xref: /openbmc/linux/fs/ntfs/inode.c (revision 1fa0a7dc)
1 /**
2  * inode.c - NTFS kernel inode handling.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_test_inode - compare two (possibly fake) inodes for equality
46  * @vi:		vfs inode which to test
47  * @na:		ntfs attribute which is being tested with
48  *
49  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50  * inode @vi for equality with the ntfs attribute @na.
51  *
52  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53  * @na->name and @na->name_len are then ignored.
54  *
55  * Return 1 if the attributes match and 0 if not.
56  *
57  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58  * allowed to sleep.
59  */
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 	ntfs_inode *ni;
63 
64 	if (vi->i_ino != na->mft_no)
65 		return 0;
66 	ni = NTFS_I(vi);
67 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 	if (likely(!NInoAttr(ni))) {
69 		/* If not looking for a normal inode this is a mismatch. */
70 		if (unlikely(na->type != AT_UNUSED))
71 			return 0;
72 	} else {
73 		/* A fake inode describing an attribute. */
74 		if (ni->type != na->type)
75 			return 0;
76 		if (ni->name_len != na->name_len)
77 			return 0;
78 		if (na->name_len && memcmp(ni->name, na->name,
79 				na->name_len * sizeof(ntfschar)))
80 			return 0;
81 	}
82 	/* Match! */
83 	return 1;
84 }
85 
86 /**
87  * ntfs_init_locked_inode - initialize an inode
88  * @vi:		vfs inode to initialize
89  * @na:		ntfs attribute which to initialize @vi to
90  *
91  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92  * order to enable ntfs_test_inode() to do its work.
93  *
94  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95  * In that case, @na->name and @na->name_len should be set to NULL and 0,
96  * respectively. Although that is not strictly necessary as
97  * ntfs_read_locked_inode() will fill them in later.
98  *
99  * Return 0 on success and -errno on error.
100  *
101  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103  */
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 	ntfs_inode *ni = NTFS_I(vi);
107 
108 	vi->i_ino = na->mft_no;
109 
110 	ni->type = na->type;
111 	if (na->type == AT_INDEX_ALLOCATION)
112 		NInoSetMstProtected(ni);
113 
114 	ni->name = na->name;
115 	ni->name_len = na->name_len;
116 
117 	/* If initializing a normal inode, we are done. */
118 	if (likely(na->type == AT_UNUSED)) {
119 		BUG_ON(na->name);
120 		BUG_ON(na->name_len);
121 		return 0;
122 	}
123 
124 	/* It is a fake inode. */
125 	NInoSetAttr(ni);
126 
127 	/*
128 	 * We have I30 global constant as an optimization as it is the name
129 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 	 * allocation but that is ok. And most attributes are unnamed anyway,
131 	 * thus the fraction of named attributes with name != I30 is actually
132 	 * absolutely tiny.
133 	 */
134 	if (na->name_len && na->name != I30) {
135 		unsigned int i;
136 
137 		BUG_ON(!na->name);
138 		i = na->name_len * sizeof(ntfschar);
139 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 		if (!ni->name)
141 			return -ENOMEM;
142 		memcpy(ni->name, na->name, i);
143 		ni->name[na->name_len] = 0;
144 	}
145 	return 0;
146 }
147 
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 		struct inode *vi);
153 
154 /**
155  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156  * @sb:		super block of mounted volume
157  * @mft_no:	mft record number / inode number to obtain
158  *
159  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160  * file or directory).
161  *
162  * If the inode is in the cache, it is just returned with an increased
163  * reference count. Otherwise, a new struct inode is allocated and initialized,
164  * and finally ntfs_read_locked_inode() is called to read in the inode and
165  * fill in the remainder of the inode structure.
166  *
167  * Return the struct inode on success. Check the return value with IS_ERR() and
168  * if true, the function failed and the error code is obtained from PTR_ERR().
169  */
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 	struct inode *vi;
173 	int err;
174 	ntfs_attr na;
175 
176 	na.mft_no = mft_no;
177 	na.type = AT_UNUSED;
178 	na.name = NULL;
179 	na.name_len = 0;
180 
181 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 			(set_t)ntfs_init_locked_inode, &na);
183 	if (unlikely(!vi))
184 		return ERR_PTR(-ENOMEM);
185 
186 	err = 0;
187 
188 	/* If this is a freshly allocated inode, need to read it now. */
189 	if (vi->i_state & I_NEW) {
190 		err = ntfs_read_locked_inode(vi);
191 		unlock_new_inode(vi);
192 	}
193 	/*
194 	 * There is no point in keeping bad inodes around if the failure was
195 	 * due to ENOMEM. We want to be able to retry again later.
196 	 */
197 	if (unlikely(err == -ENOMEM)) {
198 		iput(vi);
199 		vi = ERR_PTR(err);
200 	}
201 	return vi;
202 }
203 
204 /**
205  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206  * @base_vi:	vfs base inode containing the attribute
207  * @type:	attribute type
208  * @name:	Unicode name of the attribute (NULL if unnamed)
209  * @name_len:	length of @name in Unicode characters (0 if unnamed)
210  *
211  * Obtain the (fake) struct inode corresponding to the attribute specified by
212  * @type, @name, and @name_len, which is present in the base mft record
213  * specified by the vfs inode @base_vi.
214  *
215  * If the attribute inode is in the cache, it is just returned with an
216  * increased reference count. Otherwise, a new struct inode is allocated and
217  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218  * attribute and fill in the inode structure.
219  *
220  * Note, for index allocation attributes, you need to use ntfs_index_iget()
221  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222  *
223  * Return the struct inode of the attribute inode on success. Check the return
224  * value with IS_ERR() and if true, the function failed and the error code is
225  * obtained from PTR_ERR().
226  */
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 		ntfschar *name, u32 name_len)
229 {
230 	struct inode *vi;
231 	int err;
232 	ntfs_attr na;
233 
234 	/* Make sure no one calls ntfs_attr_iget() for indices. */
235 	BUG_ON(type == AT_INDEX_ALLOCATION);
236 
237 	na.mft_no = base_vi->i_ino;
238 	na.type = type;
239 	na.name = name;
240 	na.name_len = name_len;
241 
242 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 			(set_t)ntfs_init_locked_inode, &na);
244 	if (unlikely(!vi))
245 		return ERR_PTR(-ENOMEM);
246 
247 	err = 0;
248 
249 	/* If this is a freshly allocated inode, need to read it now. */
250 	if (vi->i_state & I_NEW) {
251 		err = ntfs_read_locked_attr_inode(base_vi, vi);
252 		unlock_new_inode(vi);
253 	}
254 	/*
255 	 * There is no point in keeping bad attribute inodes around. This also
256 	 * simplifies things in that we never need to check for bad attribute
257 	 * inodes elsewhere.
258 	 */
259 	if (unlikely(err)) {
260 		iput(vi);
261 		vi = ERR_PTR(err);
262 	}
263 	return vi;
264 }
265 
266 /**
267  * ntfs_index_iget - obtain a struct inode corresponding to an index
268  * @base_vi:	vfs base inode containing the index related attributes
269  * @name:	Unicode name of the index
270  * @name_len:	length of @name in Unicode characters
271  *
272  * Obtain the (fake) struct inode corresponding to the index specified by @name
273  * and @name_len, which is present in the base mft record specified by the vfs
274  * inode @base_vi.
275  *
276  * If the index inode is in the cache, it is just returned with an increased
277  * reference count.  Otherwise, a new struct inode is allocated and
278  * initialized, and finally ntfs_read_locked_index_inode() is called to read
279  * the index related attributes and fill in the inode structure.
280  *
281  * Return the struct inode of the index inode on success. Check the return
282  * value with IS_ERR() and if true, the function failed and the error code is
283  * obtained from PTR_ERR().
284  */
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 		u32 name_len)
287 {
288 	struct inode *vi;
289 	int err;
290 	ntfs_attr na;
291 
292 	na.mft_no = base_vi->i_ino;
293 	na.type = AT_INDEX_ALLOCATION;
294 	na.name = name;
295 	na.name_len = name_len;
296 
297 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 			(set_t)ntfs_init_locked_inode, &na);
299 	if (unlikely(!vi))
300 		return ERR_PTR(-ENOMEM);
301 
302 	err = 0;
303 
304 	/* If this is a freshly allocated inode, need to read it now. */
305 	if (vi->i_state & I_NEW) {
306 		err = ntfs_read_locked_index_inode(base_vi, vi);
307 		unlock_new_inode(vi);
308 	}
309 	/*
310 	 * There is no point in keeping bad index inodes around.  This also
311 	 * simplifies things in that we never need to check for bad index
312 	 * inodes elsewhere.
313 	 */
314 	if (unlikely(err)) {
315 		iput(vi);
316 		vi = ERR_PTR(err);
317 	}
318 	return vi;
319 }
320 
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 	ntfs_inode *ni;
324 
325 	ntfs_debug("Entering.");
326 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 	if (likely(ni != NULL)) {
328 		ni->state = 0;
329 		return VFS_I(ni);
330 	}
331 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 	return NULL;
333 }
334 
335 void ntfs_free_big_inode(struct inode *inode)
336 {
337 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
338 }
339 
340 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
341 {
342 	ntfs_inode *ni;
343 
344 	ntfs_debug("Entering.");
345 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
346 	if (likely(ni != NULL)) {
347 		ni->state = 0;
348 		return ni;
349 	}
350 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
351 	return NULL;
352 }
353 
354 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
355 {
356 	ntfs_debug("Entering.");
357 	BUG_ON(ni->page);
358 	if (!atomic_dec_and_test(&ni->count))
359 		BUG();
360 	kmem_cache_free(ntfs_inode_cache, ni);
361 }
362 
363 /*
364  * The attribute runlist lock has separate locking rules from the
365  * normal runlist lock, so split the two lock-classes:
366  */
367 static struct lock_class_key attr_list_rl_lock_class;
368 
369 /**
370  * __ntfs_init_inode - initialize ntfs specific part of an inode
371  * @sb:		super block of mounted volume
372  * @ni:		freshly allocated ntfs inode which to initialize
373  *
374  * Initialize an ntfs inode to defaults.
375  *
376  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
377  * untouched. Make sure to initialize them elsewhere.
378  *
379  * Return zero on success and -ENOMEM on error.
380  */
381 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
382 {
383 	ntfs_debug("Entering.");
384 	rwlock_init(&ni->size_lock);
385 	ni->initialized_size = ni->allocated_size = 0;
386 	ni->seq_no = 0;
387 	atomic_set(&ni->count, 1);
388 	ni->vol = NTFS_SB(sb);
389 	ntfs_init_runlist(&ni->runlist);
390 	mutex_init(&ni->mrec_lock);
391 	ni->page = NULL;
392 	ni->page_ofs = 0;
393 	ni->attr_list_size = 0;
394 	ni->attr_list = NULL;
395 	ntfs_init_runlist(&ni->attr_list_rl);
396 	lockdep_set_class(&ni->attr_list_rl.lock,
397 				&attr_list_rl_lock_class);
398 	ni->itype.index.block_size = 0;
399 	ni->itype.index.vcn_size = 0;
400 	ni->itype.index.collation_rule = 0;
401 	ni->itype.index.block_size_bits = 0;
402 	ni->itype.index.vcn_size_bits = 0;
403 	mutex_init(&ni->extent_lock);
404 	ni->nr_extents = 0;
405 	ni->ext.base_ntfs_ino = NULL;
406 }
407 
408 /*
409  * Extent inodes get MFT-mapped in a nested way, while the base inode
410  * is still mapped. Teach this nesting to the lock validator by creating
411  * a separate class for nested inode's mrec_lock's:
412  */
413 static struct lock_class_key extent_inode_mrec_lock_key;
414 
415 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
416 		unsigned long mft_no)
417 {
418 	ntfs_inode *ni = ntfs_alloc_extent_inode();
419 
420 	ntfs_debug("Entering.");
421 	if (likely(ni != NULL)) {
422 		__ntfs_init_inode(sb, ni);
423 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
424 		ni->mft_no = mft_no;
425 		ni->type = AT_UNUSED;
426 		ni->name = NULL;
427 		ni->name_len = 0;
428 	}
429 	return ni;
430 }
431 
432 /**
433  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
434  * @ctx:	initialized attribute search context
435  *
436  * Search all file name attributes in the inode described by the attribute
437  * search context @ctx and check if any of the names are in the $Extend system
438  * directory.
439  *
440  * Return values:
441  *	   1: file is in $Extend directory
442  *	   0: file is not in $Extend directory
443  *    -errno: failed to determine if the file is in the $Extend directory
444  */
445 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
446 {
447 	int nr_links, err;
448 
449 	/* Restart search. */
450 	ntfs_attr_reinit_search_ctx(ctx);
451 
452 	/* Get number of hard links. */
453 	nr_links = le16_to_cpu(ctx->mrec->link_count);
454 
455 	/* Loop through all hard links. */
456 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
457 			ctx))) {
458 		FILE_NAME_ATTR *file_name_attr;
459 		ATTR_RECORD *attr = ctx->attr;
460 		u8 *p, *p2;
461 
462 		nr_links--;
463 		/*
464 		 * Maximum sanity checking as we are called on an inode that
465 		 * we suspect might be corrupt.
