1 /** 2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/mount.h> 26 #include <linux/mutex.h> 27 #include <linux/pagemap.h> 28 #include <linux/quotaops.h> 29 #include <linux/slab.h> 30 #include <linux/log2.h> 31 32 #include "aops.h" 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "dir.h" 36 #include "debug.h" 37 #include "inode.h" 38 #include "lcnalloc.h" 39 #include "malloc.h" 40 #include "mft.h" 41 #include "time.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_test_inode - compare two (possibly fake) inodes for equality 46 * @vi: vfs inode which to test 47 * @na: ntfs attribute which is being tested with 48 * 49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 50 * inode @vi for equality with the ntfs attribute @na. 51 * 52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 53 * @na->name and @na->name_len are then ignored. 54 * 55 * Return 1 if the attributes match and 0 if not. 56 * 57 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 58 * allowed to sleep. 59 */ 60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 61 { 62 ntfs_inode *ni; 63 64 if (vi->i_ino != na->mft_no) 65 return 0; 66 ni = NTFS_I(vi); 67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 68 if (likely(!NInoAttr(ni))) { 69 /* If not looking for a normal inode this is a mismatch. */ 70 if (unlikely(na->type != AT_UNUSED)) 71 return 0; 72 } else { 73 /* A fake inode describing an attribute. */ 74 if (ni->type != na->type) 75 return 0; 76 if (ni->name_len != na->name_len) 77 return 0; 78 if (na->name_len && memcmp(ni->name, na->name, 79 na->name_len * sizeof(ntfschar))) 80 return 0; 81 } 82 /* Match! */ 83 return 1; 84 } 85 86 /** 87 * ntfs_init_locked_inode - initialize an inode 88 * @vi: vfs inode to initialize 89 * @na: ntfs attribute which to initialize @vi to 90 * 91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 92 * order to enable ntfs_test_inode() to do its work. 93 * 94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 95 * In that case, @na->name and @na->name_len should be set to NULL and 0, 96 * respectively. Although that is not strictly necessary as 97 * ntfs_read_locked_inode() will fill them in later. 98 * 99 * Return 0 on success and -errno on error. 100 * 101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 103 */ 104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 105 { 106 ntfs_inode *ni = NTFS_I(vi); 107 108 vi->i_ino = na->mft_no; 109 110 ni->type = na->type; 111 if (na->type == AT_INDEX_ALLOCATION) 112 NInoSetMstProtected(ni); 113 114 ni->name = na->name; 115 ni->name_len = na->name_len; 116 117 /* If initializing a normal inode, we are done. */ 118 if (likely(na->type == AT_UNUSED)) { 119 BUG_ON(na->name); 120 BUG_ON(na->name_len); 121 return 0; 122 } 123 124 /* It is a fake inode. */ 125 NInoSetAttr(ni); 126 127 /* 128 * We have I30 global constant as an optimization as it is the name 129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 130 * allocation but that is ok. And most attributes are unnamed anyway, 131 * thus the fraction of named attributes with name != I30 is actually 132 * absolutely tiny. 133 */ 134 if (na->name_len && na->name != I30) { 135 unsigned int i; 136 137 BUG_ON(!na->name); 138 i = na->name_len * sizeof(ntfschar); 139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 140 if (!ni->name) 141 return -ENOMEM; 142 memcpy(ni->name, na->name, i); 143 ni->name[na->name_len] = 0; 144 } 145 return 0; 146 } 147 148 typedef int (*set_t)(struct inode *, void *); 149 static int ntfs_read_locked_inode(struct inode *vi); 150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 151 static int ntfs_read_locked_index_inode(struct inode *base_vi, 152 struct inode *vi); 153 154 /** 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 156 * @sb: super block of mounted volume 157 * @mft_no: mft record number / inode number to obtain 158 * 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 160 * file or directory). 161 * 162 * If the inode is in the cache, it is just returned with an increased 163 * reference count. Otherwise, a new struct inode is allocated and initialized, 164 * and finally ntfs_read_locked_inode() is called to read in the inode and 165 * fill in the remainder of the inode structure. 166 * 167 * Return the struct inode on success. Check the return value with IS_ERR() and 168 * if true, the function failed and the error code is obtained from PTR_ERR(). 169 */ 170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 171 { 172 struct inode *vi; 173 int err; 174 ntfs_attr na; 175 176 na.mft_no = mft_no; 177 na.type = AT_UNUSED; 178 na.name = NULL; 179 na.name_len = 0; 180 181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 182 (set_t)ntfs_init_locked_inode, &na); 183 if (unlikely(!vi)) 184 return ERR_PTR(-ENOMEM); 185 186 err = 0; 187 188 /* If this is a freshly allocated inode, need to read it now. */ 189 if (vi->i_state & I_NEW) { 190 err = ntfs_read_locked_inode(vi); 191 unlock_new_inode(vi); 192 } 193 /* 194 * There is no point in keeping bad inodes around if the failure was 195 * due to ENOMEM. We want to be able to retry again later. 196 */ 197 if (unlikely(err == -ENOMEM)) { 198 iput(vi); 199 vi = ERR_PTR(err); 200 } 201 return vi; 202 } 203 204 /** 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 206 * @base_vi: vfs base inode containing the attribute 207 * @type: attribute type 208 * @name: Unicode name of the attribute (NULL if unnamed) 209 * @name_len: length of @name in Unicode characters (0 if unnamed) 210 * 211 * Obtain the (fake) struct inode corresponding to the attribute specified by 212 * @type, @name, and @name_len, which is present in the base mft record 213 * specified by the vfs inode @base_vi. 214 * 215 * If the attribute inode is in the cache, it is just returned with an 216 * increased reference count. Otherwise, a new struct inode is allocated and 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 218 * attribute and fill in the inode structure. 219 * 220 * Note, for index allocation attributes, you need to use ntfs_index_iget() 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 222 * 223 * Return the struct inode of the attribute inode on success. Check the return 224 * value with IS_ERR() and if true, the function failed and the error code is 225 * obtained from PTR_ERR(). 226 */ 227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 228 ntfschar *name, u32 name_len) 229 { 230 struct inode *vi; 231 int err; 232 ntfs_attr na; 233 234 /* Make sure no one calls ntfs_attr_iget() for indices. */ 235 BUG_ON(type == AT_INDEX_ALLOCATION); 236 237 na.mft_no = base_vi->i_ino; 238 na.type = type; 239 na.name = name; 240 na.name_len = name_len; 241 242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 243 (set_t)ntfs_init_locked_inode, &na); 244 if (unlikely(!vi)) 245 return ERR_PTR(-ENOMEM); 246 247 err = 0; 248 249 /* If this is a freshly allocated inode, need to read it now. */ 250 if (vi->i_state & I_NEW) { 251 err = ntfs_read_locked_attr_inode(base_vi, vi); 252 unlock_new_inode(vi); 253 } 254 /* 255 * There is no point in keeping bad attribute inodes around. This also 256 * simplifies things in that we never need to check for bad attribute 257 * inodes elsewhere. 258 */ 259 if (unlikely(err)) { 260 iput(vi); 261 vi = ERR_PTR(err); 262 } 263 return vi; 264 } 265 266 /** 267 * ntfs_index_iget - obtain a struct inode corresponding to an index 268 * @base_vi: vfs base inode containing the index related attributes 269 * @name: Unicode name of the index 270 * @name_len: length of @name in Unicode characters 271 * 272 * Obtain the (fake) struct inode corresponding to the index specified by @name 273 * and @name_len, which is present in the base mft record specified by the vfs 274 * inode @base_vi. 275 * 276 * If the index inode is in the cache, it is just returned with an increased 277 * reference count. Otherwise, a new struct inode is allocated and 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read 279 * the index related attributes and fill in the inode structure. 280 * 281 * Return the struct inode of the index inode on success. Check the return 282 * value with IS_ERR() and if true, the function failed and the error code is 283 * obtained from PTR_ERR(). 284 */ 285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 286 u32 name_len) 287 { 288 struct inode *vi; 289 int err; 290 ntfs_attr na; 291 292 na.mft_no = base_vi->i_ino; 293 na.type = AT_INDEX_ALLOCATION; 294 na.name = name; 295 na.name_len = name_len; 296 297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 298 (set_t)ntfs_init_locked_inode, &na); 299 if (unlikely(!vi)) 300 return ERR_PTR(-ENOMEM); 301 302 err = 0; 303 304 /* If this is a freshly allocated inode, need to read it now. */ 305 if (vi->i_state & I_NEW) { 306 err = ntfs_read_locked_index_inode(base_vi, vi); 307 unlock_new_inode(vi); 308 } 309 /* 310 * There is no point in keeping bad index inodes around. This also 311 * simplifies things in that we never need to check for bad index 312 * inodes elsewhere. 313 */ 314 if (unlikely(err)) { 315 iput(vi); 316 vi = ERR_PTR(err); 317 } 318 return vi; 319 } 320 321 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 322 { 323 ntfs_inode *ni; 324 325 ntfs_debug("Entering."); 326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); 327 if (likely(ni != NULL)) { 328 ni->state = 0; 329 return VFS_I(ni); 330 } 331 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 332 return NULL; 333 } 334 335 static void ntfs_i_callback(struct rcu_head *head) 336 { 337 struct inode *inode = container_of(head, struct inode, i_rcu); 338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 339 } 340 341 void ntfs_destroy_big_inode(struct inode *inode) 342 { 343 ntfs_inode *ni = NTFS_I(inode); 344 345 ntfs_debug("Entering."); 346 BUG_ON(ni->page); 347 if (!atomic_dec_and_test(&ni->count)) 348 BUG(); 349 call_rcu(&inode->i_rcu, ntfs_i_callback); 350 } 351 352 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 353 { 354 ntfs_inode *ni; 355 356 ntfs_debug("Entering."); 357 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); 358 if (likely(ni != NULL)) { 359 ni->state = 0; 360 return ni; 361 } 362 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 363 return NULL; 364 } 365 366 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 367 { 368 ntfs_debug("Entering."); 369 BUG_ON(ni->page); 370 if (!atomic_dec_and_test(&ni->count)) 371 BUG(); 372 kmem_cache_free(ntfs_inode_cache, ni); 373 } 374 375 /* 376 * The attribute runlist lock has separate locking rules from the 377 * normal runlist lock, so split the two lock-classes: 378 */ 379 static struct lock_class_key attr_list_rl_lock_class; 380 381 /** 382 * __ntfs_init_inode - initialize ntfs specific part of an inode 383 * @sb: super block of mounted volume 384 * @ni: freshly allocated ntfs inode which to initialize 385 * 386 * Initialize an ntfs inode to defaults. 387 * 388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 389 * untouched. Make sure to initialize them elsewhere. 390 * 391 * Return zero on success and -ENOMEM on error. 392 */ 393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 394 { 395 ntfs_debug("Entering."); 396 rwlock_init(&ni->size_lock); 397 ni->initialized_size = ni->allocated_size = 0; 398 ni->seq_no = 0; 399 atomic_set(&ni->count, 1); 400 ni->vol = NTFS_SB(sb); 401 ntfs_init_runlist(&ni->runlist); 402 mutex_init(&ni->mrec_lock); 403 ni->page = NULL; 404 ni->page_ofs = 0; 405 ni->attr_list_size = 0; 406 ni->attr_list = NULL; 407 ntfs_init_runlist(&ni->attr_list_rl); 408 lockdep_set_class(&ni->attr_list_rl.lock, 409 &attr_list_rl_lock_class); 410 ni->itype.index.block_size = 0; 411 ni->itype.index.vcn_size = 0; 412 ni->itype.index.collation_rule = 0; 413 ni->itype.index.block_size_bits = 0; 414 ni->itype.index.vcn_size_bits = 0; 415 mutex_init(&ni->extent_lock); 416 ni->nr_extents = 0; 417 ni->ext.base_ntfs_ino = NULL; 418 } 419 420 /* 421 * Extent inodes get MFT-mapped in a nested way, while the base inode 422 * is still mapped. Teach this nesting to the lock validator by creating 423 * a separate class for nested inode's mrec_lock's: 424 */ 425 static struct lock_class_key extent_inode_mrec_lock_key; 426 427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 428 unsigned long mft_no) 429 { 430 ntfs_inode *ni = ntfs_alloc_extent_inode(); 431 432 ntfs_debug("Entering."); 433 if (likely(ni != NULL)) { 434 __ntfs_init_inode(sb, ni); 435 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); 436 ni->mft_no = mft_no; 437 ni->type = AT_UNUSED; 438 ni->name = NULL; 439 ni->name_len = 0; 440 } 441 return ni; 442 } 443 444 /** 445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 446 * @ctx: initialized attribute search context 447 * 448 * Search all file name attributes in the inode described by the attribute 449 * search context @ctx and check if any of the names are in the $Extend system 450 * directory. 