1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * inode.c - NTFS kernel inode handling. 4 * 5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 6 */ 7 8 #include <linux/buffer_head.h> 9 #include <linux/fs.h> 10 #include <linux/mm.h> 11 #include <linux/mount.h> 12 #include <linux/mutex.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/slab.h> 16 #include <linux/log2.h> 17 18 #include "aops.h" 19 #include "attrib.h" 20 #include "bitmap.h" 21 #include "dir.h" 22 #include "debug.h" 23 #include "inode.h" 24 #include "lcnalloc.h" 25 #include "malloc.h" 26 #include "mft.h" 27 #include "time.h" 28 #include "ntfs.h" 29 30 /** 31 * ntfs_test_inode - compare two (possibly fake) inodes for equality 32 * @vi: vfs inode which to test 33 * @data: data which is being tested with 34 * 35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 36 * inode @vi for equality with the ntfs attribute @data. 37 * 38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 39 * @na->name and @na->name_len are then ignored. 40 * 41 * Return 1 if the attributes match and 0 if not. 42 * 43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not 44 * allowed to sleep. 45 */ 46 int ntfs_test_inode(struct inode *vi, void *data) 47 { 48 ntfs_attr *na = (ntfs_attr *)data; 49 ntfs_inode *ni; 50 51 if (vi->i_ino != na->mft_no) 52 return 0; 53 ni = NTFS_I(vi); 54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 55 if (likely(!NInoAttr(ni))) { 56 /* If not looking for a normal inode this is a mismatch. */ 57 if (unlikely(na->type != AT_UNUSED)) 58 return 0; 59 } else { 60 /* A fake inode describing an attribute. */ 61 if (ni->type != na->type) 62 return 0; 63 if (ni->name_len != na->name_len) 64 return 0; 65 if (na->name_len && memcmp(ni->name, na->name, 66 na->name_len * sizeof(ntfschar))) 67 return 0; 68 } 69 /* Match! */ 70 return 1; 71 } 72 73 /** 74 * ntfs_init_locked_inode - initialize an inode 75 * @vi: vfs inode to initialize 76 * @data: data which to initialize @vi to 77 * 78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in 79 * order to enable ntfs_test_inode() to do its work. 80 * 81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 82 * In that case, @na->name and @na->name_len should be set to NULL and 0, 83 * respectively. Although that is not strictly necessary as 84 * ntfs_read_locked_inode() will fill them in later. 85 * 86 * Return 0 on success and -errno on error. 87 * 88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 90 */ 91 static int ntfs_init_locked_inode(struct inode *vi, void *data) 92 { 93 ntfs_attr *na = (ntfs_attr *)data; 94 ntfs_inode *ni = NTFS_I(vi); 95 96 vi->i_ino = na->mft_no; 97 98 ni->type = na->type; 99 if (na->type == AT_INDEX_ALLOCATION) 100 NInoSetMstProtected(ni); 101 102 ni->name = na->name; 103 ni->name_len = na->name_len; 104 105 /* If initializing a normal inode, we are done. */ 106 if (likely(na->type == AT_UNUSED)) { 107 BUG_ON(na->name); 108 BUG_ON(na->name_len); 109 return 0; 110 } 111 112 /* It is a fake inode. */ 113 NInoSetAttr(ni); 114 115 /* 116 * We have I30 global constant as an optimization as it is the name 117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 118 * allocation but that is ok. And most attributes are unnamed anyway, 119 * thus the fraction of named attributes with name != I30 is actually 120 * absolutely tiny. 121 */ 122 if (na->name_len && na->name != I30) { 123 unsigned int i; 124 125 BUG_ON(!na->name); 126 i = na->name_len * sizeof(ntfschar); 127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 128 if (!ni->name) 129 return -ENOMEM; 130 memcpy(ni->name, na->name, i); 131 ni->name[na->name_len] = 0; 132 } 133 return 0; 134 } 135 136 static int ntfs_read_locked_inode(struct inode *vi); 137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 138 static int ntfs_read_locked_index_inode(struct inode *base_vi, 139 struct inode *vi); 140 141 /** 142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 143 * @sb: super block of mounted volume 144 * @mft_no: mft record number / inode number to obtain 145 * 146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 147 * file or directory). 148 * 149 * If the inode is in the cache, it is just returned with an increased 150 * reference count. Otherwise, a new struct inode is allocated and initialized, 151 * and finally ntfs_read_locked_inode() is called to read in the inode and 152 * fill in the remainder of the inode structure. 153 * 154 * Return the struct inode on success. Check the return value with IS_ERR() and 155 * if true, the function failed and the error code is obtained from PTR_ERR(). 156 */ 157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 158 { 159 struct inode *vi; 160 int err; 161 ntfs_attr na; 162 163 na.mft_no = mft_no; 164 na.type = AT_UNUSED; 165 na.name = NULL; 166 na.name_len = 0; 167 168 vi = iget5_locked(sb, mft_no, ntfs_test_inode, 169 ntfs_init_locked_inode, &na); 170 if (unlikely(!vi)) 171 return ERR_PTR(-ENOMEM); 172 173 err = 0; 174 175 /* If this is a freshly allocated inode, need to read it now. */ 176 if (vi->i_state & I_NEW) { 177 err = ntfs_read_locked_inode(vi); 178 unlock_new_inode(vi); 179 } 180 /* 181 * There is no point in keeping bad inodes around if the failure was 182 * due to ENOMEM. We want to be able to retry again later. 183 */ 184 if (unlikely(err == -ENOMEM)) { 185 iput(vi); 186 vi = ERR_PTR(err); 187 } 188 return vi; 189 } 190 191 /** 192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 193 * @base_vi: vfs base inode containing the attribute 194 * @type: attribute type 195 * @name: Unicode name of the attribute (NULL if unnamed) 196 * @name_len: length of @name in Unicode characters (0 if unnamed) 197 * 198 * Obtain the (fake) struct inode corresponding to the attribute specified by 199 * @type, @name, and @name_len, which is present in the base mft record 200 * specified by the vfs inode @base_vi. 201 * 202 * If the attribute inode is in the cache, it is just returned with an 203 * increased reference count. Otherwise, a new struct inode is allocated and 204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 205 * attribute and fill in the inode structure. 206 * 207 * Note, for index allocation attributes, you need to use ntfs_index_iget() 208 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 209 * 210 * Return the struct inode of the attribute inode on success. Check the return 211 * value with IS_ERR() and if true, the function failed and the error code is 212 * obtained from PTR_ERR(). 213 */ 214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 215 ntfschar *name, u32 name_len) 216 { 217 struct inode *vi; 218 int err; 219 ntfs_attr na; 220 221 /* Make sure no one calls ntfs_attr_iget() for indices. */ 222 BUG_ON(type == AT_INDEX_ALLOCATION); 223 224 na.mft_no = base_vi->i_ino; 225 na.type = type; 226 na.name = name; 227 na.name_len = name_len; 228 229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode, 230 ntfs_init_locked_inode, &na); 231 if (unlikely(!vi)) 232 return ERR_PTR(-ENOMEM); 233 234 err = 0; 235 236 /* If this is a freshly allocated inode, need to read it now. */ 237 if (vi->i_state & I_NEW) { 238 err = ntfs_read_locked_attr_inode(base_vi, vi); 239 unlock_new_inode(vi); 240 } 241 /* 242 * There is no point in keeping bad attribute inodes around. This also 243 * simplifies things in that we never need to check for bad attribute 244 * inodes elsewhere. 245 */ 246 if (unlikely(err)) { 247 iput(vi); 248 vi = ERR_PTR(err); 249 } 250 return vi; 251 } 252 253 /** 254 * ntfs_index_iget - obtain a struct inode corresponding to an index 255 * @base_vi: vfs base inode containing the index related attributes 256 * @name: Unicode name of the index 257 * @name_len: length of @name in Unicode characters 258 * 259 * Obtain the (fake) struct inode corresponding to the index specified by @name 260 * and @name_len, which is present in the base mft record specified by the vfs 261 * inode @base_vi. 262 * 263 * If the index inode is in the cache, it is just returned with an increased 264 * reference count. Otherwise, a new struct inode is allocated and 265 * initialized, and finally ntfs_read_locked_index_inode() is called to read 266 * the index related attributes and fill in the inode structure. 267 * 268 * Return the struct inode of the index inode on success. Check the return 269 * value with IS_ERR() and if true, the function failed and the error code is 270 * obtained from PTR_ERR(). 271 */ 272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 273 u32 name_len) 274 { 275 struct inode *vi; 276 int err; 277 ntfs_attr na; 278 279 na.mft_no = base_vi->i_ino; 280 na.type = AT_INDEX_ALLOCATION; 281 na.name = name; 282 na.name_len = name_len; 283 284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode, 285 ntfs_init_locked_inode, &na); 286 if (unlikely(!vi)) 287 return ERR_PTR(-ENOMEM); 288 289 err = 0; 290 291 /* If this is a freshly allocated inode, need to read it now. */ 292 if (vi->i_state & I_NEW) { 293 err = ntfs_read_locked_index_inode(base_vi, vi); 294 unlock_new_inode(vi); 295 } 296 /* 297 * There is no point in keeping bad index inodes around. This also 298 * simplifies things in that we never need to check for bad index 299 * inodes elsewhere. 300 */ 301 if (unlikely(err)) { 302 iput(vi); 303 vi = ERR_PTR(err); 304 } 305 return vi; 306 } 307 308 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 309 { 310 ntfs_inode *ni; 311 312 ntfs_debug("Entering."); 313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 314 if (likely(ni != NULL)) { 315 ni->state = 0; 316 return VFS_I(ni); 317 } 318 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 319 return NULL; 320 } 321 322 void ntfs_free_big_inode(struct inode *inode) 323 { 324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 325 } 326 327 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 328 { 329 ntfs_inode *ni; 330 331 ntfs_debug("Entering."); 332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 333 if (likely(ni != NULL)) { 334 ni->state = 0; 335 return ni; 336 } 337 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 338 return NULL; 339 } 340 341 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 342 { 343 ntfs_debug("Entering."); 344 BUG_ON(ni->page); 345 if (!atomic_dec_and_test(&ni->count)) 346 BUG(); 347 kmem_cache_free(ntfs_inode_cache, ni); 348 } 349 350 /* 351 * The attribute runlist lock has separate locking rules from the 352 * normal runlist lock, so split the two lock-classes: 353 */ 354 static struct lock_class_key attr_list_rl_lock_class; 355 356 /** 357 * __ntfs_init_inode - initialize ntfs specific part of an inode 358 * @sb: super block of mounted volume 359 * @ni: freshly allocated ntfs inode which to initialize 360 * 361 * Initialize an ntfs inode to defaults. 362 * 363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 364 * untouched. Make sure to initialize them elsewhere. 365 * 366 * Return zero on success and -ENOMEM on error. 367 */ 368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 369 { 370 ntfs_debug("Entering."); 371 rwlock_init(&ni->size_lock); 372 ni->initialized_size = ni->allocated_size = 0; 373 ni->seq_no = 0; 374 atomic_set(&ni->count, 1); 375 ni->vol = NTFS_SB(sb); 376 ntfs_init_runlist(&ni->runlist); 377 mutex_init(&ni->mrec_lock); 378 ni->page = NULL; 379 ni->page_ofs = 0; 380 ni->attr_list_size = 0; 381 ni->attr_list = NULL; 382 ntfs_init_runlist(&ni->attr_list_rl); 383 lockdep_set_class(&ni->attr_list_rl.lock, 384 &attr_list_rl_lock_class); 385 ni->itype.index.block_size = 0; 386 ni->itype.index.vcn_size = 0; 387 ni->itype.index.collation_rule = 0; 388 ni->itype.index.block_size_bits = 0; 389 ni->itype.index.vcn_size_bits = 0; 390 mutex_init(&ni->extent_lock); 391 ni->nr_extents = 0; 392 ni->ext.base_ntfs_ino = NULL; 393 } 394 395 /* 396 * Extent inodes get MFT-mapped in a nested way, while the base inode 397 * is still mapped. Teach this nesting to the lock validator by creating 398 * a separate class for nested inode's mrec_lock's: 399 */ 400 static struct lock_class_key extent_inode_mrec_lock_key; 401 402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 403 unsigned long mft_no) 404 { 405 ntfs_inode *ni = ntfs_alloc_extent_inode(); 406 407 ntfs_debug("Entering."); 408 if (likely(ni != NULL)) { 409 __ntfs_init_inode(sb, ni); 410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 411 ni->mft_no = mft_no; 412 ni->type = AT_UNUSED; 413 ni->name = NULL; 414 ni->name_len = 0; 415 } 416 return ni; 417 } 418 419 /** 420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 421 * @ctx: initialized attribute search context 422 * 423 * Search all file name attributes in the inode described by the attribute 424 * search context @ctx and check if any of the names are in the $Extend system 425 * directory. 