xref: /openbmc/linux/fs/ntfs/file.c (revision c819e2cf)
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30 #include <linux/aio.h>
31 
32 #include <asm/page.h>
33 #include <asm/uaccess.h>
34 
35 #include "attrib.h"
36 #include "bitmap.h"
37 #include "inode.h"
38 #include "debug.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_file_open - called when an inode is about to be opened
46  * @vi:		inode to be opened
47  * @filp:	file structure describing the inode
48  *
49  * Limit file size to the page cache limit on architectures where unsigned long
50  * is 32-bits. This is the most we can do for now without overflowing the page
51  * cache page index. Doing it this way means we don't run into problems because
52  * of existing too large files. It would be better to allow the user to read
53  * the beginning of the file but I doubt very much anyone is going to hit this
54  * check on a 32-bit architecture, so there is no point in adding the extra
55  * complexity required to support this.
56  *
57  * On 64-bit architectures, the check is hopefully optimized away by the
58  * compiler.
59  *
60  * After the check passes, just call generic_file_open() to do its work.
61  */
62 static int ntfs_file_open(struct inode *vi, struct file *filp)
63 {
64 	if (sizeof(unsigned long) < 8) {
65 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 			return -EOVERFLOW;
67 	}
68 	return generic_file_open(vi, filp);
69 }
70 
71 #ifdef NTFS_RW
72 
73 /**
74  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75  * @ni:			ntfs inode of the attribute to extend
76  * @new_init_size:	requested new initialized size in bytes
77  *
78  * Extend the initialized size of an attribute described by the ntfs inode @ni
79  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
80  * the old initialized size and @new_init_size both in the page cache and on
81  * disk (if relevant complete pages are already uptodate in the page cache then
82  * these are simply marked dirty).
83  *
84  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85  * in the resident attribute case, it is tied to the initialized size and, in
86  * the non-resident attribute case, it may not fall below the initialized size.
87  *
88  * Note that if the attribute is resident, we do not need to touch the page
89  * cache at all.  This is because if the page cache page is not uptodate we
90  * bring it uptodate later, when doing the write to the mft record since we
91  * then already have the page mapped.  And if the page is uptodate, the
92  * non-initialized region will already have been zeroed when the page was
93  * brought uptodate and the region may in fact already have been overwritten
94  * with new data via mmap() based writes, so we cannot just zero it.  And since
95  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96  * is unspecified, we choose not to do zeroing and thus we do not need to touch
97  * the page at all.  For a more detailed explanation see ntfs_truncate() in
98  * fs/ntfs/inode.c.
99  *
100  * Return 0 on success and -errno on error.  In the case that an error is
101  * encountered it is possible that the initialized size will already have been
102  * incremented some way towards @new_init_size but it is guaranteed that if
103  * this is the case, the necessary zeroing will also have happened and that all
104  * metadata is self-consistent.
105  *
106  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
107  *	    held by the caller.
108  */
109 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
110 {
111 	s64 old_init_size;
112 	loff_t old_i_size;
113 	pgoff_t index, end_index;
114 	unsigned long flags;
115 	struct inode *vi = VFS_I(ni);
116 	ntfs_inode *base_ni;
117 	MFT_RECORD *m = NULL;
118 	ATTR_RECORD *a;
119 	ntfs_attr_search_ctx *ctx = NULL;
120 	struct address_space *mapping;
121 	struct page *page = NULL;
122 	u8 *kattr;
123 	int err;
124 	u32 attr_len;
125 
126 	read_lock_irqsave(&ni->size_lock, flags);
127 	old_init_size = ni->initialized_size;
128 	old_i_size = i_size_read(vi);
129 	BUG_ON(new_init_size > ni->allocated_size);
130 	read_unlock_irqrestore(&ni->size_lock, flags);
131 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
132 			"old_initialized_size 0x%llx, "
133 			"new_initialized_size 0x%llx, i_size 0x%llx.",
134 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
135 			(unsigned long long)old_init_size,
136 			(unsigned long long)new_init_size, old_i_size);
137 	if (!NInoAttr(ni))
138 		base_ni = ni;
139 	else
140 		base_ni = ni->ext.base_ntfs_ino;
141 	/* Use goto to reduce indentation and we need the label below anyway. */
142 	if (NInoNonResident(ni))
143 		goto do_non_resident_extend;
144 	BUG_ON(old_init_size != old_i_size);
145 	m = map_mft_record(base_ni);
146 	if (IS_ERR(m)) {
147 		err = PTR_ERR(m);
148 		m = NULL;
149 		goto err_out;
150 	}
151 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
152 	if (unlikely(!ctx)) {
153 		err = -ENOMEM;
154 		goto err_out;
155 	}
156 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
157 			CASE_SENSITIVE, 0, NULL, 0, ctx);
158 	if (unlikely(err)) {
159 		if (err == -ENOENT)
160 			err = -EIO;
161 		goto err_out;
162 	}
163 	m = ctx->mrec;
164 	a = ctx->attr;
165 	BUG_ON(a->non_resident);
166 	/* The total length of the attribute value. */
167 	attr_len = le32_to_cpu(a->data.resident.value_length);
168 	BUG_ON(old_i_size != (loff_t)attr_len);
169 	/*
170 	 * Do the zeroing in the mft record and update the attribute size in
171 	 * the mft record.
172 	 */
173 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
174 	memset(kattr + attr_len, 0, new_init_size - attr_len);
175 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
176 	/* Finally, update the sizes in the vfs and ntfs inodes. */
177 	write_lock_irqsave(&ni->size_lock, flags);
178 	i_size_write(vi, new_init_size);
179 	ni->initialized_size = new_init_size;
180 	write_unlock_irqrestore(&ni->size_lock, flags);
181 	goto done;
182 do_non_resident_extend:
183 	/*
184 	 * If the new initialized size @new_init_size exceeds the current file
185 	 * size (vfs inode->i_size), we need to extend the file size to the
186 	 * new initialized size.
187 	 */
188 	if (new_init_size > old_i_size) {
189 		m = map_mft_record(base_ni);
190 		if (IS_ERR(m)) {
191 			err = PTR_ERR(m);
192 			m = NULL;
193 			goto err_out;
194 		}
195 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
196 		if (unlikely(!ctx)) {
197 			err = -ENOMEM;
198 			goto err_out;
199 		}
200 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
201 				CASE_SENSITIVE, 0, NULL, 0, ctx);
202 		if (unlikely(err)) {
203 			if (err == -ENOENT)
204 				err = -EIO;
205 			goto err_out;
206 		}
207 		m = ctx->mrec;
208 		a = ctx->attr;
209 		BUG_ON(!a->non_resident);
210 		BUG_ON(old_i_size != (loff_t)
211 				sle64_to_cpu(a->data.non_resident.data_size));
212 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
213 		flush_dcache_mft_record_page(ctx->ntfs_ino);
214 		mark_mft_record_dirty(ctx->ntfs_ino);
215 		/* Update the file size in the vfs inode. */
216 		i_size_write(vi, new_init_size);
217 		ntfs_attr_put_search_ctx(ctx);
218 		ctx = NULL;
219 		unmap_mft_record(base_ni);
220 		m = NULL;
221 	}
222 	mapping = vi->i_mapping;
223 	index = old_init_size >> PAGE_CACHE_SHIFT;
224 	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
225 	do {
226 		/*
227 		 * Read the page.  If the page is not present, this will zero
228 		 * the uninitialized regions for us.
229 		 */
230 		page = read_mapping_page(mapping, index, NULL);
231 		if (IS_ERR(page)) {
232 			err = PTR_ERR(page);
233 			goto init_err_out;
234 		}
235 		if (unlikely(PageError(page))) {
236 			page_cache_release(page);
237 			err = -EIO;
238 			goto init_err_out;
239 		}
240 		/*
241 		 * Update the initialized size in the ntfs inode.  This is
242 		 * enough to make ntfs_writepage() work.
243 		 */
244 		write_lock_irqsave(&ni->size_lock, flags);
245 		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
246 		if (ni->initialized_size > new_init_size)
247 			ni->initialized_size = new_init_size;
248 		write_unlock_irqrestore(&ni->size_lock, flags);
249 		/* Set the page dirty so it gets written out. */
250 		set_page_dirty(page);
251 		page_cache_release(page);
252 		/*
253 		 * Play nice with the vm and the rest of the system.  This is
254 		 * very much needed as we can potentially be modifying the
255 		 * initialised size from a very small value to a really huge
256 		 * value, e.g.
257 		 *	f = open(somefile, O_TRUNC);
258 		 *	truncate(f, 10GiB);
259 		 *	seek(f, 10GiB);
260 		 *	write(f, 1);
261 		 * And this would mean we would be marking dirty hundreds of
262 		 * thousands of pages or as in the above example more than
263 		 * two and a half million pages!
264 		 *
265 		 * TODO: For sparse pages could optimize this workload by using
266 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
267 		 * would be set in readpage for sparse pages and here we would
268 		 * not need to mark dirty any pages which have this bit set.
269 		 * The only caveat is that we have to clear the bit everywhere
270 		 * where we allocate any clusters that lie in the page or that
271 		 * contain the page.
272 		 *
273 		 * TODO: An even greater optimization would be for us to only
274 		 * call readpage() on pages which are not in sparse regions as
275 		 * determined from the runlist.  This would greatly reduce the
276 		 * number of pages we read and make dirty in the case of sparse
277 		 * files.