451 * 452 * Return values: 453 * 1: file is in $Extend directory 454 * 0: file is not in $Extend directory 455 * -errno: failed to determine if the file is in the $Extend directory 456 */ 457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 458 { 459 int nr_links, err; 460 461 /* Restart search. */ 462 ntfs_attr_reinit_search_ctx(ctx); 463 464 /* Get number of hard links. */ 465 nr_links = le16_to_cpu(ctx->mrec->link_count); 466 467 /* Loop through all hard links. */ 468 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 469 ctx))) { 470 FILE_NAME_ATTR *file_name_attr; 471 ATTR_RECORD *attr = ctx->attr; 472 u8 *p, *p2; 473 474 nr_links--; 475 /* 476 * Maximum sanity checking as we are called on an inode that 477 * we suspect might be corrupt. 478 */ 479 p = (u8*)attr + le32_to_cpu(attr->length); 480 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 481 le32_to_cpu(ctx->mrec->bytes_in_use)) { 482 err_corrupt_attr: 483 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 484 "attribute. You should run chkdsk."); 485 return -EIO; 486 } 487 if (attr->non_resident) { 488 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 489 "name. You should run chkdsk."); 490 return -EIO; 491 } 492 if (attr->flags) { 493 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 494 "invalid flags. You should run " 495 "chkdsk."); 496 return -EIO; 497 } 498 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 499 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 500 "name. You should run chkdsk."); 501 return -EIO; 502 } 503 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 504 le16_to_cpu(attr->data.resident.value_offset)); 505 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 506 if (p2 < (u8*)attr || p2 > p) 507 goto err_corrupt_attr; 508 /* This attribute is ok, but is it in the $Extend directory? */ 509 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 510 return 1; /* YES, it's an extended system file. */ 511 } 512 if (unlikely(err != -ENOENT)) 513 return err; 514 if (unlikely(nr_links)) { 515 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 516 "doesn't match number of name attributes. You " 517 "should run chkdsk."); 518 return -EIO; 519 } 520 return 0; /* NO, it is not an extended system file. */ 521 } 522 523 /** 524 * ntfs_read_locked_inode - read an inode from its device 525 * @vi: inode to read 526 * 527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 528 * described by @vi into memory from the device. 529 * 530 * The only fields in @vi that we need to/can look at when the function is 531 * called are i_sb, pointing to the mounted device's super block, and i_ino, 532 * the number of the inode to load. 533 * 534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 535 * for reading and sets up the necessary @vi fields as well as initializing 536 * the ntfs inode. 537 * 538 * Q: What locks are held when the function is called? 539 * A: i_state has I_NEW set, hence the inode is locked, also 540 * i_count is set to 1, so it is not going to go away 541 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 542 * is allowed to write to them. We should of course be honouring them but 543 * we need to do that using the IS_* macros defined in include/linux/fs.h. 544 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 545 * 546 * Return 0 on success and -errno on error. In the error case, the inode will 547 * have had make_bad_inode() executed on it. 548 */ 549 static int ntfs_read_locked_inode(struct inode *vi) 550 { 551 ntfs_volume *vol = NTFS_SB(vi->i_sb); 552 ntfs_inode *ni; 553 struct inode *bvi; 554 MFT_RECORD *m; 555 ATTR_RECORD *a; 556 STANDARD_INFORMATION *si; 557 ntfs_attr_search_ctx *ctx; 558 int err = 0; 559 560 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 561 562 /* Setup the generic vfs inode parts now. */ 563 564 /* 565 * This is for checking whether an inode has changed w.r.t. a file so 566 * that the file can be updated if necessary (compare with f_version). 567 */ 568 vi->i_version = 1; 569 570 vi->i_uid = vol->uid; 571 vi->i_gid = vol->gid; 572 vi->i_mode = 0; 573 574 /* 575 * Initialize the ntfs specific part of @vi special casing 576 * FILE_MFT which we need to do at mount time. 577 */ 578 if (vi->i_ino != FILE_MFT) 579 ntfs_init_big_inode(vi); 580 ni = NTFS_I(vi); 581 582 m = map_mft_record(ni); 583 if (IS_ERR(m)) { 584 err = PTR_ERR(m); 585 goto err_out; 586 } 587 ctx = ntfs_attr_get_search_ctx(ni, m); 588 if (!ctx) { 589 err = -ENOMEM; 590 goto unm_err_out; 591 } 592 593 if (!(m->flags & MFT_RECORD_IN_USE)) { 594 ntfs_error(vi->i_sb, "Inode is not in use!"); 595 goto unm_err_out; 596 } 597 if (m->base_mft_record) { 598 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 599 goto unm_err_out; 600 } 601 602 /* Transfer information from mft record into vfs and ntfs inodes. */ 603 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 604 605 /* 606 * FIXME: Keep in mind that link_count is two for files which have both 607 * a long file name and a short file name as separate entries, so if 608 * we are hiding short file names this will be too high. Either we need 609 * to account for the short file names by subtracting them or we need 610 * to make sure we delete files even though i_nlink is not zero which 611 * might be tricky due to vfs interactions. Need to think about this 612 * some more when implementing the unlink command. 613 */ 614 set_nlink(vi, le16_to_cpu(m->link_count)); 615 /* 616 * FIXME: Reparse points can have the directory bit set even though 617 * they would be S_IFLNK. Need to deal with this further below when we 618 * implement reparse points / symbolic links but it will do for now. 619 * Also if not a directory, it could be something else, rather than 620 * a regular file. But again, will do for now. 621 */ 622 /* Everyone gets all permissions. */ 623 vi->i_mode |= S_IRWXUGO; 624 /* If read-only, no one gets write permissions. */ 625 if (IS_RDONLY(vi)) 626 vi->i_mode &= ~S_IWUGO; 627 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 628 vi->i_mode |= S_IFDIR; 629 /* 630 * Apply the directory permissions mask set in the mount 631 * options. 632 */ 633 vi->i_mode &= ~vol->dmask; 634 /* Things break without this kludge! */ 635 if (vi->i_nlink > 1) 636 set_nlink(vi, 1); 637 } else { 638 vi->i_mode |= S_IFREG; 639 /* Apply the file permissions mask set in the mount options. */ 640 vi->i_mode &= ~vol->fmask; 641 } 642 /* 643 * Find the standard information attribute in the mft record. At this 644 * stage we haven't setup the attribute list stuff yet, so this could 645 * in fact fail if the standard information is in an extent record, but 646 * I don't think this actually ever happens. 647 */ 648 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 649 ctx); 650 if (unlikely(err)) { 651 if (err == -ENOENT) { 652 /* 653 * TODO: We should be performing a hot fix here (if the 654 * recover mount option is set) by creating a new 655 * attribute. 656 */ 657 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 658 "is missing."); 659 } 660 goto unm_err_out; 661 } 662 a = ctx->attr; 663 /* Get the standard information attribute value. */ 664 si = (STANDARD_INFORMATION*)((u8*)a + 665 le16_to_cpu(a->data.resident.value_offset)); 666 667 /* Transfer information from the standard information into vi. */ 668 /* 669 * Note: The i_?times do not quite map perfectly onto the NTFS times, 670 * but they are close enough, and in the end it doesn't really matter 671 * that much... 672 */ 673 /* 674 * mtime is the last change of the data within the file. Not changed 675 * when only metadata is changed, e.g. a rename doesn't affect mtime. 676 */ 677 vi->i_mtime = ntfs2utc(si->last_data_change_time); 678 /* 679 * ctime is the last change of the metadata of the file. This obviously 680 * always changes, when mtime is changed. ctime can be changed on its 681 * own, mtime is then not changed, e.g. when a file is renamed. 682 */ 683 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 684 /* 685 * Last access to the data within the file. Not changed during a rename 686 * for example but changed whenever the file is written to. 687 */ 688 vi->i_atime = ntfs2utc(si->last_access_time); 689 690 /* Find the attribute list attribute if present. */ 691 ntfs_attr_reinit_search_ctx(ctx); 692 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 693 if (err) { 694 if (unlikely(err != -ENOENT)) { 695 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 696 "attribute."); 697 goto unm_err_out; 698 } 699 } else /* if (!err) */ { 700 if (vi->i_ino == FILE_MFT) 701 goto skip_attr_list_load; 702 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 703 NInoSetAttrList(ni); 704 a = ctx->attr; 705 if (a->flags & ATTR_COMPRESSION_MASK) { 706 ntfs_error(vi->i_sb, "Attribute list attribute is " 707 "compressed."); 708 goto unm_err_out; 709 } 710 if (a->flags & ATTR_IS_ENCRYPTED || 711 a->flags & ATTR_IS_SPARSE) { 712 if (a->non_resident) { 713 ntfs_error(vi->i_sb, "Non-resident attribute " 714 "list attribute is encrypted/" 715 "sparse."); 716 goto unm_err_out; 717 } 718 ntfs_warning(vi->i_sb, "Resident attribute list " 719 "attribute in inode 0x%lx is marked " 720 "encrypted/sparse which is not true. " 721 "However, Windows allows this and " 722 "chkdsk does not detect or correct it " 723 "so we will just ignore the invalid " 724 "flags and pretend they are not set.", 725 vi->i_ino); 726 } 727 /* Now allocate memory for the attribute list. */ 728 ni->attr_list_size = (u32)ntfs_attr_size(a); 729 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 730 if (!ni->attr_list) { 731 ntfs_error(vi->i_sb, "Not enough memory to allocate " 732 "buffer for attribute list."); 733 err = -ENOMEM; 734 goto unm_err_out; 735 } 736 if (a->non_resident) { 737 NInoSetAttrListNonResident(ni); 738 if (a->data.non_resident.lowest_vcn) { 739 ntfs_error(vi->i_sb, "Attribute list has non " 740 "zero lowest_vcn."); 741 goto unm_err_out; 742 } 743 /* 744 * Setup the runlist. No need for locking as we have 745 * exclusive access to the inode at this time. 746 */ 747 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 748 a, NULL); 749 if (IS_ERR(ni->attr_list_rl.rl)) { 750 err = PTR_ERR(ni->attr_list_rl.rl); 751 ni->attr_list_rl.rl = NULL; 752 ntfs_error(vi->i_sb, "Mapping pairs " 753 "decompression failed."); 754 goto unm_err_out; 755 } 756 /* Now load the attribute list. */ 757 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 758 ni->attr_list, ni->attr_list_size, 759 sle64_to_cpu(a->data.non_resident. 760 initialized_size)))) { 761 ntfs_error(vi->i_sb, "Failed to load " 762 "attribute list attribute."); 763 goto unm_err_out; 764 } 765 } else /* if (!a->non_resident) */ { 766 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 767 + le32_to_cpu( 768 a->data.resident.value_length) > 769 (u8*)ctx->mrec + vol->mft_record_size) { 770 ntfs_error(vi->i_sb, "Corrupt attribute list " 771 "in inode."); 772 goto unm_err_out; 773 } 774 /* Now copy the attribute list. */ 775 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 776 a->data.resident.value_offset), 777 le32_to_cpu( 778 a->data.resident.value_length)); 779 } 780 } 781 skip_attr_list_load: 782 /* 783 * If an attribute list is present we now have the attribute list value 784 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 785 */ 786 if (S_ISDIR(vi->i_mode)) { 787 loff_t bvi_size; 788 ntfs_inode *bni; 789 INDEX_ROOT *ir; 790 u8 *ir_end, *index_end; 791 792 /* It is a directory, find index root attribute. */ 793 ntfs_attr_reinit_search_ctx(ctx); 794 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 795 0, NULL, 0, ctx); 796 if (unlikely(err)) { 797 if (err == -ENOENT) { 798 // FIXME: File is corrupt! Hot-fix with empty 799 // index root attribute if recovery option is 800 // set. 801 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 802 "is missing."); 803 } 804 goto unm_err_out; 805 } 806 a = ctx->attr; 807 /* Set up the state. */ 808 if (unlikely(a->non_resident)) { 809 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 810 "resident."); 811 goto unm_err_out; 812 } 813 /* Ensure the attribute name is placed before the value. */ 814 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 815 le16_to_cpu(a->data.resident.value_offset)))) { 816 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 817 "placed after the attribute value."); 818 goto unm_err_out; 819 } 820 /* 821 * Compressed/encrypted index root just means that the newly 822 * created files in that directory should be created compressed/ 823 * encrypted. However index root cannot be both compressed and 824 * encrypted. 