xref: /openbmc/linux/fs/ntfs/inode.c (revision 80483c3a)
1 /**
2  * inode.c - NTFS kernel inode handling.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_test_inode - compare two (possibly fake) inodes for equality
46  * @vi:		vfs inode which to test
47  * @na:		ntfs attribute which is being tested with
48  *
49  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50  * inode @vi for equality with the ntfs attribute @na.
51  *
52  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53  * @na->name and @na->name_len are then ignored.
54  *
55  * Return 1 if the attributes match and 0 if not.
56  *
57  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58  * allowed to sleep.
59  */
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 	ntfs_inode *ni;
63 
64 	if (vi->i_ino != na->mft_no)
65 		return 0;
66 	ni = NTFS_I(vi);
67 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 	if (likely(!NInoAttr(ni))) {
69 		/* If not looking for a normal inode this is a mismatch. */
70 		if (unlikely(na->type != AT_UNUSED))
71 			return 0;
72 	} else {
73 		/* A fake inode describing an attribute. */
74 		if (ni->type != na->type)
75 			return 0;
76 		if (ni->name_len != na->name_len)
77 			return 0;
78 		if (na->name_len && memcmp(ni->name, na->name,
79 				na->name_len * sizeof(ntfschar)))
80 			return 0;
81 	}
82 	/* Match! */
83 	return 1;
84 }
85 
86 /**
87  * ntfs_init_locked_inode - initialize an inode
88  * @vi:		vfs inode to initialize
89  * @na:		ntfs attribute which to initialize @vi to
90  *
91  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92  * order to enable ntfs_test_inode() to do its work.
93  *
94  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95  * In that case, @na->name and @na->name_len should be set to NULL and 0,
96  * respectively. Although that is not strictly necessary as
97  * ntfs_read_locked_inode() will fill them in later.
98  *
99  * Return 0 on success and -errno on error.
100  *
101  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103  */
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 	ntfs_inode *ni = NTFS_I(vi);
107 
108 	vi->i_ino = na->mft_no;
109 
110 	ni->type = na->type;
111 	if (na->type == AT_INDEX_ALLOCATION)
112 		NInoSetMstProtected(ni);
113 
114 	ni->name = na->name;
115 	ni->name_len = na->name_len;
116 
117 	/* If initializing a normal inode, we are done. */
118 	if (likely(na->type == AT_UNUSED)) {
119 		BUG_ON(na->name);
120 		BUG_ON(na->name_len);
121 		return 0;
122 	}
123 
124 	/* It is a fake inode. */
125 	NInoSetAttr(ni);
126 
127 	/*
128 	 * We have I30 global constant as an optimization as it is the name
129 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 	 * allocation but that is ok. And most attributes are unnamed anyway,
131 	 * thus the fraction of named attributes with name != I30 is actually
132 	 * absolutely tiny.
133 	 */
134 	if (na->name_len && na->name != I30) {
135 		unsigned int i;
136 
137 		BUG_ON(!na->name);
138 		i = na->name_len * sizeof(ntfschar);
139 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 		if (!ni->name)
141 			return -ENOMEM;
142 		memcpy(ni->name, na->name, i);
143 		ni->name[na->name_len] = 0;
144 	}
145 	return 0;
146 }
147 
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 		struct inode *vi);
153 
154 /**
155  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156  * @sb:		super block of mounted volume
157  * @mft_no:	mft record number / inode number to obtain
158  *
159  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160  * file or directory).
161  *
162  * If the inode is in the cache, it is just returned with an increased
163  * reference count. Otherwise, a new struct inode is allocated and initialized,
164  * and finally ntfs_read_locked_inode() is called to read in the inode and
165  * fill in the remainder of the inode structure.
166  *
167  * Return the struct inode on success. Check the return value with IS_ERR() and
168  * if true, the function failed and the error code is obtained from PTR_ERR().
169  */
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 	struct inode *vi;
173 	int err;
174 	ntfs_attr na;
175 
176 	na.mft_no = mft_no;
177 	na.type = AT_UNUSED;
178 	na.name = NULL;
179 	na.name_len = 0;
180 
181 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 			(set_t)ntfs_init_locked_inode, &na);
183 	if (unlikely(!vi))
184 		return ERR_PTR(-ENOMEM);
185 
186 	err = 0;
187 
188 	/* If this is a freshly allocated inode, need to read it now. */
189 	if (vi->i_state & I_NEW) {
190 		err = ntfs_read_locked_inode(vi);
191 		unlock_new_inode(vi);
192 	}
193 	/*
194 	 * There is no point in keeping bad inodes around if the failure was
195 	 * due to ENOMEM. We want to be able to retry again later.
196 	 */
197 	if (unlikely(err == -ENOMEM)) {
198 		iput(vi);
199 		vi = ERR_PTR(err);
200 	}
201 	return vi;
202 }
203 
204 /**
205  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206  * @base_vi:	vfs base inode containing the attribute
207  * @type:	attribute type
208  * @name:	Unicode name of the attribute (NULL if unnamed)
209  * @name_len:	length of @name in Unicode characters (0 if unnamed)
210  *
211  * Obtain the (fake) struct inode corresponding to the attribute specified by
212  * @type, @name, and @name_len, which is present in the base mft record
213  * specified by the vfs inode @base_vi.
214  *
215  * If the attribute inode is in the cache, it is just returned with an
216  * increased reference count. Otherwise, a new struct inode is allocated and
217  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218  * attribute and fill in the inode structure.
219  *
220  * Note, for index allocation attributes, you need to use ntfs_index_iget()
221  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222  *
223  * Return the struct inode of the attribute inode on success. Check the return
224  * value with IS_ERR() and if true, the function failed and the error code is
225  * obtained from PTR_ERR().
226  */
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 		ntfschar *name, u32 name_len)
229 {
230 	struct inode *vi;
231 	int err;
232 	ntfs_attr na;
233 
234 	/* Make sure no one calls ntfs_attr_iget() for indices. */
235 	BUG_ON(type == AT_INDEX_ALLOCATION);
236 
237 	na.mft_no = base_vi->i_ino;
238 	na.type = type;
239 	na.name = name;
240 	na.name_len = name_len;
241 
242 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 			(set_t)ntfs_init_locked_inode, &na);
244 	if (unlikely(!vi))
245 		return ERR_PTR(-ENOMEM);
246 
247 	err = 0;
248 
249 	/* If this is a freshly allocated inode, need to read it now. */
250 	if (vi->i_state & I_NEW) {
251 		err = ntfs_read_locked_attr_inode(base_vi, vi);
252 		unlock_new_inode(vi);
253 	}
254 	/*
255 	 * There is no point in keeping bad attribute inodes around. This also
256 	 * simplifies things in that we never need to check for bad attribute
257 	 * inodes elsewhere.
258 	 */
259 	if (unlikely(err)) {
260 		iput(vi);
261 		vi = ERR_PTR(err);
262 	}
263 	return vi;
264 }
265 
266 /**
267  * ntfs_index_iget - obtain a struct inode corresponding to an index
268  * @base_vi:	vfs base inode containing the index related attributes
269  * @name:	Unicode name of the index
270  * @name_len:	length of @name in Unicode characters
271  *
272  * Obtain the (fake) struct inode corresponding to the index specified by @name
273  * and @name_len, which is present in the base mft record specified by the vfs
274  * inode @base_vi.
275  *
276  * If the index inode is in the cache, it is just returned with an increased
277  * reference count.  Otherwise, a new struct inode is allocated and
278  * initialized, and finally ntfs_read_locked_index_inode() is called to read
279  * the index related attributes and fill in the inode structure.
280  *
281  * Return the struct inode of the index inode on success. Check the return
282  * value with IS_ERR() and if true, the function failed and the error code is
283  * obtained from PTR_ERR().
284  */
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 		u32 name_len)
287 {
288 	struct inode *vi;
289 	int err;
290 	ntfs_attr na;
291 
292 	na.mft_no = base_vi->i_ino;
293 	na.type = AT_INDEX_ALLOCATION;
294 	na.name = name;
295 	na.name_len = name_len;
296 
297 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 			(set_t)ntfs_init_locked_inode, &na);
299 	if (unlikely(!vi))
300 		return ERR_PTR(-ENOMEM);
301 
302 	err = 0;
303 
304 	/* If this is a freshly allocated inode, need to read it now. */
305 	if (vi->i_state & I_NEW) {
306 		err = ntfs_read_locked_index_inode(base_vi, vi);
307 		unlock_new_inode(vi);
308 	}
309 	/*
310 	 * There is no point in keeping bad index inodes around.  This also
311 	 * simplifies things in that we never need to check for bad index
312 	 * inodes elsewhere.
313 	 */
314 	if (unlikely(err)) {
315 		iput(vi);
316 		vi = ERR_PTR(err);
317 	}
318 	return vi;
319 }
320 
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 	ntfs_inode *ni;
324 
325 	ntfs_debug("Entering.");
326 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 	if (likely(ni != NULL)) {
328 		ni->state = 0;
329 		return VFS_I(ni);
330 	}
331 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 	return NULL;
333 }
334 
335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 	struct inode *inode = container_of(head, struct inode, i_rcu);
338 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340 
341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 	ntfs_inode *ni = NTFS_I(inode);
344 
345 	ntfs_debug("Entering.");
346 	BUG_ON(ni->page);
347 	if (!atomic_dec_and_test(&ni->count))
348 		BUG();
349 	call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351 
352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 	ntfs_inode *ni;
355 
356 	ntfs_debug("Entering.");
357 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 	if (likely(ni != NULL)) {
359 		ni->state = 0;
360 		return ni;
361 	}
362 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 	return NULL;
364 }
365 
366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 	ntfs_debug("Entering.");
369 	BUG_ON(ni->page);
370 	if (!atomic_dec_and_test(&ni->count))
371 		BUG();
372 	kmem_cache_free(ntfs_inode_cache, ni);
373 }
374 
375 /*
376  * The attribute runlist lock has separate locking rules from the
377  * normal runlist lock, so split the two lock-classes:
378  */
379 static struct lock_class_key attr_list_rl_lock_class;
380 
381 /**
382  * __ntfs_init_inode - initialize ntfs specific part of an inode
383  * @sb:		super block of mounted volume
384  * @ni:		freshly allocated ntfs inode which to initialize
385  *
386  * Initialize an ntfs inode to defaults.
387  *
388  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389  * untouched. Make sure to initialize them elsewhere.
390  *
391  * Return zero on success and -ENOMEM on error.
392  */
393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 	ntfs_debug("Entering.");
396 	rwlock_init(&ni->size_lock);
397 	ni->initialized_size = ni->allocated_size = 0;
398 	ni->seq_no = 0;
399 	atomic_set(&ni->count, 1);
400 	ni->vol = NTFS_SB(sb);
401 	ntfs_init_runlist(&ni->runlist);
402 	mutex_init(&ni->mrec_lock);
403 	ni->page = NULL;
404 	ni->page_ofs = 0;
405 	ni->attr_list_size = 0;
406 	ni->attr_list = NULL;
407 	ntfs_init_runlist(&ni->attr_list_rl);
408 	lockdep_set_class(&ni->attr_list_rl.lock,
409 				&attr_list_rl_lock_class);
410 	ni->itype.index.block_size = 0;
411 	ni->itype.index.vcn_size = 0;
412 	ni->itype.index.collation_rule = 0;
413 	ni->itype.index.block_size_bits = 0;
414 	ni->itype.index.vcn_size_bits = 0;
415 	mutex_init(&ni->extent_lock);
416 	ni->nr_extents = 0;
417 	ni->ext.base_ntfs_ino = NULL;
418 }
419 
420 /*
421  * Extent inodes get MFT-mapped in a nested way, while the base inode
422  * is still mapped. Teach this nesting to the lock validator by creating
423  * a separate class for nested inode's mrec_lock's:
424  */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426 
427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 		unsigned long mft_no)
429 {
430 	ntfs_inode *ni = ntfs_alloc_extent_inode();
431 
432 	ntfs_debug("Entering.");
433 	if (likely(ni != NULL)) {
434 		__ntfs_init_inode(sb, ni);
435 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 		ni->mft_no = mft_no;
437 		ni->type = AT_UNUSED;
438 		ni->name = NULL;
439 		ni->name_len = 0;
440 	}
441 	return ni;
442 }
443 
444 /**
445  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446  * @ctx:	initialized attribute search context
447  *
448  * Search all file name attributes in the inode described by the attribute
449  * search context @ctx and check if any of the names are in the $Extend system
450  * directory.
451  *
452  * Return values:
453  *	   1: file is in $Extend directory
454  *	   0: file is not in $Extend directory
455  *    -errno: failed to determine if the file is in the $Extend directory
456  */
457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 	int nr_links, err;
460 
461 	/* Restart search. */
462 	ntfs_attr_reinit_search_ctx(ctx);
463 
464 	/* Get number of hard links. */
465 	nr_links = le16_to_cpu(ctx->mrec->link_count);
466 
467 	/* Loop through all hard links. */
468 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 			ctx))) {
470 		FILE_NAME_ATTR *file_name_attr;
471 		ATTR_RECORD *attr = ctx->attr;
472 		u8 *p, *p2;
473 
474 		nr_links--;
475 		/*
476 		 * Maximum sanity checking as we are called on an inode that
477 		 * we suspect might be corrupt.