278 		 */
279 		balance_dirty_pages_ratelimited(mapping);
280 		cond_resched();
281 	} while (++index < end_index);
282 	read_lock_irqsave(&ni->size_lock, flags);
283 	BUG_ON(ni->initialized_size != new_init_size);
284 	read_unlock_irqrestore(&ni->size_lock, flags);
285 	/* Now bring in sync the initialized_size in the mft record. */
286 	m = map_mft_record(base_ni);
287 	if (IS_ERR(m)) {
288 		err = PTR_ERR(m);
289 		m = NULL;
290 		goto init_err_out;
291 	}
292 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
293 	if (unlikely(!ctx)) {
294 		err = -ENOMEM;
295 		goto init_err_out;
296 	}
297 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
298 			CASE_SENSITIVE, 0, NULL, 0, ctx);
299 	if (unlikely(err)) {
300 		if (err == -ENOENT)
301 			err = -EIO;
302 		goto init_err_out;
303 	}
304 	m = ctx->mrec;
305 	a = ctx->attr;
306 	BUG_ON(!a->non_resident);
307 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
308 done:
309 	flush_dcache_mft_record_page(ctx->ntfs_ino);
310 	mark_mft_record_dirty(ctx->ntfs_ino);
311 	if (ctx)
312 		ntfs_attr_put_search_ctx(ctx);
313 	if (m)
314 		unmap_mft_record(base_ni);
315 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
316 			(unsigned long long)new_init_size, i_size_read(vi));
317 	return 0;
318 init_err_out:
319 	write_lock_irqsave(&ni->size_lock, flags);
320 	ni->initialized_size = old_init_size;
321 	write_unlock_irqrestore(&ni->size_lock, flags);
322 err_out:
323 	if (ctx)
324 		ntfs_attr_put_search_ctx(ctx);
325 	if (m)
326 		unmap_mft_record(base_ni);
327 	ntfs_debug("Failed.  Returning error code %i.", err);
328 	return err;
329 }
330 
331 /**
332  * ntfs_fault_in_pages_readable -
333  *
334  * Fault a number of userspace pages into pagetables.
335  *
336  * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
337  * with more than two userspace pages as well as handling the single page case
338  * elegantly.
339  *
340  * If you find this difficult to understand, then think of the while loop being
341  * the following code, except that we do without the integer variable ret:
342  *
343  *	do {
344  *		ret = __get_user(c, uaddr);
345  *		uaddr += PAGE_SIZE;
346  *	} while (!ret && uaddr < end);
347  *
348  * Note, the final __get_user() may well run out-of-bounds of the user buffer,
349  * but _not_ out-of-bounds of the page the user buffer belongs to, and since
350  * this is only a read and not a write, and since it is still in the same page,
351  * it should not matter and this makes the code much simpler.
352  */
353 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
354 		int bytes)
355 {
356 	const char __user *end;
357 	volatile char c;
358 
359 	/* Set @end to the first byte outside the last page we care about. */
360 	end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
361 
362 	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
363 		;
364 }
365 
366 /**
367  * ntfs_fault_in_pages_readable_iovec -
368  *
369  * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
370  */
371 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
372 		size_t iov_ofs, int bytes)
373 {
374 	do {
375 		const char __user *buf;
376 		unsigned len;
377 
378 		buf = iov->iov_base + iov_ofs;
379 		len = iov->iov_len - iov_ofs;
380 		if (len > bytes)
381 			len = bytes;
382 		ntfs_fault_in_pages_readable(buf, len);
383 		bytes -= len;
384 		iov++;
385 		iov_ofs = 0;
386 	} while (bytes);
387 }
388 
389 /**
390  * __ntfs_grab_cache_pages - obtain a number of locked pages
391  * @mapping:	address space mapping from which to obtain page cache pages
392  * @index:	starting index in @mapping at which to begin obtaining pages
393  * @nr_pages:	number of page cache pages to obtain
394  * @pages:	array of pages in which to return the obtained page cache pages
395  * @cached_page: allocated but as yet unused page
396  *
397  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
398  * starting at index @index.
399  *
400  * If a page is newly created, add it to lru list
401  *
402  * Note, the page locks are obtained in ascending page index order.
403  */
404 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
405 		pgoff_t index, const unsigned nr_pages, struct page **pages,
406 		struct page **cached_page)
407 {
408 	int err, nr;
409 
410 	BUG_ON(!nr_pages);
411 	err = nr = 0;
412 	do {
413 		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
414 				FGP_ACCESSED);
415 		if (!pages[nr]) {
416 			if (!*cached_page) {
417 				*cached_page = page_cache_alloc(mapping);
418 				if (unlikely(!*cached_page)) {
419 					err = -ENOMEM;
420 					goto err_out;
421 				}
422 			}
423 			err = add_to_page_cache_lru(*cached_page, mapping, index,
424 					GFP_KERNEL);
425 			if (unlikely(err)) {
426 				if (err == -EEXIST)
427 					continue;
428 				goto err_out;
429 			}
430 			pages[nr] = *cached_page;
431 			*cached_page = NULL;
432 		}
433 		index++;
434 		nr++;
435 	} while (nr < nr_pages);
436 out:
437 	return err;
438 err_out:
439 	while (nr > 0) {
440 		unlock_page(pages[--nr]);
441 		page_cache_release(pages[nr]);
442 	}
443 	goto out;
444 }
445 
446 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
447 {
448 	lock_buffer(bh);
449 	get_bh(bh);
450 	bh->b_end_io = end_buffer_read_sync;
451 	return submit_bh(READ, bh);
452 }
453 
454 /**
455  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
456  * @pages:	array of destination pages
457  * @nr_pages:	number of pages in @pages
458  * @pos:	byte position in file at which the write begins
459  * @bytes:	number of bytes to be written
460  *
461  * This is called for non-resident attributes from ntfs_file_buffered_write()
462  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
463  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
464  * data has not yet been copied into the @pages.
465  *
466  * Need to fill any holes with actual clusters, allocate buffers if necessary,
467  * ensure all the buffers are mapped, and bring uptodate any buffers that are
468  * only partially being written to.
469  *
470  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
471  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
472  * the same cluster and that they are the entirety of that cluster, and that
473  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
474  *
475  * i_size is not to be modified yet.
476  *
477  * Return 0 on success or -errno on error.
478  */
479 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
480 		unsigned nr_pages, s64 pos, size_t bytes)
481 {
482 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
483 	LCN lcn;
484 	s64 bh_pos, vcn_len, end, initialized_size;
485 	sector_t lcn_block;
486 	struct page *page;
487 	struct inode *vi;
488 	ntfs_inode *ni, *base_ni = NULL;
489 	ntfs_volume *vol;
490 	runlist_element *rl, *rl2;
491 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
492 	ntfs_attr_search_ctx *ctx = NULL;
493 	MFT_RECORD *m = NULL;
494 	ATTR_RECORD *a = NULL;
495 	unsigned long flags;
496 	u32 attr_rec_len = 0;
497 	unsigned blocksize, u;
498 	int err, mp_size;
499 	bool rl_write_locked, was_hole, is_retry;
500 	unsigned char blocksize_bits;
501 	struct {
502 		u8 runlist_merged:1;
503 		u8 mft_attr_mapped:1;
504 		u8 mp_rebuilt:1;
505 		u8 attr_switched:1;
506 	} status = { 0, 0, 0, 0 };
507 
508 	BUG_ON(!nr_pages);
509 	BUG_ON(!pages);
510 	BUG_ON(!*pages);
511 	vi = pages[0]->mapping->host;
512 	ni = NTFS_I(vi);
513 	vol = ni->vol;
514 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
515 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
516 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
517 			(long long)pos, bytes);
518 	blocksize = vol->sb->s_blocksize;
519 	blocksize_bits = vol->sb->s_blocksize_bits;
520 	u = 0;
521 	do {
522 		page = pages[u];
523 		BUG_ON(!page);
524 		/*
525 		 * create_empty_buffers() will create uptodate/dirty buffers if
526 		 * the page is uptodate/dirty.
527 		 */
528 		if (!page_has_buffers(page)) {
529 			create_empty_buffers(page, blocksize, 0);
530 			if (unlikely(!page_has_buffers(page)))
531 				return -ENOMEM;
532 		}
533 	} while (++u < nr_pages);
534 	rl_write_locked = false;
535 	rl = NULL;
536 	err = 0;
537 	vcn = lcn = -1;
538 	vcn_len = 0;
539 	lcn_block = -1;
540 	was_hole = false;
541 	cpos = pos >> vol->cluster_size_bits;
542 	end = pos + bytes;
543 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
544 	/*
545 	 * Loop over each page and for each page over each buffer.  Use goto to
546 	 * reduce indentation.
547 	 */
548 	u = 0;
549 do_next_page:
550 	page = pages[u];
551 	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
552 	bh = head = page_buffers(page);
553 	do {
554 		VCN cdelta;
555 		s64 bh_end;
556 		unsigned bh_cofs;
557 
558 		/* Clear buffer_new on all buffers to reinitialise state. */
559 		if (buffer_new(bh))
560 			clear_buffer_new(bh);
561 		bh_end = bh_pos + blocksize;
562 		bh_cpos = bh_pos >> vol->cluster_size_bits;
563 		bh_cofs = bh_pos & vol->cluster_size_mask;
564 		if (buffer_mapped(bh)) {
565 			/*
566 			 * The buffer is already mapped.  If it is uptodate,
567 			 * ignore it.
568 			 */
569 			if (buffer_uptodate(bh))
570 				continue;
571 			/*
572 			 * The buffer is not uptodate.  If the page is uptodate
573 			 * set the buffer uptodate and otherwise ignore it.
574 			 */
575 			if (PageUptodate(page)) {
576 				set_buffer_uptodate(bh);
577 				continue;
578 			}
579 			/*
580 			 * Neither the page nor the buffer are uptodate.  If
581 			 * the buffer is only partially being written to, we
582 			 * need to read it in before the write, i.e. now.
583 			 */
584 			if ((bh_pos < pos && bh_end > pos) ||
585 					(bh_pos < end && bh_end > end)) {
586 				/*
587 				 * If the buffer is fully or partially within
588 				 * the initialized size, do an actual read.
589 				 * Otherwise, simply zero the buffer.