466 		 */
467 		p = (u8*)attr + le32_to_cpu(attr->length);
468 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
469 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
470 err_corrupt_attr:
471 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
472 					"attribute. You should run chkdsk.");
473 			return -EIO;
474 		}
475 		if (attr->non_resident) {
476 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
477 					"name. You should run chkdsk.");
478 			return -EIO;
479 		}
480 		if (attr->flags) {
481 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
482 					"invalid flags. You should run "
483 					"chkdsk.");
484 			return -EIO;
485 		}
486 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
487 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
488 					"name. You should run chkdsk.");
489 			return -EIO;
490 		}
491 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
492 				le16_to_cpu(attr->data.resident.value_offset));
493 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
494 		if (p2 < (u8*)attr || p2 > p)
495 			goto err_corrupt_attr;
496 		/* This attribute is ok, but is it in the $Extend directory? */
497 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
498 			return 1;	/* YES, it's an extended system file. */
499 	}
500 	if (unlikely(err != -ENOENT))
501 		return err;
502 	if (unlikely(nr_links)) {
503 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
504 				"doesn't match number of name attributes. You "
505 				"should run chkdsk.");
506 		return -EIO;
507 	}
508 	return 0;	/* NO, it is not an extended system file. */
509 }
510 
511 /**
512  * ntfs_read_locked_inode - read an inode from its device
513  * @vi:		inode to read
514  *
515  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
516  * described by @vi into memory from the device.
517  *
518  * The only fields in @vi that we need to/can look at when the function is
519  * called are i_sb, pointing to the mounted device's super block, and i_ino,
520  * the number of the inode to load.
521  *
522  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
523  * for reading and sets up the necessary @vi fields as well as initializing
524  * the ntfs inode.
525  *
526  * Q: What locks are held when the function is called?
527  * A: i_state has I_NEW set, hence the inode is locked, also
528  *    i_count is set to 1, so it is not going to go away
529  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
530  *    is allowed to write to them. We should of course be honouring them but
531  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
532  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
533  *
534  * Return 0 on success and -errno on error.  In the error case, the inode will
535  * have had make_bad_inode() executed on it.
536  */
537 static int ntfs_read_locked_inode(struct inode *vi)
538 {
539 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
540 	ntfs_inode *ni;
541 	struct inode *bvi;
542 	MFT_RECORD *m;
543 	ATTR_RECORD *a;
544 	STANDARD_INFORMATION *si;
545 	ntfs_attr_search_ctx *ctx;
546 	int err = 0;
547 
548 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
549 
550 	/* Setup the generic vfs inode parts now. */
551 	vi->i_uid = vol->uid;
552 	vi->i_gid = vol->gid;
553 	vi->i_mode = 0;
554 
555 	/*
556 	 * Initialize the ntfs specific part of @vi special casing
557 	 * FILE_MFT which we need to do at mount time.
558 	 */
559 	if (vi->i_ino != FILE_MFT)
560 		ntfs_init_big_inode(vi);
561 	ni = NTFS_I(vi);
562 
563 	m = map_mft_record(ni);
564 	if (IS_ERR(m)) {
565 		err = PTR_ERR(m);
566 		goto err_out;
567 	}
568 	ctx = ntfs_attr_get_search_ctx(ni, m);
569 	if (!ctx) {
570 		err = -ENOMEM;
571 		goto unm_err_out;
572 	}
573 
574 	if (!(m->flags & MFT_RECORD_IN_USE)) {
575 		ntfs_error(vi->i_sb, "Inode is not in use!");
576 		goto unm_err_out;
577 	}
578 	if (m->base_mft_record) {
579 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
580 		goto unm_err_out;
581 	}
582 
583 	/* Transfer information from mft record into vfs and ntfs inodes. */
584 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
585 
586 	/*
587 	 * FIXME: Keep in mind that link_count is two for files which have both
588 	 * a long file name and a short file name as separate entries, so if
589 	 * we are hiding short file names this will be too high. Either we need
590 	 * to account for the short file names by subtracting them or we need
591 	 * to make sure we delete files even though i_nlink is not zero which
592 	 * might be tricky due to vfs interactions. Need to think about this
593 	 * some more when implementing the unlink command.
594 	 */
595 	set_nlink(vi, le16_to_cpu(m->link_count));
596 	/*
597 	 * FIXME: Reparse points can have the directory bit set even though
598 	 * they would be S_IFLNK. Need to deal with this further below when we
599 	 * implement reparse points / symbolic links but it will do for now.
600 	 * Also if not a directory, it could be something else, rather than
601 	 * a regular file. But again, will do for now.
602 	 */
603 	/* Everyone gets all permissions. */
604 	vi->i_mode |= S_IRWXUGO;
605 	/* If read-only, no one gets write permissions. */
606 	if (IS_RDONLY(vi))
607 		vi->i_mode &= ~S_IWUGO;
608 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
609 		vi->i_mode |= S_IFDIR;
610 		/*
611 		 * Apply the directory permissions mask set in the mount
612 		 * options.
613 		 */
614 		vi->i_mode &= ~vol->dmask;
615 		/* Things break without this kludge! */
616 		if (vi->i_nlink > 1)
617 			set_nlink(vi, 1);
618 	} else {
619 		vi->i_mode |= S_IFREG;
620 		/* Apply the file permissions mask set in the mount options. */
621 		vi->i_mode &= ~vol->fmask;
622 	}
623 	/*
624 	 * Find the standard information attribute in the mft record. At this
625 	 * stage we haven't setup the attribute list stuff yet, so this could
626 	 * in fact fail if the standard information is in an extent record, but
627 	 * I don't think this actually ever happens.
628 	 */
629 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
630 			ctx);
631 	if (unlikely(err)) {
632 		if (err == -ENOENT) {
633 			/*
634 			 * TODO: We should be performing a hot fix here (if the
635 			 * recover mount option is set) by creating a new
636 			 * attribute.
637 			 */
638 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
639 					"is missing.");
640 		}
641 		goto unm_err_out;
642 	}
643 	a = ctx->attr;
644 	/* Get the standard information attribute value. */
645 	si = (STANDARD_INFORMATION*)((u8*)a +
646 			le16_to_cpu(a->data.resident.value_offset));
647 
648 	/* Transfer information from the standard information into vi. */
649 	/*
650 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
651 	 * but they are close enough, and in the end it doesn't really matter
652 	 * that much...
653 	 */
654 	/*
655 	 * mtime is the last change of the data within the file. Not changed
656 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
657 	 */
658 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
659 	/*
660 	 * ctime is the last change of the metadata of the file. This obviously
661 	 * always changes, when mtime is changed. ctime can be changed on its
662 	 * own, mtime is then not changed, e.g. when a file is renamed.
663 	 */
664 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
665 	/*
666 	 * Last access to the data within the file. Not changed during a rename
667 	 * for example but changed whenever the file is written to.
668 	 */
669 	vi->i_atime = ntfs2utc(si->last_access_time);
670 
671 	/* Find the attribute list attribute if present. */
672 	ntfs_attr_reinit_search_ctx(ctx);
673 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
674 	if (err) {
675 		if (unlikely(err != -ENOENT)) {
676 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
677 					"attribute.");
678 			goto unm_err_out;
679 		}
680 	} else /* if (!err) */ {
681 		if (vi->i_ino == FILE_MFT)
682 			goto skip_attr_list_load;
683 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
684 		NInoSetAttrList(ni);
685 		a = ctx->attr;
686 		if (a->flags & ATTR_COMPRESSION_MASK) {
687 			ntfs_error(vi->i_sb, "Attribute list attribute is "
688 					"compressed.");
689 			goto unm_err_out;
690 		}
691 		if (a->flags & ATTR_IS_ENCRYPTED ||
692 				a->flags & ATTR_IS_SPARSE) {
693 			if (a->non_resident) {
694 				ntfs_error(vi->i_sb, "Non-resident attribute "
695 						"list attribute is encrypted/"
696 						"sparse.");
697 				goto unm_err_out;
698 			}
699 			ntfs_warning(vi->i_sb, "Resident attribute list "
700 					"attribute in inode 0x%lx is marked "
701 					"encrypted/sparse which is not true.  "
702 					"However, Windows allows this and "
703 					"chkdsk does not detect or correct it "
704 					"so we will just ignore the invalid "
705 					"flags and pretend they are not set.",
706 					vi->i_ino);
707 		}
708 		/* Now allocate memory for the attribute list. */
709 		ni->attr_list_size = (u32)ntfs_attr_size(a);
710 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
711 		if (!ni->attr_list) {
712 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
713 					"buffer for attribute list.");
714 			err = -ENOMEM;
715 			goto unm_err_out;
716 		}
717 		if (a->non_resident) {
718 			NInoSetAttrListNonResident(ni);
719 			if (a->data.non_resident.lowest_vcn) {
720 				ntfs_error(vi->i_sb, "Attribute list has non "
721 						"zero lowest_vcn.");
722 				goto unm_err_out;
723 			}
724 			/*
725 			 * Setup the runlist. No need for locking as we have
726 			 * exclusive access to the inode at this time.
727 			 */
728 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
729 					a, NULL);
730 			if (IS_ERR(ni->attr_list_rl.rl)) {
731 				err = PTR_ERR(ni->attr_list_rl.rl);
732 				ni->attr_list_rl.rl = NULL;
733 				ntfs_error(vi->i_sb, "Mapping pairs "
734 						"decompression failed.");
735 				goto unm_err_out;
736 			}
737 			/* Now load the attribute list. */
738 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
739 					ni->attr_list, ni->attr_list_size,
740 					sle64_to_cpu(a->data.non_resident.
741 					initialized_size)))) {
742 				ntfs_error(vi->i_sb, "Failed to load "
743 						"attribute list attribute.");
744 				goto unm_err_out;
745 			}
746 		} else /* if (!a->non_resident) */ {
747 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
748 					+ le32_to_cpu(
749 					a->data.resident.value_length) >
750 					(u8*)ctx->mrec + vol->mft_record_size) {
751 				ntfs_error(vi->i_sb, "Corrupt attribute list "
752 						"in inode.");
753 				goto unm_err_out;
754 			}
755 			/* Now copy the attribute list. */
756 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
757 					a->data.resident.value_offset),
758 					le32_to_cpu(
759 					a->data.resident.value_length));
760 		}
761 	}
762 skip_attr_list_load:
763 	/*
764 	 * If an attribute list is present we now have the attribute list value
765 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
766 	 */
767 	if (S_ISDIR(vi->i_mode)) {
768 		loff_t bvi_size;
769 		ntfs_inode *bni;
770 		INDEX_ROOT *ir;
771 		u8 *ir_end, *index_end;
772 
773 		/* It is a directory, find index root attribute. */
774 		ntfs_attr_reinit_search_ctx(ctx);
775 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
776 				0, NULL, 0, ctx);
777 		if (unlikely(err)) {
778 			if (err == -ENOENT) {
779 				// FIXME: File is corrupt! Hot-fix with empty
780 				// index root attribute if recovery option is
781 				// set.
782 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
783 						"is missing.");
784 			}
785 			goto unm_err_out;
786 		}
787 		a = ctx->attr;
788 		/* Set up the state. */
789 		if (unlikely(a->non_resident)) {
790 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
791 					"resident.");
792 			goto unm_err_out;
793 		}
794 		/* Ensure the attribute name is placed before the value. */
795 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
796 				le16_to_cpu(a->data.resident.value_offset)))) {
797 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
798 					"placed after the attribute value.");
799 			goto unm_err_out;
800 		}
801 		/*
802 		 * Compressed/encrypted index root just means that the newly
803 		 * created files in that directory should be created compressed/
804 		 * encrypted. However index root cannot be both compressed and
805 		 * encrypted.
806 		 */
807 		if (a->flags & ATTR_COMPRESSION_MASK)
808 			NInoSetCompressed(ni);
809 		if (a->flags & ATTR_IS_ENCRYPTED) {
810 			if (a->flags & ATTR_COMPRESSION_MASK) {
811 				ntfs_error(vi->i_sb, "Found encrypted and "
812 						"compressed attribute.");
813 				goto unm_err_out;
814 			}
815 			NInoSetEncrypted(ni);
816 		}
817 		if (a->flags & ATTR_IS_SPARSE)
818 			NInoSetSparse(ni);
819 		ir = (INDEX_ROOT*)((u8*)a +
820 				le16_to_cpu(a->data.resident.value_offset));
821 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
822 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
823 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
824 					"corrupt.");
825 			goto unm_err_out;
826 		}
827 		index_end = (u8*)&ir->index +
828 				le32_to_cpu(ir->index.index_length);
829 		if (index_end > ir_end) {
830 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
831 			goto unm_err_out;
832 		}
833 		if (ir->type != AT_FILE_NAME) {
834 			ntfs_error(vi->i_sb, "Indexed attribute is not "
835 					"$FILE_NAME.");
836 			goto unm_err_out;
837 		}
838 		if (ir->collation_rule != COLLATION_FILE_NAME) {
839 			ntfs_error(vi->i_sb, "Index collation rule is not "
840 					"COLLATION_FILE_NAME.");
841 			goto unm_err_out;
842 		}
843 		ni->itype.index.collation_rule = ir->collation_rule;
844 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
845 		if (ni->itype.index.block_size &
846 				(ni->itype.index.block_size - 1)) {
847 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
848 					"power of two.",
849 					ni->itype.index.block_size);
850 			goto unm_err_out;
851 		}
852 		if (ni->itype.index.block_size > PAGE_SIZE) {
853 			ntfs_error(vi->i_sb, "Index block size (%u) > "
854 					"PAGE_SIZE (%ld) is not "
855 					"supported.  Sorry.",
856 					ni->itype.index.block_size,
857 					PAGE_SIZE);
858 			err = -EOPNOTSUPP;
859 			goto unm_err_out;
860 		}
861 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
862 			ntfs_error(vi->i_sb, "Index block size (%u) < "
863 					"NTFS_BLOCK_SIZE (%i) is not "
864 					"supported.  Sorry.",
865 					ni->itype.index.block_size,
866 					NTFS_BLOCK_SIZE);
867 			err = -EOPNOTSUPP;
868 			goto unm_err_out;
869 		}
870 		ni->itype.index.block_size_bits =
871 				ffs(ni->itype.index.block_size) - 1;
872 		/* Determine the size of a vcn in the directory index. */
873 		if (vol->cluster_size <= ni->itype.index.block_size) {
874 			ni->itype.index.vcn_size = vol->cluster_size;
875 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
876 		} else {
877 			ni->itype.index.vcn_size = vol->sector_size;
878 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
879 		}
880 
881 		/* Setup the index allocation attribute, even if not present. */
882 		NInoSetMstProtected(ni);
883 		ni->type = AT_INDEX_ALLOCATION;
884 		ni->name = I30;
885 		ni->name_len = 4;
886 
887 		if (!(ir->index.flags & LARGE_INDEX)) {
888 			/* No index allocation. */
889 			vi->i_size = ni->initialized_size =
890 					ni->allocated_size = 0;
891 			/* We are done with the mft record, so we release it. */
892 			ntfs_attr_put_search_ctx(ctx);
893 			unmap_mft_record(ni);
894 			m = NULL;
895 			ctx = NULL;
896 			goto skip_large_dir_stuff;
897 		} /* LARGE_INDEX: Index allocation present. Setup state. */
898 		NInoSetIndexAllocPresent(ni);
899 		/* Find index allocation attribute. */
900 		ntfs_attr_reinit_search_ctx(ctx);
901 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
902 				CASE_SENSITIVE, 0, NULL, 0, ctx);
903 		if (unlikely(err)) {
904 			if (err == -ENOENT)
905 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
906 						"attribute is not present but "
907 						"$INDEX_ROOT indicated it is.");
908 			else
909 				ntfs_error(vi->i_sb, "Failed to lookup "
910 						"$INDEX_ALLOCATION "
911 						"attribute.");
912 			goto unm_err_out;
913 		}
914 		a = ctx->attr;
915 		if (!a->non_resident) {
916 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
917 					"is resident.");
918 			goto unm_err_out;
919 		}
920 		/*
921 		 * Ensure the attribute name is placed before the mapping pairs
922 		 * array.