825 */ 826 if (a->flags & ATTR_COMPRESSION_MASK) 827 NInoSetCompressed(ni); 828 if (a->flags & ATTR_IS_ENCRYPTED) { 829 if (a->flags & ATTR_COMPRESSION_MASK) { 830 ntfs_error(vi->i_sb, "Found encrypted and " 831 "compressed attribute."); 832 goto unm_err_out; 833 } 834 NInoSetEncrypted(ni); 835 } 836 if (a->flags & ATTR_IS_SPARSE) 837 NInoSetSparse(ni); 838 ir = (INDEX_ROOT*)((u8*)a + 839 le16_to_cpu(a->data.resident.value_offset)); 840 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 841 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 842 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 843 "corrupt."); 844 goto unm_err_out; 845 } 846 index_end = (u8*)&ir->index + 847 le32_to_cpu(ir->index.index_length); 848 if (index_end > ir_end) { 849 ntfs_error(vi->i_sb, "Directory index is corrupt."); 850 goto unm_err_out; 851 } 852 if (ir->type != AT_FILE_NAME) { 853 ntfs_error(vi->i_sb, "Indexed attribute is not " 854 "$FILE_NAME."); 855 goto unm_err_out; 856 } 857 if (ir->collation_rule != COLLATION_FILE_NAME) { 858 ntfs_error(vi->i_sb, "Index collation rule is not " 859 "COLLATION_FILE_NAME."); 860 goto unm_err_out; 861 } 862 ni->itype.index.collation_rule = ir->collation_rule; 863 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 864 if (ni->itype.index.block_size & 865 (ni->itype.index.block_size - 1)) { 866 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 867 "power of two.", 868 ni->itype.index.block_size); 869 goto unm_err_out; 870 } 871 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 872 ntfs_error(vi->i_sb, "Index block size (%u) > " 873 "PAGE_CACHE_SIZE (%ld) is not " 874 "supported. Sorry.", 875 ni->itype.index.block_size, 876 PAGE_CACHE_SIZE); 877 err = -EOPNOTSUPP; 878 goto unm_err_out; 879 } 880 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 881 ntfs_error(vi->i_sb, "Index block size (%u) < " 882 "NTFS_BLOCK_SIZE (%i) is not " 883 "supported. Sorry.", 884 ni->itype.index.block_size, 885 NTFS_BLOCK_SIZE); 886 err = -EOPNOTSUPP; 887 goto unm_err_out; 888 } 889 ni->itype.index.block_size_bits = 890 ffs(ni->itype.index.block_size) - 1; 891 /* Determine the size of a vcn in the directory index. */ 892 if (vol->cluster_size <= ni->itype.index.block_size) { 893 ni->itype.index.vcn_size = vol->cluster_size; 894 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 895 } else { 896 ni->itype.index.vcn_size = vol->sector_size; 897 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 898 } 899 900 /* Setup the index allocation attribute, even if not present. */ 901 NInoSetMstProtected(ni); 902 ni->type = AT_INDEX_ALLOCATION; 903 ni->name = I30; 904 ni->name_len = 4; 905 906 if (!(ir->index.flags & LARGE_INDEX)) { 907 /* No index allocation. */ 908 vi->i_size = ni->initialized_size = 909 ni->allocated_size = 0; 910 /* We are done with the mft record, so we release it. */ 911 ntfs_attr_put_search_ctx(ctx); 912 unmap_mft_record(ni); 913 m = NULL; 914 ctx = NULL; 915 goto skip_large_dir_stuff; 916 } /* LARGE_INDEX: Index allocation present. Setup state. */ 917 NInoSetIndexAllocPresent(ni); 918 /* Find index allocation attribute. */ 919 ntfs_attr_reinit_search_ctx(ctx); 920 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 921 CASE_SENSITIVE, 0, NULL, 0, ctx); 922 if (unlikely(err)) { 923 if (err == -ENOENT) 924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 925 "attribute is not present but " 926 "$INDEX_ROOT indicated it is."); 927 else 928 ntfs_error(vi->i_sb, "Failed to lookup " 929 "$INDEX_ALLOCATION " 930 "attribute."); 931 goto unm_err_out; 932 } 933 a = ctx->attr; 934 if (!a->non_resident) { 935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 936 "is resident."); 937 goto unm_err_out; 938 } 939 /* 940 * Ensure the attribute name is placed before the mapping pairs 941 * array. 942 */ 943 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 944 le16_to_cpu( 945 a->data.non_resident.mapping_pairs_offset)))) { 946 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 947 "is placed after the mapping pairs " 948 "array."); 949 goto unm_err_out; 950 } 951 if (a->flags & ATTR_IS_ENCRYPTED) { 952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 953 "is encrypted."); 954 goto unm_err_out; 955 } 956 if (a->flags & ATTR_IS_SPARSE) { 957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 958 "is sparse."); 959 goto unm_err_out; 960 } 961 if (a->flags & ATTR_COMPRESSION_MASK) { 962 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 963 "is compressed."); 964 goto unm_err_out; 965 } 966 if (a->data.non_resident.lowest_vcn) { 967 ntfs_error(vi->i_sb, "First extent of " 968 "$INDEX_ALLOCATION attribute has non " 969 "zero lowest_vcn."); 970 goto unm_err_out; 971 } 972 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 973 ni->initialized_size = sle64_to_cpu( 974 a->data.non_resident.initialized_size); 975 ni->allocated_size = sle64_to_cpu( 976 a->data.non_resident.allocated_size); 977 /* 978 * We are done with the mft record, so we release it. Otherwise 979 * we would deadlock in ntfs_attr_iget(). 980 */ 981 ntfs_attr_put_search_ctx(ctx); 982 unmap_mft_record(ni); 983 m = NULL; 984 ctx = NULL; 985 /* Get the index bitmap attribute inode. */ 986 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 987 if (IS_ERR(bvi)) { 988 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 989 err = PTR_ERR(bvi); 990 goto unm_err_out; 991 } 992 bni = NTFS_I(bvi); 993 if (NInoCompressed(bni) || NInoEncrypted(bni) || 994 NInoSparse(bni)) { 995 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 996 "and/or encrypted and/or sparse."); 997 goto iput_unm_err_out; 998 } 999 /* Consistency check bitmap size vs. index allocation size. */ 1000 bvi_size = i_size_read(bvi); 1001 if ((bvi_size << 3) < (vi->i_size >> 1002 ni->itype.index.block_size_bits)) { 1003 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 1004 "for index allocation (0x%llx).", 1005 bvi_size << 3, vi->i_size); 1006 goto iput_unm_err_out; 1007 } 1008 /* No longer need the bitmap attribute inode. */ 1009 iput(bvi); 1010 skip_large_dir_stuff: 1011 /* Setup the operations for this inode. */ 1012 vi->i_op = &ntfs_dir_inode_ops; 1013 vi->i_fop = &ntfs_dir_ops; 1014 } else { 1015 /* It is a file. */ 1016 ntfs_attr_reinit_search_ctx(ctx); 1017 1018 /* Setup the data attribute, even if not present. */ 1019 ni->type = AT_DATA; 1020 ni->name = NULL; 1021 ni->name_len = 0; 1022 1023 /* Find first extent of the unnamed data attribute. */ 1024 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 1025 if (unlikely(err)) { 1026 vi->i_size = ni->initialized_size = 1027 ni->allocated_size = 0; 1028 if (err != -ENOENT) { 1029 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 1030 "attribute."); 1031 goto unm_err_out; 1032 } 1033 /* 1034 * FILE_Secure does not have an unnamed $DATA 1035 * attribute, so we special case it here. 1036 */ 1037 if (vi->i_ino == FILE_Secure) 1038 goto no_data_attr_special_case; 1039 /* 1040 * Most if not all the system files in the $Extend 1041 * system directory do not have unnamed data 1042 * attributes so we need to check if the parent 1043 * directory of the file is FILE_Extend and if it is 1044 * ignore this error. To do this we need to get the 1045 * name of this inode from the mft record as the name 1046 * contains the back reference to the parent directory. 1047 */ 1048 if (ntfs_is_extended_system_file(ctx) > 0) 1049 goto no_data_attr_special_case; 1050 // FIXME: File is corrupt! Hot-fix with empty data 1051 // attribute if recovery option is set. 1052 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1053 goto unm_err_out; 1054 } 1055 a = ctx->attr; 1056 /* Setup the state. */ 1057 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1058 if (a->flags & ATTR_COMPRESSION_MASK) { 1059 NInoSetCompressed(ni); 1060 if (vol->cluster_size > 4096) { 1061 ntfs_error(vi->i_sb, "Found " 1062 "compressed data but " 1063 "compression is " 1064 "disabled due to " 1065 "cluster size (%i) > " 1066 "4kiB.", 1067 vol->cluster_size); 1068 goto unm_err_out; 1069 } 1070 if ((a->flags & ATTR_COMPRESSION_MASK) 1071 != ATTR_IS_COMPRESSED) { 1072 ntfs_error(vi->i_sb, "Found unknown " 1073 "compression method " 1074 "or corrupt file."); 1075 goto unm_err_out; 1076 } 1077 } 1078 if (a->flags & ATTR_IS_SPARSE) 1079 NInoSetSparse(ni); 1080 } 1081 if (a->flags & ATTR_IS_ENCRYPTED) { 1082 if (NInoCompressed(ni)) { 1083 ntfs_error(vi->i_sb, "Found encrypted and " 1084 "compressed data."); 1085 goto unm_err_out; 1086 } 1087 NInoSetEncrypted(ni); 1088 } 1089 if (a->non_resident) { 1090 NInoSetNonResident(ni); 1091 if (NInoCompressed(ni) || NInoSparse(ni)) { 1092 if (NInoCompressed(ni) && a->data.non_resident. 1093 compression_unit != 4) { 1094 ntfs_error(vi->i_sb, "Found " 1095 "non-standard " 1096 "compression unit (%u " 1097 "instead of 4). " 1098 "Cannot handle this.", 1099 a->data.non_resident. 1100 compression_unit); 1101 err = -EOPNOTSUPP; 1102 goto unm_err_out; 1103 } 1104 if (a->data.non_resident.compression_unit) { 1105 ni->itype.compressed.block_size = 1U << 1106 (a->data.non_resident. 1107 compression_unit + 1108 vol->cluster_size_bits); 1109 ni->itype.compressed.block_size_bits = 1110 ffs(ni->itype. 1111 compressed. 1112 block_size) - 1; 1113 ni->itype.compressed.block_clusters = 1114 1U << a->data. 1115 non_resident. 1116 compression_unit; 1117 } else { 1118 ni->itype.compressed.block_size = 0; 1119 ni->itype.compressed.block_size_bits = 1120 0; 1121 ni->itype.compressed.block_clusters = 1122 0; 1123 } 1124 ni->itype.compressed.size = sle64_to_cpu( 1125 a->data.non_resident. 1126 compressed_size); 1127 } 1128 if (a->data.non_resident.lowest_vcn) { 1129 ntfs_error(vi->i_sb, "First extent of $DATA " 1130 "attribute has non zero " 1131 "lowest_vcn."); 1132 goto unm_err_out; 1133 } 1134 vi->i_size = sle64_to_cpu( 1135 a->data.non_resident.data_size); 1136 ni->initialized_size = sle64_to_cpu( 1137 a->data.non_resident.initialized_size); 1138 ni->allocated_size = sle64_to_cpu( 1139 a->data.non_resident.allocated_size); 1140 } else { /* Resident attribute. */ 1141 vi->i_size = ni->initialized_size = le32_to_cpu( 1142 a->data.resident.value_length); 1143 ni->allocated_size = le32_to_cpu(a->length) - 1144 le16_to_cpu( 1145 a->data.resident.value_offset); 1146 if (vi->i_size > ni->allocated_size) { 1147 ntfs_error(vi->i_sb, "Resident data attribute " 1148 "is corrupt (size exceeds " 1149 "allocation)."); 1150 goto unm_err_out; 1151 } 1152 } 1153 no_data_attr_special_case: 1154 /* We are done with the mft record, so we release it. */ 1155 ntfs_attr_put_search_ctx(ctx); 1156 unmap_mft_record(ni); 1157 m = NULL; 1158 ctx = NULL; 1159 /* Setup the operations for this inode. */ 1160 vi->i_op = &ntfs_file_inode_ops; 1161 vi->i_fop = &ntfs_file_ops; 1162 } 1163 if (NInoMstProtected(ni)) 1164 vi->i_mapping->a_ops = &ntfs_mst_aops; 1165 else 1166 vi->i_mapping->a_ops = &ntfs_aops; 1167 /* 1168 * The number of 512-byte blocks used on disk (for stat). This is in so 1169 * far inaccurate as it doesn't account for any named streams or other 1170 * special non-resident attributes, but that is how Windows works, too, 1171 * so we are at least consistent with Windows, if not entirely 1172 * consistent with the Linux Way. Doing it the Linux Way would cause a 1173 * significant slowdown as it would involve iterating over all 1174 * attributes in the mft record and adding the allocated/compressed 1175 * sizes of all non-resident attributes present to give us the Linux 1176 * correct size that should go into i_blocks (after division by 512). 1177 */ 1178 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1179 vi->i_blocks = ni->itype.compressed.size >> 9; 1180 else 1181 vi->i_blocks = ni->allocated_size >> 9; 1182 ntfs_debug("Done."); 1183 return 0; 1184 iput_unm_err_out: 1185 iput(bvi); 1186 unm_err_out: 1187 if (!err) 1188 err = -EIO; 1189 if (ctx) 1190 ntfs_attr_put_search_ctx(ctx); 1191 if (m) 1192 unmap_mft_record(ni); 1193 err_out: 1194 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1195 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1196 make_bad_inode(vi); 1197 if (err != -EOPNOTSUPP && err != -ENOMEM) 1198 NVolSetErrors(vol); 1199 return err; 1200 } 1201 1202 /** 1203 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1204 * @base_vi: base inode 1205 * @vi: attribute inode to read 1206 * 1207 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1208 * attribute inode described by @vi into memory from the base mft record 1209 * described by @base_ni. 1210 * 1211 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1212 * reading and looks up the attribute described by @vi before setting up the 1213 * necessary fields in @vi as well as initializing the ntfs inode. 1214 * 1215 * Q: What locks are held when the function is called? 1216 * A: i_state has I_NEW set, hence the inode is locked, also 1217 * i_count is set to 1, so it is not going to go away 1218 * 1219 * Return 0 on success and -errno on error. In the error case, the inode will 1220 * have had make_bad_inode() executed on it. 1221 * 1222 * Note this cannot be called for AT_INDEX_ALLOCATION. 