xref: /openbmc/linux/fs/ntfs/file.c (revision ca79522c)
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30 #include <linux/aio.h>
31 
32 #include <asm/page.h>
33 #include <asm/uaccess.h>
34 
35 #include "attrib.h"
36 #include "bitmap.h"
37 #include "inode.h"
38 #include "debug.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_file_open - called when an inode is about to be opened
46  * @vi:		inode to be opened
47  * @filp:	file structure describing the inode
48  *
49  * Limit file size to the page cache limit on architectures where unsigned long
50  * is 32-bits. This is the most we can do for now without overflowing the page
51  * cache page index. Doing it this way means we don't run into problems because
52  * of existing too large files. It would be better to allow the user to read
53  * the beginning of the file but I doubt very much anyone is going to hit this
54  * check on a 32-bit architecture, so there is no point in adding the extra
55  * complexity required to support this.
56  *
57  * On 64-bit architectures, the check is hopefully optimized away by the
58  * compiler.
59  *
60  * After the check passes, just call generic_file_open() to do its work.
61  */
62 static int ntfs_file_open(struct inode *vi, struct file *filp)
63 {
64 	if (sizeof(unsigned long) < 8) {
65 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 			return -EOVERFLOW;
67 	}
68 	return generic_file_open(vi, filp);
69 }
70 
71 #ifdef NTFS_RW
72 
73 /**
74  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75  * @ni:			ntfs inode of the attribute to extend
76  * @new_init_size:	requested new initialized size in bytes
77  * @cached_page:	store any allocated but unused page here
78  * @lru_pvec:		lru-buffering pagevec of the caller
79  *
80  * Extend the initialized size of an attribute described by the ntfs inode @ni
81  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
82  * the old initialized size and @new_init_size both in the page cache and on
83  * disk (if relevant complete pages are already uptodate in the page cache then
84  * these are simply marked dirty).
85  *
86  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
87  * in the resident attribute case, it is tied to the initialized size and, in
88  * the non-resident attribute case, it may not fall below the initialized size.
89  *
90  * Note that if the attribute is resident, we do not need to touch the page
91  * cache at all.  This is because if the page cache page is not uptodate we
92  * bring it uptodate later, when doing the write to the mft record since we
93  * then already have the page mapped.  And if the page is uptodate, the
94  * non-initialized region will already have been zeroed when the page was
95  * brought uptodate and the region may in fact already have been overwritten
96  * with new data via mmap() based writes, so we cannot just zero it.  And since
97  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
98  * is unspecified, we choose not to do zeroing and thus we do not need to touch
99  * the page at all.  For a more detailed explanation see ntfs_truncate() in
100  * fs/ntfs/inode.c.
101  *
102  * Return 0 on success and -errno on error.  In the case that an error is
103  * encountered it is possible that the initialized size will already have been
104  * incremented some way towards @new_init_size but it is guaranteed that if
105  * this is the case, the necessary zeroing will also have happened and that all
106  * metadata is self-consistent.
107  *
108  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
109  *	    held by the caller.
110  */
111 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
112 {
113 	s64 old_init_size;
114 	loff_t old_i_size;
115 	pgoff_t index, end_index;
116 	unsigned long flags;
117 	struct inode *vi = VFS_I(ni);
118 	ntfs_inode *base_ni;
119 	MFT_RECORD *m = NULL;
120 	ATTR_RECORD *a;
121 	ntfs_attr_search_ctx *ctx = NULL;
122 	struct address_space *mapping;
123 	struct page *page = NULL;
124 	u8 *kattr;
125 	int err;
126 	u32 attr_len;
127 
128 	read_lock_irqsave(&ni->size_lock, flags);
129 	old_init_size = ni->initialized_size;
130 	old_i_size = i_size_read(vi);
131 	BUG_ON(new_init_size > ni->allocated_size);
132 	read_unlock_irqrestore(&ni->size_lock, flags);
133 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
134 			"old_initialized_size 0x%llx, "
135 			"new_initialized_size 0x%llx, i_size 0x%llx.",
136 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
137 			(unsigned long long)old_init_size,
138 			(unsigned long long)new_init_size, old_i_size);
139 	if (!NInoAttr(ni))
140 		base_ni = ni;
141 	else
142 		base_ni = ni->ext.base_ntfs_ino;
143 	/* Use goto to reduce indentation and we need the label below anyway. */
144 	if (NInoNonResident(ni))
145 		goto do_non_resident_extend;
146 	BUG_ON(old_init_size != old_i_size);
147 	m = map_mft_record(base_ni);
148 	if (IS_ERR(m)) {
149 		err = PTR_ERR(m);
150 		m = NULL;
151 		goto err_out;
152 	}
153 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
154 	if (unlikely(!ctx)) {
155 		err = -ENOMEM;
156 		goto err_out;
157 	}
158 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
159 			CASE_SENSITIVE, 0, NULL, 0, ctx);
160 	if (unlikely(err)) {
161 		if (err == -ENOENT)
162 			err = -EIO;
163 		goto err_out;
164 	}
165 	m = ctx->mrec;
166 	a = ctx->attr;
167 	BUG_ON(a->non_resident);
168 	/* The total length of the attribute value. */
169 	attr_len = le32_to_cpu(a->data.resident.value_length);
170 	BUG_ON(old_i_size != (loff_t)attr_len);
171 	/*
172 	 * Do the zeroing in the mft record and update the attribute size in
173 	 * the mft record.
174 	 */
175 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
176 	memset(kattr + attr_len, 0, new_init_size - attr_len);
177 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
178 	/* Finally, update the sizes in the vfs and ntfs inodes. */
179 	write_lock_irqsave(&ni->size_lock, flags);
180 	i_size_write(vi, new_init_size);
181 	ni->initialized_size = new_init_size;
182 	write_unlock_irqrestore(&ni->size_lock, flags);
183 	goto done;
184 do_non_resident_extend:
185 	/*
186 	 * If the new initialized size @new_init_size exceeds the current file
187 	 * size (vfs inode->i_size), we need to extend the file size to the
188 	 * new initialized size.
189 	 */
190 	if (new_init_size > old_i_size) {
191 		m = map_mft_record(base_ni);
192 		if (IS_ERR(m)) {
193 			err = PTR_ERR(m);
194 			m = NULL;
195 			goto err_out;
196 		}
197 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
198 		if (unlikely(!ctx)) {
199 			err = -ENOMEM;
200 			goto err_out;
201 		}
202 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
203 				CASE_SENSITIVE, 0, NULL, 0, ctx);
204 		if (unlikely(err)) {
205 			if (err == -ENOENT)
206 				err = -EIO;
207 			goto err_out;
208 		}
209 		m = ctx->mrec;
210 		a = ctx->attr;
211 		BUG_ON(!a->non_resident);
212 		BUG_ON(old_i_size != (loff_t)
213 				sle64_to_cpu(a->data.non_resident.data_size));
214 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
215 		flush_dcache_mft_record_page(ctx->ntfs_ino);
216 		mark_mft_record_dirty(ctx->ntfs_ino);
217 		/* Update the file size in the vfs inode. */
218 		i_size_write(vi, new_init_size);
219 		ntfs_attr_put_search_ctx(ctx);
220 		ctx = NULL;
221 		unmap_mft_record(base_ni);
222 		m = NULL;
223 	}
224 	mapping = vi->i_mapping;
225 	index = old_init_size >> PAGE_CACHE_SHIFT;
226 	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
227 	do {
228 		/*
229 		 * Read the page.  If the page is not present, this will zero
230 		 * the uninitialized regions for us.
231 		 */
232 		page = read_mapping_page(mapping, index, NULL);
233 		if (IS_ERR(page)) {
234 			err = PTR_ERR(page);
235 			goto init_err_out;
236 		}
237 		if (unlikely(PageError(page))) {
238 			page_cache_release(page);
239 			err = -EIO;
240 			goto init_err_out;
241 		}
242 		/*
243 		 * Update the initialized size in the ntfs inode.  This is
244 		 * enough to make ntfs_writepage() work.
245 		 */
246 		write_lock_irqsave(&ni->size_lock, flags);
247 		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
248 		if (ni->initialized_size > new_init_size)
249 			ni->initialized_size = new_init_size;
250 		write_unlock_irqrestore(&ni->size_lock, flags);
251 		/* Set the page dirty so it gets written out. */
252 		set_page_dirty(page);
253 		page_cache_release(page);
254 		/*
255 		 * Play nice with the vm and the rest of the system.  This is
256 		 * very much needed as we can potentially be modifying the
257 		 * initialised size from a very small value to a really huge
258 		 * value, e.g.
259 		 *	f = open(somefile, O_TRUNC);
260 		 *	truncate(f, 10GiB);
261 		 *	seek(f, 10GiB);
262 		 *	write(f, 1);
263 		 * And this would mean we would be marking dirty hundreds of
264 		 * thousands of pages or as in the above example more than
265 		 * two and a half million pages!
266 		 *
267 		 * TODO: For sparse pages could optimize this workload by using
268 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
269 		 * would be set in readpage for sparse pages and here we would
270 		 * not need to mark dirty any pages which have this bit set.
271 		 * The only caveat is that we have to clear the bit everywhere
272 		 * where we allocate any clusters that lie in the page or that
273 		 * contain the page.
274 		 *
275 		 * TODO: An even greater optimization would be for us to only
276 		 * call readpage() on pages which are not in sparse regions as
277 		 * determined from the runlist.  This would greatly reduce the
278 		 * number of pages we read and make dirty in the case of sparse
279 		 * files.