478 		 */
479 		p = (u8*)attr + le32_to_cpu(attr->length);
480 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 					"attribute. You should run chkdsk.");
485 			return -EIO;
486 		}
487 		if (attr->non_resident) {
488 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 					"name. You should run chkdsk.");
490 			return -EIO;
491 		}
492 		if (attr->flags) {
493 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 					"invalid flags. You should run "
495 					"chkdsk.");
496 			return -EIO;
497 		}
498 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 					"name. You should run chkdsk.");
501 			return -EIO;
502 		}
503 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 				le16_to_cpu(attr->data.resident.value_offset));
505 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 		if (p2 < (u8*)attr || p2 > p)
507 			goto err_corrupt_attr;
508 		/* This attribute is ok, but is it in the $Extend directory? */
509 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 			return 1;	/* YES, it's an extended system file. */
511 	}
512 	if (unlikely(err != -ENOENT))
513 		return err;
514 	if (unlikely(nr_links)) {
515 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 				"doesn't match number of name attributes. You "
517 				"should run chkdsk.");
518 		return -EIO;
519 	}
520 	return 0;	/* NO, it is not an extended system file. */
521 }
522 
523 /**
524  * ntfs_read_locked_inode - read an inode from its device
525  * @vi:		inode to read
526  *
527  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528  * described by @vi into memory from the device.
529  *
530  * The only fields in @vi that we need to/can look at when the function is
531  * called are i_sb, pointing to the mounted device's super block, and i_ino,
532  * the number of the inode to load.
533  *
534  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535  * for reading and sets up the necessary @vi fields as well as initializing
536  * the ntfs inode.
537  *
538  * Q: What locks are held when the function is called?
539  * A: i_state has I_NEW set, hence the inode is locked, also
540  *    i_count is set to 1, so it is not going to go away
541  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
542  *    is allowed to write to them. We should of course be honouring them but
543  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
544  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545  *
546  * Return 0 on success and -errno on error.  In the error case, the inode will
547  * have had make_bad_inode() executed on it.
548  */
549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 	ntfs_inode *ni;
553 	struct inode *bvi;
554 	MFT_RECORD *m;
555 	ATTR_RECORD *a;
556 	STANDARD_INFORMATION *si;
557 	ntfs_attr_search_ctx *ctx;
558 	int err = 0;
559 
560 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561 
562 	/* Setup the generic vfs inode parts now. */
563 
564 	/*
565 	 * This is for checking whether an inode has changed w.r.t. a file so
566 	 * that the file can be updated if necessary (compare with f_version).
567 	 */
568 	vi->i_version = 1;
569 
570 	vi->i_uid = vol->uid;
571 	vi->i_gid = vol->gid;
572 	vi->i_mode = 0;
573 
574 	/*
575 	 * Initialize the ntfs specific part of @vi special casing
576 	 * FILE_MFT which we need to do at mount time.
577 	 */
578 	if (vi->i_ino != FILE_MFT)
579 		ntfs_init_big_inode(vi);
580 	ni = NTFS_I(vi);
581 
582 	m = map_mft_record(ni);
583 	if (IS_ERR(m)) {
584 		err = PTR_ERR(m);
585 		goto err_out;
586 	}
587 	ctx = ntfs_attr_get_search_ctx(ni, m);
588 	if (!ctx) {
589 		err = -ENOMEM;
590 		goto unm_err_out;
591 	}
592 
593 	if (!(m->flags & MFT_RECORD_IN_USE)) {
594 		ntfs_error(vi->i_sb, "Inode is not in use!");
595 		goto unm_err_out;
596 	}
597 	if (m->base_mft_record) {
598 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
599 		goto unm_err_out;
600 	}
601 
602 	/* Transfer information from mft record into vfs and ntfs inodes. */
603 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
604 
605 	/*
606 	 * FIXME: Keep in mind that link_count is two for files which have both
607 	 * a long file name and a short file name as separate entries, so if
608 	 * we are hiding short file names this will be too high. Either we need
609 	 * to account for the short file names by subtracting them or we need
610 	 * to make sure we delete files even though i_nlink is not zero which
611 	 * might be tricky due to vfs interactions. Need to think about this
612 	 * some more when implementing the unlink command.
613 	 */
614 	set_nlink(vi, le16_to_cpu(m->link_count));
615 	/*
616 	 * FIXME: Reparse points can have the directory bit set even though
617 	 * they would be S_IFLNK. Need to deal with this further below when we
618 	 * implement reparse points / symbolic links but it will do for now.
619 	 * Also if not a directory, it could be something else, rather than
620 	 * a regular file. But again, will do for now.
621 	 */
622 	/* Everyone gets all permissions. */
623 	vi->i_mode |= S_IRWXUGO;
624 	/* If read-only, no one gets write permissions. */
625 	if (IS_RDONLY(vi))
626 		vi->i_mode &= ~S_IWUGO;
627 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
628 		vi->i_mode |= S_IFDIR;
629 		/*
630 		 * Apply the directory permissions mask set in the mount
631 		 * options.
632 		 */
633 		vi->i_mode &= ~vol->dmask;
634 		/* Things break without this kludge! */
635 		if (vi->i_nlink > 1)
636 			set_nlink(vi, 1);
637 	} else {
638 		vi->i_mode |= S_IFREG;
639 		/* Apply the file permissions mask set in the mount options. */
640 		vi->i_mode &= ~vol->fmask;
641 	}
642 	/*
643 	 * Find the standard information attribute in the mft record. At this
644 	 * stage we haven't setup the attribute list stuff yet, so this could
645 	 * in fact fail if the standard information is in an extent record, but
646 	 * I don't think this actually ever happens.
647 	 */
648 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
649 			ctx);
650 	if (unlikely(err)) {
651 		if (err == -ENOENT) {
652 			/*
653 			 * TODO: We should be performing a hot fix here (if the
654 			 * recover mount option is set) by creating a new
655 			 * attribute.
656 			 */
657 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
658 					"is missing.");
659 		}
660 		goto unm_err_out;
661 	}
662 	a = ctx->attr;
663 	/* Get the standard information attribute value. */
664 	si = (STANDARD_INFORMATION*)((u8*)a +
665 			le16_to_cpu(a->data.resident.value_offset));
666 
667 	/* Transfer information from the standard information into vi. */
668 	/*
669 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
670 	 * but they are close enough, and in the end it doesn't really matter
671 	 * that much...
672 	 */
673 	/*
674 	 * mtime is the last change of the data within the file. Not changed
675 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
676 	 */
677 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
678 	/*
679 	 * ctime is the last change of the metadata of the file. This obviously
680 	 * always changes, when mtime is changed. ctime can be changed on its
681 	 * own, mtime is then not changed, e.g. when a file is renamed.
682 	 */
683 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
684 	/*
685 	 * Last access to the data within the file. Not changed during a rename
686 	 * for example but changed whenever the file is written to.
687 	 */
688 	vi->i_atime = ntfs2utc(si->last_access_time);
689 
690 	/* Find the attribute list attribute if present. */
691 	ntfs_attr_reinit_search_ctx(ctx);
692 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
693 	if (err) {
694 		if (unlikely(err != -ENOENT)) {
695 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
696 					"attribute.");
697 			goto unm_err_out;
698 		}
699 	} else /* if (!err) */ {
700 		if (vi->i_ino == FILE_MFT)
701 			goto skip_attr_list_load;
702 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
703 		NInoSetAttrList(ni);
704 		a = ctx->attr;
705 		if (a->flags & ATTR_COMPRESSION_MASK) {
706 			ntfs_error(vi->i_sb, "Attribute list attribute is "
707 					"compressed.");
708 			goto unm_err_out;
709 		}
710 		if (a->flags & ATTR_IS_ENCRYPTED ||
711 				a->flags & ATTR_IS_SPARSE) {
712 			if (a->non_resident) {
713 				ntfs_error(vi->i_sb, "Non-resident attribute "
714 						"list attribute is encrypted/"
715 						"sparse.");
716 				goto unm_err_out;
717 			}
718 			ntfs_warning(vi->i_sb, "Resident attribute list "
719 					"attribute in inode 0x%lx is marked "
720 					"encrypted/sparse which is not true.  "
721 					"However, Windows allows this and "
722 					"chkdsk does not detect or correct it "
723 					"so we will just ignore the invalid "
724 					"flags and pretend they are not set.",
725 					vi->i_ino);
726 		}
727 		/* Now allocate memory for the attribute list. */
728 		ni->attr_list_size = (u32)ntfs_attr_size(a);
729 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
730 		if (!ni->attr_list) {
731 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
732 					"buffer for attribute list.");
733 			err = -ENOMEM;
734 			goto unm_err_out;
735 		}
736 		if (a->non_resident) {
737 			NInoSetAttrListNonResident(ni);
738 			if (a->data.non_resident.lowest_vcn) {
739 				ntfs_error(vi->i_sb, "Attribute list has non "
740 						"zero lowest_vcn.");
741 				goto unm_err_out;
742 			}
743 			/*
744 			 * Setup the runlist. No need for locking as we have
745 			 * exclusive access to the inode at this time.
746 			 */
747 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
748 					a, NULL);
749 			if (IS_ERR(ni->attr_list_rl.rl)) {
750 				err = PTR_ERR(ni->attr_list_rl.rl);
751 				ni->attr_list_rl.rl = NULL;
752 				ntfs_error(vi->i_sb, "Mapping pairs "
753 						"decompression failed.");
754 				goto unm_err_out;
755 			}
756 			/* Now load the attribute list. */
757 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
758 					ni->attr_list, ni->attr_list_size,
759 					sle64_to_cpu(a->data.non_resident.
760 					initialized_size)))) {
761 				ntfs_error(vi->i_sb, "Failed to load "
762 						"attribute list attribute.");
763 				goto unm_err_out;
764 			}
765 		} else /* if (!a->non_resident) */ {
766 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
767 					+ le32_to_cpu(
768 					a->data.resident.value_length) >
769 					(u8*)ctx->mrec + vol->mft_record_size) {
770 				ntfs_error(vi->i_sb, "Corrupt attribute list "
771 						"in inode.");
772 				goto unm_err_out;
773 			}
774 			/* Now copy the attribute list. */
775 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
776 					a->data.resident.value_offset),
777 					le32_to_cpu(
778 					a->data.resident.value_length));
779 		}
780 	}
781 skip_attr_list_load:
782 	/*
783 	 * If an attribute list is present we now have the attribute list value
784 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
785 	 */
786 	if (S_ISDIR(vi->i_mode)) {
787 		loff_t bvi_size;
788 		ntfs_inode *bni;
789 		INDEX_ROOT *ir;
790 		u8 *ir_end, *index_end;
791 
792 		/* It is a directory, find index root attribute. */
793 		ntfs_attr_reinit_search_ctx(ctx);
794 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
795 				0, NULL, 0, ctx);
796 		if (unlikely(err)) {
797 			if (err == -ENOENT) {
798 				// FIXME: File is corrupt! Hot-fix with empty
799 				// index root attribute if recovery option is
800 				// set.
801 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
802 						"is missing.");
803 			}
804 			goto unm_err_out;
805 		}
806 		a = ctx->attr;
807 		/* Set up the state. */
808 		if (unlikely(a->non_resident)) {
809 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
810 					"resident.");
811 			goto unm_err_out;
812 		}
813 		/* Ensure the attribute name is placed before the value. */
814 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
815 				le16_to_cpu(a->data.resident.value_offset)))) {
816 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
817 					"placed after the attribute value.");
818 			goto unm_err_out;
819 		}
820 		/*
821 		 * Compressed/encrypted index root just means that the newly
822 		 * created files in that directory should be created compressed/
823 		 * encrypted. However index root cannot be both compressed and
824 		 * encrypted.
825 		 */
826 		if (a->flags & ATTR_COMPRESSION_MASK)
827 			NInoSetCompressed(ni);
828 		if (a->flags & ATTR_IS_ENCRYPTED) {
829 			if (a->flags & ATTR_COMPRESSION_MASK) {
830 				ntfs_error(vi->i_sb, "Found encrypted and "
831 						"compressed attribute.");
832 				goto unm_err_out;
833 			}
834 			NInoSetEncrypted(ni);
835 		}
836 		if (a->flags & ATTR_IS_SPARSE)
837 			NInoSetSparse(ni);
838 		ir = (INDEX_ROOT*)((u8*)a +
839 				le16_to_cpu(a->data.resident.value_offset));
840 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
841 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
842 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
843 					"corrupt.");
844 			goto unm_err_out;
845 		}
846 		index_end = (u8*)&ir->index +
847 				le32_to_cpu(ir->index.index_length);
848 		if (index_end > ir_end) {
849 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
850 			goto unm_err_out;
851 		}
852 		if (ir->type != AT_FILE_NAME) {
853 			ntfs_error(vi->i_sb, "Indexed attribute is not "
854 					"$FILE_NAME.");
855 			goto unm_err_out;
856 		}
857 		if (ir->collation_rule != COLLATION_FILE_NAME) {
858 			ntfs_error(vi->i_sb, "Index collation rule is not "
859 					"COLLATION_FILE_NAME.");
860 			goto unm_err_out;
861 		}
862 		ni->itype.index.collation_rule = ir->collation_rule;
863 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
864 		if (ni->itype.index.block_size &
865 				(ni->itype.index.block_size - 1)) {
866 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
867 					"power of two.",
868 					ni->itype.index.block_size);
869 			goto unm_err_out;
870 		}
871 		if (ni->itype.index.block_size > PAGE_SIZE) {
872 			ntfs_error(vi->i_sb, "Index block size (%u) > "
873 					"PAGE_SIZE (%ld) is not "
874 					"supported.  Sorry.",
875 					ni->itype.index.block_size,
876 					PAGE_SIZE);
877 			err = -EOPNOTSUPP;
878 			goto unm_err_out;
879 		}
880 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
881 			ntfs_error(vi->i_sb, "Index block size (%u) < "
882 					"NTFS_BLOCK_SIZE (%i) is not "
883 					"supported.  Sorry.",
884 					ni->itype.index.block_size,
885 					NTFS_BLOCK_SIZE);
886 			err = -EOPNOTSUPP;
887 			goto unm_err_out;
888 		}
889 		ni->itype.index.block_size_bits =
890 				ffs(ni->itype.index.block_size) - 1;
891 		/* Determine the size of a vcn in the directory index. */
892 		if (vol->cluster_size <= ni->itype.index.block_size) {
893 			ni->itype.index.vcn_size = vol->cluster_size;
894 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
895 		} else {
896 			ni->itype.index.vcn_size = vol->sector_size;
897 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
898 		}
899 
900 		/* Setup the index allocation attribute, even if not present. */
901 		NInoSetMstProtected(ni);
902 		ni->type = AT_INDEX_ALLOCATION;
903 		ni->name = I30;
904 		ni->name_len = 4;
905 
906 		if (!(ir->index.flags & LARGE_INDEX)) {
907 			/* No index allocation. */
908 			vi->i_size = ni->initialized_size =
909 					ni->allocated_size = 0;
910 			/* We are done with the mft record, so we release it. */
911 			ntfs_attr_put_search_ctx(ctx);
912 			unmap_mft_record(ni);
913 			m = NULL;
914 			ctx = NULL;
915 			goto skip_large_dir_stuff;
916 		} /* LARGE_INDEX: Index allocation present. Setup state. */
917 		NInoSetIndexAllocPresent(ni);
918 		/* Find index allocation attribute. */
919 		ntfs_attr_reinit_search_ctx(ctx);
920 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
921 				CASE_SENSITIVE, 0, NULL, 0, ctx);
922 		if (unlikely(err)) {
923 			if (err == -ENOENT)
924 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
925 						"attribute is not present but "
926 						"$INDEX_ROOT indicated it is.");
927 			else
928 				ntfs_error(vi->i_sb, "Failed to lookup "
929 						"$INDEX_ALLOCATION "
930 						"attribute.");
931 			goto unm_err_out;
932 		}
933 		a = ctx->attr;
934 		if (!a->non_resident) {
935 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
936 					"is resident.");
937 			goto unm_err_out;
938 		}
939 		/*
940 		 * Ensure the attribute name is placed before the mapping pairs
941 		 * array.
