1 /* 2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/gfp.h> 24 #include <linux/pagemap.h> 25 #include <linux/pagevec.h> 26 #include <linux/sched.h> 27 #include <linux/swap.h> 28 #include <linux/uio.h> 29 #include <linux/writeback.h> 30 #include <linux/aio.h> 31 32 #include <asm/page.h> 33 #include <asm/uaccess.h> 34 35 #include "attrib.h" 36 #include "bitmap.h" 37 #include "inode.h" 38 #include "debug.h" 39 #include "lcnalloc.h" 40 #include "malloc.h" 41 #include "mft.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_file_open - called when an inode is about to be opened 46 * @vi: inode to be opened 47 * @filp: file structure describing the inode 48 * 49 * Limit file size to the page cache limit on architectures where unsigned long 50 * is 32-bits. This is the most we can do for now without overflowing the page 51 * cache page index. Doing it this way means we don't run into problems because 52 * of existing too large files. It would be better to allow the user to read 53 * the beginning of the file but I doubt very much anyone is going to hit this 54 * check on a 32-bit architecture, so there is no point in adding the extra 55 * complexity required to support this. 56 * 57 * On 64-bit architectures, the check is hopefully optimized away by the 58 * compiler. 59 * 60 * After the check passes, just call generic_file_open() to do its work. 61 */ 62 static int ntfs_file_open(struct inode *vi, struct file *filp) 63 { 64 if (sizeof(unsigned long) < 8) { 65 if (i_size_read(vi) > MAX_LFS_FILESIZE) 66 return -EOVERFLOW; 67 } 68 return generic_file_open(vi, filp); 69 } 70 71 #ifdef NTFS_RW 72 73 /** 74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute 75 * @ni: ntfs inode of the attribute to extend 76 * @new_init_size: requested new initialized size in bytes 77 * 78 * Extend the initialized size of an attribute described by the ntfs inode @ni 79 * to @new_init_size bytes. This involves zeroing any non-sparse space between 80 * the old initialized size and @new_init_size both in the page cache and on 81 * disk (if relevant complete pages are already uptodate in the page cache then 82 * these are simply marked dirty). 83 * 84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as, 85 * in the resident attribute case, it is tied to the initialized size and, in 86 * the non-resident attribute case, it may not fall below the initialized size. 87 * 88 * Note that if the attribute is resident, we do not need to touch the page 89 * cache at all. This is because if the page cache page is not uptodate we 90 * bring it uptodate later, when doing the write to the mft record since we 91 * then already have the page mapped. And if the page is uptodate, the 92 * non-initialized region will already have been zeroed when the page was 93 * brought uptodate and the region may in fact already have been overwritten 94 * with new data via mmap() based writes, so we cannot just zero it. And since 95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped 96 * is unspecified, we choose not to do zeroing and thus we do not need to touch 97 * the page at all. For a more detailed explanation see ntfs_truncate() in 98 * fs/ntfs/inode.c. 99 * 100 * Return 0 on success and -errno on error. In the case that an error is 101 * encountered it is possible that the initialized size will already have been 102 * incremented some way towards @new_init_size but it is guaranteed that if 103 * this is the case, the necessary zeroing will also have happened and that all 104 * metadata is self-consistent. 105 * 106 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be 107 * held by the caller. 108 */ 109 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size) 110 { 111 s64 old_init_size; 112 loff_t old_i_size; 113 pgoff_t index, end_index; 114 unsigned long flags; 115 struct inode *vi = VFS_I(ni); 116 ntfs_inode *base_ni; 117 MFT_RECORD *m = NULL; 118 ATTR_RECORD *a; 119 ntfs_attr_search_ctx *ctx = NULL; 120 struct address_space *mapping; 121 struct page *page = NULL; 122 u8 *kattr; 123 int err; 124 u32 attr_len; 125 126 read_lock_irqsave(&ni->size_lock, flags); 127 old_init_size = ni->initialized_size; 128 old_i_size = i_size_read(vi); 129 BUG_ON(new_init_size > ni->allocated_size); 130 read_unlock_irqrestore(&ni->size_lock, flags); 131 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 132 "old_initialized_size 0x%llx, " 133 "new_initialized_size 0x%llx, i_size 0x%llx.", 134 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 135 (unsigned long long)old_init_size, 136 (unsigned long long)new_init_size, old_i_size); 137 if (!NInoAttr(ni)) 138 base_ni = ni; 139 else 140 base_ni = ni->ext.base_ntfs_ino; 141 /* Use goto to reduce indentation and we need the label below anyway. */ 142 if (NInoNonResident(ni)) 143 goto do_non_resident_extend; 144 BUG_ON(old_init_size != old_i_size); 145 m = map_mft_record(base_ni); 146 if (IS_ERR(m)) { 147 err = PTR_ERR(m); 148 m = NULL; 149 goto err_out; 150 } 151 ctx = ntfs_attr_get_search_ctx(base_ni, m); 152 if (unlikely(!ctx)) { 153 err = -ENOMEM; 154 goto err_out; 155 } 156 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 157 CASE_SENSITIVE, 0, NULL, 0, ctx); 158 if (unlikely(err)) { 159 if (err == -ENOENT) 160 err = -EIO; 161 goto err_out; 162 } 163 m = ctx->mrec; 164 a = ctx->attr; 165 BUG_ON(a->non_resident); 166 /* The total length of the attribute value. */ 167 attr_len = le32_to_cpu(a->data.resident.value_length); 168 BUG_ON(old_i_size != (loff_t)attr_len); 169 /* 170 * Do the zeroing in the mft record and update the attribute size in 171 * the mft record. 172 */ 173 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 174 memset(kattr + attr_len, 0, new_init_size - attr_len); 175 a->data.resident.value_length = cpu_to_le32((u32)new_init_size); 176 /* Finally, update the sizes in the vfs and ntfs inodes. */ 177 write_lock_irqsave(&ni->size_lock, flags); 178 i_size_write(vi, new_init_size); 179 ni->initialized_size = new_init_size; 180 write_unlock_irqrestore(&ni->size_lock, flags); 181 goto done; 182 do_non_resident_extend: 183 /* 184 * If the new initialized size @new_init_size exceeds the current file 185 * size (vfs inode->i_size), we need to extend the file size to the 186 * new initialized size. 187 */ 188 if (new_init_size > old_i_size) { 189 m = map_mft_record(base_ni); 190 if (IS_ERR(m)) { 191 err = PTR_ERR(m); 192 m = NULL; 193 goto err_out; 194 } 195 ctx = ntfs_attr_get_search_ctx(base_ni, m); 196 if (unlikely(!ctx)) { 197 err = -ENOMEM; 198 goto err_out; 199 } 200 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 201 CASE_SENSITIVE, 0, NULL, 0, ctx); 202 if (unlikely(err)) { 203 if (err == -ENOENT) 204 err = -EIO; 205 goto err_out; 206 } 207 m = ctx->mrec; 208 a = ctx->attr; 209 BUG_ON(!a->non_resident); 210 BUG_ON(old_i_size != (loff_t) 211 sle64_to_cpu(a->data.non_resident.data_size)); 212 a->data.non_resident.data_size = cpu_to_sle64(new_init_size); 213 flush_dcache_mft_record_page(ctx->ntfs_ino); 214 mark_mft_record_dirty(ctx->ntfs_ino); 215 /* Update the file size in the vfs inode. */ 216 i_size_write(vi, new_init_size); 217 ntfs_attr_put_search_ctx(ctx); 218 ctx = NULL; 219 unmap_mft_record(base_ni); 220 m = NULL; 221 } 222 mapping = vi->i_mapping; 223 index = old_init_size >> PAGE_CACHE_SHIFT; 224 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 225 do { 226 /* 227 * Read the page. If the page is not present, this will zero 228 * the uninitialized regions for us. 229 */ 230 page = read_mapping_page(mapping, index, NULL); 231 