( 974 a->data.non_resident.initialized_size); 975 ni->allocated_size = sle64_to_cpu( 976 a->data.non_resident.allocated_size); 977 /* 978 * We are done with the mft record, so we release it. Otherwise 979 * we would deadlock in ntfs_attr_iget(). 980 */ 981 ntfs_attr_put_search_ctx(ctx); 982 unmap_mft_record(ni); 983 m = NULL; 984 ctx = NULL; 985 /* Get the index bitmap attribute inode. */ 986 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 987 if (IS_ERR(bvi)) { 988 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 989 err = PTR_ERR(bvi); 990 goto unm_err_out; 991 } 992 bni = NTFS_I(bvi); 993 if (NInoCompressed(bni) || NInoEncrypted(bni) || 994 NInoSparse(bni)) { 995 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 996 "and/or encrypted and/or sparse."); 997 goto iput_unm_err_out; 998 } 999 /* Consistency check bitmap size vs. index allocation size. */ 1000 bvi_size = i_size_read(bvi); 1001 if ((bvi_size << 3) < (vi->i_size >> 1002 ni->itype.index.block_size_bits)) { 1003 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 1004 "for index allocation (0x%llx).", 1005 bvi_size << 3, vi->i_size); 1006 goto iput_unm_err_out; 1007 } 1008 /* No longer need the bitmap attribute inode. */ 1009 iput(bvi); 1010 skip_large_dir_stuff: 1011 /* Setup the operations for this inode. */ 1012 vi->i_op = &ntfs_dir_inode_ops; 1013 vi->i_fop = &ntfs_dir_ops; 1014 vi->i_mapping->a_ops = &ntfs_mst_aops; 1015 } else { 1016 /* It is a file. */ 1017 ntfs_attr_reinit_search_ctx(ctx); 1018 1019 /* Setup the data attribute, even if not present. */ 1020 ni->type = AT_DATA; 1021 ni->name = NULL; 1022 ni->name_len = 0; 1023 1024 /* Find first extent of the unnamed data attribute. */ 1025 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1026 if (unlikely(err)) { 1027 vi->i_size = ni->initialized_size = 1028 ni->allocated_size = 0; 1029 if (err != -ENOENT) { 1030 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1031 "attribute."); 1032 goto unm_err_out; 1033 } 1034 /* 1035 * FILE_Secure does not have an unnamed $DATA 1036 * attribute, so we special case it here. 1037 */ 1038 if (vi->i_ino == FILE_Secure) 1039 goto no_data_attr_special_case; 1040 /* 1041 * Most if not all the system files in the $Extend 1042 * system directory do not have unnamed data 1043 * attributes so we need to check if the parent 1044 * directory of the file is FILE_Extend and if it is 1045 * ignore this error. To do this we need to get the 1046 * name of this inode from the mft record as the name 1047 * contains the back reference to the parent directory. 1048 */ 1049 if (ntfs_is_extended_system_file(ctx) > 0) 1050 goto no_data_attr_special_case; 1051 // FIXME: File is corrupt! Hot-fix with empty data 1052 // attribute if recovery option is set. 1053 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1054 goto unm_err_out; 1055 } 1056 a = ctx->attr; 1057 /* Setup the state. */ 1058 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1059 if (a->flags & ATTR_COMPRESSION_MASK) { 1060 NInoSetCompressed(ni); 1061 if (vol->cluster_size > 4096) { 1062 ntfs_error(vi->i_sb, "Found " 1063 "compressed data but " 1064 "compression is " 1065 "disabled due to " 1066 "cluster size (%i) > " 1067 "4kiB.", 1068 vol->cluster_size); 1069 goto unm_err_out; 1070 } 1071 if ((a->flags & ATTR_COMPRESSION_MASK) 1072 != ATTR_IS_COMPRESSED) { 1073 ntfs_error(vi->i_sb, "Found unknown " 1074 "compression method " 1075 "or corrupt file."); 1076 goto unm_err_out; 1077 } 1078 } 1079 if (a->flags & ATTR_IS_SPARSE) 1080 NInoSetSparse(ni); 1081 } 1082 if (a->flags & ATTR_IS_ENCRYPTED) { 1083 if (NInoCompressed(ni)) { 1084 ntfs_error(vi->i_sb, "Found encrypted and " 1085 "compressed data."); 1086 goto unm_err_out; 1087 } 1088 NInoSetEncrypted(ni); 1089 } 1090 if (a->non_resident) { 1091 NInoSetNonResident(ni); 1092 if (NInoCompressed(ni) || NInoSparse(ni)) { 1093 if (NInoCompressed(ni) && a->data.non_resident. 1094 compression_unit != 4) { 1095 ntfs_error(vi->i_sb, "Found " 1096 "non-standard " 1097 "compression unit (%u " 1098 "instead of 4). " 1099 "Cannot handle this.", 1100 a->data.non_resident. 1101 compression_unit); 1102 err = -EOPNOTSUPP; 1103 goto unm_err_out; 1104 } 1105 if (a->data.non_resident.compression_unit) { 1106 ni->itype.compressed.block_size = 1U << 1107 (a->data.non_resident. 1108 compression_unit + 1109 vol->cluster_size_bits); 1110 ni->itype.compressed.block_size_bits = 1111 ffs(ni->itype. 1112 compressed. 1113 block_size) - 1; 1114 ni->itype.compressed.block_clusters = 1115 1U << a->data. 1116 non_resident. 1117 compression_unit; 1118 } else { 1119 ni->itype.compressed.block_size = 0; 1120 ni->itype.compressed.block_size_bits = 1121 0; 1122 ni->itype.compressed.block_clusters = 1123 0; 1124 } 1125 ni->itype.compressed.size = sle64_to_cpu( 1126 a->data.non_resident. 1127 compressed_size); 1128 } 1129 if (a->data.non_resident.lowest_vcn) { 1130 ntfs_error(vi->i_sb, "First extent of $DATA " 1131 "attribute has non zero " 1132 "lowest_vcn."); 1133 goto unm_err_out; 1134 } 1135 vi->i_size = sle64_to_cpu( 1136 a->data.non_resident.data_size); 1137 ni->initialized_size = sle64_to_cpu( 1138 a->data.non_resident.initialized_size); 1139 ni->allocated_size = sle64_to_cpu( 1140 a->data.non_resident.allocated_size); 1141 } else { /* Resident attribute. */ 1142 vi->i_size = ni->initialized_size = le32_to_cpu( 1143 a->data.resident.value_length); 1144 ni->allocated_size = le32_to_cpu(a->length) - 1145 le16_to_cpu( 1146 a->data.resident.value_offset); 1147 if (vi->i_size > ni->allocated_size) { 1148 ntfs_error(vi->i_sb, "Resident data attribute " 1149 "is corrupt (size exceeds " 1150 "allocation)."); 1151 goto unm_err_out; 1152 } 1153 } 1154 no_data_attr_special_case: 1155 /* We are done with the mft record, so we release it. */ 1156 ntfs_attr_put_search_ctx(ctx); 1157 unmap_mft_record(ni); 1158 m = NULL; 1159 ctx = NULL; 1160 /* Setup the operations for this inode. */ 1161 vi->i_op = &ntfs_file_inode_ops; 1162 vi->i_fop = &ntfs_file_ops; 1163 vi->i_mapping->a_ops = &ntfs_normal_aops; 1164 if (NInoMstProtected(ni)) 1165 vi->i_mapping->a_ops = &ntfs_mst_aops; 1166 else if (NInoCompressed(ni)) 1167 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1168 } 1169 /* 1170 * The number of 512-byte blocks used on disk (for stat). This is in so 1171 * far inaccurate as it doesn't account for any named streams or other 1172 * special non-resident attributes, but that is how Windows works, too, 1173 * so we are at least consistent with Windows, if not entirely 1174 * consistent with the Linux Way. Doing it the Linux Way would cause a 1175 * significant slowdown as it would involve iterating over all 1176 * attributes in the mft record and adding the allocated/compressed 1177 * sizes of all non-resident attributes present to give us the Linux 1178 * correct size that should go into i_blocks (after division by 512). 1179 */ 1180 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1181 vi->i_blocks = ni->itype.compressed.size >> 9; 1182 else 1183 vi->i_blocks = ni->allocated_size >> 9; 1184 ntfs_debug("Done."); 1185 return 0; 1186 iput_unm_err_out: 1187 iput(bvi); 1188 unm_err_out: 1189 if (!err) 1190 err = -EIO; 1191 if (ctx) 1192 ntfs_attr_put_search_ctx(ctx); 1193 if (m) 1194 unmap_mft_record(ni); 1195 err_out: 1196 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1197 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1198 make_bad_inode(vi); 1199 if (err != -EOPNOTSUPP && err != -ENOMEM) 1200 NVolSetErrors(vol); 1201 return err; 1202 } 1203 1204 /** 1205 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1206 * @base_vi: base inode 1207 * @vi: attribute inode to read 1208 * 1209 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1210 * attribute inode described by @vi into memory from the base mft record 1211 * described by @base_ni. 1212 * 1213 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1214 * reading and looks up the attribute described by @vi before setting up the 1215 * necessary fields in @vi as well as initializing the ntfs inode. 1216 * 1217 * Q: What locks are held when the function is called? 1218 * A: i_state has I_NEW set, hence the inode is locked, also 1219 * i_count is set to 1, so it is not going to go away 1220 * 1221 * Return 0 on success and -errno on error. In the error case, the inode will 1222 * have had make_bad_inode() executed on it. 1223 * 1224 * Note this cannot be called for AT_INDEX_ALLOCATION. 