942 		 */
943 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
944 				le16_to_cpu(
945 				a->data.non_resident.mapping_pairs_offset)))) {
946 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
947 					"is placed after the mapping pairs "
948 					"array.");
949 			goto unm_err_out;
950 		}
951 		if (a->flags & ATTR_IS_ENCRYPTED) {
952 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
953 					"is encrypted.");
954 			goto unm_err_out;
955 		}
956 		if (a->flags & ATTR_IS_SPARSE) {
957 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
958 					"is sparse.");
959 			goto unm_err_out;
960 		}
961 		if (a->flags & ATTR_COMPRESSION_MASK) {
962 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
963 					"is compressed.");
964 			goto unm_err_out;
965 		}
966 		if (a->data.non_resident.lowest_vcn) {
967 			ntfs_error(vi->i_sb, "First extent of "
968 					"$INDEX_ALLOCATION attribute has non "
969 					"zero lowest_vcn.");
970 			goto unm_err_out;
971 		}
972 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
973 		ni->initialized_size = sle64_to_cpu(
974 				a->data.non_resident.initialized_size);
975 		ni->allocated_size = sle64_to_cpu(
976 				a->data.non_resident.allocated_size);
977 		/*
978 		 * We are done with the mft record, so we release it. Otherwise
979 		 * we would deadlock in ntfs_attr_iget().
980 		 */
981 		ntfs_attr_put_search_ctx(ctx);
982 		unmap_mft_record(ni);
983 		m = NULL;
984 		ctx = NULL;
985 		/* Get the index bitmap attribute inode. */
986 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
987 		if (IS_ERR(bvi)) {
988 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
989 			err = PTR_ERR(bvi);
990 			goto unm_err_out;
991 		}
992 		bni = NTFS_I(bvi);
993 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
994 				NInoSparse(bni)) {
995 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
996 					"and/or encrypted and/or sparse.");
997 			goto iput_unm_err_out;
998 		}
999 		/* Consistency check bitmap size vs. index allocation size. */
1000 		bvi_size = i_size_read(bvi);
1001 		if ((bvi_size << 3) < (vi->i_size >>
1002 				ni->itype.index.block_size_bits)) {
1003 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1004 					"for index allocation (0x%llx).",
1005 					bvi_size << 3, vi->i_size);
1006 			goto iput_unm_err_out;
1007 		}
1008 		/* No longer need the bitmap attribute inode. */
1009 		iput(bvi);
1010 skip_large_dir_stuff:
1011 		/* Setup the operations for this inode. */
1012 		vi->i_op = &ntfs_dir_inode_ops;
1013 		vi->i_fop = &ntfs_dir_ops;
1014 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1015 	} else {
1016 		/* It is a file. */
1017 		ntfs_attr_reinit_search_ctx(ctx);
1018 
1019 		/* Setup the data attribute, even if not present. */
1020 		ni->type = AT_DATA;
1021 		ni->name = NULL;
1022 		ni->name_len = 0;
1023 
1024 		/* Find first extent of the unnamed data attribute. */
1025 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1026 		if (unlikely(err)) {
1027 			vi->i_size = ni->initialized_size =
1028 					ni->allocated_size = 0;
1029 			if (err != -ENOENT) {
1030 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1031 						"attribute.");
1032 				goto unm_err_out;
1033 			}
1034 			/*
1035 			 * FILE_Secure does not have an unnamed $DATA
1036 			 * attribute, so we special case it here.
1037 			 */
1038 			if (vi->i_ino == FILE_Secure)
1039 				goto no_data_attr_special_case;
1040 			/*
1041 			 * Most if not all the system files in the $Extend
1042 			 * system directory do not have unnamed data
1043 			 * attributes so we need to check if the parent
1044 			 * directory of the file is FILE_Extend and if it is
1045 			 * ignore this error. To do this we need to get the
1046 			 * name of this inode from the mft record as the name
1047 			 * contains the back reference to the parent directory.
1048 			 */
1049 			if (ntfs_is_extended_system_file(ctx) > 0)
1050 				goto no_data_attr_special_case;
1051 			// FIXME: File is corrupt! Hot-fix with empty data
1052 			// attribute if recovery option is set.
1053 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1054 			goto unm_err_out;
1055 		}
1056 		a = ctx->attr;
1057 		/* Setup the state. */
1058 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1059 			if (a->flags & ATTR_COMPRESSION_MASK) {
1060 				NInoSetCompressed(ni);
1061 				if (vol->cluster_size > 4096) {
1062 					ntfs_error(vi->i_sb, "Found "
1063 							"compressed data but "
1064 							"compression is "
1065 							"disabled due to "
1066 							"cluster size (%i) > "
1067 							"4kiB.",
1068 							vol->cluster_size);
1069 					goto unm_err_out;
1070 				}
1071 				if ((a->flags & ATTR_COMPRESSION_MASK)
1072 						!= ATTR_IS_COMPRESSED) {
1073 					ntfs_error(vi->i_sb, "Found unknown "
1074 							"compression method "
1075 							"or corrupt file.");
1076 					goto unm_err_out;
1077 				}
1078 			}
1079 			if (a->flags & ATTR_IS_SPARSE)
1080 				NInoSetSparse(ni);
1081 		}
1082 		if (a->flags & ATTR_IS_ENCRYPTED) {
1083 			if (NInoCompressed(ni)) {
1084 				ntfs_error(vi->i_sb, "Found encrypted and "
1085 						"compressed data.");
1086 				goto unm_err_out;
1087 			}
1088 			NInoSetEncrypted(ni);
1089 		}
1090 		if (a->non_resident) {
1091 			NInoSetNonResident(ni);
1092 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1093 				if (NInoCompressed(ni) && a->data.non_resident.
1094 						compression_unit != 4) {
1095 					ntfs_error(vi->i_sb, "Found "
1096 							"non-standard "
1097 							"compression unit (%u "
1098 							"instead of 4).  "
1099 							"Cannot handle this.",
1100 							a->data.non_resident.
1101 							compression_unit);
1102 					err = -EOPNOTSUPP;
1103 					goto unm_err_out;
1104 				}
1105 				if (a->data.non_resident.compression_unit) {
1106 					ni->itype.compressed.block_size = 1U <<
1107 							(a->data.non_resident.
1108 							compression_unit +
1109 							vol->cluster_size_bits);
1110 					ni->itype.compressed.block_size_bits =
1111 							ffs(ni->itype.
1112 							compressed.
1113 							block_size) - 1;
1114 					ni->itype.compressed.block_clusters =
1115 							1U << a->data.
1116 							non_resident.
1117 							compression_unit;
1118 				} else {
1119 					ni->itype.compressed.block_size = 0;
1120 					ni->itype.compressed.block_size_bits =
1121 							0;
1122 					ni->itype.compressed.block_clusters =
1123 							0;
1124 				}
1125 				ni->itype.compressed.size = sle64_to_cpu(
1126 						a->data.non_resident.
1127 						compressed_size);
1128 			}
1129 			if (a->data.non_resident.lowest_vcn) {
1130 				ntfs_error(vi->i_sb, "First extent of $DATA "
1131 						"attribute has non zero "
1132 						"lowest_vcn.");
1133 				goto unm_err_out;
1134 			}
1135 			vi->i_size = sle64_to_cpu(
1136 					a->data.non_resident.data_size);
1137 			ni->initialized_size = sle64_to_cpu(
1138 					a->data.non_resident.initialized_size);
1139 			ni->allocated_size = sle64_to_cpu(
1140 					a->data.non_resident.allocated_size);
1141 		} else { /* Resident attribute. */
1142 			vi->i_size = ni->initialized_size = le32_to_cpu(
1143 					a->data.resident.value_length);
1144 			ni->allocated_size = le32_to_cpu(a->length) -
1145 					le16_to_cpu(
1146 					a->data.resident.value_offset);
1147 			if (vi->i_size > ni->allocated_size) {
1148 				ntfs_error(vi->i_sb, "Resident data attribute "
1149 						"is corrupt (size exceeds "
1150 						"allocation).");
1151 				goto unm_err_out;
1152 			}
1153 		}
1154 no_data_attr_special_case:
1155 		/* We are done with the mft record, so we release it. */
1156 		ntfs_attr_put_search_ctx(ctx);
1157 		unmap_mft_record(ni);
1158 		m = NULL;
1159 		ctx = NULL;
1160 		/* Setup the operations for this inode. */
1161 		vi->i_op = &ntfs_file_inode_ops;
1162 		vi->i_fop = &ntfs_file_ops;
1163 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1164 		if (NInoMstProtected(ni))
1165 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1166 		else if (NInoCompressed(ni))
1167 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1168 	}
1169 	/*
1170 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1171 	 * far inaccurate as it doesn't account for any named streams or other
1172 	 * special non-resident attributes, but that is how Windows works, too,
1173 	 * so we are at least consistent with Windows, if not entirely
1174 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1175 	 * significant slowdown as it would involve iterating over all
1176 	 * attributes in the mft record and adding the allocated/compressed
1177 	 * sizes of all non-resident attributes present to give us the Linux
1178 	 * correct size that should go into i_blocks (after division by 512).
1179 	 */
1180 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1181 		vi->i_blocks = ni->itype.compressed.size >> 9;
1182 	else
1183 		vi->i_blocks = ni->allocated_size >> 9;
1184 	ntfs_debug("Done.");
1185 	return 0;
1186 iput_unm_err_out:
1187 	iput(bvi);
1188 unm_err_out:
1189 	if (!err)
1190 		err = -EIO;
1191 	if (ctx)
1192 		ntfs_attr_put_search_ctx(ctx);
1193 	if (m)
1194 		unmap_mft_record(ni);
1195 err_out:
1196 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1197 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1198 	make_bad_inode(vi);
1199 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1200 		NVolSetErrors(vol);
1201 	return err;
1202 }
1203 
1204 /**
1205  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1206  * @base_vi:	base inode
1207  * @vi:		attribute inode to read
1208  *
1209  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1210  * attribute inode described by @vi into memory from the base mft record
1211  * described by @base_ni.
1212  *
1213  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1214  * reading and looks up the attribute described by @vi before setting up the
1215  * necessary fields in @vi as well as initializing the ntfs inode.
1216  *
1217  * Q: What locks are held when the function is called?
1218  * A: i_state has I_NEW set, hence the inode is locked, also
1219  *    i_count is set to 1, so it is not going to go away
1220  *
1221  * Return 0 on success and -errno on error.  In the error case, the inode will
1222  * have had make_bad_inode() executed on it.
1223  *
1224  * Note this cannot be called for AT_INDEX_ALLOCATION.
1225  */
1226 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1227 {
1228 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1229 	ntfs_inode *ni, *base_ni;
1230 	MFT_RECORD *m;
1231 	ATTR_RECORD *a;
1232 	ntfs_attr_search_ctx *ctx;
1233 	int err = 0;
1234 
1235 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1236 
1237 	ntfs_init_big_inode(vi);
1238 
1239 	ni	= NTFS_I(vi);
1240 	base_ni = NTFS_I(base_vi);
1241 
1242 	/* Just mirror the values from the base inode. */
1243 	vi->i_version	= base_vi->i_version;
1244 	vi->i_uid	= base_vi->i_uid;
1245 	vi->i_gid	= base_vi->i_gid;
1246 	set_nlink(vi, base_vi->i_nlink);
1247 	vi->i_mtime	= base_vi->i_mtime;
1248 	vi->i_ctime	= base_vi->i_ctime;
1249 	vi->i_atime	= base_vi->i_atime;
1250 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1251 
1252 	/* Set inode type to zero but preserve permissions. */
1253 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1254 
1255 	m = map_mft_record(base_ni);
1256 	if (IS_ERR(m)) {
1257 		err = PTR_ERR(m);
1258 		goto err_out;
1259 	}
1260 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1261 	if (!ctx) {
1262 		err = -ENOMEM;
1263 		goto unm_err_out;
1264 	}
1265 	/* Find the attribute. */
1266 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1267 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1268 	if (unlikely(err))
1269 		goto unm_err_out;
1270 	a = ctx->attr;
1271 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1272 		if (a->flags & ATTR_COMPRESSION_MASK) {
1273 			NInoSetCompressed(ni);
1274 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1275 					ni->name_len)) {
1276 				ntfs_error(vi->i_sb, "Found compressed "
1277 						"non-data or named data "
1278 						"attribute.  Please report "
1279 						"you saw this message to "
1280 						"linux-ntfs-dev@lists."