590 				 */
591 				read_lock_irqsave(&ni->size_lock, flags);
592 				initialized_size = ni->initialized_size;
593 				read_unlock_irqrestore(&ni->size_lock, flags);
594 				if (bh_pos < initialized_size) {
595 					ntfs_submit_bh_for_read(bh);
596 					*wait_bh++ = bh;
597 				} else {
598 					zero_user(page, bh_offset(bh),
599 							blocksize);
600 					set_buffer_uptodate(bh);
601 				}
602 			}
603 			continue;
604 		}
605 		/* Unmapped buffer.  Need to map it. */
606 		bh->b_bdev = vol->sb->s_bdev;
607 		/*
608 		 * If the current buffer is in the same clusters as the map
609 		 * cache, there is no need to check the runlist again.  The
610 		 * map cache is made up of @vcn, which is the first cached file
611 		 * cluster, @vcn_len which is the number of cached file
612 		 * clusters, @lcn is the device cluster corresponding to @vcn,
613 		 * and @lcn_block is the block number corresponding to @lcn.
614 		 */
615 		cdelta = bh_cpos - vcn;
616 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
617 map_buffer_cached:
618 			BUG_ON(lcn < 0);
619 			bh->b_blocknr = lcn_block +
620 					(cdelta << (vol->cluster_size_bits -
621 					blocksize_bits)) +
622 					(bh_cofs >> blocksize_bits);
623 			set_buffer_mapped(bh);
624 			/*
625 			 * If the page is uptodate so is the buffer.  If the
626 			 * buffer is fully outside the write, we ignore it if
627 			 * it was already allocated and we mark it dirty so it
628 			 * gets written out if we allocated it.  On the other
629 			 * hand, if we allocated the buffer but we are not
630 			 * marking it dirty we set buffer_new so we can do
631 			 * error recovery.
632 			 */
633 			if (PageUptodate(page)) {
634 				if (!buffer_uptodate(bh))
635 					set_buffer_uptodate(bh);
636 				if (unlikely(was_hole)) {
637 					/* We allocated the buffer. */
638 					unmap_underlying_metadata(bh->b_bdev,
639 							bh->b_blocknr);
640 					if (bh_end <= pos || bh_pos >= end)
641 						mark_buffer_dirty(bh);
642 					else
643 						set_buffer_new(bh);
644 				}
645 				continue;
646 			}
647 			/* Page is _not_ uptodate. */
648 			if (likely(!was_hole)) {
649 				/*
650 				 * Buffer was already allocated.  If it is not
651 				 * uptodate and is only partially being written
652 				 * to, we need to read it in before the write,
653 				 * i.e. now.
654 				 */
655 				if (!buffer_uptodate(bh) && bh_pos < end &&
656 						bh_end > pos &&
657 						(bh_pos < pos ||
658 						bh_end > end)) {
659 					/*
660 					 * If the buffer is fully or partially
661 					 * within the initialized size, do an
662 					 * actual read.  Otherwise, simply zero
663 					 * the buffer.
664 					 */
665 					read_lock_irqsave(&ni->size_lock,
666 							flags);
667 					initialized_size = ni->initialized_size;
668 					read_unlock_irqrestore(&ni->size_lock,
669 							flags);
670 					if (bh_pos < initialized_size) {
671 						ntfs_submit_bh_for_read(bh);
672 						*wait_bh++ = bh;
673 					} else {
674 						zero_user(page, bh_offset(bh),
675 								blocksize);
676 						set_buffer_uptodate(bh);
677 					}
678 				}
679 				continue;
680 			}
681 			/* We allocated the buffer. */
682 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
683 			/*
684 			 * If the buffer is fully outside the write, zero it,
685 			 * set it uptodate, and mark it dirty so it gets
686 			 * written out.  If it is partially being written to,
687 			 * zero region surrounding the write but leave it to
688 			 * commit write to do anything else.  Finally, if the
689 			 * buffer is fully being overwritten, do nothing.
690 			 */
691 			if (bh_end <= pos || bh_pos >= end) {
692 				if (!buffer_uptodate(bh)) {
693 					zero_user(page, bh_offset(bh),
694 							blocksize);
695 					set_buffer_uptodate(bh);
696 				}
697 				mark_buffer_dirty(bh);
698 				continue;
699 			}
700 			set_buffer_new(bh);
701 			if (!buffer_uptodate(bh) &&
702 					(bh_pos < pos || bh_end > end)) {
703 				u8 *kaddr;
704 				unsigned pofs;
705 
706 				kaddr = kmap_atomic(page);
707 				if (bh_pos < pos) {
708 					pofs = bh_pos & ~PAGE_CACHE_MASK;
709 					memset(kaddr + pofs, 0, pos - bh_pos);
710 				}
711 				if (bh_end > end) {
712 					pofs = end & ~PAGE_CACHE_MASK;
713 					memset(kaddr + pofs, 0, bh_end - end);
714 				}
715 				kunmap_atomic(kaddr);
716 				flush_dcache_page(page);
717 			}
718 			continue;
719 		}
720 		/*
721 		 * Slow path: this is the first buffer in the cluster.  If it
722 		 * is outside allocated size and is not uptodate, zero it and
723 		 * set it uptodate.
724 		 */
725 		read_lock_irqsave(&ni->size_lock, flags);
726 		initialized_size = ni->allocated_size;
727 		read_unlock_irqrestore(&ni->size_lock, flags);
728 		if (bh_pos > initialized_size) {
729 			if (PageUptodate(page)) {
730 				if (!buffer_uptodate(bh))
731 					set_buffer_uptodate(bh);
732 			} else if (!buffer_uptodate(bh)) {
733 				zero_user(page, bh_offset(bh), blocksize);
734 				set_buffer_uptodate(bh);
735 			}
736 			continue;
737 		}
738 		is_retry = false;
739 		if (!rl) {
740 			down_read(&ni->runlist.lock);
741 retry_remap:
742 			rl = ni->runlist.rl;
743 		}
744 		if (likely(rl != NULL)) {
745 			/* Seek to element containing target cluster. */
746 			while (rl->length && rl[1].vcn <= bh_cpos)
747 				rl++;
748 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
749 			if (likely(lcn >= 0)) {
750 				/*
751 				 * Successful remap, setup the map cache and
752 				 * use that to deal with the buffer.
753 				 */
754 				was_hole = false;
755 				vcn = bh_cpos;
756 				vcn_len = rl[1].vcn - vcn;
757 				lcn_block = lcn << (vol->cluster_size_bits -
758 						blocksize_bits);
759 				cdelta = 0;
760 				/*
761 				 * If the number of remaining clusters touched
762 				 * by the write is smaller or equal to the
763 				 * number of cached clusters, unlock the
764 				 * runlist as the map cache will be used from
765 				 * now on.
766 				 */
767 				if (likely(vcn + vcn_len >= cend)) {
768 					if (rl_write_locked) {
769 						up_write(&ni->runlist.lock);
770 						rl_write_locked = false;
771 					} else
772 						up_read(&ni->runlist.lock);
773 					rl = NULL;
774 				}
775 				goto map_buffer_cached;
776 			}
777 		} else
778 			lcn = LCN_RL_NOT_MAPPED;
779 		/*
780 		 * If it is not a hole and not out of bounds, the runlist is
781 		 * probably unmapped so try to map it now.
782 		 */
783 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
784 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
785 				/* Attempt to map runlist. */
786 				if (!rl_write_locked) {
787 					/*
788 					 * We need the runlist locked for
789 					 * writing, so if it is locked for
790 					 * reading relock it now and retry in
791 					 * case it changed whilst we dropped
792 					 * the lock.
793 					 */
794 					up_read(&ni->runlist.lock);
795 					down_write(&ni->runlist.lock);
796 					rl_write_locked = true;
797 					goto retry_remap;
798 				}
799 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
800 						NULL);
801 				if (likely(!err)) {
802 					is_retry = true;
803 					goto retry_remap;
804 				}
805 				/*
806 				 * If @vcn is out of bounds, pretend @lcn is
807 				 * LCN_ENOENT.  As long as the buffer is out
808 				 * of bounds this will work fine.
809 				 */
810 				if (err == -ENOENT) {
811 					lcn = LCN_ENOENT;
812 					err = 0;
813 					goto rl_not_mapped_enoent;
814 				}
815 			} else
816 				err = -EIO;
817 			/* Failed to map the buffer, even after retrying. */
818 			bh->b_blocknr = -1;
819 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
820 					"attribute type 0x%x, vcn 0x%llx, "
821 					"vcn offset 0x%x, because its "
822 					"location on disk could not be "
823 					"determined%s (error code %i).",
824 					ni->mft_no, ni->type,
825 					(unsigned long long)bh_cpos,
826 					(unsigned)bh_pos &
827 					vol->cluster_size_mask,
828 					is_retry ? " even after retrying" : "",
829 					err);
830 			break;
831 		}
832 rl_not_mapped_enoent:
833 		/*
834 		 * The buffer is in a hole or out of bounds.  We need to fill
835 		 * the hole, unless the buffer is in a cluster which is not
836 		 * touched by the write, in which case we just leave the buffer
837 		 * unmapped.  This can only happen when the cluster size is
838 		 * less than the page cache size.
839 		 */
840 		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
841 			bh_cend = (bh_end + vol->cluster_size - 1) >>
842 					vol->cluster_size_bits;
843 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
844 				bh->b_blocknr = -1;
845 				/*
846 				 * If the buffer is uptodate we skip it.  If it
847 				 * is not but the page is uptodate, we can set
848 				 * the buffer uptodate.  If the page is not
849 				 * uptodate, we can clear the buffer and set it
850 				 * uptodate.  Whether this is worthwhile is
851 				 * debatable and this could be removed.
852 				 */
853 				if (PageUptodate(page)) {
854 					if (!buffer_uptodate(bh))
855 						set_buffer_uptodate(bh);
856 				} else if (!buffer_uptodate(bh)) {
857 					zero_user(page, bh_offset(bh),
858 						blocksize);
859 					set_buffer_uptodate(bh);
860 				}
861 				continue;
862 			}
863 		}
864 		/*
865 		 * Out of bounds buffer is invalid if it was not really out of
866 		 * bounds.
867 		 */
868 		BUG_ON(lcn != LCN_HOLE);
869 		/*
870 		 * We need the runlist locked for writing, so if it is locked
871 		 * for reading relock it now and retry in case it changed
872 		 * whilst we dropped the lock.