280 		 */
281 		balance_dirty_pages_ratelimited(mapping);
282 		cond_resched();
283 	} while (++index < end_index);
284 	read_lock_irqsave(&ni->size_lock, flags);
285 	BUG_ON(ni->initialized_size != new_init_size);
286 	read_unlock_irqrestore(&ni->size_lock, flags);
287 	/* Now bring in sync the initialized_size in the mft record. */
288 	m = map_mft_record(base_ni);
289 	if (IS_ERR(m)) {
290 		err = PTR_ERR(m);
291 		m = NULL;
292 		goto init_err_out;
293 	}
294 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
295 	if (unlikely(!ctx)) {
296 		err = -ENOMEM;
297 		goto init_err_out;
298 	}
299 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
300 			CASE_SENSITIVE, 0, NULL, 0, ctx);
301 	if (unlikely(err)) {
302 		if (err == -ENOENT)
303 			err = -EIO;
304 		goto init_err_out;
305 	}
306 	m = ctx->mrec;
307 	a = ctx->attr;
308 	BUG_ON(!a->non_resident);
309 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
310 done:
311 	flush_dcache_mft_record_page(ctx->ntfs_ino);
312 	mark_mft_record_dirty(ctx->ntfs_ino);
313 	if (ctx)
314 		ntfs_attr_put_search_ctx(ctx);
315 	if (m)
316 		unmap_mft_record(base_ni);
317 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
318 			(unsigned long long)new_init_size, i_size_read(vi));
319 	return 0;
320 init_err_out:
321 	write_lock_irqsave(&ni->size_lock, flags);
322 	ni->initialized_size = old_init_size;
323 	write_unlock_irqrestore(&ni->size_lock, flags);
324 err_out:
325 	if (ctx)
326 		ntfs_attr_put_search_ctx(ctx);
327 	if (m)
328 		unmap_mft_record(base_ni);
329 	ntfs_debug("Failed.  Returning error code %i.", err);
330 	return err;
331 }
332 
333 /**
334  * ntfs_fault_in_pages_readable -
335  *
336  * Fault a number of userspace pages into pagetables.
337  *
338  * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
339  * with more than two userspace pages as well as handling the single page case
340  * elegantly.
341  *
342  * If you find this difficult to understand, then think of the while loop being
343  * the following code, except that we do without the integer variable ret:
344  *
345  *	do {
346  *		ret = __get_user(c, uaddr);
347  *		uaddr += PAGE_SIZE;
348  *	} while (!ret && uaddr < end);
349  *
350  * Note, the final __get_user() may well run out-of-bounds of the user buffer,
351  * but _not_ out-of-bounds of the page the user buffer belongs to, and since
352  * this is only a read and not a write, and since it is still in the same page,
353  * it should not matter and this makes the code much simpler.
354  */
355 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
356 		int bytes)
357 {
358 	const char __user *end;
359 	volatile char c;
360 
361 	/* Set @end to the first byte outside the last page we care about. */
362 	end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
363 
364 	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
365 		;
366 }
367 
368 /**
369  * ntfs_fault_in_pages_readable_iovec -
370  *
371  * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
372  */
373 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
374 		size_t iov_ofs, int bytes)
375 {
376 	do {
377 		const char __user *buf;
378 		unsigned len;
379 
380 		buf = iov->iov_base + iov_ofs;
381 		len = iov->iov_len - iov_ofs;
382 		if (len > bytes)
383 			len = bytes;
384 		ntfs_fault_in_pages_readable(buf, len);
385 		bytes -= len;
386 		iov++;
387 		iov_ofs = 0;
388 	} while (bytes);
389 }
390 
391 /**
392  * __ntfs_grab_cache_pages - obtain a number of locked pages
393  * @mapping:	address space mapping from which to obtain page cache pages
394  * @index:	starting index in @mapping at which to begin obtaining pages
395  * @nr_pages:	number of page cache pages to obtain
396  * @pages:	array of pages in which to return the obtained page cache pages
397  * @cached_page: allocated but as yet unused page
398  * @lru_pvec:	lru-buffering pagevec of caller
399  *
400  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
401  * starting at index @index.
402  *
403  * If a page is newly created, add it to lru list
404  *
405  * Note, the page locks are obtained in ascending page index order.
406  */
407 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
408 		pgoff_t index, const unsigned nr_pages, struct page **pages,
409 		struct page **cached_page)
410 {
411 	int err, nr;
412 
413 	BUG_ON(!nr_pages);
414 	err = nr = 0;
415 	do {
416 		pages[nr] = find_lock_page(mapping, index);
417 		if (!pages[nr]) {
418 			if (!*cached_page) {
419 				*cached_page = page_cache_alloc(mapping);
420 				if (unlikely(!*cached_page)) {
421 					err = -ENOMEM;
422 					goto err_out;
423 				}
424 			}
425 			err = add_to_page_cache_lru(*cached_page, mapping, index,
426 					GFP_KERNEL);
427 			if (unlikely(err)) {
428 				if (err == -EEXIST)
429 					continue;
430 				goto err_out;
431 			}
432 			pages[nr] = *cached_page;
433 			*cached_page = NULL;
434 		}
435 		index++;
436 		nr++;
437 	} while (nr < nr_pages);
438 out:
439 	return err;
440 err_out:
441 	while (nr > 0) {
442 		unlock_page(pages[--nr]);
443 		page_cache_release(pages[nr]);
444 	}
445 	goto out;
446 }
447 
448 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
449 {
450 	lock_buffer(bh);
451 	get_bh(bh);
452 	bh->b_end_io = end_buffer_read_sync;
453 	return submit_bh(READ, bh);
454 }
455 
456 /**
457  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
458  * @pages:	array of destination pages
459  * @nr_pages:	number of pages in @pages
460  * @pos:	byte position in file at which the write begins
461  * @bytes:	number of bytes to be written
462  *
463  * This is called for non-resident attributes from ntfs_file_buffered_write()
464  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
465  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
466  * data has not yet been copied into the @pages.
467  *
468  * Need to fill any holes with actual clusters, allocate buffers if necessary,
469  * ensure all the buffers are mapped, and bring uptodate any buffers that are
470  * only partially being written to.
471  *
472  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
473  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
474  * the same cluster and that they are the entirety of that cluster, and that
475  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
476  *
477  * i_size is not to be modified yet.
478  *
479  * Return 0 on success or -errno on error.
480  */
481 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
482 		unsigned nr_pages, s64 pos, size_t bytes)
483 {
484 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
485 	LCN lcn;
486 	s64 bh_pos, vcn_len, end, initialized_size;
487 	sector_t lcn_block;
488 	struct page *page;
489 	struct inode *vi;
490 	ntfs_inode *ni, *base_ni = NULL;
491 	ntfs_volume *vol;
492 	runlist_element *rl, *rl2;
493 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
494 	ntfs_attr_search_ctx *ctx = NULL;
495 	MFT_RECORD *m = NULL;
496 	ATTR_RECORD *a = NULL;
497 	unsigned long flags;
498 	u32 attr_rec_len = 0;
499 	unsigned blocksize, u;
500 	int err, mp_size;
501 	bool rl_write_locked, was_hole, is_retry;
502 	unsigned char blocksize_bits;
503 	struct {
504 		u8 runlist_merged:1;
505 		u8 mft_attr_mapped:1;
506 		u8 mp_rebuilt:1;
507 		u8 attr_switched:1;
508 	} status = { 0, 0, 0, 0 };
509 
510 	BUG_ON(!nr_pages);
511 	BUG_ON(!pages);
512 	BUG_ON(!*pages);
513 	vi = pages[0]->mapping->host;
514 	ni = NTFS_I(vi);
515 	vol = ni->vol;
516 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
517 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
518 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
519 			(long long)pos, bytes);
520 	blocksize = vol->sb->s_blocksize;
521 	blocksize_bits = vol->sb->s_blocksize_bits;
522 	u = 0;
523 	do {
524 		page = pages[u];
525 		BUG_ON(!page);
526 		/*
527 		 * create_empty_buffers() will create uptodate/dirty buffers if
528 		 * the page is uptodate/dirty.
529 		 */
530 		if (!page_has_buffers(page)) {
531 			create_empty_buffers(page, blocksize, 0);
532 			if (unlikely(!page_has_buffers(page)))
533 				return -ENOMEM;
534 		}
535 	} while (++u < nr_pages);
536 	rl_write_locked = false;
537 	rl = NULL;
538 	err = 0;
539 	vcn = lcn = -1;
540 	vcn_len = 0;
541 	lcn_block = -1;
542 	was_hole = false;
543 	cpos = pos >> vol->cluster_size_bits;
544 	end = pos + bytes;
545 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
546 	/*
547 	 * Loop over each page and for each page over each buffer.  Use goto to
548 	 * reduce indentation.
549 	 */
550 	u = 0;
551 do_next_page:
552 	page = pages[u];
553 	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
554 	bh = head = page_buffers(page);
555 	do {
556 		VCN cdelta;
557 		s64 bh_end;
558 		unsigned bh_cofs;
559 
560 		/* Clear buffer_new on all buffers to reinitialise state. */
561 		if (buffer_new(bh))
562 			clear_buffer_new(bh);
563 		bh_end = bh_pos + blocksize;
564 		bh_cpos = bh_pos >> vol->cluster_size_bits;
565 		bh_cofs = bh_pos & vol->cluster_size_mask;
566 		if (buffer_mapped(bh)) {
567 			/*
568 			 * The buffer is already mapped.  If it is uptodate,
569 			 * ignore it.
570 			 */
571 			if (buffer_uptodate(bh))
572 				continue;
573 			/*
574 			 * The buffer is not uptodate.  If the page is uptodate
575 			 * set the buffer uptodate and otherwise ignore it.
576 			 */
577 			if (PageUptodate(page)) {
578 				set_buffer_uptodate(bh);
579 				continue;
580 			}
581 			/*
582 			 * Neither the page nor the buffer are uptodate.  If
583 			 * the buffer is only partially being written to, we
584 			 * need to read it in before the write, i.e. now.
585 			 */
586 			if ((bh_pos < pos && bh_end > pos) ||
587 					(bh_pos < end && bh_end > end)) {
588 				/*
589 				 * If the buffer is fully or partially within
590 				 * the initialized size, do an actual read.
591 				 * Otherwise, simply zero the buffer.