1281 						"sourceforge.net");
1282 				goto unm_err_out;
1283 			}
1284 			if (vol->cluster_size > 4096) {
1285 				ntfs_error(vi->i_sb, "Found compressed "
1286 						"attribute but compression is "
1287 						"disabled due to cluster size "
1288 						"(%i) > 4kiB.",
1289 						vol->cluster_size);
1290 				goto unm_err_out;
1291 			}
1292 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1293 					ATTR_IS_COMPRESSED) {
1294 				ntfs_error(vi->i_sb, "Found unknown "
1295 						"compression method.");
1296 				goto unm_err_out;
1297 			}
1298 		}
1299 		/*
1300 		 * The compressed/sparse flag set in an index root just means
1301 		 * to compress all files.
1302 		 */
1303 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1304 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1305 					"but the attribute is %s.  Please "
1306 					"report you saw this message to "
1307 					"linux-ntfs-dev@lists.sourceforge.net",
1308 					NInoCompressed(ni) ? "compressed" :
1309 					"sparse");
1310 			goto unm_err_out;
1311 		}
1312 		if (a->flags & ATTR_IS_SPARSE)
1313 			NInoSetSparse(ni);
1314 	}
1315 	if (a->flags & ATTR_IS_ENCRYPTED) {
1316 		if (NInoCompressed(ni)) {
1317 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1318 					"data.");
1319 			goto unm_err_out;
1320 		}
1321 		/*
1322 		 * The encryption flag set in an index root just means to
1323 		 * encrypt all files.
1324 		 */
1325 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1326 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1327 					"but the attribute is encrypted.  "
1328 					"Please report you saw this message "
1329 					"to linux-ntfs-dev@lists.sourceforge."
1330 					"net");
1331 			goto unm_err_out;
1332 		}
1333 		if (ni->type != AT_DATA) {
1334 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1335 					"attribute.");
1336 			goto unm_err_out;
1337 		}
1338 		NInoSetEncrypted(ni);
1339 	}
1340 	if (!a->non_resident) {
1341 		/* Ensure the attribute name is placed before the value. */
1342 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1343 				le16_to_cpu(a->data.resident.value_offset)))) {
1344 			ntfs_error(vol->sb, "Attribute name is placed after "
1345 					"the attribute value.");
1346 			goto unm_err_out;
1347 		}
1348 		if (NInoMstProtected(ni)) {
1349 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1350 					"but the attribute is resident.  "
1351 					"Please report you saw this message to "
1352 					"linux-ntfs-dev@lists.sourceforge.net");
1353 			goto unm_err_out;
1354 		}
1355 		vi->i_size = ni->initialized_size = le32_to_cpu(
1356 				a->data.resident.value_length);
1357 		ni->allocated_size = le32_to_cpu(a->length) -
1358 				le16_to_cpu(a->data.resident.value_offset);
1359 		if (vi->i_size > ni->allocated_size) {
1360 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1361 					"(size exceeds allocation).");
1362 			goto unm_err_out;
1363 		}
1364 	} else {
1365 		NInoSetNonResident(ni);
1366 		/*
1367 		 * Ensure the attribute name is placed before the mapping pairs
1368 		 * array.
1369 		 */
1370 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1371 				le16_to_cpu(
1372 				a->data.non_resident.mapping_pairs_offset)))) {
1373 			ntfs_error(vol->sb, "Attribute name is placed after "
1374 					"the mapping pairs array.");
1375 			goto unm_err_out;
1376 		}
1377 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1378 			if (NInoCompressed(ni) && a->data.non_resident.
1379 					compression_unit != 4) {
1380 				ntfs_error(vi->i_sb, "Found non-standard "
1381 						"compression unit (%u instead "
1382 						"of 4).  Cannot handle this.",
1383 						a->data.non_resident.
1384 						compression_unit);
1385 				err = -EOPNOTSUPP;
1386 				goto unm_err_out;
1387 			}
1388 			if (a->data.non_resident.compression_unit) {
1389 				ni->itype.compressed.block_size = 1U <<
1390 						(a->data.non_resident.
1391 						compression_unit +
1392 						vol->cluster_size_bits);
1393 				ni->itype.compressed.block_size_bits =
1394 						ffs(ni->itype.compressed.
1395 						block_size) - 1;
1396 				ni->itype.compressed.block_clusters = 1U <<
1397 						a->data.non_resident.
1398 						compression_unit;
1399 			} else {
1400 				ni->itype.compressed.block_size = 0;
1401 				ni->itype.compressed.block_size_bits = 0;
1402 				ni->itype.compressed.block_clusters = 0;
1403 			}
1404 			ni->itype.compressed.size = sle64_to_cpu(
1405 					a->data.non_resident.compressed_size);
1406 		}
1407 		if (a->data.non_resident.lowest_vcn) {
1408 			ntfs_error(vi->i_sb, "First extent of attribute has "
1409 					"non-zero lowest_vcn.");
1410 			goto unm_err_out;
1411 		}
1412 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1413 		ni->initialized_size = sle64_to_cpu(
1414 				a->data.non_resident.initialized_size);
1415 		ni->allocated_size = sle64_to_cpu(
1416 				a->data.non_resident.allocated_size);
1417 	}
1418 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1419 	if (NInoMstProtected(ni))
1420 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1421 	else if (NInoCompressed(ni))
1422 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1423 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1424 		vi->i_blocks = ni->itype.compressed.size >> 9;
1425 	else
1426 		vi->i_blocks = ni->allocated_size >> 9;
1427 	/*
1428 	 * Make sure the base inode does not go away and attach it to the
1429 	 * attribute inode.
1430 	 */
1431 	igrab(base_vi);
1432 	ni->ext.base_ntfs_ino = base_ni;
1433 	ni->nr_extents = -1;
1434 
1435 	ntfs_attr_put_search_ctx(ctx);
1436 	unmap_mft_record(base_ni);
1437 
1438 	ntfs_debug("Done.");
1439 	return 0;
1440 
1441 unm_err_out:
1442 	if (!err)
1443 		err = -EIO;
1444 	if (ctx)
1445 		ntfs_attr_put_search_ctx(ctx);
1446 	unmap_mft_record(base_ni);
1447 err_out:
1448 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1449 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1450 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1451 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1452 			base_vi->i_ino);
1453 	make_bad_inode(vi);
1454 	if (err != -ENOMEM)
1455 		NVolSetErrors(vol);
1456 	return err;
1457 }
1458 
1459 /**
1460  * ntfs_read_locked_index_inode - read an index inode from its base inode
1461  * @base_vi:	base inode
1462  * @vi:		index inode to read
1463  *
1464  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1465  * index inode described by @vi into memory from the base mft record described
1466  * by @base_ni.
1467  *
1468  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1469  * reading and looks up the attributes relating to the index described by @vi
1470  * before setting up the necessary fields in @vi as well as initializing the
1471  * ntfs inode.
1472  *
1473  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1474  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1475  * are setup like directory inodes since directories are a special case of
1476  * indices ao they need to be treated in much the same way.  Most importantly,
1477  * for small indices the index allocation attribute might not actually exist.
1478  * However, the index root attribute always exists but this does not need to
1479  * have an inode associated with it and this is why we define a new inode type
1480  * index.  Also, like for directories, we need to have an attribute inode for
1481  * the bitmap attribute corresponding to the index allocation attribute and we
1482  * can store this in the appropriate field of the inode, just like we do for
1483  * normal directory inodes.
1484  *
1485  * Q: What locks are held when the function is called?
1486  * A: i_state has I_NEW set, hence the inode is locked, also
1487  *    i_count is set to 1, so it is not going to go away
1488  *
1489  * Return 0 on success and -errno on error.  In the error case, the inode will
1490  * have had make_bad_inode() executed on it.
1491  */
1492 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1493 {
1494 	loff_t bvi_size;
1495 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1496 	ntfs_inode *ni, *base_ni, *bni;
1497 	struct inode *bvi;
1498 	MFT_RECORD *m;
1499 	ATTR_RECORD *a;
1500 	ntfs_attr_search_ctx *ctx;
1501 	INDEX_ROOT *ir;
1502 	u8 *ir_end, *index_end;
1503 	int err = 0;
1504 
1505 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1506 	ntfs_init_big_inode(vi);
1507 	ni	= NTFS_I(vi);
1508 	base_ni = NTFS_I(base_vi);
1509 	/* Just mirror the values from the base inode. */
1510 	vi->i_version	= base_vi->i_version;
1511 	vi->i_uid	= base_vi->i_uid;
1512 	vi->i_gid	= base_vi->i_gid;
1513 	set_nlink(vi, base_vi->i_nlink);
1514 	vi->i_mtime	= base_vi->i_mtime;
1515 	vi->i_ctime	= base_vi->i_ctime;
1516 	vi->i_atime	= base_vi->i_atime;
1517 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1518 	/* Set inode type to zero but preserve permissions. */
1519 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1520 	/* Map the mft record for the base inode. */
1521 	m = map_mft_record(base_ni);
1522 	if (IS_ERR(m)) {
1523 		err = PTR_ERR(m);
1524 		goto err_out;
1525 	}
1526 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1527 	if (!ctx) {
1528 		err = -ENOMEM;
1529 		goto unm_err_out;
1530 	}
1531 	/* Find the index root attribute. */
1532 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1533 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1534 	if (unlikely(err)) {
1535 		if (err == -ENOENT)
1536 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1537 					"missing.");
1538 		goto unm_err_out;
1539 	}
1540 	a = ctx->attr;
1541 	/* Set up the state. */
1542 	if (unlikely(a->non_resident)) {
1543 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1544 		goto unm_err_out;
1545 	}
1546 	/* Ensure the attribute name is placed before the value. */
1547 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1548 			le16_to_cpu(a->data.resident.value_offset)))) {
1549 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1550 				"after the attribute value.");
1551 		goto unm_err_out;
1552 	}
1553 	/*
1554 	 * Compressed/encrypted/sparse index root is not allowed, except for
1555 	 * directories of course but those are not dealt with here.
1556 	 */
1557 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1558 			ATTR_IS_SPARSE)) {
1559 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1560 				"root attribute.");
1561 		goto unm_err_out;
1562 	}
1563 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1564 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1565 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1566 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1567 		goto unm_err_out;
1568 	}
1569 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1570 	if (index_end > ir_end) {
1571 		ntfs_error(vi->i_sb, "Index is corrupt.");
1572 		goto unm_err_out;
1573 	}
1574 	if (ir->type) {
1575 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1576 				le32_to_cpu(ir->type));
1577 		goto unm_err_out;
1578 	}
1579 	ni->itype.index.collation_rule = ir->collation_rule;
1580 	ntfs_debug("Index collation rule is 0x%x.",
1581 			le32_to_cpu(ir->collation_rule));
1582 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1583 	if (!is_power_of_2(ni->itype.index.block_size)) {
1584 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1585 				"two.", ni->itype.index.block_size);
1586 		goto unm_err_out;
1587 	}
1588 	if (ni->itype.index.block_size > PAGE_SIZE) {
1589 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1590 				"(%ld) is not supported.  Sorry.",
1591 				ni->itype.index.block_size, PAGE_SIZE);
1592 		err = -EOPNOTSUPP;
1593 		goto unm_err_out;
1594 	}
1595 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1596 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1597 				"(%i) is not supported.  Sorry.",
1598 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1599 		err = -EOPNOTSUPP;
1600 		goto unm_err_out;
1601 	}
1602 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1603 	/* Determine the size of a vcn in the index. */
1604 	if (vol->cluster_size <= ni->itype.index.block_size) {
1605 		ni->itype.index.vcn_size = vol->cluster_size;
1606 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1607 	} else {
1608 		ni->itype.index.vcn_size = vol->sector_size;
1609 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1610 	}
1611 	/* Check for presence of index allocation attribute. */
1612 	if (!(ir->index.flags & LARGE_INDEX)) {
1613 		/* No index allocation. */
1614 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1615 		/* We are done with the mft record, so we release it. */
1616 		ntfs_attr_put_search_ctx(ctx);
1617 		unmap_mft_record(base_ni);
1618 		m = NULL;
1619 		ctx = NULL;
1620 		goto skip_large_index_stuff;
1621 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1622 	NInoSetIndexAllocPresent(ni);
1623 	/* Find index allocation attribute. */
1624 	ntfs_attr_reinit_search_ctx(ctx);
1625 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1626 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1627 	if (unlikely(err)) {
1628 		if (err == -ENOENT)
1629 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1630 					"not present but $INDEX_ROOT "
1631 					"indicated it is.");
1632 		else
1633 			ntfs_error(vi->i_sb, "Failed to lookup "
1634 					"$INDEX_ALLOCATION attribute.");
1635 		goto unm_err_out;
1636 	}
1637 	a = ctx->attr;
1638 	if (!a->non_resident) {
1639 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1640 				"resident.");
1641 		goto unm_err_out;
1642 	}
1643 	/*
1644 	 * Ensure the attribute name is placed before the mapping pairs array.