1223 */ 1224 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1225 { 1226 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1227 ntfs_inode *ni, *base_ni; 1228 MFT_RECORD *m; 1229 ATTR_RECORD *a; 1230 ntfs_attr_search_ctx *ctx; 1231 int err = 0; 1232 1233 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1234 1235 ntfs_init_big_inode(vi); 1236 1237 ni = NTFS_I(vi); 1238 base_ni = NTFS_I(base_vi); 1239 1240 /* Just mirror the values from the base inode. */ 1241 vi->i_version = base_vi->i_version; 1242 vi->i_uid = base_vi->i_uid; 1243 vi->i_gid = base_vi->i_gid; 1244 set_nlink(vi, base_vi->i_nlink); 1245 vi->i_mtime = base_vi->i_mtime; 1246 vi->i_ctime = base_vi->i_ctime; 1247 vi->i_atime = base_vi->i_atime; 1248 vi->i_generation = ni->seq_no = base_ni->seq_no; 1249 1250 /* Set inode type to zero but preserve permissions. */ 1251 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1252 1253 m = map_mft_record(base_ni); 1254 if (IS_ERR(m)) { 1255 err = PTR_ERR(m); 1256 goto err_out; 1257 } 1258 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1259 if (!ctx) { 1260 err = -ENOMEM; 1261 goto unm_err_out; 1262 } 1263 /* Find the attribute. */ 1264 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1265 CASE_SENSITIVE, 0, NULL, 0, ctx); 1266 if (unlikely(err)) 1267 goto unm_err_out; 1268 a = ctx->attr; 1269 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1270 if (a->flags & ATTR_COMPRESSION_MASK) { 1271 NInoSetCompressed(ni); 1272 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1273 ni->name_len)) { 1274 ntfs_error(vi->i_sb, "Found compressed " 1275 "non-data or named data " 1276 "attribute. Please report " 1277 "you saw this message to " 1278 "linux-ntfs-dev@lists." 1279 "sourceforge.net"); 1280 goto unm_err_out; 1281 } 1282 if (vol->cluster_size > 4096) { 1283 ntfs_error(vi->i_sb, "Found compressed " 1284 "attribute but compression is " 1285 "disabled due to cluster size " 1286 "(%i) > 4kiB.", 1287 vol->cluster_size); 1288 goto unm_err_out; 1289 } 1290 if ((a->flags & ATTR_COMPRESSION_MASK) != 1291 ATTR_IS_COMPRESSED) { 1292 ntfs_error(vi->i_sb, "Found unknown " 1293 "compression method."); 1294 goto unm_err_out; 1295 } 1296 } 1297 /* 1298 * The compressed/sparse flag set in an index root just means 1299 * to compress all files. 1300 */ 1301 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1302 ntfs_error(vi->i_sb, "Found mst protected attribute " 1303 "but the attribute is %s. Please " 1304 "report you saw this message to " 1305 "linux-ntfs-dev@lists.sourceforge.net", 1306 NInoCompressed(ni) ? "compressed" : 1307 "sparse"); 1308 goto unm_err_out; 1309 } 1310 if (a->flags & ATTR_IS_SPARSE) 1311 NInoSetSparse(ni); 1312 } 1313 if (a->flags & ATTR_IS_ENCRYPTED) { 1314 if (NInoCompressed(ni)) { 1315 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1316 "data."); 1317 goto unm_err_out; 1318 } 1319 /* 1320 * The encryption flag set in an index root just means to 1321 * encrypt all files. 1322 */ 1323 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1324 ntfs_error(vi->i_sb, "Found mst protected attribute " 1325 "but the attribute is encrypted. " 1326 "Please report you saw this message " 1327 "to linux-ntfs-dev@lists.sourceforge." 1328 "net"); 1329 goto unm_err_out; 1330 } 1331 if (ni->type != AT_DATA) { 1332 ntfs_error(vi->i_sb, "Found encrypted non-data " 1333 "attribute."); 1334 goto unm_err_out; 1335 } 1336 NInoSetEncrypted(ni); 1337 } 1338 if (!a->non_resident) { 1339 /* Ensure the attribute name is placed before the value. */ 1340 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1341 le16_to_cpu(a->data.resident.value_offset)))) { 1342 ntfs_error(vol->sb, "Attribute name is placed after " 1343 "the attribute value."); 1344 goto unm_err_out; 1345 } 1346 if (NInoMstProtected(ni)) { 1347 ntfs_error(vi->i_sb, "Found mst protected attribute " 1348 "but the attribute is resident. " 1349 "Please report you saw this message to " 1350 "linux-ntfs-dev@lists.sourceforge.net"); 1351 goto unm_err_out; 1352 } 1353 vi->i_size = ni->initialized_size = le32_to_cpu( 1354 a->data.resident.value_length); 1355 ni->allocated_size = le32_to_cpu(a->length) - 1356 le16_to_cpu(a->data.resident.value_offset); 1357 if (vi->i_size > ni->allocated_size) { 1358 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1359 "(size exceeds allocation)."); 1360 goto unm_err_out; 1361 } 1362 } else { 1363 NInoSetNonResident(ni); 1364 /* 1365 * Ensure the attribute name is placed before the mapping pairs 1366 * array. 1367 */ 1368 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1369 le16_to_cpu( 1370 a->data.non_resident.mapping_pairs_offset)))) { 1371 ntfs_error(vol->sb, "Attribute name is placed after " 1372 "the mapping pairs array."); 1373 goto unm_err_out; 1374 } 1375 if (NInoCompressed(ni) || NInoSparse(ni)) { 1376 if (NInoCompressed(ni) && a->data.non_resident. 1377 compression_unit != 4) { 1378 ntfs_error(vi->i_sb, "Found non-standard " 1379 "compression unit (%u instead " 1380 "of 4). Cannot handle this.", 1381 a->data.non_resident. 1382 compression_unit); 1383 err = -EOPNOTSUPP; 1384 goto unm_err_out; 1385 } 1386 if (a->data.non_resident.compression_unit) { 1387 ni->itype.compressed.block_size = 1U << 1388 (a->data.non_resident. 1389 compression_unit + 1390 vol->cluster_size_bits); 1391 ni->itype.compressed.block_size_bits = 1392 ffs(ni->itype.compressed. 1393 block_size) - 1; 1394 ni->itype.compressed.block_clusters = 1U << 1395 a->data.non_resident. 1396 compression_unit; 1397 } else { 1398 ni->itype.compressed.block_size = 0; 1399 ni->itype.compressed.block_size_bits = 0; 1400 ni->itype.compressed.block_clusters = 0; 1401 } 1402 ni->itype.compressed.size = sle64_to_cpu( 1403 a->data.non_resident.compressed_size); 1404 } 1405 if (a->data.non_resident.lowest_vcn) { 1406 ntfs_error(vi->i_sb, "First extent of attribute has " 1407 "non-zero lowest_vcn."); 1408 goto unm_err_out; 1409 } 1410 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1411 ni->initialized_size = sle64_to_cpu( 1412 a->data.non_resident.initialized_size); 1413 ni->allocated_size = sle64_to_cpu( 1414 a->data.non_resident.allocated_size); 1415 } 1416 if (NInoMstProtected(ni)) 1417 vi->i_mapping->a_ops = &ntfs_mst_aops; 1418 else 1419 vi->i_mapping->a_ops = &ntfs_aops; 1420 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1421 vi->i_blocks = ni->itype.compressed.size >> 9; 1422 else 1423 vi->i_blocks = ni->allocated_size >> 9; 1424 /* 1425 * Make sure the base inode does not go away and attach it to the 1426 * attribute inode. 1427 */ 1428 igrab(base_vi); 1429 ni->ext.base_ntfs_ino = base_ni; 1430 ni->nr_extents = -1; 1431 1432 ntfs_attr_put_search_ctx(ctx); 1433 unmap_mft_record(base_ni); 1434 1435 ntfs_debug("Done."); 1436 return 0; 1437 1438 unm_err_out: 1439 if (!err) 1440 err = -EIO; 1441 if (ctx) 1442 ntfs_attr_put_search_ctx(ctx); 1443 unmap_mft_record(base_ni); 1444 err_out: 1445 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1446 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1447 "Marking corrupt inode and base inode 0x%lx as bad. " 1448 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1449 base_vi->i_ino); 1450 make_bad_inode(vi); 1451 if (err != -ENOMEM) 1452 NVolSetErrors(vol); 1453 return err; 1454 } 1455 1456 /** 1457 * ntfs_read_locked_index_inode - read an index inode from its base inode 1458 * @base_vi: base inode 1459 * @vi: index inode to read 1460 * 1461 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1462 * index inode described by @vi into memory from the base mft record described 1463 * by @base_ni. 1464 * 1465 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1466 * reading and looks up the attributes relating to the index described by @vi 1467 * before setting up the necessary fields in @vi as well as initializing the 1468 * ntfs inode. 1469 * 1470 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1471 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1472 * are setup like directory inodes since directories are a special case of 1473 * indices ao they need to be treated in much the same way. Most importantly, 1474 * for small indices the index allocation attribute might not actually exist. 1475 * However, the index root attribute always exists but this does not need to 1476 * have an inode associated with it and this is why we define a new inode type 1477 * index. Also, like for directories, we need to have an attribute inode for 1478 * the bitmap attribute corresponding to the index allocation attribute and we 1479 * can store this in the appropriate field of the inode, just like we do for 1480 * normal directory inodes. 1481 * 1482 * Q: What locks are held when the function is called? 1483 * A: i_state has I_NEW set, hence the inode is locked, also 1484 * i_count is set to 1, so it is not going to go away 1485 * 1486 * Return 0 on success and -errno on error. In the error case, the inode will 1487 * have had make_bad_inode() executed on it. 1488 */ 1489 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1490 { 1491 loff_t bvi_size; 1492 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1493 ntfs_inode *ni, *base_ni, *bni; 1494 struct inode *bvi; 1495 MFT_RECORD *m; 1496 ATTR_RECORD *a; 1497 ntfs_attr_search_ctx *ctx; 1498 INDEX_ROOT *ir; 1499 u8 *ir_end, *index_end; 1500 int err = 0; 1501 1502 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1503 ntfs_init_big_inode(vi); 1504 ni = NTFS_I(vi); 1505 base_ni = NTFS_I(base_vi); 1506 /* Just mirror the values from the base inode. */ 1507 vi->i_version = base_vi->i_version; 1508 vi->i_uid = base_vi->i_uid; 1509 vi->i_gid = base_vi->i_gid; 1510 set_nlink(vi, base_vi->i_nlink); 1511 vi->i_mtime = base_vi->i_mtime; 1512 vi->i_ctime = base_vi->i_ctime; 1513 vi->i_atime = base_vi->i_atime; 1514 vi->i_generation = ni->seq_no = base_ni->seq_no; 1515 /* Set inode type to zero but preserve permissions. */ 1516 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1517 /* Map the mft record for the base inode. */ 1518 m = map_mft_record(base_ni); 1519 if (IS_ERR(m)) { 1520 err = PTR_ERR(m); 1521 goto err_out; 1522 } 1523 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1524 if (!ctx) { 1525 err = -ENOMEM; 1526 goto unm_err_out; 1527 } 1528 /* Find the index root attribute. */ 1529 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1530 CASE_SENSITIVE, 0, NULL, 0, ctx); 1531 if (unlikely(err)) { 1532 if (err == -ENOENT) 1533 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1534 "missing."); 1535 goto unm_err_out; 1536 } 1537 a = ctx->attr; 1538 /* Set up the state. */ 1539 if (unlikely(a->non_resident)) { 1540 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1541 goto unm_err_out; 1542 } 1543 /* Ensure the attribute name is placed before the value. */ 1544 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1545 le16_to_cpu(a->data.resident.value_offset)))) { 1546 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1547 "after the attribute value."); 1548 goto unm_err_out; 1549 } 1550 /* 1551 * Compressed/encrypted/sparse index root is not allowed, except for 1552 * directories of course but those are not dealt with here. 1553 */ 1554 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1555 ATTR_IS_SPARSE)) { 1556 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1557 "root attribute."); 1558 goto unm_err_out; 1559 } 1560 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1561 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1562 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1563 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1564 goto unm_err_out; 1565 } 1566 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1567 if (index_end > ir_end) { 1568 ntfs_error(vi->i_sb, "Index is corrupt."); 1569 goto unm_err_out; 1570 } 1571 if (ir->type) { 1572 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1573 le32_to_cpu(ir->type)); 1574 goto unm_err_out; 1575 } 1576 ni->itype.index.collation_rule = ir->collation_rule; 1577 ntfs_debug("Index collation rule is 0x%x.", 1578 le32_to_cpu(ir->collation_rule)); 1579 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1580 if (!is_power_of_2(ni->itype.index.block_size)) { 1581 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1582 "two.", ni->itype.index.block_size); 1583 goto unm_err_out; 1584 } 1585 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 1586 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " 1587 "(%ld) is not supported. Sorry.", 1588 ni->itype.index.block_size, PAGE_CACHE_SIZE); 1589 err = -EOPNOTSUPP; 1590 goto unm_err_out; 1591 } 1592 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1593 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1594 "(%i) is not supported. Sorry.", 1595 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1596 err = -EOPNOTSUPP; 1597 goto unm_err_out; 1598 } 1599 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1600 /* Determine the size of a vcn in the index. */ 1601 if (vol->cluster_size <= ni->itype.index.block_size) { 1602 ni->itype.index.vcn_size = vol->cluster_size; 1603 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1604 } else { 1605 ni->itype.index.vcn_size = vol->sector_size; 1606 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1607 } 1608 /* Check for presence of index allocation attribute. */ 1609 if (!