if (IS_ERR(page)) { 232 err = PTR_ERR(page); 233 goto init_err_out; 234 } 235 if (unlikely(PageError(page))) { 236 page_cache_release(page); 237 err = -EIO; 238 goto init_err_out; 239 } 240 /* 241 * Update the initialized size in the ntfs inode. This is 242 * enough to make ntfs_writepage() work. 243 */ 244 write_lock_irqsave(&ni->size_lock, flags); 245 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; 246 if (ni->initialized_size > new_init_size) 247 ni->initialized_size = new_init_size; 248 write_unlock_irqrestore(&ni->size_lock, flags); 249 /* Set the page dirty so it gets written out. */ 250 set_page_dirty(page); 251 page_cache_release(page); 252 /* 253 * Play nice with the vm and the rest of the system. This is 254 * very much needed as we can potentially be modifying the 255 * initialised size from a very small value to a really huge 256 * value, e.g. 257 * f = open(somefile, O_TRUNC); 258 * truncate(f, 10GiB); 259 * seek(f, 10GiB); 260 * write(f, 1); 261 * And this would mean we would be marking dirty hundreds of 262 * thousands of pages or as in the above example more than 263 * two and a half million pages! 264 * 265 * TODO: For sparse pages could optimize this workload by using 266 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This 267 * would be set in readpage for sparse pages and here we would 268 * not need to mark dirty any pages which have this bit set. 269 * The only caveat is that we have to clear the bit everywhere 270 * where we allocate any clusters that lie in the page or that 271 * contain the page. 272 * 273 * TODO: An even greater optimization would be for us to only 274 * call readpage() on pages which are not in sparse regions as 275 * determined from the runlist. This would greatly reduce the 276 * number of pages we read and make dirty in the case of sparse 277 * files. 278 */ 279 balance_dirty_pages_ratelimited(mapping); 280 cond_resched(); 281 } while (++index < end_index); 282 read_lock_irqsave(&ni->size_lock, flags); 283 BUG_ON(ni->initialized_size != new_init_size); 284 read_unlock_irqrestore(&ni->size_lock, flags); 285 /* Now bring in sync the initialized_size in the mft record. */ 286 m = map_mft_record(base_ni); 287 if (IS_ERR(m)) { 288 err = PTR_ERR(m); 289 m = NULL; 290 goto init_err_out; 291 } 292 ctx = ntfs_attr_get_search_ctx(base_ni, m); 293 if (unlikely(!ctx)) { 294 err = -ENOMEM; 295 goto init_err_out; 296 } 297 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 298 CASE_SENSITIVE, 0, NULL, 0, ctx); 299 if (unlikely(err)) { 300 if (err == -ENOENT) 301 err = -EIO; 302 goto init_err_out; 303 } 304 m = ctx->mrec; 305 a = ctx->attr; 306 BUG_ON(!a->non_resident); 307 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); 308 done: 309 flush_dcache_mft_record_page(ctx->ntfs_ino); 310 mark_mft_record_dirty(ctx->ntfs_ino); 311 if (ctx) 312 ntfs_attr_put_search_ctx(ctx); 313 if (m) 314 unmap_mft_record(base_ni); 315 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", 316 (unsigned long long)new_init_size, i_size_read(vi)); 317 return 0; 318 init_err_out: 319 write_lock_irqsave(&ni->size_lock, flags); 320 ni->initialized_size = old_init_size; 321 write_unlock_irqrestore(&ni->size_lock, flags); 322 err_out: 323 if (ctx) 324 ntfs_attr_put_search_ctx(ctx); 325 if (m) 326 unmap_mft_record(base_ni); 327 ntfs_debug("Failed. Returning error code %i.", err); 328 return err; 329 } 330 331 /** 332 * ntfs_fault_in_pages_readable - 333 * 334 * Fault a number of userspace pages into pagetables. 335 * 336 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes 337 * with more than two userspace pages as well as handling the single page case 338 * elegantly. 339 * 340 * If you find this difficult to understand, then think of the while loop being 341 * the following code, except that we do without the integer variable ret: 342 * 343 * do { 344 * ret = __get_user(c, uaddr); 345 * uaddr += PAGE_SIZE; 346 * } while (!ret && uaddr < end); 347 * 348 * Note, the final __get_user() may well run out-of-bounds of the user buffer, 349 * but _not_ out-of-bounds of the page the user buffer belongs to, and since 350 * this is only a read and not a write, and since it is still in the same page, 351 * it should not matter and this makes the code much simpler. 352 */ 353 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, 354 int bytes) 355 { 356 const char __user *end; 357 volatile char c; 358 359 /* Set @end to the first byte outside the last page we care about. */ 360 end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes); 361 362 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) 363 ; 364 } 365 366 /** 367 * ntfs_fault_in_pages_readable_iovec - 368 * 369 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. 370 */ 371 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, 372 size_t iov_ofs, int bytes) 373 { 374 do { 375 const char __user *buf; 376 unsigned len; 377 378 buf = iov->iov_base + iov_ofs; 379 len = iov->iov_len - iov_ofs; 380 if (len > bytes) 381 len = bytes; 382 ntfs_fault_in_pages_readable(buf, len); 383 bytes -= len; 384 iov++; 385 iov_ofs = 0; 386 } while (bytes); 387 } 388 389 /** 390 * __ntfs_grab_cache_pages - obtain a number of locked pages 391 * @mapping: address space mapping from which to obtain page cache pages 392 * @index: starting index in @mapping at which to begin obtaining pages 393 * @nr_pages: number of page cache pages to obtain 394 * @pages: array of pages in which to return the obtained page cache pages 395 * @cached_page: allocated but as yet unused page 396 * 397 * Obtain @nr_pages locked page cache pages from the mapping @mapping and 398 * starting at index @index. 399 * 400 * If a page is newly created, add it to lru list 401 * 402 * Note, the page locks are obtained in ascending page index order. 403 */ 404 static inline int __ntfs_grab_cache_pages(struct address_space *mapping, 405 pgoff_t index, const unsigned nr_pages, struct page **pages, 406 struct page **cached_page) 407 { 408 int err, nr; 409 410 BUG_ON(!nr_pages); 411 err = nr = 0; 412 do { 413 pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK | 414 FGP_ACCESSED); 415 if (!pages[nr]) { 416 if (!*cached_page) { 417 *cached_page = page_cache_alloc(mapping); 418 if (unlikely(!*cached_page)) { 419 err = -ENOMEM; 420 goto err_out; 421 } 422 } 423 err = add_to_page_cache_lru(*cached_page, mapping, index, 424 GFP_KERNEL); 425 if (unlikely(err)) { 426 if (err == -EEXIST) 427 continue; 428 goto err_out; 429 } 430 pages[nr] = *cached_page; 431 *cached_page = NULL; 432 } 433 index++; 434 nr++; 435 } while (nr < nr_pages); 436 out: 437 return err; 438 err_out: 439 while (nr > 0) { 440 unlock_page(pages[--nr]); 441 page_cache_release(pages[nr]); 442 } 443 goto out; 444 } 445 446 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) 447 { 448 lock_buffer(bh); 449 get_bh(bh); 450 bh->b_end_io = end_buffer_read_sync; 451 return submit_bh(READ, bh); 452 } 453 454 /** 455 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data 456 * @pages: array of destination pages 457 * @nr_pages: number of pages in @pages 458 * @pos: byte position in file at which the write begins 459 * @bytes: number of bytes to be written 460 * 461 * This is called for non-resident attributes from ntfs_file_buffered_write() 462 * with i_mutex held on the inode (@pages[0]->mapping->host). There are 463 * @nr_pages pages in @pages which are locked but not kmap()ped. The source 464 * data has not yet been copied into the @pages. 