1645 	 */
1646 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1647 			le16_to_cpu(
1648 			a->data.non_resident.mapping_pairs_offset)))) {
1649 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1650 				"placed after the mapping pairs array.");
1651 		goto unm_err_out;
1652 	}
1653 	if (a->flags & ATTR_IS_ENCRYPTED) {
1654 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655 				"encrypted.");
1656 		goto unm_err_out;
1657 	}
1658 	if (a->flags & ATTR_IS_SPARSE) {
1659 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1660 		goto unm_err_out;
1661 	}
1662 	if (a->flags & ATTR_COMPRESSION_MASK) {
1663 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1664 				"compressed.");
1665 		goto unm_err_out;
1666 	}
1667 	if (a->data.non_resident.lowest_vcn) {
1668 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1669 				"attribute has non zero lowest_vcn.");
1670 		goto unm_err_out;
1671 	}
1672 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1673 	ni->initialized_size = sle64_to_cpu(
1674 			a->data.non_resident.initialized_size);
1675 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1676 	/*
1677 	 * We are done with the mft record, so we release it.  Otherwise
1678 	 * we would deadlock in ntfs_attr_iget().
1679 	 */
1680 	ntfs_attr_put_search_ctx(ctx);
1681 	unmap_mft_record(base_ni);
1682 	m = NULL;
1683 	ctx = NULL;
1684 	/* Get the index bitmap attribute inode. */
1685 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1686 	if (IS_ERR(bvi)) {
1687 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1688 		err = PTR_ERR(bvi);
1689 		goto unm_err_out;
1690 	}
1691 	bni = NTFS_I(bvi);
1692 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1693 			NInoSparse(bni)) {
1694 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1695 				"encrypted and/or sparse.");
1696 		goto iput_unm_err_out;
1697 	}
1698 	/* Consistency check bitmap size vs. index allocation size. */
1699 	bvi_size = i_size_read(bvi);
1700 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1701 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1702 				"index allocation (0x%llx).", bvi_size << 3,
1703 				vi->i_size);
1704 		goto iput_unm_err_out;
1705 	}
1706 	iput(bvi);
1707 skip_large_index_stuff:
1708 	/* Setup the operations for this index inode. */
1709 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1710 	vi->i_blocks = ni->allocated_size >> 9;
1711 	/*
1712 	 * Make sure the base inode doesn't go away and attach it to the
1713 	 * index inode.
1714 	 */
1715 	igrab(base_vi);
1716 	ni->ext.base_ntfs_ino = base_ni;
1717 	ni->nr_extents = -1;
1718 
1719 	ntfs_debug("Done.");
1720 	return 0;
1721 iput_unm_err_out:
1722 	iput(bvi);
1723 unm_err_out:
1724 	if (!err)
1725 		err = -EIO;
1726 	if (ctx)
1727 		ntfs_attr_put_search_ctx(ctx);
1728 	if (m)
1729 		unmap_mft_record(base_ni);
1730 err_out:
1731 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1732 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1733 			ni->name_len);
1734 	make_bad_inode(vi);
1735 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1736 		NVolSetErrors(vol);
1737 	return err;
1738 }
1739 
1740 /*
1741  * The MFT inode has special locking, so teach the lock validator
1742  * about this by splitting off the locking rules of the MFT from
1743  * the locking rules of other inodes. The MFT inode can never be
1744  * accessed from the VFS side (or even internally), only by the
1745  * map_mft functions.
1746  */
1747 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1748 
1749 /**
1750  * ntfs_read_inode_mount - special read_inode for mount time use only
1751  * @vi:		inode to read
1752  *
1753  * Read inode FILE_MFT at mount time, only called with super_block lock
1754  * held from within the read_super() code path.
1755  *
1756  * This function exists because when it is called the page cache for $MFT/$DATA
1757  * is not initialized and hence we cannot get at the contents of mft records
1758  * by calling map_mft_record*().
1759  *
1760  * Further it needs to cope with the circular references problem, i.e. cannot
1761  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1762  * we do not know where the other extent mft records are yet and again, because
1763  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1764  * attribute list is actually present in $MFT inode.
1765  *
1766  * We solve these problems by starting with the $DATA attribute before anything
1767  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1768  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1769  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1770  * sufficient information for the next step to complete.
1771  *
1772  * This should work but there are two possible pit falls (see inline comments
1773  * below), but only time will tell if they are real pits or just smoke...
1774  */
1775 int ntfs_read_inode_mount(struct inode *vi)
1776 {
1777 	VCN next_vcn, last_vcn, highest_vcn;
1778 	s64 block;
1779 	struct super_block *sb = vi->i_sb;
1780 	ntfs_volume *vol = NTFS_SB(sb);
1781 	struct buffer_head *bh;
1782 	ntfs_inode *ni;
1783 	MFT_RECORD *m = NULL;
1784 	ATTR_RECORD *a;
1785 	ntfs_attr_search_ctx *ctx;
1786 	unsigned int i, nr_blocks;
1787 	int err;
1788 
1789 	ntfs_debug("Entering.");
1790 
1791 	/* Initialize the ntfs specific part of @vi. */
1792 	ntfs_init_big_inode(vi);
1793 
1794 	ni = NTFS_I(vi);
1795 
1796 	/* Setup the data attribute. It is special as it is mst protected. */
1797 	NInoSetNonResident(ni);
1798 	NInoSetMstProtected(ni);
1799 	NInoSetSparseDisabled(ni);
1800 	ni->type = AT_DATA;
1801 	ni->name = NULL;
1802 	ni->name_len = 0;
1803 	/*
1804 	 * This sets up our little cheat allowing us to reuse the async read io
1805 	 * completion handler for directories.
1806 	 */
1807 	ni->itype.index.block_size = vol->mft_record_size;
1808 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1809 
1810 	/* Very important! Needed to be able to call map_mft_record*(). */
1811 	vol->mft_ino = vi;
1812 
1813 	/* Allocate enough memory to read the first mft record. */
1814 	if (vol->mft_record_size > 64 * 1024) {
1815 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1816 				vol->mft_record_size);
1817 		goto err_out;
1818 	}
1819 	i = vol->mft_record_size;
1820 	if (i < sb->s_blocksize)
1821 		i = sb->s_blocksize;
1822 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1823 	if (!m) {
1824 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1825 		goto err_out;
1826 	}
1827 
1828 	/* Determine the first block of the $MFT/$DATA attribute. */
1829 	block = vol->mft_lcn << vol->cluster_size_bits >>
1830 			sb->s_blocksize_bits;
1831 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1832 	if (!nr_blocks)
1833 		nr_blocks = 1;
1834 
1835 	/* Load $MFT/$DATA's first mft record. */
1836 	for (i = 0; i < nr_blocks; i++) {
1837 		bh = sb_bread(sb, block++);
1838 		if (!bh) {
1839 			ntfs_error(sb, "Device read failed.");
1840 			goto err_out;
1841 		}
1842 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1843 				sb->s_blocksize);
1844 		brelse(bh);
1845 	}
1846 
1847 	/* Apply the mst fixups. */
1848 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1849 		/* FIXME: Try to use the $MFTMirr now. */
1850 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1851 		goto err_out;
1852 	}
1853 
1854 	/* Need this to sanity check attribute list references to $MFT. */
1855 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1856 
1857 	/* Provides readpage() for map_mft_record(). */
1858 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1859 
1860 	ctx = ntfs_attr_get_search_ctx(ni, m);
1861 	if (!ctx) {
1862 		err = -ENOMEM;
1863 		goto err_out;
1864 	}
1865 
1866 	/* Find the attribute list attribute if present. */
1867 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1868 	if (err) {
1869 		if (unlikely(err != -ENOENT)) {
1870 			ntfs_error(sb, "Failed to lookup attribute list "
1871 					"attribute. You should run chkdsk.");
1872 			goto put_err_out;
1873 		}
1874 	} else /* if (!err) */ {
1875 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1876 		u8 *al_end;
1877 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1878 				"You should run chkdsk.";
1879 
1880 		ntfs_debug("Attribute list attribute found in $MFT.");
1881 		NInoSetAttrList(ni);
1882 		a = ctx->attr;
1883 		if (a->flags & ATTR_COMPRESSION_MASK) {
1884 			ntfs_error(sb, "Attribute list attribute is "
1885 					"compressed.%s", es);
1886 			goto put_err_out;
1887 		}
1888 		if (a->flags & ATTR_IS_ENCRYPTED ||
1889 				a->flags & ATTR_IS_SPARSE) {
1890 			if (a->non_resident) {
1891 				ntfs_error(sb, "Non-resident attribute list "
1892 						"attribute is encrypted/"
1893 						"sparse.%s", es);
1894 				goto put_err_out;
1895 			}
1896 			ntfs_warning(sb, "Resident attribute list attribute "
1897 					"in $MFT system file is marked "
1898 					"encrypted/sparse which is not true.  "
1899 					"However, Windows allows this and "
1900 					"chkdsk does not detect or correct it "
1901 					"so we will just ignore the invalid "
1902 					"flags and pretend they are not set.");
1903 		}
1904 		/* Now allocate memory for the attribute list. */
1905 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1906 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1907 		if (!ni->attr_list) {
1908 			ntfs_error(sb, "Not enough memory to allocate buffer "
1909 					"for attribute list.");
1910 			goto put_err_out;
1911 		}
1912 		if (a->non_resident) {
1913 			NInoSetAttrListNonResident(ni);
1914 			if (a->data.non_resident.lowest_vcn) {
1915 				ntfs_error(sb, "Attribute list has non zero "
1916 						"lowest_vcn. $MFT is corrupt. "
1917 						"You should run chkdsk.");
1918 				goto put_err_out;
1919 			}
1920 			/* Setup the runlist. */
1921 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1922 					a, NULL);
1923 			if (IS_ERR(ni->attr_list_rl.rl)) {
1924 				err = PTR_ERR(ni->attr_list_rl.rl);
1925 				ni->attr_list_rl.rl = NULL;
1926 				ntfs_error(sb, "Mapping pairs decompression "
1927 						"failed with error code %i.",
1928 						-err);
1929 				goto put_err_out;
1930 			}
1931 			/* Now load the attribute list. */
1932 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1933 					ni->attr_list, ni->attr_list_size,
1934 					sle64_to_cpu(a->data.
1935 					non_resident.initialized_size)))) {
1936 				ntfs_error(sb, "Failed to load attribute list "
1937 						"attribute with error code %i.",
1938 						-err);
1939 				goto put_err_out;
1940 			}
1941 		} else /* if (!ctx.attr->non_resident) */ {
1942 			if ((u8*)a + le16_to_cpu(
1943 					a->data.resident.value_offset) +
1944 					le32_to_cpu(
1945 					a->data.resident.value_length) >
1946 					(u8*)ctx->mrec + vol->mft_record_size) {
1947 				ntfs_error(sb, "Corrupt attribute list "
1948 						"attribute.");
1949 				goto put_err_out;
1950 			}
1951 			/* Now copy the attribute list. */
1952 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1953 					a->data.resident.value_offset),
1954 					le32_to_cpu(
1955 					a->data.resident.value_length));
1956 		}
1957 		/* The attribute list is now setup in memory. */
1958 		/*
1959 		 * FIXME: I don't know if this case is actually possible.
1960 		 * According to logic it is not possible but I have seen too
1961 		 * many weird things in MS software to rely on logic... Thus we
1962 		 * perform a manual search and make sure the first $MFT/$DATA
1963 		 * extent is in the base inode. If it is not we abort with an
1964 		 * error and if we ever see a report of this error we will need
1965 		 * to do some magic in order to have the necessary mft record
1966 		 * loaded and in the right place in the page cache. But
1967 		 * hopefully logic will prevail and this never happens...
1968 		 */
1969 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1970 		al_end = (u8*)al_entry + ni->attr_list_size;
1971 		for (;; al_entry = next_al_entry) {
1972 			/* Out of bounds check. */
1973 			if ((u8*)al_entry < ni->attr_list ||
1974 					(u8*)al_entry > al_end)
1975 				goto em_put_err_out;
1976 			/* Catch the end of the attribute list. */
1977 			if ((u8*)al_entry == al_end)
1978 				goto em_put_err_out;
1979 			if (!al_entry->length)
1980 				goto em_put_err_out;
1981 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1982 					le16_to_cpu(al_entry->length) > al_end)
1983 				goto em_put_err_out;
1984 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1985 					le16_to_cpu(al_entry->length));
1986 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1987 				goto em_put_err_out;
1988 			if (AT_DATA != al_entry->type)
1989 				continue;
1990 			/* We want an unnamed attribute. */
1991 			if (al_entry->name_length)
1992 				goto em_put_err_out;
1993 			/* Want the first entry, i.e. lowest_vcn == 0. */
1994 			if (al_entry->lowest_vcn)
1995 				goto em_put_err_out;
1996 			/* First entry has to be in the base mft record. */
1997 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1998 				/* MFT references do not match, logic fails. */
1999 				ntfs_error(sb, "BUG: The first $DATA extent "
2000 						"of $MFT is not in the base "
2001 						"mft record. Please report "
2002 						"you saw this message to "
2003 						"linux-ntfs-dev@lists."