592 				 */
593 				read_lock_irqsave(&ni->size_lock, flags);
594 				initialized_size = ni->initialized_size;
595 				read_unlock_irqrestore(&ni->size_lock, flags);
596 				if (bh_pos < initialized_size) {
597 					ntfs_submit_bh_for_read(bh);
598 					*wait_bh++ = bh;
599 				} else {
600 					zero_user(page, bh_offset(bh),
601 							blocksize);
602 					set_buffer_uptodate(bh);
603 				}
604 			}
605 			continue;
606 		}
607 		/* Unmapped buffer.  Need to map it. */
608 		bh->b_bdev = vol->sb->s_bdev;
609 		/*
610 		 * If the current buffer is in the same clusters as the map
611 		 * cache, there is no need to check the runlist again.  The
612 		 * map cache is made up of @vcn, which is the first cached file
613 		 * cluster, @vcn_len which is the number of cached file
614 		 * clusters, @lcn is the device cluster corresponding to @vcn,
615 		 * and @lcn_block is the block number corresponding to @lcn.
616 		 */
617 		cdelta = bh_cpos - vcn;
618 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
619 map_buffer_cached:
620 			BUG_ON(lcn < 0);
621 			bh->b_blocknr = lcn_block +
622 					(cdelta << (vol->cluster_size_bits -
623 					blocksize_bits)) +
624 					(bh_cofs >> blocksize_bits);
625 			set_buffer_mapped(bh);
626 			/*
627 			 * If the page is uptodate so is the buffer.  If the
628 			 * buffer is fully outside the write, we ignore it if
629 			 * it was already allocated and we mark it dirty so it
630 			 * gets written out if we allocated it.  On the other
631 			 * hand, if we allocated the buffer but we are not
632 			 * marking it dirty we set buffer_new so we can do
633 			 * error recovery.
634 			 */
635 			if (PageUptodate(page)) {
636 				if (!buffer_uptodate(bh))
637 					set_buffer_uptodate(bh);
638 				if (unlikely(was_hole)) {
639 					/* We allocated the buffer. */
640 					unmap_underlying_metadata(bh->b_bdev,
641 							bh->b_blocknr);
642 					if (bh_end <= pos || bh_pos >= end)
643 						mark_buffer_dirty(bh);
644 					else
645 						set_buffer_new(bh);
646 				}
647 				continue;
648 			}
649 			/* Page is _not_ uptodate. */
650 			if (likely(!was_hole)) {
651 				/*
652 				 * Buffer was already allocated.  If it is not
653 				 * uptodate and is only partially being written
654 				 * to, we need to read it in before the write,
655 				 * i.e. now.
656 				 */
657 				if (!buffer_uptodate(bh) && bh_pos < end &&
658 						bh_end > pos &&
659 						(bh_pos < pos ||
660 						bh_end > end)) {
661 					/*
662 					 * If the buffer is fully or partially
663 					 * within the initialized size, do an
664 					 * actual read.  Otherwise, simply zero
665 					 * the buffer.
666 					 */
667 					read_lock_irqsave(&ni->size_lock,
668 							flags);
669 					initialized_size = ni->initialized_size;
670 					read_unlock_irqrestore(&ni->size_lock,
671 							flags);
672 					if (bh_pos < initialized_size) {
673 						ntfs_submit_bh_for_read(bh);
674 						*wait_bh++ = bh;
675 					} else {
676 						zero_user(page, bh_offset(bh),
677 								blocksize);
678 						set_buffer_uptodate(bh);
679 					}
680 				}
681 				continue;
682 			}
683 			/* We allocated the buffer. */
684 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
685 			/*
686 			 * If the buffer is fully outside the write, zero it,
687 			 * set it uptodate, and mark it dirty so it gets
688 			 * written out.  If it is partially being written to,
689 			 * zero region surrounding the write but leave it to
690 			 * commit write to do anything else.  Finally, if the
691 			 * buffer is fully being overwritten, do nothing.
692 			 */
693 			if (bh_end <= pos || bh_pos >= end) {
694 				if (!buffer_uptodate(bh)) {
695 					zero_user(page, bh_offset(bh),
696 							blocksize);
697 					set_buffer_uptodate(bh);
698 				}
699 				mark_buffer_dirty(bh);
700 				continue;
701 			}
702 			set_buffer_new(bh);
703 			if (!buffer_uptodate(bh) &&
704 					(bh_pos < pos || bh_end > end)) {
705 				u8 *kaddr;
706 				unsigned pofs;
707 
708 				kaddr = kmap_atomic(page);
709 				if (bh_pos < pos) {
710 					pofs = bh_pos & ~PAGE_CACHE_MASK;
711 					memset(kaddr + pofs, 0, pos - bh_pos);
712 				}
713 				if (bh_end > end) {
714 					pofs = end & ~PAGE_CACHE_MASK;
715 					memset(kaddr + pofs, 0, bh_end - end);
716 				}
717 				kunmap_atomic(kaddr);
718 				flush_dcache_page(page);
719 			}
720 			continue;
721 		}
722 		/*
723 		 * Slow path: this is the first buffer in the cluster.  If it
724 		 * is outside allocated size and is not uptodate, zero it and
725 		 * set it uptodate.
726 		 */
727 		read_lock_irqsave(&ni->size_lock, flags);
728 		initialized_size = ni->allocated_size;
729 		read_unlock_irqrestore(&ni->size_lock, flags);
730 		if (bh_pos > initialized_size) {
731 			if (PageUptodate(page)) {
732 				if (!buffer_uptodate(bh))
733 					set_buffer_uptodate(bh);
734 			} else if (!buffer_uptodate(bh)) {
735 				zero_user(page, bh_offset(bh), blocksize);
736 				set_buffer_uptodate(bh);
737 			}
738 			continue;
739 		}
740 		is_retry = false;
741 		if (!rl) {
742 			down_read(&ni->runlist.lock);
743 retry_remap:
744 			rl = ni->runlist.rl;
745 		}
746 		if (likely(rl != NULL)) {
747 			/* Seek to element containing target cluster. */
748 			while (rl->length && rl[1].vcn <= bh_cpos)
749 				rl++;
750 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
751 			if (likely(lcn >= 0)) {
752 				/*
753 				 * Successful remap, setup the map cache and
754 				 * use that to deal with the buffer.
755 				 */
756 				was_hole = false;
757 				vcn = bh_cpos;
758 				vcn_len = rl[1].vcn - vcn;
759 				lcn_block = lcn << (vol->cluster_size_bits -
760 						blocksize_bits);
761 				cdelta = 0;
762 				/*
763 				 * If the number of remaining clusters touched
764 				 * by the write is smaller or equal to the
765 				 * number of cached clusters, unlock the
766 				 * runlist as the map cache will be used from
767 				 * now on.
768 				 */
769 				if (likely(vcn + vcn_len >= cend)) {
770 					if (rl_write_locked) {
771 						up_write(&ni->runlist.lock);
772 						rl_write_locked = false;
773 					} else
774 						up_read(&ni->runlist.lock);
775 					rl = NULL;
776 				}
777 				goto map_buffer_cached;
778 			}
779 		} else
780 			lcn = LCN_RL_NOT_MAPPED;
781 		/*
782 		 * If it is not a hole and not out of bounds, the runlist is
783 		 * probably unmapped so try to map it now.
784 		 */
785 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
786 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
787 				/* Attempt to map runlist. */
788 				if (!rl_write_locked) {
789 					/*
790 					 * We need the runlist locked for
791 					 * writing, so if it is locked for
792 					 * reading relock it now and retry in
793 					 * case it changed whilst we dropped
794 					 * the lock.
795 					 */
796 					up_read(&ni->runlist.lock);
797 					down_write(&ni->runlist.lock);
798 					rl_write_locked = true;
799 					goto retry_remap;
800 				}
801 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
802 						NULL);
803 				if (likely(!err)) {
804 					is_retry = true;
805 					goto retry_remap;
806 				}
807 				/*
808 				 * If @vcn is out of bounds, pretend @lcn is
809 				 * LCN_ENOENT.  As long as the buffer is out
810 				 * of bounds this will work fine.
811 				 */
812 				if (err == -ENOENT) {
813 					lcn = LCN_ENOENT;
814 					err = 0;
815 					goto rl_not_mapped_enoent;
816 				}
817 			} else
818 				err = -EIO;
819 			/* Failed to map the buffer, even after retrying. */
820 			bh->b_blocknr = -1;
821 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
822 					"attribute type 0x%x, vcn 0x%llx, "
823 					"vcn offset 0x%x, because its "
824 					"location on disk could not be "
825 					"determined%s (error code %i).",
826 					ni->mft_no, ni->type,
827 					(unsigned long long)bh_cpos,
828 					(unsigned)bh_pos &
829 					vol->cluster_size_mask,
830 					is_retry ? " even after retrying" : "",
831 					err);
832 			break;
833 		}
834 rl_not_mapped_enoent:
835 		/*
836 		 * The buffer is in a hole or out of bounds.  We need to fill
837 		 * the hole, unless the buffer is in a cluster which is not
838 		 * touched by the write, in which case we just leave the buffer
839 		 * unmapped.  This can only happen when the cluster size is
840 		 * less than the page cache size.
841 		 */
842 		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
843 			bh_cend = (bh_end + vol->cluster_size - 1) >>
844 					vol->cluster_size_bits;
845 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
846 				bh->b_blocknr = -1;
847 				/*
848 				 * If the buffer is uptodate we skip it.  If it
849 				 * is not but the page is uptodate, we can set
850 				 * the buffer uptodate.  If the page is not
851 				 * uptodate, we can clear the buffer and set it
852 				 * uptodate.  Whether this is worthwhile is
853 				 * debatable and this could be removed.
854 				 */
855 				if (PageUptodate(page)) {
856 					if (!buffer_uptodate(bh))
857 						set_buffer_uptodate(bh);
858 				} else if (!buffer_uptodate(bh)) {
859 					zero_user(page, bh_offset(bh),
860 						blocksize);
861 					set_buffer_uptodate(bh);
862 				}
863 				continue;
864 			}
865 		}
866 		/*
867 		 * Out of bounds buffer is invalid if it was not really out of
868 		 * bounds.