(ir->index.flags & LARGE_INDEX)) { 1610 /* No index allocation. */ 1611 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1612 /* We are done with the mft record, so we release it. */ 1613 ntfs_attr_put_search_ctx(ctx); 1614 unmap_mft_record(base_ni); 1615 m = NULL; 1616 ctx = NULL; 1617 goto skip_large_index_stuff; 1618 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1619 NInoSetIndexAllocPresent(ni); 1620 /* Find index allocation attribute. */ 1621 ntfs_attr_reinit_search_ctx(ctx); 1622 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1623 CASE_SENSITIVE, 0, NULL, 0, ctx); 1624 if (unlikely(err)) { 1625 if (err == -ENOENT) 1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1627 "not present but $INDEX_ROOT " 1628 "indicated it is."); 1629 else 1630 ntfs_error(vi->i_sb, "Failed to lookup " 1631 "$INDEX_ALLOCATION attribute."); 1632 goto unm_err_out; 1633 } 1634 a = ctx->attr; 1635 if (!a->non_resident) { 1636 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1637 "resident."); 1638 goto unm_err_out; 1639 } 1640 /* 1641 * Ensure the attribute name is placed before the mapping pairs array. 1642 */ 1643 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1644 le16_to_cpu( 1645 a->data.non_resident.mapping_pairs_offset)))) { 1646 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1647 "placed after the mapping pairs array."); 1648 goto unm_err_out; 1649 } 1650 if (a->flags & ATTR_IS_ENCRYPTED) { 1651 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1652 "encrypted."); 1653 goto unm_err_out; 1654 } 1655 if (a->flags & ATTR_IS_SPARSE) { 1656 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1657 goto unm_err_out; 1658 } 1659 if (a->flags & ATTR_COMPRESSION_MASK) { 1660 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1661 "compressed."); 1662 goto unm_err_out; 1663 } 1664 if (a->data.non_resident.lowest_vcn) { 1665 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1666 "attribute has non zero lowest_vcn."); 1667 goto unm_err_out; 1668 } 1669 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1670 ni->initialized_size = sle64_to_cpu( 1671 a->data.non_resident.initialized_size); 1672 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1673 /* 1674 * We are done with the mft record, so we release it. Otherwise 1675 * we would deadlock in ntfs_attr_iget(). 1676 */ 1677 ntfs_attr_put_search_ctx(ctx); 1678 unmap_mft_record(base_ni); 1679 m = NULL; 1680 ctx = NULL; 1681 /* Get the index bitmap attribute inode. */ 1682 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1683 if (IS_ERR(bvi)) { 1684 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1685 err = PTR_ERR(bvi); 1686 goto unm_err_out; 1687 } 1688 bni = NTFS_I(bvi); 1689 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1690 NInoSparse(bni)) { 1691 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1692 "encrypted and/or sparse."); 1693 goto iput_unm_err_out; 1694 } 1695 /* Consistency check bitmap size vs. index allocation size. */ 1696 bvi_size = i_size_read(bvi); 1697 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1698 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1699 "index allocation (0x%llx).", bvi_size << 3, 1700 vi->i_size); 1701 goto iput_unm_err_out; 1702 } 1703 iput(bvi); 1704 skip_large_index_stuff: 1705 /* Setup the operations for this index inode. */ 1706 vi->i_op = NULL; 1707 vi->i_fop = NULL; 1708 vi->i_mapping->a_ops = &ntfs_mst_aops; 1709 vi->i_blocks = ni->allocated_size >> 9; 1710 /* 1711 * Make sure the base inode doesn't go away and attach it to the 1712 * index inode. 1713 */ 1714 igrab(base_vi); 1715 ni->ext.base_ntfs_ino = base_ni; 1716 ni->nr_extents = -1; 1717 1718 ntfs_debug("Done."); 1719 return 0; 1720 iput_unm_err_out: 1721 iput(bvi); 1722 unm_err_out: 1723 if (!err) 1724 err = -EIO; 1725 if (ctx) 1726 ntfs_attr_put_search_ctx(ctx); 1727 if (m) 1728 unmap_mft_record(base_ni); 1729 err_out: 1730 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1731 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1732 ni->name_len); 1733 make_bad_inode(vi); 1734 if (err != -EOPNOTSUPP && err != -ENOMEM) 1735 NVolSetErrors(vol); 1736 return err; 1737 } 1738 1739 /* 1740 * The MFT inode has special locking, so teach the lock validator 1741 * about this by splitting off the locking rules of the MFT from 1742 * the locking rules of other inodes. The MFT inode can never be 1743 * accessed from the VFS side (or even internally), only by the 1744 * map_mft functions. 1745 */ 1746 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; 1747 1748 /** 1749 * ntfs_read_inode_mount - special read_inode for mount time use only 1750 * @vi: inode to read 1751 * 1752 * Read inode FILE_MFT at mount time, only called with super_block lock 1753 * held from within the read_super() code path. 1754 * 1755 * This function exists because when it is called the page cache for $MFT/$DATA 1756 * is not initialized and hence we cannot get at the contents of mft records 1757 * by calling map_mft_record*(). 1758 * 1759 * Further it needs to cope with the circular references problem, i.e. cannot 1760 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1761 * we do not know where the other extent mft records are yet and again, because 1762 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1763 * attribute list is actually present in $MFT inode. 1764 * 1765 * We solve these problems by starting with the $DATA attribute before anything 1766 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1767 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1768 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1769 * sufficient information for the next step to complete. 1770 * 1771 * This should work but there are two possible pit falls (see inline comments 1772 * below), but only time will tell if they are real pits or just smoke... 1773 */ 1774 int ntfs_read_inode_mount(struct inode *vi) 1775 { 1776 VCN next_vcn, last_vcn, highest_vcn; 1777 s64 block; 1778 struct super_block *sb = vi->i_sb; 1779 ntfs_volume *vol = NTFS_SB(sb); 1780 struct buffer_head *bh; 1781 ntfs_inode *ni; 1782 MFT_RECORD *m = NULL; 1783 ATTR_RECORD *a; 1784 ntfs_attr_search_ctx *ctx; 1785 unsigned int i, nr_blocks; 1786 int err; 1787 1788 ntfs_debug("Entering."); 1789 1790 /* Initialize the ntfs specific part of @vi. */ 1791 ntfs_init_big_inode(vi); 1792 1793 ni = NTFS_I(vi); 1794 1795 /* Setup the data attribute. It is special as it is mst protected. */ 1796 NInoSetNonResident(ni); 1797 NInoSetMstProtected(ni); 1798 NInoSetSparseDisabled(ni); 1799 ni->type = AT_DATA; 1800 ni->name = NULL; 1801 ni->name_len = 0; 1802 /* 1803 * This sets up our little cheat allowing us to reuse the async read io 1804 * completion handler for directories. 1805 */ 1806 ni->itype.index.block_size = vol->mft_record_size; 1807 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1808 1809 /* Very important! Needed to be able to call map_mft_record*(). */ 1810 vol->mft_ino = vi; 1811 1812 /* Allocate enough memory to read the first mft record. */ 1813 if (vol->mft_record_size > 64 * 1024) { 1814 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1815 vol->mft_record_size); 1816 goto err_out; 1817 } 1818 i = vol->mft_record_size; 1819 if (i < sb->s_blocksize) 1820 i = sb->s_blocksize; 1821 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1822 if (!m) { 1823 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1824 goto err_out; 1825 } 1826 1827 /* Determine the first block of the $MFT/$DATA attribute. */ 1828 block = vol->mft_lcn << vol->cluster_size_bits >> 1829 sb->s_blocksize_bits; 1830 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1831 if (!nr_blocks) 1832 nr_blocks = 1; 1833 1834 /* Load $MFT/$DATA's first mft record. */ 1835 for (i = 0; i < nr_blocks; i++) { 1836 bh = sb_bread(sb, block++); 1837 if (!bh) { 1838 ntfs_error(sb, "Device read failed."); 1839 goto err_out; 1840 } 1841 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1842 sb->s_blocksize); 1843 brelse(bh); 1844 } 1845 1846 /* Apply the mst fixups. */ 1847 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1848 /* FIXME: Try to use the $MFTMirr now. */ 1849 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1850 goto err_out; 1851 } 1852 1853 /* Need this to sanity check attribute list references to $MFT. */ 1854 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1855 1856 /* Provides readpage() and sync_page() for map_mft_record(). */ 1857 vi->i_mapping->a_ops = &ntfs_mst_aops; 1858 1859 ctx = ntfs_attr_get_search_ctx(ni, m); 1860 if (!ctx) { 1861 err = -ENOMEM; 1862 goto err_out; 1863 } 1864 1865 /* Find the attribute list attribute if present. */ 1866 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1867 if (err) { 1868 if (unlikely(err != -ENOENT)) { 1869 ntfs_error(sb, "Failed to lookup attribute list " 1870 "attribute. You should run chkdsk."); 1871 goto put_err_out; 1872 } 1873 } else /* if (!err) */ { 1874 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1875 u8 *al_end; 1876 static const char *es = " Not allowed. $MFT is corrupt. " 1877 "You should run chkdsk."; 1878 1879 ntfs_debug("Attribute list attribute found in $MFT."); 1880 NInoSetAttrList(ni); 1881 a = ctx->attr; 1882 if (a->flags & ATTR_COMPRESSION_MASK) { 1883 ntfs_error(sb, "Attribute list attribute is " 1884 "compressed.%s", es); 1885 goto put_err_out; 1886 } 1887 if (a->flags & ATTR_IS_ENCRYPTED || 1888 a->flags & ATTR_IS_SPARSE) { 1889 if (a->non_resident) { 1890 ntfs_error(sb, "Non-resident attribute list " 1891 "attribute is encrypted/" 1892 "sparse.%s", es); 1893 goto put_err_out; 1894 } 1895 ntfs_warning(sb, "Resident attribute list attribute " 1896 "in $MFT system file is marked " 1897 "encrypted/sparse which is not true. " 1898 "However, Windows allows this and " 1899 "chkdsk does not detect or correct it " 1900 "so we will just ignore the invalid " 1901 "flags and pretend they are not set."); 1902 } 1903 /* Now allocate memory for the attribute list. */ 1904 ni->attr_list_size = (u32)ntfs_attr_size(a); 1905 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1906 if (!ni->attr_list) { 1907 ntfs_error(sb, "Not enough memory to allocate buffer " 1908 "for attribute list."); 1909 goto put_err_out; 1910 } 1911 if (a->non_resident) { 1912 NInoSetAttrListNonResident(ni); 1913 if (a->data.non_resident.lowest_vcn) { 1914 ntfs_error(sb, "Attribute list has non zero " 1915 "lowest_vcn. $MFT is corrupt. " 1916 "You should run chkdsk."); 1917 goto put_err_out; 1918 } 1919 /* Setup the runlist. */ 1920 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1921 a, NULL); 1922 if (IS_ERR(ni->attr_list_rl.rl)) { 1923 err = PTR_ERR(ni->attr_list_rl.rl); 1924 ni->attr_list_rl.rl = NULL; 1925 ntfs_error(sb, "Mapping pairs decompression " 1926 "failed with error code %i.", 1927 -err); 1928 goto put_err_out; 1929 } 1930 /* Now load the attribute list. */ 1931 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1932 ni->attr_list, ni->attr_list_size, 1933 sle64_to_cpu(a->data. 1934 non_resident.initialized_size)))) { 1935 ntfs_error(sb, "Failed to load attribute list " 1936 "attribute with error code %i.", 1937 -err); 1938 goto put_err_out; 1939 } 1940 } else /* if (!ctx.attr->non_resident) */ { 1941 if ((u8*)a + le16_to_cpu( 1942 a->data.resident.value_offset) + 1943 le32_to_cpu( 1944 a->data.resident.value_length) > 1945 (u8*)ctx->mrec + vol->mft_record_size) { 1946 ntfs_error(sb, "Corrupt attribute list " 1947 "attribute."); 1948 goto put_err_out; 1949 } 1950 /* Now copy the attribute list. */ 1951 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1952 a->data.resident.value_offset), 1953 le32_to_cpu( 1954 a->data.resident.value_length)); 1955 } 1956 /* The attribute list is now setup in memory. */ 1957 /* 1958 * FIXME: I don't know if this case is actually possible. 1959 * According to logic it is not possible but I have seen too 1960 * many weird things in MS software to rely on logic... Thus we 1961 * perform a manual search and make sure the first $MFT/$DATA 1962 * extent is in the base inode. If it is not we abort with an 1963 * error and if we ever see a report of this error we will need 1964 * to do some magic in order to have the necessary mft record 1965 * loaded and in the right place in the page cache. But 1966 * hopefully logic will prevail and this never happens... 