923 		 */
924 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
925 				le16_to_cpu(
926 				a->data.non_resident.mapping_pairs_offset)))) {
927 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
928 					"is placed after the mapping pairs "
929 					"array.");
930 			goto unm_err_out;
931 		}
932 		if (a->flags & ATTR_IS_ENCRYPTED) {
933 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
934 					"is encrypted.");
935 			goto unm_err_out;
936 		}
937 		if (a->flags & ATTR_IS_SPARSE) {
938 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
939 					"is sparse.");
940 			goto unm_err_out;
941 		}
942 		if (a->flags & ATTR_COMPRESSION_MASK) {
943 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
944 					"is compressed.");
945 			goto unm_err_out;
946 		}
947 		if (a->data.non_resident.lowest_vcn) {
948 			ntfs_error(vi->i_sb, "First extent of "
949 					"$INDEX_ALLOCATION attribute has non "
950 					"zero lowest_vcn.");
951 			goto unm_err_out;
952 		}
953 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
954 		ni->initialized_size = sle64_to_cpu(
955 				a->data.non_resident.initialized_size);
956 		ni->allocated_size = sle64_to_cpu(
957 				a->data.non_resident.allocated_size);
958 		/*
959 		 * We are done with the mft record, so we release it. Otherwise
960 		 * we would deadlock in ntfs_attr_iget().
961 		 */
962 		ntfs_attr_put_search_ctx(ctx);
963 		unmap_mft_record(ni);
964 		m = NULL;
965 		ctx = NULL;
966 		/* Get the index bitmap attribute inode. */
967 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
968 		if (IS_ERR(bvi)) {
969 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
970 			err = PTR_ERR(bvi);
971 			goto unm_err_out;
972 		}
973 		bni = NTFS_I(bvi);
974 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
975 				NInoSparse(bni)) {
976 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
977 					"and/or encrypted and/or sparse.");
978 			goto iput_unm_err_out;
979 		}
980 		/* Consistency check bitmap size vs. index allocation size. */
981 		bvi_size = i_size_read(bvi);
982 		if ((bvi_size << 3) < (vi->i_size >>
983 				ni->itype.index.block_size_bits)) {
984 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
985 					"for index allocation (0x%llx).",
986 					bvi_size << 3, vi->i_size);
987 			goto iput_unm_err_out;
988 		}
989 		/* No longer need the bitmap attribute inode. */
990 		iput(bvi);
991 skip_large_dir_stuff:
992 		/* Setup the operations for this inode. */
993 		vi->i_op = &ntfs_dir_inode_ops;
994 		vi->i_fop = &ntfs_dir_ops;
995 		vi->i_mapping->a_ops = &ntfs_mst_aops;
996 	} else {
997 		/* It is a file. */
998 		ntfs_attr_reinit_search_ctx(ctx);
999 
1000 		/* Setup the data attribute, even if not present. */
1001 		ni->type = AT_DATA;
1002 		ni->name = NULL;
1003 		ni->name_len = 0;
1004 
1005 		/* Find first extent of the unnamed data attribute. */
1006 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1007 		if (unlikely(err)) {
1008 			vi->i_size = ni->initialized_size =
1009 					ni->allocated_size = 0;
1010 			if (err != -ENOENT) {
1011 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1012 						"attribute.");
1013 				goto unm_err_out;
1014 			}
1015 			/*
1016 			 * FILE_Secure does not have an unnamed $DATA
1017 			 * attribute, so we special case it here.
1018 			 */
1019 			if (vi->i_ino == FILE_Secure)
1020 				goto no_data_attr_special_case;
1021 			/*
1022 			 * Most if not all the system files in the $Extend
1023 			 * system directory do not have unnamed data
1024 			 * attributes so we need to check if the parent
1025 			 * directory of the file is FILE_Extend and if it is
1026 			 * ignore this error. To do this we need to get the
1027 			 * name of this inode from the mft record as the name
1028 			 * contains the back reference to the parent directory.
1029 			 */
1030 			if (ntfs_is_extended_system_file(ctx) > 0)
1031 				goto no_data_attr_special_case;
1032 			// FIXME: File is corrupt! Hot-fix with empty data
1033 			// attribute if recovery option is set.
1034 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1035 			goto unm_err_out;
1036 		}
1037 		a = ctx->attr;
1038 		/* Setup the state. */
1039 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1040 			if (a->flags & ATTR_COMPRESSION_MASK) {
1041 				NInoSetCompressed(ni);
1042 				if (vol->cluster_size > 4096) {
1043 					ntfs_error(vi->i_sb, "Found "
1044 							"compressed data but "
1045 							"compression is "
1046 							"disabled due to "
1047 							"cluster size (%i) > "
1048 							"4kiB.",
1049 							vol->cluster_size);
1050 					goto unm_err_out;
1051 				}
1052 				if ((a->flags & ATTR_COMPRESSION_MASK)
1053 						!= ATTR_IS_COMPRESSED) {
1054 					ntfs_error(vi->i_sb, "Found unknown "
1055 							"compression method "
1056 							"or corrupt file.");
1057 					goto unm_err_out;
1058 				}
1059 			}
1060 			if (a->flags & ATTR_IS_SPARSE)
1061 				NInoSetSparse(ni);
1062 		}
1063 		if (a->flags & ATTR_IS_ENCRYPTED) {
1064 			if (NInoCompressed(ni)) {
1065 				ntfs_error(vi->i_sb, "Found encrypted and "
1066 						"compressed data.");
1067 				goto unm_err_out;
1068 			}
1069 			NInoSetEncrypted(ni);
1070 		}
1071 		if (a->non_resident) {
1072 			NInoSetNonResident(ni);
1073 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1074 				if (NInoCompressed(ni) && a->data.non_resident.
1075 						compression_unit != 4) {
1076 					ntfs_error(vi->i_sb, "Found "
1077 							"non-standard "
1078 							"compression unit (%u "
1079 							"instead of 4).  "
1080 							"Cannot handle this.",
1081 							a->data.non_resident.
1082 							compression_unit);
1083 					err = -EOPNOTSUPP;
1084 					goto unm_err_out;
1085 				}
1086 				if (a->data.non_resident.compression_unit) {
1087 					ni->itype.compressed.block_size = 1U <<
1088 							(a->data.non_resident.
1089 							compression_unit +
1090 							vol->cluster_size_bits);
1091 					ni->itype.compressed.block_size_bits =
1092 							ffs(ni->itype.
1093 							compressed.
1094 							block_size) - 1;
1095 					ni->itype.compressed.block_clusters =
1096 							1U << a->data.
1097 							non_resident.
1098 							compression_unit;
1099 				} else {
1100 					ni->itype.compressed.block_size = 0;
1101 					ni->itype.compressed.block_size_bits =
1102 							0;
1103 					ni->itype.compressed.block_clusters =
1104 							0;
1105 				}
1106 				ni->itype.compressed.size = sle64_to_cpu(
1107 						a->data.non_resident.
1108 						compressed_size);
1109 			}
1110 			if (a->data.non_resident.lowest_vcn) {
1111 				ntfs_error(vi->i_sb, "First extent of $DATA "
1112 						"attribute has non zero "
1113 						"lowest_vcn.");
1114 				goto unm_err_out;
1115 			}
1116 			vi->i_size = sle64_to_cpu(
1117 					a->data.non_resident.data_size);
1118 			ni->initialized_size = sle64_to_cpu(
1119 					a->data.non_resident.initialized_size);
1120 			ni->allocated_size = sle64_to_cpu(
1121 					a->data.non_resident.allocated_size);
1122 		} else { /* Resident attribute. */
1123 			vi->i_size = ni->initialized_size = le32_to_cpu(
1124 					a->data.resident.value_length);
1125 			ni->allocated_size = le32_to_cpu(a->length) -
1126 					le16_to_cpu(
1127 					a->data.resident.value_offset);
1128 			if (vi->i_size > ni->allocated_size) {
1129 				ntfs_error(vi->i_sb, "Resident data attribute "
1130 						"is corrupt (size exceeds "
1131 						"allocation).");
1132 				goto unm_err_out;
1133 			}
1134 		}
1135 no_data_attr_special_case:
1136 		/* We are done with the mft record, so we release it. */
1137 		ntfs_attr_put_search_ctx(ctx);
1138 		unmap_mft_record(ni);
1139 		m = NULL;
1140 		ctx = NULL;
1141 		/* Setup the operations for this inode. */
1142 		vi->i_op = &ntfs_file_inode_ops;
1143 		vi->i_fop = &ntfs_file_ops;
1144 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1145 		if (NInoMstProtected(ni))
1146 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1147 		else if (NInoCompressed(ni))
1148 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1149 	}
1150 	/*
1151 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1152 	 * far inaccurate as it doesn't account for any named streams or other
1153 	 * special non-resident attributes, but that is how Windows works, too,
1154 	 * so we are at least consistent with Windows, if not entirely
1155 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1156 	 * significant slowdown as it would involve iterating over all
1157 	 * attributes in the mft record and adding the allocated/compressed
1158 	 * sizes of all non-resident attributes present to give us the Linux
1159 	 * correct size that should go into i_blocks (after division by 512).
1160 	 */
1161 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1162 		vi->i_blocks = ni->itype.compressed.size >> 9;
1163 	else
1164 		vi->i_blocks = ni->allocated_size >> 9;
1165 	ntfs_debug("Done.");
1166 	return 0;
1167 iput_unm_err_out:
1168 	iput(bvi);
1169 unm_err_out:
1170 	if (!err)
1171 		err = -EIO;
1172 	if (ctx)
1173 		ntfs_attr_put_search_ctx(ctx);
1174 	if (m)
1175 		unmap_mft_record(ni);
1176 err_out:
1177 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1178 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1179 	make_bad_inode(vi);
1180 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1181 		NVolSetErrors(vol);
1182 	return err;
1183 }
1184 
1185 /**
1186  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1187  * @base_vi:	base inode
1188  * @vi:		attribute inode to read
1189  *
1190  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1191  * attribute inode described by @vi into memory from the base mft record
1192  * described by @base_ni.
1193  *
1194  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1195  * reading and looks up the attribute described by @vi before setting up the
1196  * necessary fields in @vi as well as initializing the ntfs inode.
1197  *
1198  * Q: What locks are held when the function is called?
1199  * A: i_state has I_NEW set, hence the inode is locked, also
1200  *    i_count is set to 1, so it is not going to go away
1201  *
1202  * Return 0 on success and -errno on error.  In the error case, the inode will
1203  * have had make_bad_inode() executed on it.
1204  *
1205  * Note this cannot be called for AT_INDEX_ALLOCATION.
1206  */
1207 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1208 {
1209 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1210 	ntfs_inode *ni, *base_ni;
1211 	MFT_RECORD *m;
1212 	ATTR_RECORD *a;
1213 	ntfs_attr_search_ctx *ctx;
1214 	int err = 0;
1215 
1216 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1217 
1218 	ntfs_init_big_inode(vi);
1219 
1220 	ni	= NTFS_I(vi);
1221 	base_ni = NTFS_I(base_vi);
1222 
1223 	/* Just mirror the values from the base inode. */
1224 	vi->i_uid	= base_vi->i_uid;
1225 	vi->i_gid	= base_vi->i_gid;
1226 	set_nlink(vi, base_vi->i_nlink);
1227 	vi->i_mtime	= base_vi->i_mtime;
1228 	vi->i_ctime	= base_vi->i_ctime;
1229 	vi->i_atime	= base_vi->i_atime;
1230 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1231 
1232 	/* Set inode type to zero but preserve permissions. */
1233 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1234 
1235 	m = map_mft_record(base_ni);
1236 	if (IS_ERR(m)) {
1237 		err = PTR_ERR(m);
1238 		goto err_out;
1239 	}
1240 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1241 	if (!ctx) {
1242 		err = -ENOMEM;
1243 		goto unm_err_out;
1244 	}
1245 	/* Find the attribute. */
1246 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1247 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1248 	if (unlikely(err))
1249 		goto unm_err_out;
1250 	a = ctx->attr;
1251 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1252 		if (a->flags & ATTR_COMPRESSION_MASK) {
1253 			NInoSetCompressed(ni);
1254 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1255 					ni->name_len)) {
1256 				ntfs_error(vi->i_sb, "Found compressed "
1257 						"non-data or named data "
1258 						"attribute.  Please report "
1259 						"you saw this message to "
1260 						"linux-ntfs-dev@lists."