873 		 */
874 		BUG_ON(!rl);
875 		if (!rl_write_locked) {
876 			up_read(&ni->runlist.lock);
877 			down_write(&ni->runlist.lock);
878 			rl_write_locked = true;
879 			goto retry_remap;
880 		}
881 		/* Find the previous last allocated cluster. */
882 		BUG_ON(rl->lcn != LCN_HOLE);
883 		lcn = -1;
884 		rl2 = rl;
885 		while (--rl2 >= ni->runlist.rl) {
886 			if (rl2->lcn >= 0) {
887 				lcn = rl2->lcn + rl2->length;
888 				break;
889 			}
890 		}
891 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
892 				false);
893 		if (IS_ERR(rl2)) {
894 			err = PTR_ERR(rl2);
895 			ntfs_debug("Failed to allocate cluster, error code %i.",
896 					err);
897 			break;
898 		}
899 		lcn = rl2->lcn;
900 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
901 		if (IS_ERR(rl)) {
902 			err = PTR_ERR(rl);
903 			if (err != -ENOMEM)
904 				err = -EIO;
905 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
906 				ntfs_error(vol->sb, "Failed to release "
907 						"allocated cluster in error "
908 						"code path.  Run chkdsk to "
909 						"recover the lost cluster.");
910 				NVolSetErrors(vol);
911 			}
912 			ntfs_free(rl2);
913 			break;
914 		}
915 		ni->runlist.rl = rl;
916 		status.runlist_merged = 1;
917 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
918 				(unsigned long long)lcn);
919 		/* Map and lock the mft record and get the attribute record. */
920 		if (!NInoAttr(ni))
921 			base_ni = ni;
922 		else
923 			base_ni = ni->ext.base_ntfs_ino;
924 		m = map_mft_record(base_ni);
925 		if (IS_ERR(m)) {
926 			err = PTR_ERR(m);
927 			break;
928 		}
929 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
930 		if (unlikely(!ctx)) {
931 			err = -ENOMEM;
932 			unmap_mft_record(base_ni);
933 			break;
934 		}
935 		status.mft_attr_mapped = 1;
936 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
937 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
938 		if (unlikely(err)) {
939 			if (err == -ENOENT)
940 				err = -EIO;
941 			break;
942 		}
943 		m = ctx->mrec;
944 		a = ctx->attr;
945 		/*
946 		 * Find the runlist element with which the attribute extent
947 		 * starts.  Note, we cannot use the _attr_ version because we
948 		 * have mapped the mft record.  That is ok because we know the
949 		 * runlist fragment must be mapped already to have ever gotten
950 		 * here, so we can just use the _rl_ version.
951 		 */
952 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
953 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
954 		BUG_ON(!rl2);
955 		BUG_ON(!rl2->length);
956 		BUG_ON(rl2->lcn < LCN_HOLE);
957 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
958 		/*
959 		 * If @highest_vcn is zero, calculate the real highest_vcn
960 		 * (which can really be zero).
961 		 */
962 		if (!highest_vcn)
963 			highest_vcn = (sle64_to_cpu(
964 					a->data.non_resident.allocated_size) >>
965 					vol->cluster_size_bits) - 1;
966 		/*
967 		 * Determine the size of the mapping pairs array for the new
968 		 * extent, i.e. the old extent with the hole filled.
969 		 */
970 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
971 				highest_vcn);
972 		if (unlikely(mp_size <= 0)) {
973 			if (!(err = mp_size))
974 				err = -EIO;
975 			ntfs_debug("Failed to get size for mapping pairs "
976 					"array, error code %i.", err);
977 			break;
978 		}
979 		/*
980 		 * Resize the attribute record to fit the new mapping pairs
981 		 * array.
982 		 */
983 		attr_rec_len = le32_to_cpu(a->length);
984 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
985 				a->data.non_resident.mapping_pairs_offset));
986 		if (unlikely(err)) {
987 			BUG_ON(err != -ENOSPC);
988 			// TODO: Deal with this by using the current attribute
989 			// and fill it with as much of the mapping pairs
990 			// array as possible.  Then loop over each attribute
991 			// extent rewriting the mapping pairs arrays as we go
992 			// along and if when we reach the end we have not
993 			// enough space, try to resize the last attribute
994 			// extent and if even that fails, add a new attribute
995 			// extent.
996 			// We could also try to resize at each step in the hope
997 			// that we will not need to rewrite every single extent.
998 			// Note, we may need to decompress some extents to fill
999 			// the runlist as we are walking the extents...
1000 			ntfs_error(vol->sb, "Not enough space in the mft "
1001 					"record for the extended attribute "
1002 					"record.  This case is not "
1003 					"implemented yet.");
1004 			err = -EOPNOTSUPP;
1005 			break ;
1006 		}
1007 		status.mp_rebuilt = 1;
1008 		/*
1009 		 * Generate the mapping pairs array directly into the attribute
1010 		 * record.
1011 		 */
1012 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1013 				a->data.non_resident.mapping_pairs_offset),
1014 				mp_size, rl2, vcn, highest_vcn, NULL);
1015 		if (unlikely(err)) {
1016 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1017 					"attribute type 0x%x, because building "
1018 					"the mapping pairs failed with error "
1019 					"code %i.", vi->i_ino,
1020 					(unsigned)le32_to_cpu(ni->type), err);
1021 			err = -EIO;
1022 			break;
1023 		}
1024 		/* Update the highest_vcn but only if it was not set. */
1025 		if (unlikely(!a->data.non_resident.highest_vcn))
1026 			a->data.non_resident.highest_vcn =
1027 					cpu_to_sle64(highest_vcn);
1028 		/*
1029 		 * If the attribute is sparse/compressed, update the compressed
1030 		 * size in the ntfs_inode structure and the attribute record.
1031 		 */
1032 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1033 			/*
1034 			 * If we are not in the first attribute extent, switch
1035 			 * to it, but first ensure the changes will make it to
1036 			 * disk later.
1037 			 */
1038 			if (a->data.non_resident.lowest_vcn) {
1039 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1040 				mark_mft_record_dirty(ctx->ntfs_ino);
1041 				ntfs_attr_reinit_search_ctx(ctx);
1042 				err = ntfs_attr_lookup(ni->type, ni->name,
1043 						ni->name_len, CASE_SENSITIVE,
1044 						0, NULL, 0, ctx);
1045 				if (unlikely(err)) {
1046 					status.attr_switched = 1;
1047 					break;
1048 				}
1049 				/* @m is not used any more so do not set it. */
1050 				a = ctx->attr;
1051 			}
1052 			write_lock_irqsave(&ni->size_lock, flags);
1053 			ni->itype.compressed.size += vol->cluster_size;
1054 			a->data.non_resident.compressed_size =
1055 					cpu_to_sle64(ni->itype.compressed.size);
1056 			write_unlock_irqrestore(&ni->size_lock, flags);
1057 		}
1058 		/* Ensure the changes make it to disk. */
1059 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1060 		mark_mft_record_dirty(ctx->ntfs_ino);
1061 		ntfs_attr_put_search_ctx(ctx);
1062 		unmap_mft_record(base_ni);
1063 		/* Successfully filled the hole. */
1064 		status.runlist_merged = 0;
1065 		status.mft_attr_mapped = 0;
1066 		status.mp_rebuilt = 0;
1067 		/* Setup the map cache and use that to deal with the buffer. */
1068 		was_hole = true;
1069 		vcn = bh_cpos;
1070 		vcn_len = 1;
1071 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1072 		cdelta = 0;
1073 		/*
1074 		 * If the number of remaining clusters in the @pages is smaller
1075 		 * or equal to the number of cached clusters, unlock the
1076 		 * runlist as the map cache will be used from now on.
1077 		 */
1078 		if (likely(vcn + vcn_len >= cend)) {
1079 			up_write(&ni->runlist.lock);
1080 			rl_write_locked = false;
1081 			rl = NULL;
1082 		}
1083 		goto map_buffer_cached;
1084 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1085 	/* If there are no errors, do the next page. */
1086 	if (likely(!err && ++u < nr_pages))
1087 		goto do_next_page;
1088 	/* If there are no errors, release the runlist lock if we took it. */
1089 	if (likely(!err)) {
1090 		if (unlikely(rl_write_locked)) {
1091 			up_write(&ni->runlist.lock);
1092 			rl_write_locked = false;
1093 		} else if (unlikely(rl))
1094 			up_read(&ni->runlist.lock);
1095 		rl = NULL;
1096 	}
1097 	/* If we issued read requests, let them complete. */
1098 	read_lock_irqsave(&ni->size_lock, flags);
1099 	initialized_size = ni->initialized_size;
1100 	read_unlock_irqrestore(&ni->size_lock, flags);
1101 	while (wait_bh > wait) {
1102 		bh = *--wait_bh;
1103 		wait_on_buffer(bh);
1104 		if (likely(buffer_uptodate(bh))) {
1105 			page = bh->b_page;
1106 			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1107 					bh_offset(bh);
1108 			/*
1109 			 * If the buffer overflows the initialized size, need
1110 			 * to zero the overflowing region.
1111 			 */
1112 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1113 				int ofs = 0;
1114 
1115 				if (likely(bh_pos < initialized_size))
1116 					ofs = initialized_size - bh_pos;
1117 				zero_user_segment(page, bh_offset(bh) + ofs,
1118 						blocksize);
1119 			}
1120 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1121 			err = -EIO;
1122 	}
1123 	if (likely(!err)) {
1124 		/* Clear buffer_new on all buffers. */
1125 		u = 0;
1126 		do {
1127 			bh = head = page_buffers(pages[u]);
1128 			do {
1129 				if (buffer_new(bh))
1130 					clear_buffer_new(bh);
1131 			} while ((bh = bh->b_this_page) != head);
1132 		} while (++u < nr_pages);
1133 		ntfs_debug("Done.");
1134 		return err;
1135 	}
1136 	if (status.attr_switched) {
1137 		/* Get back to the attribute extent we modified. */
1138 		ntfs_attr_reinit_search_ctx(ctx);
1139 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1140 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1141 			ntfs_error(vol->sb, "Failed to find required "
1142 					"attribute extent of attribute in "
1143 					"error code path.  Run chkdsk to "
1144 					"recover.");
1145 			write_lock_irqsave(&ni->size_lock, flags);
1146 			ni->itype.compressed.size += vol->cluster_size;
1147 			write_unlock_irqrestore(&ni->size_lock, flags);
1148 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1149 			mark_mft_record_dirty(ctx->ntfs_ino);
1150 			/*
1151 			 * The only thing that is now wrong is the compressed
1152 			 * size of the base attribute extent which chkdsk
1153 			 * should be able to fix.