2004 						"sourceforge.net");
2005 				goto put_err_out;
2006 			} else {
2007 				/* Sequence numbers must match. */
2008 				if (MSEQNO_LE(al_entry->mft_reference) !=
2009 						ni->seq_no)
2010 					goto em_put_err_out;
2011 				/* Got it. All is ok. We can stop now. */
2012 				break;
2013 			}
2014 		}
2015 	}
2016 
2017 	ntfs_attr_reinit_search_ctx(ctx);
2018 
2019 	/* Now load all attribute extents. */
2020 	a = NULL;
2021 	next_vcn = last_vcn = highest_vcn = 0;
2022 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2023 			ctx))) {
2024 		runlist_element *nrl;
2025 
2026 		/* Cache the current attribute. */
2027 		a = ctx->attr;
2028 		/* $MFT must be non-resident. */
2029 		if (!a->non_resident) {
2030 			ntfs_error(sb, "$MFT must be non-resident but a "
2031 					"resident extent was found. $MFT is "
2032 					"corrupt. Run chkdsk.");
2033 			goto put_err_out;
2034 		}
2035 		/* $MFT must be uncompressed and unencrypted. */
2036 		if (a->flags & ATTR_COMPRESSION_MASK ||
2037 				a->flags & ATTR_IS_ENCRYPTED ||
2038 				a->flags & ATTR_IS_SPARSE) {
2039 			ntfs_error(sb, "$MFT must be uncompressed, "
2040 					"non-sparse, and unencrypted but a "
2041 					"compressed/sparse/encrypted extent "
2042 					"was found. $MFT is corrupt. Run "
2043 					"chkdsk.");
2044 			goto put_err_out;
2045 		}
2046 		/*
2047 		 * Decompress the mapping pairs array of this extent and merge
2048 		 * the result into the existing runlist. No need for locking
2049 		 * as we have exclusive access to the inode at this time and we
2050 		 * are a mount in progress task, too.
2051 		 */
2052 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2053 		if (IS_ERR(nrl)) {
2054 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2055 					"failed with error code %ld.  $MFT is "
2056 					"corrupt.", PTR_ERR(nrl));
2057 			goto put_err_out;
2058 		}
2059 		ni->runlist.rl = nrl;
2060 
2061 		/* Are we in the first extent? */
2062 		if (!next_vcn) {
2063 			if (a->data.non_resident.lowest_vcn) {
2064 				ntfs_error(sb, "First extent of $DATA "
2065 						"attribute has non zero "
2066 						"lowest_vcn. $MFT is corrupt. "
2067 						"You should run chkdsk.");
2068 				goto put_err_out;
2069 			}
2070 			/* Get the last vcn in the $DATA attribute. */
2071 			last_vcn = sle64_to_cpu(
2072 					a->data.non_resident.allocated_size)
2073 					>> vol->cluster_size_bits;
2074 			/* Fill in the inode size. */
2075 			vi->i_size = sle64_to_cpu(
2076 					a->data.non_resident.data_size);
2077 			ni->initialized_size = sle64_to_cpu(
2078 					a->data.non_resident.initialized_size);
2079 			ni->allocated_size = sle64_to_cpu(
2080 					a->data.non_resident.allocated_size);
2081 			/*
2082 			 * Verify the number of mft records does not exceed
2083 			 * 2^32 - 1.
2084 			 */
2085 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2086 					(1ULL << 32)) {
2087 				ntfs_error(sb, "$MFT is too big! Aborting.");
2088 				goto put_err_out;
2089 			}
2090 			/*
2091 			 * We have got the first extent of the runlist for
2092 			 * $MFT which means it is now relatively safe to call
2093 			 * the normal ntfs_read_inode() function.
2094 			 * Complete reading the inode, this will actually
2095 			 * re-read the mft record for $MFT, this time entering
2096 			 * it into the page cache with which we complete the
2097 			 * kick start of the volume. It should be safe to do
2098 			 * this now as the first extent of $MFT/$DATA is
2099 			 * already known and we would hope that we don't need
2100 			 * further extents in order to find the other
2101 			 * attributes belonging to $MFT. Only time will tell if
2102 			 * this is really the case. If not we will have to play
2103 			 * magic at this point, possibly duplicating a lot of
2104 			 * ntfs_read_inode() at this point. We will need to
2105 			 * ensure we do enough of its work to be able to call
2106 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2107 			 * hope this never happens...
2108 			 */
2109 			ntfs_read_locked_inode(vi);
2110 			if (is_bad_inode(vi)) {
2111 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2112 						"failed. BUG or corrupt $MFT. "
2113 						"Run chkdsk and if no errors "
2114 						"are found, please report you "
2115 						"saw this message to "
2116 						"linux-ntfs-dev@lists."
2117 						"sourceforge.net");
2118 				ntfs_attr_put_search_ctx(ctx);
2119 				/* Revert to the safe super operations. */
2120 				ntfs_free(m);
2121 				return -1;
2122 			}
2123 			/*
2124 			 * Re-initialize some specifics about $MFT's inode as
2125 			 * ntfs_read_inode() will have set up the default ones.
2126 			 */
2127 			/* Set uid and gid to root. */
2128 			vi->i_uid = GLOBAL_ROOT_UID;
2129 			vi->i_gid = GLOBAL_ROOT_GID;
2130 			/* Regular file. No access for anyone. */
2131 			vi->i_mode = S_IFREG;
2132 			/* No VFS initiated operations allowed for $MFT. */
2133 			vi->i_op = &ntfs_empty_inode_ops;
2134 			vi->i_fop = &ntfs_empty_file_ops;
2135 		}
2136 
2137 		/* Get the lowest vcn for the next extent. */
2138 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2139 		next_vcn = highest_vcn + 1;
2140 
2141 		/* Only one extent or error, which we catch below. */
2142 		if (next_vcn <= 0)
2143 			break;
2144 
2145 		/* Avoid endless loops due to corruption. */
2146 		if (next_vcn < sle64_to_cpu(
2147 				a->data.non_resident.lowest_vcn)) {
2148 			ntfs_error(sb, "$MFT has corrupt attribute list "
2149 					"attribute. Run chkdsk.");
2150 			goto put_err_out;
2151 		}
2152 	}
2153 	if (err != -ENOENT) {
2154 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2155 				"$MFT is corrupt. Run chkdsk.");
2156 		goto put_err_out;
2157 	}
2158 	if (!a) {
2159 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2160 				"corrupt. Run chkdsk.");
2161 		goto put_err_out;
2162 	}
2163 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2164 		ntfs_error(sb, "Failed to load the complete runlist for "
2165 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2166 				"Run chkdsk.");
2167 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2168 				(unsigned long long)highest_vcn,
2169 				(unsigned long long)last_vcn - 1);
2170 		goto put_err_out;
2171 	}
2172 	ntfs_attr_put_search_ctx(ctx);
2173 	ntfs_debug("Done.");
2174 	ntfs_free(m);
2175 
2176 	/*
2177 	 * Split the locking rules of the MFT inode from the
2178 	 * locking rules of other inodes:
2179 	 */
2180 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2181 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2182 
2183 	return 0;
2184 
2185 em_put_err_out:
2186 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2187 			"attribute list. $MFT is corrupt. Run chkdsk.");
2188 put_err_out:
2189 	ntfs_attr_put_search_ctx(ctx);
2190 err_out:
2191 	ntfs_error(sb, "Failed. Marking inode as bad.");
2192 	make_bad_inode(vi);
2193 	ntfs_free(m);
2194 	return -1;
2195 }
2196 
2197 static void __ntfs_clear_inode(ntfs_inode *ni)
2198 {
2199 	/* Free all alocated memory. */
2200 	down_write(&ni->runlist.lock);
2201 	if (ni->runlist.rl) {
2202 		ntfs_free(ni->runlist.rl);
2203 		ni->runlist.rl = NULL;
2204 	}
2205 	up_write(&ni->runlist.lock);
2206 
2207 	if (ni->attr_list) {
2208 		ntfs_free(ni->attr_list);
2209 		ni->attr_list = NULL;
2210 	}
2211 
2212 	down_write(&ni->attr_list_rl.lock);
2213 	if (ni->attr_list_rl.rl) {
2214 		ntfs_free(ni->attr_list_rl.rl);
2215 		ni->attr_list_rl.rl = NULL;
2216 	}
2217 	up_write(&ni->attr_list_rl.lock);
2218 
2219 	if (ni->name_len && ni->name != I30) {
2220 		/* Catch bugs... */
2221 		BUG_ON(!ni->name);
2222 		kfree(ni->name);
2223 	}
2224 }
2225 
2226 void ntfs_clear_extent_inode(ntfs_inode *ni)
2227 {
2228 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2229 
2230 	BUG_ON(NInoAttr(ni));
2231 	BUG_ON(ni->nr_extents != -1);
2232 
2233 #ifdef NTFS_RW
2234 	if (NInoDirty(ni)) {
2235 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2236 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2237 					"Losing data!  This is a BUG!!!");
2238 		// FIXME:  Do something!!!
2239 	}
2240 #endif /* NTFS_RW */
2241 
2242 	__ntfs_clear_inode(ni);
2243 
2244 	/* Bye, bye... */
2245 	ntfs_destroy_extent_inode(ni);
2246 }
2247 
2248 /**
2249  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2250  * @vi:		vfs inode pending annihilation
2251  *
2252  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2253  * is called, which deallocates all memory belonging to the NTFS specific part
2254  * of the inode and returns.
2255  *
2256  * If the MFT record is dirty, we commit it before doing anything else.
2257  */
2258 void ntfs_evict_big_inode(struct inode *vi)
2259 {
2260 	ntfs_inode *ni = NTFS_I(vi);
2261 
2262 	truncate_inode_pages_final(&vi->i_data);
2263 	clear_inode(vi);
2264 
2265 #ifdef NTFS_RW
2266 	if (NInoDirty(ni)) {
2267 		bool was_bad = (is_bad_inode(vi));
2268 
2269 		/* Committing the inode also commits all extent inodes. */
2270 		ntfs_commit_inode(vi);
2271 
2272 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2273 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2274 					"0x%lx.  Losing data!", vi->i_ino);
2275 			// FIXME:  Do something!!!
2276 		}
2277 	}
2278 #endif /* NTFS_RW */
2279 
2280 	/* No need to lock at this stage as no one else has a reference. */
2281 	if (ni->nr_extents > 0) {
2282 		int i;
2283 
2284 		for (i = 0; i < ni->nr_extents; i++)
2285 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2286 		kfree(ni->ext.extent_ntfs_inos);
2287 	}
2288 
2289 	__ntfs_clear_inode(ni);
2290 
2291 	if (NInoAttr(ni)) {
2292 		/* Release the base inode if we are holding it. */
2293 		if (ni->nr_extents == -1) {
2294 			iput(VFS_I(ni->ext.base_ntfs_ino));
2295 			ni->nr_extents = 0;
2296 			ni->ext.base_ntfs_ino = NULL;
2297 		}
2298 	}
2299 	return;
2300 }
2301 
2302 /**
2303  * ntfs_show_options - show mount options in /proc/mounts
2304  * @sf:		seq_file in which to write our mount options
2305  * @root:	root of the mounted tree whose mount options to display
2306  *
2307  * Called by the VFS once for each mounted ntfs volume when someone reads
2308  * /proc/mounts in order to display the NTFS specific mount options of each
2309  * mount. The mount options of fs specified by @root are written to the seq file
2310  * @sf and success is returned.
2311  */
2312 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2313 {
2314 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2315 	int i;
2316 
2317 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2318 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2319 	if (vol->fmask == vol->dmask)
2320 		seq_printf(sf, ",umask=0%o", vol->fmask);
2321 	else {
2322 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2323 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2324 	}
2325 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2326 	if (NVolCaseSensitive(vol))
2327 		seq_printf(sf, ",case_sensitive");
2328 	if (NVolShowSystemFiles(vol))
2329 		seq_printf(sf, ",show_sys_files");
2330 	if (!NVolSparseEnabled(vol))
2331 		seq_printf(sf, ",disable_sparse");
2332 	for (i = 0; on_errors_arr[i].val; i++) {
2333 		if (on_errors_arr[i].val & vol->on_errors)
2334 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2335 	}
2336 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2337 	return 0;
2338 }
2339 
2340 #ifdef NTFS_RW
2341 
2342 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2343 		"chkdsk.";
2344 
2345 /**
2346  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2347  * @vi:		inode for which the i_size was changed
2348  *
2349  * We only support i_size changes for normal files at present, i.e. not
2350  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2351  * below.
2352  *
2353  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2354  * that the change is allowed.
2355  *
2356  * This implies for us that @vi is a file inode rather than a directory, index,
2357  * or attribute inode as well as that @vi is a base inode.
2358  *
2359  * Returns 0 on success or -errno on error.
2360  *
2361  * Called with ->i_mutex held.
2362  */
2363 int ntfs_truncate(struct inode *vi)
2364 {
2365 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2366 	VCN highest_vcn;
2367 	unsigned long flags;
2368 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2369 	ntfs_volume *vol = ni->vol;
2370 	ntfs_attr_search_ctx *ctx;
2371 	MFT_RECORD *m;
2372 	ATTR_RECORD *a;
2373 	const char *te = "  Leaving file length out of sync with i_size.";
2374 	int err, mp_size, size_change, alloc_change;
2375 	u32 attr_len;
2376 
2377 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2378 	BUG_ON(NInoAttr(ni));
2379 	BUG_ON(S_ISDIR(vi->i_mode));
2380 	BUG_ON(NInoMstProtected(ni));
2381 	BUG_ON(ni->nr_extents < 0);
2382 retry_truncate:
2383 	/*
2384 	 * Lock the runlist for writing and map the mft record to ensure it is
2385 	 * safe to mess with the attribute runlist and sizes.