1261 						"sourceforge.net");
1262 				goto unm_err_out;
1263 			}
1264 			if (vol->cluster_size > 4096) {
1265 				ntfs_error(vi->i_sb, "Found compressed "
1266 						"attribute but compression is "
1267 						"disabled due to cluster size "
1268 						"(%i) > 4kiB.",
1269 						vol->cluster_size);
1270 				goto unm_err_out;
1271 			}
1272 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1273 					ATTR_IS_COMPRESSED) {
1274 				ntfs_error(vi->i_sb, "Found unknown "
1275 						"compression method.");
1276 				goto unm_err_out;
1277 			}
1278 		}
1279 		/*
1280 		 * The compressed/sparse flag set in an index root just means
1281 		 * to compress all files.
1282 		 */
1283 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1284 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1285 					"but the attribute is %s.  Please "
1286 					"report you saw this message to "
1287 					"linux-ntfs-dev@lists.sourceforge.net",
1288 					NInoCompressed(ni) ? "compressed" :
1289 					"sparse");
1290 			goto unm_err_out;
1291 		}
1292 		if (a->flags & ATTR_IS_SPARSE)
1293 			NInoSetSparse(ni);
1294 	}
1295 	if (a->flags & ATTR_IS_ENCRYPTED) {
1296 		if (NInoCompressed(ni)) {
1297 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1298 					"data.");
1299 			goto unm_err_out;
1300 		}
1301 		/*
1302 		 * The encryption flag set in an index root just means to
1303 		 * encrypt all files.
1304 		 */
1305 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1306 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1307 					"but the attribute is encrypted.  "
1308 					"Please report you saw this message "
1309 					"to linux-ntfs-dev@lists.sourceforge."
1310 					"net");
1311 			goto unm_err_out;
1312 		}
1313 		if (ni->type != AT_DATA) {
1314 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1315 					"attribute.");
1316 			goto unm_err_out;
1317 		}
1318 		NInoSetEncrypted(ni);
1319 	}
1320 	if (!a->non_resident) {
1321 		/* Ensure the attribute name is placed before the value. */
1322 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1323 				le16_to_cpu(a->data.resident.value_offset)))) {
1324 			ntfs_error(vol->sb, "Attribute name is placed after "
1325 					"the attribute value.");
1326 			goto unm_err_out;
1327 		}
1328 		if (NInoMstProtected(ni)) {
1329 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1330 					"but the attribute is resident.  "
1331 					"Please report you saw this message to "
1332 					"linux-ntfs-dev@lists.sourceforge.net");
1333 			goto unm_err_out;
1334 		}
1335 		vi->i_size = ni->initialized_size = le32_to_cpu(
1336 				a->data.resident.value_length);
1337 		ni->allocated_size = le32_to_cpu(a->length) -
1338 				le16_to_cpu(a->data.resident.value_offset);
1339 		if (vi->i_size > ni->allocated_size) {
1340 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1341 					"(size exceeds allocation).");
1342 			goto unm_err_out;
1343 		}
1344 	} else {
1345 		NInoSetNonResident(ni);
1346 		/*
1347 		 * Ensure the attribute name is placed before the mapping pairs
1348 		 * array.
1349 		 */
1350 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1351 				le16_to_cpu(
1352 				a->data.non_resident.mapping_pairs_offset)))) {
1353 			ntfs_error(vol->sb, "Attribute name is placed after "
1354 					"the mapping pairs array.");
1355 			goto unm_err_out;
1356 		}
1357 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1358 			if (NInoCompressed(ni) && a->data.non_resident.
1359 					compression_unit != 4) {
1360 				ntfs_error(vi->i_sb, "Found non-standard "
1361 						"compression unit (%u instead "
1362 						"of 4).  Cannot handle this.",
1363 						a->data.non_resident.
1364 						compression_unit);
1365 				err = -EOPNOTSUPP;
1366 				goto unm_err_out;
1367 			}
1368 			if (a->data.non_resident.compression_unit) {
1369 				ni->itype.compressed.block_size = 1U <<
1370 						(a->data.non_resident.
1371 						compression_unit +
1372 						vol->cluster_size_bits);
1373 				ni->itype.compressed.block_size_bits =
1374 						ffs(ni->itype.compressed.
1375 						block_size) - 1;
1376 				ni->itype.compressed.block_clusters = 1U <<
1377 						a->data.non_resident.
1378 						compression_unit;
1379 			} else {
1380 				ni->itype.compressed.block_size = 0;
1381 				ni->itype.compressed.block_size_bits = 0;
1382 				ni->itype.compressed.block_clusters = 0;
1383 			}
1384 			ni->itype.compressed.size = sle64_to_cpu(
1385 					a->data.non_resident.compressed_size);
1386 		}
1387 		if (a->data.non_resident.lowest_vcn) {
1388 			ntfs_error(vi->i_sb, "First extent of attribute has "
1389 					"non-zero lowest_vcn.");
1390 			goto unm_err_out;
1391 		}
1392 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1393 		ni->initialized_size = sle64_to_cpu(
1394 				a->data.non_resident.initialized_size);
1395 		ni->allocated_size = sle64_to_cpu(
1396 				a->data.non_resident.allocated_size);
1397 	}
1398 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1399 	if (NInoMstProtected(ni))
1400 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1401 	else if (NInoCompressed(ni))
1402 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1403 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1404 		vi->i_blocks = ni->itype.compressed.size >> 9;
1405 	else
1406 		vi->i_blocks = ni->allocated_size >> 9;
1407 	/*
1408 	 * Make sure the base inode does not go away and attach it to the
1409 	 * attribute inode.
1410 	 */
1411 	igrab(base_vi);
1412 	ni->ext.base_ntfs_ino = base_ni;
1413 	ni->nr_extents = -1;
1414 
1415 	ntfs_attr_put_search_ctx(ctx);
1416 	unmap_mft_record(base_ni);
1417 
1418 	ntfs_debug("Done.");
1419 	return 0;
1420 
1421 unm_err_out:
1422 	if (!err)
1423 		err = -EIO;
1424 	if (ctx)
1425 		ntfs_attr_put_search_ctx(ctx);
1426 	unmap_mft_record(base_ni);
1427 err_out:
1428 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1429 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1430 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1431 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1432 			base_vi->i_ino);
1433 	make_bad_inode(vi);
1434 	if (err != -ENOMEM)
1435 		NVolSetErrors(vol);
1436 	return err;
1437 }
1438 
1439 /**
1440  * ntfs_read_locked_index_inode - read an index inode from its base inode
1441  * @base_vi:	base inode
1442  * @vi:		index inode to read
1443  *
1444  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1445  * index inode described by @vi into memory from the base mft record described
1446  * by @base_ni.
1447  *
1448  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1449  * reading and looks up the attributes relating to the index described by @vi
1450  * before setting up the necessary fields in @vi as well as initializing the
1451  * ntfs inode.
1452  *
1453  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1454  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1455  * are setup like directory inodes since directories are a special case of
1456  * indices ao they need to be treated in much the same way.  Most importantly,
1457  * for small indices the index allocation attribute might not actually exist.
1458  * However, the index root attribute always exists but this does not need to
1459  * have an inode associated with it and this is why we define a new inode type
1460  * index.  Also, like for directories, we need to have an attribute inode for
1461  * the bitmap attribute corresponding to the index allocation attribute and we
1462  * can store this in the appropriate field of the inode, just like we do for
1463  * normal directory inodes.
1464  *
1465  * Q: What locks are held when the function is called?
1466  * A: i_state has I_NEW set, hence the inode is locked, also
1467  *    i_count is set to 1, so it is not going to go away
1468  *
1469  * Return 0 on success and -errno on error.  In the error case, the inode will
1470  * have had make_bad_inode() executed on it.
1471  */
1472 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1473 {
1474 	loff_t bvi_size;
1475 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1476 	ntfs_inode *ni, *base_ni, *bni;
1477 	struct inode *bvi;
1478 	MFT_RECORD *m;
1479 	ATTR_RECORD *a;
1480 	ntfs_attr_search_ctx *ctx;
1481 	INDEX_ROOT *ir;
1482 	u8 *ir_end, *index_end;
1483 	int err = 0;
1484 
1485 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1486 	ntfs_init_big_inode(vi);
1487 	ni	= NTFS_I(vi);
1488 	base_ni = NTFS_I(base_vi);
1489 	/* Just mirror the values from the base inode. */
1490 	vi->i_uid	= base_vi->i_uid;
1491 	vi->i_gid	= base_vi->i_gid;
1492 	set_nlink(vi, base_vi->i_nlink);
1493 	vi->i_mtime	= base_vi->i_mtime;
1494 	vi->i_ctime	= base_vi->i_ctime;
1495 	vi->i_atime	= base_vi->i_atime;
1496 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1497 	/* Set inode type to zero but preserve permissions. */
1498 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1499 	/* Map the mft record for the base inode. */
1500 	m = map_mft_record(base_ni);
1501 	if (IS_ERR(m)) {
1502 		err = PTR_ERR(m);
1503 		goto err_out;
1504 	}
1505 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1506 	if (!ctx) {
1507 		err = -ENOMEM;
1508 		goto unm_err_out;
1509 	}
1510 	/* Find the index root attribute. */
1511 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1512 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1513 	if (unlikely(err)) {
1514 		if (err == -ENOENT)
1515 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1516 					"missing.");
1517 		goto unm_err_out;
1518 	}
1519 	a = ctx->attr;
1520 	/* Set up the state. */
1521 	if (unlikely(a->non_resident)) {
1522 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1523 		goto unm_err_out;
1524 	}
1525 	/* Ensure the attribute name is placed before the value. */
1526 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1527 			le16_to_cpu(a->data.resident.value_offset)))) {
1528 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1529 				"after the attribute value.");
1530 		goto unm_err_out;
1531 	}
1532 	/*
1533 	 * Compressed/encrypted/sparse index root is not allowed, except for
1534 	 * directories of course but those are not dealt with here.
1535 	 */
1536 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1537 			ATTR_IS_SPARSE)) {
1538 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1539 				"root attribute.");
1540 		goto unm_err_out;
1541 	}
1542 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1543 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1544 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1545 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1546 		goto unm_err_out;
1547 	}
1548 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1549 	if (index_end > ir_end) {
1550 		ntfs_error(vi->i_sb, "Index is corrupt.");
1551 		goto unm_err_out;
1552 	}
1553 	if (ir->type) {
1554 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1555 				le32_to_cpu(ir->type));
1556 		goto unm_err_out;
1557 	}
1558 	ni->itype.index.collation_rule = ir->collation_rule;
1559 	ntfs_debug("Index collation rule is 0x%x.",
1560 			le32_to_cpu(ir->collation_rule));
1561 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1562 	if (!is_power_of_2(ni->itype.index.block_size)) {
1563 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1564 				"two.", ni->itype.index.block_size);
1565 		goto unm_err_out;
1566 	}
1567 	if (ni->itype.index.block_size > PAGE_SIZE) {
1568 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1569 				"(%ld) is not supported.  Sorry.",
1570 				ni->itype.index.block_size, PAGE_SIZE);
1571 		err = -EOPNOTSUPP;
1572 		goto unm_err_out;
1573 	}
1574 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1575 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1576 				"(%i) is not supported.  Sorry.",
1577 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1578 		err = -EOPNOTSUPP;
1579 		goto unm_err_out;
1580 	}
1581 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1582 	/* Determine the size of a vcn in the index. */
1583 	if (vol->cluster_size <= ni->itype.index.block_size) {
1584 		ni->itype.index.vcn_size = vol->cluster_size;
1585 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1586 	} else {
1587 		ni->itype.index.vcn_size = vol->sector_size;
1588 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1589 	}
1590 	/* Check for presence of index allocation attribute. */
1591 	if (!(ir->index.flags & LARGE_INDEX)) {
1592 		/* No index allocation. */
1593 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1594 		/* We are done with the mft record, so we release it. */
1595 		ntfs_attr_put_search_ctx(ctx);
1596 		unmap_mft_record(base_ni);
1597 		m = NULL;
1598 		ctx = NULL;
1599 		goto skip_large_index_stuff;
1600 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1601 	NInoSetIndexAllocPresent(ni);
1602 	/* Find index allocation attribute. */
1603 	ntfs_attr_reinit_search_ctx(ctx);
1604 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1605 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1606 	if (unlikely(err)) {
1607 		if (err == -ENOENT)
1608 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1609 					"not present but $INDEX_ROOT "
1610 					"indicated it is.");
1611 		else
1612 			ntfs_error(vi->i_sb, "Failed to lookup "
1613 					"$INDEX_ALLOCATION attribute.");
1614 		goto unm_err_out;
1615 	}
1616 	a = ctx->attr;
1617 	if (!a->non_resident) {
1618 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1619 				"resident.");
1620 		goto unm_err_out;
1621 	}
1622 	/*
1623 	 * Ensure the attribute name is placed before the mapping pairs array.