426 * 427 * Return values: 428 * 1: file is in $Extend directory 429 * 0: file is not in $Extend directory 430 * -errno: failed to determine if the file is in the $Extend directory 431 */ 432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 433 { 434 int nr_links, err; 435 436 /* Restart search. */ 437 ntfs_attr_reinit_search_ctx(ctx); 438 439 /* Get number of hard links. */ 440 nr_links = le16_to_cpu(ctx->mrec->link_count); 441 442 /* Loop through all hard links. */ 443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 444 ctx))) { 445 FILE_NAME_ATTR *file_name_attr; 446 ATTR_RECORD *attr = ctx->attr; 447 u8 *p, *p2; 448 449 nr_links--; 450 /* 451 * Maximum sanity checking as we are called on an inode that 452 * we suspect might be corrupt. 453 */ 454 p = (u8*)attr + le32_to_cpu(attr->length); 455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 456 le32_to_cpu(ctx->mrec->bytes_in_use)) { 457 err_corrupt_attr: 458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 459 "attribute. You should run chkdsk."); 460 return -EIO; 461 } 462 if (attr->non_resident) { 463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 464 "name. You should run chkdsk."); 465 return -EIO; 466 } 467 if (attr->flags) { 468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 469 "invalid flags. You should run " 470 "chkdsk."); 471 return -EIO; 472 } 473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 475 "name. You should run chkdsk."); 476 return -EIO; 477 } 478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 479 le16_to_cpu(attr->data.resident.value_offset)); 480 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 481 if (p2 < (u8*)attr || p2 > p) 482 goto err_corrupt_attr; 483 /* This attribute is ok, but is it in the $Extend directory? */ 484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 485 return 1; /* YES, it's an extended system file. */ 486 } 487 if (unlikely(err != -ENOENT)) 488 return err; 489 if (unlikely(nr_links)) { 490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 491 "doesn't match number of name attributes. You " 492 "should run chkdsk."); 493 return -EIO; 494 } 495 return 0; /* NO, it is not an extended system file. */ 496 } 497 498 /** 499 * ntfs_read_locked_inode - read an inode from its device 500 * @vi: inode to read 501 * 502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 503 * described by @vi into memory from the device. 504 * 505 * The only fields in @vi that we need to/can look at when the function is 506 * called are i_sb, pointing to the mounted device's super block, and i_ino, 507 * the number of the inode to load. 508 * 509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 510 * for reading and sets up the necessary @vi fields as well as initializing 511 * the ntfs inode. 512 * 513 * Q: What locks are held when the function is called? 514 * A: i_state has I_NEW set, hence the inode is locked, also 515 * i_count is set to 1, so it is not going to go away 516 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 517 * is allowed to write to them. We should of course be honouring them but 518 * we need to do that using the IS_* macros defined in include/linux/fs.h. 519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 520 * 521 * Return 0 on success and -errno on error. In the error case, the inode will 522 * have had make_bad_inode() executed on it. 523 */ 524 static int ntfs_read_locked_inode(struct inode *vi) 525 { 526 ntfs_volume *vol = NTFS_SB(vi->i_sb); 527 ntfs_inode *ni; 528 struct inode *bvi; 529 MFT_RECORD *m; 530 ATTR_RECORD *a; 531 STANDARD_INFORMATION *si; 532 ntfs_attr_search_ctx *ctx; 533 int err = 0; 534 535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 536 537 /* Setup the generic vfs inode parts now. */ 538 vi->i_uid = vol->uid; 539 vi->i_gid = vol->gid; 540 vi->i_mode = 0; 541 542 /* 543 * Initialize the ntfs specific part of @vi special casing 544 * FILE_MFT which we need to do at mount time. 545 */ 546 if (vi->i_ino != FILE_MFT) 547 ntfs_init_big_inode(vi); 548 ni = NTFS_I(vi); 549 550 m = map_mft_record(ni); 551 if (IS_ERR(m)) { 552 err = PTR_ERR(m); 553 goto err_out; 554 } 555 ctx = ntfs_attr_get_search_ctx(ni, m); 556 if (!ctx) { 557 err = -ENOMEM; 558 goto unm_err_out; 559 } 560 561 if (!(m->flags & MFT_RECORD_IN_USE)) { 562 ntfs_error(vi->i_sb, "Inode is not in use!"); 563 goto unm_err_out; 564 } 565 if (m->base_mft_record) { 566 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 567 goto unm_err_out; 568 } 569 570 /* Transfer information from mft record into vfs and ntfs inodes. */ 571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 572 573 /* 574 * FIXME: Keep in mind that link_count is two for files which have both 575 * a long file name and a short file name as separate entries, so if 576 * we are hiding short file names this will be too high. Either we need 577 * to account for the short file names by subtracting them or we need 578 * to make sure we delete files even though i_nlink is not zero which 579 * might be tricky due to vfs interactions. Need to think about this 580 * some more when implementing the unlink command. 581 */ 582 set_nlink(vi, le16_to_cpu(m->link_count)); 583 /* 584 * FIXME: Reparse points can have the directory bit set even though 585 * they would be S_IFLNK. Need to deal with this further below when we 586 * implement reparse points / symbolic links but it will do for now. 587 * Also if not a directory, it could be something else, rather than 588 * a regular file. But again, will do for now. 589 */ 590 /* Everyone gets all permissions. */ 591 vi->i_mode |= S_IRWXUGO; 592 /* If read-only, no one gets write permissions. */ 593 if (IS_RDONLY(vi)) 594 vi->i_mode &= ~S_IWUGO; 595 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 596 vi->i_mode |= S_IFDIR; 597 /* 598 * Apply the directory permissions mask set in the mount 599 * options. 600 */ 601 vi->i_mode &= ~vol->dmask; 602 /* Things break without this kludge! */ 603 if (vi->i_nlink > 1) 604 set_nlink(vi, 1); 605 } else { 606 vi->i_mode |= S_IFREG; 607 /* Apply the file permissions mask set in the mount options. */ 608 vi->i_mode &= ~vol->fmask; 609 } 610 /* 611 * Find the standard information attribute in the mft record. At this 612 * stage we haven't setup the attribute list stuff yet, so this could 613 * in fact fail if the standard information is in an extent record, but 614 * I don't think this actually ever happens. 615 */ 616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 617 ctx); 618 if (unlikely(err)) { 619 if (err == -ENOENT) { 620 /* 621 * TODO: We should be performing a hot fix here (if the 622 * recover mount option is set) by creating a new 623 * attribute. 624 */ 625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 626 "is missing."); 627 } 628 goto unm_err_out; 629 } 630 a = ctx->attr; 631 /* Get the standard information attribute value. */ 632 si = (STANDARD_INFORMATION*)((u8*)a + 633 le16_to_cpu(a->data.resident.value_offset)); 634 635 /* Transfer information from the standard information into vi. */ 636 /* 637 * Note: The i_?times do not quite map perfectly onto the NTFS times, 638 * but they are close enough, and in the end it doesn't really matter 639 * that much... 640 */ 641 /* 642 * mtime is the last change of the data within the file. Not changed 643 * when only metadata is changed, e.g. a rename doesn't affect mtime. 644 */ 645 vi->i_mtime = ntfs2utc(si->last_data_change_time); 646 /* 647 * ctime is the last change of the metadata of the file. This obviously 648 * always changes, when mtime is changed. ctime can be changed on its 649 * own, mtime is then not changed, e.g. when a file is renamed. 650 */ 651 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 652 /* 653 * Last access to the data within the file. Not changed during a rename 654 * for example but changed whenever the file is written to. 655 */ 656 vi->i_atime = ntfs2utc(si->last_access_time); 657 658 /* Find the attribute list attribute if present. */ 659 ntfs_attr_reinit_search_ctx(ctx); 660 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 661 if (err) { 662 if (unlikely(err != -ENOENT)) { 663 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 664 "attribute."); 665 goto unm_err_out; 666 } 667 } else /* if (!err) */ { 668 if (vi->i_ino == FILE_MFT) 669 goto skip_attr_list_load; 670 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 671 NInoSetAttrList(ni); 672 a = ctx->attr; 673 if (a->flags & ATTR_COMPRESSION_MASK) { 674 ntfs_error(vi->i_sb, "Attribute list attribute is " 675 "compressed."); 676 goto unm_err_out; 677 } 678 if (a->flags & ATTR_IS_ENCRYPTED || 679 a->flags & ATTR_IS_SPARSE) { 680 if (a->non_resident) { 681 ntfs_error(vi->i_sb, "Non-resident attribute " 682 "list attribute is encrypted/" 683 "sparse."); 684 goto unm_err_out; 685 } 686 ntfs_warning(vi->i_sb, "Resident attribute list " 687 "attribute in inode 0x%lx is marked " 688 "encrypted/sparse which is not true. " 689 "However, Windows allows this and " 690 "chkdsk does not detect or correct it " 691 "so we will just ignore the invalid " 692 "flags and pretend they are not set.", 693 vi->i_ino); 694 } 695 /* Now allocate memory for the attribute list. */ 696 ni->attr_list_size = (u32)ntfs_attr_size(a); 697 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 698 if (!ni->attr_list) { 699 ntfs_error(vi->i_sb, "Not enough memory to allocate " 700 "buffer for attribute list."); 701 err = -ENOMEM; 702 goto unm_err_out; 703 } 704 if (a->non_resident) { 705 NInoSetAttrListNonResident(ni); 706 if (a->data.non_resident.lowest_vcn) { 707 ntfs_error(vi->i_sb, "Attribute list has non " 708 "zero lowest_vcn."); 709 goto unm_err_out; 710 } 711 /* 712 * Setup the runlist. No need for locking as we have 713 * exclusive access to the inode at this time. 714 */ 715 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 716 a, NULL); 717 if (IS_ERR(ni->attr_list_rl.rl)) { 718 err = PTR_ERR(ni->attr_list_rl.rl); 719 ni->attr_list_rl.rl = NULL; 720 ntfs_error(vi->i_sb, "Mapping pairs " 721 "decompression failed."); 722 goto unm_err_out; 723 } 724 /* Now load the attribute list. */ 725 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 726 ni->attr_list, ni->attr_list_size, 727 sle64_to_cpu(a->data.non_resident. 728 initialized_size)))) { 729 ntfs_error(vi->i_sb, "Failed to load " 730 "attribute list attribute."); 731 goto unm_err_out; 732 } 733 } else /* if (!a->non_resident) */ { 734 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 735 + le32_to_cpu( 736 a->data.resident.value_length) > 737 (u8*)ctx->mrec + vol->mft_record_size) { 738 ntfs_error(vi->i_sb, "Corrupt attribute list " 739 "in inode."); 740 goto unm_err_out; 741 } 742 /* Now copy the attribute list. */ 743 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 744 a->data.resident.value_offset), 745 le32_to_cpu( 746 a->data.resident.value_length)); 747 } 748 } 749 skip_attr_list_load: 750 /* 751 * If an attribute list is present we now have the attribute list value 752 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 753 */ 754 if (S_ISDIR(vi->i_mode)) { 755 loff_t bvi_size; 756 ntfs_inode *bni; 757 INDEX_ROOT *ir; 758 u8 *ir_end, *index_end; 759 760 /* It is a directory, find index root attribute. */ 761 ntfs_attr_reinit_search_ctx(ctx); 762 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 763 0, NULL, 0, ctx); 764 if (unlikely(err)) { 765 if (err == -ENOENT) { 766 // FIXME: File is corrupt! Hot-fix with empty 767 // index root attribute if recovery option is 768 // set. 769 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 770 "is missing."); 771 } 772 goto unm_err_out; 773 } 774 a = ctx->attr; 775 /* Set up the state. */ 776 if (unlikely(a->non_resident)) { 777 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 778 "resident."); 779 goto unm_err_out; 780 } 781 /* Ensure the attribute name is placed before the value. */ 782 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 783 le16_to_cpu(a->data.resident.value_offset)))) { 784 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 785 "placed after the attribute value."); 786 goto unm_err_out; 787 } 788 /* 789 * Compressed/encrypted index root just means that the newly 790 * created files in that directory should be created compressed/ 791 * encrypted. However index root cannot be both compressed and 792 * encrypted. 