1225 */ 1226 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1227 { 1228 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1229 ntfs_inode *ni, *base_ni; 1230 MFT_RECORD *m; 1231 ATTR_RECORD *a; 1232 ntfs_attr_search_ctx *ctx; 1233 int err = 0; 1234 1235 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1236 1237 ntfs_init_big_inode(vi); 1238 1239 ni = NTFS_I(vi); 1240 base_ni = NTFS_I(base_vi); 1241 1242 /* Just mirror the values from the base inode. */ 1243 vi->i_version = base_vi->i_version; 1244 vi->i_uid = base_vi->i_uid; 1245 vi->i_gid = base_vi->i_gid; 1246 set_nlink(vi, base_vi->i_nlink); 1247 vi->i_mtime = base_vi->i_mtime; 1248 vi->i_ctime = base_vi->i_ctime; 1249 vi->i_atime = base_vi->i_atime; 1250 vi->i_generation = ni->seq_no = base_ni->seq_no; 1251 1252 /* Set inode type to zero but preserve permissions. */ 1253 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1254 1255 m = map_mft_record(base_ni); 1256 if (IS_ERR(m)) { 1257 err = PTR_ERR(m); 1258 goto err_out; 1259 } 1260 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1261 if (!ctx) { 1262 err = -ENOMEM; 1263 goto unm_err_out; 1264 } 1265 /* Find the attribute. */ 1266 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1267 CASE_SENSITIVE, 0, NULL, 0, ctx); 1268 if (unlikely(err)) 1269 goto unm_err_out; 1270 a = ctx->attr; 1271 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1272 if (a->flags & ATTR_COMPRESSION_MASK) { 1273 NInoSetCompressed(ni); 1274 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1275 ni->name_len)) { 1276 ntfs_error(vi->i_sb, "Found compressed " 1277 "non-data or named data " 1278 "attribute. Please report " 1279 "you saw this message to " 1280 "linux-ntfs-dev@lists." 1281 "sourceforge.net"); 1282 goto unm_err_out; 1283 } 1284 if (vol->cluster_size > 4096) { 1285 ntfs_error(vi->i_sb, "Found compressed " 1286 "attribute but compression is " 1287 "disabled due to cluster size " 1288 "(%i) > 4kiB.", 1289 vol->cluster_size); 1290 goto unm_err_out; 1291 } 1292 if ((a->flags & ATTR_COMPRESSION_MASK) != 1293 ATTR_IS_COMPRESSED) { 1294 ntfs_error(vi->i_sb, "Found unknown " 1295 "compression method."); 1296 goto unm_err_out; 1297 } 1298 } 1299 /* 1300 * The compressed/sparse flag set in an index root just means 1301 * to compress all files. 1302 */ 1303 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1304 ntfs_error(vi->i_sb, "Found mst protected attribute " 1305 "but the attribute is %s. Please " 1306 "report you saw this message to " 1307 "linux-ntfs-dev@lists.sourceforge.net", 1308 NInoCompressed(ni) ? "compressed" : 1309 "sparse"); 1310 goto unm_err_out; 1311 } 1312 if (a->flags & ATTR_IS_SPARSE) 1313 NInoSetSparse(ni); 1314 } 1315 if (a->flags & ATTR_IS_ENCRYPTED) { 1316 if (NInoCompressed(ni)) { 1317 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1318 "data."); 1319 goto unm_err_out; 1320 } 1321 /* 1322 * The encryption flag set in an index root just means to 1323 * encrypt all files. 1324 */ 1325 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1326 ntfs_error(vi->i_sb, "Found mst protected attribute " 1327 "but the attribute is encrypted. " 1328 "Please report you saw this message " 1329 "to linux-ntfs-dev@lists.sourceforge." 1330 "net"); 1331 goto unm_err_out; 1332 } 1333 if (ni->type != AT_DATA) { 1334 ntfs_error(vi->i_sb, "Found encrypted non-data " 1335 "attribute."); 1336 goto unm_err_out; 1337 } 1338 NInoSetEncrypted(ni); 1339 } 1340 if (!a->non_resident) { 1341 /* Ensure the attribute name is placed before the value. */ 1342 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1343 le16_to_cpu(a->data.resident.value_offset)))) { 1344 ntfs_error(vol->sb, "Attribute name is placed after " 1345 "the attribute value."); 1346 goto unm_err_out; 1347 } 1348 if (NInoMstProtected(ni)) { 1349 ntfs_error(vi->i_sb, "Found mst protected attribute " 1350 "but the attribute is resident. " 1351 "Please report you saw this message to " 1352 "linux-ntfs-dev@lists.sourceforge.net"); 1353 goto unm_err_out; 1354 } 1355 vi->i_size = ni->initialized_size = le32_to_cpu( 1356 a->data.resident.value_length); 1357 ni->allocated_size = le32_to_cpu(a->length) - 1358 le16_to_cpu(a->data.resident.value_offset); 1359 if (vi->i_size > ni->allocated_size) { 1360 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1361 "(size exceeds allocation)."); 1362 goto unm_err_out; 1363 } 1364 } else { 1365 NInoSetNonResident(ni); 1366 /* 1367 * Ensure the attribute name is placed before the mapping pairs 1368 * array. 1369 */ 1370 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1371 le16_to_cpu( 1372 a->data.non_resident.mapping_pairs_offset)))) { 1373 ntfs_error(vol->sb, "Attribute name is placed after " 1374 "the mapping pairs array."); 1375 goto unm_err_out; 1376 } 1377 if (NInoCompressed(ni) || NInoSparse(ni)) { 1378 if (NInoCompressed(ni) && a->data.non_resident. 1379 compression_unit != 4) { 1380 ntfs_error(vi->i_sb, "Found non-standard " 1381 "compression unit (%u instead " 1382 "of 4). Cannot handle this.", 1383 a->data.non_resident. 1384 compression_unit); 1385 err = -EOPNOTSUPP; 1386 goto unm_err_out; 1387 } 1388 if (a->data.non_resident.compression_unit) { 1389 ni->itype.compressed.block_size = 1U << 1390 (a->data.non_resident. 1391 compression_unit + 1392 vol->cluster_size_bits); 1393 ni->itype.compressed.block_size_bits = 1394 ffs(ni->itype.compressed. 1395 block_size) - 1; 1396 ni->itype.compressed.block_clusters = 1U << 1397 a->data.non_resident. 1398 compression_unit; 1399 } else { 1400 ni->itype.compressed.block_size = 0; 1401 ni->itype.compressed.block_size_bits = 0; 1402 ni->itype.compressed.block_clusters = 0; 1403 } 1404 ni->itype.compressed.size = sle64_to_cpu( 1405 a->data.non_resident.compressed_size); 1406 } 1407 if (a->data.non_resident.lowest_vcn) { 1408 ntfs_error(vi->i_sb, "First extent of attribute has " 1409 "non-zero lowest_vcn."); 1410 goto unm_err_out; 1411 } 1412 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1413 ni->initialized_size = sle64_to_cpu( 1414 a->data.non_resident.initialized_size); 1415 ni->allocated_size = sle64_to_cpu( 1416 a->data.non_resident.allocated_size); 1417 } 1418 vi->i_mapping->a_ops = &ntfs_normal_aops; 1419 if (NInoMstProtected(ni)) 1420 vi->i_mapping->a_ops = &ntfs_mst_aops; 1421 else if (NInoCompressed(ni)) 1422 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1423 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1424 vi->i_blocks = ni->itype.compressed.size >> 9; 1425 else 1426 vi->i_blocks = ni->allocated_size >> 9; 1427 /* 1428 * Make sure the base inode does not go away and attach it to the 1429 * attribute inode. 1430 */ 1431 igrab(base_vi); 1432 ni->ext.base_ntfs_ino = base_ni; 1433 ni->nr_extents = -1; 1434 1435 ntfs_attr_put_search_ctx(ctx); 1436 unmap_mft_record(base_ni); 1437 1438 ntfs_debug("Done."); 1439 return 0; 1440 1441 unm_err_out: 1442 if (!err) 1443 err = -EIO; 1444 if (ctx) 1445 ntfs_attr_put_search_ctx(ctx); 1446 unmap_mft_record(base_ni); 1447 err_out: 1448 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1449 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1450 "Marking corrupt inode and base inode 0x%lx as bad. " 1451 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1452 base_vi->i_ino); 1453 make_bad_inode(vi); 1454 if (err != -ENOMEM) 1455 NVolSetErrors(vol); 1456 return err; 1457 } 1458 1459 /** 1460 * ntfs_read_locked_index_inode - read an index inode from its base inode 1461 * @base_vi: base inode 1462 * @vi: index inode to read 1463 * 1464 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1465 * index inode described by @vi into memory from the base mft record described 1466 * by @base_ni. 1467 * 1468 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1469 * reading and looks up the attributes relating to the index described by @vi 1470 * before setting up the necessary fields in @vi as well as initializing the 1471 * ntfs inode. 1472 * 1473 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1474 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1475 * are setup like directory inodes since directories are a special case of 1476 * indices ao they need to be treated in much the same way. Most importantly, 1477 * for small indices the index allocation attribute might not actually exist. 1478 * However, the index root attribute always exists but this does not need to 1479 * have an inode associated with it and this is why we define a new inode type 1480 * index. Also, like for directories, we need to have an attribute inode for 1481 * the bitmap attribute corresponding to the index allocation attribute and we 1482 * can store this in the appropriate field of the inode, just like we do for 1483 * normal directory inodes. 1484 * 1485 * Q: What locks are held when the function is called? 