1624 	 */
1625 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1626 			le16_to_cpu(
1627 			a->data.non_resident.mapping_pairs_offset)))) {
1628 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1629 				"placed after the mapping pairs array.");
1630 		goto unm_err_out;
1631 	}
1632 	if (a->flags & ATTR_IS_ENCRYPTED) {
1633 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1634 				"encrypted.");
1635 		goto unm_err_out;
1636 	}
1637 	if (a->flags & ATTR_IS_SPARSE) {
1638 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1639 		goto unm_err_out;
1640 	}
1641 	if (a->flags & ATTR_COMPRESSION_MASK) {
1642 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1643 				"compressed.");
1644 		goto unm_err_out;
1645 	}
1646 	if (a->data.non_resident.lowest_vcn) {
1647 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1648 				"attribute has non zero lowest_vcn.");
1649 		goto unm_err_out;
1650 	}
1651 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1652 	ni->initialized_size = sle64_to_cpu(
1653 			a->data.non_resident.initialized_size);
1654 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1655 	/*
1656 	 * We are done with the mft record, so we release it.  Otherwise
1657 	 * we would deadlock in ntfs_attr_iget().
1658 	 */
1659 	ntfs_attr_put_search_ctx(ctx);
1660 	unmap_mft_record(base_ni);
1661 	m = NULL;
1662 	ctx = NULL;
1663 	/* Get the index bitmap attribute inode. */
1664 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1665 	if (IS_ERR(bvi)) {
1666 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1667 		err = PTR_ERR(bvi);
1668 		goto unm_err_out;
1669 	}
1670 	bni = NTFS_I(bvi);
1671 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1672 			NInoSparse(bni)) {
1673 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1674 				"encrypted and/or sparse.");
1675 		goto iput_unm_err_out;
1676 	}
1677 	/* Consistency check bitmap size vs. index allocation size. */
1678 	bvi_size = i_size_read(bvi);
1679 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1680 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1681 				"index allocation (0x%llx).", bvi_size << 3,
1682 				vi->i_size);
1683 		goto iput_unm_err_out;
1684 	}
1685 	iput(bvi);
1686 skip_large_index_stuff:
1687 	/* Setup the operations for this index inode. */
1688 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1689 	vi->i_blocks = ni->allocated_size >> 9;
1690 	/*
1691 	 * Make sure the base inode doesn't go away and attach it to the
1692 	 * index inode.
1693 	 */
1694 	igrab(base_vi);
1695 	ni->ext.base_ntfs_ino = base_ni;
1696 	ni->nr_extents = -1;
1697 
1698 	ntfs_debug("Done.");
1699 	return 0;
1700 iput_unm_err_out:
1701 	iput(bvi);
1702 unm_err_out:
1703 	if (!err)
1704 		err = -EIO;
1705 	if (ctx)
1706 		ntfs_attr_put_search_ctx(ctx);
1707 	if (m)
1708 		unmap_mft_record(base_ni);
1709 err_out:
1710 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1711 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1712 			ni->name_len);
1713 	make_bad_inode(vi);
1714 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1715 		NVolSetErrors(vol);
1716 	return err;
1717 }
1718 
1719 /*
1720  * The MFT inode has special locking, so teach the lock validator
1721  * about this by splitting off the locking rules of the MFT from
1722  * the locking rules of other inodes. The MFT inode can never be
1723  * accessed from the VFS side (or even internally), only by the
1724  * map_mft functions.
1725  */
1726 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1727 
1728 /**
1729  * ntfs_read_inode_mount - special read_inode for mount time use only
1730  * @vi:		inode to read
1731  *
1732  * Read inode FILE_MFT at mount time, only called with super_block lock
1733  * held from within the read_super() code path.
1734  *
1735  * This function exists because when it is called the page cache for $MFT/$DATA
1736  * is not initialized and hence we cannot get at the contents of mft records
1737  * by calling map_mft_record*().
1738  *
1739  * Further it needs to cope with the circular references problem, i.e. cannot
1740  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1741  * we do not know where the other extent mft records are yet and again, because
1742  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1743  * attribute list is actually present in $MFT inode.
1744  *
1745  * We solve these problems by starting with the $DATA attribute before anything
1746  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1747  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1748  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1749  * sufficient information for the next step to complete.
1750  *
1751  * This should work but there are two possible pit falls (see inline comments
1752  * below), but only time will tell if they are real pits or just smoke...
1753  */
1754 int ntfs_read_inode_mount(struct inode *vi)
1755 {
1756 	VCN next_vcn, last_vcn, highest_vcn;
1757 	s64 block;
1758 	struct super_block *sb = vi->i_sb;
1759 	ntfs_volume *vol = NTFS_SB(sb);
1760 	struct buffer_head *bh;
1761 	ntfs_inode *ni;
1762 	MFT_RECORD *m = NULL;
1763 	ATTR_RECORD *a;
1764 	ntfs_attr_search_ctx *ctx;
1765 	unsigned int i, nr_blocks;
1766 	int err;
1767 
1768 	ntfs_debug("Entering.");
1769 
1770 	/* Initialize the ntfs specific part of @vi. */
1771 	ntfs_init_big_inode(vi);
1772 
1773 	ni = NTFS_I(vi);
1774 
1775 	/* Setup the data attribute. It is special as it is mst protected. */
1776 	NInoSetNonResident(ni);
1777 	NInoSetMstProtected(ni);
1778 	NInoSetSparseDisabled(ni);
1779 	ni->type = AT_DATA;
1780 	ni->name = NULL;
1781 	ni->name_len = 0;
1782 	/*
1783 	 * This sets up our little cheat allowing us to reuse the async read io
1784 	 * completion handler for directories.
1785 	 */
1786 	ni->itype.index.block_size = vol->mft_record_size;
1787 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1788 
1789 	/* Very important! Needed to be able to call map_mft_record*(). */
1790 	vol->mft_ino = vi;
1791 
1792 	/* Allocate enough memory to read the first mft record. */
1793 	if (vol->mft_record_size > 64 * 1024) {
1794 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1795 				vol->mft_record_size);
1796 		goto err_out;
1797 	}
1798 	i = vol->mft_record_size;
1799 	if (i < sb->s_blocksize)
1800 		i = sb->s_blocksize;
1801 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1802 	if (!m) {
1803 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1804 		goto err_out;
1805 	}
1806 
1807 	/* Determine the first block of the $MFT/$DATA attribute. */
1808 	block = vol->mft_lcn << vol->cluster_size_bits >>
1809 			sb->s_blocksize_bits;
1810 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1811 	if (!nr_blocks)
1812 		nr_blocks = 1;
1813 
1814 	/* Load $MFT/$DATA's first mft record. */
1815 	for (i = 0; i < nr_blocks; i++) {
1816 		bh = sb_bread(sb, block++);
1817 		if (!bh) {
1818 			ntfs_error(sb, "Device read failed.");
1819 			goto err_out;
1820 		}
1821 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1822 				sb->s_blocksize);
1823 		brelse(bh);
1824 	}
1825 
1826 	/* Apply the mst fixups. */
1827 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1828 		/* FIXME: Try to use the $MFTMirr now. */
1829 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1830 		goto err_out;
1831 	}
1832 
1833 	/* Need this to sanity check attribute list references to $MFT. */
1834 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1835 
1836 	/* Provides readpage() for map_mft_record(). */
1837 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1838 
1839 	ctx = ntfs_attr_get_search_ctx(ni, m);
1840 	if (!ctx) {
1841 		err = -ENOMEM;
1842 		goto err_out;
1843 	}
1844 
1845 	/* Find the attribute list attribute if present. */
1846 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1847 	if (err) {
1848 		if (unlikely(err != -ENOENT)) {
1849 			ntfs_error(sb, "Failed to lookup attribute list "
1850 					"attribute. You should run chkdsk.");
1851 			goto put_err_out;
1852 		}
1853 	} else /* if (!err) */ {
1854 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1855 		u8 *al_end;
1856 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1857 				"You should run chkdsk.";
1858 
1859 		ntfs_debug("Attribute list attribute found in $MFT.");
1860 		NInoSetAttrList(ni);
1861 		a = ctx->attr;
1862 		if (a->flags & ATTR_COMPRESSION_MASK) {
1863 			ntfs_error(sb, "Attribute list attribute is "
1864 					"compressed.%s", es);
1865 			goto put_err_out;
1866 		}
1867 		if (a->flags & ATTR_IS_ENCRYPTED ||
1868 				a->flags & ATTR_IS_SPARSE) {
1869 			if (a->non_resident) {
1870 				ntfs_error(sb, "Non-resident attribute list "
1871 						"attribute is encrypted/"
1872 						"sparse.%s", es);
1873 				goto put_err_out;
1874 			}
1875 			ntfs_warning(sb, "Resident attribute list attribute "
1876 					"in $MFT system file is marked "
1877 					"encrypted/sparse which is not true.  "
1878 					"However, Windows allows this and "
1879 					"chkdsk does not detect or correct it "
1880 					"so we will just ignore the invalid "
1881 					"flags and pretend they are not set.");
1882 		}
1883 		/* Now allocate memory for the attribute list. */
1884 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1885 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1886 		if (!ni->attr_list) {
1887 			ntfs_error(sb, "Not enough memory to allocate buffer "
1888 					"for attribute list.");
1889 			goto put_err_out;
1890 		}
1891 		if (a->non_resident) {
1892 			NInoSetAttrListNonResident(ni);
1893 			if (a->data.non_resident.lowest_vcn) {
1894 				ntfs_error(sb, "Attribute list has non zero "
1895 						"lowest_vcn. $MFT is corrupt. "
1896 						"You should run chkdsk.");
1897 				goto put_err_out;
1898 			}
1899 			/* Setup the runlist. */
1900 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1901 					a, NULL);
1902 			if (IS_ERR(ni->attr_list_rl.rl)) {
1903 				err = PTR_ERR(ni->attr_list_rl.rl);
1904 				ni->attr_list_rl.rl = NULL;
1905 				ntfs_error(sb, "Mapping pairs decompression "
1906 						"failed with error code %i.",
1907 						-err);
1908 				goto put_err_out;
1909 			}
1910 			/* Now load the attribute list. */
1911 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1912 					ni->attr_list, ni->attr_list_size,
1913 					sle64_to_cpu(a->data.
1914 					non_resident.initialized_size)))) {
1915 				ntfs_error(sb, "Failed to load attribute list "
1916 						"attribute with error code %i.",
1917 						-err);
1918 				goto put_err_out;
1919 			}
1920 		} else /* if (!ctx.attr->non_resident) */ {
1921 			if ((u8*)a + le16_to_cpu(
1922 					a->data.resident.value_offset) +
1923 					le32_to_cpu(
1924 					a->data.resident.value_length) >
1925 					(u8*)ctx->mrec + vol->mft_record_size) {
1926 				ntfs_error(sb, "Corrupt attribute list "
1927 						"attribute.");
1928 				goto put_err_out;
1929 			}
1930 			/* Now copy the attribute list. */
1931 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1932 					a->data.resident.value_offset),
1933 					le32_to_cpu(
1934 					a->data.resident.value_length));
1935 		}
1936 		/* The attribute list is now setup in memory. */
1937 		/*
1938 		 * FIXME: I don't know if this case is actually possible.
1939 		 * According to logic it is not possible but I have seen too
1940 		 * many weird things in MS software to rely on logic... Thus we
1941 		 * perform a manual search and make sure the first $MFT/$DATA
1942 		 * extent is in the base inode. If it is not we abort with an
1943 		 * error and if we ever see a report of this error we will need
1944 		 * to do some magic in order to have the necessary mft record
1945 		 * loaded and in the right place in the page cache. But
1946 		 * hopefully logic will prevail and this never happens...
1947 		 */
1948 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1949 		al_end = (u8*)al_entry + ni->attr_list_size;
1950 		for (;; al_entry = next_al_entry) {
1951 			/* Out of bounds check. */
1952 			if ((u8*)al_entry < ni->attr_list ||
1953 					(u8*)al_entry > al_end)
1954 				goto em_put_err_out;
1955 			/* Catch the end of the attribute list. */
1956 			if ((u8*)al_entry == al_end)
1957 				goto em_put_err_out;
1958 			if (!al_entry->length)
1959 				goto em_put_err_out;
1960 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1961 					le16_to_cpu(al_entry->length) > al_end)
1962 				goto em_put_err_out;
1963 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1964 					le16_to_cpu(al_entry->length));
1965 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1966 				goto em_put_err_out;
1967 			if (AT_DATA != al_entry->type)
1968 				continue;
1969 			/* We want an unnamed attribute. */
1970 			if (al_entry->name_length)
1971 				goto em_put_err_out;
1972 			/* Want the first entry, i.e. lowest_vcn == 0. */
1973 			if (al_entry->lowest_vcn)
1974 				goto em_put_err_out;
1975 			/* First entry has to be in the base mft record. */
1976 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1977 				/* MFT references do not match, logic fails. */
1978 				ntfs_error(sb, "BUG: The first $DATA extent "
1979 						"of $MFT is not in the base "
1980 						"mft record. Please report "
1981 						"you saw this message to "
1982 						"linux-ntfs-dev@lists."