793 */ 794 if (a->flags & ATTR_COMPRESSION_MASK) 795 NInoSetCompressed(ni); 796 if (a->flags & ATTR_IS_ENCRYPTED) { 797 if (a->flags & ATTR_COMPRESSION_MASK) { 798 ntfs_error(vi->i_sb, "Found encrypted and " 799 "compressed attribute."); 800 goto unm_err_out; 801 } 802 NInoSetEncrypted(ni); 803 } 804 if (a->flags & ATTR_IS_SPARSE) 805 NInoSetSparse(ni); 806 ir = (INDEX_ROOT*)((u8*)a + 807 le16_to_cpu(a->data.resident.value_offset)); 808 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 809 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 810 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 811 "corrupt."); 812 goto unm_err_out; 813 } 814 index_end = (u8*)&ir->index + 815 le32_to_cpu(ir->index.index_length); 816 if (index_end > ir_end) { 817 ntfs_error(vi->i_sb, "Directory index is corrupt."); 818 goto unm_err_out; 819 } 820 if (ir->type != AT_FILE_NAME) { 821 ntfs_error(vi->i_sb, "Indexed attribute is not " 822 "$FILE_NAME."); 823 goto unm_err_out; 824 } 825 if (ir->collation_rule != COLLATION_FILE_NAME) { 826 ntfs_error(vi->i_sb, "Index collation rule is not " 827 "COLLATION_FILE_NAME."); 828 goto unm_err_out; 829 } 830 ni->itype.index.collation_rule = ir->collation_rule; 831 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 832 if (ni->itype.index.block_size & 833 (ni->itype.index.block_size - 1)) { 834 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 835 "power of two.", 836 ni->itype.index.block_size); 837 goto unm_err_out; 838 } 839 if (ni->itype.index.block_size > PAGE_SIZE) { 840 ntfs_error(vi->i_sb, "Index block size (%u) > " 841 "PAGE_SIZE (%ld) is not " 842 "supported. Sorry.", 843 ni->itype.index.block_size, 844 PAGE_SIZE); 845 err = -EOPNOTSUPP; 846 goto unm_err_out; 847 } 848 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 849 ntfs_error(vi->i_sb, "Index block size (%u) < " 850 "NTFS_BLOCK_SIZE (%i) is not " 851 "supported. Sorry.", 852 ni->itype.index.block_size, 853 NTFS_BLOCK_SIZE); 854 err = -EOPNOTSUPP; 855 goto unm_err_out; 856 } 857 ni->itype.index.block_size_bits = 858 ffs(ni->itype.index.block_size) - 1; 859 /* Determine the size of a vcn in the directory index. */ 860 if (vol->cluster_size <= ni->itype.index.block_size) { 861 ni->itype.index.vcn_size = vol->cluster_size; 862 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 863 } else { 864 ni->itype.index.vcn_size = vol->sector_size; 865 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 866 } 867 868 /* Setup the index allocation attribute, even if not present. */ 869 NInoSetMstProtected(ni); 870 ni->type = AT_INDEX_ALLOCATION; 871 ni->name = I30; 872 ni->name_len = 4; 873 874 if (!(ir->index.flags & LARGE_INDEX)) { 875 /* No index allocation. */ 876 vi->i_size = ni->initialized_size = 877 ni->allocated_size = 0; 878 /* We are done with the mft record, so we release it. */ 879 ntfs_attr_put_search_ctx(ctx); 880 unmap_mft_record(ni); 881 m = NULL; 882 ctx = NULL; 883 goto skip_large_dir_stuff; 884 } /* LARGE_INDEX: Index allocation present. Setup state. */ 885 NInoSetIndexAllocPresent(ni); 886 /* Find index allocation attribute. */ 887 ntfs_attr_reinit_search_ctx(ctx); 888 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 889 CASE_SENSITIVE, 0, NULL, 0, ctx); 890 if (unlikely(err)) { 891 if (err == -ENOENT) 892 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 893 "attribute is not present but " 894 "$INDEX_ROOT indicated it is."); 895 else 896 ntfs_error(vi->i_sb, "Failed to lookup " 897 "$INDEX_ALLOCATION " 898 "attribute."); 899 goto unm_err_out; 900 } 901 a = ctx->attr; 902 if (!a->non_resident) { 903 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 904 "is resident."); 905 goto unm_err_out; 906 } 907 /* 908 * Ensure the attribute name is placed before the mapping pairs 909 * array. 910 */ 911 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 912 le16_to_cpu( 913 a->data.non_resident.mapping_pairs_offset)))) { 914 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 915 "is placed after the mapping pairs " 916 "array."); 917 goto unm_err_out; 918 } 919 if (a->flags & ATTR_IS_ENCRYPTED) { 920 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 921 "is encrypted."); 922 goto unm_err_out; 923 } 924 if (a->flags & ATTR_IS_SPARSE) { 925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 926 "is sparse."); 927 goto unm_err_out; 928 } 929 if (a->flags & ATTR_COMPRESSION_MASK) { 930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 931 "is compressed."); 932 goto unm_err_out; 933 } 934 if (a->data.non_resident.lowest_vcn) { 935 ntfs_error(vi->i_sb, "First extent of " 936 "$INDEX_ALLOCATION attribute has non " 937 "zero lowest_vcn."); 938 goto unm_err_out; 939 } 940 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 941 ni->initialized_size = sle64_to_cpu( 942 a->data.non_resident.initialized_size); 943 ni->allocated_size = sle64_to_cpu( 944 a->data.non_resident.allocated_size); 945 /* 946 * We are done with the mft record, so we release it. Otherwise 947 * we would deadlock in ntfs_attr_iget(). 948 */ 949 ntfs_attr_put_search_ctx(ctx); 950 unmap_mft_record(ni); 951 m = NULL; 952 ctx = NULL; 953 /* Get the index bitmap attribute inode. */ 954 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 955 if (IS_ERR(bvi)) { 956 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 957 err = PTR_ERR(bvi); 958 goto unm_err_out; 959 } 960 bni = NTFS_I(bvi); 961 if (NInoCompressed(bni) || NInoEncrypted(bni) || 962 NInoSparse(bni)) { 963 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 964 "and/or encrypted and/or sparse."); 965 goto iput_unm_err_out; 966 } 967 /* Consistency check bitmap size vs. index allocation size. */ 968 bvi_size = i_size_read(bvi); 969 if ((bvi_size << 3) < (vi->i_size >> 970 ni->itype.index.block_size_bits)) { 971 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 972 "for index allocation (0x%llx).", 973 bvi_size << 3, vi->i_size); 974 goto iput_unm_err_out; 975 } 976 /* No longer need the bitmap attribute inode. */ 977 iput(bvi); 978 skip_large_dir_stuff: 979 /* Setup the operations for this inode. */ 980 vi->i_op = &ntfs_dir_inode_ops; 981 vi->i_fop = &ntfs_dir_ops; 982 vi->i_mapping->a_ops = &ntfs_mst_aops; 983 } else { 984 /* It is a file. */ 985 ntfs_attr_reinit_search_ctx(ctx); 986 987 /* Setup the data attribute, even if not present. */ 988 ni->type = AT_DATA; 989 ni->name = NULL; 990 ni->name_len = 0; 991 992 /* Find first extent of the unnamed data attribute. */ 993 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 994 if (unlikely(err)) { 995 vi->i_size = ni->initialized_size = 996 ni->allocated_size = 0; 997 if (err != -ENOENT) { 998 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 999 "attribute."); 1000 goto unm_err_out; 1001 } 1002 /* 1003 * FILE_Secure does not have an unnamed $DATA 1004 * attribute, so we special case it here. 1005 */ 1006 if (vi->i_ino == FILE_Secure) 1007 goto no_data_attr_special_case; 1008 /* 1009 * Most if not all the system files in the $Extend 1010 * system directory do not have unnamed data 1011 * attributes so we need to check if the parent 1012 * directory of the file is FILE_Extend and if it is 1013 * ignore this error. To do this we need to get the 1014 * name of this inode from the mft record as the name 1015 * contains the back reference to the parent directory. 1016 */ 1017 if (ntfs_is_extended_system_file(ctx) > 0) 1018 goto no_data_attr_special_case; 1019 // FIXME: File is corrupt! Hot-fix with empty data 1020 // attribute if recovery option is set. 1021 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1022 goto unm_err_out; 1023 } 1024 a = ctx->attr; 1025 /* Setup the state. */ 1026 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1027 if (a->flags & ATTR_COMPRESSION_MASK) { 1028 NInoSetCompressed(ni); 1029 if (vol->cluster_size > 4096) { 1030 ntfs_error(vi->i_sb, "Found " 1031 "compressed data but " 1032 "compression is " 1033 "disabled due to " 1034 "cluster size (%i) > " 1035 "4kiB.", 1036 vol->cluster_size); 1037 goto unm_err_out; 1038 } 1039 if ((a->flags & ATTR_COMPRESSION_MASK) 1040 != ATTR_IS_COMPRESSED) { 1041 ntfs_error(vi->i_sb, "Found unknown " 1042 "compression method " 1043 "or corrupt file."); 1044 goto unm_err_out; 1045 } 1046 } 1047 if (a->flags & ATTR_IS_SPARSE) 1048 NInoSetSparse(ni); 1049 } 1050 if (a->flags & ATTR_IS_ENCRYPTED) { 1051 if (NInoCompressed(ni)) { 1052 ntfs_error(vi->i_sb, "Found encrypted and " 1053 "compressed data."); 1054 goto unm_err_out; 1055 } 1056 NInoSetEncrypted(ni); 1057 } 1058 if (a->non_resident) { 1059 NInoSetNonResident(ni); 1060 if (NInoCompressed(ni) || NInoSparse(ni)) { 1061 if (NInoCompressed(ni) && a->data.non_resident. 1062 compression_unit != 4) { 1063 ntfs_error(vi->i_sb, "Found " 1064 "non-standard " 1065 "compression unit (%u " 1066 "instead of 4). " 1067 "Cannot handle this.", 1068 a->data.non_resident. 1069 compression_unit); 1070 err = -EOPNOTSUPP; 1071 goto unm_err_out; 1072 } 1073 if (a->data.non_resident.compression_unit) { 1074 ni->itype.compressed.block_size = 1U << 1075 (a->data.non_resident. 1076 compression_unit + 1077 vol->cluster_size_bits); 1078 ni->itype.compressed.block_size_bits = 1079 ffs(ni->itype. 1080 compressed. 1081 block_size) - 1; 1082 ni->itype.compressed.block_clusters = 1083 1U << a->data. 1084 non_resident. 1085 compression_unit; 1086 } else { 1087 ni->itype.compressed.block_size = 0; 1088 ni->itype.compressed.block_size_bits = 1089 0; 1090 ni->itype.compressed.block_clusters = 1091 0; 1092 } 1093 ni->itype.compressed.size = sle64_to_cpu( 1094 a->data.non_resident. 1095 compressed_size); 1096 } 1097 if (a->data.non_resident.lowest_vcn) { 1098 ntfs_error(vi->i_sb, "First extent of $DATA " 1099 "attribute has non zero " 1100 "lowest_vcn."); 1101 goto unm_err_out; 1102 } 1103 vi->i_size = sle64_to_cpu( 1104 a->data.non_resident.data_size); 1105 ni->initialized_size = sle64_to_cpu( 1106 a->data.non_resident.initialized_size); 1107 ni->allocated_size = sle64_to_cpu( 1108 a->data.non_resident.allocated_size); 1109 } else { /* Resident attribute. */ 1110 vi->i_size = ni->initialized_size = le32_to_cpu( 1111 a->data.resident.value_length); 1112 ni->allocated_size = le32_to_cpu(a->length) - 1113 le16_to_cpu( 1114 a->data.resident.value_offset); 1115 if (vi->i_size > ni->allocated_size) { 1116 ntfs_error(vi->i_sb, "Resident data attribute " 1117 "is corrupt (size exceeds " 1118 "allocation)."); 1119 goto unm_err_out; 1120 } 1121 } 1122 no_data_attr_special_case: 1123 /* We are done with the mft record, so we release it. */ 1124 ntfs_attr_put_search_ctx(ctx); 1125 unmap_mft_record(ni); 1126 m = NULL; 1127 ctx = NULL; 1128 /* Setup the operations for this inode. */ 1129 vi->i_op = &ntfs_file_inode_ops; 1130 vi->i_fop = &ntfs_file_ops; 1131 vi->i_mapping->a_ops = &ntfs_normal_aops; 1132 if (NInoMstProtected(ni)) 1133 vi->i_mapping->a_ops = &ntfs_mst_aops; 1134 else if (NInoCompressed(ni)) 1135 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1136 } 1137 /* 1138 * The number of 512-byte blocks used on disk (for stat). This is in so 1139 * far inaccurate as it doesn't account for any named streams or other 1140 * special non-resident attributes, but that is how Windows works, too, 1141 * so we are at least consistent with Windows, if not entirely 1142 * consistent with the Linux Way. Doing it the Linux Way would cause a 1143 * significant slowdown as it would involve iterating over all 1144 * attributes in the mft record and adding the allocated/compressed 1145 * sizes of all non-resident attributes present to give us the Linux 1146 * correct size that should go into i_blocks (after division by 512). 1147 */ 1148 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1149 vi->i_blocks = ni->itype.compressed.size >> 9; 1150 else 1151 vi->i_blocks = ni->allocated_size >> 9; 1152 ntfs_debug("Done."); 1153 return 0; 1154 iput_unm_err_out: 1155 iput(bvi); 1156 unm_err_out: 1157 if (!err) 1158 err = -EIO; 1159 if (ctx) 1160 ntfs_attr_put_search_ctx(ctx); 1161 if (m) 1162 unmap_mft_record(ni); 1163 err_out: 1164 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1165 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1166 make_bad_inode(vi); 1167 if (err != -EOPNOTSUPP && err != -ENOMEM) 1168 NVolSetErrors(vol); 1169 return err; 1170 } 1171 1172 /** 1173 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1174 * @base_vi: base inode 1175 * @vi: attribute inode to read 1176 * 1177 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1178 * attribute inode described by @vi into memory from the base mft record 1179 * described by @base_ni. 1180 * 1181 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1182 * reading and looks up the attribute described by @vi before setting up the 1183 * necessary fields in @vi as well as initializing the ntfs inode. 1184 * 1185 * Q: What locks are held when the function is called? 1186 * A: i_state has I_NEW set, hence the inode is locked, also 1187 * i_count is set to 1, so it is not going to go away 1188 * 1189 * Return 0 on success and -errno on error. In the error case, the inode will 1190 * have had make_bad_inode() executed on it. 1191 * 1192 * Note this cannot be called for AT_INDEX_ALLOCATION. 