1154 			 */
1155 			NVolSetErrors(vol);
1156 		} else {
1157 			m = ctx->mrec;
1158 			a = ctx->attr;
1159 			status.attr_switched = 0;
1160 		}
1161 	}
1162 	/*
1163 	 * If the runlist has been modified, need to restore it by punching a
1164 	 * hole into it and we then need to deallocate the on-disk cluster as
1165 	 * well.  Note, we only modify the runlist if we are able to generate a
1166 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1167 	 * is not switched.
1168 	 */
1169 	if (status.runlist_merged && !status.attr_switched) {
1170 		BUG_ON(!rl_write_locked);
1171 		/* Make the file cluster we allocated sparse in the runlist. */
1172 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1173 			ntfs_error(vol->sb, "Failed to punch hole into "
1174 					"attribute runlist in error code "
1175 					"path.  Run chkdsk to recover the "
1176 					"lost cluster.");
1177 			NVolSetErrors(vol);
1178 		} else /* if (success) */ {
1179 			status.runlist_merged = 0;
1180 			/*
1181 			 * Deallocate the on-disk cluster we allocated but only
1182 			 * if we succeeded in punching its vcn out of the
1183 			 * runlist.
1184 			 */
1185 			down_write(&vol->lcnbmp_lock);
1186 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1187 				ntfs_error(vol->sb, "Failed to release "
1188 						"allocated cluster in error "
1189 						"code path.  Run chkdsk to "
1190 						"recover the lost cluster.");
1191 				NVolSetErrors(vol);
1192 			}
1193 			up_write(&vol->lcnbmp_lock);
1194 		}
1195 	}
1196 	/*
1197 	 * Resize the attribute record to its old size and rebuild the mapping
1198 	 * pairs array.  Note, we only can do this if the runlist has been
1199 	 * restored to its old state which also implies that the mapped
1200 	 * attribute extent is not switched.
1201 	 */
1202 	if (status.mp_rebuilt && !status.runlist_merged) {
1203 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1204 			ntfs_error(vol->sb, "Failed to restore attribute "
1205 					"record in error code path.  Run "
1206 					"chkdsk to recover.");
1207 			NVolSetErrors(vol);
1208 		} else /* if (success) */ {
1209 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1210 					le16_to_cpu(a->data.non_resident.
1211 					mapping_pairs_offset), attr_rec_len -
1212 					le16_to_cpu(a->data.non_resident.
1213 					mapping_pairs_offset), ni->runlist.rl,
1214 					vcn, highest_vcn, NULL)) {
1215 				ntfs_error(vol->sb, "Failed to restore "
1216 						"mapping pairs array in error "
1217 						"code path.  Run chkdsk to "
1218 						"recover.");
1219 				NVolSetErrors(vol);
1220 			}
1221 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1222 			mark_mft_record_dirty(ctx->ntfs_ino);
1223 		}
1224 	}
1225 	/* Release the mft record and the attribute. */
1226 	if (status.mft_attr_mapped) {
1227 		ntfs_attr_put_search_ctx(ctx);
1228 		unmap_mft_record(base_ni);
1229 	}
1230 	/* Release the runlist lock. */
1231 	if (rl_write_locked)
1232 		up_write(&ni->runlist.lock);
1233 	else if (rl)
1234 		up_read(&ni->runlist.lock);
1235 	/*
1236 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1237 	 * If BH_New is set, we know that the block was newly allocated above
1238 	 * and that it has not been fully zeroed and marked dirty yet.
1239 	 */
1240 	nr_pages = u;
1241 	u = 0;
1242 	end = bh_cpos << vol->cluster_size_bits;
1243 	do {
1244 		page = pages[u];
1245 		bh = head = page_buffers(page);
1246 		do {
1247 			if (u == nr_pages &&
1248 					((s64)page->index << PAGE_CACHE_SHIFT) +
1249 					bh_offset(bh) >= end)
1250 				break;
1251 			if (!buffer_new(bh))
1252 				continue;
1253 			clear_buffer_new(bh);
1254 			if (!buffer_uptodate(bh)) {
1255 				if (PageUptodate(page))
1256 					set_buffer_uptodate(bh);
1257 				else {
1258 					zero_user(page, bh_offset(bh),
1259 							blocksize);
1260 					set_buffer_uptodate(bh);
1261 				}
1262 			}
1263 			mark_buffer_dirty(bh);
1264 		} while ((bh = bh->b_this_page) != head);
1265 	} while (++u <= nr_pages);
1266 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1267 	return err;
1268 }
1269 
1270 /*
1271  * Copy as much as we can into the pages and return the number of bytes which
1272  * were successfully copied.  If a fault is encountered then clear the pages
1273  * out to (ofs + bytes) and return the number of bytes which were copied.
1274  */
1275 static inline size_t ntfs_copy_from_user(struct page **pages,
1276 		unsigned nr_pages, unsigned ofs, const char __user *buf,
1277 		size_t bytes)
1278 {
1279 	struct page **last_page = pages + nr_pages;
1280 	char *addr;
1281 	size_t total = 0;
1282 	unsigned len;
1283 	int left;
1284 
1285 	do {
1286 		len = PAGE_CACHE_SIZE - ofs;
1287 		if (len > bytes)
1288 			len = bytes;
1289 		addr = kmap_atomic(*pages);
1290 		left = __copy_from_user_inatomic(addr + ofs, buf, len);
1291 		kunmap_atomic(addr);
1292 		if (unlikely(left)) {
1293 			/* Do it the slow way. */
1294 			addr = kmap(*pages);
1295 			left = __copy_from_user(addr + ofs, buf, len);
1296 			kunmap(*pages);
1297 			if (unlikely(left))
1298 				goto err_out;
1299 		}
1300 		total += len;
1301 		bytes -= len;
1302 		if (!bytes)
1303 			break;
1304 		buf += len;
1305 		ofs = 0;
1306 	} while (++pages < last_page);
1307 out:
1308 	return total;
1309 err_out:
1310 	total += len - left;
1311 	/* Zero the rest of the target like __copy_from_user(). */
1312 	while (++pages < last_page) {
1313 		bytes -= len;
1314 		if (!bytes)
1315 			break;
1316 		len = PAGE_CACHE_SIZE;
1317 		if (len > bytes)
1318 			len = bytes;
1319 		zero_user(*pages, 0, len);
1320 	}
1321 	goto out;
1322 }
1323 
1324 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1325 		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1326 {
1327 	size_t total = 0;
1328 
1329 	while (1) {
1330 		const char __user *buf = iov->iov_base + iov_ofs;
1331 		unsigned len;
1332 		size_t left;
1333 
1334 		len = iov->iov_len - iov_ofs;
1335 		if (len > bytes)
1336 			len = bytes;
1337 		left = __copy_from_user_inatomic(vaddr, buf, len);
1338 		total += len;
1339 		bytes -= len;
1340 		vaddr += len;
1341 		if (unlikely(left)) {
1342 			total -= left;
1343 			break;
1344 		}
1345 		if (!bytes)
1346 			break;
1347 		iov++;
1348 		iov_ofs = 0;
1349 	}
1350 	return total;
1351 }
1352 
1353 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1354 		size_t *iov_ofsp, size_t bytes)
1355 {
1356 	const struct iovec *iov = *iovp;
1357 	size_t iov_ofs = *iov_ofsp;
1358 
1359 	while (bytes) {
1360 		unsigned len;
1361 
1362 		len = iov->iov_len - iov_ofs;
1363 		if (len > bytes)
1364 			len = bytes;
1365 		bytes -= len;
1366 		iov_ofs += len;
1367 		if (iov->iov_len == iov_ofs) {
1368 			iov++;
1369 			iov_ofs = 0;
1370 		}
1371 	}
1372 	*iovp = iov;
1373 	*iov_ofsp = iov_ofs;
1374 }
1375 
1376 /*
1377  * This has the same side-effects and return value as ntfs_copy_from_user().
1378  * The difference is that on a fault we need to memset the remainder of the
1379  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1380  * single-segment behaviour.
1381  *
1382  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1383  * atomic and when not atomic.  This is ok because it calls
1384  * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1385  * fact, the only difference between __copy_from_user_inatomic() and
1386  * __copy_from_user() is that the latter calls might_sleep() and the former
1387  * should not zero the tail of the buffer on error.  And on many architectures
1388  * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1389  * makes no difference at all on those architectures.