1486 * A: i_state has I_NEW set, hence the inode is locked, also 1487 * i_count is set to 1, so it is not going to go away 1488 * 1489 * Return 0 on success and -errno on error. In the error case, the inode will 1490 * have had make_bad_inode() executed on it. 1491 */ 1492 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1493 { 1494 loff_t bvi_size; 1495 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1496 ntfs_inode *ni, *base_ni, *bni; 1497 struct inode *bvi; 1498 MFT_RECORD *m; 1499 ATTR_RECORD *a; 1500 ntfs_attr_search_ctx *ctx; 1501 INDEX_ROOT *ir; 1502 u8 *ir_end, *index_end; 1503 int err = 0; 1504 1505 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1506 ntfs_init_big_inode(vi); 1507 ni = NTFS_I(vi); 1508 base_ni = NTFS_I(base_vi); 1509 /* Just mirror the values from the base inode. */ 1510 vi->i_version = base_vi->i_version; 1511 vi->i_uid = base_vi->i_uid; 1512 vi->i_gid = base_vi->i_gid; 1513 set_nlink(vi, base_vi->i_nlink); 1514 vi->i_mtime = base_vi->i_mtime; 1515 vi->i_ctime = base_vi->i_ctime; 1516 vi->i_atime = base_vi->i_atime; 1517 vi->i_generation = ni->seq_no = base_ni->seq_no; 1518 /* Set inode type to zero but preserve permissions. */ 1519 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1520 /* Map the mft record for the base inode. */ 1521 m = map_mft_record(base_ni); 1522 if (IS_ERR(m)) { 1523 err = PTR_ERR(m); 1524 goto err_out; 1525 } 1526 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1527 if (!ctx) { 1528 err = -ENOMEM; 1529 goto unm_err_out; 1530 } 1531 /* Find the index root attribute. */ 1532 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1533 CASE_SENSITIVE, 0, NULL, 0, ctx); 1534 if (unlikely(err)) { 1535 if (err == -ENOENT) 1536 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1537 "missing."); 1538 goto unm_err_out; 1539 } 1540 a = ctx->attr; 1541 /* Set up the state. */ 1542 if (unlikely(a->non_resident)) { 1543 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1544 goto unm_err_out; 1545 } 1546 /* Ensure the attribute name is placed before the value. */ 1547 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1548 le16_to_cpu(a->data.resident.value_offset)))) { 1549 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1550 "after the attribute value."); 1551 goto unm_err_out; 1552 } 1553 /* 1554 * Compressed/encrypted/sparse index root is not allowed, except for 1555 * directories of course but those are not dealt with here. 1556 */ 1557 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1558 ATTR_IS_SPARSE)) { 1559 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1560 "root attribute."); 1561 goto unm_err_out; 1562 } 1563 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1564 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1565 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1566 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1567 goto unm_err_out; 1568 } 1569 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1570 if (index_end > ir_end) { 1571 ntfs_error(vi->i_sb, "Index is corrupt."); 1572 goto unm_err_out; 1573 } 1574 if (ir->type) { 1575 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1576 le32_to_cpu(ir->type)); 1577 goto unm_err_out; 1578 } 1579 ni->itype.index.collation_rule = ir->collation_rule; 1580 ntfs_debug("Index collation rule is 0x%x.", 1581 le32_to_cpu(ir->collation_rule)); 1582 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1583 if (!is_power_of_2(ni->itype.index.block_size)) { 1584 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1585 "two.", ni->itype.index.block_size); 1586 goto unm_err_out; 1587 } 1588 if (ni->itype.index.block_size > PAGE_SIZE) { 1589 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " 1590 "(%ld) is not supported. Sorry.", 1591 ni->itype.index.block_size, PAGE_SIZE); 1592 err = -EOPNOTSUPP; 1593 goto unm_err_out; 1594 } 1595 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1596 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1597 "(%i) is not supported. Sorry.", 1598 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1599 err = -EOPNOTSUPP; 1600 goto unm_err_out; 1601 } 1602 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1603 /* Determine the size of a vcn in the index. */ 1604 if (vol->cluster_size <= ni->itype.index.block_size) { 1605 ni->itype.index.vcn_size = vol->cluster_size; 1606 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1607 } else { 1608 ni->itype.index.vcn_size = vol->sector_size; 1609 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1610 } 1611 /* Check for presence of index allocation attribute. */ 1612 if (!(ir->index.flags & LARGE_INDEX)) { 1613 /* No index allocation. */ 1614 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1615 /* We are done with the mft record, so we release it. */ 1616 ntfs_attr_put_search_ctx(ctx); 1617 unmap_mft_record(base_ni); 1618 m = NULL; 1619 ctx = NULL; 1620 goto skip_large_index_stuff; 1621 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1622 NInoSetIndexAllocPresent(ni); 1623 /* Find index allocation attribute. */ 1624 ntfs_attr_reinit_search_ctx(ctx); 1625 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1626 CASE_SENSITIVE, 0, NULL, 0, ctx); 1627 if (unlikely(err)) { 1628 if (err == -ENOENT) 1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1630 "not present but $INDEX_ROOT " 1631 "indicated it is."); 1632 else 1633 ntfs_error(vi->i_sb, "Failed to lookup " 1634 "$INDEX_ALLOCATION attribute."); 1635 goto unm_err_out; 1636 } 1637 a = ctx->attr; 1638 if (!a->non_resident) { 1639 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1640 "resident."); 1641 goto unm_err_out; 1642 } 1643 /* 1644 * Ensure the attribute name is placed before the mapping pairs array. 1645 */ 1646 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1647 le16_to_cpu( 1648 a->data.non_resident.mapping_pairs_offset)))) { 1649 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1650 "placed after the mapping pairs array."); 1651 goto unm_err_out; 1652 } 1653 if (a->flags & ATTR_IS_ENCRYPTED) { 1654 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1655 "encrypted."); 1656 goto unm_err_out; 1657 } 1658 if (a->flags & ATTR_IS_SPARSE) { 1659 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1660 goto unm_err_out; 1661 } 1662 if (a->flags & ATTR_COMPRESSION_MASK) { 1663 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1664 "compressed."); 1665 goto unm_err_out; 1666 } 1667 if (a->data.non_resident.lowest_vcn) { 1668 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1669 "attribute has non zero lowest_vcn."); 1670 goto unm_err_out; 1671 } 1672 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1673 ni->initialized_size = sle64_to_cpu( 1674 a->data.non_resident.initialized_size); 1675 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1676 /* 1677 * We are done with the mft record, so we release it. Otherwise 1678 * we would deadlock in ntfs_attr_iget(). 1679 */ 1680 ntfs_attr_put_search_ctx(ctx); 1681 unmap_mft_record(base_ni); 1682 m = NULL; 1683 ctx = NULL; 1684 /* Get the index bitmap attribute inode. */ 1685 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1686 if (IS_ERR(bvi)) { 1687 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1688 err = PTR_ERR(bvi); 1689 goto unm_err_out; 1690 } 1691 bni = NTFS_I(bvi); 1692 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1693 NInoSparse(bni)) { 1694 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1695 "encrypted and/or sparse."); 1696 goto iput_unm_err_out; 1697 } 1698 /* Consistency check bitmap size vs. index allocation size. */ 1699 bvi_size = i_size_read(bvi); 1700 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1701 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1702 "index allocation (0x%llx).", bvi_size << 3, 1703 vi->i_size); 1704 goto iput_unm_err_out; 1705 } 1706 iput(bvi); 1707 skip_large_index_stuff: 1708 /* Setup the operations for this index inode. */ 1709 vi->i_mapping->a_ops = &ntfs_mst_aops; 1710 vi->i_blocks = ni->allocated_size >> 9; 1711 /* 1712 * Make sure the base inode doesn't go away and attach it to the 1713 * index inode. 1714 */ 1715 igrab(base_vi); 1716 ni->ext.base_ntfs_ino = base_ni; 1717 ni->nr_extents = -1; 1718 1719 ntfs_debug("Done."); 1720 return 0; 1721 iput_unm_err_out: 1722 iput(bvi); 1723 unm_err_out: 1724 if (!err) 1725 err = -EIO; 1726 if (ctx) 1727 ntfs_attr_put_search_ctx(ctx); 1728 if (m) 1729 unmap_mft_record(base_ni); 1730 err_out: 1731 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1732 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1733 ni->name_len); 1734 make_bad_inode(vi); 1735 if (err != -EOPNOTSUPP && err != -ENOMEM) 1736 NVolSetErrors(vol); 1737 return err; 1738 } 1739 1740 /* 1741 * The MFT inode has special locking, so teach the lock validator 1742 * about this by splitting off the locking rules of the MFT from 1743 * the locking rules of other inodes. The MFT inode can never be 1744 * accessed from the VFS side (or even internally), only by the 1745 * map_mft functions. 1746 */ 1747 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1748 1749 /** 1750 * ntfs_read_inode_mount - special read_inode for mount time use only 1751 * @vi: inode to read 1752 * 1753 * Read inode FILE_MFT at mount time, only called with super_block lock 1754 * held from within the read_super() code path. 1755 * 1756 * This function exists because when it is called the page cache for $MFT/$DATA 1757 * is not initialized and hence we cannot get at the contents of mft records 1758 * by calling map_mft_record*(). 1759 * 1760 * Further it needs to cope with the circular references problem, i.e. cannot 1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1762 * we do not know where the other extent mft records are yet and again, because 1763 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1764 * attribute list is actually present in $MFT inode. 1765 * 1766 * We solve these problems by starting with the $DATA attribute before anything 1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1769 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1770 * sufficient information for the next step to complete. 1771 * 1772 * This should work but there are two possible pit falls (see inline comments 1773 * below), but only time will tell if they are real pits or just smoke... 