1193 */ 1194 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1195 { 1196 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1197 ntfs_inode *ni, *base_ni; 1198 MFT_RECORD *m; 1199 ATTR_RECORD *a; 1200 ntfs_attr_search_ctx *ctx; 1201 int err = 0; 1202 1203 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1204 1205 ntfs_init_big_inode(vi); 1206 1207 ni = NTFS_I(vi); 1208 base_ni = NTFS_I(base_vi); 1209 1210 /* Just mirror the values from the base inode. */ 1211 vi->i_uid = base_vi->i_uid; 1212 vi->i_gid = base_vi->i_gid; 1213 set_nlink(vi, base_vi->i_nlink); 1214 vi->i_mtime = base_vi->i_mtime; 1215 vi->i_ctime = base_vi->i_ctime; 1216 vi->i_atime = base_vi->i_atime; 1217 vi->i_generation = ni->seq_no = base_ni->seq_no; 1218 1219 /* Set inode type to zero but preserve permissions. */ 1220 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1221 1222 m = map_mft_record(base_ni); 1223 if (IS_ERR(m)) { 1224 err = PTR_ERR(m); 1225 goto err_out; 1226 } 1227 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1228 if (!ctx) { 1229 err = -ENOMEM; 1230 goto unm_err_out; 1231 } 1232 /* Find the attribute. */ 1233 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1234 CASE_SENSITIVE, 0, NULL, 0, ctx); 1235 if (unlikely(err)) 1236 goto unm_err_out; 1237 a = ctx->attr; 1238 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1239 if (a->flags & ATTR_COMPRESSION_MASK) { 1240 NInoSetCompressed(ni); 1241 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1242 ni->name_len)) { 1243 ntfs_error(vi->i_sb, "Found compressed " 1244 "non-data or named data " 1245 "attribute. Please report " 1246 "you saw this message to " 1247 "linux-ntfs-dev@lists." 1248 "sourceforge.net"); 1249 goto unm_err_out; 1250 } 1251 if (vol->cluster_size > 4096) { 1252 ntfs_error(vi->i_sb, "Found compressed " 1253 "attribute but compression is " 1254 "disabled due to cluster size " 1255 "(%i) > 4kiB.", 1256 vol->cluster_size); 1257 goto unm_err_out; 1258 } 1259 if ((a->flags & ATTR_COMPRESSION_MASK) != 1260 ATTR_IS_COMPRESSED) { 1261 ntfs_error(vi->i_sb, "Found unknown " 1262 "compression method."); 1263 goto unm_err_out; 1264 } 1265 } 1266 /* 1267 * The compressed/sparse flag set in an index root just means 1268 * to compress all files. 1269 */ 1270 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1271 ntfs_error(vi->i_sb, "Found mst protected attribute " 1272 "but the attribute is %s. Please " 1273 "report you saw this message to " 1274 "linux-ntfs-dev@lists.sourceforge.net", 1275 NInoCompressed(ni) ? "compressed" : 1276 "sparse"); 1277 goto unm_err_out; 1278 } 1279 if (a->flags & ATTR_IS_SPARSE) 1280 NInoSetSparse(ni); 1281 } 1282 if (a->flags & ATTR_IS_ENCRYPTED) { 1283 if (NInoCompressed(ni)) { 1284 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1285 "data."); 1286 goto unm_err_out; 1287 } 1288 /* 1289 * The encryption flag set in an index root just means to 1290 * encrypt all files. 1291 */ 1292 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1293 ntfs_error(vi->i_sb, "Found mst protected attribute " 1294 "but the attribute is encrypted. " 1295 "Please report you saw this message " 1296 "to linux-ntfs-dev@lists.sourceforge." 1297 "net"); 1298 goto unm_err_out; 1299 } 1300 if (ni->type != AT_DATA) { 1301 ntfs_error(vi->i_sb, "Found encrypted non-data " 1302 "attribute."); 1303 goto unm_err_out; 1304 } 1305 NInoSetEncrypted(ni); 1306 } 1307 if (!a->non_resident) { 1308 /* Ensure the attribute name is placed before the value. */ 1309 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1310 le16_to_cpu(a->data.resident.value_offset)))) { 1311 ntfs_error(vol->sb, "Attribute name is placed after " 1312 "the attribute value."); 1313 goto unm_err_out; 1314 } 1315 if (NInoMstProtected(ni)) { 1316 ntfs_error(vi->i_sb, "Found mst protected attribute " 1317 "but the attribute is resident. " 1318 "Please report you saw this message to " 1319 "linux-ntfs-dev@lists.sourceforge.net"); 1320 goto unm_err_out; 1321 } 1322 vi->i_size = ni->initialized_size = le32_to_cpu( 1323 a->data.resident.value_length); 1324 ni->allocated_size = le32_to_cpu(a->length) - 1325 le16_to_cpu(a->data.resident.value_offset); 1326 if (vi->i_size > ni->allocated_size) { 1327 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1328 "(size exceeds allocation)."); 1329 goto unm_err_out; 1330 } 1331 } else { 1332 NInoSetNonResident(ni); 1333 /* 1334 * Ensure the attribute name is placed before the mapping pairs 1335 * array. 1336 */ 1337 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1338 le16_to_cpu( 1339 a->data.non_resident.mapping_pairs_offset)))) { 1340 ntfs_error(vol->sb, "Attribute name is placed after " 1341 "the mapping pairs array."); 1342 goto unm_err_out; 1343 } 1344 if (NInoCompressed(ni) || NInoSparse(ni)) { 1345 if (NInoCompressed(ni) && a->data.non_resident. 1346 compression_unit != 4) { 1347 ntfs_error(vi->i_sb, "Found non-standard " 1348 "compression unit (%u instead " 1349 "of 4). Cannot handle this.", 1350 a->data.non_resident. 1351 compression_unit); 1352 err = -EOPNOTSUPP; 1353 goto unm_err_out; 1354 } 1355 if (a->data.non_resident.compression_unit) { 1356 ni->itype.compressed.block_size = 1U << 1357 (a->data.non_resident. 1358 compression_unit + 1359 vol->cluster_size_bits); 1360 ni->itype.compressed.block_size_bits = 1361 ffs(ni->itype.compressed. 1362 block_size) - 1; 1363 ni->itype.compressed.block_clusters = 1U << 1364 a->data.non_resident. 1365 compression_unit; 1366 } else { 1367 ni->itype.compressed.block_size = 0; 1368 ni->itype.compressed.block_size_bits = 0; 1369 ni->itype.compressed.block_clusters = 0; 1370 } 1371 ni->itype.compressed.size = sle64_to_cpu( 1372 a->data.non_resident.compressed_size); 1373 } 1374 if (a->data.non_resident.lowest_vcn) { 1375 ntfs_error(vi->i_sb, "First extent of attribute has " 1376 "non-zero lowest_vcn."); 1377 goto unm_err_out; 1378 } 1379 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1380 ni->initialized_size = sle64_to_cpu( 1381 a->data.non_resident.initialized_size); 1382 ni->allocated_size = sle64_to_cpu( 1383 a->data.non_resident.allocated_size); 1384 } 1385 vi->i_mapping->a_ops = &ntfs_normal_aops; 1386 if (NInoMstProtected(ni)) 1387 vi->i_mapping->a_ops = &ntfs_mst_aops; 1388 else if (NInoCompressed(ni)) 1389 vi->i_mapping->a_ops = &ntfs_compressed_aops; 1390 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1391 vi->i_blocks = ni->itype.compressed.size >> 9; 1392 else 1393 vi->i_blocks = ni->allocated_size >> 9; 1394 /* 1395 * Make sure the base inode does not go away and attach it to the 1396 * attribute inode. 1397 */ 1398 igrab(base_vi); 1399 ni->ext.base_ntfs_ino = base_ni; 1400 ni->nr_extents = -1; 1401 1402 ntfs_attr_put_search_ctx(ctx); 1403 unmap_mft_record(base_ni); 1404 1405 ntfs_debug("Done."); 1406 return 0; 1407 1408 unm_err_out: 1409 if (!err) 1410 err = -EIO; 1411 if (ctx) 1412 ntfs_attr_put_search_ctx(ctx); 1413 unmap_mft_record(base_ni); 1414 err_out: 1415 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1416 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1417 "Marking corrupt inode and base inode 0x%lx as bad. " 1418 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1419 base_vi->i_ino); 1420 make_bad_inode(vi); 1421 if (err != -ENOMEM) 1422 NVolSetErrors(vol); 1423 return err; 1424 } 1425 1426 /** 1427 * ntfs_read_locked_index_inode - read an index inode from its base inode 1428 * @base_vi: base inode 1429 * @vi: index inode to read 1430 * 1431 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1432 * index inode described by @vi into memory from the base mft record described 1433 * by @base_ni. 1434 * 1435 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1436 * reading and looks up the attributes relating to the index described by @vi 1437 * before setting up the necessary fields in @vi as well as initializing the 1438 * ntfs inode. 1439 * 1440 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1441 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1442 * are setup like directory inodes since directories are a special case of 1443 * indices ao they need to be treated in much the same way. Most importantly, 1444 * for small indices the index allocation attribute might not actually exist. 1445 * However, the index root attribute always exists but this does not need to 1446 * have an inode associated with it and this is why we define a new inode type 1447 * index. Also, like for directories, we need to have an attribute inode for 1448 * the bitmap attribute corresponding to the index allocation attribute and we 1449 * can store this in the appropriate field of the inode, just like we do for 1450 * normal directory inodes. 1451 * 1452 * Q: What locks are held when the function is called? 1453 * A: i_state has I_NEW set, hence the inode is locked, also 1454 * i_count is set to 1, so it is not going to go away 1455 * 1456 * Return 0 on success and -errno on error. In the error case, the inode will 1457 * have had make_bad_inode() executed on it. 1458 */ 1459 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1460 { 1461 loff_t bvi_size; 1462 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1463 ntfs_inode *ni, *base_ni, *bni; 1464 struct inode *bvi; 1465 MFT_RECORD *m; 1466 ATTR_RECORD *a; 1467 ntfs_attr_search_ctx *ctx; 1468 INDEX_ROOT *ir; 1469 u8 *ir_end, *index_end; 1470 int err = 0; 1471 1472 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1473 ntfs_init_big_inode(vi); 1474 ni = NTFS_I(vi); 1475 base_ni = NTFS_I(base_vi); 1476 /* Just mirror the values from the base inode. */ 1477 vi->i_uid = base_vi->i_uid; 1478 vi->i_gid = base_vi->i_gid; 1479 set_nlink(vi, base_vi->i_nlink); 1480 vi->i_mtime = base_vi->i_mtime; 1481 vi->i_ctime = base_vi->i_ctime; 1482 vi->i_atime = base_vi->i_atime; 1483 vi->i_generation = ni->seq_no = base_ni->seq_no; 1484 /* Set inode type to zero but preserve permissions. */ 1485 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1486 /* Map the mft record for the base inode. */ 1487 m = map_mft_record(base_ni); 1488 if (IS_ERR(m)) { 1489 err = PTR_ERR(m); 1490 goto err_out; 1491 } 1492 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1493 if (!ctx) { 1494 err = -ENOMEM; 1495 goto unm_err_out; 1496 } 1497 /* Find the index root attribute. */ 1498 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1499 CASE_SENSITIVE, 0, NULL, 0, ctx); 1500 if (unlikely(err)) { 1501 if (err == -ENOENT) 1502 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1503 "missing."); 1504 goto unm_err_out; 1505 } 1506 a = ctx->attr; 1507 /* Set up the state. */ 1508 if (unlikely(a->non_resident)) { 1509 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1510 goto unm_err_out; 1511 } 1512 /* Ensure the attribute name is placed before the value. */ 1513 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1514 le16_to_cpu(a->data.resident.value_offset)))) { 1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1516 "after the attribute value."); 1517 goto unm_err_out; 1518 } 1519 /* 1520 * Compressed/encrypted/sparse index root is not allowed, except for 1521 * directories of course but those are not dealt with here. 1522 */ 1523 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1524 ATTR_IS_SPARSE)) { 1525 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1526 "root attribute."); 1527 goto unm_err_out; 1528 } 1529 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1530 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1531 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1532 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1533 goto unm_err_out; 1534 } 1535 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1536 if (index_end > ir_end) { 1537 ntfs_error(vi->i_sb, "Index is corrupt."); 1538 goto unm_err_out; 1539 } 1540 if (ir->type) { 1541 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1542 le32_to_cpu(ir->type)); 1543 goto unm_err_out; 1544 } 1545 ni->itype.index.collation_rule = ir->collation_rule; 1546 ntfs_debug("Index collation rule is 0x%x.", 1547 le32_to_cpu(ir->collation_rule)); 1548 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1549 if (!is_power_of_2(ni->itype.index.block_size)) { 1550 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1551 "two.", ni->itype.index.block_size); 1552 goto unm_err_out; 1553 } 1554 if (ni->itype.index.block_size > PAGE_SIZE) { 1555 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " 1556 "(%ld) is not supported. Sorry.", 1557 ni->itype.index.block_size, PAGE_SIZE); 1558 err = -EOPNOTSUPP; 1559 goto unm_err_out; 1560 } 1561 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1562 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1563 "(%i) is not supported. Sorry.", 1564 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1565 err = -EOPNOTSUPP; 1566 goto unm_err_out; 1567 } 1568 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1569 /* Determine the size of a vcn in the index. */ 1570 if (vol->cluster_size <= ni->itype.index.block_size) { 1571 ni->itype.index.vcn_size = vol->cluster_size; 1572 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1573 } else { 1574 ni->itype.index.vcn_size = vol->sector_size; 1575 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1576 } 1577 /* Check for presence of index allocation attribute. */ 1578 if (!