1390  */
1391 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1392 		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1393 		size_t *iov_ofs, size_t bytes)
1394 {
1395 	struct page **last_page = pages + nr_pages;
1396 	char *addr;
1397 	size_t copied, len, total = 0;
1398 
1399 	do {
1400 		len = PAGE_CACHE_SIZE - ofs;
1401 		if (len > bytes)
1402 			len = bytes;
1403 		addr = kmap_atomic(*pages);
1404 		copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1405 				*iov, *iov_ofs, len);
1406 		kunmap_atomic(addr);
1407 		if (unlikely(copied != len)) {
1408 			/* Do it the slow way. */
1409 			addr = kmap(*pages);
1410 			copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1411 					ofs, *iov, *iov_ofs, len);
1412 			if (unlikely(copied != len))
1413 				goto err_out;
1414 			kunmap(*pages);
1415 		}
1416 		total += len;
1417 		ntfs_set_next_iovec(iov, iov_ofs, len);
1418 		bytes -= len;
1419 		if (!bytes)
1420 			break;
1421 		ofs = 0;
1422 	} while (++pages < last_page);
1423 out:
1424 	return total;
1425 err_out:
1426 	BUG_ON(copied > len);
1427 	/* Zero the rest of the target like __copy_from_user(). */
1428 	memset(addr + ofs + copied, 0, len - copied);
1429 	kunmap(*pages);
1430 	total += copied;
1431 	ntfs_set_next_iovec(iov, iov_ofs, copied);
1432 	while (++pages < last_page) {
1433 		bytes -= len;
1434 		if (!bytes)
1435 			break;
1436 		len = PAGE_CACHE_SIZE;
1437 		if (len > bytes)
1438 			len = bytes;
1439 		zero_user(*pages, 0, len);
1440 	}
1441 	goto out;
1442 }
1443 
1444 static inline void ntfs_flush_dcache_pages(struct page **pages,
1445 		unsigned nr_pages)
1446 {
1447 	BUG_ON(!nr_pages);
1448 	/*
1449 	 * Warning: Do not do the decrement at the same time as the call to
1450 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1451 	 * decrement never happens so the loop never terminates.
1452 	 */
1453 	do {
1454 		--nr_pages;
1455 		flush_dcache_page(pages[nr_pages]);
1456 	} while (nr_pages > 0);
1457 }
1458 
1459 /**
1460  * ntfs_commit_pages_after_non_resident_write - commit the received data
1461  * @pages:	array of destination pages
1462  * @nr_pages:	number of pages in @pages
1463  * @pos:	byte position in file at which the write begins
1464  * @bytes:	number of bytes to be written
1465  *
1466  * See description of ntfs_commit_pages_after_write(), below.
1467  */
1468 static inline int ntfs_commit_pages_after_non_resident_write(
1469 		struct page **pages, const unsigned nr_pages,
1470 		s64 pos, size_t bytes)
1471 {
1472 	s64 end, initialized_size;
1473 	struct inode *vi;
1474 	ntfs_inode *ni, *base_ni;
1475 	struct buffer_head *bh, *head;
1476 	ntfs_attr_search_ctx *ctx;
1477 	MFT_RECORD *m;
1478 	ATTR_RECORD *a;
1479 	unsigned long flags;
1480 	unsigned blocksize, u;
1481 	int err;
1482 
1483 	vi = pages[0]->mapping->host;
1484 	ni = NTFS_I(vi);
1485 	blocksize = vi->i_sb->s_blocksize;
1486 	end = pos + bytes;
1487 	u = 0;
1488 	do {
1489 		s64 bh_pos;
1490 		struct page *page;
1491 		bool partial;
1492 
1493 		page = pages[u];
1494 		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1495 		bh = head = page_buffers(page);
1496 		partial = false;
1497 		do {
1498 			s64 bh_end;
1499 
1500 			bh_end = bh_pos + blocksize;
1501 			if (bh_end <= pos || bh_pos >= end) {
1502 				if (!buffer_uptodate(bh))
1503 					partial = true;
1504 			} else {
1505 				set_buffer_uptodate(bh);
1506 				mark_buffer_dirty(bh);
1507 			}
1508 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1509 		/*
1510 		 * If all buffers are now uptodate but the page is not, set the
1511 		 * page uptodate.
1512 		 */
1513 		if (!partial && !PageUptodate(page))
1514 			SetPageUptodate(page);
1515 	} while (++u < nr_pages);
1516 	/*
1517 	 * Finally, if we do not need to update initialized_size or i_size we
1518 	 * are finished.
1519 	 */
1520 	read_lock_irqsave(&ni->size_lock, flags);
1521 	initialized_size = ni->initialized_size;
1522 	read_unlock_irqrestore(&ni->size_lock, flags);
1523 	if (end <= initialized_size) {
1524 		ntfs_debug("Done.");
1525 		return 0;
1526 	}
1527 	/*
1528 	 * Update initialized_size/i_size as appropriate, both in the inode and
1529 	 * the mft record.
1530 	 */
1531 	if (!NInoAttr(ni))
1532 		base_ni = ni;
1533 	else
1534 		base_ni = ni->ext.base_ntfs_ino;
1535 	/* Map, pin, and lock the mft record. */
1536 	m = map_mft_record(base_ni);
1537 	if (IS_ERR(m)) {
1538 		err = PTR_ERR(m);
1539 		m = NULL;
1540 		ctx = NULL;
1541 		goto err_out;
1542 	}
1543 	BUG_ON(!NInoNonResident(ni));
1544 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1545 	if (unlikely(!ctx)) {
1546 		err = -ENOMEM;
1547 		goto err_out;
1548 	}
1549 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1550 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1551 	if (unlikely(err)) {
1552 		if (err == -ENOENT)
1553 			err = -EIO;
1554 		goto err_out;
1555 	}
1556 	a = ctx->attr;
1557 	BUG_ON(!a->non_resident);
1558 	write_lock_irqsave(&ni->size_lock, flags);
1559 	BUG_ON(end > ni->allocated_size);
1560 	ni->initialized_size = end;
1561 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1562 	if (end > i_size_read(vi)) {
1563 		i_size_write(vi, end);
1564 		a->data.non_resident.data_size =
1565 				a->data.non_resident.initialized_size;
1566 	}
1567 	write_unlock_irqrestore(&ni->size_lock, flags);
1568 	/* Mark the mft record dirty, so it gets written back. */
1569 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1570 	mark_mft_record_dirty(ctx->ntfs_ino);
1571 	ntfs_attr_put_search_ctx(ctx);
1572 	unmap_mft_record(base_ni);
1573 	ntfs_debug("Done.");
1574 	return 0;
1575 err_out:
1576 	if (ctx)
1577 		ntfs_attr_put_search_ctx(ctx);
1578 	if (m)
1579 		unmap_mft_record(base_ni);
1580 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1581 			"code %i).", err);
1582 	if (err != -ENOMEM)
1583 		NVolSetErrors(ni->vol);
1584 	return err;
1585 }
1586 
1587 /**
1588  * ntfs_commit_pages_after_write - commit the received data
1589  * @pages:	array of destination pages
1590  * @nr_pages:	number of pages in @pages
1591  * @pos:	byte position in file at which the write begins
1592  * @bytes:	number of bytes to be written
1593  *
1594  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1595  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1596  * locked but not kmap()ped.  The source data has already been copied into the
1597  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1598  * the data was copied (for non-resident attributes only) and it returned
1599  * success.
1600  *
1601  * Need to set uptodate and mark dirty all buffers within the boundary of the
1602  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1603  *
1604  * Setting the buffers dirty ensures that they get written out later when
1605  * ntfs_writepage() is invoked by the VM.
1606  *
1607  * Finally, we need to update i_size and initialized_size as appropriate both
1608  * in the inode and the mft record.
1609  *
1610  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1611  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1612  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1613  * that case, it also marks the inode dirty.
1614  *
1615  * If things have gone as outlined in
1616  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1617  * content modifications here for non-resident attributes.  For resident
1618  * attributes we need to do the uptodate bringing here which we combine with
1619  * the copying into the mft record which means we save one atomic kmap.
1620  *
1621  * Return 0 on success or -errno on error.
1622  */
1623 static int ntfs_commit_pages_after_write(struct page **pages,
1624 		const unsigned nr_pages, s64 pos, size_t bytes)
1625 {
1626 	s64 end, initialized_size;
1627 	loff_t i_size;
1628 	struct inode *vi;
1629 	ntfs_inode *ni, *base_ni;
1630 	struct page *page;
1631 	ntfs_attr_search_ctx *ctx;
1632 	MFT_RECORD *m;
1633 	ATTR_RECORD *a;
1634 	char *kattr, *kaddr;
1635 	unsigned long flags;
1636 	u32 attr_len;
1637 	int err;
1638 
1639 	BUG_ON(!nr_pages);
1640 	BUG_ON(!pages);
1641 	page = pages[0];
1642 	BUG_ON(!page);
1643 	vi = page->mapping->host;
1644 	ni = NTFS_I(vi);
1645 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1646 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1647 			vi->i_ino, ni->type, page->index, nr_pages,
1648 			(long long)pos, bytes);
1649 	if (NInoNonResident(ni))
1650 		return ntfs_commit_pages_after_non_resident_write(pages,
1651 				nr_pages, pos, bytes);
1652 	BUG_ON(nr_pages > 1);
1653 	/*
1654 	 * Attribute is resident, implying it is not compressed, encrypted, or
1655 	 * sparse.
1656 	 */
1657 	if (!NInoAttr(ni))
1658 		base_ni = ni;
1659 	else
1660 		base_ni = ni->ext.base_ntfs_ino;
1661 	BUG_ON(NInoNonResident(ni));
1662 	/* Map, pin, and lock the mft record. */
1663 	m = map_mft_record(base_ni);
1664 	if (IS_ERR(m)) {
1665 		err = PTR_ERR(m);
1666 		m = NULL;
1667 		ctx = NULL;
1668 		goto err_out;
1669 	}
1670 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1671 	if (unlikely(!ctx)) {
1672 		err = -ENOMEM;
1673 		goto err_out;
1674 	}
1675 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1676 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1677 	if (unlikely(err)) {
1678 		if (err == -ENOENT)
1679 			err = -EIO;
1680 		goto err_out;
1681 	}
1682 	a = ctx->attr;
1683 	BUG_ON(a->non_resident);
1684 	/* The total length of the attribute value. */
1685 	attr_len = le32_to_cpu(a->data.resident.value_length);
1686 	i_size = i_size_read(vi);
1687 	BUG_ON(attr_len != i_size);
1688 	BUG_ON(pos > attr_len);
1689 	end = pos + bytes;
1690 	BUG_ON(end > le32_to_cpu(a->length) -
1691 			le16_to_cpu(a->data.resident.value_offset));
1692 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1693 	kaddr = kmap_atomic(page);
1694 	/* Copy the received data from the page to the mft record. */
1695 	memcpy(kattr + pos, kaddr + pos, bytes);
1696 	/* Update the attribute length if necessary. */
1697 	if (end > attr_len) {
1698 		attr_len = end;
1699 		a->data.resident.value_length = cpu_to_le32(attr_len);
1700 	}
1701 	/*
1702 	 * If the page is not uptodate, bring the out of bounds area(s)
1703 	 * uptodate by copying data from the mft record to the page.