1774 */ 1775 int ntfs_read_inode_mount(struct inode *vi) 1776 { 1777 VCN next_vcn, last_vcn, highest_vcn; 1778 s64 block; 1779 struct super_block *sb = vi->i_sb; 1780 ntfs_volume *vol = NTFS_SB(sb); 1781 struct buffer_head *bh; 1782 ntfs_inode *ni; 1783 MFT_RECORD *m = NULL; 1784 ATTR_RECORD *a; 1785 ntfs_attr_search_ctx *ctx; 1786 unsigned int i, nr_blocks; 1787 int err; 1788 1789 ntfs_debug("Entering."); 1790 1791 /* Initialize the ntfs specific part of @vi. */ 1792 ntfs_init_big_inode(vi); 1793 1794 ni = NTFS_I(vi); 1795 1796 /* Setup the data attribute. It is special as it is mst protected. */ 1797 NInoSetNonResident(ni); 1798 NInoSetMstProtected(ni); 1799 NInoSetSparseDisabled(ni); 1800 ni->type = AT_DATA; 1801 ni->name = NULL; 1802 ni->name_len = 0; 1803 /* 1804 * This sets up our little cheat allowing us to reuse the async read io 1805 * completion handler for directories. 1806 */ 1807 ni->itype.index.block_size = vol->mft_record_size; 1808 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1809 1810 /* Very important! Needed to be able to call map_mft_record*(). */ 1811 vol->mft_ino = vi; 1812 1813 /* Allocate enough memory to read the first mft record. */ 1814 if (vol->mft_record_size > 64 * 1024) { 1815 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1816 vol->mft_record_size); 1817 goto err_out; 1818 } 1819 i = vol->mft_record_size; 1820 if (i < sb->s_blocksize) 1821 i = sb->s_blocksize; 1822 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1823 if (!m) { 1824 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1825 goto err_out; 1826 } 1827 1828 /* Determine the first block of the $MFT/$DATA attribute. */ 1829 block = vol->mft_lcn << vol->cluster_size_bits >> 1830 sb->s_blocksize_bits; 1831 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1832 if (!nr_blocks) 1833 nr_blocks = 1; 1834 1835 /* Load $MFT/$DATA's first mft record. */ 1836 for (i = 0; i < nr_blocks; i++) { 1837 bh = sb_bread(sb, block++); 1838 if (!bh) { 1839 ntfs_error(sb, "Device read failed."); 1840 goto err_out; 1841 } 1842 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1843 sb->s_blocksize); 1844 brelse(bh); 1845 } 1846 1847 /* Apply the mst fixups. */ 1848 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1849 /* FIXME: Try to use the $MFTMirr now. */ 1850 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1851 goto err_out; 1852 } 1853 1854 /* Need this to sanity check attribute list references to $MFT. */ 1855 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1856 1857 /* Provides readpage() for map_mft_record(). */ 1858 vi->i_mapping->a_ops = &ntfs_mst_aops; 1859 1860 ctx = ntfs_attr_get_search_ctx(ni, m); 1861 if (!ctx) { 1862 err = -ENOMEM; 1863 goto err_out; 1864 } 1865 1866 /* Find the attribute list attribute if present. */ 1867 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1868 if (err) { 1869 if (unlikely(err != -ENOENT)) { 1870 ntfs_error(sb, "Failed to lookup attribute list " 1871 "attribute. You should run chkdsk."); 1872 goto put_err_out; 1873 } 1874 } else /* if (!err) */ { 1875 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1876 u8 *al_end; 1877 static const char *es = " Not allowed. $MFT is corrupt. " 1878 "You should run chkdsk."; 1879 1880 ntfs_debug("Attribute list attribute found in $MFT."); 1881 NInoSetAttrList(ni); 1882 a = ctx->attr; 1883 if (a->flags & ATTR_COMPRESSION_MASK) { 1884 ntfs_error(sb, "Attribute list attribute is " 1885 "compressed.%s", es); 1886 goto put_err_out; 1887 } 1888 if (a->flags & ATTR_IS_ENCRYPTED || 1889 a->flags & ATTR_IS_SPARSE) { 1890 if (a->non_resident) { 1891 ntfs_error(sb, "Non-resident attribute list " 1892 "attribute is encrypted/" 1893 "sparse.%s", es); 1894 goto put_err_out; 1895 } 1896 ntfs_warning(sb, "Resident attribute list attribute " 1897 "in $MFT system file is marked " 1898 "encrypted/sparse which is not true. " 1899 "However, Windows allows this and " 1900 "chkdsk does not detect or correct it " 1901 "so we will just ignore the invalid " 1902 "flags and pretend they are not set."); 1903 } 1904 /* Now allocate memory for the attribute list. */ 1905 ni->attr_list_size = (u32)ntfs_attr_size(a); 1906 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1907 if (!ni->attr_list) { 1908 ntfs_error(sb, "Not enough memory to allocate buffer " 1909 "for attribute list."); 1910 goto put_err_out; 1911 } 1912 if (a->non_resident) { 1913 NInoSetAttrListNonResident(ni); 1914 if (a->data.non_resident.lowest_vcn) { 1915 ntfs_error(sb, "Attribute list has non zero " 1916 "lowest_vcn. $MFT is corrupt. " 1917 "You should run chkdsk."); 1918 goto put_err_out; 1919 } 1920 /* Setup the runlist. */ 1921 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1922 a, NULL); 1923 if (IS_ERR(ni->attr_list_rl.rl)) { 1924 err = PTR_ERR(ni->attr_list_rl.rl); 1925 ni->attr_list_rl.rl = NULL; 1926 ntfs_error(sb, "Mapping pairs decompression " 1927 "failed with error code %i.", 1928 -err); 1929 goto put_err_out; 1930 } 1931 /* Now load the attribute list. */ 1932 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1933 ni->attr_list, ni->attr_list_size, 1934 sle64_to_cpu(a->data. 1935 non_resident.initialized_size)))) { 1936 ntfs_error(sb, "Failed to load attribute list " 1937 "attribute with error code %i.", 1938 -err); 1939 goto put_err_out; 1940 } 1941 } else /* if (!ctx.attr->non_resident) */ { 1942 if ((u8*)a + le16_to_cpu( 1943 a->data.resident.value_offset) + 1944 le32_to_cpu( 1945 a->data.resident.value_length) > 1946 (u8*)ctx->mrec + vol->mft_record_size) { 1947 ntfs_error(sb, "Corrupt attribute list " 1948 "attribute."); 1949 goto put_err_out; 1950 } 1951 /* Now copy the attribute list. */ 1952 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1953 a->data.resident.value_offset), 1954 le32_to_cpu( 1955 a->data.resident.value_length)); 1956 } 1957 /* The attribute list is now setup in memory. */ 1958 /* 1959 * FIXME: I don't know if this case is actually possible. 1960 * According to logic it is not possible but I have seen too 1961 * many weird things in MS software to rely on logic... Thus we 1962 * perform a manual search and make sure the first $MFT/$DATA 1963 * extent is in the base inode. If it is not we abort with an 1964 * error and if we ever see a report of this error we will need 1965 * to do some magic in order to have the necessary mft record 1966 * loaded and in the right place in the page cache. But 1967 * hopefully logic will prevail and this never happens... 1968 */ 1969 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1970 al_end = (u8*)al_entry + ni->attr_list_size; 1971 for (;; al_entry = next_al_entry) { 1972 /* Out of bounds check. */ 1973 if ((u8*)al_entry < ni->attr_list || 1974 (u8*)al_entry > al_end) 1975 goto em_put_err_out; 1976 /* Catch the end of the attribute list. */ 1977 if ((u8*)al_entry == al_end) 1978 goto em_put_err_out; 1979 if (!al_entry->length) 1980 goto em_put_err_out; 1981 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1982 le16_to_cpu(al_entry->length) > al_end) 1983 goto em_put_err_out; 1984 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1985 le16_to_cpu(al_entry->length)); 1986 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1987 goto em_put_err_out; 1988 if (AT_DATA != al_entry->type) 1989 continue; 1990 /* We want an unnamed attribute. */ 1991 if (al_entry->name_length) 1992 goto em_put_err_out; 1993 /* Want the first entry, i.e. lowest_vcn == 0. */ 1994 if (al_entry->lowest_vcn) 1995 goto em_put_err_out; 1996 /* First entry has to be in the base mft record. */ 1997 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1998 /* MFT references do not match, logic fails. */ 1999 ntfs_error(sb, "BUG: The first $DATA extent " 2000 "of $MFT is not in the base " 2001 "mft record. Please report " 2002 "you saw this message to " 2003 "linux-ntfs-dev@lists." 2004 "sourceforge.net"); 2005 goto put_err_out; 2006 } else { 2007 /* Sequence numbers must match. */ 2008 if (MSEQNO_LE(al_entry->mft_reference) != 2009 ni->seq_no) 2010 goto em_put_err_out; 2011 /* Got it. All is ok. We can stop now. */ 2012 break; 2013 } 2014 } 2015 } 2016 2017 ntfs_attr_reinit_search_ctx(ctx); 2018 2019 /* Now load all attribute extents. */ 2020 a = NULL; 2021 next_vcn = last_vcn = highest_vcn = 0; 2022 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2023 ctx))) { 2024 runlist_element *nrl; 2025 2026 /* Cache the current attribute. */ 2027 a = ctx->attr; 2028 /* $MFT must be non-resident. */ 2029 if (!a->non_resident) { 2030 ntfs_error(sb, "$MFT must be non-resident but a " 2031 "resident extent was found. $MFT is " 2032 "corrupt. Run chkdsk."); 2033 goto put_err_out; 2034 } 2035 /* $MFT must be uncompressed and unencrypted. */ 2036 if (a->flags & ATTR_COMPRESSION_MASK || 2037 a->flags & ATTR_IS_ENCRYPTED || 2038 a->flags & ATTR_IS_SPARSE) { 2039 ntfs_error(sb, "$MFT must be uncompressed, " 2040 "non-sparse, and unencrypted but a " 2041 "compressed/sparse/encrypted extent " 2042 "was found. $MFT is corrupt. Run " 2043 "chkdsk."); 2044 goto put_err_out; 2045 } 2046 /* 2047 * Decompress the mapping pairs array of this extent and merge 2048 * the result into the existing runlist. No need for locking 2049 * as we have exclusive access to the inode at this time and we 2050 * are a mount in progress task, too. 2051 */ 2052 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2053 if (IS_ERR(nrl)) { 2054 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2055 "failed with error code %ld. $MFT is " 2056 "corrupt.", PTR_ERR(nrl)); 2057 goto put_err_out; 2058 } 2059 ni->runlist.rl = nrl; 2060 2061 /* Are we in the first extent? */ 2062 if (!next_vcn) { 2063 if (a->data.non_resident.lowest_vcn) { 2064 ntfs_error(sb, "First extent of $DATA " 2065 "attribute has non zero " 2066 "lowest_vcn. $MFT is corrupt. " 2067 "You should run chkdsk."); 2068 goto put_err_out; 2069 } 2070 /* Get the last vcn in the $DATA attribute. */ 2071 last_vcn = sle64_to_cpu( 2072 a->data.non_resident.allocated_size) 2073 >> vol->cluster_size_bits; 2074 /* Fill in the inode size. */ 2075 vi->i_size = sle64_to_cpu( 2076 a->data.non_resident.data_size); 2077 ni->initialized_size = sle64_to_cpu( 2078 a->data.non_resident.initialized_size); 2079 ni->allocated_size = sle64_to_cpu( 2080 a->data.non_resident.allocated_size); 2081 /* 2082 * Verify the number of mft records does not exceed 2083 * 2^32 - 1. 