(ir->index.flags & LARGE_INDEX)) { 1579 /* No index allocation. */ 1580 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1581 /* We are done with the mft record, so we release it. */ 1582 ntfs_attr_put_search_ctx(ctx); 1583 unmap_mft_record(base_ni); 1584 m = NULL; 1585 ctx = NULL; 1586 goto skip_large_index_stuff; 1587 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1588 NInoSetIndexAllocPresent(ni); 1589 /* Find index allocation attribute. */ 1590 ntfs_attr_reinit_search_ctx(ctx); 1591 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1592 CASE_SENSITIVE, 0, NULL, 0, ctx); 1593 if (unlikely(err)) { 1594 if (err == -ENOENT) 1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1596 "not present but $INDEX_ROOT " 1597 "indicated it is."); 1598 else 1599 ntfs_error(vi->i_sb, "Failed to lookup " 1600 "$INDEX_ALLOCATION attribute."); 1601 goto unm_err_out; 1602 } 1603 a = ctx->attr; 1604 if (!a->non_resident) { 1605 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1606 "resident."); 1607 goto unm_err_out; 1608 } 1609 /* 1610 * Ensure the attribute name is placed before the mapping pairs array. 1611 */ 1612 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1613 le16_to_cpu( 1614 a->data.non_resident.mapping_pairs_offset)))) { 1615 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1616 "placed after the mapping pairs array."); 1617 goto unm_err_out; 1618 } 1619 if (a->flags & ATTR_IS_ENCRYPTED) { 1620 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1621 "encrypted."); 1622 goto unm_err_out; 1623 } 1624 if (a->flags & ATTR_IS_SPARSE) { 1625 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1626 goto unm_err_out; 1627 } 1628 if (a->flags & ATTR_COMPRESSION_MASK) { 1629 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1630 "compressed."); 1631 goto unm_err_out; 1632 } 1633 if (a->data.non_resident.lowest_vcn) { 1634 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1635 "attribute has non zero lowest_vcn."); 1636 goto unm_err_out; 1637 } 1638 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1639 ni->initialized_size = sle64_to_cpu( 1640 a->data.non_resident.initialized_size); 1641 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1642 /* 1643 * We are done with the mft record, so we release it. Otherwise 1644 * we would deadlock in ntfs_attr_iget(). 1645 */ 1646 ntfs_attr_put_search_ctx(ctx); 1647 unmap_mft_record(base_ni); 1648 m = NULL; 1649 ctx = NULL; 1650 /* Get the index bitmap attribute inode. */ 1651 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1652 if (IS_ERR(bvi)) { 1653 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1654 err = PTR_ERR(bvi); 1655 goto unm_err_out; 1656 } 1657 bni = NTFS_I(bvi); 1658 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1659 NInoSparse(bni)) { 1660 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1661 "encrypted and/or sparse."); 1662 goto iput_unm_err_out; 1663 } 1664 /* Consistency check bitmap size vs. index allocation size. */ 1665 bvi_size = i_size_read(bvi); 1666 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1667 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1668 "index allocation (0x%llx).", bvi_size << 3, 1669 vi->i_size); 1670 goto iput_unm_err_out; 1671 } 1672 iput(bvi); 1673 skip_large_index_stuff: 1674 /* Setup the operations for this index inode. */ 1675 vi->i_mapping->a_ops = &ntfs_mst_aops; 1676 vi->i_blocks = ni->allocated_size >> 9; 1677 /* 1678 * Make sure the base inode doesn't go away and attach it to the 1679 * index inode. 1680 */ 1681 igrab(base_vi); 1682 ni->ext.base_ntfs_ino = base_ni; 1683 ni->nr_extents = -1; 1684 1685 ntfs_debug("Done."); 1686 return 0; 1687 iput_unm_err_out: 1688 iput(bvi); 1689 unm_err_out: 1690 if (!err) 1691 err = -EIO; 1692 if (ctx) 1693 ntfs_attr_put_search_ctx(ctx); 1694 if (m) 1695 unmap_mft_record(base_ni); 1696 err_out: 1697 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1698 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1699 ni->name_len); 1700 make_bad_inode(vi); 1701 if (err != -EOPNOTSUPP && err != -ENOMEM) 1702 NVolSetErrors(vol); 1703 return err; 1704 } 1705 1706 /* 1707 * The MFT inode has special locking, so teach the lock validator 1708 * about this by splitting off the locking rules of the MFT from 1709 * the locking rules of other inodes. The MFT inode can never be 1710 * accessed from the VFS side (or even internally), only by the 1711 * map_mft functions. 1712 */ 1713 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1714 1715 /** 1716 * ntfs_read_inode_mount - special read_inode for mount time use only 1717 * @vi: inode to read 1718 * 1719 * Read inode FILE_MFT at mount time, only called with super_block lock 1720 * held from within the read_super() code path. 1721 * 1722 * This function exists because when it is called the page cache for $MFT/$DATA 1723 * is not initialized and hence we cannot get at the contents of mft records 1724 * by calling map_mft_record*(). 1725 * 1726 * Further it needs to cope with the circular references problem, i.e. cannot 1727 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1728 * we do not know where the other extent mft records are yet and again, because 1729 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1730 * attribute list is actually present in $MFT inode. 1731 * 1732 * We solve these problems by starting with the $DATA attribute before anything 1733 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1734 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1735 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1736 * sufficient information for the next step to complete. 1737 * 1738 * This should work but there are two possible pit falls (see inline comments 1739 * below), but only time will tell if they are real pits or just smoke... 1740 */ 1741 int ntfs_read_inode_mount(struct inode *vi) 1742 { 1743 VCN next_vcn, last_vcn, highest_vcn; 1744 s64 block; 1745 struct super_block *sb = vi->i_sb; 1746 ntfs_volume *vol = NTFS_SB(sb); 1747 struct buffer_head *bh; 1748 ntfs_inode *ni; 1749 MFT_RECORD *m = NULL; 1750 ATTR_RECORD *a; 1751 ntfs_attr_search_ctx *ctx; 1752 unsigned int i, nr_blocks; 1753 int err; 1754 1755 ntfs_debug("Entering."); 1756 1757 /* Initialize the ntfs specific part of @vi. */ 1758 ntfs_init_big_inode(vi); 1759 1760 ni = NTFS_I(vi); 1761 1762 /* Setup the data attribute. It is special as it is mst protected. */ 1763 NInoSetNonResident(ni); 1764 NInoSetMstProtected(ni); 1765 NInoSetSparseDisabled(ni); 1766 ni->type = AT_DATA; 1767 ni->name = NULL; 1768 ni->name_len = 0; 1769 /* 1770 * This sets up our little cheat allowing us to reuse the async read io 1771 * completion handler for directories. 1772 */ 1773 ni->itype.index.block_size = vol->mft_record_size; 1774 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1775 1776 /* Very important! Needed to be able to call map_mft_record*(). */ 1777 vol->mft_ino = vi; 1778 1779 /* Allocate enough memory to read the first mft record. */ 1780 if (vol->mft_record_size > 64 * 1024) { 1781 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1782 vol->mft_record_size); 1783 goto err_out; 1784 } 1785 i = vol->mft_record_size; 1786 if (i < sb->s_blocksize) 1787 i = sb->s_blocksize; 1788 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1789 if (!m) { 1790 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1791 goto err_out; 1792 } 1793 1794 /* Determine the first block of the $MFT/$DATA attribute. */ 1795 block = vol->mft_lcn << vol->cluster_size_bits >> 1796 sb->s_blocksize_bits; 1797 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1798 if (!nr_blocks) 1799 nr_blocks = 1; 1800 1801 /* Load $MFT/$DATA's first mft record. */ 1802 for (i = 0; i < nr_blocks; i++) { 1803 bh = sb_bread(sb, block++); 1804 if (!bh) { 1805 ntfs_error(sb, "Device read failed."); 1806 goto err_out; 1807 } 1808 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1809 sb->s_blocksize); 1810 brelse(bh); 1811 } 1812 1813 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) { 1814 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.", 1815 le32_to_cpu(m->bytes_allocated), vol->mft_record_size); 1816 goto err_out; 1817 } 1818 1819 /* Apply the mst fixups. */ 1820 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1821 /* FIXME: Try to use the $MFTMirr now. */ 1822 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1823 goto err_out; 1824 } 1825 1826 /* Need this to sanity check attribute list references to $MFT. */ 1827 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1828 1829 /* Provides readpage() for map_mft_record(). */ 1830 vi->i_mapping->a_ops = &ntfs_mst_aops; 1831 1832 ctx = ntfs_attr_get_search_ctx(ni, m); 1833 if (!ctx) { 1834 err = -ENOMEM; 1835 goto err_out; 1836 } 1837 1838 /* Find the attribute list attribute if present. */ 1839 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1840 if (err) { 1841 if (unlikely(err != -ENOENT)) { 1842 ntfs_error(sb, "Failed to lookup attribute list " 1843 "attribute. You should run chkdsk."); 1844 goto put_err_out; 1845 } 1846 } else /* if (!err) */ { 1847 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1848 u8 *al_end; 1849 static const char *es = " Not allowed. $MFT is corrupt. " 1850 "You should run chkdsk."; 1851 1852 ntfs_debug("Attribute list attribute found in $MFT."); 1853 NInoSetAttrList(ni); 1854 a = ctx->attr; 1855 if (a->flags & ATTR_COMPRESSION_MASK) { 1856 ntfs_error(sb, "Attribute list attribute is " 1857 "compressed.%s", es); 1858 goto put_err_out; 1859 } 1860 if (a->flags & ATTR_IS_ENCRYPTED || 1861 a->flags & ATTR_IS_SPARSE) { 1862 if (a->non_resident) { 1863 ntfs_error(sb, "Non-resident attribute list " 1864 "attribute is encrypted/" 1865 "sparse.%s", es); 1866 goto put_err_out; 1867 } 1868 ntfs_warning(sb, "Resident attribute list attribute " 1869 "in $MFT system file is marked " 1870 "encrypted/sparse which is not true. " 1871 "However, Windows allows this and " 1872 "chkdsk does not detect or correct it " 1873 "so we will just ignore the invalid " 1874 "flags and pretend they are not set."); 1875 } 1876 /* Now allocate memory for the attribute list. */ 1877 ni->attr_list_size = (u32)ntfs_attr_size(a); 1878 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1879 if (!ni->attr_list) { 1880 ntfs_error(sb, "Not enough memory to allocate buffer " 1881 "for attribute list."); 1882 goto put_err_out; 1883 } 1884 if (a->non_resident) { 1885 NInoSetAttrListNonResident(ni); 1886 if (a->data.non_resident.lowest_vcn) { 1887 ntfs_error(sb, "Attribute list has non zero " 1888 "lowest_vcn. $MFT is corrupt. " 1889 "You should run chkdsk."); 1890 goto put_err_out; 1891 } 1892 /* Setup the runlist. */ 1893 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1894 a, NULL); 1895 if (IS_ERR(ni->attr_list_rl.rl)) { 1896 err = PTR_ERR(ni->attr_list_rl.rl); 1897 ni->attr_list_rl.rl = NULL; 1898 ntfs_error(sb, "Mapping pairs decompression " 1899 "failed with error code %i.", 1900 -err); 1901 goto put_err_out; 1902 } 1903 /* Now load the attribute list. */ 1904 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1905 ni->attr_list, ni->attr_list_size, 1906 sle64_to_cpu(a->data. 1907 non_resident.initialized_size)))) { 1908 ntfs_error(sb, "Failed to load attribute list " 1909 "attribute with error code %i.", 1910 -err); 1911 goto put_err_out; 1912 } 1913 } else /* if (!ctx.attr->non_resident) */ { 1914 if ((u8*)a + le16_to_cpu( 1915 a->data.resident.value_offset) + 1916 le32_to_cpu( 1917 a->data.resident.value_length) > 1918 (u8*)ctx->mrec + vol->mft_record_size) { 1919 ntfs_error(sb, "Corrupt attribute list " 1920 "attribute."); 1921 goto put_err_out; 1922 } 1923 /* Now copy the attribute list. */ 1924 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1925 a->data.resident.value_offset), 1926 le32_to_cpu( 1927 a->data.resident.value_length)); 1928 } 1929 /* The attribute list is now setup in memory. */ 1930 /* 1931 * FIXME: I don't know if this case is actually possible. 1932 * According to logic it is not possible but I have seen too 1933 * many weird things in MS software to rely on logic... Thus we 1934 * perform a manual search and make sure the first $MFT/$DATA 1935 * extent is in the base inode. If it is not we abort with an 1936 * error and if we ever see a report of this error we will need 1937 * to do some magic in order to have the necessary mft record 1938 * loaded and in the right place in the page cache. But 1939 * hopefully logic will prevail and this never happens... 