1967 */ 1968 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1969 al_end = (u8*)al_entry + ni->attr_list_size; 1970 for (;; al_entry = next_al_entry) { 1971 /* Out of bounds check. */ 1972 if ((u8*)al_entry < ni->attr_list || 1973 (u8*)al_entry > al_end) 1974 goto em_put_err_out; 1975 /* Catch the end of the attribute list. */ 1976 if ((u8*)al_entry == al_end) 1977 goto em_put_err_out; 1978 if (!al_entry->length) 1979 goto em_put_err_out; 1980 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1981 le16_to_cpu(al_entry->length) > al_end) 1982 goto em_put_err_out; 1983 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1984 le16_to_cpu(al_entry->length)); 1985 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) 1986 goto em_put_err_out; 1987 if (AT_DATA != al_entry->type) 1988 continue; 1989 /* We want an unnamed attribute. */ 1990 if (al_entry->name_length) 1991 goto em_put_err_out; 1992 /* Want the first entry, i.e. lowest_vcn == 0. */ 1993 if (al_entry->lowest_vcn) 1994 goto em_put_err_out; 1995 /* First entry has to be in the base mft record. */ 1996 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1997 /* MFT references do not match, logic fails. */ 1998 ntfs_error(sb, "BUG: The first $DATA extent " 1999 "of $MFT is not in the base " 2000 "mft record. Please report " 2001 "you saw this message to " 2002 "linux-ntfs-dev@lists." 2003 "sourceforge.net"); 2004 goto put_err_out; 2005 } else { 2006 /* Sequence numbers must match. */ 2007 if (MSEQNO_LE(al_entry->mft_reference) != 2008 ni->seq_no) 2009 goto em_put_err_out; 2010 /* Got it. All is ok. We can stop now. */ 2011 break; 2012 } 2013 } 2014 } 2015 2016 ntfs_attr_reinit_search_ctx(ctx); 2017 2018 /* Now load all attribute extents. */ 2019 a = NULL; 2020 next_vcn = last_vcn = highest_vcn = 0; 2021 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 2022 ctx))) { 2023 runlist_element *nrl; 2024 2025 /* Cache the current attribute. */ 2026 a = ctx->attr; 2027 /* $MFT must be non-resident. */ 2028 if (!a->non_resident) { 2029 ntfs_error(sb, "$MFT must be non-resident but a " 2030 "resident extent was found. $MFT is " 2031 "corrupt. Run chkdsk."); 2032 goto put_err_out; 2033 } 2034 /* $MFT must be uncompressed and unencrypted. */ 2035 if (a->flags & ATTR_COMPRESSION_MASK || 2036 a->flags & ATTR_IS_ENCRYPTED || 2037 a->flags & ATTR_IS_SPARSE) { 2038 ntfs_error(sb, "$MFT must be uncompressed, " 2039 "non-sparse, and unencrypted but a " 2040 "compressed/sparse/encrypted extent " 2041 "was found. $MFT is corrupt. Run " 2042 "chkdsk."); 2043 goto put_err_out; 2044 } 2045 /* 2046 * Decompress the mapping pairs array of this extent and merge 2047 * the result into the existing runlist. No need for locking 2048 * as we have exclusive access to the inode at this time and we 2049 * are a mount in progress task, too. 2050 */ 2051 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2052 if (IS_ERR(nrl)) { 2053 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 2054 "failed with error code %ld. $MFT is " 2055 "corrupt.", PTR_ERR(nrl)); 2056 goto put_err_out; 2057 } 2058 ni->runlist.rl = nrl; 2059 2060 /* Are we in the first extent? */ 2061 if (!next_vcn) { 2062 if (a->data.non_resident.lowest_vcn) { 2063 ntfs_error(sb, "First extent of $DATA " 2064 "attribute has non zero " 2065 "lowest_vcn. $MFT is corrupt. " 2066 "You should run chkdsk."); 2067 goto put_err_out; 2068 } 2069 /* Get the last vcn in the $DATA attribute. */ 2070 last_vcn = sle64_to_cpu( 2071 a->data.non_resident.allocated_size) 2072 >> vol->cluster_size_bits; 2073 /* Fill in the inode size. */ 2074 vi->i_size = sle64_to_cpu( 2075 a->data.non_resident.data_size); 2076 ni->initialized_size = sle64_to_cpu( 2077 a->data.non_resident.initialized_size); 2078 ni->allocated_size = sle64_to_cpu( 2079 a->data.non_resident.allocated_size); 2080 /* 2081 * Verify the number of mft records does not exceed 2082 * 2^32 - 1. 2083 */ 2084 if ((vi->i_size >> vol->mft_record_size_bits) >= 2085 (1ULL << 32)) { 2086 ntfs_error(sb, "$MFT is too big! Aborting."); 2087 goto put_err_out; 2088 } 2089 /* 2090 * We have got the first extent of the runlist for 2091 * $MFT which means it is now relatively safe to call 2092 * the normal ntfs_read_inode() function. 2093 * Complete reading the inode, this will actually 2094 * re-read the mft record for $MFT, this time entering 2095 * it into the page cache with which we complete the 2096 * kick start of the volume. It should be safe to do 2097 * this now as the first extent of $MFT/$DATA is 2098 * already known and we would hope that we don't need 2099 * further extents in order to find the other 2100 * attributes belonging to $MFT. Only time will tell if 2101 * this is really the case. If not we will have to play 2102 * magic at this point, possibly duplicating a lot of 2103 * ntfs_read_inode() at this point. We will need to 2104 * ensure we do enough of its work to be able to call 2105 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2106 * hope this never happens... 2107 */ 2108 ntfs_read_locked_inode(vi); 2109 if (is_bad_inode(vi)) { 2110 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2111 "failed. BUG or corrupt $MFT. " 2112 "Run chkdsk and if no errors " 2113 "are found, please report you " 2114 "saw this message to " 2115 "linux-ntfs-dev@lists." 2116 "sourceforge.net"); 2117 ntfs_attr_put_search_ctx(ctx); 2118 /* Revert to the safe super operations. */ 2119 ntfs_free(m); 2120 return -1; 2121 } 2122 /* 2123 * Re-initialize some specifics about $MFT's inode as 2124 * ntfs_read_inode() will have set up the default ones. 2125 */ 2126 /* Set uid and gid to root. */ 2127 vi->i_uid = GLOBAL_ROOT_UID; 2128 vi->i_gid = GLOBAL_ROOT_GID; 2129 /* Regular file. No access for anyone. */ 2130 vi->i_mode = S_IFREG; 2131 /* No VFS initiated operations allowed for $MFT. */ 2132 vi->i_op = &ntfs_empty_inode_ops; 2133 vi->i_fop = &ntfs_empty_file_ops; 2134 } 2135 2136 /* Get the lowest vcn for the next extent. */ 2137 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2138 next_vcn = highest_vcn + 1; 2139 2140 /* Only one extent or error, which we catch below. */ 2141 if (next_vcn <= 0) 2142 break; 2143 2144 /* Avoid endless loops due to corruption. */ 2145 if (next_vcn < sle64_to_cpu( 2146 a->data.non_resident.lowest_vcn)) { 2147 ntfs_error(sb, "$MFT has corrupt attribute list " 2148 "attribute. Run chkdsk."); 2149 goto put_err_out; 2150 } 2151 } 2152 if (err != -ENOENT) { 2153 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2154 "$MFT is corrupt. Run chkdsk."); 2155 goto put_err_out; 2156 } 2157 if (!a) { 2158 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2159 "corrupt. Run chkdsk."); 2160 goto put_err_out; 2161 } 2162 if (highest_vcn && highest_vcn != last_vcn - 1) { 2163 ntfs_error(sb, "Failed to load the complete runlist for " 2164 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2165 "Run chkdsk."); 2166 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2167 (unsigned long long)highest_vcn, 2168 (unsigned long long)last_vcn - 1); 2169 goto put_err_out; 2170 } 2171 ntfs_attr_put_search_ctx(ctx); 2172 ntfs_debug("Done."); 2173 ntfs_free(m); 2174 2175 /* 2176 * Split the locking rules of the MFT inode from the 2177 * locking rules of other inodes: 2178 */ 2179 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); 2180 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); 2181 2182 return 0; 2183 2184 em_put_err_out: 2185 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2186 "attribute list. $MFT is corrupt. Run chkdsk."); 2187 put_err_out: 2188 ntfs_attr_put_search_ctx(ctx); 2189 err_out: 2190 ntfs_error(sb, "Failed. Marking inode as bad."); 2191 make_bad_inode(vi); 2192 ntfs_free(m); 2193 return -1; 2194 } 2195 2196 static void __ntfs_clear_inode(ntfs_inode *ni) 2197 { 2198 /* Free all alocated memory. */ 2199 down_write(&ni->runlist.lock); 2200 if (ni->runlist.rl) { 2201 ntfs_free(ni->runlist.rl); 2202 ni->runlist.rl = NULL; 2203 } 2204 up_write(&ni->runlist.lock); 2205 2206 if (ni->attr_list) { 2207 ntfs_free(ni->attr_list); 2208 ni->attr_list = NULL; 2209 } 2210 2211 down_write(&ni->attr_list_rl.lock); 2212 if (ni->attr_list_rl.rl) { 2213 ntfs_free(ni->attr_list_rl.rl); 2214 ni->attr_list_rl.rl = NULL; 2215 } 2216 up_write(&ni->attr_list_rl.lock); 2217 2218 if (ni->name_len && ni->name != I30) { 2219 /* Catch bugs... */ 2220 BUG_ON(!ni->name); 2221 kfree(ni->name); 2222 } 2223 } 2224 2225 void ntfs_clear_extent_inode(ntfs_inode *ni) 2226 { 2227 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2228 2229 BUG_ON(NInoAttr(ni)); 2230 BUG_ON(ni->nr_extents != -1); 2231 2232 #ifdef NTFS_RW 2233 if (NInoDirty(ni)) { 2234 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2235 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2236 "Losing data! This is a BUG!!!"); 2237 // FIXME: Do something!!! 2238 } 2239 #endif /* NTFS_RW */ 2240 2241 __ntfs_clear_inode(ni); 2242 2243 /* Bye, bye... */ 2244 ntfs_destroy_extent_inode(ni); 2245 } 2246 2247 /** 2248 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode 2249 * @vi: vfs inode pending annihilation 2250 * 2251 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2252 * is called, which deallocates all memory belonging to the NTFS specific part 2253 * of the inode and returns. 2254 * 2255 * If the MFT record is dirty, we commit it before doing anything else. 2256 */ 2257 void ntfs_evict_big_inode(struct inode *vi) 2258 { 2259 ntfs_inode *ni = NTFS_I(vi); 2260 2261 truncate_inode_pages(&vi->i_data, 0); 2262 clear_inode(vi); 2263 2264 #ifdef NTFS_RW 2265 if (NInoDirty(ni)) { 2266 bool was_bad = (is_bad_inode(vi)); 2267 2268 /* Committing the inode also commits all extent inodes. */ 2269 ntfs_commit_inode(vi); 2270 2271 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2272 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2273 "0x%lx. Losing data!", vi->i_ino); 2274 // FIXME: Do something!!! 2275 } 2276 } 2277 #endif /* NTFS_RW */ 2278 2279 /* No need to lock at this stage as no one else has a reference. */ 2280 if (ni->nr_extents > 0) { 2281 int i; 2282 2283 for (i = 0; i < ni->nr_extents; i++) 2284 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2285 kfree(ni->ext.extent_ntfs_inos); 2286 } 2287 2288 __ntfs_clear_inode(ni); 2289 2290 if (NInoAttr(ni)) { 2291 /* Release the base inode if we are holding it. */ 2292 if (ni->nr_extents == -1) { 2293 iput(VFS_I(ni->ext.base_ntfs_ino)); 2294 ni->nr_extents = 0; 2295 ni->ext.base_ntfs_ino = NULL; 2296 } 2297 } 2298 return; 2299 } 2300 2301 /** 2302 * ntfs_show_options - show mount options in /proc/mounts 2303 * @sf: seq_file in which to write our mount options 2304 * @root: root of the mounted tree whose mount options to display 2305 * 2306 * Called by the VFS once for each mounted ntfs volume when someone reads 2307 * /proc/mounts in order to display the NTFS specific mount options of each 2308 * mount. The mount options of fs specified by @root are written to the seq file 2309 * @sf and success is returned. 2310 */ 2311 int ntfs_show_options(struct seq_file *sf, struct dentry *root) 2312 { 2313 ntfs_volume *vol = NTFS_SB(root->d_sb); 2314 int i; 2315 2316 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); 2317 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); 2318 if (vol->fmask == vol->dmask) 2319 seq_printf(sf, ",umask=0%o", vol->fmask); 2320 else { 2321 seq_printf(sf, ",fmask=0%o", vol->fmask); 2322 seq_printf(sf, ",dmask=0%o", vol->dmask); 2323 } 2324 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2325 if (NVolCaseSensitive(vol)) 2326 seq_printf(sf, ",case_sensitive"); 2327 if (NVolShowSystemFiles(vol)) 2328 seq_printf(sf, ",show_sys_files"); 2329 if (!NVolSparseEnabled(vol)) 2330 seq_printf(sf, ",disable_sparse"); 2331 for (i = 0; on_errors_arr[i].val; i++) { 2332 if (on_errors_arr[i].val & vol->on_errors) 2333 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2334 } 2335 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2336 return 0; 2337 } 2338 2339 #ifdef NTFS_RW 2340 2341 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2342 "chkdsk."; 2343 2344 /** 2345 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2346 * @vi: inode for which the i_size was changed 2347 * 2348 * We only support i_size changes for normal files at present, i.e. not 2349 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2350 * below. 2351 * 2352 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2353 * that the change is allowed. 2354 * 2355 * This implies for us that @vi is a file inode rather than a directory, index, 2356 * or attribute inode as well as that @vi is a base inode. 2357 * 2358 * Returns 0 on success or -errno on error. 2359 * 2360 * Called with ->i_mutex held. 2361 */ 2362 int ntfs_truncate(struct inode *vi) 2363 { 2364 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2365 VCN highest_vcn; 2366 unsigned long flags; 2367 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2368 ntfs_volume *vol = ni->vol; 2369 ntfs_attr_search_ctx *ctx; 2370 MFT_RECORD *m; 2371 ATTR_RECORD *a; 2372 const char *te = " Leaving file length out of sync with i_size."; 2373 int err, mp_size, size_change, alloc_change; 2374 u32 attr_len; 2375 2376 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2377 BUG_ON(NInoAttr(ni)); 2378 BUG_ON(S_ISDIR(vi->i_mode)); 2379 BUG_ON(NInoMstProtected(ni)); 2380 BUG_ON(ni->nr_extents < 0); 2381 retry_truncate: 2382 /* 2383 * Lock the runlist for writing and map the mft record to ensure it is 2384 * safe to mess with the attribute runlist and sizes. 