1983 						"sourceforge.net");
1984 				goto put_err_out;
1985 			} else {
1986 				/* Sequence numbers must match. */
1987 				if (MSEQNO_LE(al_entry->mft_reference) !=
1988 						ni->seq_no)
1989 					goto em_put_err_out;
1990 				/* Got it. All is ok. We can stop now. */
1991 				break;
1992 			}
1993 		}
1994 	}
1995 
1996 	ntfs_attr_reinit_search_ctx(ctx);
1997 
1998 	/* Now load all attribute extents. */
1999 	a = NULL;
2000 	next_vcn = last_vcn = highest_vcn = 0;
2001 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2002 			ctx))) {
2003 		runlist_element *nrl;
2004 
2005 		/* Cache the current attribute. */
2006 		a = ctx->attr;
2007 		/* $MFT must be non-resident. */
2008 		if (!a->non_resident) {
2009 			ntfs_error(sb, "$MFT must be non-resident but a "
2010 					"resident extent was found. $MFT is "
2011 					"corrupt. Run chkdsk.");
2012 			goto put_err_out;
2013 		}
2014 		/* $MFT must be uncompressed and unencrypted. */
2015 		if (a->flags & ATTR_COMPRESSION_MASK ||
2016 				a->flags & ATTR_IS_ENCRYPTED ||
2017 				a->flags & ATTR_IS_SPARSE) {
2018 			ntfs_error(sb, "$MFT must be uncompressed, "
2019 					"non-sparse, and unencrypted but a "
2020 					"compressed/sparse/encrypted extent "
2021 					"was found. $MFT is corrupt. Run "
2022 					"chkdsk.");
2023 			goto put_err_out;
2024 		}
2025 		/*
2026 		 * Decompress the mapping pairs array of this extent and merge
2027 		 * the result into the existing runlist. No need for locking
2028 		 * as we have exclusive access to the inode at this time and we
2029 		 * are a mount in progress task, too.
2030 		 */
2031 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2032 		if (IS_ERR(nrl)) {
2033 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2034 					"failed with error code %ld.  $MFT is "
2035 					"corrupt.", PTR_ERR(nrl));
2036 			goto put_err_out;
2037 		}
2038 		ni->runlist.rl = nrl;
2039 
2040 		/* Are we in the first extent? */
2041 		if (!next_vcn) {
2042 			if (a->data.non_resident.lowest_vcn) {
2043 				ntfs_error(sb, "First extent of $DATA "
2044 						"attribute has non zero "
2045 						"lowest_vcn. $MFT is corrupt. "
2046 						"You should run chkdsk.");
2047 				goto put_err_out;
2048 			}
2049 			/* Get the last vcn in the $DATA attribute. */
2050 			last_vcn = sle64_to_cpu(
2051 					a->data.non_resident.allocated_size)
2052 					>> vol->cluster_size_bits;
2053 			/* Fill in the inode size. */
2054 			vi->i_size = sle64_to_cpu(
2055 					a->data.non_resident.data_size);
2056 			ni->initialized_size = sle64_to_cpu(
2057 					a->data.non_resident.initialized_size);
2058 			ni->allocated_size = sle64_to_cpu(
2059 					a->data.non_resident.allocated_size);
2060 			/*
2061 			 * Verify the number of mft records does not exceed
2062 			 * 2^32 - 1.
2063 			 */
2064 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2065 					(1ULL << 32)) {
2066 				ntfs_error(sb, "$MFT is too big! Aborting.");
2067 				goto put_err_out;
2068 			}
2069 			/*
2070 			 * We have got the first extent of the runlist for
2071 			 * $MFT which means it is now relatively safe to call
2072 			 * the normal ntfs_read_inode() function.
2073 			 * Complete reading the inode, this will actually
2074 			 * re-read the mft record for $MFT, this time entering
2075 			 * it into the page cache with which we complete the
2076 			 * kick start of the volume. It should be safe to do
2077 			 * this now as the first extent of $MFT/$DATA is
2078 			 * already known and we would hope that we don't need
2079 			 * further extents in order to find the other
2080 			 * attributes belonging to $MFT. Only time will tell if
2081 			 * this is really the case. If not we will have to play
2082 			 * magic at this point, possibly duplicating a lot of
2083 			 * ntfs_read_inode() at this point. We will need to
2084 			 * ensure we do enough of its work to be able to call
2085 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2086 			 * hope this never happens...
2087 			 */
2088 			ntfs_read_locked_inode(vi);
2089 			if (is_bad_inode(vi)) {
2090 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2091 						"failed. BUG or corrupt $MFT. "
2092 						"Run chkdsk and if no errors "
2093 						"are found, please report you "
2094 						"saw this message to "
2095 						"linux-ntfs-dev@lists."
2096 						"sourceforge.net");
2097 				ntfs_attr_put_search_ctx(ctx);
2098 				/* Revert to the safe super operations. */
2099 				ntfs_free(m);
2100 				return -1;
2101 			}
2102 			/*
2103 			 * Re-initialize some specifics about $MFT's inode as
2104 			 * ntfs_read_inode() will have set up the default ones.
2105 			 */
2106 			/* Set uid and gid to root. */
2107 			vi->i_uid = GLOBAL_ROOT_UID;
2108 			vi->i_gid = GLOBAL_ROOT_GID;
2109 			/* Regular file. No access for anyone. */
2110 			vi->i_mode = S_IFREG;
2111 			/* No VFS initiated operations allowed for $MFT. */
2112 			vi->i_op = &ntfs_empty_inode_ops;
2113 			vi->i_fop = &ntfs_empty_file_ops;
2114 		}
2115 
2116 		/* Get the lowest vcn for the next extent. */
2117 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2118 		next_vcn = highest_vcn + 1;
2119 
2120 		/* Only one extent or error, which we catch below. */
2121 		if (next_vcn <= 0)
2122 			break;
2123 
2124 		/* Avoid endless loops due to corruption. */
2125 		if (next_vcn < sle64_to_cpu(
2126 				a->data.non_resident.lowest_vcn)) {
2127 			ntfs_error(sb, "$MFT has corrupt attribute list "
2128 					"attribute. Run chkdsk.");
2129 			goto put_err_out;
2130 		}
2131 	}
2132 	if (err != -ENOENT) {
2133 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2134 				"$MFT is corrupt. Run chkdsk.");
2135 		goto put_err_out;
2136 	}
2137 	if (!a) {
2138 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2139 				"corrupt. Run chkdsk.");
2140 		goto put_err_out;
2141 	}
2142 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2143 		ntfs_error(sb, "Failed to load the complete runlist for "
2144 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2145 				"Run chkdsk.");
2146 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2147 				(unsigned long long)highest_vcn,
2148 				(unsigned long long)last_vcn - 1);
2149 		goto put_err_out;
2150 	}
2151 	ntfs_attr_put_search_ctx(ctx);
2152 	ntfs_debug("Done.");
2153 	ntfs_free(m);
2154 
2155 	/*
2156 	 * Split the locking rules of the MFT inode from the
2157 	 * locking rules of other inodes:
2158 	 */
2159 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2160 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2161 
2162 	return 0;
2163 
2164 em_put_err_out:
2165 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2166 			"attribute list. $MFT is corrupt. Run chkdsk.");
2167 put_err_out:
2168 	ntfs_attr_put_search_ctx(ctx);
2169 err_out:
2170 	ntfs_error(sb, "Failed. Marking inode as bad.");
2171 	make_bad_inode(vi);
2172 	ntfs_free(m);
2173 	return -1;
2174 }
2175 
2176 static void __ntfs_clear_inode(ntfs_inode *ni)
2177 {
2178 	/* Free all alocated memory. */
2179 	down_write(&ni->runlist.lock);
2180 	if (ni->runlist.rl) {
2181 		ntfs_free(ni->runlist.rl);
2182 		ni->runlist.rl = NULL;
2183 	}
2184 	up_write(&ni->runlist.lock);
2185 
2186 	if (ni->attr_list) {
2187 		ntfs_free(ni->attr_list);
2188 		ni->attr_list = NULL;
2189 	}
2190 
2191 	down_write(&ni->attr_list_rl.lock);
2192 	if (ni->attr_list_rl.rl) {
2193 		ntfs_free(ni->attr_list_rl.rl);
2194 		ni->attr_list_rl.rl = NULL;
2195 	}
2196 	up_write(&ni->attr_list_rl.lock);
2197 
2198 	if (ni->name_len && ni->name != I30) {
2199 		/* Catch bugs... */
2200 		BUG_ON(!ni->name);
2201 		kfree(ni->name);
2202 	}
2203 }
2204 
2205 void ntfs_clear_extent_inode(ntfs_inode *ni)
2206 {
2207 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2208 
2209 	BUG_ON(NInoAttr(ni));
2210 	BUG_ON(ni->nr_extents != -1);
2211 
2212 #ifdef NTFS_RW
2213 	if (NInoDirty(ni)) {
2214 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2215 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2216 					"Losing data!  This is a BUG!!!");
2217 		// FIXME:  Do something!!!
2218 	}
2219 #endif /* NTFS_RW */
2220 
2221 	__ntfs_clear_inode(ni);
2222 
2223 	/* Bye, bye... */
2224 	ntfs_destroy_extent_inode(ni);
2225 }
2226 
2227 /**
2228  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2229  * @vi:		vfs inode pending annihilation
2230  *
2231  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2232  * is called, which deallocates all memory belonging to the NTFS specific part
2233  * of the inode and returns.
2234  *
2235  * If the MFT record is dirty, we commit it before doing anything else.
2236  */
2237 void ntfs_evict_big_inode(struct inode *vi)
2238 {
2239 	ntfs_inode *ni = NTFS_I(vi);
2240 
2241 	truncate_inode_pages_final(&vi->i_data);
2242 	clear_inode(vi);
2243 
2244 #ifdef NTFS_RW
2245 	if (NInoDirty(ni)) {
2246 		bool was_bad = (is_bad_inode(vi));
2247 
2248 		/* Committing the inode also commits all extent inodes. */
2249 		ntfs_commit_inode(vi);
2250 
2251 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2252 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2253 					"0x%lx.  Losing data!", vi->i_ino);
2254 			// FIXME:  Do something!!!
2255 		}
2256 	}
2257 #endif /* NTFS_RW */
2258 
2259 	/* No need to lock at this stage as no one else has a reference. */
2260 	if (ni->nr_extents > 0) {
2261 		int i;
2262 
2263 		for (i = 0; i < ni->nr_extents; i++)
2264 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2265 		kfree(ni->ext.extent_ntfs_inos);
2266 	}
2267 
2268 	__ntfs_clear_inode(ni);
2269 
2270 	if (NInoAttr(ni)) {
2271 		/* Release the base inode if we are holding it. */
2272 		if (ni->nr_extents == -1) {
2273 			iput(VFS_I(ni->ext.base_ntfs_ino));
2274 			ni->nr_extents = 0;
2275 			ni->ext.base_ntfs_ino = NULL;
2276 		}
2277 	}
2278 	BUG_ON(ni->page);
2279 	if (!atomic_dec_and_test(&ni->count))
2280 		BUG();
2281 	return;
2282 }
2283 
2284 /**
2285  * ntfs_show_options - show mount options in /proc/mounts
2286  * @sf:		seq_file in which to write our mount options
2287  * @root:	root of the mounted tree whose mount options to display
2288  *
2289  * Called by the VFS once for each mounted ntfs volume when someone reads
2290  * /proc/mounts in order to display the NTFS specific mount options of each
2291  * mount. The mount options of fs specified by @root are written to the seq file
2292  * @sf and success is returned.
2293  */
2294 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2295 {
2296 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2297 	int i;
2298 
2299 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2300 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2301 	if (vol->fmask == vol->dmask)
2302 		seq_printf(sf, ",umask=0%o", vol->fmask);
2303 	else {
2304 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2305 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2306 	}
2307 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2308 	if (NVolCaseSensitive(vol))
2309 		seq_printf(sf, ",case_sensitive");
2310 	if (NVolShowSystemFiles(vol))
2311 		seq_printf(sf, ",show_sys_files");
2312 	if (!NVolSparseEnabled(vol))
2313 		seq_printf(sf, ",disable_sparse");
2314 	for (i = 0; on_errors_arr[i].val; i++) {
2315 		if (on_errors_arr[i].val & vol->on_errors)
2316 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2317 	}
2318 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2319 	return 0;
2320 }
2321 
2322 #ifdef NTFS_RW
2323 
2324 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2325 		"chkdsk.";
2326 
2327 /**
2328  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2329  * @vi:		inode for which the i_size was changed
2330  *
2331  * We only support i_size changes for normal files at present, i.e. not
2332  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2333  * below.
2334  *
2335  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2336  * that the change is allowed.
2337  *
2338  * This implies for us that @vi is a file inode rather than a directory, index,
2339  * or attribute inode as well as that @vi is a base inode.
2340  *
2341  * Returns 0 on success or -errno on error.
2342  *
2343  * Called with ->i_mutex held.
2344  */
2345 int ntfs_truncate(struct inode *vi)
2346 {
2347 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2348 	VCN highest_vcn;
2349 	unsigned long flags;
2350 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2351 	ntfs_volume *vol = ni->vol;
2352 	ntfs_attr_search_ctx *ctx;
2353 	MFT_RECORD *m;
2354 	ATTR_RECORD *a;
2355 	const char *te = "  Leaving file length out of sync with i_size.";
2356 	int err, mp_size, size_change, alloc_change;
2357 	u32 attr_len;
2358 
2359 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2360 	BUG_ON(NInoAttr(ni));
2361 	BUG_ON(S_ISDIR(vi->i_mode));
2362 	BUG_ON(NInoMstProtected(ni));
2363 	BUG_ON(ni->nr_extents < 0);
2364 retry_truncate:
2365 	/*
2366 	 * Lock the runlist for writing and map the mft record to ensure it is
2367 	 * safe to mess with the attribute runlist and sizes.