1704 	 */
1705 	if (!PageUptodate(page)) {
1706 		if (pos > 0)
1707 			memcpy(kaddr, kattr, pos);
1708 		if (end < attr_len)
1709 			memcpy(kaddr + end, kattr + end, attr_len - end);
1710 		/* Zero the region outside the end of the attribute value. */
1711 		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1712 		flush_dcache_page(page);
1713 		SetPageUptodate(page);
1714 	}
1715 	kunmap_atomic(kaddr);
1716 	/* Update initialized_size/i_size if necessary. */
1717 	read_lock_irqsave(&ni->size_lock, flags);
1718 	initialized_size = ni->initialized_size;
1719 	BUG_ON(end > ni->allocated_size);
1720 	read_unlock_irqrestore(&ni->size_lock, flags);
1721 	BUG_ON(initialized_size != i_size);
1722 	if (end > initialized_size) {
1723 		write_lock_irqsave(&ni->size_lock, flags);
1724 		ni->initialized_size = end;
1725 		i_size_write(vi, end);
1726 		write_unlock_irqrestore(&ni->size_lock, flags);
1727 	}
1728 	/* Mark the mft record dirty, so it gets written back. */
1729 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1730 	mark_mft_record_dirty(ctx->ntfs_ino);
1731 	ntfs_attr_put_search_ctx(ctx);
1732 	unmap_mft_record(base_ni);
1733 	ntfs_debug("Done.");
1734 	return 0;
1735 err_out:
1736 	if (err == -ENOMEM) {
1737 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1738 				"commit the write.");
1739 		if (PageUptodate(page)) {
1740 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1741 					"dirty so the write will be retried "
1742 					"later on by the VM.");
1743 			/*
1744 			 * Put the page on mapping->dirty_pages, but leave its
1745 			 * buffers' dirty state as-is.
1746 			 */
1747 			__set_page_dirty_nobuffers(page);
1748 			err = 0;
1749 		} else
1750 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1751 					"data has been lost.");
1752 	} else {
1753 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1754 				"with error %i.", err);
1755 		NVolSetErrors(ni->vol);
1756 	}
1757 	if (ctx)
1758 		ntfs_attr_put_search_ctx(ctx);
1759 	if (m)
1760 		unmap_mft_record(base_ni);
1761 	return err;
1762 }
1763 
1764 static void ntfs_write_failed(struct address_space *mapping, loff_t to)
1765 {
1766 	struct inode *inode = mapping->host;
1767 
1768 	if (to > inode->i_size) {
1769 		truncate_pagecache(inode, inode->i_size);
1770 		ntfs_truncate_vfs(inode);
1771 	}
1772 }
1773 
1774 /**
1775  * ntfs_file_buffered_write -
1776  *
1777  * Locking: The vfs is holding ->i_mutex on the inode.
1778  */
1779 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1780 		const struct iovec *iov, unsigned long nr_segs,
1781 		loff_t pos, loff_t *ppos, size_t count)
1782 {
1783 	struct file *file = iocb->ki_filp;
1784 	struct address_space *mapping = file->f_mapping;
1785 	struct inode *vi = mapping->host;
1786 	ntfs_inode *ni = NTFS_I(vi);
1787 	ntfs_volume *vol = ni->vol;
1788 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1789 	struct page *cached_page = NULL;
1790 	char __user *buf = NULL;
1791 	s64 end, ll;
1792 	VCN last_vcn;
1793 	LCN lcn;
1794 	unsigned long flags;
1795 	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1796 	ssize_t status, written;
1797 	unsigned nr_pages;
1798 	int err;
1799 
1800 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1801 			"pos 0x%llx, count 0x%lx.",
1802 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1803 			(unsigned long long)pos, (unsigned long)count);
1804 	if (unlikely(!count))
1805 		return 0;
1806 	BUG_ON(NInoMstProtected(ni));
1807 	/*
1808 	 * If the attribute is not an index root and it is encrypted or
1809 	 * compressed, we cannot write to it yet.  Note we need to check for
1810 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1811 	 * index inodes.
1812 	 */
1813 	if (ni->type != AT_INDEX_ALLOCATION) {
1814 		/* If file is encrypted, deny access, just like NT4. */
1815 		if (NInoEncrypted(ni)) {
1816 			/*
1817 			 * Reminder for later: Encrypted files are _always_
1818 			 * non-resident so that the content can always be
1819 			 * encrypted.
1820 			 */
1821 			ntfs_debug("Denying write access to encrypted file.");
1822 			return -EACCES;
1823 		}
1824 		if (NInoCompressed(ni)) {
1825 			/* Only unnamed $DATA attribute can be compressed. */
1826 			BUG_ON(ni->type != AT_DATA);
1827 			BUG_ON(ni->name_len);
1828 			/*
1829 			 * Reminder for later: If resident, the data is not
1830 			 * actually compressed.  Only on the switch to non-
1831 			 * resident does compression kick in.  This is in
1832 			 * contrast to encrypted files (see above).
1833 			 */
1834 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1835 					"not implemented yet.  Sorry.");
1836 			return -EOPNOTSUPP;
1837 		}
1838 	}
1839 	/*
1840 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1841 	 * fails again.
1842 	 */
1843 	if (unlikely(NInoTruncateFailed(ni))) {
1844 		inode_dio_wait(vi);
1845 		err = ntfs_truncate(vi);
1846 		if (err || NInoTruncateFailed(ni)) {
1847 			if (!err)
1848 				err = -EIO;
1849 			ntfs_error(vol->sb, "Cannot perform write to inode "
1850 					"0x%lx, attribute type 0x%x, because "
1851 					"ntfs_truncate() failed (error code "
1852 					"%i).", vi->i_ino,
1853 					(unsigned)le32_to_cpu(ni->type), err);
1854 			return err;
1855 		}
1856 	}
1857 	/* The first byte after the write. */
1858 	end = pos + count;
1859 	/*
1860 	 * If the write goes beyond the allocated size, extend the allocation
1861 	 * to cover the whole of the write, rounded up to the nearest cluster.
1862 	 */
1863 	read_lock_irqsave(&ni->size_lock, flags);
1864 	ll = ni->allocated_size;
1865 	read_unlock_irqrestore(&ni->size_lock, flags);
1866 	if (end > ll) {
1867 		/* Extend the allocation without changing the data size. */
1868 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1869 		if (likely(ll >= 0)) {
1870 			BUG_ON(pos >= ll);
1871 			/* If the extension was partial truncate the write. */
1872 			if (end > ll) {
1873 				ntfs_debug("Truncating write to inode 0x%lx, "
1874 						"attribute type 0x%x, because "
1875 						"the allocation was only "
1876 						"partially extended.",
1877 						vi->i_ino, (unsigned)
1878 						le32_to_cpu(ni->type));
1879 				end = ll;
1880 				count = ll - pos;
1881 			}
1882 		} else {
1883 			err = ll;
1884 			read_lock_irqsave(&ni->size_lock, flags);
1885 			ll = ni->allocated_size;
1886 			read_unlock_irqrestore(&ni->size_lock, flags);
1887 			/* Perform a partial write if possible or fail. */
1888 			if (pos < ll) {
1889 				ntfs_debug("Truncating write to inode 0x%lx, "
1890 						"attribute type 0x%x, because "
1891 						"extending the allocation "
1892 						"failed (error code %i).",
1893 						vi->i_ino, (unsigned)
1894 						le32_to_cpu(ni->type), err);
1895 				end = ll;
1896 				count = ll - pos;
1897 			} else {
1898 				ntfs_error(vol->sb, "Cannot perform write to "
1899 						"inode 0x%lx, attribute type "
1900 						"0x%x, because extending the "
1901 						"allocation failed (error "
1902 						"code %i).", vi->i_ino,
1903 						(unsigned)
1904 						le32_to_cpu(ni->type), err);
1905 				return err;
1906 			}
1907 		}
1908 	}
1909 	written = 0;
1910 	/*
1911 	 * If the write starts beyond the initialized size, extend it up to the
1912 	 * beginning of the write and initialize all non-sparse space between
1913 	 * the old initialized size and the new one.  This automatically also
1914 	 * increments the vfs inode->i_size to keep it above or equal to the
1915 	 * initialized_size.
1916 	 */
1917 	read_lock_irqsave(&ni->size_lock, flags);
1918 	ll = ni->initialized_size;
1919 	read_unlock_irqrestore(&ni->size_lock, flags);
1920 	if (pos > ll) {
1921 		err = ntfs_attr_extend_initialized(ni, pos);
1922 		if (err < 0) {
1923 			ntfs_error(vol->sb, "Cannot perform write to inode "
1924 					"0x%lx, attribute type 0x%x, because "
1925 					"extending the initialized size "
1926 					"failed (error code %i).", vi->i_ino,
1927 					(unsigned)le32_to_cpu(ni->type), err);
1928 			status = err;
1929 			goto err_out;
1930 		}
1931 	}
1932 	/*
1933 	 * Determine the number of pages per cluster for non-resident
1934 	 * attributes.
1935 	 */
1936 	nr_pages = 1;
1937 	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1938 		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1939 	/* Finally, perform the actual write. */
1940 	last_vcn = -1;
1941 	if (likely(nr_segs == 1))
1942 		buf = iov->iov_base;
1943 	do {
1944 		VCN vcn;
1945 		pgoff_t idx, start_idx;
1946 		unsigned ofs, do_pages, u;
1947 		size_t copied;
1948 
1949 		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1950 		ofs = pos & ~PAGE_CACHE_MASK;
1951 		bytes = PAGE_CACHE_SIZE - ofs;
1952 		do_pages = 1;
1953 		if (nr_pages > 1) {
1954 			vcn = pos >> vol->cluster_size_bits;
1955 			if (vcn != last_vcn) {
1956 				last_vcn = vcn;
1957 				/*
1958 				 * Get the lcn of the vcn the write is in.  If
1959 				 * it is a hole, need to lock down all pages in
1960 				 * the cluster.