2385 */ 2386 down_write(&ni->runlist.lock); 2387 if (!NInoAttr(ni)) 2388 base_ni = ni; 2389 else 2390 base_ni = ni->ext.base_ntfs_ino; 2391 m = map_mft_record(base_ni); 2392 if (IS_ERR(m)) { 2393 err = PTR_ERR(m); 2394 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2395 "(error code %d).%s", vi->i_ino, err, te); 2396 ctx = NULL; 2397 m = NULL; 2398 goto old_bad_out; 2399 } 2400 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2401 if (unlikely(!ctx)) { 2402 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2403 "inode 0x%lx (not enough memory).%s", 2404 vi->i_ino, te); 2405 err = -ENOMEM; 2406 goto old_bad_out; 2407 } 2408 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2409 CASE_SENSITIVE, 0, NULL, 0, ctx); 2410 if (unlikely(err)) { 2411 if (err == -ENOENT) { 2412 ntfs_error(vi->i_sb, "Open attribute is missing from " 2413 "mft record. Inode 0x%lx is corrupt. " 2414 "Run chkdsk.%s", vi->i_ino, te); 2415 err = -EIO; 2416 } else 2417 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2418 "inode 0x%lx (error code %d).%s", 2419 vi->i_ino, err, te); 2420 goto old_bad_out; 2421 } 2422 m = ctx->mrec; 2423 a = ctx->attr; 2424 /* 2425 * The i_size of the vfs inode is the new size for the attribute value. 2426 */ 2427 new_size = i_size_read(vi); 2428 /* The current size of the attribute value is the old size. */ 2429 old_size = ntfs_attr_size(a); 2430 /* Calculate the new allocated size. */ 2431 if (NInoNonResident(ni)) 2432 new_alloc_size = (new_size + vol->cluster_size - 1) & 2433 ~(s64)vol->cluster_size_mask; 2434 else 2435 new_alloc_size = (new_size + 7) & ~7; 2436 /* The current allocated size is the old allocated size. */ 2437 read_lock_irqsave(&ni->size_lock, flags); 2438 old_alloc_size = ni->allocated_size; 2439 read_unlock_irqrestore(&ni->size_lock, flags); 2440 /* 2441 * The change in the file size. This will be 0 if no change, >0 if the 2442 * size is growing, and <0 if the size is shrinking. 2443 */ 2444 size_change = -1; 2445 if (new_size - old_size >= 0) { 2446 size_change = 1; 2447 if (new_size == old_size) 2448 size_change = 0; 2449 } 2450 /* As above for the allocated size. */ 2451 alloc_change = -1; 2452 if (new_alloc_size - old_alloc_size >= 0) { 2453 alloc_change = 1; 2454 if (new_alloc_size == old_alloc_size) 2455 alloc_change = 0; 2456 } 2457 /* 2458 * If neither the size nor the allocation are being changed there is 2459 * nothing to do. 2460 */ 2461 if (!size_change && !alloc_change) 2462 goto unm_done; 2463 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2464 if (size_change) { 2465 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2466 if (unlikely(err)) { 2467 if (err == -ERANGE) { 2468 ntfs_error(vol->sb, "Truncate would cause the " 2469 "inode 0x%lx to %simum size " 2470 "for its attribute type " 2471 "(0x%x). Aborting truncate.", 2472 vi->i_ino, 2473 new_size > old_size ? "exceed " 2474 "the max" : "go under the min", 2475 le32_to_cpu(ni->type)); 2476 err = -EFBIG; 2477 } else { 2478 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2479 "attribute type 0x%x. " 2480 "Aborting truncate.", 2481 vi->i_ino, 2482 le32_to_cpu(ni->type)); 2483 err = -EIO; 2484 } 2485 /* Reset the vfs inode size to the old size. */ 2486 i_size_write(vi, old_size); 2487 goto err_out; 2488 } 2489 } 2490 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2491 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2492 "supported yet for %s files, ignoring.", 2493 NInoCompressed(ni) ? "compressed" : 2494 "encrypted"); 2495 err = -EOPNOTSUPP; 2496 goto bad_out; 2497 } 2498 if (a->non_resident) 2499 goto do_non_resident_truncate; 2500 BUG_ON(NInoNonResident(ni)); 2501 /* Resize the attribute record to best fit the new attribute size. */ 2502 if (new_size < vol->mft_record_size && 2503 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2504 /* The resize succeeded! */ 2505 flush_dcache_mft_record_page(ctx->ntfs_ino); 2506 mark_mft_record_dirty(ctx->ntfs_ino); 2507 write_lock_irqsave(&ni->size_lock, flags); 2508 /* Update the sizes in the ntfs inode and all is done. */ 2509 ni->allocated_size = le32_to_cpu(a->length) - 2510 le16_to_cpu(a->data.resident.value_offset); 2511 /* 2512 * Note ntfs_resident_attr_value_resize() has already done any 2513 * necessary data clearing in the attribute record. When the 2514 * file is being shrunk vmtruncate() will already have cleared 2515 * the top part of the last partial page, i.e. since this is 2516 * the resident case this is the page with index 0. However, 2517 * when the file is being expanded, the page cache page data 2518 * between the old data_size, i.e. old_size, and the new_size 2519 * has not been zeroed. Fortunately, we do not need to zero it 2520 * either since on one hand it will either already be zero due 2521 * to both readpage and writepage clearing partial page data 2522 * beyond i_size in which case there is nothing to do or in the 2523 * case of the file being mmap()ped at the same time, POSIX 2524 * specifies that the behaviour is unspecified thus we do not 2525 * have to do anything. This means that in our implementation 2526 * in the rare case that the file is mmap()ped and a write 2527 * occurred into the mmap()ped region just beyond the file size 2528 * and writepage has not yet been called to write out the page 2529 * (which would clear the area beyond the file size) and we now 2530 * extend the file size to incorporate this dirty region 2531 * outside the file size, a write of the page would result in 2532 * this data being written to disk instead of being cleared. 2533 * Given both POSIX and the Linux mmap(2) man page specify that 2534 * this corner case is undefined, we choose to leave it like 2535 * that as this is much simpler for us as we cannot lock the 2536 * relevant page now since we are holding too many ntfs locks 2537 * which would result in a lock reversal deadlock. 2538 */ 2539 ni->initialized_size = new_size; 2540 write_unlock_irqrestore(&ni->size_lock, flags); 2541 goto unm_done; 2542 } 2543 /* If the above resize failed, this must be an attribute extension. */ 2544 BUG_ON(size_change < 0); 2545 /* 2546 * We have to drop all the locks so we can call 2547 * ntfs_attr_make_non_resident(). This could be optimised by try- 2548 * locking the first page cache page and only if that fails dropping 2549 * the locks, locking the page, and redoing all the locking and 2550 * lookups. While this would be a huge optimisation, it is not worth 2551 * it as this is definitely a slow code path as it only ever can happen 2552 * once for any given file. 2553 */ 2554 ntfs_attr_put_search_ctx(ctx); 2555 unmap_mft_record(base_ni); 2556 up_write(&ni->runlist.lock); 2557 /* 2558 * Not enough space in the mft record, try to make the attribute 2559 * non-resident and if successful restart the truncation process. 2560 */ 2561 err = ntfs_attr_make_non_resident(ni, old_size); 2562 if (likely(!err)) 2563 goto retry_truncate; 2564 /* 2565 * Could not make non-resident. If this is due to this not being 2566 * permitted for this attribute type or there not being enough space, 2567 * try to make other attributes non-resident. Otherwise fail. 2568 */ 2569 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2570 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2571 "type 0x%x, because the conversion from " 2572 "resident to non-resident attribute failed " 2573 "with error code %i.", vi->i_ino, 2574 (unsigned)le32_to_cpu(ni->type), err); 2575 if (err != -ENOMEM) 2576 err = -EIO; 2577 goto conv_err_out; 2578 } 2579 /* TODO: Not implemented from here, abort. */ 2580 if (err == -ENOSPC) 2581 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2582 "disk for the non-resident attribute value. " 2583 "This case is not implemented yet."); 2584 else /* if (err == -EPERM) */ 2585 ntfs_error(vol->sb, "This attribute type may not be " 2586 "non-resident. This case is not implemented " 2587 "yet."); 2588 err = -EOPNOTSUPP; 2589 goto conv_err_out; 2590 #if 0 2591 // TODO: Attempt to make other attributes non-resident. 2592 if (!err) 2593 goto do_resident_extend; 2594 /* 2595 * Both the attribute list attribute and the standard information 2596 * attribute must remain in the base inode. Thus, if this is one of 2597 * these attributes, we have to try to move other attributes out into 2598 * extent mft records instead. 2599 */ 2600 if (ni->type == AT_ATTRIBUTE_LIST || 2601 ni->type == AT_STANDARD_INFORMATION) { 2602 // TODO: Attempt to move other attributes into extent mft 2603 // records. 2604 err = -EOPNOTSUPP; 2605 if (!err) 2606 goto do_resident_extend; 2607 goto err_out; 2608 } 2609 // TODO: Attempt to move this attribute to an extent mft record, but 2610 // only if it is not already the only attribute in an mft record in 2611 // which case there would be nothing to gain. 2612 err = -EOPNOTSUPP; 2613 if (!err) 2614 goto do_resident_extend; 2615 /* There is nothing we can do to make enough space. )-: */ 2616 goto err_out; 2617 #endif 2618 do_non_resident_truncate: 2619 BUG_ON(!NInoNonResident(ni)); 2620 if (alloc_change < 0) { 2621 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2622 if (highest_vcn > 0 && 2623 old_alloc_size >> vol->cluster_size_bits > 2624 highest_vcn + 1) { 2625 /* 2626 * This attribute has multiple extents. Not yet 2627 * supported. 2628 */ 2629 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2630 "attribute type 0x%x, because the " 2631 "attribute is highly fragmented (it " 2632 "consists of multiple extents) and " 2633 "this case is not implemented yet.", 2634 vi->i_ino, 2635 (unsigned)le32_to_cpu(ni->type)); 2636 err = -EOPNOTSUPP; 2637 goto bad_out; 2638 } 2639 } 2640 /* 2641 * If the size is shrinking, need to reduce the initialized_size and 2642 * the data_size before reducing the allocation. 2643 */ 2644 if (size_change < 0) { 2645 /* 2646 * Make the valid size smaller (i_size is already up-to-date). 2647 */ 2648 write_lock_irqsave(&ni->size_lock, flags); 2649 if (new_size < ni->initialized_size) { 2650 ni->initialized_size = new_size; 2651 a->data.non_resident.initialized_size = 2652 cpu_to_sle64(new_size); 2653 } 2654 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2655 write_unlock_irqrestore(&ni->size_lock, flags); 2656 flush_dcache_mft_record_page(ctx->ntfs_ino); 2657 mark_mft_record_dirty(ctx->ntfs_ino); 2658 /* If the allocated size is not changing, we are done. */ 2659 if (!alloc_change) 2660 goto unm_done; 2661 /* 2662 * If the size is shrinking it makes no sense for the 2663 * allocation to be growing. 2664 */ 2665 BUG_ON(alloc_change > 0); 2666 } else /* if (size_change >= 0) */ { 2667 /* 2668 * The file size is growing or staying the same but the 2669 * allocation can be shrinking, growing or staying the same. 2670 */ 2671 if (alloc_change > 0) { 2672 /* 2673 * We need to extend the allocation and possibly update 2674 * the data size. If we are updating the data size, 2675 * since we are not touching the initialized_size we do 2676 * not need to worry about the actual data on disk. 2677 * And as far as the page cache is concerned, there 2678 * will be no pages beyond the old data size and any 2679 * partial region in the last page between the old and 2680 * new data size (or the end of the page if the new 2681 * data size is outside the page) does not need to be 2682 * modified as explained above for the resident 2683 * attribute truncate case. To do this, we simply drop 2684 * the locks we hold and leave all the work to our 2685 * friendly helper ntfs_attr_extend_allocation(). 2686 */ 2687 ntfs_attr_put_search_ctx(ctx); 2688 unmap_mft_record(base_ni); 2689 up_write(&ni->runlist.lock); 2690 err = ntfs_attr_extend_allocation(ni, new_size, 2691 size_change > 0 ? new_size : -1, -1); 2692 /* 2693 * ntfs_attr_extend_allocation() will have done error 2694 * output already. 2695 */ 2696 goto done; 2697 } 2698 if (!alloc_change) 2699 goto alloc_done; 2700 } 2701 /* alloc_change < 0 */ 2702 /* Free the clusters. */ 2703 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2704 vol->cluster_size_bits, -1, ctx); 2705 m = ctx->mrec; 2706 a = ctx->attr; 2707 if (unlikely(nr_freed < 0)) { 2708 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2709 "%lli). Unmount and run chkdsk to recover " 2710 "the lost cluster(s).", (long long)nr_freed); 2711 NVolSetErrors(vol); 2712 nr_freed = 0; 2713 } 2714 /* Truncate the runlist. */ 2715 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2716 new_alloc_size >> vol->cluster_size_bits); 2717 /* 2718 * If the runlist truncation failed and/or the search context is no 2719 * longer valid, we cannot resize the attribute record or build the 2720 * mapping pairs array thus we mark the inode bad so that no access to 2721 * the freed clusters can happen. 2722 */ 2723 if (unlikely(err || IS_ERR(m))) { 2724 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2725 IS_ERR(m) ? 