2368 	 */
2369 	down_write(&ni->runlist.lock);
2370 	if (!NInoAttr(ni))
2371 		base_ni = ni;
2372 	else
2373 		base_ni = ni->ext.base_ntfs_ino;
2374 	m = map_mft_record(base_ni);
2375 	if (IS_ERR(m)) {
2376 		err = PTR_ERR(m);
2377 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2378 				"(error code %d).%s", vi->i_ino, err, te);
2379 		ctx = NULL;
2380 		m = NULL;
2381 		goto old_bad_out;
2382 	}
2383 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2384 	if (unlikely(!ctx)) {
2385 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2386 				"inode 0x%lx (not enough memory).%s",
2387 				vi->i_ino, te);
2388 		err = -ENOMEM;
2389 		goto old_bad_out;
2390 	}
2391 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2392 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2393 	if (unlikely(err)) {
2394 		if (err == -ENOENT) {
2395 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2396 					"mft record.  Inode 0x%lx is corrupt.  "
2397 					"Run chkdsk.%s", vi->i_ino, te);
2398 			err = -EIO;
2399 		} else
2400 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2401 					"inode 0x%lx (error code %d).%s",
2402 					vi->i_ino, err, te);
2403 		goto old_bad_out;
2404 	}
2405 	m = ctx->mrec;
2406 	a = ctx->attr;
2407 	/*
2408 	 * The i_size of the vfs inode is the new size for the attribute value.
2409 	 */
2410 	new_size = i_size_read(vi);
2411 	/* The current size of the attribute value is the old size. */
2412 	old_size = ntfs_attr_size(a);
2413 	/* Calculate the new allocated size. */
2414 	if (NInoNonResident(ni))
2415 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2416 				~(s64)vol->cluster_size_mask;
2417 	else
2418 		new_alloc_size = (new_size + 7) & ~7;
2419 	/* The current allocated size is the old allocated size. */
2420 	read_lock_irqsave(&ni->size_lock, flags);
2421 	old_alloc_size = ni->allocated_size;
2422 	read_unlock_irqrestore(&ni->size_lock, flags);
2423 	/*
2424 	 * The change in the file size.  This will be 0 if no change, >0 if the
2425 	 * size is growing, and <0 if the size is shrinking.
2426 	 */
2427 	size_change = -1;
2428 	if (new_size - old_size >= 0) {
2429 		size_change = 1;
2430 		if (new_size == old_size)
2431 			size_change = 0;
2432 	}
2433 	/* As above for the allocated size. */
2434 	alloc_change = -1;
2435 	if (new_alloc_size - old_alloc_size >= 0) {
2436 		alloc_change = 1;
2437 		if (new_alloc_size == old_alloc_size)
2438 			alloc_change = 0;
2439 	}
2440 	/*
2441 	 * If neither the size nor the allocation are being changed there is
2442 	 * nothing to do.
2443 	 */
2444 	if (!size_change && !alloc_change)
2445 		goto unm_done;
2446 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2447 	if (size_change) {
2448 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2449 		if (unlikely(err)) {
2450 			if (err == -ERANGE) {
2451 				ntfs_error(vol->sb, "Truncate would cause the "
2452 						"inode 0x%lx to %simum size "
2453 						"for its attribute type "
2454 						"(0x%x).  Aborting truncate.",
2455 						vi->i_ino,
2456 						new_size > old_size ? "exceed "
2457 						"the max" : "go under the min",
2458 						le32_to_cpu(ni->type));
2459 				err = -EFBIG;
2460 			} else {
2461 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2462 						"attribute type 0x%x.  "
2463 						"Aborting truncate.",
2464 						vi->i_ino,
2465 						le32_to_cpu(ni->type));
2466 				err = -EIO;
2467 			}
2468 			/* Reset the vfs inode size to the old size. */
2469 			i_size_write(vi, old_size);
2470 			goto err_out;
2471 		}
2472 	}
2473 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2474 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2475 				"supported yet for %s files, ignoring.",
2476 				NInoCompressed(ni) ? "compressed" :
2477 				"encrypted");
2478 		err = -EOPNOTSUPP;
2479 		goto bad_out;
2480 	}
2481 	if (a->non_resident)
2482 		goto do_non_resident_truncate;
2483 	BUG_ON(NInoNonResident(ni));
2484 	/* Resize the attribute record to best fit the new attribute size. */
2485 	if (new_size < vol->mft_record_size &&
2486 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2487 		/* The resize succeeded! */
2488 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2489 		mark_mft_record_dirty(ctx->ntfs_ino);
2490 		write_lock_irqsave(&ni->size_lock, flags);
2491 		/* Update the sizes in the ntfs inode and all is done. */
2492 		ni->allocated_size = le32_to_cpu(a->length) -
2493 				le16_to_cpu(a->data.resident.value_offset);
2494 		/*
2495 		 * Note ntfs_resident_attr_value_resize() has already done any
2496 		 * necessary data clearing in the attribute record.  When the
2497 		 * file is being shrunk vmtruncate() will already have cleared
2498 		 * the top part of the last partial page, i.e. since this is
2499 		 * the resident case this is the page with index 0.  However,
2500 		 * when the file is being expanded, the page cache page data
2501 		 * between the old data_size, i.e. old_size, and the new_size
2502 		 * has not been zeroed.  Fortunately, we do not need to zero it
2503 		 * either since on one hand it will either already be zero due
2504 		 * to both readpage and writepage clearing partial page data
2505 		 * beyond i_size in which case there is nothing to do or in the
2506 		 * case of the file being mmap()ped at the same time, POSIX
2507 		 * specifies that the behaviour is unspecified thus we do not
2508 		 * have to do anything.  This means that in our implementation
2509 		 * in the rare case that the file is mmap()ped and a write
2510 		 * occurred into the mmap()ped region just beyond the file size
2511 		 * and writepage has not yet been called to write out the page
2512 		 * (which would clear the area beyond the file size) and we now
2513 		 * extend the file size to incorporate this dirty region
2514 		 * outside the file size, a write of the page would result in
2515 		 * this data being written to disk instead of being cleared.
2516 		 * Given both POSIX and the Linux mmap(2) man page specify that
2517 		 * this corner case is undefined, we choose to leave it like
2518 		 * that as this is much simpler for us as we cannot lock the
2519 		 * relevant page now since we are holding too many ntfs locks
2520 		 * which would result in a lock reversal deadlock.
2521 		 */
2522 		ni->initialized_size = new_size;
2523 		write_unlock_irqrestore(&ni->size_lock, flags);
2524 		goto unm_done;
2525 	}
2526 	/* If the above resize failed, this must be an attribute extension. */
2527 	BUG_ON(size_change < 0);
2528 	/*
2529 	 * We have to drop all the locks so we can call
2530 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2531 	 * locking the first page cache page and only if that fails dropping
2532 	 * the locks, locking the page, and redoing all the locking and
2533 	 * lookups.  While this would be a huge optimisation, it is not worth
2534 	 * it as this is definitely a slow code path as it only ever can happen
2535 	 * once for any given file.
2536 	 */
2537 	ntfs_attr_put_search_ctx(ctx);
2538 	unmap_mft_record(base_ni);
2539 	up_write(&ni->runlist.lock);
2540 	/*
2541 	 * Not enough space in the mft record, try to make the attribute
2542 	 * non-resident and if successful restart the truncation process.
2543 	 */
2544 	err = ntfs_attr_make_non_resident(ni, old_size);
2545 	if (likely(!err))
2546 		goto retry_truncate;
2547 	/*
2548 	 * Could not make non-resident.  If this is due to this not being
2549 	 * permitted for this attribute type or there not being enough space,
2550 	 * try to make other attributes non-resident.  Otherwise fail.
2551 	 */
2552 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2553 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2554 				"type 0x%x, because the conversion from "
2555 				"resident to non-resident attribute failed "
2556 				"with error code %i.", vi->i_ino,
2557 				(unsigned)le32_to_cpu(ni->type), err);
2558 		if (err != -ENOMEM)
2559 			err = -EIO;
2560 		goto conv_err_out;
2561 	}
2562 	/* TODO: Not implemented from here, abort. */
2563 	if (err == -ENOSPC)
2564 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2565 				"disk for the non-resident attribute value.  "
2566 				"This case is not implemented yet.");
2567 	else /* if (err == -EPERM) */
2568 		ntfs_error(vol->sb, "This attribute type may not be "
2569 				"non-resident.  This case is not implemented "
2570 				"yet.");
2571 	err = -EOPNOTSUPP;
2572 	goto conv_err_out;
2573 #if 0
2574 	// TODO: Attempt to make other attributes non-resident.
2575 	if (!err)
2576 		goto do_resident_extend;
2577 	/*
2578 	 * Both the attribute list attribute and the standard information
2579 	 * attribute must remain in the base inode.  Thus, if this is one of
2580 	 * these attributes, we have to try to move other attributes out into
2581 	 * extent mft records instead.
2582 	 */
2583 	if (ni->type == AT_ATTRIBUTE_LIST ||
2584 			ni->type == AT_STANDARD_INFORMATION) {
2585 		// TODO: Attempt to move other attributes into extent mft
2586 		// records.
2587 		err = -EOPNOTSUPP;
2588 		if (!err)
2589 			goto do_resident_extend;
2590 		goto err_out;
2591 	}
2592 	// TODO: Attempt to move this attribute to an extent mft record, but
2593 	// only if it is not already the only attribute in an mft record in
2594 	// which case there would be nothing to gain.
2595 	err = -EOPNOTSUPP;
2596 	if (!err)
2597 		goto do_resident_extend;
2598 	/* There is nothing we can do to make enough space. )-: */
2599 	goto err_out;
2600 #endif
2601 do_non_resident_truncate:
2602 	BUG_ON(!NInoNonResident(ni));
2603 	if (alloc_change < 0) {
2604 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2605 		if (highest_vcn > 0 &&
2606 				old_alloc_size >> vol->cluster_size_bits >
2607 				highest_vcn + 1) {
2608 			/*
2609 			 * This attribute has multiple extents.  Not yet
2610 			 * supported.
2611 			 */
2612 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2613 					"attribute type 0x%x, because the "
2614 					"attribute is highly fragmented (it "
2615 					"consists of multiple extents) and "
2616 					"this case is not implemented yet.",
2617 					vi->i_ino,
2618 					(unsigned)le32_to_cpu(ni->type));
2619 			err = -EOPNOTSUPP;
2620 			goto bad_out;
2621 		}
2622 	}
2623 	/*
2624 	 * If the size is shrinking, need to reduce the initialized_size and
2625 	 * the data_size before reducing the allocation.
2626 	 */
2627 	if (size_change < 0) {
2628 		/*
2629 		 * Make the valid size smaller (i_size is already up-to-date).
2630 		 */
2631 		write_lock_irqsave(&ni->size_lock, flags);
2632 		if (new_size < ni->initialized_size) {
2633 			ni->initialized_size = new_size;
2634 			a->data.non_resident.initialized_size =
2635 					cpu_to_sle64(new_size);
2636 		}
2637 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2638 		write_unlock_irqrestore(&ni->size_lock, flags);
2639 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2640 		mark_mft_record_dirty(ctx->ntfs_ino);
2641 		/* If the allocated size is not changing, we are done. */
2642 		if (!alloc_change)
2643 			goto unm_done;
2644 		/*
2645 		 * If the size is shrinking it makes no sense for the
2646 		 * allocation to be growing.
2647 		 */
2648 		BUG_ON(alloc_change > 0);
2649 	} else /* if (size_change >= 0) */ {
2650 		/*
2651 		 * The file size is growing or staying the same but the
2652 		 * allocation can be shrinking, growing or staying the same.
2653 		 */
2654 		if (alloc_change > 0) {
2655 			/*
2656 			 * We need to extend the allocation and possibly update
2657 			 * the data size.  If we are updating the data size,
2658 			 * since we are not touching the initialized_size we do
2659 			 * not need to worry about the actual data on disk.
2660 			 * And as far as the page cache is concerned, there
2661 			 * will be no pages beyond the old data size and any
2662 			 * partial region in the last page between the old and
2663 			 * new data size (or the end of the page if the new
2664 			 * data size is outside the page) does not need to be
2665 			 * modified as explained above for the resident
2666 			 * attribute truncate case.  To do this, we simply drop
2667 			 * the locks we hold and leave all the work to our
2668 			 * friendly helper ntfs_attr_extend_allocation().
2669 			 */
2670 			ntfs_attr_put_search_ctx(ctx);
2671 			unmap_mft_record(base_ni);
2672 			up_write(&ni->runlist.lock);
2673 			err = ntfs_attr_extend_allocation(ni, new_size,
2674 					size_change > 0 ? new_size : -1, -1);
2675 			/*
2676 			 * ntfs_attr_extend_allocation() will have done error
2677 			 * output already.
2678 			 */
2679 			goto done;
2680 		}
2681 		if (!alloc_change)
2682 			goto alloc_done;
2683 	}
2684 	/* alloc_change < 0 */
2685 	/* Free the clusters. */
2686 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2687 			vol->cluster_size_bits, -1, ctx);
2688 	m = ctx->mrec;
2689 	a = ctx->attr;
2690 	if (unlikely(nr_freed < 0)) {
2691 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2692 				"%lli).  Unmount and run chkdsk to recover "
2693 				"the lost cluster(s).", (long long)nr_freed);
2694 		NVolSetErrors(vol);
2695 		nr_freed = 0;
2696 	}
2697 	/* Truncate the runlist. */
2698 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2699 			new_alloc_size >> vol->cluster_size_bits);
2700 	/*
2701 	 * If the runlist truncation failed and/or the search context is no
2702 	 * longer valid, we cannot resize the attribute record or build the
2703 	 * mapping pairs array thus we mark the inode bad so that no access to
2704 	 * the freed clusters can happen.
2705 	 */
2706 	if (unlikely(err || IS_ERR(m))) {
2707 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2708 				IS_ERR(m) ?
2709 				"restore attribute search context" :
2710 				"truncate attribute runlist",
2711 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2712 		err = -EIO;
2713 		goto bad_out;
2714 	}
2715 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2716 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2717 	if (unlikely(mp_size <= 0)) {
2718 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2719 				"attribute type 0x%x, because determining the "
2720 				"size for the mapping pairs failed with error "
2721 				"code %i.%s", vi->i_ino,
2722 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2723 		err = -EIO;
2724 		goto bad_out;
2725 	}
2726 	/*
2727 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2728 	 * this cannot fail since we are making the attribute smaller thus by
2729 	 * definition there is enough space to do so.