465 * 466 * Need to fill any holes with actual clusters, allocate buffers if necessary, 467 * ensure all the buffers are mapped, and bring uptodate any buffers that are 468 * only partially being written to. 469 * 470 * If @nr_pages is greater than one, we are guaranteed that the cluster size is 471 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside 472 * the same cluster and that they are the entirety of that cluster, and that 473 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. 474 * 475 * i_size is not to be modified yet. 476 * 477 * Return 0 on success or -errno on error. 478 */ 479 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, 480 unsigned nr_pages, s64 pos, size_t bytes) 481 { 482 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; 483 LCN lcn; 484 s64 bh_pos, vcn_len, end, initialized_size; 485 sector_t lcn_block; 486 struct page *page; 487 struct inode *vi; 488 ntfs_inode *ni, *base_ni = NULL; 489 ntfs_volume *vol; 490 runlist_element *rl, *rl2; 491 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 492 ntfs_attr_search_ctx *ctx = NULL; 493 MFT_RECORD *m = NULL; 494 ATTR_RECORD *a = NULL; 495 unsigned long flags; 496 u32 attr_rec_len = 0; 497 unsigned blocksize, u; 498 int err, mp_size; 499 bool rl_write_locked, was_hole, is_retry; 500 unsigned char blocksize_bits; 501 struct { 502 u8 runlist_merged:1; 503 u8 mft_attr_mapped:1; 504 u8 mp_rebuilt:1; 505 u8 attr_switched:1; 506 } status = { 0, 0, 0, 0 }; 507 508 BUG_ON(!nr_pages); 509 BUG_ON(!pages); 510 BUG_ON(!*pages); 511 vi = pages[0]->mapping->host; 512 ni = NTFS_I(vi); 513 vol = ni->vol; 514 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 515 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 516 vi->i_ino, ni->type, pages[0]->index, nr_pages, 517 (long long)pos, bytes); 518 blocksize = vol->sb->s_blocksize; 519 blocksize_bits = vol->sb->s_blocksize_bits; 520 u = 0; 521 do { 522 page = pages[u]; 523 BUG_ON(!page); 524 /* 525 * create_empty_buffers() will create uptodate/dirty buffers if 526 * the page is uptodate/dirty. 527 */ 528 if (!page_has_buffers(page)) { 529 create_empty_buffers(page, blocksize, 0); 530 if (unlikely(!page_has_buffers(page))) 531 return -ENOMEM; 532 } 533 } while (++u < nr_pages); 534 rl_write_locked = false; 535 rl = NULL; 536 err = 0; 537 vcn = lcn = -1; 538 vcn_len = 0; 539 lcn_block = -1; 540 was_hole = false; 541 cpos = pos >> vol->cluster_size_bits; 542 end = pos + bytes; 543 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; 544 /* 545 * Loop over each page and for each page over each buffer. Use goto to 546 * reduce indentation. 547 */ 548 u = 0; 549 do_next_page: 550 page = pages[u]; 551 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 552 bh = head = page_buffers(page); 553 do { 554 VCN cdelta; 555 s64 bh_end; 556 unsigned bh_cofs; 557 558 /* Clear buffer_new on all buffers to reinitialise state. */ 559 if (buffer_new(bh)) 560 clear_buffer_new(bh); 561 bh_end = bh_pos + blocksize; 562 bh_cpos = bh_pos >> vol->cluster_size_bits; 563 bh_cofs = bh_pos & vol->cluster_size_mask; 564 if (buffer_mapped(bh)) { 565 /* 566 * The buffer is already mapped. If it is uptodate, 567 * ignore it. 568 */ 569 if (buffer_uptodate(bh)) 570 continue; 571 /* 572 * The buffer is not uptodate. If the page is uptodate 573 * set the buffer uptodate and otherwise ignore it. 574 */ 575 if (PageUptodate(page)) { 576 set_buffer_uptodate(bh); 577 continue; 578 } 579 /* 580 * Neither the page nor the buffer are uptodate. If 581 * the buffer is only partially being written to, we 582 * need to read it in before the write, i.e. now. 583 */ 584 if ((bh_pos < pos && bh_end > pos) || 585 (bh_pos < end && bh_end > end)) { 586 /* 587 * If the buffer is fully or partially within 588 * the initialized size, do an actual read. 589 * Otherwise, simply zero the buffer. 590 */ 591 read_lock_irqsave(&ni->size_lock, flags); 592 initialized_size = ni->initialized_size; 593 read_unlock_irqrestore(&ni->size_lock, flags); 594 if (bh_pos < initialized_size) { 595 ntfs_submit_bh_for_read(bh); 596 *wait_bh++ = bh; 597 } else { 598 zero_user(page, bh_offset(bh), 599 blocksize); 600 set_buffer_uptodate(bh); 601 } 602 } 603 continue; 604 } 605 /* Unmapped buffer. Need to map it. */ 606 bh->b_bdev = vol->sb->s_bdev; 607 /* 608 * If the current buffer is in the same clusters as the map 609 * cache, there is no need to check the runlist again. The 610 * map cache is made up of @vcn, which is the first cached file 611 * cluster, @vcn_len which is the number of cached file 612 * clusters, @lcn is the device cluster corresponding to @vcn, 613 * and @lcn_block is the block number corresponding to @lcn. 614 */ 615 cdelta = bh_cpos - vcn; 616 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { 617 map_buffer_cached: 618 BUG_ON(lcn < 0); 619 bh->b_blocknr = lcn_block + 620 (cdelta << (vol->cluster_size_bits - 621 blocksize_bits)) + 622 (bh_cofs >> blocksize_bits); 623 set_buffer_mapped(bh); 624 /* 625 * If the page is uptodate so is the buffer. If the 626 * buffer is fully outside the write, we ignore it if 627 * it was already allocated and we mark it dirty so it 628 * gets written out if we allocated it. On the other 629 * hand, if we allocated the buffer but we are not 630 * marking it dirty we set buffer_new so we can do 631 * error recovery. 632 */ 633 if (PageUptodate(page)) { 634 if (!buffer_uptodate(bh)) 635 set_buffer_uptodate(bh); 636 if (unlikely(was_hole)) { 637 /* We allocated the buffer. */ 638 unmap_underlying_metadata(bh->b_bdev, 639 bh->b_blocknr); 640 if (bh_end <= pos || bh_pos >= end) 641 mark_buffer_dirty(bh); 642 else 643 set_buffer_new(bh); 644 } 645 continue; 646 } 647 /* Page is _not_ uptodate. */ 648 if (likely(!was_hole)) { 649 /* 650 * Buffer was already allocated. If it is not 651 * uptodate and is only partially being written 652 * to, we need to read it in before the write, 653 * i.e. now. 654 */ 655 if (!buffer_uptodate(bh) && bh_pos < end && 656 bh_end > pos && 657 (bh_pos < pos || 658 bh_end > end)) { 659 /* 660 * If the buffer is fully or partially 661 * within the initialized size, do an 662 * actual read. Otherwise, simply zero 663 * the buffer. 664 */ 665 read_lock_irqsave(&ni->size_lock, 666 flags); 667 initialized_size = ni->initialized_size; 668 read_unlock_irqrestore(&ni->size_lock, 669 flags); 670 if (bh_pos < initialized_size) { 671 ntfs_submit_bh_for_read(bh); 672 *wait_bh++ = bh; 673 } else { 674 zero_user(page, bh_offset(bh), 675 blocksize); 676 set_buffer_uptodate(bh); 677 } 678 } 679 continue; 680 } 681 /* We allocated the buffer. */ 682 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 683 /* 684 * If the buffer is fully outside the write, zero it, 685 * set it uptodate, and mark it dirty so it gets 686 * written out. If it is partially being written to, 687 * zero region surrounding the write but leave it to 688 * commit write to do anything else. Finally, if the 689 * buffer is fully being overwritten, do nothing. 690 */ 691 if (bh_end <= pos || bh_pos >= end) { 692 if (!buffer_uptodate(bh)) { 693 zero_user(page, bh_offset(bh), 694 blocksize); 695 set_buffer_uptodate(bh); 696 } 697 mark_buffer_dirty(bh); 698 continue; 699 } 700 set_buffer_new(bh); 701 if (!buffer_uptodate(bh) && 702 (bh_pos < pos || bh_end > end)) { 703 u8 *kaddr; 704 unsigned pofs; 705 706 kaddr = kmap_atomic(page); 707 if (bh_pos < pos) { 708 pofs = bh_pos & ~PAGE_CACHE_MASK; 709 memset(kaddr + pofs, 0, pos - bh_pos); 710 } 711 if (bh_end > end) { 712 pofs = end & ~PAGE_CACHE_MASK; 713 memset(kaddr + pofs, 0, bh_end - end); 714 } 715 kunmap_atomic(kaddr); 716 flush_dcache_page(page); 717 } 718 continue; 719 } 720 /* 721 * Slow path: this is the first buffer in the cluster. If it 722 * is outside allocated size and is not uptodate, zero it and 723 * set it uptodate. 