1940 */ 1941 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1942 al_end = (u8*)al_entry + ni->attr_list_size; 1943 for (;; al_entry = next_al_entry) { 1944 /* Out of bounds check. */ 1945 if ((u8*)al_entry < ni->attr_list || 1946 (u8*)al_entry > al_end) 1947 goto em_put_err_out; 1948 /* Catch the end of the attribute list. */ 1949 if ((u8*)al_entry == al_end) 1950 goto em_put_err_out; 1951 if (!al_entry->length) 1952 goto em_put_err_out; 1953 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1954 le16_to_cpu(al_entry->length) > al_end) 1955 goto em_put_err_out; 1956 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1957 le16_to_cpu(al_entry->length)); 1958 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1959 goto em_put_err_out; 1960 if (AT_DATA != al_entry->type) 1961 continue; 1962 /* We want an unnamed attribute. */ 1963 if (al_entry->name_length) 1964 goto em_put_err_out; 1965 /* Want the first entry, i.e. lowest_vcn == 0. */ 1966 if (al_entry->lowest_vcn) 1967 goto em_put_err_out; 1968 /* First entry has to be in the base mft record. */ 1969 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1970 /* MFT references do not match, logic fails. */ 1971 ntfs_error(sb, "BUG: The first $DATA extent " 1972 "of $MFT is not in the base " 1973 "mft record. Please report " 1974 "you saw this message to " 1975 "linux-ntfs-dev@lists." 1976 "sourceforge.net"); 1977 goto put_err_out; 1978 } else { 1979 /* Sequence numbers must match. */ 1980 if (MSEQNO_LE(al_entry->mft_reference) != 1981 ni->seq_no) 1982 goto em_put_err_out; 1983 /* Got it. All is ok. We can stop now. */ 1984 break; 1985 } 1986 } 1987 } 1988 1989 ntfs_attr_reinit_search_ctx(ctx); 1990 1991 /* Now load all attribute extents. */ 1992 a = NULL; 1993 next_vcn = last_vcn = highest_vcn = 0; 1994 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 1995 ctx))) { 1996 runlist_element *nrl; 1997 1998 /* Cache the current attribute. */ 1999 a = ctx->attr; 2000 /* $MFT must be non-resident. */ 2001 if (!a->non_resident) { 2002 ntfs_error(sb, "$MFT must be non-resident but a " 2003 "resident extent was found. $MFT is " 2004 "corrupt. Run chkdsk."); 2005 goto put_err_out; 2006 } 2007 /* $MFT must be uncompressed and unencrypted. */ 2008 if (a->flags & ATTR_COMPRESSION_MASK || 2009 a->flags & ATTR_IS_ENCRYPTED || 2010 a->flags & ATTR_IS_SPARSE) { 2011 ntfs_error(sb, "$MFT must be uncompressed, " 2012 "non-sparse, and unencrypted but a " 2013 "compressed/sparse/encrypted extent " 2014 "was found. $MFT is corrupt. Run " 2015 "chkdsk."); 2016 goto put_err_out; 2017 } 2018 /* 2019 * Decompress the mapping pairs array of this extent and merge 2020 * the result into the existing runlist. No need for locking 2021 * as we have exclusive access to the inode at this time and we 2022 * are a mount in progress task, too. 2023 */ 2024 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2025 if (IS_ERR(nrl)) { 2026 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2027 "failed with error code %ld. $MFT is " 2028 "corrupt.", PTR_ERR(nrl)); 2029 goto put_err_out; 2030 } 2031 ni->runlist.rl = nrl; 2032 2033 /* Are we in the first extent? */ 2034 if (!next_vcn) { 2035 if (a->data.non_resident.lowest_vcn) { 2036 ntfs_error(sb, "First extent of $DATA " 2037 "attribute has non zero " 2038 "lowest_vcn. $MFT is corrupt. " 2039 "You should run chkdsk."); 2040 goto put_err_out; 2041 } 2042 /* Get the last vcn in the $DATA attribute. */ 2043 last_vcn = sle64_to_cpu( 2044 a->data.non_resident.allocated_size) 2045 >> vol->cluster_size_bits; 2046 /* Fill in the inode size. */ 2047 vi->i_size = sle64_to_cpu( 2048 a->data.non_resident.data_size); 2049 ni->initialized_size = sle64_to_cpu( 2050 a->data.non_resident.initialized_size); 2051 ni->allocated_size = sle64_to_cpu( 2052 a->data.non_resident.allocated_size); 2053 /* 2054 * Verify the number of mft records does not exceed 2055 * 2^32 - 1. 2056 */ 2057 if ((vi->i_size >> vol->mft_record_size_bits) >= 2058 (1ULL << 32)) { 2059 ntfs_error(sb, "$MFT is too big! Aborting."); 2060 goto put_err_out; 2061 } 2062 /* 2063 * We have got the first extent of the runlist for 2064 * $MFT which means it is now relatively safe to call 2065 * the normal ntfs_read_inode() function. 2066 * Complete reading the inode, this will actually 2067 * re-read the mft record for $MFT, this time entering 2068 * it into the page cache with which we complete the 2069 * kick start of the volume. It should be safe to do 2070 * this now as the first extent of $MFT/$DATA is 2071 * already known and we would hope that we don't need 2072 * further extents in order to find the other 2073 * attributes belonging to $MFT. Only time will tell if 2074 * this is really the case. If not we will have to play 2075 * magic at this point, possibly duplicating a lot of 2076 * ntfs_read_inode() at this point. We will need to 2077 * ensure we do enough of its work to be able to call 2078 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2079 * hope this never happens... 2080 */ 2081 ntfs_read_locked_inode(vi); 2082 if (is_bad_inode(vi)) { 2083 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2084 "failed. BUG or corrupt $MFT. " 2085 "Run chkdsk and if no errors " 2086 "are found, please report you " 2087 "saw this message to " 2088 "linux-ntfs-dev@lists." 2089 "sourceforge.net"); 2090 ntfs_attr_put_search_ctx(ctx); 2091 /* Revert to the safe super operations. */ 2092 ntfs_free(m); 2093 return -1; 2094 } 2095 /* 2096 * Re-initialize some specifics about $MFT's inode as 2097 * ntfs_read_inode() will have set up the default ones. 2098 */ 2099 /* Set uid and gid to root. */ 2100 vi->i_uid = GLOBAL_ROOT_UID; 2101 vi->i_gid = GLOBAL_ROOT_GID; 2102 /* Regular file. No access for anyone. */ 2103 vi->i_mode = S_IFREG; 2104 /* No VFS initiated operations allowed for $MFT. */ 2105 vi->i_op = &ntfs_empty_inode_ops; 2106 vi->i_fop = &ntfs_empty_file_ops; 2107 } 2108 2109 /* Get the lowest vcn for the next extent. */ 2110 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2111 next_vcn = highest_vcn + 1; 2112 2113 /* Only one extent or error, which we catch below. */ 2114 if (next_vcn <= 0) 2115 break; 2116 2117 /* Avoid endless loops due to corruption. */ 2118 if (next_vcn < sle64_to_cpu( 2119 a->data.non_resident.lowest_vcn)) { 2120 ntfs_error(sb, "$MFT has corrupt attribute list " 2121 "attribute. Run chkdsk."); 2122 goto put_err_out; 2123 } 2124 } 2125 if (err != -ENOENT) { 2126 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2127 "$MFT is corrupt. Run chkdsk."); 2128 goto put_err_out; 2129 } 2130 if (!a) { 2131 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2132 "corrupt. Run chkdsk."); 2133 goto put_err_out; 2134 } 2135 if (highest_vcn && highest_vcn != last_vcn - 1) { 2136 ntfs_error(sb, "Failed to load the complete runlist for " 2137 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2138 "Run chkdsk."); 2139 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2140 (unsigned long long)highest_vcn, 2141 (unsigned long long)last_vcn - 1); 2142 goto put_err_out; 2143 } 2144 ntfs_attr_put_search_ctx(ctx); 2145 ntfs_debug("Done."); 2146 ntfs_free(m); 2147 2148 /* 2149 * Split the locking rules of the MFT inode from the 2150 * locking rules of other inodes: 2151 */ 2152 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2153 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2154 2155 return 0; 2156 2157 em_put_err_out: 2158 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2159 "attribute list. $MFT is corrupt. Run chkdsk."); 2160 put_err_out: 2161 ntfs_attr_put_search_ctx(ctx); 2162 err_out: 2163 ntfs_error(sb, "Failed. Marking inode as bad."); 2164 make_bad_inode(vi); 2165 ntfs_free(m); 2166 return -1; 2167 } 2168 2169 static void __ntfs_clear_inode(ntfs_inode *ni) 2170 { 2171 /* Free all alocated memory. */ 2172 down_write(&ni->runlist.lock); 2173 if (ni->runlist.rl) { 2174 ntfs_free(ni->runlist.rl); 2175 ni->runlist.rl = NULL; 2176 } 2177 up_write(&ni->runlist.lock); 2178 2179 if (ni->attr_list) { 2180 ntfs_free(ni->attr_list); 2181 ni->attr_list = NULL; 2182 } 2183 2184 down_write(&ni->attr_list_rl.lock); 2185 if (ni->attr_list_rl.rl) { 2186 ntfs_free(ni->attr_list_rl.rl); 2187 ni->attr_list_rl.rl = NULL; 2188 } 2189 up_write(&ni->attr_list_rl.lock); 2190 2191 if (ni->name_len && ni->name != I30) { 2192 /* Catch bugs... */ 2193 BUG_ON(!ni->name); 2194 kfree(ni->name); 2195 } 2196 } 2197 2198 void ntfs_clear_extent_inode(ntfs_inode *ni) 2199 { 2200 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2201 2202 BUG_ON(NInoAttr(ni)); 2203 BUG_ON(ni->nr_extents != -1); 2204 2205 #ifdef NTFS_RW 2206 if (NInoDirty(ni)) { 2207 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2208 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2209 "Losing data! This is a BUG!!!"); 2210 // FIXME: Do something!!! 2211 } 2212 #endif /* NTFS_RW */ 2213 2214 __ntfs_clear_inode(ni); 2215 2216 /* Bye, bye... */ 2217 ntfs_destroy_extent_inode(ni); 2218 } 2219 2220 /** 2221 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2222 * @vi: vfs inode pending annihilation 2223 * 2224 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2225 * is called, which deallocates all memory belonging to the NTFS specific part 2226 * of the inode and returns. 2227 * 2228 * If the MFT record is dirty, we commit it before doing anything else. 2229 */ 2230 void ntfs_evict_big_inode(struct inode *vi) 2231 { 2232 ntfs_inode *ni = NTFS_I(vi); 2233 2234 truncate_inode_pages_final(&vi->i_data); 2235 clear_inode(vi); 2236 2237 #ifdef NTFS_RW 2238 if (NInoDirty(ni)) { 2239 bool was_bad = (is_bad_inode(vi)); 2240 2241 /* Committing the inode also commits all extent inodes. */ 2242 ntfs_commit_inode(vi); 2243 2244 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2245 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2246 "0x%lx. Losing data!", vi->i_ino); 2247 // FIXME: Do something!!! 2248 } 2249 } 2250 #endif /* NTFS_RW */ 2251 2252 /* No need to lock at this stage as no one else has a reference. */ 2253 if (ni->nr_extents > 0) { 2254 int i; 2255 2256 for (i = 0; i < ni->nr_extents; i++) 2257 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2258 kfree(ni->ext.extent_ntfs_inos); 2259 } 2260 2261 __ntfs_clear_inode(ni); 2262 2263 if (NInoAttr(ni)) { 2264 /* Release the base inode if we are holding it. */ 2265 if (ni->nr_extents == -1) { 2266 iput(VFS_I(ni->ext.base_ntfs_ino)); 2267 ni->nr_extents = 0; 2268 ni->ext.base_ntfs_ino = NULL; 2269 } 2270 } 2271 BUG_ON(ni->page); 2272 if (!atomic_dec_and_test(&ni->count)) 2273 BUG(); 2274 return; 2275 } 2276 2277 /** 2278 * ntfs_show_options - show mount options in /proc/mounts 2279 * @sf: seq_file in which to write our mount options 2280 * @root: root of the mounted tree whose mount options to display 2281 * 2282 * Called by the VFS once for each mounted ntfs volume when someone reads 2283 * /proc/mounts in order to display the NTFS specific mount options of each 2284 * mount. The mount options of fs specified by @root are written to the seq file 2285 * @sf and success is returned. 2286 */ 2287 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2288 { 2289 ntfs_volume *vol = NTFS_SB(root->d_sb); 2290 int i; 2291 2292 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); 2293 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); 2294 if (vol->fmask == vol->dmask) 2295 seq_printf(sf, ",umask=0%o", vol->fmask); 2296 else { 2297 seq_printf(sf, ",fmask=0%o", vol->fmask); 2298 seq_printf(sf, ",dmask=0%o", vol->dmask); 2299 } 2300 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2301 if (NVolCaseSensitive(vol)) 2302 seq_printf(sf, ",case_sensitive"); 2303 if (NVolShowSystemFiles(vol)) 2304 seq_printf(sf, ",show_sys_files"); 2305 if (!NVolSparseEnabled(vol)) 2306 seq_printf(sf, ",disable_sparse"); 2307 for (i = 0; on_errors_arr[i].val; i++) { 2308 if (on_errors_arr[i].val & vol->on_errors) 2309 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2310 } 2311 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2312 return 0; 2313 } 2314 2315 #ifdef NTFS_RW 2316 2317 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2318 "chkdsk."; 2319 2320 /** 2321 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2322 * @vi: inode for which the i_size was changed 2323 * 2324 * We only support i_size changes for normal files at present, i.e. not 2325 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2326 * below. 2327 * 2328 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2329 * that the change is allowed. 2330 * 2331 * This implies for us that @vi is a file inode rather than a directory, index, 2332 * or attribute inode as well as that @vi is a base inode. 2333 * 2334 * Returns 0 on success or -errno on error. 2335 * 2336 * Called with ->i_mutex held. 2337 */ 2338 int ntfs_truncate(struct inode *vi) 2339 { 2340 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2341 VCN highest_vcn; 2342 unsigned long flags; 2343 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2344 ntfs_volume *vol = ni->vol; 2345 ntfs_attr_search_ctx *ctx; 2346 MFT_RECORD *m; 2347 ATTR_RECORD *a; 2348 const char *te = " Leaving file length out of sync with i_size."; 2349 int err, mp_size, size_change, alloc_change; 2350 u32 attr_len; 2351 2352 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2353 BUG_ON(NInoAttr(ni)); 2354 BUG_ON(S_ISDIR(vi->i_mode)); 2355 BUG_ON(NInoMstProtected(ni)); 2356 BUG_ON(ni->nr_extents < 0); 2357 retry_truncate: 2358 /* 2359 * Lock the runlist for writing and map the mft record to ensure it is 2360 * safe to mess with the attribute runlist and sizes. 