869 		 */
870 		BUG_ON(lcn != LCN_HOLE);
871 		/*
872 		 * We need the runlist locked for writing, so if it is locked
873 		 * for reading relock it now and retry in case it changed
874 		 * whilst we dropped the lock.
875 		 */
876 		BUG_ON(!rl);
877 		if (!rl_write_locked) {
878 			up_read(&ni->runlist.lock);
879 			down_write(&ni->runlist.lock);
880 			rl_write_locked = true;
881 			goto retry_remap;
882 		}
883 		/* Find the previous last allocated cluster. */
884 		BUG_ON(rl->lcn != LCN_HOLE);
885 		lcn = -1;
886 		rl2 = rl;
887 		while (--rl2 >= ni->runlist.rl) {
888 			if (rl2->lcn >= 0) {
889 				lcn = rl2->lcn + rl2->length;
890 				break;
891 			}
892 		}
893 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
894 				false);
895 		if (IS_ERR(rl2)) {
896 			err = PTR_ERR(rl2);
897 			ntfs_debug("Failed to allocate cluster, error code %i.",
898 					err);
899 			break;
900 		}
901 		lcn = rl2->lcn;
902 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
903 		if (IS_ERR(rl)) {
904 			err = PTR_ERR(rl);
905 			if (err != -ENOMEM)
906 				err = -EIO;
907 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
908 				ntfs_error(vol->sb, "Failed to release "
909 						"allocated cluster in error "
910 						"code path.  Run chkdsk to "
911 						"recover the lost cluster.");
912 				NVolSetErrors(vol);
913 			}
914 			ntfs_free(rl2);
915 			break;
916 		}
917 		ni->runlist.rl = rl;
918 		status.runlist_merged = 1;
919 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
920 				(unsigned long long)lcn);
921 		/* Map and lock the mft record and get the attribute record. */
922 		if (!NInoAttr(ni))
923 			base_ni = ni;
924 		else
925 			base_ni = ni->ext.base_ntfs_ino;
926 		m = map_mft_record(base_ni);
927 		if (IS_ERR(m)) {
928 			err = PTR_ERR(m);
929 			break;
930 		}
931 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
932 		if (unlikely(!ctx)) {
933 			err = -ENOMEM;
934 			unmap_mft_record(base_ni);
935 			break;
936 		}
937 		status.mft_attr_mapped = 1;
938 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
939 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
940 		if (unlikely(err)) {
941 			if (err == -ENOENT)
942 				err = -EIO;
943 			break;
944 		}
945 		m = ctx->mrec;
946 		a = ctx->attr;
947 		/*
948 		 * Find the runlist element with which the attribute extent
949 		 * starts.  Note, we cannot use the _attr_ version because we
950 		 * have mapped the mft record.  That is ok because we know the
951 		 * runlist fragment must be mapped already to have ever gotten
952 		 * here, so we can just use the _rl_ version.
953 		 */
954 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
955 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
956 		BUG_ON(!rl2);
957 		BUG_ON(!rl2->length);
958 		BUG_ON(rl2->lcn < LCN_HOLE);
959 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
960 		/*
961 		 * If @highest_vcn is zero, calculate the real highest_vcn
962 		 * (which can really be zero).
963 		 */
964 		if (!highest_vcn)
965 			highest_vcn = (sle64_to_cpu(
966 					a->data.non_resident.allocated_size) >>
967 					vol->cluster_size_bits) - 1;
968 		/*
969 		 * Determine the size of the mapping pairs array for the new
970 		 * extent, i.e. the old extent with the hole filled.
971 		 */
972 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
973 				highest_vcn);
974 		if (unlikely(mp_size <= 0)) {
975 			if (!(err = mp_size))
976 				err = -EIO;
977 			ntfs_debug("Failed to get size for mapping pairs "
978 					"array, error code %i.", err);
979 			break;
980 		}
981 		/*
982 		 * Resize the attribute record to fit the new mapping pairs
983 		 * array.
984 		 */
985 		attr_rec_len = le32_to_cpu(a->length);
986 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
987 				a->data.non_resident.mapping_pairs_offset));
988 		if (unlikely(err)) {
989 			BUG_ON(err != -ENOSPC);
990 			// TODO: Deal with this by using the current attribute
991 			// and fill it with as much of the mapping pairs
992 			// array as possible.  Then loop over each attribute
993 			// extent rewriting the mapping pairs arrays as we go
994 			// along and if when we reach the end we have not
995 			// enough space, try to resize the last attribute
996 			// extent and if even that fails, add a new attribute
997 			// extent.
998 			// We could also try to resize at each step in the hope
999 			// that we will not need to rewrite every single extent.
1000 			// Note, we may need to decompress some extents to fill
1001 			// the runlist as we are walking the extents...
1002 			ntfs_error(vol->sb, "Not enough space in the mft "
1003 					"record for the extended attribute "
1004 					"record.  This case is not "
1005 					"implemented yet.");
1006 			err = -EOPNOTSUPP;
1007 			break ;
1008 		}
1009 		status.mp_rebuilt = 1;
1010 		/*
1011 		 * Generate the mapping pairs array directly into the attribute
1012 		 * record.
1013 		 */
1014 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1015 				a->data.non_resident.mapping_pairs_offset),
1016 				mp_size, rl2, vcn, highest_vcn, NULL);
1017 		if (unlikely(err)) {
1018 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1019 					"attribute type 0x%x, because building "
1020 					"the mapping pairs failed with error "
1021 					"code %i.", vi->i_ino,
1022 					(unsigned)le32_to_cpu(ni->type), err);
1023 			err = -EIO;
1024 			break;
1025 		}
1026 		/* Update the highest_vcn but only if it was not set. */
1027 		if (unlikely(!a->data.non_resident.highest_vcn))
1028 			a->data.non_resident.highest_vcn =
1029 					cpu_to_sle64(highest_vcn);
1030 		/*
1031 		 * If the attribute is sparse/compressed, update the compressed
1032 		 * size in the ntfs_inode structure and the attribute record.
1033 		 */
1034 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1035 			/*
1036 			 * If we are not in the first attribute extent, switch
1037 			 * to it, but first ensure the changes will make it to
1038 			 * disk later.
1039 			 */
1040 			if (a->data.non_resident.lowest_vcn) {
1041 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1042 				mark_mft_record_dirty(ctx->ntfs_ino);
1043 				ntfs_attr_reinit_search_ctx(ctx);
1044 				err = ntfs_attr_lookup(ni->type, ni->name,
1045 						ni->name_len, CASE_SENSITIVE,
1046 						0, NULL, 0, ctx);
1047 				if (unlikely(err)) {
1048 					status.attr_switched = 1;
1049 					break;
1050 				}
1051 				/* @m is not used any more so do not set it. */
1052 				a = ctx->attr;
1053 			}
1054 			write_lock_irqsave(&ni->size_lock, flags);
1055 			ni->itype.compressed.size += vol->cluster_size;
1056 			a->data.non_resident.compressed_size =
1057 					cpu_to_sle64(ni->itype.compressed.size);
1058 			write_unlock_irqrestore(&ni->size_lock, flags);
1059 		}
1060 		/* Ensure the changes make it to disk. */
1061 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1062 		mark_mft_record_dirty(ctx->ntfs_ino);
1063 		ntfs_attr_put_search_ctx(ctx);
1064 		unmap_mft_record(base_ni);
1065 		/* Successfully filled the hole. */
1066 		status.runlist_merged = 0;
1067 		status.mft_attr_mapped = 0;
1068 		status.mp_rebuilt = 0;
1069 		/* Setup the map cache and use that to deal with the buffer. */
1070 		was_hole = true;
1071 		vcn = bh_cpos;
1072 		vcn_len = 1;
1073 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1074 		cdelta = 0;
1075 		/*
1076 		 * If the number of remaining clusters in the @pages is smaller
1077 		 * or equal to the number of cached clusters, unlock the
1078 		 * runlist as the map cache will be used from now on.
1079 		 */
1080 		if (likely(vcn + vcn_len >= cend)) {
1081 			up_write(&ni->runlist.lock);
1082 			rl_write_locked = false;
1083 			rl = NULL;
1084 		}
1085 		goto map_buffer_cached;
1086 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1087 	/* If there are no errors, do the next page. */
1088 	if (likely(!err && ++u < nr_pages))
1089 		goto do_next_page;
1090 	/* If there are no errors, release the runlist lock if we took it. */
1091 	if (likely(!err)) {
1092 		if (unlikely(rl_write_locked)) {
1093 			up_write(&ni->runlist.lock);
1094 			rl_write_locked = false;
1095 		} else if (unlikely(rl))
1096 			up_read(&ni->runlist.lock);
1097 		rl = NULL;
1098 	}
1099 	/* If we issued read requests, let them complete. */
1100 	read_lock_irqsave(&ni->size_lock, flags);
1101 	initialized_size = ni->initialized_size;
1102 	read_unlock_irqrestore(&ni->size_lock, flags);
1103 	while (wait_bh > wait) {
1104 		bh = *--wait_bh;
1105 		wait_on_buffer(bh);
1106 		if (likely(buffer_uptodate(bh))) {
1107 			page = bh->b_page;
1108 			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1109 					bh_offset(bh);
1110 			/*
1111 			 * If the buffer overflows the initialized size, need
1112 			 * to zero the overflowing region.
1113 			 */
1114 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1115 				int ofs = 0;
1116 
1117 				if (likely(bh_pos < initialized_size))
1118 					ofs = initialized_size - bh_pos;
1119 				zero_user_segment(page, bh_offset(bh) + ofs,
1120 						blocksize);
1121 			}
1122 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1123 			err = -EIO;
1124 	}
1125 	if (likely(!err)) {
1126 		/* Clear buffer_new on all buffers. */
1127 		u = 0;
1128 		do {
1129 			bh = head = page_buffers(pages[u]);
1130 			do {
1131 				if (buffer_new(bh))
1132 					clear_buffer_new(bh);
1133 			} while ((bh = bh->b_this_page) != head);
1134 		} while (++u < nr_pages);
1135 		ntfs_debug("Done.");
1136 		return err;
1137 	}
1138 	if (status.attr_switched) {
1139 		/* Get back to the attribute extent we modified. */
1140 		ntfs_attr_reinit_search_ctx(ctx);
1141 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1142 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1143 			ntfs_error(vol->sb, "Failed to find required "
1144 					"attribute extent of attribute in "
1145 					"error code path.  Run chkdsk to "
1146 					"recover.");
1147 			write_lock_irqsave(&ni->size_lock, flags);
1148 			ni->itype.compressed.size += vol->cluster_size;
1149 			write_unlock_irqrestore(&ni->size_lock, flags);
1150 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1151 			mark_mft_record_dirty(ctx->ntfs_ino);
1152 			/*
1153 			 * The only thing that is now wrong is the compressed
1154 			 * size of the base attribute extent which chkdsk
1155 			 * should be able to fix.