724 */ 725 read_lock_irqsave(&ni->size_lock, flags); 726 initialized_size = ni->allocated_size; 727 read_unlock_irqrestore(&ni->size_lock, flags); 728 if (bh_pos > initialized_size) { 729 if (PageUptodate(page)) { 730 if (!buffer_uptodate(bh)) 731 set_buffer_uptodate(bh); 732 } else if (!buffer_uptodate(bh)) { 733 zero_user(page, bh_offset(bh), blocksize); 734 set_buffer_uptodate(bh); 735 } 736 continue; 737 } 738 is_retry = false; 739 if (!rl) { 740 down_read(&ni->runlist.lock); 741 retry_remap: 742 rl = ni->runlist.rl; 743 } 744 if (likely(rl != NULL)) { 745 /* Seek to element containing target cluster. */ 746 while (rl->length && rl[1].vcn <= bh_cpos) 747 rl++; 748 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); 749 if (likely(lcn >= 0)) { 750 /* 751 * Successful remap, setup the map cache and 752 * use that to deal with the buffer. 753 */ 754 was_hole = false; 755 vcn = bh_cpos; 756 vcn_len = rl[1].vcn - vcn; 757 lcn_block = lcn << (vol->cluster_size_bits - 758 blocksize_bits); 759 cdelta = 0; 760 /* 761 * If the number of remaining clusters touched 762 * by the write is smaller or equal to the 763 * number of cached clusters, unlock the 764 * runlist as the map cache will be used from 765 * now on. 766 */ 767 if (likely(vcn + vcn_len >= cend)) { 768 if (rl_write_locked) { 769 up_write(&ni->runlist.lock); 770 rl_write_locked = false; 771 } else 772 up_read(&ni->runlist.lock); 773 rl = NULL; 774 } 775 goto map_buffer_cached; 776 } 777 } else 778 lcn = LCN_RL_NOT_MAPPED; 779 /* 780 * If it is not a hole and not out of bounds, the runlist is 781 * probably unmapped so try to map it now. 782 */ 783 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { 784 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { 785 /* Attempt to map runlist. */ 786 if (!rl_write_locked) { 787 /* 788 * We need the runlist locked for 789 * writing, so if it is locked for 790 * reading relock it now and retry in 791 * case it changed whilst we dropped 792 * the lock. 793 */ 794 up_read(&ni->runlist.lock); 795 down_write(&ni->runlist.lock); 796 rl_write_locked = true; 797 goto retry_remap; 798 } 799 err = ntfs_map_runlist_nolock(ni, bh_cpos, 800 NULL); 801 if (likely(!err)) { 802 is_retry = true; 803 goto retry_remap; 804 } 805 /* 806 * If @vcn is out of bounds, pretend @lcn is 807 * LCN_ENOENT. As long as the buffer is out 808 * of bounds this will work fine. 809 */ 810 if (err == -ENOENT) { 811 lcn = LCN_ENOENT; 812 err = 0; 813 goto rl_not_mapped_enoent; 814 } 815 } else 816 err = -EIO; 817 /* Failed to map the buffer, even after retrying. */ 818 bh->b_blocknr = -1; 819 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 820 "attribute type 0x%x, vcn 0x%llx, " 821 "vcn offset 0x%x, because its " 822 "location on disk could not be " 823 "determined%s (error code %i).", 824 ni->mft_no, ni->type, 825 (unsigned long long)bh_cpos, 826 (unsigned)bh_pos & 827 vol->cluster_size_mask, 828 is_retry ? " even after retrying" : "", 829 err); 830 break; 831 } 832 rl_not_mapped_enoent: 833 /* 834 * The buffer is in a hole or out of bounds. We need to fill 835 * the hole, unless the buffer is in a cluster which is not 836 * touched by the write, in which case we just leave the buffer 837 * unmapped. This can only happen when the cluster size is 838 * less than the page cache size. 839 */ 840 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { 841 bh_cend = (bh_end + vol->cluster_size - 1) >> 842 vol->cluster_size_bits; 843 if ((bh_cend <= cpos || bh_cpos >= cend)) { 844 bh->b_blocknr = -1; 845 /* 846 * If the buffer is uptodate we skip it. If it 847 * is not but the page is uptodate, we can set 848 * the buffer uptodate. If the page is not 849 * uptodate, we can clear the buffer and set it 850 * uptodate. Whether this is worthwhile is 851 * debatable and this could be removed. 852 */ 853 if (PageUptodate(page)) { 854 if (!buffer_uptodate(bh)) 855 set_buffer_uptodate(bh); 856 } else if (!buffer_uptodate(bh)) { 857 zero_user(page, bh_offset(bh), 858 blocksize); 859 set_buffer_uptodate(bh); 860 } 861 continue; 862 } 863 } 864 /* 865 * Out of bounds buffer is invalid if it was not really out of 866 * bounds. 867 */ 868 BUG_ON(lcn != LCN_HOLE); 869 /* 870 * We need the runlist locked for writing, so if it is locked 871 * for reading relock it now and retry in case it changed 872 * whilst we dropped the lock. 873 */ 874 BUG_ON(!rl); 875 if (!rl_write_locked) { 876 up_read(&ni->runlist.lock); 877 down_write(&ni->runlist.lock); 878 rl_write_locked = true; 879 goto retry_remap; 880 } 881 /* Find the previous last allocated cluster. */ 882 BUG_ON(rl->lcn != LCN_HOLE); 883 lcn = -1; 884 rl2 = rl; 885 while (--rl2 >= ni->runlist.rl) { 886 if (rl2->lcn >= 0) { 887 lcn = rl2->lcn + rl2->length; 888 break; 889 } 890 } 891 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, 892 false); 893 if (IS_ERR(rl2)) { 894 err = PTR_ERR(rl2); 895 ntfs_debug("Failed to allocate cluster, error code %i.", 896 err); 897 break; 898 } 899 lcn = rl2->lcn; 900 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 901 if (IS_ERR(rl)) { 902 err = PTR_ERR(rl); 903 if (err != -ENOMEM) 904 err = -EIO; 905 if (ntfs_cluster_free_from_rl(vol, rl2)) { 906 ntfs_error(vol->sb, "Failed to release " 907 "allocated cluster in error " 908 "code path. Run chkdsk to " 909 "recover the lost cluster."); 910 NVolSetErrors(vol); 911 } 912 ntfs_free(rl2); 913 break; 914 } 915 ni->runlist.rl = rl; 916 status.runlist_merged = 1; 917 ntfs_debug("Allocated cluster, lcn 0x%llx.", 918 (unsigned long long)lcn); 919 /* Map and lock the mft record and get the attribute record. */ 920 if (!NInoAttr(ni)) 921 base_ni = ni; 922 else 923 base_ni = ni->ext.base_ntfs_ino; 924 m = map_mft_record(base_ni); 925 if (IS_ERR(m)) { 926 err = PTR_ERR(m); 927 break; 928 } 929 ctx = ntfs_attr_get_search_ctx(base_ni, m); 930 if (unlikely(!ctx)) { 931 err = -ENOMEM; 932 unmap_mft_record(base_ni); 933 break; 934 } 935 status.mft_attr_mapped = 1; 936 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 937 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); 938 if (unlikely(err)) { 939 if (err == -ENOENT) 940 err = -EIO; 941 break; 942 } 943 m = ctx->mrec; 944 a = ctx->attr; 945 /* 946 * Find the runlist element with which the attribute extent 947 * starts. Note, we cannot use the _attr_ version because we 948 * have mapped the mft record. That is ok because we know the 949 * runlist fragment must be mapped already to have ever gotten 950 * here, so we can just use the _rl_ version. 951 */ 952 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); 953 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); 954 BUG_ON(!rl2); 955 BUG_ON(!rl2->length); 956 BUG_ON(rl2->lcn < LCN_HOLE); 957 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 958 /* 959 * If @highest_vcn is zero, calculate the real highest_vcn 960 * (which can really be zero). 961 */ 962 if (!highest_vcn) 963 highest_vcn = (sle64_to_cpu( 964 a->data.non_resident.allocated_size) >> 965 vol->cluster_size_bits) - 1; 966 /* 967 * Determine the size of the mapping pairs array for the new 968 * extent, i.e. the old extent with the hole filled. 969 */ 970 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, 971 highest_vcn); 972 if (unlikely(mp_size <= 0)) { 973 if (!