2361 */ 2362 down_write(&ni->runlist.lock); 2363 if (!NInoAttr(ni)) 2364 base_ni = ni; 2365 else 2366 base_ni = ni->ext.base_ntfs_ino; 2367 m = map_mft_record(base_ni); 2368 if (IS_ERR(m)) { 2369 err = PTR_ERR(m); 2370 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2371 "(error code %d).%s", vi->i_ino, err, te); 2372 ctx = NULL; 2373 m = NULL; 2374 goto old_bad_out; 2375 } 2376 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2377 if (unlikely(!ctx)) { 2378 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2379 "inode 0x%lx (not enough memory).%s", 2380 vi->i_ino, te); 2381 err = -ENOMEM; 2382 goto old_bad_out; 2383 } 2384 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2385 CASE_SENSITIVE, 0, NULL, 0, ctx); 2386 if (unlikely(err)) { 2387 if (err == -ENOENT) { 2388 ntfs_error(vi->i_sb, "Open attribute is missing from " 2389 "mft record. Inode 0x%lx is corrupt. " 2390 "Run chkdsk.%s", vi->i_ino, te); 2391 err = -EIO; 2392 } else 2393 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2394 "inode 0x%lx (error code %d).%s", 2395 vi->i_ino, err, te); 2396 goto old_bad_out; 2397 } 2398 m = ctx->mrec; 2399 a = ctx->attr; 2400 /* 2401 * The i_size of the vfs inode is the new size for the attribute value. 2402 */ 2403 new_size = i_size_read(vi); 2404 /* The current size of the attribute value is the old size. */ 2405 old_size = ntfs_attr_size(a); 2406 /* Calculate the new allocated size. */ 2407 if (NInoNonResident(ni)) 2408 new_alloc_size = (new_size + vol->cluster_size - 1) & 2409 ~(s64)vol->cluster_size_mask; 2410 else 2411 new_alloc_size = (new_size + 7) & ~7; 2412 /* The current allocated size is the old allocated size. */ 2413 read_lock_irqsave(&ni->size_lock, flags); 2414 old_alloc_size = ni->allocated_size; 2415 read_unlock_irqrestore(&ni->size_lock, flags); 2416 /* 2417 * The change in the file size. This will be 0 if no change, >0 if the 2418 * size is growing, and <0 if the size is shrinking. 2419 */ 2420 size_change = -1; 2421 if (new_size - old_size >= 0) { 2422 size_change = 1; 2423 if (new_size == old_size) 2424 size_change = 0; 2425 } 2426 /* As above for the allocated size. */ 2427 alloc_change = -1; 2428 if (new_alloc_size - old_alloc_size >= 0) { 2429 alloc_change = 1; 2430 if (new_alloc_size == old_alloc_size) 2431 alloc_change = 0; 2432 } 2433 /* 2434 * If neither the size nor the allocation are being changed there is 2435 * nothing to do. 2436 */ 2437 if (!size_change && !alloc_change) 2438 goto unm_done; 2439 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2440 if (size_change) { 2441 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2442 if (unlikely(err)) { 2443 if (err == -ERANGE) { 2444 ntfs_error(vol->sb, "Truncate would cause the " 2445 "inode 0x%lx to %simum size " 2446 "for its attribute type " 2447 "(0x%x). Aborting truncate.", 2448 vi->i_ino, 2449 new_size > old_size ? "exceed " 2450 "the max" : "go under the min", 2451 le32_to_cpu(ni->type)); 2452 err = -EFBIG; 2453 } else { 2454 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2455 "attribute type 0x%x. " 2456 "Aborting truncate.", 2457 vi->i_ino, 2458 le32_to_cpu(ni->type)); 2459 err = -EIO; 2460 } 2461 /* Reset the vfs inode size to the old size. */ 2462 i_size_write(vi, old_size); 2463 goto err_out; 2464 } 2465 } 2466 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2467 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2468 "supported yet for %s files, ignoring.", 2469 NInoCompressed(ni) ? "compressed" : 2470 "encrypted"); 2471 err = -EOPNOTSUPP; 2472 goto bad_out; 2473 } 2474 if (a->non_resident) 2475 goto do_non_resident_truncate; 2476 BUG_ON(NInoNonResident(ni)); 2477 /* Resize the attribute record to best fit the new attribute size. */ 2478 if (new_size < vol->mft_record_size && 2479 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2480 /* The resize succeeded! */ 2481 flush_dcache_mft_record_page(ctx->ntfs_ino); 2482 mark_mft_record_dirty(ctx->ntfs_ino); 2483 write_lock_irqsave(&ni->size_lock, flags); 2484 /* Update the sizes in the ntfs inode and all is done. */ 2485 ni->allocated_size = le32_to_cpu(a->length) - 2486 le16_to_cpu(a->data.resident.value_offset); 2487 /* 2488 * Note ntfs_resident_attr_value_resize() has already done any 2489 * necessary data clearing in the attribute record. When the 2490 * file is being shrunk vmtruncate() will already have cleared 2491 * the top part of the last partial page, i.e. since this is 2492 * the resident case this is the page with index 0. However, 2493 * when the file is being expanded, the page cache page data 2494 * between the old data_size, i.e. old_size, and the new_size 2495 * has not been zeroed. Fortunately, we do not need to zero it 2496 * either since on one hand it will either already be zero due 2497 * to both readpage and writepage clearing partial page data 2498 * beyond i_size in which case there is nothing to do or in the 2499 * case of the file being mmap()ped at the same time, POSIX 2500 * specifies that the behaviour is unspecified thus we do not 2501 * have to do anything. This means that in our implementation 2502 * in the rare case that the file is mmap()ped and a write 2503 * occurred into the mmap()ped region just beyond the file size 2504 * and writepage has not yet been called to write out the page 2505 * (which would clear the area beyond the file size) and we now 2506 * extend the file size to incorporate this dirty region 2507 * outside the file size, a write of the page would result in 2508 * this data being written to disk instead of being cleared. 2509 * Given both POSIX and the Linux mmap(2) man page specify that 2510 * this corner case is undefined, we choose to leave it like 2511 * that as this is much simpler for us as we cannot lock the 2512 * relevant page now since we are holding too many ntfs locks 2513 * which would result in a lock reversal deadlock. 2514 */ 2515 ni->initialized_size = new_size; 2516 write_unlock_irqrestore(&ni->size_lock, flags); 2517 goto unm_done; 2518 } 2519 /* If the above resize failed, this must be an attribute extension. */ 2520 BUG_ON(size_change < 0); 2521 /* 2522 * We have to drop all the locks so we can call 2523 * ntfs_attr_make_non_resident(). This could be optimised by try- 2524 * locking the first page cache page and only if that fails dropping 2525 * the locks, locking the page, and redoing all the locking and 2526 * lookups. While this would be a huge optimisation, it is not worth 2527 * it as this is definitely a slow code path as it only ever can happen 2528 * once for any given file. 2529 */ 2530 ntfs_attr_put_search_ctx(ctx); 2531 unmap_mft_record(base_ni); 2532 up_write(&ni->runlist.lock); 2533 /* 2534 * Not enough space in the mft record, try to make the attribute 2535 * non-resident and if successful restart the truncation process. 2536 */ 2537 err = ntfs_attr_make_non_resident(ni, old_size); 2538 if (likely(!err)) 2539 goto retry_truncate; 2540 /* 2541 * Could not make non-resident. If this is due to this not being 2542 * permitted for this attribute type or there not being enough space, 2543 * try to make other attributes non-resident. Otherwise fail. 2544 */ 2545 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2546 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2547 "type 0x%x, because the conversion from " 2548 "resident to non-resident attribute failed " 2549 "with error code %i.", vi->i_ino, 2550 (unsigned)le32_to_cpu(ni->type), err); 2551 if (err != -ENOMEM) 2552 err = -EIO; 2553 goto conv_err_out; 2554 } 2555 /* TODO: Not implemented from here, abort. */ 2556 if (err == -ENOSPC) 2557 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2558 "disk for the non-resident attribute value. " 2559 "This case is not implemented yet."); 2560 else /* if (err == -EPERM) */ 2561 ntfs_error(vol->sb, "This attribute type may not be " 2562 "non-resident. This case is not implemented " 2563 "yet."); 2564 err = -EOPNOTSUPP; 2565 goto conv_err_out; 2566 #if 0 2567 // TODO: Attempt to make other attributes non-resident. 2568 if (!err) 2569 goto do_resident_extend; 2570 /* 2571 * Both the attribute list attribute and the standard information 2572 * attribute must remain in the base inode. Thus, if this is one of 2573 * these attributes, we have to try to move other attributes out into 2574 * extent mft records instead. 2575 */ 2576 if (ni->type == AT_ATTRIBUTE_LIST || 2577 ni->type == AT_STANDARD_INFORMATION) { 2578 // TODO: Attempt to move other attributes into extent mft 2579 // records. 2580 err = -EOPNOTSUPP; 2581 if (!err) 2582 goto do_resident_extend; 2583 goto err_out; 2584 } 2585 // TODO: Attempt to move this attribute to an extent mft record, but 2586 // only if it is not already the only attribute in an mft record in 2587 // which case there would be nothing to gain. 2588 err = -EOPNOTSUPP; 2589 if (!err) 2590 goto do_resident_extend; 2591 /* There is nothing we can do to make enough space. )-: */ 2592 goto err_out; 2593 #endif 2594 do_non_resident_truncate: 2595 BUG_ON(!NInoNonResident(ni)); 2596 if (alloc_change < 0) { 2597 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2598 if (highest_vcn > 0 && 2599 old_alloc_size >> vol->cluster_size_bits > 2600 highest_vcn + 1) { 2601 /* 2602 * This attribute has multiple extents. Not yet 2603 * supported. 2604 */ 2605 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2606 "attribute type 0x%x, because the " 2607 "attribute is highly fragmented (it " 2608 "consists of multiple extents) and " 2609 "this case is not implemented yet.", 2610 vi->i_ino, 2611 (unsigned)le32_to_cpu(ni->type)); 2612 err = -EOPNOTSUPP; 2613 goto bad_out; 2614 } 2615 } 2616 /* 2617 * If the size is shrinking, need to reduce the initialized_size and 2618 * the data_size before reducing the allocation. 2619 */ 2620 if (size_change < 0) { 2621 /* 2622 * Make the valid size smaller (i_size is already up-to-date). 2623 */ 2624 write_lock_irqsave(&ni->size_lock, flags); 2625 if (new_size < ni->initialized_size) { 2626 ni->initialized_size = new_size; 2627 a->data.non_resident.initialized_size = 2628 cpu_to_sle64(new_size); 2629 } 2630 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2631 write_unlock_irqrestore(&ni->size_lock, flags); 2632 flush_dcache_mft_record_page(ctx->ntfs_ino); 2633 mark_mft_record_dirty(ctx->ntfs_ino); 2634 /* If the allocated size is not changing, we are done. */ 2635 if (!alloc_change) 2636 goto unm_done; 2637 /* 2638 * If the size is shrinking it makes no sense for the 2639 * allocation to be growing. 2640 */ 2641 BUG_ON(alloc_change > 0); 2642 } else /* if (size_change >= 0) */ { 2643 /* 2644 * The file size is growing or staying the same but the 2645 * allocation can be shrinking, growing or staying the same. 2646 */ 2647 if (alloc_change > 0) { 2648 /* 2649 * We need to extend the allocation and possibly update 2650 * the data size. If we are updating the data size, 2651 * since we are not touching the initialized_size we do 2652 * not need to worry about the actual data on disk. 2653 * And as far as the page cache is concerned, there 2654 * will be no pages beyond the old data size and any 2655 * partial region in the last page between the old and 2656 * new data size (or the end of the page if the new 2657 * data size is outside the page) does not need to be 2658 * modified as explained above for the resident 2659 * attribute truncate case. To do this, we simply drop 2660 * the locks we hold and leave all the work to our 2661 * friendly helper ntfs_attr_extend_allocation(). 2662 */ 2663 ntfs_attr_put_search_ctx(ctx); 2664 unmap_mft_record(base_ni); 2665 up_write(&ni->runlist.lock); 2666 err = ntfs_attr_extend_allocation(ni, new_size, 2667 size_change > 0 ? new_size : -1, -1); 2668 /* 2669 * ntfs_attr_extend_allocation() will have done error 2670 * output already. 2671 */ 2672 goto done; 2673 } 2674 if (!alloc_change) 2675 goto alloc_done; 2676 } 2677 /* alloc_change < 0 */ 2678 /* Free the clusters. */ 2679 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2680 vol->cluster_size_bits, -1, ctx); 2681 m = ctx->mrec; 2682 a = ctx->attr; 2683 if (unlikely(nr_freed < 0)) { 2684 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2685 "%lli). Unmount and run chkdsk to recover " 2686 "the lost cluster(s).", (long long)nr_freed); 2687 NVolSetErrors(vol); 2688 nr_freed = 0; 2689 } 2690 /* Truncate the runlist. */ 2691 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2692 new_alloc_size >> vol->cluster_size_bits); 2693 /* 2694 * If the runlist truncation failed and/or the search context is no 2695 * longer valid, we cannot resize the attribute record or build the 2696 * mapping pairs array thus we mark the inode bad so that no access to 2697 * the freed clusters can happen. 2698 */ 2699 if (unlikely(err || IS_ERR(m))) { 2700 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2701 IS_ERR(m) ? 