1156 			 */
1157 			NVolSetErrors(vol);
1158 		} else {
1159 			m = ctx->mrec;
1160 			a = ctx->attr;
1161 			status.attr_switched = 0;
1162 		}
1163 	}
1164 	/*
1165 	 * If the runlist has been modified, need to restore it by punching a
1166 	 * hole into it and we then need to deallocate the on-disk cluster as
1167 	 * well.  Note, we only modify the runlist if we are able to generate a
1168 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1169 	 * is not switched.
1170 	 */
1171 	if (status.runlist_merged && !status.attr_switched) {
1172 		BUG_ON(!rl_write_locked);
1173 		/* Make the file cluster we allocated sparse in the runlist. */
1174 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1175 			ntfs_error(vol->sb, "Failed to punch hole into "
1176 					"attribute runlist in error code "
1177 					"path.  Run chkdsk to recover the "
1178 					"lost cluster.");
1179 			NVolSetErrors(vol);
1180 		} else /* if (success) */ {
1181 			status.runlist_merged = 0;
1182 			/*
1183 			 * Deallocate the on-disk cluster we allocated but only
1184 			 * if we succeeded in punching its vcn out of the
1185 			 * runlist.
1186 			 */
1187 			down_write(&vol->lcnbmp_lock);
1188 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1189 				ntfs_error(vol->sb, "Failed to release "
1190 						"allocated cluster in error "
1191 						"code path.  Run chkdsk to "
1192 						"recover the lost cluster.");
1193 				NVolSetErrors(vol);
1194 			}
1195 			up_write(&vol->lcnbmp_lock);
1196 		}
1197 	}
1198 	/*
1199 	 * Resize the attribute record to its old size and rebuild the mapping
1200 	 * pairs array.  Note, we only can do this if the runlist has been
1201 	 * restored to its old state which also implies that the mapped
1202 	 * attribute extent is not switched.
1203 	 */
1204 	if (status.mp_rebuilt && !status.runlist_merged) {
1205 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1206 			ntfs_error(vol->sb, "Failed to restore attribute "
1207 					"record in error code path.  Run "
1208 					"chkdsk to recover.");
1209 			NVolSetErrors(vol);
1210 		} else /* if (success) */ {
1211 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1212 					le16_to_cpu(a->data.non_resident.
1213 					mapping_pairs_offset), attr_rec_len -
1214 					le16_to_cpu(a->data.non_resident.
1215 					mapping_pairs_offset), ni->runlist.rl,
1216 					vcn, highest_vcn, NULL)) {
1217 				ntfs_error(vol->sb, "Failed to restore "
1218 						"mapping pairs array in error "
1219 						"code path.  Run chkdsk to "
1220 						"recover.");
1221 				NVolSetErrors(vol);
1222 			}
1223 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1224 			mark_mft_record_dirty(ctx->ntfs_ino);
1225 		}
1226 	}
1227 	/* Release the mft record and the attribute. */
1228 	if (status.mft_attr_mapped) {
1229 		ntfs_attr_put_search_ctx(ctx);
1230 		unmap_mft_record(base_ni);
1231 	}
1232 	/* Release the runlist lock. */
1233 	if (rl_write_locked)
1234 		up_write(&ni->runlist.lock);
1235 	else if (rl)
1236 		up_read(&ni->runlist.lock);
1237 	/*
1238 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1239 	 * If BH_New is set, we know that the block was newly allocated above
1240 	 * and that it has not been fully zeroed and marked dirty yet.
1241 	 */
1242 	nr_pages = u;
1243 	u = 0;
1244 	end = bh_cpos << vol->cluster_size_bits;
1245 	do {
1246 		page = pages[u];
1247 		bh = head = page_buffers(page);
1248 		do {
1249 			if (u == nr_pages &&
1250 					((s64)page->index << PAGE_CACHE_SHIFT) +
1251 					bh_offset(bh) >= end)
1252 				break;
1253 			if (!buffer_new(bh))
1254 				continue;
1255 			clear_buffer_new(bh);
1256 			if (!buffer_uptodate(bh)) {
1257 				if (PageUptodate(page))
1258 					set_buffer_uptodate(bh);
1259 				else {
1260 					zero_user(page, bh_offset(bh),
1261 							blocksize);
1262 					set_buffer_uptodate(bh);
1263 				}
1264 			}
1265 			mark_buffer_dirty(bh);
1266 		} while ((bh = bh->b_this_page) != head);
1267 	} while (++u <= nr_pages);
1268 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1269 	return err;
1270 }
1271 
1272 /*
1273  * Copy as much as we can into the pages and return the number of bytes which
1274  * were successfully copied.  If a fault is encountered then clear the pages
1275  * out to (ofs + bytes) and return the number of bytes which were copied.
1276  */
1277 static inline size_t ntfs_copy_from_user(struct page **pages,
1278 		unsigned nr_pages, unsigned ofs, const char __user *buf,
1279 		size_t bytes)
1280 {
1281 	struct page **last_page = pages + nr_pages;
1282 	char *addr;
1283 	size_t total = 0;
1284 	unsigned len;
1285 	int left;
1286 
1287 	do {
1288 		len = PAGE_CACHE_SIZE - ofs;
1289 		if (len > bytes)
1290 			len = bytes;
1291 		addr = kmap_atomic(*pages);
1292 		left = __copy_from_user_inatomic(addr + ofs, buf, len);
1293 		kunmap_atomic(addr);
1294 		if (unlikely(left)) {
1295 			/* Do it the slow way. */
1296 			addr = kmap(*pages);
1297 			left = __copy_from_user(addr + ofs, buf, len);
1298 			kunmap(*pages);
1299 			if (unlikely(left))
1300 				goto err_out;
1301 		}
1302 		total += len;
1303 		bytes -= len;
1304 		if (!bytes)
1305 			break;
1306 		buf += len;
1307 		ofs = 0;
1308 	} while (++pages < last_page);
1309 out:
1310 	return total;
1311 err_out:
1312 	total += len - left;
1313 	/* Zero the rest of the target like __copy_from_user(). */
1314 	while (++pages < last_page) {
1315 		bytes -= len;
1316 		if (!bytes)
1317 			break;
1318 		len = PAGE_CACHE_SIZE;
1319 		if (len > bytes)
1320 			len = bytes;
1321 		zero_user(*pages, 0, len);
1322 	}
1323 	goto out;
1324 }
1325 
1326 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1327 		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1328 {
1329 	size_t total = 0;
1330 
1331 	while (1) {
1332 		const char __user *buf = iov->iov_base + iov_ofs;
1333 		unsigned len;
1334 		size_t left;
1335 
1336 		len = iov->iov_len - iov_ofs;
1337 		if (len > bytes)
1338 			len = bytes;
1339 		left = __copy_from_user_inatomic(vaddr, buf, len);
1340 		total += len;
1341 		bytes -= len;
1342 		vaddr += len;
1343 		if (unlikely(left)) {
1344 			total -= left;
1345 			break;
1346 		}
1347 		if (!bytes)
1348 			break;
1349 		iov++;
1350 		iov_ofs = 0;
1351 	}
1352 	return total;
1353 }
1354 
1355 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1356 		size_t *iov_ofsp, size_t bytes)
1357 {
1358 	const struct iovec *iov = *iovp;
1359 	size_t iov_ofs = *iov_ofsp;
1360 
1361 	while (bytes) {
1362 		unsigned len;
1363 
1364 		len = iov->iov_len - iov_ofs;
1365 		if (len > bytes)
1366 			len = bytes;
1367 		bytes -= len;
1368 		iov_ofs += len;
1369 		if (iov->iov_len == iov_ofs) {
1370 			iov++;
1371 			iov_ofs = 0;
1372 		}
1373 	}
1374 	*iovp = iov;
1375 	*iov_ofsp = iov_ofs;
1376 }
1377 
1378 /*
1379  * This has the same side-effects and return value as ntfs_copy_from_user().
1380  * The difference is that on a fault we need to memset the remainder of the
1381  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1382  * single-segment behaviour.
1383  *
1384  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1385  * atomic and when not atomic.  This is ok because it calls
1386  * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1387  * fact, the only difference between __copy_from_user_inatomic() and
1388  * __copy_from_user() is that the latter calls might_sleep() and the former
1389  * should not zero the tail of the buffer on error.  And on many architectures
1390  * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1391  * makes no difference at all on those architectures.