2386 	 */
2387 	down_write(&ni->runlist.lock);
2388 	if (!NInoAttr(ni))
2389 		base_ni = ni;
2390 	else
2391 		base_ni = ni->ext.base_ntfs_ino;
2392 	m = map_mft_record(base_ni);
2393 	if (IS_ERR(m)) {
2394 		err = PTR_ERR(m);
2395 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2396 				"(error code %d).%s", vi->i_ino, err, te);
2397 		ctx = NULL;
2398 		m = NULL;
2399 		goto old_bad_out;
2400 	}
2401 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2402 	if (unlikely(!ctx)) {
2403 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2404 				"inode 0x%lx (not enough memory).%s",
2405 				vi->i_ino, te);
2406 		err = -ENOMEM;
2407 		goto old_bad_out;
2408 	}
2409 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2410 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2411 	if (unlikely(err)) {
2412 		if (err == -ENOENT) {
2413 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2414 					"mft record.  Inode 0x%lx is corrupt.  "
2415 					"Run chkdsk.%s", vi->i_ino, te);
2416 			err = -EIO;
2417 		} else
2418 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2419 					"inode 0x%lx (error code %d).%s",
2420 					vi->i_ino, err, te);
2421 		goto old_bad_out;
2422 	}
2423 	m = ctx->mrec;
2424 	a = ctx->attr;
2425 	/*
2426 	 * The i_size of the vfs inode is the new size for the attribute value.
2427 	 */
2428 	new_size = i_size_read(vi);
2429 	/* The current size of the attribute value is the old size. */
2430 	old_size = ntfs_attr_size(a);
2431 	/* Calculate the new allocated size. */
2432 	if (NInoNonResident(ni))
2433 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2434 				~(s64)vol->cluster_size_mask;
2435 	else
2436 		new_alloc_size = (new_size + 7) & ~7;
2437 	/* The current allocated size is the old allocated size. */
2438 	read_lock_irqsave(&ni->size_lock, flags);
2439 	old_alloc_size = ni->allocated_size;
2440 	read_unlock_irqrestore(&ni->size_lock, flags);
2441 	/*
2442 	 * The change in the file size.  This will be 0 if no change, >0 if the
2443 	 * size is growing, and <0 if the size is shrinking.
2444 	 */
2445 	size_change = -1;
2446 	if (new_size - old_size >= 0) {
2447 		size_change = 1;
2448 		if (new_size == old_size)
2449 			size_change = 0;
2450 	}
2451 	/* As above for the allocated size. */
2452 	alloc_change = -1;
2453 	if (new_alloc_size - old_alloc_size >= 0) {
2454 		alloc_change = 1;
2455 		if (new_alloc_size == old_alloc_size)
2456 			alloc_change = 0;
2457 	}
2458 	/*
2459 	 * If neither the size nor the allocation are being changed there is
2460 	 * nothing to do.
2461 	 */
2462 	if (!size_change && !alloc_change)
2463 		goto unm_done;
2464 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2465 	if (size_change) {
2466 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2467 		if (unlikely(err)) {
2468 			if (err == -ERANGE) {
2469 				ntfs_error(vol->sb, "Truncate would cause the "
2470 						"inode 0x%lx to %simum size "
2471 						"for its attribute type "
2472 						"(0x%x).  Aborting truncate.",
2473 						vi->i_ino,
2474 						new_size > old_size ? "exceed "
2475 						"the max" : "go under the min",
2476 						le32_to_cpu(ni->type));
2477 				err = -EFBIG;
2478 			} else {
2479 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2480 						"attribute type 0x%x.  "
2481 						"Aborting truncate.",
2482 						vi->i_ino,
2483 						le32_to_cpu(ni->type));
2484 				err = -EIO;
2485 			}
2486 			/* Reset the vfs inode size to the old size. */
2487 			i_size_write(vi, old_size);
2488 			goto err_out;
2489 		}
2490 	}
2491 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2492 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2493 				"supported yet for %s files, ignoring.",
2494 				NInoCompressed(ni) ? "compressed" :
2495 				"encrypted");
2496 		err = -EOPNOTSUPP;
2497 		goto bad_out;
2498 	}
2499 	if (a->non_resident)
2500 		goto do_non_resident_truncate;
2501 	BUG_ON(NInoNonResident(ni));
2502 	/* Resize the attribute record to best fit the new attribute size. */
2503 	if (new_size < vol->mft_record_size &&
2504 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2505 		/* The resize succeeded! */
2506 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2507 		mark_mft_record_dirty(ctx->ntfs_ino);
2508 		write_lock_irqsave(&ni->size_lock, flags);
2509 		/* Update the sizes in the ntfs inode and all is done. */
2510 		ni->allocated_size = le32_to_cpu(a->length) -
2511 				le16_to_cpu(a->data.resident.value_offset);
2512 		/*
2513 		 * Note ntfs_resident_attr_value_resize() has already done any
2514 		 * necessary data clearing in the attribute record.  When the
2515 		 * file is being shrunk vmtruncate() will already have cleared
2516 		 * the top part of the last partial page, i.e. since this is
2517 		 * the resident case this is the page with index 0.  However,
2518 		 * when the file is being expanded, the page cache page data
2519 		 * between the old data_size, i.e. old_size, and the new_size
2520 		 * has not been zeroed.  Fortunately, we do not need to zero it
2521 		 * either since on one hand it will either already be zero due
2522 		 * to both readpage and writepage clearing partial page data
2523 		 * beyond i_size in which case there is nothing to do or in the
2524 		 * case of the file being mmap()ped at the same time, POSIX
2525 		 * specifies that the behaviour is unspecified thus we do not
2526 		 * have to do anything.  This means that in our implementation
2527 		 * in the rare case that the file is mmap()ped and a write
2528 		 * occurred into the mmap()ped region just beyond the file size
2529 		 * and writepage has not yet been called to write out the page
2530 		 * (which would clear the area beyond the file size) and we now
2531 		 * extend the file size to incorporate this dirty region
2532 		 * outside the file size, a write of the page would result in
2533 		 * this data being written to disk instead of being cleared.
2534 		 * Given both POSIX and the Linux mmap(2) man page specify that
2535 		 * this corner case is undefined, we choose to leave it like
2536 		 * that as this is much simpler for us as we cannot lock the
2537 		 * relevant page now since we are holding too many ntfs locks
2538 		 * which would result in a lock reversal deadlock.
2539 		 */
2540 		ni->initialized_size = new_size;
2541 		write_unlock_irqrestore(&ni->size_lock, flags);
2542 		goto unm_done;
2543 	}
2544 	/* If the above resize failed, this must be an attribute extension. */
2545 	BUG_ON(size_change < 0);
2546 	/*
2547 	 * We have to drop all the locks so we can call
2548 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2549 	 * locking the first page cache page and only if that fails dropping
2550 	 * the locks, locking the page, and redoing all the locking and
2551 	 * lookups.  While this would be a huge optimisation, it is not worth
2552 	 * it as this is definitely a slow code path as it only ever can happen
2553 	 * once for any given file.
2554 	 */
2555 	ntfs_attr_put_search_ctx(ctx);
2556 	unmap_mft_record(base_ni);
2557 	up_write(&ni->runlist.lock);
2558 	/*
2559 	 * Not enough space in the mft record, try to make the attribute
2560 	 * non-resident and if successful restart the truncation process.
2561 	 */
2562 	err = ntfs_attr_make_non_resident(ni, old_size);
2563 	if (likely(!err))
2564 		goto retry_truncate;
2565 	/*
2566 	 * Could not make non-resident.  If this is due to this not being
2567 	 * permitted for this attribute type or there not being enough space,
2568 	 * try to make other attributes non-resident.  Otherwise fail.
2569 	 */
2570 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2571 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2572 				"type 0x%x, because the conversion from "
2573 				"resident to non-resident attribute failed "
2574 				"with error code %i.", vi->i_ino,
2575 				(unsigned)le32_to_cpu(ni->type), err);
2576 		if (err != -ENOMEM)
2577 			err = -EIO;
2578 		goto conv_err_out;
2579 	}
2580 	/* TODO: Not implemented from here, abort. */
2581 	if (err == -ENOSPC)
2582 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2583 				"disk for the non-resident attribute value.  "
2584 				"This case is not implemented yet.");
2585 	else /* if (err == -EPERM) */
2586 		ntfs_error(vol->sb, "This attribute type may not be "
2587 				"non-resident.  This case is not implemented "
2588 				"yet.");
2589 	err = -EOPNOTSUPP;
2590 	goto conv_err_out;
2591 #if 0
2592 	// TODO: Attempt to make other attributes non-resident.
2593 	if (!err)
2594 		goto do_resident_extend;
2595 	/*
2596 	 * Both the attribute list attribute and the standard information
2597 	 * attribute must remain in the base inode.  Thus, if this is one of
2598 	 * these attributes, we have to try to move other attributes out into
2599 	 * extent mft records instead.
2600 	 */
2601 	if (ni->type == AT_ATTRIBUTE_LIST ||
2602 			ni->type == AT_STANDARD_INFORMATION) {
2603 		// TODO: Attempt to move other attributes into extent mft
2604 		// records.
2605 		err = -EOPNOTSUPP;
2606 		if (!err)
2607 			goto do_resident_extend;
2608 		goto err_out;
2609 	}
2610 	// TODO: Attempt to move this attribute to an extent mft record, but
2611 	// only if it is not already the only attribute in an mft record in
2612 	// which case there would be nothing to gain.
2613 	err = -EOPNOTSUPP;
2614 	if (!err)
2615 		goto do_resident_extend;
2616 	/* There is nothing we can do to make enough space. )-: */
2617 	goto err_out;
2618 #endif
2619 do_non_resident_truncate:
2620 	BUG_ON(!NInoNonResident(ni));
2621 	if (alloc_change < 0) {
2622 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2623 		if (highest_vcn > 0 &&
2624 				old_alloc_size >> vol->cluster_size_bits >
2625 				highest_vcn + 1) {
2626 			/*
2627 			 * This attribute has multiple extents.  Not yet
2628 			 * supported.
2629 			 */
2630 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2631 					"attribute type 0x%x, because the "
2632 					"attribute is highly fragmented (it "
2633 					"consists of multiple extents) and "
2634 					"this case is not implemented yet.",
2635 					vi->i_ino,
2636 					(unsigned)le32_to_cpu(ni->type));
2637 			err = -EOPNOTSUPP;
2638 			goto bad_out;
2639 		}
2640 	}
2641 	/*
2642 	 * If the size is shrinking, need to reduce the initialized_size and
2643 	 * the data_size before reducing the allocation.
2644 	 */
2645 	if (size_change < 0) {
2646 		/*
2647 		 * Make the valid size smaller (i_size is already up-to-date).
2648 		 */
2649 		write_lock_irqsave(&ni->size_lock, flags);
2650 		if (new_size < ni->initialized_size) {
2651 			ni->initialized_size = new_size;
2652 			a->data.non_resident.initialized_size =
2653 					cpu_to_sle64(new_size);
2654 		}
2655 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2656 		write_unlock_irqrestore(&ni->size_lock, flags);
2657 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2658 		mark_mft_record_dirty(ctx->ntfs_ino);
2659 		/* If the allocated size is not changing, we are done. */
2660 		if (!alloc_change)
2661 			goto unm_done;
2662 		/*
2663 		 * If the size is shrinking it makes no sense for the
2664 		 * allocation to be growing.
2665 		 */
2666 		BUG_ON(alloc_change > 0);
2667 	} else /* if (size_change >= 0) */ {
2668 		/*
2669 		 * The file size is growing or staying the same but the
2670 		 * allocation can be shrinking, growing or staying the same.
2671 		 */
2672 		if (alloc_change > 0) {
2673 			/*
2674 			 * We need to extend the allocation and possibly update
2675 			 * the data size.  If we are updating the data size,
2676 			 * since we are not touching the initialized_size we do
2677 			 * not need to worry about the actual data on disk.
2678 			 * And as far as the page cache is concerned, there
2679 			 * will be no pages beyond the old data size and any
2680 			 * partial region in the last page between the old and
2681 			 * new data size (or the end of the page if the new
2682 			 * data size is outside the page) does not need to be
2683 			 * modified as explained above for the resident
2684 			 * attribute truncate case.  To do this, we simply drop
2685 			 * the locks we hold and leave all the work to our
2686 			 * friendly helper ntfs_attr_extend_allocation().
2687 			 */
2688 			ntfs_attr_put_search_ctx(ctx);
2689 			unmap_mft_record(base_ni);
2690 			up_write(&ni->runlist.lock);
2691 			err = ntfs_attr_extend_allocation(ni, new_size,
2692 					size_change > 0 ? new_size : -1, -1);
2693 			/*
2694 			 * ntfs_attr_extend_allocation() will have done error
2695 			 * output already.
2696 			 */
2697 			goto done;
2698 		}
2699 		if (!alloc_change)
2700 			goto alloc_done;
2701 	}
2702 	/* alloc_change < 0 */
2703 	/* Free the clusters. */
2704 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2705 			vol->cluster_size_bits, -1, ctx);
2706 	m = ctx->mrec;
2707 	a = ctx->attr;
2708 	if (unlikely(nr_freed < 0)) {
2709 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2710 				"%lli).  Unmount and run chkdsk to recover "
2711 				"the lost cluster(s).", (long long)nr_freed);
2712 		NVolSetErrors(vol);
2713 		nr_freed = 0;
2714 	}
2715 	/* Truncate the runlist. */
2716 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2717 			new_alloc_size >> vol->cluster_size_bits);
2718 	/*
2719 	 * If the runlist truncation failed and/or the search context is no
2720 	 * longer valid, we cannot resize the attribute record or build the
2721 	 * mapping pairs array thus we mark the inode bad so that no access to
2722 	 * the freed clusters can happen.
2723 	 */
2724 	if (unlikely(err || IS_ERR(m))) {
2725 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2726 				IS_ERR(m) ?
2727 				"restore attribute search context" :
2728 				"truncate attribute runlist",
2729 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2730 		err = -EIO;
2731 		goto bad_out;
2732 	}
2733 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2734 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2735 	if (unlikely(mp_size <= 0)) {
2736 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2737 				"attribute type 0x%x, because determining the "
2738 				"size for the mapping pairs failed with error "
2739 				"code %i.%s", vi->i_ino,
2740 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2741 		err = -EIO;
2742 		goto bad_out;
2743 	}
2744 	/*
2745 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2746 	 * this cannot fail since we are making the attribute smaller thus by
2747 	 * definition there is enough space to do so.