2084 */ 2085 if ((vi->i_size >> vol->mft_record_size_bits) >= 2086 (1ULL << 32)) { 2087 ntfs_error(sb, "$MFT is too big! Aborting."); 2088 goto put_err_out; 2089 } 2090 /* 2091 * We have got the first extent of the runlist for 2092 * $MFT which means it is now relatively safe to call 2093 * the normal ntfs_read_inode() function. 2094 * Complete reading the inode, this will actually 2095 * re-read the mft record for $MFT, this time entering 2096 * it into the page cache with which we complete the 2097 * kick start of the volume. It should be safe to do 2098 * this now as the first extent of $MFT/$DATA is 2099 * already known and we would hope that we don't need 2100 * further extents in order to find the other 2101 * attributes belonging to $MFT. Only time will tell if 2102 * this is really the case. If not we will have to play 2103 * magic at this point, possibly duplicating a lot of 2104 * ntfs_read_inode() at this point. We will need to 2105 * ensure we do enough of its work to be able to call 2106 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2107 * hope this never happens... 2108 */ 2109 ntfs_read_locked_inode(vi); 2110 if (is_bad_inode(vi)) { 2111 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2112 "failed. BUG or corrupt $MFT. " 2113 "Run chkdsk and if no errors " 2114 "are found, please report you " 2115 "saw this message to " 2116 "linux-ntfs-dev@lists." 2117 "sourceforge.net"); 2118 ntfs_attr_put_search_ctx(ctx); 2119 /* Revert to the safe super operations. */ 2120 ntfs_free(m); 2121 return -1; 2122 } 2123 /* 2124 * Re-initialize some specifics about $MFT's inode as 2125 * ntfs_read_inode() will have set up the default ones. 2126 */ 2127 /* Set uid and gid to root. */ 2128 vi->i_uid = GLOBAL_ROOT_UID; 2129 vi->i_gid = GLOBAL_ROOT_GID; 2130 /* Regular file. No access for anyone. */ 2131 vi->i_mode = S_IFREG; 2132 /* No VFS initiated operations allowed for $MFT. */ 2133 vi->i_op = &ntfs_empty_inode_ops; 2134 vi->i_fop = &ntfs_empty_file_ops; 2135 } 2136 2137 /* Get the lowest vcn for the next extent. */ 2138 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2139 next_vcn = highest_vcn + 1; 2140 2141 /* Only one extent or error, which we catch below. */ 2142 if (next_vcn <= 0) 2143 break; 2144 2145 /* Avoid endless loops due to corruption. */ 2146 if (next_vcn < sle64_to_cpu( 2147 a->data.non_resident.lowest_vcn)) { 2148 ntfs_error(sb, "$MFT has corrupt attribute list " 2149 "attribute. Run chkdsk."); 2150 goto put_err_out; 2151 } 2152 } 2153 if (err != -ENOENT) { 2154 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2155 "$MFT is corrupt. Run chkdsk."); 2156 goto put_err_out; 2157 } 2158 if (!a) { 2159 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2160 "corrupt. Run chkdsk."); 2161 goto put_err_out; 2162 } 2163 if (highest_vcn && highest_vcn != last_vcn - 1) { 2164 ntfs_error(sb, "Failed to load the complete runlist for " 2165 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2166 "Run chkdsk."); 2167 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2168 (unsigned long long)highest_vcn, 2169 (unsigned long long)last_vcn - 1); 2170 goto put_err_out; 2171 } 2172 ntfs_attr_put_search_ctx(ctx); 2173 ntfs_debug("Done."); 2174 ntfs_free(m); 2175 2176 /* 2177 * Split the locking rules of the MFT inode from the 2178 * locking rules of other inodes: 2179 */ 2180 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2181 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2182 2183 return 0; 2184 2185 em_put_err_out: 2186 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2187 "attribute list. $MFT is corrupt. Run chkdsk."); 2188 put_err_out: 2189 ntfs_attr_put_search_ctx(ctx); 2190 err_out: 2191 ntfs_error(sb, "Failed. Marking inode as bad."); 2192 make_bad_inode(vi); 2193 ntfs_free(m); 2194 return -1; 2195 } 2196 2197 static void __ntfs_clear_inode(ntfs_inode *ni) 2198 { 2199 /* Free all alocated memory. */ 2200 down_write(&ni->runlist.lock); 2201 if (ni->runlist.rl) { 2202 ntfs_free(ni->runlist.rl); 2203 ni->runlist.rl = NULL; 2204 } 2205 up_write(&ni->runlist.lock); 2206 2207 if (ni->attr_list) { 2208 ntfs_free(ni->attr_list); 2209 ni->attr_list = NULL; 2210 } 2211 2212 down_write(&ni->attr_list_rl.lock); 2213 if (ni->attr_list_rl.rl) { 2214 ntfs_free(ni->attr_list_rl.rl); 2215 ni->attr_list_rl.rl = NULL; 2216 } 2217 up_write(&ni->attr_list_rl.lock); 2218 2219 if (ni->name_len && ni->name != I30) { 2220 /* Catch bugs... */ 2221 BUG_ON(!ni->name); 2222 kfree(ni->name); 2223 } 2224 } 2225 2226 void ntfs_clear_extent_inode(ntfs_inode *ni) 2227 { 2228 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2229 2230 BUG_ON(NInoAttr(ni)); 2231 BUG_ON(ni->nr_extents != -1); 2232 2233 #ifdef NTFS_RW 2234 if (NInoDirty(ni)) { 2235 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2236 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2237 "Losing data! This is a BUG!!!"); 2238 // FIXME: Do something!!! 2239 } 2240 #endif /* NTFS_RW */ 2241 2242 __ntfs_clear_inode(ni); 2243 2244 /* Bye, bye... */ 2245 ntfs_destroy_extent_inode(ni); 2246 } 2247 2248 /** 2249 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2250 * @vi: vfs inode pending annihilation 2251 * 2252 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2253 * is called, which deallocates all memory belonging to the NTFS specific part 2254 * of the inode and returns. 2255 * 2256 * If the MFT record is dirty, we commit it before doing anything else. 2257 */ 2258 void ntfs_evict_big_inode(struct inode *vi) 2259 { 2260 ntfs_inode *ni = NTFS_I(vi); 2261 2262 truncate_inode_pages_final(&vi->i_data); 2263 clear_inode(vi); 2264 2265 #ifdef NTFS_RW 2266 if (NInoDirty(ni)) { 2267 bool was_bad = (is_bad_inode(vi)); 2268 2269 /* Committing the inode also commits all extent inodes. */ 2270 ntfs_commit_inode(vi); 2271 2272 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2273 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2274 "0x%lx. Losing data!", vi->i_ino); 2275 // FIXME: Do something!!! 2276 } 2277 } 2278 #endif /* NTFS_RW */ 2279 2280 /* No need to lock at this stage as no one else has a reference. */ 2281 if (ni->nr_extents > 0) { 2282 int i; 2283 2284 for (i = 0; i < ni->nr_extents; i++) 2285 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2286 kfree(ni->ext.extent_ntfs_inos); 2287 } 2288 2289 __ntfs_clear_inode(ni); 2290 2291 if (NInoAttr(ni)) { 2292 /* Release the base inode if we are holding it. */ 2293 if (ni->nr_extents == -1) { 2294 iput(VFS_I(ni->ext.base_ntfs_ino)); 2295 ni->nr_extents = 0; 2296 ni->ext.base_ntfs_ino = NULL; 2297 } 2298 } 2299 return; 2300 } 2301 2302 /** 2303 * ntfs_show_options - show mount options in /proc/mounts 2304 * @sf: seq_file in which to write our mount options 2305 * @root: root of the mounted tree whose mount options to display 2306 * 2307 * Called by the VFS once for each mounted ntfs volume when someone reads 2308 * /proc/mounts in order to display the NTFS specific mount options of each 2309 * mount. The mount options of fs specified by @root are written to the seq file 2310 * @sf and success is returned. 2311 */ 2312 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2313 { 2314 ntfs_volume *vol = NTFS_SB(root->d_sb); 2315 int i; 2316 2317 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); 2318 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); 2319 if (vol->fmask == vol->dmask) 2320 seq_printf(sf, ",umask=0%o", vol->fmask); 2321 else { 2322 seq_printf(sf, ",fmask=0%o", vol->fmask); 2323 seq_printf(sf, ",dmask=0%o", vol->dmask); 2324 } 2325 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2326 if (NVolCaseSensitive(vol)) 2327 seq_printf(sf, ",case_sensitive"); 2328 if (NVolShowSystemFiles(vol)) 2329 seq_printf(sf, ",show_sys_files"); 2330 if (!NVolSparseEnabled(vol)) 2331 seq_printf(sf, ",disable_sparse"); 2332 for (i = 0; on_errors_arr[i].val; i++) { 2333 if (on_errors_arr[i].val & vol->on_errors) 2334 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2335 } 2336 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2337 return 0; 2338 } 2339 2340 #ifdef NTFS_RW 2341 2342 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2343 "chkdsk."; 2344 2345 /** 2346 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2347 * @vi: inode for which the i_size was changed 2348 * 2349 * We only support i_size changes for normal files at present, i.e. not 2350 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2351 * below. 