1392  */
1393 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1394 		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1395 		size_t *iov_ofs, size_t bytes)
1396 {
1397 	struct page **last_page = pages + nr_pages;
1398 	char *addr;
1399 	size_t copied, len, total = 0;
1400 
1401 	do {
1402 		len = PAGE_CACHE_SIZE - ofs;
1403 		if (len > bytes)
1404 			len = bytes;
1405 		addr = kmap_atomic(*pages);
1406 		copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1407 				*iov, *iov_ofs, len);
1408 		kunmap_atomic(addr);
1409 		if (unlikely(copied != len)) {
1410 			/* Do it the slow way. */
1411 			addr = kmap(*pages);
1412 			copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1413 					ofs, *iov, *iov_ofs, len);
1414 			if (unlikely(copied != len))
1415 				goto err_out;
1416 			kunmap(*pages);
1417 		}
1418 		total += len;
1419 		ntfs_set_next_iovec(iov, iov_ofs, len);
1420 		bytes -= len;
1421 		if (!bytes)
1422 			break;
1423 		ofs = 0;
1424 	} while (++pages < last_page);
1425 out:
1426 	return total;
1427 err_out:
1428 	BUG_ON(copied > len);
1429 	/* Zero the rest of the target like __copy_from_user(). */
1430 	memset(addr + ofs + copied, 0, len - copied);
1431 	kunmap(*pages);
1432 	total += copied;
1433 	ntfs_set_next_iovec(iov, iov_ofs, copied);
1434 	while (++pages < last_page) {
1435 		bytes -= len;
1436 		if (!bytes)
1437 			break;
1438 		len = PAGE_CACHE_SIZE;
1439 		if (len > bytes)
1440 			len = bytes;
1441 		zero_user(*pages, 0, len);
1442 	}
1443 	goto out;
1444 }
1445 
1446 static inline void ntfs_flush_dcache_pages(struct page **pages,
1447 		unsigned nr_pages)
1448 {
1449 	BUG_ON(!nr_pages);
1450 	/*
1451 	 * Warning: Do not do the decrement at the same time as the call to
1452 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1453 	 * decrement never happens so the loop never terminates.
1454 	 */
1455 	do {
1456 		--nr_pages;
1457 		flush_dcache_page(pages[nr_pages]);
1458 	} while (nr_pages > 0);
1459 }
1460 
1461 /**
1462  * ntfs_commit_pages_after_non_resident_write - commit the received data
1463  * @pages:	array of destination pages
1464  * @nr_pages:	number of pages in @pages
1465  * @pos:	byte position in file at which the write begins
1466  * @bytes:	number of bytes to be written
1467  *
1468  * See description of ntfs_commit_pages_after_write(), below.
1469  */
1470 static inline int ntfs_commit_pages_after_non_resident_write(
1471 		struct page **pages, const unsigned nr_pages,
1472 		s64 pos, size_t bytes)
1473 {
1474 	s64 end, initialized_size;
1475 	struct inode *vi;
1476 	ntfs_inode *ni, *base_ni;
1477 	struct buffer_head *bh, *head;
1478 	ntfs_attr_search_ctx *ctx;
1479 	MFT_RECORD *m;
1480 	ATTR_RECORD *a;
1481 	unsigned long flags;
1482 	unsigned blocksize, u;
1483 	int err;
1484 
1485 	vi = pages[0]->mapping->host;
1486 	ni = NTFS_I(vi);
1487 	blocksize = vi->i_sb->s_blocksize;
1488 	end = pos + bytes;
1489 	u = 0;
1490 	do {
1491 		s64 bh_pos;
1492 		struct page *page;
1493 		bool partial;
1494 
1495 		page = pages[u];
1496 		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1497 		bh = head = page_buffers(page);
1498 		partial = false;
1499 		do {
1500 			s64 bh_end;
1501 
1502 			bh_end = bh_pos + blocksize;
1503 			if (bh_end <= pos || bh_pos >= end) {
1504 				if (!buffer_uptodate(bh))
1505 					partial = true;
1506 			} else {
1507 				set_buffer_uptodate(bh);
1508 				mark_buffer_dirty(bh);
1509 			}
1510 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1511 		/*
1512 		 * If all buffers are now uptodate but the page is not, set the
1513 		 * page uptodate.
1514 		 */
1515 		if (!partial && !PageUptodate(page))
1516 			SetPageUptodate(page);
1517 	} while (++u < nr_pages);
1518 	/*
1519 	 * Finally, if we do not need to update initialized_size or i_size we
1520 	 * are finished.
1521 	 */
1522 	read_lock_irqsave(&ni->size_lock, flags);
1523 	initialized_size = ni->initialized_size;
1524 	read_unlock_irqrestore(&ni->size_lock, flags);
1525 	if (end <= initialized_size) {
1526 		ntfs_debug("Done.");
1527 		return 0;
1528 	}
1529 	/*
1530 	 * Update initialized_size/i_size as appropriate, both in the inode and
1531 	 * the mft record.
1532 	 */
1533 	if (!NInoAttr(ni))
1534 		base_ni = ni;
1535 	else
1536 		base_ni = ni->ext.base_ntfs_ino;
1537 	/* Map, pin, and lock the mft record. */
1538 	m = map_mft_record(base_ni);
1539 	if (IS_ERR(m)) {
1540 		err = PTR_ERR(m);
1541 		m = NULL;
1542 		ctx = NULL;
1543 		goto err_out;
1544 	}
1545 	BUG_ON(!NInoNonResident(ni));
1546 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1547 	if (unlikely(!ctx)) {
1548 		err = -ENOMEM;
1549 		goto err_out;
1550 	}
1551 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1552 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1553 	if (unlikely(err)) {
1554 		if (err == -ENOENT)
1555 			err = -EIO;
1556 		goto err_out;
1557 	}
1558 	a = ctx->attr;
1559 	BUG_ON(!a->non_resident);
1560 	write_lock_irqsave(&ni->size_lock, flags);
1561 	BUG_ON(end > ni->allocated_size);
1562 	ni->initialized_size = end;
1563 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1564 	if (end > i_size_read(vi)) {
1565 		i_size_write(vi, end);
1566 		a->data.non_resident.data_size =
1567 				a->data.non_resident.initialized_size;
1568 	}
1569 	write_unlock_irqrestore(&ni->size_lock, flags);
1570 	/* Mark the mft record dirty, so it gets written back. */
1571 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1572 	mark_mft_record_dirty(ctx->ntfs_ino);
1573 	ntfs_attr_put_search_ctx(ctx);
1574 	unmap_mft_record(base_ni);
1575 	ntfs_debug("Done.");
1576 	return 0;
1577 err_out:
1578 	if (ctx)
1579 		ntfs_attr_put_search_ctx(ctx);
1580 	if (m)
1581 		unmap_mft_record(base_ni);
1582 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1583 			"code %i).", err);
1584 	if (err != -ENOMEM)
1585 		NVolSetErrors(ni->vol);
1586 	return err;
1587 }
1588 
1589 /**
1590  * ntfs_commit_pages_after_write - commit the received data
1591  * @pages:	array of destination pages
1592  * @nr_pages:	number of pages in @pages
1593  * @pos:	byte position in file at which the write begins
1594  * @bytes:	number of bytes to be written
1595  *
1596  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1597  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1598  * locked but not kmap()ped.  The source data has already been copied into the
1599  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1600  * the data was copied (for non-resident attributes only) and it returned
1601  * success.
1602  *
1603  * Need to set uptodate and mark dirty all buffers within the boundary of the
1604  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1605  *
1606  * Setting the buffers dirty ensures that they get written out later when
1607  * ntfs_writepage() is invoked by the VM.
1608  *
1609  * Finally, we need to update i_size and initialized_size as appropriate both
1610  * in the inode and the mft record.
1611  *
1612  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1613  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1614  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1615  * that case, it also marks the inode dirty.
1616  *
1617  * If things have gone as outlined in
1618  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1619  * content modifications here for non-resident attributes.  For resident
1620  * attributes we need to do the uptodate bringing here which we combine with
1621  * the copying into the mft record which means we save one atomic kmap.
1622  *
1623  * Return 0 on success or -errno on error.
1624  */
1625 static int ntfs_commit_pages_after_write(struct page **pages,
1626 		const unsigned nr_pages, s64 pos, size_t bytes)
1627 {
1628 	s64 end, initialized_size;
1629 	loff_t i_size;
1630 	struct inode *vi;
1631 	ntfs_inode *ni, *base_ni;
1632 	struct page *page;
1633 	ntfs_attr_search_ctx *ctx;
1634 	MFT_RECORD *m;
1635 	ATTR_RECORD *a;
1636 	char *kattr, *kaddr;
1637 	unsigned long flags;
1638 	u32 attr_len;
1639 	int err;
1640 
1641 	BUG_ON(!nr_pages);
1642 	BUG_ON(!pages);
1643 	page = pages[0];
1644 	BUG_ON(!page);
1645 	vi = page->mapping->host;
1646 	ni = NTFS_I(vi);
1647 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1648 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1649 			vi->i_ino, ni->type, page->index, nr_pages,
1650 			(long long)pos, bytes);
1651 	if (NInoNonResident(ni))
1652 		return ntfs_commit_pages_after_non_resident_write(pages,
1653 				nr_pages, pos, bytes);
1654 	BUG_ON(nr_pages > 1);
1655 	/*
1656 	 * Attribute is resident, implying it is not compressed, encrypted, or
1657 	 * sparse.
1658 	 */
1659 	if (!NInoAttr(ni))
1660 		base_ni = ni;
1661 	else
1662 		base_ni = ni->ext.base_ntfs_ino;
1663 	BUG_ON(NInoNonResident(ni));
1664 	/* Map, pin, and lock the mft record. */
1665 	m = map_mft_record(base_ni);
1666 	if (IS_ERR(m)) {
1667 		err = PTR_ERR(m);
1668 		m = NULL;
1669 		ctx = NULL;
1670 		goto err_out;
1671 	}
1672 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1673 	if (unlikely(!ctx)) {
1674 		err = -ENOMEM;
1675 		goto err_out;
1676 	}
1677 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1678 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1679 	if (unlikely(err)) {
1680 		if (err == -ENOENT)
1681 			err = -EIO;
1682 		goto err_out;
1683 	}
1684 	a = ctx->attr;
1685 	BUG_ON(a->non_resident);
1686 	/* The total length of the attribute value. */
1687 	attr_len = le32_to_cpu(a->data.resident.value_length);
1688 	i_size = i_size_read(vi);
1689 	BUG_ON(attr_len != i_size);
1690 	BUG_ON(pos > attr_len);
1691 	end = pos + bytes;
1692 	BUG_ON(end > le32_to_cpu(a->length) -
1693 			le16_to_cpu(a->data.resident.value_offset));
1694 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1695 	kaddr = kmap_atomic(page);
1696 	/* Copy the received data from the page to the mft record. */
1697 	memcpy(kattr + pos, kaddr + pos, bytes);
1698 	/* Update the attribute length if necessary. */
1699 	if (end > attr_len) {
1700 		attr_len = end;
1701 		a->data.resident.value_length = cpu_to_le32(attr_len);
1702 	}
1703 	/*
1704 	 * If the page is not uptodate, bring the out of bounds area(s)
1705 	 * uptodate by copying data from the mft record to the page.