1961 				 */
1962 				down_read(&ni->runlist.lock);
1963 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1964 						vol->cluster_size_bits, false);
1965 				up_read(&ni->runlist.lock);
1966 				if (unlikely(lcn < LCN_HOLE)) {
1967 					status = -EIO;
1968 					if (lcn == LCN_ENOMEM)
1969 						status = -ENOMEM;
1970 					else
1971 						ntfs_error(vol->sb, "Cannot "
1972 							"perform write to "
1973 							"inode 0x%lx, "
1974 							"attribute type 0x%x, "
1975 							"because the attribute "
1976 							"is corrupt.",
1977 							vi->i_ino, (unsigned)
1978 							le32_to_cpu(ni->type));
1979 					break;
1980 				}
1981 				if (lcn == LCN_HOLE) {
1982 					start_idx = (pos & ~(s64)
1983 							vol->cluster_size_mask)
1984 							>> PAGE_CACHE_SHIFT;
1985 					bytes = vol->cluster_size - (pos &
1986 							vol->cluster_size_mask);
1987 					do_pages = nr_pages;
1988 				}
1989 			}
1990 		}
1991 		if (bytes > count)
1992 			bytes = count;
1993 		/*
1994 		 * Bring in the user page(s) that we will copy from _first_.
1995 		 * Otherwise there is a nasty deadlock on copying from the same
1996 		 * page(s) as we are writing to, without it/them being marked
1997 		 * up-to-date.  Note, at present there is nothing to stop the
1998 		 * pages being swapped out between us bringing them into memory
1999 		 * and doing the actual copying.
2000 		 */
2001 		if (likely(nr_segs == 1))
2002 			ntfs_fault_in_pages_readable(buf, bytes);
2003 		else
2004 			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2005 		/* Get and lock @do_pages starting at index @start_idx. */
2006 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2007 				pages, &cached_page);
2008 		if (unlikely(status))
2009 			break;
2010 		/*
2011 		 * For non-resident attributes, we need to fill any holes with
2012 		 * actual clusters and ensure all bufferes are mapped.  We also
2013 		 * need to bring uptodate any buffers that are only partially
2014 		 * being written to.
2015 		 */
2016 		if (NInoNonResident(ni)) {
2017 			status = ntfs_prepare_pages_for_non_resident_write(
2018 					pages, do_pages, pos, bytes);
2019 			if (unlikely(status)) {
2020 				loff_t i_size;
2021 
2022 				do {
2023 					unlock_page(pages[--do_pages]);
2024 					page_cache_release(pages[do_pages]);
2025 				} while (do_pages);
2026 				/*
2027 				 * The write preparation may have instantiated
2028 				 * allocated space outside i_size.  Trim this
2029 				 * off again.  We can ignore any errors in this
2030 				 * case as we will just be waisting a bit of
2031 				 * allocated space, which is not a disaster.
2032 				 */
2033 				i_size = i_size_read(vi);
2034 				if (pos + bytes > i_size) {
2035 					ntfs_write_failed(mapping, pos + bytes);
2036 				}
2037 				break;
2038 			}
2039 		}
2040 		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2041 		if (likely(nr_segs == 1)) {
2042 			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2043 					ofs, buf, bytes);
2044 			buf += copied;
2045 		} else
2046 			copied = ntfs_copy_from_user_iovec(pages + u,
2047 					do_pages - u, ofs, &iov, &iov_ofs,
2048 					bytes);
2049 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2050 		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2051 				bytes);
2052 		if (likely(!status)) {
2053 			written += copied;
2054 			count -= copied;
2055 			pos += copied;
2056 			if (unlikely(copied != bytes))
2057 				status = -EFAULT;
2058 		}
2059 		do {
2060 			unlock_page(pages[--do_pages]);
2061 			page_cache_release(pages[do_pages]);
2062 		} while (do_pages);
2063 		if (unlikely(status))
2064 			break;
2065 		balance_dirty_pages_ratelimited(mapping);
2066 		cond_resched();
2067 	} while (count);
2068 err_out:
2069 	*ppos = pos;
2070 	if (cached_page)
2071 		page_cache_release(cached_page);
2072 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2073 			written ? "written" : "status", (unsigned long)written,
2074 			(long)status);
2075 	return written ? written : status;
2076 }
2077 
2078 /**
2079  * ntfs_file_aio_write_nolock -
2080  */
2081 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2082 		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2083 {
2084 	struct file *file = iocb->ki_filp;
2085 	struct address_space *mapping = file->f_mapping;
2086 	struct inode *inode = mapping->host;
2087 	loff_t pos;
2088 	size_t count;		/* after file limit checks */
2089 	ssize_t written, err;
2090 
2091 	count = iov_length(iov, nr_segs);
2092 	pos = *ppos;
2093 	/* We can write back this queue in page reclaim. */
2094 	current->backing_dev_info = mapping->backing_dev_info;
2095 	written = 0;
2096 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2097 	if (err)
2098 		goto out;
2099 	if (!count)
2100 		goto out;
2101 	err = file_remove_suid(file);
2102 	if (err)
2103 		goto out;
2104 	err = file_update_time(file);
2105 	if (err)
2106 		goto out;
2107 	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2108 			count);
2109 out:
2110 	current->backing_dev_info = NULL;
2111 	return written ? written : err;
2112 }
2113 
2114 /**
2115  * ntfs_file_aio_write -
2116  */
2117 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2118 		unsigned long nr_segs, loff_t pos)
2119 {
2120 	struct file *file = iocb->ki_filp;
2121 	struct address_space *mapping = file->f_mapping;
2122 	struct inode *inode = mapping->host;
2123 	ssize_t ret;
2124 
2125 	BUG_ON(iocb->ki_pos != pos);
2126 
2127 	mutex_lock(&inode->i_mutex);
2128 	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2129 	mutex_unlock(&inode->i_mutex);
2130 	if (ret > 0) {
2131 		int err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2132 		if (err < 0)
2133 			ret = err;
2134 	}
2135 	return ret;
2136 }
2137 
2138 /**
2139  * ntfs_file_fsync - sync a file to disk
2140  * @filp:	file to be synced
2141  * @datasync:	if non-zero only flush user data and not metadata
2142  *
2143  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2144  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2145  *
2146  * If @datasync is false, write the mft record and all associated extent mft
2147  * records as well as the $DATA attribute and then sync the block device.
2148  *
2149  * If @datasync is true and the attribute is non-resident, we skip the writing
2150  * of the mft record and all associated extent mft records (this might still
2151  * happen due to the write_inode_now() call).
2152  *
2153  * Also, if @datasync is true, we do not wait on the inode to be written out
2154  * but we always wait on the page cache pages to be written out.
2155  *
2156  * Locking: Caller must hold i_mutex on the inode.
2157  *
2158  * TODO: We should probably also write all attribute/index inodes associated
2159  * with this inode but since we have no simple way of getting to them we ignore
2160  * this problem for now.
2161  */
2162 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2163 			   int datasync)
2164 {
2165 	struct inode *vi = filp->f_mapping->host;
2166 	int err, ret = 0;
2167 
2168 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2169 
2170 	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2171 	if (err)
2172 		return err;
2173 	mutex_lock(&vi->i_mutex);
2174 
2175 	BUG_ON(S_ISDIR(vi->i_mode));
2176 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2177 		ret = __ntfs_write_inode(vi, 1);
2178 	write_inode_now(vi, !datasync);
2179 	/*
2180 	 * NOTE: If we were to use mapping->private_list (see ext2 and
2181 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2182 	 * sync_mapping_buffers(vi->i_mapping).
2183 	 */
2184 	err = sync_blockdev(vi->i_sb->s_bdev);
2185 	if (unlikely(err && !ret))
2186 		ret = err;
2187 	if (likely(!ret))
2188 		ntfs_debug("Done.");
2189 	else
2190 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2191 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2192 	mutex_unlock(&vi->i_mutex);
2193 	return ret;
2194 }
2195 
2196 #endif /* NTFS_RW */
2197 
2198 const struct file_operations ntfs_file_ops = {
2199 	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2200 	.read		= new_sync_read,	 /* Read from file. */
2201 	.read_iter	= generic_file_read_iter, /* Async read from file. */
2202 #ifdef NTFS_RW
2203 	.write		= do_sync_write,	 /* Write to file. */
2204 	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2205 	/*.release	= ,*/			 /* Last file is closed.  See
2206 						    fs/ext2/file.c::
2207 						    ext2_release_file() for
2208 						    how to use this to discard
2209 						    preallocated space for
2210 						    write opened files. */
2211 	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2212 	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2213 						    i/o operations on a
2214 						    kiocb. */
2215 #endif /* NTFS_RW */
2216 	/*.ioctl	= ,*/			 /* Perform function on the
2217 						    mounted filesystem. */
2218 	.mmap		= generic_file_mmap,	 /* Mmap file. */
2219 	.open		= ntfs_file_open,	 /* Open file. */
2220 	.splice_read	= generic_file_splice_read /* Zero-copy data send with
2221 						    the data source being on
2222 						    the ntfs partition.  We do
2223 						    not need to care about the
2224 						    data destination. */
2225 	/*.sendpage	= ,*/			 /* Zero-copy data send with
2226 						    the data destination being
2227 						    on the ntfs partition.  We
2228 						    do not need to care about
2229 						    the data source. */
2230 };
2231 
2232 const struct inode_operations ntfs_file_inode_ops = {
2233 #ifdef NTFS_RW
2234 	.setattr	= ntfs_setattr,
2235 #endif /* NTFS_RW */
2236 };
2237 
2238 const struct file_operations ntfs_empty_file_ops = {};
2239 
2240 const struct inode_operations ntfs_empty_inode_ops = {};
2241