2726 "restore attribute search context" : 2727 "truncate attribute runlist", 2728 IS_ERR(m) ? PTR_ERR(m) : err, es); 2729 err = -EIO; 2730 goto bad_out; 2731 } 2732 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2733 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2734 if (unlikely(mp_size <= 0)) { 2735 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2736 "attribute type 0x%x, because determining the " 2737 "size for the mapping pairs failed with error " 2738 "code %i.%s", vi->i_ino, 2739 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2740 err = -EIO; 2741 goto bad_out; 2742 } 2743 /* 2744 * Shrink the attribute record for the new mapping pairs array. Note, 2745 * this cannot fail since we are making the attribute smaller thus by 2746 * definition there is enough space to do so. 2747 */ 2748 attr_len = le32_to_cpu(a->length); 2749 err = ntfs_attr_record_resize(m, a, mp_size + 2750 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2751 BUG_ON(err); 2752 /* 2753 * Generate the mapping pairs array directly into the attribute record. 2754 */ 2755 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2756 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2757 mp_size, ni->runlist.rl, 0, -1, NULL); 2758 if (unlikely(err)) { 2759 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2760 "attribute type 0x%x, because building the " 2761 "mapping pairs failed with error code %i.%s", 2762 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2763 err, es); 2764 err = -EIO; 2765 goto bad_out; 2766 } 2767 /* Update the allocated/compressed size as well as the highest vcn. */ 2768 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2769 vol->cluster_size_bits) - 1); 2770 write_lock_irqsave(&ni->size_lock, flags); 2771 ni->allocated_size = new_alloc_size; 2772 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2773 if (NInoSparse(ni) || NInoCompressed(ni)) { 2774 if (nr_freed) { 2775 ni->itype.compressed.size -= nr_freed << 2776 vol->cluster_size_bits; 2777 BUG_ON(ni->itype.compressed.size < 0); 2778 a->data.non_resident.compressed_size = cpu_to_sle64( 2779 ni->itype.compressed.size); 2780 vi->i_blocks = ni->itype.compressed.size >> 9; 2781 } 2782 } else 2783 vi->i_blocks = new_alloc_size >> 9; 2784 write_unlock_irqrestore(&ni->size_lock, flags); 2785 /* 2786 * We have shrunk the allocation. If this is a shrinking truncate we 2787 * have already dealt with the initialized_size and the data_size above 2788 * and we are done. If the truncate is only changing the allocation 2789 * and not the data_size, we are also done. If this is an extending 2790 * truncate, need to extend the data_size now which is ensured by the 2791 * fact that @size_change is positive. 2792 */ 2793 alloc_done: 2794 /* 2795 * If the size is growing, need to update it now. If it is shrinking, 2796 * we have already updated it above (before the allocation change). 2797 */ 2798 if (size_change > 0) 2799 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2800 /* Ensure the modified mft record is written out. */ 2801 flush_dcache_mft_record_page(ctx->ntfs_ino); 2802 mark_mft_record_dirty(ctx->ntfs_ino); 2803 unm_done: 2804 ntfs_attr_put_search_ctx(ctx); 2805 unmap_mft_record(base_ni); 2806 up_write(&ni->runlist.lock); 2807 done: 2808 /* Update the mtime and ctime on the base inode. */ 2809 /* normally ->truncate shouldn't update ctime or mtime, 2810 * but ntfs did before so it got a copy & paste version 2811 * of file_update_time. one day someone should fix this 2812 * for real. 2813 */ 2814 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { 2815 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); 2816 int sync_it = 0; 2817 2818 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || 2819 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) 2820 sync_it = 1; 2821 VFS_I(base_ni)->i_mtime = now; 2822 VFS_I(base_ni)->i_ctime = now; 2823 2824 if (sync_it) 2825 mark_inode_dirty_sync(VFS_I(base_ni)); 2826 } 2827 2828 if (likely(!err)) { 2829 NInoClearTruncateFailed(ni); 2830 ntfs_debug("Done."); 2831 } 2832 return err; 2833 old_bad_out: 2834 old_size = -1; 2835 bad_out: 2836 if (err != -ENOMEM && err != -EOPNOTSUPP) 2837 NVolSetErrors(vol); 2838 if (err != -EOPNOTSUPP) 2839 NInoSetTruncateFailed(ni); 2840 else if (old_size >= 0) 2841 i_size_write(vi, old_size); 2842 err_out: 2843 if (ctx) 2844 ntfs_attr_put_search_ctx(ctx); 2845 if (m) 2846 unmap_mft_record(base_ni); 2847 up_write(&ni->runlist.lock); 2848 out: 2849 ntfs_debug("Failed. Returning error code %i.", err); 2850 return err; 2851 conv_err_out: 2852 if (err != -ENOMEM && err != -EOPNOTSUPP) 2853 NVolSetErrors(vol); 2854 if (err != -EOPNOTSUPP) 2855 NInoSetTruncateFailed(ni); 2856 else 2857 i_size_write(vi, old_size); 2858 goto out; 2859 } 2860 2861 /** 2862 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2863 * @vi: inode for which the i_size was changed 2864 * 2865 * Wrapper for ntfs_truncate() that has no return value. 2866 * 2867 * See ntfs_truncate() description above for details. 2868 */ 2869 void ntfs_truncate_vfs(struct inode *vi) { 2870 ntfs_truncate(vi); 2871 } 2872 2873 /** 2874 * ntfs_setattr - called from notify_change() when an attribute is being changed 2875 * @dentry: dentry whose attributes to change 2876 * @attr: structure describing the attributes and the changes 2877 * 2878 * We have to trap VFS attempts to truncate the file described by @dentry as 2879 * soon as possible, because we do not implement changes in i_size yet. So we 2880 * abort all i_size changes here. 2881 * 2882 * We also abort all changes of user, group, and mode as we do not implement 2883 * the NTFS ACLs yet. 2884 * 2885 * Called with ->i_mutex held. 2886 */ 2887 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2888 { 2889 struct inode *vi = dentry->d_inode; 2890 int err; 2891 unsigned int ia_valid = attr->ia_valid; 2892 2893 err = inode_change_ok(vi, attr); 2894 if (err) 2895 goto out; 2896 /* We do not support NTFS ACLs yet. */ 2897 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2898 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2899 "supported yet, ignoring."); 2900 err = -EOPNOTSUPP; 2901 goto out; 2902 } 2903 if (ia_valid & ATTR_SIZE) { 2904 if (attr->ia_size != i_size_read(vi)) { 2905 ntfs_inode *ni = NTFS_I(vi); 2906 /* 2907 * FIXME: For now we do not support resizing of 2908 * compressed or encrypted files yet. 2909 */ 2910 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2911 ntfs_warning(vi->i_sb, "Changes in inode size " 2912 "are not supported yet for " 2913 "%s files, ignoring.", 2914 NInoCompressed(ni) ? 2915 "compressed" : "encrypted"); 2916 err = -EOPNOTSUPP; 2917 } else 2918 err = vmtruncate(vi, attr->ia_size); 2919 if (err || ia_valid == ATTR_SIZE) 2920 goto out; 2921 } else { 2922 /* 2923 * We skipped the truncate but must still update 2924 * timestamps. 2925 */ 2926 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2927 } 2928 } 2929 if (ia_valid & ATTR_ATIME) 2930 vi->i_atime = timespec_trunc(attr->ia_atime, 2931 vi->i_sb->s_time_gran); 2932 if (ia_valid & ATTR_MTIME) 2933 vi->i_mtime = timespec_trunc(attr->ia_mtime, 2934 vi->i_sb->s_time_gran); 2935 if (ia_valid & ATTR_CTIME) 2936 vi->i_ctime = timespec_trunc(attr->ia_ctime, 2937 vi->i_sb->s_time_gran); 2938 mark_inode_dirty(vi); 2939 out: 2940 return err; 2941 } 2942 2943 /** 2944 * ntfs_write_inode - write out a dirty inode 2945 * @vi: inode to write out 2946 * @sync: if true, write out synchronously 2947 * 2948 * Write out a dirty inode to disk including any extent inodes if present. 2949 * 2950 * If @sync is true, commit the inode to disk and wait for io completion. This 2951 * is done using write_mft_record(). 2952 * 2953 * If @sync is false, just schedule the write to happen but do not wait for i/o 2954 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2955 * marking the page (and in this case mft record) dirty but we do not implement 2956 * this yet as write_mft_record() largely ignores the @sync parameter and 2957 * always performs synchronous writes. 2958 * 2959 * Return 0 on success and -errno on error. 2960 */ 2961 int __ntfs_write_inode(struct inode *vi, int sync) 2962 { 2963 sle64 nt; 2964 ntfs_inode *ni = NTFS_I(vi); 2965 ntfs_attr_search_ctx *ctx; 2966 MFT_RECORD *m; 2967 STANDARD_INFORMATION *si; 2968 int err = 0; 2969 bool modified = false; 2970 2971 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2972 vi->i_ino); 2973 /* 2974 * Dirty attribute inodes are written via their real inodes so just 2975 * clean them here. Access time updates are taken care off when the 2976 * real inode is written. 2977 */ 2978 if (NInoAttr(ni)) { 2979 NInoClearDirty(ni); 2980 ntfs_debug("Done."); 2981 return 0; 2982 } 2983 /* Map, pin, and lock the mft record belonging to the inode. */ 2984 m = map_mft_record(ni); 2985 if (IS_ERR(m)) { 2986 err = PTR_ERR(m); 2987 goto err_out; 2988 } 2989 /* Update the access times in the standard information attribute. */ 2990 ctx = ntfs_attr_get_search_ctx(ni, m); 2991 if (unlikely(!ctx)) { 2992 err = -ENOMEM; 2993 goto unm_err_out; 2994 } 2995 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2996 CASE_SENSITIVE, 0, NULL, 0, ctx); 2997 if (unlikely(err)) { 2998 ntfs_attr_put_search_ctx(ctx); 2999 goto unm_err_out; 3000 } 3001 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 3002 le16_to_cpu(ctx->attr->data.resident.value_offset)); 3003 /* Update the access times if they have changed. */ 3004 nt = utc2ntfs(vi->i_mtime); 3005 if (si->last_data_change_time != nt) { 3006 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 3007 "new = 0x%llx", vi->i_ino, (long long) 3008 sle64_to_cpu(si->last_data_change_time), 3009 (long long)sle64_to_cpu(nt)); 3010 si->last_data_change_time = nt; 3011 modified = true; 3012 } 3013 nt = utc2ntfs(vi->i_ctime); 3014 if (si->last_mft_change_time != nt) { 3015 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 3016 "new = 0x%llx", vi->i_ino, (long long) 3017 sle64_to_cpu(si->last_mft_change_time), 3018 (long long)sle64_to_cpu(nt)); 3019 si->last_mft_change_time = nt; 3020 modified = true; 3021 } 3022 nt = utc2ntfs(vi->i_atime); 3023 if (si->last_access_time != nt) { 3024 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 3025 "new = 0x%llx", vi->i_ino, 3026 (long long)sle64_to_cpu(si->last_access_time), 3027 (long long)sle64_to_cpu(nt)); 3028 si->last_access_time = nt; 3029 modified = true; 3030 } 3031 /* 3032 * If we just modified the standard information attribute we need to 3033 * mark the mft record it is in dirty. We do this manually so that 3034 * mark_inode_dirty() is not called which would redirty the inode and 3035 * hence result in an infinite loop of trying to write the inode. 3036 * There is no need to mark the base inode nor the base mft record 3037 * dirty, since we are going to write this mft record below in any case 3038 * and the base mft record may actually not have been modified so it 3039 * might not need to be written out. 3040 * NOTE: It is not a problem when the inode for $MFT itself is being 3041 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 3042 * on the $MFT inode and hence ntfs_write_inode() will not be 3043 * re-invoked because of it which in turn is ok since the dirtied mft 3044 * record will be cleaned and written out to disk below, i.e. before 3045 * this function returns. 3046 */ 3047 if (modified) { 3048 flush_dcache_mft_record_page(ctx->ntfs_ino); 3049 if (!NInoTestSetDirty(ctx->ntfs_ino)) 3050 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3051 ctx->ntfs_ino->page_ofs); 3052 } 3053 ntfs_attr_put_search_ctx(ctx); 3054 /* Now the access times are updated, write the base mft record. */ 3055 if (NInoDirty(ni)) 3056 err = write_mft_record(ni, m, sync); 3057 /* Write all attached extent mft records. */ 3058 mutex_lock(&ni->extent_lock); 3059 if (ni->nr_extents > 0) { 3060 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3061 int i; 3062 3063 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3064 for (i = 0; i < ni->nr_extents; i++) { 3065 ntfs_inode *tni = extent_nis[i]; 3066 3067 if (NInoDirty(tni)) { 3068 MFT_RECORD *tm = map_mft_record(tni); 3069 int ret; 3070 3071 if (IS_ERR(tm)) { 3072 if (!err || err == -ENOMEM) 3073 err = PTR_ERR(tm); 3074 continue; 3075 } 3076 ret = write_mft_record(tni, tm, sync); 3077 unmap_mft_record(tni); 3078 if (unlikely(ret)) { 3079 if (!err || err == -ENOMEM) 3080 err = ret; 3081 } 3082 } 3083 } 3084 } 3085 mutex_unlock(&ni->extent_lock); 3086 unmap_mft_record(ni); 3087 if (unlikely(err)) 3088 goto err_out; 3089 ntfs_debug("Done."); 3090 return 0; 3091 unm_err_out: 3092 unmap_mft_record(ni); 3093 err_out: 3094 if (err == -ENOMEM) { 3095 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3096 "Marking the inode dirty again, so the VFS " 3097 "retries later."); 3098 mark_inode_dirty(vi); 3099 } else { 3100 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); 3101 NVolSetErrors(ni->vol); 3102 } 3103 return err; 3104 } 3105 3106 #endif /* NTFS_RW */ 3107