1706 	 */
1707 	if (!PageUptodate(page)) {
1708 		if (pos > 0)
1709 			memcpy(kaddr, kattr, pos);
1710 		if (end < attr_len)
1711 			memcpy(kaddr + end, kattr + end, attr_len - end);
1712 		/* Zero the region outside the end of the attribute value. */
1713 		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1714 		flush_dcache_page(page);
1715 		SetPageUptodate(page);
1716 	}
1717 	kunmap_atomic(kaddr);
1718 	/* Update initialized_size/i_size if necessary. */
1719 	read_lock_irqsave(&ni->size_lock, flags);
1720 	initialized_size = ni->initialized_size;
1721 	BUG_ON(end > ni->allocated_size);
1722 	read_unlock_irqrestore(&ni->size_lock, flags);
1723 	BUG_ON(initialized_size != i_size);
1724 	if (end > initialized_size) {
1725 		write_lock_irqsave(&ni->size_lock, flags);
1726 		ni->initialized_size = end;
1727 		i_size_write(vi, end);
1728 		write_unlock_irqrestore(&ni->size_lock, flags);
1729 	}
1730 	/* Mark the mft record dirty, so it gets written back. */
1731 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1732 	mark_mft_record_dirty(ctx->ntfs_ino);
1733 	ntfs_attr_put_search_ctx(ctx);
1734 	unmap_mft_record(base_ni);
1735 	ntfs_debug("Done.");
1736 	return 0;
1737 err_out:
1738 	if (err == -ENOMEM) {
1739 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1740 				"commit the write.");
1741 		if (PageUptodate(page)) {
1742 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1743 					"dirty so the write will be retried "
1744 					"later on by the VM.");
1745 			/*
1746 			 * Put the page on mapping->dirty_pages, but leave its
1747 			 * buffers' dirty state as-is.
1748 			 */
1749 			__set_page_dirty_nobuffers(page);
1750 			err = 0;
1751 		} else
1752 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1753 					"data has been lost.");
1754 	} else {
1755 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1756 				"with error %i.", err);
1757 		NVolSetErrors(ni->vol);
1758 	}
1759 	if (ctx)
1760 		ntfs_attr_put_search_ctx(ctx);
1761 	if (m)
1762 		unmap_mft_record(base_ni);
1763 	return err;
1764 }
1765 
1766 static void ntfs_write_failed(struct address_space *mapping, loff_t to)
1767 {
1768 	struct inode *inode = mapping->host;
1769 
1770 	if (to > inode->i_size) {
1771 		truncate_pagecache(inode, to, inode->i_size);
1772 		ntfs_truncate_vfs(inode);
1773 	}
1774 }
1775 
1776 /**
1777  * ntfs_file_buffered_write -
1778  *
1779  * Locking: The vfs is holding ->i_mutex on the inode.
1780  */
1781 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1782 		const struct iovec *iov, unsigned long nr_segs,
1783 		loff_t pos, loff_t *ppos, size_t count)
1784 {
1785 	struct file *file = iocb->ki_filp;
1786 	struct address_space *mapping = file->f_mapping;
1787 	struct inode *vi = mapping->host;
1788 	ntfs_inode *ni = NTFS_I(vi);
1789 	ntfs_volume *vol = ni->vol;
1790 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1791 	struct page *cached_page = NULL;
1792 	char __user *buf = NULL;
1793 	s64 end, ll;
1794 	VCN last_vcn;
1795 	LCN lcn;
1796 	unsigned long flags;
1797 	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1798 	ssize_t status, written;
1799 	unsigned nr_pages;
1800 	int err;
1801 
1802 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1803 			"pos 0x%llx, count 0x%lx.",
1804 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1805 			(unsigned long long)pos, (unsigned long)count);
1806 	if (unlikely(!count))
1807 		return 0;
1808 	BUG_ON(NInoMstProtected(ni));
1809 	/*
1810 	 * If the attribute is not an index root and it is encrypted or
1811 	 * compressed, we cannot write to it yet.  Note we need to check for
1812 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1813 	 * index inodes.
1814 	 */
1815 	if (ni->type != AT_INDEX_ALLOCATION) {
1816 		/* If file is encrypted, deny access, just like NT4. */
1817 		if (NInoEncrypted(ni)) {
1818 			/*
1819 			 * Reminder for later: Encrypted files are _always_
1820 			 * non-resident so that the content can always be
1821 			 * encrypted.
1822 			 */
1823 			ntfs_debug("Denying write access to encrypted file.");
1824 			return -EACCES;
1825 		}
1826 		if (NInoCompressed(ni)) {
1827 			/* Only unnamed $DATA attribute can be compressed. */
1828 			BUG_ON(ni->type != AT_DATA);
1829 			BUG_ON(ni->name_len);
1830 			/*
1831 			 * Reminder for later: If resident, the data is not
1832 			 * actually compressed.  Only on the switch to non-
1833 			 * resident does compression kick in.  This is in
1834 			 * contrast to encrypted files (see above).
1835 			 */
1836 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1837 					"not implemented yet.  Sorry.");
1838 			return -EOPNOTSUPP;
1839 		}
1840 	}
1841 	/*
1842 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1843 	 * fails again.
1844 	 */
1845 	if (unlikely(NInoTruncateFailed(ni))) {
1846 		inode_dio_wait(vi);
1847 		err = ntfs_truncate(vi);
1848 		if (err || NInoTruncateFailed(ni)) {
1849 			if (!err)
1850 				err = -EIO;
1851 			ntfs_error(vol->sb, "Cannot perform write to inode "
1852 					"0x%lx, attribute type 0x%x, because "
1853 					"ntfs_truncate() failed (error code "
1854 					"%i).", vi->i_ino,
1855 					(unsigned)le32_to_cpu(ni->type), err);
1856 			return err;
1857 		}
1858 	}
1859 	/* The first byte after the write. */
1860 	end = pos + count;
1861 	/*
1862 	 * If the write goes beyond the allocated size, extend the allocation
1863 	 * to cover the whole of the write, rounded up to the nearest cluster.
1864 	 */
1865 	read_lock_irqsave(&ni->size_lock, flags);
1866 	ll = ni->allocated_size;
1867 	read_unlock_irqrestore(&ni->size_lock, flags);
1868 	if (end > ll) {
1869 		/* Extend the allocation without changing the data size. */
1870 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1871 		if (likely(ll >= 0)) {
1872 			BUG_ON(pos >= ll);
1873 			/* If the extension was partial truncate the write. */
1874 			if (end > ll) {
1875 				ntfs_debug("Truncating write to inode 0x%lx, "
1876 						"attribute type 0x%x, because "
1877 						"the allocation was only "
1878 						"partially extended.",
1879 						vi->i_ino, (unsigned)
1880 						le32_to_cpu(ni->type));
1881 				end = ll;
1882 				count = ll - pos;
1883 			}
1884 		} else {
1885 			err = ll;
1886 			read_lock_irqsave(&ni->size_lock, flags);
1887 			ll = ni->allocated_size;
1888 			read_unlock_irqrestore(&ni->size_lock, flags);
1889 			/* Perform a partial write if possible or fail. */
1890 			if (pos < ll) {
1891 				ntfs_debug("Truncating write to inode 0x%lx, "
1892 						"attribute type 0x%x, because "
1893 						"extending the allocation "
1894 						"failed (error code %i).",
1895 						vi->i_ino, (unsigned)
1896 						le32_to_cpu(ni->type), err);
1897 				end = ll;
1898 				count = ll - pos;
1899 			} else {
1900 				ntfs_error(vol->sb, "Cannot perform write to "
1901 						"inode 0x%lx, attribute type "
1902 						"0x%x, because extending the "
1903 						"allocation failed (error "
1904 						"code %i).", vi->i_ino,
1905 						(unsigned)
1906 						le32_to_cpu(ni->type), err);
1907 				return err;
1908 			}
1909 		}
1910 	}
1911 	written = 0;
1912 	/*
1913 	 * If the write starts beyond the initialized size, extend it up to the
1914 	 * beginning of the write and initialize all non-sparse space between
1915 	 * the old initialized size and the new one.  This automatically also
1916 	 * increments the vfs inode->i_size to keep it above or equal to the
1917 	 * initialized_size.
1918 	 */
1919 	read_lock_irqsave(&ni->size_lock, flags);
1920 	ll = ni->initialized_size;
1921 	read_unlock_irqrestore(&ni->size_lock, flags);
1922 	if (pos > ll) {
1923 		err = ntfs_attr_extend_initialized(ni, pos);
1924 		if (err < 0) {
1925 			ntfs_error(vol->sb, "Cannot perform write to inode "
1926 					"0x%lx, attribute type 0x%x, because "
1927 					"extending the initialized size "
1928 					"failed (error code %i).", vi->i_ino,
1929 					(unsigned)le32_to_cpu(ni->type), err);
1930 			status = err;
1931 			goto err_out;
1932 		}
1933 	}
1934 	/*
1935 	 * Determine the number of pages per cluster for non-resident
1936 	 * attributes.
1937 	 */
1938 	nr_pages = 1;
1939 	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1940 		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1941 	/* Finally, perform the actual write. */
1942 	last_vcn = -1;
1943 	if (likely(nr_segs == 1))
1944 		buf = iov->iov_base;
1945 	do {
1946 		VCN vcn;
1947 		pgoff_t idx, start_idx;
1948 		unsigned ofs, do_pages, u;
1949 		size_t copied;
1950 
1951 		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1952 		ofs = pos & ~PAGE_CACHE_MASK;
1953 		bytes = PAGE_CACHE_SIZE - ofs;
1954 		do_pages = 1;
1955 		if (nr_pages > 1) {
1956 			vcn = pos >> vol->cluster_size_bits;
1957 			if (vcn != last_vcn) {
1958 				last_vcn = vcn;
1959 				/*
1960 				 * Get the lcn of the vcn the write is in.  If
1961 				 * it is a hole, need to lock down all pages in
1962 				 * the cluster.