2352 * 2353 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2354 * that the change is allowed. 2355 * 2356 * This implies for us that @vi is a file inode rather than a directory, index, 2357 * or attribute inode as well as that @vi is a base inode. 2358 * 2359 * Returns 0 on success or -errno on error. 2360 * 2361 * Called with ->i_mutex held. 2362 */ 2363 int ntfs_truncate(struct inode *vi) 2364 { 2365 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2366 VCN highest_vcn; 2367 unsigned long flags; 2368 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2369 ntfs_volume *vol = ni->vol; 2370 ntfs_attr_search_ctx *ctx; 2371 MFT_RECORD *m; 2372 ATTR_RECORD *a; 2373 const char *te = " Leaving file length out of sync with i_size."; 2374 int err, mp_size, size_change, alloc_change; 2375 u32 attr_len; 2376 2377 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2378 BUG_ON(NInoAttr(ni)); 2379 BUG_ON(S_ISDIR(vi->i_mode)); 2380 BUG_ON(NInoMstProtected(ni)); 2381 BUG_ON(ni->nr_extents < 0); 2382 retry_truncate: 2383 /* 2384 * Lock the runlist for writing and map the mft record to ensure it is 2385 * safe to mess with the attribute runlist and sizes. 2386 */ 2387 down_write(&ni->runlist.lock); 2388 if (!NInoAttr(ni)) 2389 base_ni = ni; 2390 else 2391 base_ni = ni->ext.base_ntfs_ino; 2392 m = map_mft_record(base_ni); 2393 if (IS_ERR(m)) { 2394 err = PTR_ERR(m); 2395 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2396 "(error code %d).%s", vi->i_ino, err, te); 2397 ctx = NULL; 2398 m = NULL; 2399 goto old_bad_out; 2400 } 2401 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2402 if (unlikely(!ctx)) { 2403 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2404 "inode 0x%lx (not enough memory).%s", 2405 vi->i_ino, te); 2406 err = -ENOMEM; 2407 goto old_bad_out; 2408 } 2409 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2410 CASE_SENSITIVE, 0, NULL, 0, ctx); 2411 if (unlikely(err)) { 2412 if (err == -ENOENT) { 2413 ntfs_error(vi->i_sb, "Open attribute is missing from " 2414 "mft record. Inode 0x%lx is corrupt. " 2415 "Run chkdsk.%s", vi->i_ino, te); 2416 err = -EIO; 2417 } else 2418 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2419 "inode 0x%lx (error code %d).%s", 2420 vi->i_ino, err, te); 2421 goto old_bad_out; 2422 } 2423 m = ctx->mrec; 2424 a = ctx->attr; 2425 /* 2426 * The i_size of the vfs inode is the new size for the attribute value. 2427 */ 2428 new_size = i_size_read(vi); 2429 /* The current size of the attribute value is the old size. */ 2430 old_size = ntfs_attr_size(a); 2431 /* Calculate the new allocated size. */ 2432 if (NInoNonResident(ni)) 2433 new_alloc_size = (new_size + vol->cluster_size - 1) & 2434 ~(s64)vol->cluster_size_mask; 2435 else 2436 new_alloc_size = (new_size + 7) & ~7; 2437 /* The current allocated size is the old allocated size. */ 2438 read_lock_irqsave(&ni->size_lock, flags); 2439 old_alloc_size = ni->allocated_size; 2440 read_unlock_irqrestore(&ni->size_lock, flags); 2441 /* 2442 * The change in the file size. This will be 0 if no change, >0 if the 2443 * size is growing, and <0 if the size is shrinking. 2444 */ 2445 size_change = -1; 2446 if (new_size - old_size >= 0) { 2447 size_change = 1; 2448 if (new_size == old_size) 2449 size_change = 0; 2450 } 2451 /* As above for the allocated size. */ 2452 alloc_change = -1; 2453 if (new_alloc_size - old_alloc_size >= 0) { 2454 alloc_change = 1; 2455 if (new_alloc_size == old_alloc_size) 2456 alloc_change = 0; 2457 } 2458 /* 2459 * If neither the size nor the allocation are being changed there is 2460 * nothing to do. 2461 */ 2462 if (!size_change && !alloc_change) 2463 goto unm_done; 2464 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2465 if (size_change) { 2466 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2467 if (unlikely(err)) { 2468 if (err == -ERANGE) { 2469 ntfs_error(vol->sb, "Truncate would cause the " 2470 "inode 0x%lx to %simum size " 2471 "for its attribute type " 2472 "(0x%x). Aborting truncate.", 2473 vi->i_ino, 2474 new_size > old_size ? "exceed " 2475 "the max" : "go under the min", 2476 le32_to_cpu(ni->type)); 2477 err = -EFBIG; 2478 } else { 2479 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2480 "attribute type 0x%x. " 2481 "Aborting truncate.", 2482 vi->i_ino, 2483 le32_to_cpu(ni->type)); 2484 err = -EIO; 2485 } 2486 /* Reset the vfs inode size to the old size. */ 2487 i_size_write(vi, old_size); 2488 goto err_out; 2489 } 2490 } 2491 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2492 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2493 "supported yet for %s files, ignoring.", 2494 NInoCompressed(ni) ? "compressed" : 2495 "encrypted"); 2496 err = -EOPNOTSUPP; 2497 goto bad_out; 2498 } 2499 if (a->non_resident) 2500 goto do_non_resident_truncate; 2501 BUG_ON(NInoNonResident(ni)); 2502 /* Resize the attribute record to best fit the new attribute size. */ 2503 if (new_size < vol->mft_record_size && 2504 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2505 /* The resize succeeded! */ 2506 flush_dcache_mft_record_page(ctx->ntfs_ino); 2507 mark_mft_record_dirty(ctx->ntfs_ino); 2508 write_lock_irqsave(&ni->size_lock, flags); 2509 /* Update the sizes in the ntfs inode and all is done. */ 2510 ni->allocated_size = le32_to_cpu(a->length) - 2511 le16_to_cpu(a->data.resident.value_offset); 2512 /* 2513 * Note ntfs_resident_attr_value_resize() has already done any 2514 * necessary data clearing in the attribute record. When the 2515 * file is being shrunk vmtruncate() will already have cleared 2516 * the top part of the last partial page, i.e. since this is 2517 * the resident case this is the page with index 0. However, 2518 * when the file is being expanded, the page cache page data 2519 * between the old data_size, i.e. old_size, and the new_size 2520 * has not been zeroed. Fortunately, we do not need to zero it 2521 * either since on one hand it will either already be zero due 2522 * to both readpage and writepage clearing partial page data 2523 * beyond i_size in which case there is nothing to do or in the 2524 * case of the file being mmap()ped at the same time, POSIX 2525 * specifies that the behaviour is unspecified thus we do not 2526 * have to do anything. This means that in our implementation 2527 * in the rare case that the file is mmap()ped and a write 2528 * occurred into the mmap()ped region just beyond the file size 2529 * and writepage has not yet been called to write out the page 2530 * (which would clear the area beyond the file size) and we now 2531 * extend the file size to incorporate this dirty region 2532 * outside the file size, a write of the page would result in 2533 * this data being written to disk instead of being cleared. 2534 * Given both POSIX and the Linux mmap(2) man page specify that 2535 * this corner case is undefined, we choose to leave it like 2536 * that as this is much simpler for us as we cannot lock the 2537 * relevant page now since we are holding too many ntfs locks 2538 * which would result in a lock reversal deadlock. 2539 */ 2540 ni->initialized_size = new_size; 2541 write_unlock_irqrestore(&ni->size_lock, flags); 2542 goto unm_done; 2543 } 2544 /* If the above resize failed, this must be an attribute extension. */ 2545 BUG_ON(size_change < 0); 2546 /* 2547 * We have to drop all the locks so we can call 2548 * ntfs_attr_make_non_resident(). This could be optimised by try- 2549 * locking the first page cache page and only if that fails dropping 2550 * the locks, locking the page, and redoing all the locking and 2551 * lookups. While this would be a huge optimisation, it is not worth 2552 * it as this is definitely a slow code path as it only ever can happen 2553 * once for any given file. 2554 */ 2555 ntfs_attr_put_search_ctx(ctx); 2556 unmap_mft_record(base_ni); 2557 up_write(&ni->runlist.lock); 2558 /* 2559 * Not enough space in the mft record, try to make the attribute 2560 * non-resident and if successful restart the truncation process. 2561 */ 2562 err = ntfs_attr_make_non_resident(ni, old_size); 2563 if (likely(!err)) 2564 goto retry_truncate; 2565 /* 2566 * Could not make non-resident. If this is due to this not being 2567 * permitted for this attribute type or there not being enough space, 2568 * try to make other attributes non-resident. Otherwise fail. 2569 */ 2570 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2571 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2572 "type 0x%x, because the conversion from " 2573 "resident to non-resident attribute failed " 2574 "with error code %i.", vi->i_ino, 2575 (unsigned)le32_to_cpu(ni->type), err); 2576 if (err != -ENOMEM) 2577 err = -EIO; 2578 goto conv_err_out; 2579 } 2580 /* TODO: Not implemented from here, abort. */ 2581 if (err == -ENOSPC) 2582 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2583 "disk for the non-resident attribute value. " 2584 "This case is not implemented yet."); 2585 else /* if (err == -EPERM) */ 2586 ntfs_error(vol->sb, "This attribute type may not be " 2587 "non-resident. This case is not implemented " 2588 "yet."); 2589 err = -EOPNOTSUPP; 2590 goto conv_err_out; 2591 #if 0 2592 // TODO: Attempt to make other attributes non-resident. 