(err = mp_size)) 974 err = -EIO; 975 ntfs_debug("Failed to get size for mapping pairs " 976 "array, error code %i.", err); 977 break; 978 } 979 /* 980 * Resize the attribute record to fit the new mapping pairs 981 * array. 982 */ 983 attr_rec_len = le32_to_cpu(a->length); 984 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( 985 a->data.non_resident.mapping_pairs_offset)); 986 if (unlikely(err)) { 987 BUG_ON(err != -ENOSPC); 988 // TODO: Deal with this by using the current attribute 989 // and fill it with as much of the mapping pairs 990 // array as possible. Then loop over each attribute 991 // extent rewriting the mapping pairs arrays as we go 992 // along and if when we reach the end we have not 993 // enough space, try to resize the last attribute 994 // extent and if even that fails, add a new attribute 995 // extent. 996 // We could also try to resize at each step in the hope 997 // that we will not need to rewrite every single extent. 998 // Note, we may need to decompress some extents to fill 999 // the runlist as we are walking the extents... 1000 ntfs_error(vol->sb, "Not enough space in the mft " 1001 "record for the extended attribute " 1002 "record. This case is not " 1003 "implemented yet."); 1004 err = -EOPNOTSUPP; 1005 break ; 1006 } 1007 status.mp_rebuilt = 1; 1008 /* 1009 * Generate the mapping pairs array directly into the attribute 1010 * record. 1011 */ 1012 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1013 a->data.non_resident.mapping_pairs_offset), 1014 mp_size, rl2, vcn, highest_vcn, NULL); 1015 if (unlikely(err)) { 1016 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " 1017 "attribute type 0x%x, because building " 1018 "the mapping pairs failed with error " 1019 "code %i.", vi->i_ino, 1020 (unsigned)le32_to_cpu(ni->type), err); 1021 err = -EIO; 1022 break; 1023 } 1024 /* Update the highest_vcn but only if it was not set. */ 1025 if (unlikely(!a->data.non_resident.highest_vcn)) 1026 a->data.non_resident.highest_vcn = 1027 cpu_to_sle64(highest_vcn); 1028 /* 1029 * If the attribute is sparse/compressed, update the compressed 1030 * size in the ntfs_inode structure and the attribute record. 1031 */ 1032 if (likely(NInoSparse(ni) || NInoCompressed(ni))) { 1033 /* 1034 * If we are not in the first attribute extent, switch 1035 * to it, but first ensure the changes will make it to 1036 * disk later. 1037 */ 1038 if (a->data.non_resident.lowest_vcn) { 1039 flush_dcache_mft_record_page(ctx->ntfs_ino); 1040 mark_mft_record_dirty(ctx->ntfs_ino); 1041 ntfs_attr_reinit_search_ctx(ctx); 1042 err = ntfs_attr_lookup(ni->type, ni->name, 1043 ni->name_len, CASE_SENSITIVE, 1044 0, NULL, 0, ctx); 1045 if (unlikely(err)) { 1046 status.attr_switched = 1; 1047 break; 1048 } 1049 /* @m is not used any more so do not set it. */ 1050 a = ctx->attr; 1051 } 1052 write_lock_irqsave(&ni->size_lock, flags); 1053 ni->itype.compressed.size += vol->cluster_size; 1054 a->data.non_resident.compressed_size = 1055 cpu_to_sle64(ni->itype.compressed.size); 1056 write_unlock_irqrestore(&ni->size_lock, flags); 1057 } 1058 /* Ensure the changes make it to disk. */ 1059 flush_dcache_mft_record_page(ctx->ntfs_ino); 1060 mark_mft_record_dirty(ctx->ntfs_ino); 1061 ntfs_attr_put_search_ctx(ctx); 1062 unmap_mft_record(base_ni); 1063 /* Successfully filled the hole. */ 1064 status.runlist_merged = 0; 1065 status.mft_attr_mapped = 0; 1066 status.mp_rebuilt = 0; 1067 /* Setup the map cache and use that to deal with the buffer. */ 1068 was_hole = true; 1069 vcn = bh_cpos; 1070 vcn_len = 1; 1071 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); 1072 cdelta = 0; 1073 /* 1074 * If the number of remaining clusters in the @pages is smaller 1075 * or equal to the number of cached clusters, unlock the 1076 * runlist as the map cache will be used from now on. 1077 */ 1078 if (likely(vcn + vcn_len >= cend)) { 1079 up_write(&ni->runlist.lock); 1080 rl_write_locked = false; 1081 rl = NULL; 1082 } 1083 goto map_buffer_cached; 1084 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1085 /* If there are no errors, do the next page. */ 1086 if (likely(!err && ++u < nr_pages)) 1087 goto do_next_page; 1088 /* If there are no errors, release the runlist lock if we took it. */ 1089 if (likely(!err)) { 1090 if (unlikely(rl_write_locked)) { 1091 up_write(&ni->runlist.lock); 1092 rl_write_locked = false; 1093 } else if (unlikely(rl)) 1094 up_read(&ni->runlist.lock); 1095 rl = NULL; 1096 } 1097 /* If we issued read requests, let them complete. */ 1098 read_lock_irqsave(&ni->size_lock, flags); 1099 initialized_size = ni->initialized_size; 1100 read_unlock_irqrestore(&ni->size_lock, flags); 1101 while (wait_bh > wait) { 1102 bh = *--wait_bh; 1103 wait_on_buffer(bh); 1104 if (likely(buffer_uptodate(bh))) { 1105 page = bh->b_page; 1106 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + 1107 bh_offset(bh); 1108 /* 1109 * If the buffer overflows the initialized size, need 1110 * to zero the overflowing region. 1111 */ 1112 if (unlikely(bh_pos + blocksize > initialized_size)) { 1113 int ofs = 0; 1114 1115 if (likely(bh_pos < initialized_size)) 1116 ofs = initialized_size - bh_pos; 1117 zero_user_segment(page, bh_offset(bh) + ofs, 1118 blocksize); 1119 } 1120 } else /* if (unlikely(!buffer_uptodate(bh))) */ 1121 err = -EIO; 1122 } 1123 if (likely(!err)) { 1124 /* Clear buffer_new on all buffers. */ 1125 u = 0; 1126 do { 1127 bh = head = page_buffers(pages[u]); 1128 do { 1129 if (buffer_new(bh)) 1130 clear_buffer_new(bh); 1131 } while ((bh = bh->b_this_page) != head); 1132 } while (++u < nr_pages); 1133 ntfs_debug("Done."); 1134 return err; 1135 } 1136 if (status.attr_switched) { 1137 /* Get back to the attribute extent we modified. */ 1138 ntfs_attr_reinit_search_ctx(ctx); 1139 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1140 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { 1141 ntfs_error(vol->sb, "Failed to find required " 1142 "attribute extent of attribute in " 1143 "error code path. Run chkdsk to " 1144 "recover."); 1145 write_lock_irqsave(&ni->size_lock, flags); 1146 ni->itype.compressed.size += vol->cluster_size; 1147 write_unlock_irqrestore(&ni->size_lock, flags); 1148 flush_dcache_mft_record_page(ctx->ntfs_ino); 1149 mark_mft_record_dirty(ctx->ntfs_ino); 1150 /* 1151 * The only thing that is now wrong is the compressed 1152 * size of the base attribute extent which chkdsk 1153 * should be able to fix. 1154 */ 1155 NVolSetErrors(vol); 1156 } else { 1157 m = ctx->mrec; 1158 a = ctx->attr; 1159 status.attr_switched = 0; 1160 } 1161 } 1162 /* 1163 * If the runlist has been modified, need to restore it by punching a 1164 * hole into it and we then need to deallocate the on-disk cluster as 1165 * well. Note, we only modify the runlist if we are able to generate a 1166 * new mapping pairs array, i.e. only when the mapped attribute extent 1167 * is not switched. 1168 */ 1169 if (status.runlist_merged && !status.attr_switched) { 1170 BUG_ON(!rl_write_locked); 1171 /* Make the file cluster we allocated sparse in the runlist. */ 1172 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { 1173 ntfs_error(vol->sb, "Failed to punch hole into " 1174 "attribute runlist in error code " 1175 "path. Run chkdsk to recover the " 1176 "lost cluster."); 1177 NVolSetErrors(vol); 1178 } else /* if (success) */ { 1179 status.runlist_merged = 0; 1180 /* 1181 * Deallocate the on-disk cluster we allocated but only 1182 * if we succeeded in punching its vcn out of the 1183 * runlist. 