1963 				 */
1964 				down_read(&ni->runlist.lock);
1965 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1966 						vol->cluster_size_bits, false);
1967 				up_read(&ni->runlist.lock);
1968 				if (unlikely(lcn < LCN_HOLE)) {
1969 					status = -EIO;
1970 					if (lcn == LCN_ENOMEM)
1971 						status = -ENOMEM;
1972 					else
1973 						ntfs_error(vol->sb, "Cannot "
1974 							"perform write to "
1975 							"inode 0x%lx, "
1976 							"attribute type 0x%x, "
1977 							"because the attribute "
1978 							"is corrupt.",
1979 							vi->i_ino, (unsigned)
1980 							le32_to_cpu(ni->type));
1981 					break;
1982 				}
1983 				if (lcn == LCN_HOLE) {
1984 					start_idx = (pos & ~(s64)
1985 							vol->cluster_size_mask)
1986 							>> PAGE_CACHE_SHIFT;
1987 					bytes = vol->cluster_size - (pos &
1988 							vol->cluster_size_mask);
1989 					do_pages = nr_pages;
1990 				}
1991 			}
1992 		}
1993 		if (bytes > count)
1994 			bytes = count;
1995 		/*
1996 		 * Bring in the user page(s) that we will copy from _first_.
1997 		 * Otherwise there is a nasty deadlock on copying from the same
1998 		 * page(s) as we are writing to, without it/them being marked
1999 		 * up-to-date.  Note, at present there is nothing to stop the
2000 		 * pages being swapped out between us bringing them into memory
2001 		 * and doing the actual copying.
2002 		 */
2003 		if (likely(nr_segs == 1))
2004 			ntfs_fault_in_pages_readable(buf, bytes);
2005 		else
2006 			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2007 		/* Get and lock @do_pages starting at index @start_idx. */
2008 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2009 				pages, &cached_page);
2010 		if (unlikely(status))
2011 			break;
2012 		/*
2013 		 * For non-resident attributes, we need to fill any holes with
2014 		 * actual clusters and ensure all bufferes are mapped.  We also
2015 		 * need to bring uptodate any buffers that are only partially
2016 		 * being written to.
2017 		 */
2018 		if (NInoNonResident(ni)) {
2019 			status = ntfs_prepare_pages_for_non_resident_write(
2020 					pages, do_pages, pos, bytes);
2021 			if (unlikely(status)) {
2022 				loff_t i_size;
2023 
2024 				do {
2025 					unlock_page(pages[--do_pages]);
2026 					page_cache_release(pages[do_pages]);
2027 				} while (do_pages);
2028 				/*
2029 				 * The write preparation may have instantiated
2030 				 * allocated space outside i_size.  Trim this
2031 				 * off again.  We can ignore any errors in this
2032 				 * case as we will just be waisting a bit of
2033 				 * allocated space, which is not a disaster.
2034 				 */
2035 				i_size = i_size_read(vi);
2036 				if (pos + bytes > i_size) {
2037 					ntfs_write_failed(mapping, pos + bytes);
2038 				}
2039 				break;
2040 			}
2041 		}
2042 		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2043 		if (likely(nr_segs == 1)) {
2044 			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2045 					ofs, buf, bytes);
2046 			buf += copied;
2047 		} else
2048 			copied = ntfs_copy_from_user_iovec(pages + u,
2049 					do_pages - u, ofs, &iov, &iov_ofs,
2050 					bytes);
2051 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2052 		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2053 				bytes);
2054 		if (likely(!status)) {
2055 			written += copied;
2056 			count -= copied;
2057 			pos += copied;
2058 			if (unlikely(copied != bytes))
2059 				status = -EFAULT;
2060 		}
2061 		do {
2062 			unlock_page(pages[--do_pages]);
2063 			mark_page_accessed(pages[do_pages]);
2064 			page_cache_release(pages[do_pages]);
2065 		} while (do_pages);
2066 		if (unlikely(status))
2067 			break;
2068 		balance_dirty_pages_ratelimited(mapping);
2069 		cond_resched();
2070 	} while (count);
2071 err_out:
2072 	*ppos = pos;
2073 	if (cached_page)
2074 		page_cache_release(cached_page);
2075 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2076 			written ? "written" : "status", (unsigned long)written,
2077 			(long)status);
2078 	return written ? written : status;
2079 }
2080 
2081 /**
2082  * ntfs_file_aio_write_nolock -
2083  */
2084 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2085 		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2086 {
2087 	struct file *file = iocb->ki_filp;
2088 	struct address_space *mapping = file->f_mapping;
2089 	struct inode *inode = mapping->host;
2090 	loff_t pos;
2091 	size_t count;		/* after file limit checks */
2092 	ssize_t written, err;
2093 
2094 	count = 0;
2095 	err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2096 	if (err)
2097 		return err;
2098 	pos = *ppos;
2099 	/* We can write back this queue in page reclaim. */
2100 	current->backing_dev_info = mapping->backing_dev_info;
2101 	written = 0;
2102 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2103 	if (err)
2104 		goto out;
2105 	if (!count)
2106 		goto out;
2107 	err = file_remove_suid(file);
2108 	if (err)
2109 		goto out;
2110 	err = file_update_time(file);
2111 	if (err)
2112 		goto out;
2113 	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2114 			count);
2115 out:
2116 	current->backing_dev_info = NULL;
2117 	return written ? written : err;
2118 }
2119 
2120 /**
2121  * ntfs_file_aio_write -
2122  */
2123 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2124 		unsigned long nr_segs, loff_t pos)
2125 {
2126 	struct file *file = iocb->ki_filp;
2127 	struct address_space *mapping = file->f_mapping;
2128 	struct inode *inode = mapping->host;
2129 	ssize_t ret;
2130 
2131 	BUG_ON(iocb->ki_pos != pos);
2132 
2133 	mutex_lock(&inode->i_mutex);
2134 	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2135 	mutex_unlock(&inode->i_mutex);
2136 	if (ret > 0) {
2137 		int err = generic_write_sync(file, pos, ret);
2138 		if (err < 0)
2139 			ret = err;
2140 	}
2141 	return ret;
2142 }
2143 
2144 /**
2145  * ntfs_file_fsync - sync a file to disk
2146  * @filp:	file to be synced
2147  * @datasync:	if non-zero only flush user data and not metadata
2148  *
2149  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2150  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2151  *
2152  * If @datasync is false, write the mft record and all associated extent mft
2153  * records as well as the $DATA attribute and then sync the block device.
2154  *
2155  * If @datasync is true and the attribute is non-resident, we skip the writing
2156  * of the mft record and all associated extent mft records (this might still
2157  * happen due to the write_inode_now() call).
2158  *
2159  * Also, if @datasync is true, we do not wait on the inode to be written out
2160  * but we always wait on the page cache pages to be written out.
2161  *
2162  * Locking: Caller must hold i_mutex on the inode.
2163  *
2164  * TODO: We should probably also write all attribute/index inodes associated
2165  * with this inode but since we have no simple way of getting to them we ignore
2166  * this problem for now.
2167  */
2168 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2169 			   int datasync)
2170 {
2171 	struct inode *vi = filp->f_mapping->host;
2172 	int err, ret = 0;
2173 
2174 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2175 
2176 	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2177 	if (err)
2178 		return err;
2179 	mutex_lock(&vi->i_mutex);
2180 
2181 	BUG_ON(S_ISDIR(vi->i_mode));
2182 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2183 		ret = __ntfs_write_inode(vi, 1);
2184 	write_inode_now(vi, !datasync);
2185 	/*
2186 	 * NOTE: If we were to use mapping->private_list (see ext2 and
2187 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2188 	 * sync_mapping_buffers(vi->i_mapping).
2189 	 */
2190 	err = sync_blockdev(vi->i_sb->s_bdev);
2191 	if (unlikely(err && !ret))
2192 		ret = err;
2193 	if (likely(!ret))
2194 		ntfs_debug("Done.");
2195 	else
2196 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2197 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2198 	mutex_unlock(&vi->i_mutex);
2199 	return ret;
2200 }
2201 
2202 #endif /* NTFS_RW */
2203 
2204 const struct file_operations ntfs_file_ops = {
2205 	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2206 	.read		= do_sync_read,		 /* Read from file. */
2207 	.aio_read	= generic_file_aio_read, /* Async read from file. */
2208 #ifdef NTFS_RW
2209 	.write		= do_sync_write,	 /* Write to file. */
2210 	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2211 	/*.release	= ,*/			 /* Last file is closed.  See
2212 						    fs/ext2/file.c::
2213 						    ext2_release_file() for
2214 						    how to use this to discard
2215 						    preallocated space for
2216 						    write opened files. */
2217 	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2218 	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2219 						    i/o operations on a
2220 						    kiocb. */
2221 #endif /* NTFS_RW */
2222 	/*.ioctl	= ,*/			 /* Perform function on the
2223 						    mounted filesystem. */
2224 	.mmap		= generic_file_mmap,	 /* Mmap file. */
2225 	.open		= ntfs_file_open,	 /* Open file. */
2226 	.splice_read	= generic_file_splice_read /* Zero-copy data send with
2227 						    the data source being on
2228 						    the ntfs partition.  We do
2229 						    not need to care about the
2230 						    data destination. */
2231 	/*.sendpage	= ,*/			 /* Zero-copy data send with
2232 						    the data destination being
2233 						    on the ntfs partition.  We
2234 						    do not need to care about
2235 						    the data source. */
2236 };
2237 
2238 const struct inode_operations ntfs_file_inode_ops = {
2239 #ifdef NTFS_RW
2240 	.setattr	= ntfs_setattr,
2241 #endif /* NTFS_RW */
2242 };
2243 
2244 const struct file_operations ntfs_empty_file_ops = {};
2245 
2246 const struct inode_operations ntfs_empty_inode_ops = {};
2247