2593 if (!err) 2594 goto do_resident_extend; 2595 /* 2596 * Both the attribute list attribute and the standard information 2597 * attribute must remain in the base inode. Thus, if this is one of 2598 * these attributes, we have to try to move other attributes out into 2599 * extent mft records instead. 2600 */ 2601 if (ni->type == AT_ATTRIBUTE_LIST || 2602 ni->type == AT_STANDARD_INFORMATION) { 2603 // TODO: Attempt to move other attributes into extent mft 2604 // records. 2605 err = -EOPNOTSUPP; 2606 if (!err) 2607 goto do_resident_extend; 2608 goto err_out; 2609 } 2610 // TODO: Attempt to move this attribute to an extent mft record, but 2611 // only if it is not already the only attribute in an mft record in 2612 // which case there would be nothing to gain. 2613 err = -EOPNOTSUPP; 2614 if (!err) 2615 goto do_resident_extend; 2616 /* There is nothing we can do to make enough space. )-: */ 2617 goto err_out; 2618 #endif 2619 do_non_resident_truncate: 2620 BUG_ON(!NInoNonResident(ni)); 2621 if (alloc_change < 0) { 2622 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2623 if (highest_vcn > 0 && 2624 old_alloc_size >> vol->cluster_size_bits > 2625 highest_vcn + 1) { 2626 /* 2627 * This attribute has multiple extents. Not yet 2628 * supported. 2629 */ 2630 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2631 "attribute type 0x%x, because the " 2632 "attribute is highly fragmented (it " 2633 "consists of multiple extents) and " 2634 "this case is not implemented yet.", 2635 vi->i_ino, 2636 (unsigned)le32_to_cpu(ni->type)); 2637 err = -EOPNOTSUPP; 2638 goto bad_out; 2639 } 2640 } 2641 /* 2642 * If the size is shrinking, need to reduce the initialized_size and 2643 * the data_size before reducing the allocation. 2644 */ 2645 if (size_change < 0) { 2646 /* 2647 * Make the valid size smaller (i_size is already up-to-date). 2648 */ 2649 write_lock_irqsave(&ni->size_lock, flags); 2650 if (new_size < ni->initialized_size) { 2651 ni->initialized_size = new_size; 2652 a->data.non_resident.initialized_size = 2653 cpu_to_sle64(new_size); 2654 } 2655 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2656 write_unlock_irqrestore(&ni->size_lock, flags); 2657 flush_dcache_mft_record_page(ctx->ntfs_ino); 2658 mark_mft_record_dirty(ctx->ntfs_ino); 2659 /* If the allocated size is not changing, we are done. */ 2660 if (!alloc_change) 2661 goto unm_done; 2662 /* 2663 * If the size is shrinking it makes no sense for the 2664 * allocation to be growing. 2665 */ 2666 BUG_ON(alloc_change > 0); 2667 } else /* if (size_change >= 0) */ { 2668 /* 2669 * The file size is growing or staying the same but the 2670 * allocation can be shrinking, growing or staying the same. 2671 */ 2672 if (alloc_change > 0) { 2673 /* 2674 * We need to extend the allocation and possibly update 2675 * the data size. If we are updating the data size, 2676 * since we are not touching the initialized_size we do 2677 * not need to worry about the actual data on disk. 2678 * And as far as the page cache is concerned, there 2679 * will be no pages beyond the old data size and any 2680 * partial region in the last page between the old and 2681 * new data size (or the end of the page if the new 2682 * data size is outside the page) does not need to be 2683 * modified as explained above for the resident 2684 * attribute truncate case. To do this, we simply drop 2685 * the locks we hold and leave all the work to our 2686 * friendly helper ntfs_attr_extend_allocation(). 2687 */ 2688 ntfs_attr_put_search_ctx(ctx); 2689 unmap_mft_record(base_ni); 2690 up_write(&ni->runlist.lock); 2691 err = ntfs_attr_extend_allocation(ni, new_size, 2692 size_change > 0 ? new_size : -1, -1); 2693 /* 2694 * ntfs_attr_extend_allocation() will have done error 2695 * output already. 2696 */ 2697 goto done; 2698 } 2699 if (!alloc_change) 2700 goto alloc_done; 2701 } 2702 /* alloc_change < 0 */ 2703 /* Free the clusters. */ 2704 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2705 vol->cluster_size_bits, -1, ctx); 2706 m = ctx->mrec; 2707 a = ctx->attr; 2708 if (unlikely(nr_freed < 0)) { 2709 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2710 "%lli). Unmount and run chkdsk to recover " 2711 "the lost cluster(s).", (long long)nr_freed); 2712 NVolSetErrors(vol); 2713 nr_freed = 0; 2714 } 2715 /* Truncate the runlist. */ 2716 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2717 new_alloc_size >> vol->cluster_size_bits); 2718 /* 2719 * If the runlist truncation failed and/or the search context is no 2720 * longer valid, we cannot resize the attribute record or build the 2721 * mapping pairs array thus we mark the inode bad so that no access to 2722 * the freed clusters can happen. 2723 */ 2724 if (unlikely(err || IS_ERR(m))) { 2725 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2726 IS_ERR(m) ? 2727 "restore attribute search context" : 2728 "truncate attribute runlist", 2729 IS_ERR(m) ? PTR_ERR(m) : err, es); 2730 err = -EIO; 2731 goto bad_out; 2732 } 2733 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2734 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2735 if (unlikely(mp_size <= 0)) { 2736 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2737 "attribute type 0x%x, because determining the " 2738 "size for the mapping pairs failed with error " 2739 "code %i.%s", vi->i_ino, 2740 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2741 err = -EIO; 2742 goto bad_out; 2743 } 2744 /* 2745 * Shrink the attribute record for the new mapping pairs array. Note, 2746 * this cannot fail since we are making the attribute smaller thus by 2747 * definition there is enough space to do so. 2748 */ 2749 attr_len = le32_to_cpu(a->length); 2750 err = ntfs_attr_record_resize(m, a, mp_size + 2751 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2752 BUG_ON(err); 2753 /* 2754 * Generate the mapping pairs array directly into the attribute record. 2755 */ 2756 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2757 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2758 mp_size, ni->runlist.rl, 0, -1, NULL); 2759 if (unlikely(err)) { 2760 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2761 "attribute type 0x%x, because building the " 2762 "mapping pairs failed with error code %i.%s", 2763 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2764 err, es); 2765 err = -EIO; 2766 goto bad_out; 2767 } 2768 /* Update the allocated/compressed size as well as the highest vcn. */ 2769 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2770 vol->cluster_size_bits) - 1); 2771 write_lock_irqsave(&ni->size_lock, flags); 2772 ni->allocated_size = new_alloc_size; 2773 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2774 if (NInoSparse(ni) || NInoCompressed(ni)) { 2775 if (nr_freed) { 2776 ni->itype.compressed.size -= nr_freed << 2777 vol->cluster_size_bits; 2778 BUG_ON(ni->itype.compressed.size < 0); 2779 a->data.non_resident.compressed_size = cpu_to_sle64( 2780 ni->itype.compressed.size); 2781 vi->i_blocks = ni->itype.compressed.size >> 9; 2782 } 2783 } else 2784 vi->i_blocks = new_alloc_size >> 9; 2785 write_unlock_irqrestore(&ni->size_lock, flags); 2786 /* 2787 * We have shrunk the allocation. If this is a shrinking truncate we 2788 * have already dealt with the initialized_size and the data_size above 2789 * and we are done. If the truncate is only changing the allocation 2790 * and not the data_size, we are also done. If this is an extending 2791 * truncate, need to extend the data_size now which is ensured by the 2792 * fact that @size_change is positive. 2793 */ 2794 alloc_done: 2795 /* 2796 * If the size is growing, need to update it now. If it is shrinking, 2797 * we have already updated it above (before the allocation change). 