1184 */ 1185 down_write(&vol->lcnbmp_lock); 1186 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1187 ntfs_error(vol->sb, "Failed to release " 1188 "allocated cluster in error " 1189 "code path. Run chkdsk to " 1190 "recover the lost cluster."); 1191 NVolSetErrors(vol); 1192 } 1193 up_write(&vol->lcnbmp_lock); 1194 } 1195 } 1196 /* 1197 * Resize the attribute record to its old size and rebuild the mapping 1198 * pairs array. Note, we only can do this if the runlist has been 1199 * restored to its old state which also implies that the mapped 1200 * attribute extent is not switched. 1201 */ 1202 if (status.mp_rebuilt && !status.runlist_merged) { 1203 if (ntfs_attr_record_resize(m, a, attr_rec_len)) { 1204 ntfs_error(vol->sb, "Failed to restore attribute " 1205 "record in error code path. Run " 1206 "chkdsk to recover."); 1207 NVolSetErrors(vol); 1208 } else /* if (success) */ { 1209 if (ntfs_mapping_pairs_build(vol, (u8*)a + 1210 le16_to_cpu(a->data.non_resident. 1211 mapping_pairs_offset), attr_rec_len - 1212 le16_to_cpu(a->data.non_resident. 1213 mapping_pairs_offset), ni->runlist.rl, 1214 vcn, highest_vcn, NULL)) { 1215 ntfs_error(vol->sb, "Failed to restore " 1216 "mapping pairs array in error " 1217 "code path. Run chkdsk to " 1218 "recover."); 1219 NVolSetErrors(vol); 1220 } 1221 flush_dcache_mft_record_page(ctx->ntfs_ino); 1222 mark_mft_record_dirty(ctx->ntfs_ino); 1223 } 1224 } 1225 /* Release the mft record and the attribute. */ 1226 if (status.mft_attr_mapped) { 1227 ntfs_attr_put_search_ctx(ctx); 1228 unmap_mft_record(base_ni); 1229 } 1230 /* Release the runlist lock. */ 1231 if (rl_write_locked) 1232 up_write(&ni->runlist.lock); 1233 else if (rl) 1234 up_read(&ni->runlist.lock); 1235 /* 1236 * Zero out any newly allocated blocks to avoid exposing stale data. 1237 * If BH_New is set, we know that the block was newly allocated above 1238 * and that it has not been fully zeroed and marked dirty yet. 1239 */ 1240 nr_pages = u; 1241 u = 0; 1242 end = bh_cpos << vol->cluster_size_bits; 1243 do { 1244 page = pages[u]; 1245 bh = head = page_buffers(page); 1246 do { 1247 if (u == nr_pages && 1248 ((s64)page->index << PAGE_CACHE_SHIFT) + 1249 bh_offset(bh) >= end) 1250 break; 1251 if (!buffer_new(bh)) 1252 continue; 1253 clear_buffer_new(bh); 1254 if (!buffer_uptodate(bh)) { 1255 if (PageUptodate(page)) 1256 set_buffer_uptodate(bh); 1257 else { 1258 zero_user(page, bh_offset(bh), 1259 blocksize); 1260 set_buffer_uptodate(bh); 1261 } 1262 } 1263 mark_buffer_dirty(bh); 1264 } while ((bh = bh->b_this_page) != head); 1265 } while (++u <= nr_pages); 1266 ntfs_error(vol->sb, "Failed. Returning error code %i.", err); 1267 return err; 1268 } 1269 1270 /* 1271 * Copy as much as we can into the pages and return the number of bytes which 1272 * were successfully copied. If a fault is encountered then clear the pages 1273 * out to (ofs + bytes) and return the number of bytes which were copied. 1274 */ 1275 static inline size_t ntfs_copy_from_user(struct page **pages, 1276 unsigned nr_pages, unsigned ofs, const char __user *buf, 1277 size_t bytes) 1278 { 1279 struct page **last_page = pages + nr_pages; 1280 char *addr; 1281 size_t total = 0; 1282 unsigned len; 1283 int left; 1284 1285 do { 1286 len = PAGE_CACHE_SIZE - ofs; 1287 if (len > bytes) 1288 len = bytes; 1289 addr = kmap_atomic(*pages); 1290 left = __copy_from_user_inatomic(addr + ofs, buf, len); 1291 kunmap_atomic(addr); 1292 if (unlikely(left)) { 1293 /* Do it the slow way. */ 1294 addr = kmap(*pages); 1295 left = __copy_from_user(addr + ofs, buf, len); 1296 kunmap(*pages); 1297 if (unlikely(left)) 1298 goto err_out; 1299 } 1300 total += len; 1301 bytes -= len; 1302 if (!bytes) 1303 break; 1304 buf += len; 1305 ofs = 0; 1306 } while (++pages < last_page); 1307 out: 1308 return total; 1309 err_out: 1310 total += len - left; 1311 /* Zero the rest of the target like __copy_from_user(). */ 1312 while (++pages < last_page) { 1313 bytes -= len; 1314 if (!bytes) 1315 break; 1316 len = PAGE_CACHE_SIZE; 1317 if (len > bytes) 1318 len = bytes; 1319 zero_user(*pages, 0, len); 1320 } 1321 goto out; 1322 } 1323 1324 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, 1325 const struct iovec *iov, size_t iov_ofs, size_t bytes) 1326 { 1327 size_t total = 0; 1328 1329 while (1) { 1330 const char __user *buf = iov->iov_base + iov_ofs; 1331 unsigned len; 1332 size_t left; 1333 1334 len = iov->iov_len - iov_ofs; 1335 if (len > bytes) 1336 len = bytes; 1337 left = __copy_from_user_inatomic(vaddr, buf, len); 1338 total += len; 1339 bytes -= len; 1340 vaddr += len; 1341 if (unlikely(left)) { 1342 total -= left; 1343 break; 1344 } 1345 if (!bytes) 1346 break; 1347 iov++; 1348 iov_ofs = 0; 1349 } 1350 return total; 1351 } 1352 1353 static inline void ntfs_set_next_iovec(const struct iovec **iovp, 1354 size_t *iov_ofsp, size_t bytes) 1355 { 1356 const struct iovec *iov = *iovp; 1357 size_t iov_ofs = *iov_ofsp; 1358 1359 while (bytes) { 1360 unsigned len; 1361 1362 len = iov->iov_len - iov_ofs; 1363 if (len > bytes) 1364 len = bytes; 1365 bytes -= len; 1366 iov_ofs += len; 1367 if (iov->iov_len == iov_ofs) { 1368 iov++; 1369 iov_ofs = 0; 1370 } 1371 } 1372 *iovp = iov; 1373 *iov_ofsp = iov_ofs; 1374 } 1375 1376 /* 1377 * This has the same side-effects and return value as ntfs_copy_from_user(). 1378 * The difference is that on a fault we need to memset the remainder of the 1379 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s 1380 * single-segment behaviour. 1381 * 1382 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when 1383 * atomic and when not atomic. This is ok because it calls 1384 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In 1385 * fact, the only difference between __copy_from_user_inatomic() and 1386 * __copy_from_user() is that the latter calls might_sleep() and the former 1387 * should not zero the tail of the buffer on error. And on many architectures 1388 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it 1389 * makes no difference at all on those architectures. 1390 */ 1391 static inline size_t ntfs_copy_from_user_iovec(struct page **pages, 1392 unsigned nr_pages, unsigned ofs, const struct iovec **iov, 1393 size_t *iov_ofs, size_t bytes) 1394 { 1395 struct page **last_page = pages + nr_pages; 1396 char *addr; 1397 size_t copied, len, total = 0; 1398 1399 do { 1400 len = PAGE_CACHE_SIZE - ofs; 1401 if (len > bytes) 1402 len = bytes; 1403 addr = kmap_atomic(*pages); 1404 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, 1405 *iov, *iov_ofs, len); 1406 kunmap_atomic(addr); 1407 if (unlikely(copied != len)) { 1408 /* Do it the slow way. */ 1409 addr = kmap(*pages); 1410 copied = __ntfs_copy_from_user_iovec_inatomic(addr + 1411 ofs, *iov, *iov_ofs, len); 1412 if (unlikely(copied != len)) 1413 goto err_out; 1414 kunmap(*pages); 1415 } 1416 total += len; 1417 ntfs_set_next_iovec(iov, iov_ofs, len); 1418 bytes -= len; 1419 if (!bytes) 1420 break; 1421 ofs = 0; 1422 } while (++pages < last_page); 1423 out: 1424 return total; 1425 err_out: 1426 BUG_ON(copied > len); 1427 /* Zero the rest of the target like __copy_from_user(). */ 1428 memset(addr + ofs + copied, 0, len - copied); 1429 kunmap(*pages); 1430 total += copied; 1431 ntfs_set_next_iovec(iov, iov_ofs, copied); 1432 while (++pages < last_page) { 1433 bytes -= len; 1434 if (!bytes) 1435 break; 1436 len = PAGE_CACHE_SIZE; 1437 if (len > bytes) 1438 len = bytes; 1439 zero_user(*pages, 0, len); 1440 } 1441 goto out; 1442 } 1443 1444 static inline void ntfs_flush_dcache_pages(struct page **pages, 1445 unsigned nr_pages) 1446 { 1447 BUG_ON(!nr_pages); 1448 /* 1449 * Warning: Do not do the decrement at the same time as the call to 1450 * flush_dcache_page() because it is a NULL macro on i386 and hence the 1451 * decrement never happens so the loop never terminates. 