2748 	 */
2749 	attr_len = le32_to_cpu(a->length);
2750 	err = ntfs_attr_record_resize(m, a, mp_size +
2751 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2752 	BUG_ON(err);
2753 	/*
2754 	 * Generate the mapping pairs array directly into the attribute record.
2755 	 */
2756 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2757 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2758 			mp_size, ni->runlist.rl, 0, -1, NULL);
2759 	if (unlikely(err)) {
2760 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2761 				"attribute type 0x%x, because building the "
2762 				"mapping pairs failed with error code %i.%s",
2763 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2764 				err, es);
2765 		err = -EIO;
2766 		goto bad_out;
2767 	}
2768 	/* Update the allocated/compressed size as well as the highest vcn. */
2769 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2770 			vol->cluster_size_bits) - 1);
2771 	write_lock_irqsave(&ni->size_lock, flags);
2772 	ni->allocated_size = new_alloc_size;
2773 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2774 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2775 		if (nr_freed) {
2776 			ni->itype.compressed.size -= nr_freed <<
2777 					vol->cluster_size_bits;
2778 			BUG_ON(ni->itype.compressed.size < 0);
2779 			a->data.non_resident.compressed_size = cpu_to_sle64(
2780 					ni->itype.compressed.size);
2781 			vi->i_blocks = ni->itype.compressed.size >> 9;
2782 		}
2783 	} else
2784 		vi->i_blocks = new_alloc_size >> 9;
2785 	write_unlock_irqrestore(&ni->size_lock, flags);
2786 	/*
2787 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2788 	 * have already dealt with the initialized_size and the data_size above
2789 	 * and we are done.  If the truncate is only changing the allocation
2790 	 * and not the data_size, we are also done.  If this is an extending
2791 	 * truncate, need to extend the data_size now which is ensured by the
2792 	 * fact that @size_change is positive.
2793 	 */
2794 alloc_done:
2795 	/*
2796 	 * If the size is growing, need to update it now.  If it is shrinking,
2797 	 * we have already updated it above (before the allocation change).
2798 	 */
2799 	if (size_change > 0)
2800 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2801 	/* Ensure the modified mft record is written out. */
2802 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2803 	mark_mft_record_dirty(ctx->ntfs_ino);
2804 unm_done:
2805 	ntfs_attr_put_search_ctx(ctx);
2806 	unmap_mft_record(base_ni);
2807 	up_write(&ni->runlist.lock);
2808 done:
2809 	/* Update the mtime and ctime on the base inode. */
2810 	/* normally ->truncate shouldn't update ctime or mtime,
2811 	 * but ntfs did before so it got a copy & paste version
2812 	 * of file_update_time.  one day someone should fix this
2813 	 * for real.
2814 	 */
2815 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2816 		struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2817 		int sync_it = 0;
2818 
2819 		if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2820 		    !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2821 			sync_it = 1;
2822 		VFS_I(base_ni)->i_mtime = now;
2823 		VFS_I(base_ni)->i_ctime = now;
2824 
2825 		if (sync_it)
2826 			mark_inode_dirty_sync(VFS_I(base_ni));
2827 	}
2828 
2829 	if (likely(!err)) {
2830 		NInoClearTruncateFailed(ni);
2831 		ntfs_debug("Done.");
2832 	}
2833 	return err;
2834 old_bad_out:
2835 	old_size = -1;
2836 bad_out:
2837 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2838 		NVolSetErrors(vol);
2839 	if (err != -EOPNOTSUPP)
2840 		NInoSetTruncateFailed(ni);
2841 	else if (old_size >= 0)
2842 		i_size_write(vi, old_size);
2843 err_out:
2844 	if (ctx)
2845 		ntfs_attr_put_search_ctx(ctx);
2846 	if (m)
2847 		unmap_mft_record(base_ni);
2848 	up_write(&ni->runlist.lock);
2849 out:
2850 	ntfs_debug("Failed.  Returning error code %i.", err);
2851 	return err;
2852 conv_err_out:
2853 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2854 		NVolSetErrors(vol);
2855 	if (err != -EOPNOTSUPP)
2856 		NInoSetTruncateFailed(ni);
2857 	else
2858 		i_size_write(vi, old_size);
2859 	goto out;
2860 }
2861 
2862 /**
2863  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2864  * @vi:		inode for which the i_size was changed
2865  *
2866  * Wrapper for ntfs_truncate() that has no return value.
2867  *
2868  * See ntfs_truncate() description above for details.
2869  */
2870 #ifdef NTFS_RW
2871 void ntfs_truncate_vfs(struct inode *vi) {
2872 	ntfs_truncate(vi);
2873 }
2874 #endif
2875 
2876 /**
2877  * ntfs_setattr - called from notify_change() when an attribute is being changed
2878  * @dentry:	dentry whose attributes to change
2879  * @attr:	structure describing the attributes and the changes
2880  *
2881  * We have to trap VFS attempts to truncate the file described by @dentry as
2882  * soon as possible, because we do not implement changes in i_size yet.  So we
2883  * abort all i_size changes here.
2884  *
2885  * We also abort all changes of user, group, and mode as we do not implement
2886  * the NTFS ACLs yet.
2887  *
2888  * Called with ->i_mutex held.
2889  */
2890 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2891 {
2892 	struct inode *vi = d_inode(dentry);
2893 	int err;
2894 	unsigned int ia_valid = attr->ia_valid;
2895 
2896 	err = inode_change_ok(vi, attr);
2897 	if (err)
2898 		goto out;
2899 	/* We do not support NTFS ACLs yet. */
2900 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2901 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2902 				"supported yet, ignoring.");
2903 		err = -EOPNOTSUPP;
2904 		goto out;
2905 	}
2906 	if (ia_valid & ATTR_SIZE) {
2907 		if (attr->ia_size != i_size_read(vi)) {
2908 			ntfs_inode *ni = NTFS_I(vi);
2909 			/*
2910 			 * FIXME: For now we do not support resizing of
2911 			 * compressed or encrypted files yet.
2912 			 */
2913 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2914 				ntfs_warning(vi->i_sb, "Changes in inode size "
2915 						"are not supported yet for "
2916 						"%s files, ignoring.",
2917 						NInoCompressed(ni) ?
2918 						"compressed" : "encrypted");
2919 				err = -EOPNOTSUPP;
2920 			} else {
2921 				truncate_setsize(vi, attr->ia_size);
2922 				ntfs_truncate_vfs(vi);
2923 			}
2924 			if (err || ia_valid == ATTR_SIZE)
2925 				goto out;
2926 		} else {
2927 			/*
2928 			 * We skipped the truncate but must still update
2929 			 * timestamps.
2930 			 */
2931 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2932 		}
2933 	}
2934 	if (ia_valid & ATTR_ATIME)
2935 		vi->i_atime = timespec_trunc(attr->ia_atime,
2936 				vi->i_sb->s_time_gran);
2937 	if (ia_valid & ATTR_MTIME)
2938 		vi->i_mtime = timespec_trunc(attr->ia_mtime,
2939 				vi->i_sb->s_time_gran);
2940 	if (ia_valid & ATTR_CTIME)
2941 		vi->i_ctime = timespec_trunc(attr->ia_ctime,
2942 				vi->i_sb->s_time_gran);
2943 	mark_inode_dirty(vi);
2944 out:
2945 	return err;
2946 }
2947 
2948 /**
2949  * ntfs_write_inode - write out a dirty inode
2950  * @vi:		inode to write out
2951  * @sync:	if true, write out synchronously
2952  *
2953  * Write out a dirty inode to disk including any extent inodes if present.
2954  *
2955  * If @sync is true, commit the inode to disk and wait for io completion.  This
2956  * is done using write_mft_record().
2957  *
2958  * If @sync is false, just schedule the write to happen but do not wait for i/o
2959  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2960  * marking the page (and in this case mft record) dirty but we do not implement
2961  * this yet as write_mft_record() largely ignores the @sync parameter and
2962  * always performs synchronous writes.
2963  *
2964  * Return 0 on success and -errno on error.
2965  */
2966 int __ntfs_write_inode(struct inode *vi, int sync)
2967 {
2968 	sle64 nt;
2969 	ntfs_inode *ni = NTFS_I(vi);
2970 	ntfs_attr_search_ctx *ctx;
2971 	MFT_RECORD *m;
2972 	STANDARD_INFORMATION *si;
2973 	int err = 0;
2974 	bool modified = false;
2975 
2976 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2977 			vi->i_ino);
2978 	/*
2979 	 * Dirty attribute inodes are written via their real inodes so just
2980 	 * clean them here.  Access time updates are taken care off when the
2981 	 * real inode is written.
2982 	 */
2983 	if (NInoAttr(ni)) {
2984 		NInoClearDirty(ni);
2985 		ntfs_debug("Done.");
2986 		return 0;
2987 	}
2988 	/* Map, pin, and lock the mft record belonging to the inode. */
2989 	m = map_mft_record(ni);
2990 	if (IS_ERR(m)) {
2991 		err = PTR_ERR(m);
2992 		goto err_out;
2993 	}
2994 	/* Update the access times in the standard information attribute. */
2995 	ctx = ntfs_attr_get_search_ctx(ni, m);
2996 	if (unlikely(!ctx)) {
2997 		err = -ENOMEM;
2998 		goto unm_err_out;
2999 	}
3000 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3001 			CASE_SENSITIVE, 0, NULL, 0, ctx);
3002 	if (unlikely(err)) {
3003 		ntfs_attr_put_search_ctx(ctx);
3004 		goto unm_err_out;
3005 	}
3006 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3007 			le16_to_cpu(ctx->attr->data.resident.value_offset));
3008 	/* Update the access times if they have changed. */
3009 	nt = utc2ntfs(vi->i_mtime);
3010 	if (si->last_data_change_time != nt) {
3011 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3012 				"new = 0x%llx", vi->i_ino, (long long)
3013 				sle64_to_cpu(si->last_data_change_time),
3014 				(long long)sle64_to_cpu(nt));
3015 		si->last_data_change_time = nt;
3016 		modified = true;
3017 	}
3018 	nt = utc2ntfs(vi->i_ctime);
3019 	if (si->last_mft_change_time != nt) {
3020 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3021 				"new = 0x%llx", vi->i_ino, (long long)
3022 				sle64_to_cpu(si->last_mft_change_time),
3023 				(long long)sle64_to_cpu(nt));
3024 		si->last_mft_change_time = nt;
3025 		modified = true;
3026 	}
3027 	nt = utc2ntfs(vi->i_atime);
3028 	if (si->last_access_time != nt) {
3029 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3030 				"new = 0x%llx", vi->i_ino,
3031 				(long long)sle64_to_cpu(si->last_access_time),
3032 				(long long)sle64_to_cpu(nt));
3033 		si->last_access_time = nt;
3034 		modified = true;
3035 	}
3036 	/*
3037 	 * If we just modified the standard information attribute we need to
3038 	 * mark the mft record it is in dirty.  We do this manually so that
3039 	 * mark_inode_dirty() is not called which would redirty the inode and
3040 	 * hence result in an infinite loop of trying to write the inode.
3041 	 * There is no need to mark the base inode nor the base mft record
3042 	 * dirty, since we are going to write this mft record below in any case
3043 	 * and the base mft record may actually not have been modified so it
3044 	 * might not need to be written out.
3045 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3046 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3047 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3048 	 * re-invoked because of it which in turn is ok since the dirtied mft
3049 	 * record will be cleaned and written out to disk below, i.e. before
3050 	 * this function returns.
3051 	 */
3052 	if (modified) {
3053 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3054 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3055 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3056 					ctx->ntfs_ino->page_ofs);
3057 	}
3058 	ntfs_attr_put_search_ctx(ctx);
3059 	/* Now the access times are updated, write the base mft record. */
3060 	if (NInoDirty(ni))
3061 		err = write_mft_record(ni, m, sync);
3062 	/* Write all attached extent mft records. */
3063 	mutex_lock(&ni->extent_lock);
3064 	if (ni->nr_extents > 0) {
3065 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3066 		int i;
3067 
3068 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3069 		for (i = 0; i < ni->nr_extents; i++) {
3070 			ntfs_inode *tni = extent_nis[i];
3071 
3072 			if (NInoDirty(tni)) {
3073 				MFT_RECORD *tm = map_mft_record(tni);
3074 				int ret;
3075 
3076 				if (IS_ERR(tm)) {
3077 					if (!err || err == -ENOMEM)
3078 						err = PTR_ERR(tm);
3079 					continue;
3080 				}
3081 				ret = write_mft_record(tni, tm, sync);
3082 				unmap_mft_record(tni);
3083 				if (unlikely(ret)) {
3084 					if (!err || err == -ENOMEM)
3085 						err = ret;
3086 				}
3087 			}
3088 		}
3089 	}
3090 	mutex_unlock(&ni->extent_lock);
3091 	unmap_mft_record(ni);
3092 	if (unlikely(err))
3093 		goto err_out;
3094 	ntfs_debug("Done.");
3095 	return 0;
3096 unm_err_out:
3097 	unmap_mft_record(ni);
3098 err_out:
3099 	if (err == -ENOMEM) {
3100 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3101 				"Marking the inode dirty again, so the VFS "
3102 				"retries later.");
3103 		mark_inode_dirty(vi);
3104 	} else {
3105 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3106 		NVolSetErrors(ni->vol);
3107 	}
3108 	return err;
3109 }
3110 
3111 #endif /* NTFS_RW */
3112