2702 "restore attribute search context" : 2703 "truncate attribute runlist", 2704 IS_ERR(m) ? PTR_ERR(m) : err, es); 2705 err = -EIO; 2706 goto bad_out; 2707 } 2708 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2709 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2710 if (unlikely(mp_size <= 0)) { 2711 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2712 "attribute type 0x%x, because determining the " 2713 "size for the mapping pairs failed with error " 2714 "code %i.%s", vi->i_ino, 2715 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2716 err = -EIO; 2717 goto bad_out; 2718 } 2719 /* 2720 * Shrink the attribute record for the new mapping pairs array. Note, 2721 * this cannot fail since we are making the attribute smaller thus by 2722 * definition there is enough space to do so. 2723 */ 2724 attr_len = le32_to_cpu(a->length); 2725 err = ntfs_attr_record_resize(m, a, mp_size + 2726 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2727 BUG_ON(err); 2728 /* 2729 * Generate the mapping pairs array directly into the attribute record. 2730 */ 2731 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2732 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2733 mp_size, ni->runlist.rl, 0, -1, NULL); 2734 if (unlikely(err)) { 2735 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2736 "attribute type 0x%x, because building the " 2737 "mapping pairs failed with error code %i.%s", 2738 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2739 err, es); 2740 err = -EIO; 2741 goto bad_out; 2742 } 2743 /* Update the allocated/compressed size as well as the highest vcn. */ 2744 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2745 vol->cluster_size_bits) - 1); 2746 write_lock_irqsave(&ni->size_lock, flags); 2747 ni->allocated_size = new_alloc_size; 2748 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2749 if (NInoSparse(ni) || NInoCompressed(ni)) { 2750 if (nr_freed) { 2751 ni->itype.compressed.size -= nr_freed << 2752 vol->cluster_size_bits; 2753 BUG_ON(ni->itype.compressed.size < 0); 2754 a->data.non_resident.compressed_size = cpu_to_sle64( 2755 ni->itype.compressed.size); 2756 vi->i_blocks = ni->itype.compressed.size >> 9; 2757 } 2758 } else 2759 vi->i_blocks = new_alloc_size >> 9; 2760 write_unlock_irqrestore(&ni->size_lock, flags); 2761 /* 2762 * We have shrunk the allocation. If this is a shrinking truncate we 2763 * have already dealt with the initialized_size and the data_size above 2764 * and we are done. If the truncate is only changing the allocation 2765 * and not the data_size, we are also done. If this is an extending 2766 * truncate, need to extend the data_size now which is ensured by the 2767 * fact that @size_change is positive. 2768 */ 2769 alloc_done: 2770 /* 2771 * If the size is growing, need to update it now. If it is shrinking, 2772 * we have already updated it above (before the allocation change). 2773 */ 2774 if (size_change > 0) 2775 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2776 /* Ensure the modified mft record is written out. */ 2777 flush_dcache_mft_record_page(ctx->ntfs_ino); 2778 mark_mft_record_dirty(ctx->ntfs_ino); 2779 unm_done: 2780 ntfs_attr_put_search_ctx(ctx); 2781 unmap_mft_record(base_ni); 2782 up_write(&ni->runlist.lock); 2783 done: 2784 /* Update the mtime and ctime on the base inode. */ 2785 /* normally ->truncate shouldn't update ctime or mtime, 2786 * but ntfs did before so it got a copy & paste version 2787 * of file_update_time. one day someone should fix this 2788 * for real. 2789 */ 2790 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2791 struct timespec64 now = current_time(VFS_I(base_ni)); 2792 int sync_it = 0; 2793 2794 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) || 2795 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now)) 2796 sync_it = 1; 2797 VFS_I(base_ni)->i_mtime = now; 2798 VFS_I(base_ni)->i_ctime = now; 2799 2800 if (sync_it) 2801 mark_inode_dirty_sync(VFS_I(base_ni)); 2802 } 2803 2804 if (likely(!err)) { 2805 NInoClearTruncateFailed(ni); 2806 ntfs_debug("Done."); 2807 } 2808 return err; 2809 old_bad_out: 2810 old_size = -1; 2811 bad_out: 2812 if (err != -ENOMEM && err != -EOPNOTSUPP) 2813 NVolSetErrors(vol); 2814 if (err != -EOPNOTSUPP) 2815 NInoSetTruncateFailed(ni); 2816 else if (old_size >= 0) 2817 i_size_write(vi, old_size); 2818 err_out: 2819 if (ctx) 2820 ntfs_attr_put_search_ctx(ctx); 2821 if (m) 2822 unmap_mft_record(base_ni); 2823 up_write(&ni->runlist.lock); 2824 out: 2825 ntfs_debug("Failed. Returning error code %i.", err); 2826 return err; 2827 conv_err_out: 2828 if (err != -ENOMEM && err != -EOPNOTSUPP) 2829 NVolSetErrors(vol); 2830 if (err != -EOPNOTSUPP) 2831 NInoSetTruncateFailed(ni); 2832 else 2833 i_size_write(vi, old_size); 2834 goto out; 2835 } 2836 2837 /** 2838 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2839 * @vi: inode for which the i_size was changed 2840 * 2841 * Wrapper for ntfs_truncate() that has no return value. 2842 * 2843 * See ntfs_truncate() description above for details. 2844 */ 2845 #ifdef NTFS_RW 2846 void ntfs_truncate_vfs(struct inode *vi) { 2847 ntfs_truncate(vi); 2848 } 2849 #endif 2850 2851 /** 2852 * ntfs_setattr - called from notify_change() when an attribute is being changed 2853 * @dentry: dentry whose attributes to change 2854 * @attr: structure describing the attributes and the changes 2855 * 2856 * We have to trap VFS attempts to truncate the file described by @dentry as 2857 * soon as possible, because we do not implement changes in i_size yet. So we 2858 * abort all i_size changes here. 2859 * 2860 * We also abort all changes of user, group, and mode as we do not implement 2861 * the NTFS ACLs yet. 2862 * 2863 * Called with ->i_mutex held. 2864 */ 2865 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2866 { 2867 struct inode *vi = d_inode(dentry); 2868 int err; 2869 unsigned int ia_valid = attr->ia_valid; 2870 2871 err = setattr_prepare(dentry, attr); 2872 if (err) 2873 goto out; 2874 /* We do not support NTFS ACLs yet. */ 2875 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2876 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2877 "supported yet, ignoring."); 2878 err = -EOPNOTSUPP; 2879 goto out; 2880 } 2881 if (ia_valid & ATTR_SIZE) { 2882 if (attr->ia_size != i_size_read(vi)) { 2883 ntfs_inode *ni = NTFS_I(vi); 2884 /* 2885 * FIXME: For now we do not support resizing of 2886 * compressed or encrypted files yet. 2887 */ 2888 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2889 ntfs_warning(vi->i_sb, "Changes in inode size " 2890 "are not supported yet for " 2891 "%s files, ignoring.", 2892 NInoCompressed(ni) ? 2893 "compressed" : "encrypted"); 2894 err = -EOPNOTSUPP; 2895 } else { 2896 truncate_setsize(vi, attr->ia_size); 2897 ntfs_truncate_vfs(vi); 2898 } 2899 if (err || ia_valid == ATTR_SIZE) 2900 goto out; 2901 } else { 2902 /* 2903 * We skipped the truncate but must still update 2904 * timestamps. 2905 */ 2906 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2907 } 2908 } 2909 if (ia_valid & ATTR_ATIME) 2910 vi->i_atime = attr->ia_atime; 2911 if (ia_valid & ATTR_MTIME) 2912 vi->i_mtime = attr->ia_mtime; 2913 if (ia_valid & ATTR_CTIME) 2914 vi->i_ctime = attr->ia_ctime; 2915 mark_inode_dirty(vi); 2916 out: 2917 return err; 2918 } 2919 2920 /** 2921 * ntfs_write_inode - write out a dirty inode 2922 * @vi: inode to write out 2923 * @sync: if true, write out synchronously 2924 * 2925 * Write out a dirty inode to disk including any extent inodes if present. 2926 * 2927 * If @sync is true, commit the inode to disk and wait for io completion. This 2928 * is done using write_mft_record(). 2929 * 2930 * If @sync is false, just schedule the write to happen but do not wait for i/o 2931 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2932 * marking the page (and in this case mft record) dirty but we do not implement 2933 * this yet as write_mft_record() largely ignores the @sync parameter and 2934 * always performs synchronous writes. 2935 * 2936 * Return 0 on success and -errno on error. 2937 */ 2938 int __ntfs_write_inode(struct inode *vi, int sync) 2939 { 2940 sle64 nt; 2941 ntfs_inode *ni = NTFS_I(vi); 2942 ntfs_attr_search_ctx *ctx; 2943 MFT_RECORD *m; 2944 STANDARD_INFORMATION *si; 2945 int err = 0; 2946 bool modified = false; 2947 2948 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2949 vi->i_ino); 2950 /* 2951 * Dirty attribute inodes are written via their real inodes so just 2952 * clean them here. Access time updates are taken care off when the 2953 * real inode is written. 2954 */ 2955 if (NInoAttr(ni)) { 2956 NInoClearDirty(ni); 2957 ntfs_debug("Done."); 2958 return 0; 2959 } 2960 /* Map, pin, and lock the mft record belonging to the inode. */ 2961 m = map_mft_record(ni); 2962 if (IS_ERR(m)) { 2963 err = PTR_ERR(m); 2964 goto err_out; 2965 } 2966 /* Update the access times in the standard information attribute. */ 2967 ctx = ntfs_attr_get_search_ctx(ni, m); 2968 if (unlikely(!ctx)) { 2969 err = -ENOMEM; 2970 goto unm_err_out; 2971 } 2972 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2973 CASE_SENSITIVE, 0, NULL, 0, ctx); 2974 if (unlikely(err)) { 2975 ntfs_attr_put_search_ctx(ctx); 2976 goto unm_err_out; 2977 } 2978 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 2979 le16_to_cpu(ctx->attr->data.resident.value_offset)); 2980 /* Update the access times if they have changed. */ 2981 nt = utc2ntfs(vi->i_mtime); 2982 if (si->last_data_change_time != nt) { 2983 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 2984 "new = 0x%llx", vi->i_ino, (long long) 2985 sle64_to_cpu(si->last_data_change_time), 2986 (long long)sle64_to_cpu(nt)); 2987 si->last_data_change_time = nt; 2988 modified = true; 2989 } 2990 nt = utc2ntfs(vi->i_ctime); 2991 if (si->last_mft_change_time != nt) { 2992 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 2993 "new = 0x%llx", vi->i_ino, (long long) 2994 sle64_to_cpu(si->last_mft_change_time), 2995 (long long)sle64_to_cpu(nt)); 2996 si->last_mft_change_time = nt; 2997 modified = true; 2998 } 2999 nt = utc2ntfs(vi->i_atime); 3000 if (si->last_access_time != nt) { 3001 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3002 "new = 0x%llx", vi->i_ino, 3003 (long long)sle64_to_cpu(si->last_access_time), 3004 (long long)sle64_to_cpu(nt)); 3005 si->last_access_time = nt; 3006 modified = true; 3007 } 3008 /* 3009 * If we just modified the standard information attribute we need to 3010 * mark the mft record it is in dirty. We do this manually so that 3011 * mark_inode_dirty() is not called which would redirty the inode and 3012 * hence result in an infinite loop of trying to write the inode. 3013 * There is no need to mark the base inode nor the base mft record 3014 * dirty, since we are going to write this mft record below in any case 3015 * and the base mft record may actually not have been modified so it 3016 * might not need to be written out. 3017 * NOTE: It is not a problem when the inode for $MFT itself is being 3018 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3019 * on the $MFT inode and hence ntfs_write_inode() will not be 3020 * re-invoked because of it which in turn is ok since the dirtied mft 3021 * record will be cleaned and written out to disk below, i.e. before 3022 * this function returns. 3023 */ 3024 if (modified) { 3025 flush_dcache_mft_record_page(ctx->ntfs_ino); 3026 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3027 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3028 ctx->ntfs_ino->page_ofs); 3029 } 3030 ntfs_attr_put_search_ctx(ctx); 3031 /* Now the access times are updated, write the base mft record. */ 3032 if (NInoDirty(ni)) 3033 err = write_mft_record(ni, m, sync); 3034 /* Write all attached extent mft records. */ 3035 mutex_lock(&ni->extent_lock); 3036 if (ni->nr_extents > 0) { 3037 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3038 int i; 3039 3040 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3041 for (i = 0; i < ni->nr_extents; i++) { 3042 ntfs_inode *tni = extent_nis[i]; 3043 3044 if (NInoDirty(tni)) { 3045 MFT_RECORD *tm = map_mft_record(tni); 3046 int ret; 3047 3048 if (IS_ERR(tm)) { 3049 if (!err || err == -ENOMEM) 3050 err = PTR_ERR(tm); 3051 continue; 3052 } 3053 ret = write_mft_record(tni, tm, sync); 3054 unmap_mft_record(tni); 3055 if (unlikely(ret)) { 3056 if (!err || err == -ENOMEM) 3057 err = ret; 3058 } 3059 } 3060 } 3061 } 3062 mutex_unlock(&ni->extent_lock); 3063 unmap_mft_record(ni); 3064 if (unlikely(err)) 3065 goto err_out; 3066 ntfs_debug("Done."); 3067 return 0; 3068 unm_err_out: 3069 unmap_mft_record(ni); 3070 err_out: 3071 if (err == -ENOMEM) { 3072 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3073 "Marking the inode dirty again, so the VFS " 3074 "retries later."); 3075 mark_inode_dirty(vi); 3076 } else { 3077 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3078 NVolSetErrors(ni->vol); 3079 } 3080 return err; 3081 } 3082 3083 #endif /* NTFS_RW */ 3084