1452 */ 1453 do { 1454 --nr_pages; 1455 flush_dcache_page(pages[nr_pages]); 1456 } while (nr_pages > 0); 1457 } 1458 1459 /** 1460 * ntfs_commit_pages_after_non_resident_write - commit the received data 1461 * @pages: array of destination pages 1462 * @nr_pages: number of pages in @pages 1463 * @pos: byte position in file at which the write begins 1464 * @bytes: number of bytes to be written 1465 * 1466 * See description of ntfs_commit_pages_after_write(), below. 1467 */ 1468 static inline int ntfs_commit_pages_after_non_resident_write( 1469 struct page **pages, const unsigned nr_pages, 1470 s64 pos, size_t bytes) 1471 { 1472 s64 end, initialized_size; 1473 struct inode *vi; 1474 ntfs_inode *ni, *base_ni; 1475 struct buffer_head *bh, *head; 1476 ntfs_attr_search_ctx *ctx; 1477 MFT_RECORD *m; 1478 ATTR_RECORD *a; 1479 unsigned long flags; 1480 unsigned blocksize, u; 1481 int err; 1482 1483 vi = pages[0]->mapping->host; 1484 ni = NTFS_I(vi); 1485 blocksize = vi->i_sb->s_blocksize; 1486 end = pos + bytes; 1487 u = 0; 1488 do { 1489 s64 bh_pos; 1490 struct page *page; 1491 bool partial; 1492 1493 page = pages[u]; 1494 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 1495 bh = head = page_buffers(page); 1496 partial = false; 1497 do { 1498 s64 bh_end; 1499 1500 bh_end = bh_pos + blocksize; 1501 if (bh_end <= pos || bh_pos >= end) { 1502 if (!buffer_uptodate(bh)) 1503 partial = true; 1504 } else { 1505 set_buffer_uptodate(bh); 1506 mark_buffer_dirty(bh); 1507 } 1508 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1509 /* 1510 * If all buffers are now uptodate but the page is not, set the 1511 * page uptodate. 1512 */ 1513 if (!partial && !PageUptodate(page)) 1514 SetPageUptodate(page); 1515 } while (++u < nr_pages); 1516 /* 1517 * Finally, if we do not need to update initialized_size or i_size we 1518 * are finished. 1519 */ 1520 read_lock_irqsave(&ni->size_lock, flags); 1521 initialized_size = ni->initialized_size; 1522 read_unlock_irqrestore(&ni->size_lock, flags); 1523 if (end <= initialized_size) { 1524 ntfs_debug("Done."); 1525 return 0; 1526 } 1527 /* 1528 * Update initialized_size/i_size as appropriate, both in the inode and 1529 * the mft record. 1530 */ 1531 if (!NInoAttr(ni)) 1532 base_ni = ni; 1533 else 1534 base_ni = ni->ext.base_ntfs_ino; 1535 /* Map, pin, and lock the mft record. */ 1536 m = map_mft_record(base_ni); 1537 if (IS_ERR(m)) { 1538 err = PTR_ERR(m); 1539 m = NULL; 1540 ctx = NULL; 1541 goto err_out; 1542 } 1543 BUG_ON(!NInoNonResident(ni)); 1544 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1545 if (unlikely(!ctx)) { 1546 err = -ENOMEM; 1547 goto err_out; 1548 } 1549 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1550 CASE_SENSITIVE, 0, NULL, 0, ctx); 1551 if (unlikely(err)) { 1552 if (err == -ENOENT) 1553 err = -EIO; 1554 goto err_out; 1555 } 1556 a = ctx->attr; 1557 BUG_ON(!a->non_resident); 1558 write_lock_irqsave(&ni->size_lock, flags); 1559 BUG_ON(end > ni->allocated_size); 1560 ni->initialized_size = end; 1561 a->data.non_resident.initialized_size = cpu_to_sle64(end); 1562 if (end > i_size_read(vi)) { 1563 i_size_write(vi, end); 1564 a->data.non_resident.data_size = 1565 a->data.non_resident.initialized_size; 1566 } 1567 write_unlock_irqrestore(&ni->size_lock, flags); 1568 /* Mark the mft record dirty, so it gets written back. */ 1569 flush_dcache_mft_record_page(ctx->ntfs_ino); 1570 mark_mft_record_dirty(ctx->ntfs_ino); 1571 ntfs_attr_put_search_ctx(ctx); 1572 unmap_mft_record(base_ni); 1573 ntfs_debug("Done."); 1574 return 0; 1575 err_out: 1576 if (ctx) 1577 ntfs_attr_put_search_ctx(ctx); 1578 if (m) 1579 unmap_mft_record(base_ni); 1580 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " 1581 "code %i).", err); 1582 if (err != -ENOMEM) 1583 NVolSetErrors(ni->vol); 1584 return err; 1585 } 1586 1587 /** 1588 * ntfs_commit_pages_after_write - commit the received data 1589 * @pages: array of destination pages 1590 * @nr_pages: number of pages in @pages 1591 * @pos: byte position in file at which the write begins 1592 * @bytes: number of bytes to be written 1593 * 1594 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode 1595 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are 1596 * locked but not kmap()ped. The source data has already been copied into the 1597 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before 1598 * the data was copied (for non-resident attributes only) and it returned 1599 * success. 1600 * 1601 * Need to set uptodate and mark dirty all buffers within the boundary of the 1602 * write. If all buffers in a page are uptodate we set the page uptodate, too. 1603 * 1604 * Setting the buffers dirty ensures that they get written out later when 1605 * ntfs_writepage() is invoked by the VM. 1606 * 1607 * Finally, we need to update i_size and initialized_size as appropriate both 1608 * in the inode and the mft record. 1609 * 1610 * This is modelled after fs/buffer.c::generic_commit_write(), which marks 1611 * buffers uptodate and dirty, sets the page uptodate if all buffers in the 1612 * page are uptodate, and updates i_size if the end of io is beyond i_size. In 1613 * that case, it also marks the inode dirty. 1614 * 1615 * If things have gone as outlined in 1616 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page 1617 * content modifications here for non-resident attributes. For resident 1618 * attributes we need to do the uptodate bringing here which we combine with 1619 * the copying into the mft record which means we save one atomic kmap. 1620 * 1621 * Return 0 on success or -errno on error. 1622 */ 1623 static int ntfs_commit_pages_after_write(struct page **pages, 1624 const unsigned nr_pages, s64 pos, size_t bytes) 1625 { 1626 s64 end, initialized_size; 1627 loff_t i_size; 1628 struct inode *vi; 1629 ntfs_inode *ni, *base_ni; 1630 struct page *page; 1631 ntfs_attr_search_ctx *ctx; 1632 MFT_RECORD *m; 1633 ATTR_RECORD *a; 1634 char *kattr, *kaddr; 1635 unsigned long flags; 1636 u32 attr_len; 1637 int err; 1638 1639 BUG_ON(!nr_pages); 1640 BUG_ON(!pages); 1641 page = pages[0]; 1642 BUG_ON(!page); 1643 vi = page->mapping->host; 1644 ni = NTFS_I(vi); 1645 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 1646 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 1647 vi->i_ino, ni->type, page->index, nr_pages, 1648 (long long)pos, bytes); 1649 if (NInoNonResident(ni)) 1650 return ntfs_commit_pages_after_non_resident_write(pages, 1651 nr_pages, pos, bytes); 1652 BUG_ON(nr_pages > 1); 1653 /* 1654 * Attribute is resident, implying it is not compressed, encrypted, or 1655 * sparse. 