2730 	 */
2731 	attr_len = le32_to_cpu(a->length);
2732 	err = ntfs_attr_record_resize(m, a, mp_size +
2733 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2734 	BUG_ON(err);
2735 	/*
2736 	 * Generate the mapping pairs array directly into the attribute record.
2737 	 */
2738 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2739 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2740 			mp_size, ni->runlist.rl, 0, -1, NULL);
2741 	if (unlikely(err)) {
2742 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2743 				"attribute type 0x%x, because building the "
2744 				"mapping pairs failed with error code %i.%s",
2745 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2746 				err, es);
2747 		err = -EIO;
2748 		goto bad_out;
2749 	}
2750 	/* Update the allocated/compressed size as well as the highest vcn. */
2751 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2752 			vol->cluster_size_bits) - 1);
2753 	write_lock_irqsave(&ni->size_lock, flags);
2754 	ni->allocated_size = new_alloc_size;
2755 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2756 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2757 		if (nr_freed) {
2758 			ni->itype.compressed.size -= nr_freed <<
2759 					vol->cluster_size_bits;
2760 			BUG_ON(ni->itype.compressed.size < 0);
2761 			a->data.non_resident.compressed_size = cpu_to_sle64(
2762 					ni->itype.compressed.size);
2763 			vi->i_blocks = ni->itype.compressed.size >> 9;
2764 		}
2765 	} else
2766 		vi->i_blocks = new_alloc_size >> 9;
2767 	write_unlock_irqrestore(&ni->size_lock, flags);
2768 	/*
2769 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2770 	 * have already dealt with the initialized_size and the data_size above
2771 	 * and we are done.  If the truncate is only changing the allocation
2772 	 * and not the data_size, we are also done.  If this is an extending
2773 	 * truncate, need to extend the data_size now which is ensured by the
2774 	 * fact that @size_change is positive.
2775 	 */
2776 alloc_done:
2777 	/*
2778 	 * If the size is growing, need to update it now.  If it is shrinking,
2779 	 * we have already updated it above (before the allocation change).
2780 	 */
2781 	if (size_change > 0)
2782 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2783 	/* Ensure the modified mft record is written out. */
2784 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2785 	mark_mft_record_dirty(ctx->ntfs_ino);
2786 unm_done:
2787 	ntfs_attr_put_search_ctx(ctx);
2788 	unmap_mft_record(base_ni);
2789 	up_write(&ni->runlist.lock);
2790 done:
2791 	/* Update the mtime and ctime on the base inode. */
2792 	/* normally ->truncate shouldn't update ctime or mtime,
2793 	 * but ntfs did before so it got a copy & paste version
2794 	 * of file_update_time.  one day someone should fix this
2795 	 * for real.
2796 	 */
2797 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2798 		struct timespec64 now = current_time(VFS_I(base_ni));
2799 		int sync_it = 0;
2800 
2801 		if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2802 		    !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2803 			sync_it = 1;
2804 		VFS_I(base_ni)->i_mtime = now;
2805 		VFS_I(base_ni)->i_ctime = now;
2806 
2807 		if (sync_it)
2808 			mark_inode_dirty_sync(VFS_I(base_ni));
2809 	}
2810 
2811 	if (likely(!err)) {
2812 		NInoClearTruncateFailed(ni);
2813 		ntfs_debug("Done.");
2814 	}
2815 	return err;
2816 old_bad_out:
2817 	old_size = -1;
2818 bad_out:
2819 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2820 		NVolSetErrors(vol);
2821 	if (err != -EOPNOTSUPP)
2822 		NInoSetTruncateFailed(ni);
2823 	else if (old_size >= 0)
2824 		i_size_write(vi, old_size);
2825 err_out:
2826 	if (ctx)
2827 		ntfs_attr_put_search_ctx(ctx);
2828 	if (m)
2829 		unmap_mft_record(base_ni);
2830 	up_write(&ni->runlist.lock);
2831 out:
2832 	ntfs_debug("Failed.  Returning error code %i.", err);
2833 	return err;
2834 conv_err_out:
2835 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2836 		NVolSetErrors(vol);
2837 	if (err != -EOPNOTSUPP)
2838 		NInoSetTruncateFailed(ni);
2839 	else
2840 		i_size_write(vi, old_size);
2841 	goto out;
2842 }
2843 
2844 /**
2845  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2846  * @vi:		inode for which the i_size was changed
2847  *
2848  * Wrapper for ntfs_truncate() that has no return value.
2849  *
2850  * See ntfs_truncate() description above for details.
2851  */
2852 #ifdef NTFS_RW
2853 void ntfs_truncate_vfs(struct inode *vi) {
2854 	ntfs_truncate(vi);
2855 }
2856 #endif
2857 
2858 /**
2859  * ntfs_setattr - called from notify_change() when an attribute is being changed
2860  * @dentry:	dentry whose attributes to change
2861  * @attr:	structure describing the attributes and the changes
2862  *
2863  * We have to trap VFS attempts to truncate the file described by @dentry as
2864  * soon as possible, because we do not implement changes in i_size yet.  So we
2865  * abort all i_size changes here.
2866  *
2867  * We also abort all changes of user, group, and mode as we do not implement
2868  * the NTFS ACLs yet.
2869  *
2870  * Called with ->i_mutex held.
2871  */
2872 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2873 {
2874 	struct inode *vi = d_inode(dentry);
2875 	int err;
2876 	unsigned int ia_valid = attr->ia_valid;
2877 
2878 	err = setattr_prepare(dentry, attr);
2879 	if (err)
2880 		goto out;
2881 	/* We do not support NTFS ACLs yet. */
2882 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2883 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2884 				"supported yet, ignoring.");
2885 		err = -EOPNOTSUPP;
2886 		goto out;
2887 	}
2888 	if (ia_valid & ATTR_SIZE) {
2889 		if (attr->ia_size != i_size_read(vi)) {
2890 			ntfs_inode *ni = NTFS_I(vi);
2891 			/*
2892 			 * FIXME: For now we do not support resizing of
2893 			 * compressed or encrypted files yet.
2894 			 */
2895 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2896 				ntfs_warning(vi->i_sb, "Changes in inode size "
2897 						"are not supported yet for "
2898 						"%s files, ignoring.",
2899 						NInoCompressed(ni) ?
2900 						"compressed" : "encrypted");
2901 				err = -EOPNOTSUPP;
2902 			} else {
2903 				truncate_setsize(vi, attr->ia_size);
2904 				ntfs_truncate_vfs(vi);
2905 			}
2906 			if (err || ia_valid == ATTR_SIZE)
2907 				goto out;
2908 		} else {
2909 			/*
2910 			 * We skipped the truncate but must still update
2911 			 * timestamps.
2912 			 */
2913 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2914 		}
2915 	}
2916 	if (ia_valid & ATTR_ATIME)
2917 		vi->i_atime = timespec64_trunc(attr->ia_atime,
2918 					       vi->i_sb->s_time_gran);
2919 	if (ia_valid & ATTR_MTIME)
2920 		vi->i_mtime = timespec64_trunc(attr->ia_mtime,
2921 					       vi->i_sb->s_time_gran);
2922 	if (ia_valid & ATTR_CTIME)
2923 		vi->i_ctime = timespec64_trunc(attr->ia_ctime,
2924 					       vi->i_sb->s_time_gran);
2925 	mark_inode_dirty(vi);
2926 out:
2927 	return err;
2928 }
2929 
2930 /**
2931  * ntfs_write_inode - write out a dirty inode
2932  * @vi:		inode to write out
2933  * @sync:	if true, write out synchronously
2934  *
2935  * Write out a dirty inode to disk including any extent inodes if present.
2936  *
2937  * If @sync is true, commit the inode to disk and wait for io completion.  This
2938  * is done using write_mft_record().
2939  *
2940  * If @sync is false, just schedule the write to happen but do not wait for i/o
2941  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2942  * marking the page (and in this case mft record) dirty but we do not implement
2943  * this yet as write_mft_record() largely ignores the @sync parameter and
2944  * always performs synchronous writes.
2945  *
2946  * Return 0 on success and -errno on error.
2947  */
2948 int __ntfs_write_inode(struct inode *vi, int sync)
2949 {
2950 	sle64 nt;
2951 	ntfs_inode *ni = NTFS_I(vi);
2952 	ntfs_attr_search_ctx *ctx;
2953 	MFT_RECORD *m;
2954 	STANDARD_INFORMATION *si;
2955 	int err = 0;
2956 	bool modified = false;
2957 
2958 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2959 			vi->i_ino);
2960 	/*
2961 	 * Dirty attribute inodes are written via their real inodes so just
2962 	 * clean them here.  Access time updates are taken care off when the
2963 	 * real inode is written.
2964 	 */
2965 	if (NInoAttr(ni)) {
2966 		NInoClearDirty(ni);
2967 		ntfs_debug("Done.");
2968 		return 0;
2969 	}
2970 	/* Map, pin, and lock the mft record belonging to the inode. */
2971 	m = map_mft_record(ni);
2972 	if (IS_ERR(m)) {
2973 		err = PTR_ERR(m);
2974 		goto err_out;
2975 	}
2976 	/* Update the access times in the standard information attribute. */
2977 	ctx = ntfs_attr_get_search_ctx(ni, m);
2978 	if (unlikely(!ctx)) {
2979 		err = -ENOMEM;
2980 		goto unm_err_out;
2981 	}
2982 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2983 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2984 	if (unlikely(err)) {
2985 		ntfs_attr_put_search_ctx(ctx);
2986 		goto unm_err_out;
2987 	}
2988 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2989 			le16_to_cpu(ctx->attr->data.resident.value_offset));
2990 	/* Update the access times if they have changed. */
2991 	nt = utc2ntfs(vi->i_mtime);
2992 	if (si->last_data_change_time != nt) {
2993 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2994 				"new = 0x%llx", vi->i_ino, (long long)
2995 				sle64_to_cpu(si->last_data_change_time),
2996 				(long long)sle64_to_cpu(nt));
2997 		si->last_data_change_time = nt;
2998 		modified = true;
2999 	}
3000 	nt = utc2ntfs(vi->i_ctime);
3001 	if (si->last_mft_change_time != nt) {
3002 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3003 				"new = 0x%llx", vi->i_ino, (long long)
3004 				sle64_to_cpu(si->last_mft_change_time),
3005 				(long long)sle64_to_cpu(nt));
3006 		si->last_mft_change_time = nt;
3007 		modified = true;
3008 	}
3009 	nt = utc2ntfs(vi->i_atime);
3010 	if (si->last_access_time != nt) {
3011 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3012 				"new = 0x%llx", vi->i_ino,
3013 				(long long)sle64_to_cpu(si->last_access_time),
3014 				(long long)sle64_to_cpu(nt));
3015 		si->last_access_time = nt;
3016 		modified = true;
3017 	}
3018 	/*
3019 	 * If we just modified the standard information attribute we need to
3020 	 * mark the mft record it is in dirty.  We do this manually so that
3021 	 * mark_inode_dirty() is not called which would redirty the inode and
3022 	 * hence result in an infinite loop of trying to write the inode.
3023 	 * There is no need to mark the base inode nor the base mft record
3024 	 * dirty, since we are going to write this mft record below in any case
3025 	 * and the base mft record may actually not have been modified so it
3026 	 * might not need to be written out.
3027 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3028 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3029 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3030 	 * re-invoked because of it which in turn is ok since the dirtied mft
3031 	 * record will be cleaned and written out to disk below, i.e. before
3032 	 * this function returns.
3033 	 */
3034 	if (modified) {
3035 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3036 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3037 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3038 					ctx->ntfs_ino->page_ofs);
3039 	}
3040 	ntfs_attr_put_search_ctx(ctx);
3041 	/* Now the access times are updated, write the base mft record. */
3042 	if (NInoDirty(ni))
3043 		err = write_mft_record(ni, m, sync);
3044 	/* Write all attached extent mft records. */
3045 	mutex_lock(&ni->extent_lock);
3046 	if (ni->nr_extents > 0) {
3047 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3048 		int i;
3049 
3050 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3051 		for (i = 0; i < ni->nr_extents; i++) {
3052 			ntfs_inode *tni = extent_nis[i];
3053 
3054 			if (NInoDirty(tni)) {
3055 				MFT_RECORD *tm = map_mft_record(tni);
3056 				int ret;
3057 
3058 				if (IS_ERR(tm)) {
3059 					if (!err || err == -ENOMEM)
3060 						err = PTR_ERR(tm);
3061 					continue;
3062 				}
3063 				ret = write_mft_record(tni, tm, sync);
3064 				unmap_mft_record(tni);
3065 				if (unlikely(ret)) {
3066 					if (!err || err == -ENOMEM)
3067 						err = ret;
3068 				}
3069 			}
3070 		}
3071 	}
3072 	mutex_unlock(&ni->extent_lock);
3073 	unmap_mft_record(ni);
3074 	if (unlikely(err))
3075 		goto err_out;
3076 	ntfs_debug("Done.");
3077 	return 0;
3078 unm_err_out:
3079 	unmap_mft_record(ni);
3080 err_out:
3081 	if (err == -ENOMEM) {
3082 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3083 				"Marking the inode dirty again, so the VFS "
3084 				"retries later.");
3085 		mark_inode_dirty(vi);
3086 	} else {
3087 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3088 		NVolSetErrors(ni->vol);
3089 	}
3090 	return err;
3091 }
3092 
3093 #endif /* NTFS_RW */
3094