2798 */ 2799 if (size_change > 0) 2800 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2801 /* Ensure the modified mft record is written out. */ 2802 flush_dcache_mft_record_page(ctx->ntfs_ino); 2803 mark_mft_record_dirty(ctx->ntfs_ino); 2804 unm_done: 2805 ntfs_attr_put_search_ctx(ctx); 2806 unmap_mft_record(base_ni); 2807 up_write(&ni->runlist.lock); 2808 done: 2809 /* Update the mtime and ctime on the base inode. */ 2810 /* normally ->truncate shouldn't update ctime or mtime, 2811 * but ntfs did before so it got a copy & paste version 2812 * of file_update_time. one day someone should fix this 2813 * for real. 2814 */ 2815 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2816 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); 2817 int sync_it = 0; 2818 2819 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || 2820 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) 2821 sync_it = 1; 2822 VFS_I(base_ni)->i_mtime = now; 2823 VFS_I(base_ni)->i_ctime = now; 2824 2825 if (sync_it) 2826 mark_inode_dirty_sync(VFS_I(base_ni)); 2827 } 2828 2829 if (likely(!err)) { 2830 NInoClearTruncateFailed(ni); 2831 ntfs_debug("Done."); 2832 } 2833 return err; 2834 old_bad_out: 2835 old_size = -1; 2836 bad_out: 2837 if (err != -ENOMEM && err != -EOPNOTSUPP) 2838 NVolSetErrors(vol); 2839 if (err != -EOPNOTSUPP) 2840 NInoSetTruncateFailed(ni); 2841 else if (old_size >= 0) 2842 i_size_write(vi, old_size); 2843 err_out: 2844 if (ctx) 2845 ntfs_attr_put_search_ctx(ctx); 2846 if (m) 2847 unmap_mft_record(base_ni); 2848 up_write(&ni->runlist.lock); 2849 out: 2850 ntfs_debug("Failed. Returning error code %i.", err); 2851 return err; 2852 conv_err_out: 2853 if (err != -ENOMEM && err != -EOPNOTSUPP) 2854 NVolSetErrors(vol); 2855 if (err != -EOPNOTSUPP) 2856 NInoSetTruncateFailed(ni); 2857 else 2858 i_size_write(vi, old_size); 2859 goto out; 2860 } 2861 2862 /** 2863 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2864 * @vi: inode for which the i_size was changed 2865 * 2866 * Wrapper for ntfs_truncate() that has no return value. 2867 * 2868 * See ntfs_truncate() description above for details. 2869 */ 2870 #ifdef NTFS_RW 2871 void ntfs_truncate_vfs(struct inode *vi) { 2872 ntfs_truncate(vi); 2873 } 2874 #endif 2875 2876 /** 2877 * ntfs_setattr - called from notify_change() when an attribute is being changed 2878 * @dentry: dentry whose attributes to change 2879 * @attr: structure describing the attributes and the changes 2880 * 2881 * We have to trap VFS attempts to truncate the file described by @dentry as 2882 * soon as possible, because we do not implement changes in i_size yet. So we 2883 * abort all i_size changes here. 2884 * 2885 * We also abort all changes of user, group, and mode as we do not implement 2886 * the NTFS ACLs yet. 2887 * 2888 * Called with ->i_mutex held. 2889 */ 2890 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2891 { 2892 struct inode *vi = d_inode(dentry); 2893 int err; 2894 unsigned int ia_valid = attr->ia_valid; 2895 2896 err = inode_change_ok(vi, attr); 2897 if (err) 2898 goto out; 2899 /* We do not support NTFS ACLs yet. */ 2900 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2901 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2902 "supported yet, ignoring."); 2903 err = -EOPNOTSUPP; 2904 goto out; 2905 } 2906 if (ia_valid & ATTR_SIZE) { 2907 if (attr->ia_size != i_size_read(vi)) { 2908 ntfs_inode *ni = NTFS_I(vi); 2909 /* 2910 * FIXME: For now we do not support resizing of 2911 * compressed or encrypted files yet. 2912 */ 2913 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2914 ntfs_warning(vi->i_sb, "Changes in inode size " 2915 "are not supported yet for " 2916 "%s files, ignoring.", 2917 NInoCompressed(ni) ? 2918 "compressed" : "encrypted"); 2919 err = -EOPNOTSUPP; 2920 } else { 2921 truncate_setsize(vi, attr->ia_size); 2922 ntfs_truncate_vfs(vi); 2923 } 2924 if (err || ia_valid == ATTR_SIZE) 2925 goto out; 2926 } else { 2927 /* 2928 * We skipped the truncate but must still update 2929 * timestamps. 2930 */ 2931 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2932 } 2933 } 2934 if (ia_valid & ATTR_ATIME) 2935 vi->i_atime = timespec_trunc(attr->ia_atime, 2936 vi->i_sb->s_time_gran); 2937 if (ia_valid & ATTR_MTIME) 2938 vi->i_mtime = timespec_trunc(attr->ia_mtime, 2939 vi->i_sb->s_time_gran); 2940 if (ia_valid & ATTR_CTIME) 2941 vi->i_ctime = timespec_trunc(attr->ia_ctime, 2942 vi->i_sb->s_time_gran); 2943 mark_inode_dirty(vi); 2944 out: 2945 return err; 2946 } 2947 2948 /** 2949 * ntfs_write_inode - write out a dirty inode 2950 * @vi: inode to write out 2951 * @sync: if true, write out synchronously 2952 * 2953 * Write out a dirty inode to disk including any extent inodes if present. 2954 * 2955 * If @sync is true, commit the inode to disk and wait for io completion. This 2956 * is done using write_mft_record(). 2957 * 2958 * If @sync is false, just schedule the write to happen but do not wait for i/o 2959 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2960 * marking the page (and in this case mft record) dirty but we do not implement 2961 * this yet as write_mft_record() largely ignores the @sync parameter and 2962 * always performs synchronous writes. 2963 * 2964 * Return 0 on success and -errno on error. 2965 */ 2966 int __ntfs_write_inode(struct inode *vi, int sync) 2967 { 2968 sle64 nt; 2969 ntfs_inode *ni = NTFS_I(vi); 2970 ntfs_attr_search_ctx *ctx; 2971 MFT_RECORD *m; 2972 STANDARD_INFORMATION *si; 2973 int err = 0; 2974 bool modified = false; 2975 2976 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2977 vi->i_ino); 2978 /* 2979 * Dirty attribute inodes are written via their real inodes so just 2980 * clean them here. Access time updates are taken care off when the 2981 * real inode is written. 2982 */ 2983 if (NInoAttr(ni)) { 2984 NInoClearDirty(ni); 2985 ntfs_debug("Done."); 2986 return 0; 2987 } 2988 /* Map, pin, and lock the mft record belonging to the inode. */ 2989 m = map_mft_record(ni); 2990 if (IS_ERR(m)) { 2991 err = PTR_ERR(m); 2992 goto err_out; 2993 } 2994 /* Update the access times in the standard information attribute. */ 2995 ctx = ntfs_attr_get_search_ctx(ni, m); 2996 if (unlikely(!ctx)) { 2997 err = -ENOMEM; 2998 goto unm_err_out; 2999 } 3000 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 3001 CASE_SENSITIVE, 0, NULL, 0, ctx); 3002 if (unlikely(err)) { 3003 ntfs_attr_put_search_ctx(ctx); 3004 goto unm_err_out; 3005 } 3006 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 3007 le16_to_cpu(ctx->attr->data.resident.value_offset)); 3008 /* Update the access times if they have changed. */ 3009 nt = utc2ntfs(vi->i_mtime); 3010 if (si->last_data_change_time != nt) { 3011 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 3012 "new = 0x%llx", vi->i_ino, (long long) 3013 sle64_to_cpu(si->last_data_change_time), 3014 (long long)sle64_to_cpu(nt)); 3015 si->last_data_change_time = nt; 3016 modified = true; 3017 } 3018 nt = utc2ntfs(vi->i_ctime); 3019 if (si->last_mft_change_time != nt) { 3020 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 3021 "new = 0x%llx", vi->i_ino, (long long) 3022 sle64_to_cpu(si->last_mft_change_time), 3023 (long long)sle64_to_cpu(nt)); 3024 si->last_mft_change_time = nt; 3025 modified = true; 3026 } 3027 nt = utc2ntfs(vi->i_atime); 3028 if (si->last_access_time != nt) { 3029 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3030 "new = 0x%llx", vi->i_ino, 3031 (long long)sle64_to_cpu(si->last_access_time), 3032 (long long)sle64_to_cpu(nt)); 3033 si->last_access_time = nt; 3034 modified = true; 3035 } 3036 /* 3037 * If we just modified the standard information attribute we need to 3038 * mark the mft record it is in dirty. We do this manually so that 3039 * mark_inode_dirty() is not called which would redirty the inode and 3040 * hence result in an infinite loop of trying to write the inode. 3041 * There is no need to mark the base inode nor the base mft record 3042 * dirty, since we are going to write this mft record below in any case 3043 * and the base mft record may actually not have been modified so it 3044 * might not need to be written out. 3045 * NOTE: It is not a problem when the inode for $MFT itself is being 3046 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3047 * on the $MFT inode and hence ntfs_write_inode() will not be 3048 * re-invoked because of it which in turn is ok since the dirtied mft 3049 * record will be cleaned and written out to disk below, i.e. before 3050 * this function returns. 3051 */ 3052 if (modified) { 3053 flush_dcache_mft_record_page(ctx->ntfs_ino); 3054 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3055 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3056 ctx->ntfs_ino->page_ofs); 3057 } 3058 ntfs_attr_put_search_ctx(ctx); 3059 /* Now the access times are updated, write the base mft record. */ 3060 if (NInoDirty(ni)) 3061 err = write_mft_record(ni, m, sync); 3062 /* Write all attached extent mft records. */ 3063 mutex_lock(&ni->extent_lock); 3064 if (ni->nr_extents > 0) { 3065 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3066 int i; 3067 3068 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3069 for (i = 0; i < ni->nr_extents; i++) { 3070 ntfs_inode *tni = extent_nis[i]; 3071 3072 if (NInoDirty(tni)) { 3073 MFT_RECORD *tm = map_mft_record(tni); 3074 int ret; 3075 3076 if (IS_ERR(tm)) { 3077 if (!err || err == -ENOMEM) 3078 err = PTR_ERR(tm); 3079 continue; 3080 } 3081 ret = write_mft_record(tni, tm, sync); 3082 unmap_mft_record(tni); 3083 if (unlikely(ret)) { 3084 if (!err || err == -ENOMEM) 3085 err = ret; 3086 } 3087 } 3088 } 3089 } 3090 mutex_unlock(&ni->extent_lock); 3091 unmap_mft_record(ni); 3092 if (unlikely(err)) 3093 goto err_out; 3094 ntfs_debug("Done."); 3095 return 0; 3096 unm_err_out: 3097 unmap_mft_record(ni); 3098 err_out: 3099 if (err == -ENOMEM) { 3100 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3101 "Marking the inode dirty again, so the VFS " 3102 "retries later."); 3103 mark_inode_dirty(vi); 3104 } else { 3105 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3106 NVolSetErrors(ni->vol); 3107 } 3108 return err; 3109 } 3110 3111 #endif /* NTFS_RW */ 3112