1656 */ 1657 if (!NInoAttr(ni)) 1658 base_ni = ni; 1659 else 1660 base_ni = ni->ext.base_ntfs_ino; 1661 BUG_ON(NInoNonResident(ni)); 1662 /* Map, pin, and lock the mft record. */ 1663 m = map_mft_record(base_ni); 1664 if (IS_ERR(m)) { 1665 err = PTR_ERR(m); 1666 m = NULL; 1667 ctx = NULL; 1668 goto err_out; 1669 } 1670 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1671 if (unlikely(!ctx)) { 1672 err = -ENOMEM; 1673 goto err_out; 1674 } 1675 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1676 CASE_SENSITIVE, 0, NULL, 0, ctx); 1677 if (unlikely(err)) { 1678 if (err == -ENOENT) 1679 err = -EIO; 1680 goto err_out; 1681 } 1682 a = ctx->attr; 1683 BUG_ON(a->non_resident); 1684 /* The total length of the attribute value. */ 1685 attr_len = le32_to_cpu(a->data.resident.value_length); 1686 i_size = i_size_read(vi); 1687 BUG_ON(attr_len != i_size); 1688 BUG_ON(pos > attr_len); 1689 end = pos + bytes; 1690 BUG_ON(end > le32_to_cpu(a->length) - 1691 le16_to_cpu(a->data.resident.value_offset)); 1692 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 1693 kaddr = kmap_atomic(page); 1694 /* Copy the received data from the page to the mft record. */ 1695 memcpy(kattr + pos, kaddr + pos, bytes); 1696 /* Update the attribute length if necessary. */ 1697 if (end > attr_len) { 1698 attr_len = end; 1699 a->data.resident.value_length = cpu_to_le32(attr_len); 1700 } 1701 /* 1702 * If the page is not uptodate, bring the out of bounds area(s) 1703 * uptodate by copying data from the mft record to the page. 1704 */ 1705 if (!PageUptodate(page)) { 1706 if (pos > 0) 1707 memcpy(kaddr, kattr, pos); 1708 if (end < attr_len) 1709 memcpy(kaddr + end, kattr + end, attr_len - end); 1710 /* Zero the region outside the end of the attribute value. */ 1711 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1712 flush_dcache_page(page); 1713 SetPageUptodate(page); 1714 } 1715 kunmap_atomic(kaddr); 1716 /* Update initialized_size/i_size if necessary. */ 1717 read_lock_irqsave(&ni->size_lock, flags); 1718 initialized_size = ni->initialized_size; 1719 BUG_ON(end > ni->allocated_size); 1720 read_unlock_irqrestore(&ni->size_lock, flags); 1721 BUG_ON(initialized_size != i_size); 1722 if (end > initialized_size) { 1723 write_lock_irqsave(&ni->size_lock, flags); 1724 ni->initialized_size = end; 1725 i_size_write(vi, end); 1726 write_unlock_irqrestore(&ni->size_lock, flags); 1727 } 1728 /* Mark the mft record dirty, so it gets written back. */ 1729 flush_dcache_mft_record_page(ctx->ntfs_ino); 1730 mark_mft_record_dirty(ctx->ntfs_ino); 1731 ntfs_attr_put_search_ctx(ctx); 1732 unmap_mft_record(base_ni); 1733 ntfs_debug("Done."); 1734 return 0; 1735 err_out: 1736 if (err == -ENOMEM) { 1737 ntfs_warning(vi->i_sb, "Error allocating memory required to " 1738 "commit the write."); 1739 if (PageUptodate(page)) { 1740 ntfs_warning(vi->i_sb, "Page is uptodate, setting " 1741 "dirty so the write will be retried " 1742 "later on by the VM."); 1743 /* 1744 * Put the page on mapping->dirty_pages, but leave its 1745 * buffers' dirty state as-is. 1746 */ 1747 __set_page_dirty_nobuffers(page); 1748 err = 0; 1749 } else 1750 ntfs_error(vi->i_sb, "Page is not uptodate. Written " 1751 "data has been lost."); 1752 } else { 1753 ntfs_error(vi->i_sb, "Resident attribute commit write failed " 1754 "with error %i.", err); 1755 NVolSetErrors(ni->vol); 1756 } 1757 if (ctx) 1758 ntfs_attr_put_search_ctx(ctx); 1759 if (m) 1760 unmap_mft_record(base_ni); 1761 return err; 1762 } 1763 1764 static void ntfs_write_failed(struct address_space *mapping, loff_t to) 1765 { 1766 struct inode *inode = mapping->host; 1767 1768 if (to > inode->i_size) { 1769 truncate_pagecache(inode, inode->i_size); 1770 ntfs_truncate_vfs(inode); 1771 } 1772 } 1773 1774 /** 1775 * ntfs_file_buffered_write - 1776 * 1777 * Locking: The vfs is holding ->i_mutex on the inode. 1778 */ 1779 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, 1780 const struct iovec *iov, unsigned long nr_segs, 1781 loff_t pos, loff_t *ppos, size_t count) 1782 { 1783 struct file *file = iocb->ki_filp; 1784 struct address_space *mapping = file->f_mapping; 1785 struct inode *vi = mapping->host; 1786 ntfs_inode *ni = NTFS_I(vi); 1787 ntfs_volume *vol = ni->vol; 1788 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; 1789 struct page *cached_page = NULL; 1790 char __user *buf = NULL; 1791 s64 end, ll; 1792 VCN last_vcn; 1793 LCN lcn; 1794 unsigned long flags; 1795 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ 1796 ssize_t status, written; 1797 unsigned nr_pages; 1798 int err; 1799 1800 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1801 "pos 0x%llx, count 0x%lx.", 1802 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 1803 (unsigned long long)pos, (unsigned long)count); 1804 if (unlikely(!count)) 1805 return 0; 1806 BUG_ON(NInoMstProtected(ni)); 1807 /* 1808 * If the attribute is not an index root and it is encrypted or 1809 * compressed, we cannot write to it yet. Note we need to check for 1810 * AT_INDEX_ALLOCATION since this is the type of both directory and 1811 * index inodes. 1812 */ 1813 if (ni->type != AT_INDEX_ALLOCATION) { 1814 /* If file is encrypted, deny access, just like NT4. */ 1815 if (NInoEncrypted(ni)) { 1816 /* 1817 * Reminder for later: Encrypted files are _always_ 1818 * non-resident so that the content can always be 1819 * encrypted. 1820 */ 1821 ntfs_debug("Denying write access to encrypted file."); 1822 return -EACCES; 1823 } 1824 if (NInoCompressed(ni)) { 1825 /* Only unnamed $DATA attribute can be compressed. */ 1826 BUG_ON(ni->type != AT_DATA); 1827 BUG_ON(ni->name_len); 1828 /* 1829 * Reminder for later: If resident, the data is not 1830 * actually compressed. Only on the switch to non- 1831 * resident does compression kick in. This is in 1832 * contrast to encrypted files (see above). 1833 */ 1834 ntfs_error(vi->i_sb, "Writing to compressed files is " 1835 "not implemented yet. Sorry."); 1836 return -EOPNOTSUPP; 1837 } 1838 } 1839 /* 1840 * If a previous ntfs_truncate() failed, repeat it and abort if it 1841 * fails again. 1842 */ 1843 if (unlikely(NInoTruncateFailed(ni))) { 1844 inode_dio_wait(vi); 1845 err = ntfs_truncate(vi); 1846 if (err || NInoTruncateFailed(ni)) { 1847 if (!err) 1848 err = -EIO; 1849 ntfs_error(vol->sb, "Cannot perform write to inode " 1850 "0x%lx, attribute type 0x%x, because " 1851 "ntfs_truncate() failed (error code " 1852 "%i).", vi->i_ino, 1853 (unsigned)le32_to_cpu(ni->type), err); 1854 return err; 1855 } 1856 } 1857 /* The first byte after the write. */ 1858 end = pos + count; 1859 /* 1860 * If the write goes beyond the allocated size, extend the allocation 1861 * to cover the whole of the write, rounded up to the nearest cluster. 1862 */ 1863 read_lock_irqsave(&ni->size_lock, flags); 1864 ll = ni->allocated_size; 1865 read_unlock_irqrestore(&ni->size_lock, flags); 1866 if (end > ll) { 1867 /* Extend the allocation without changing the data size. */ 1868 ll = ntfs_attr_extend_allocation(ni, end, -1, pos); 1869 if (likely(ll >= 0)) { 1870 BUG_ON(pos >= ll); 1871 /* If the extension was partial truncate the write. */ 1872 if (end > ll) { 1873 ntfs_debug("Truncating write to inode 0x%lx, " 1874 "attribute type 0x%x, because " 1875 "the allocation was only " 1876 "partially extended.", 1877 vi->i_ino, (unsigned) 1878 le32_to_cpu(ni->type)); 1879 end = ll; 1880 count = ll - pos; 1881 } 1882 } else { 1883 err = ll; 1884 read_lock_irqsave(&ni->size_lock, flags); 1885 ll = ni->allocated_size; 1886 read_unlock_irqrestore(&ni->size_lock, flags); 1887 /* Perform a partial write if possible or fail. */ 1888 if (pos < ll) { 1889 ntfs_debug("Truncating write to inode 0x%lx, " 1890 "attribute type 0x%x, because " 1891 "extending the allocation " 1892 "failed (error code %i).", 1893 vi->i_ino, (unsigned) 1894 le32_to_cpu(ni->type), err); 1895 end = ll; 1896 count = ll - pos; 1897 } else { 1898 ntfs_error(vol->sb, "Cannot perform write to " 1899 "inode 0x%lx, attribute type " 1900 "0x%x, because extending the " 1901 "allocation failed (error " 1902 "code %i).", vi->i_ino, 1903 (unsigned) 1904 le32_to_cpu(ni->type), err); 1905 return err; 1906 } 1907 } 1908 } 1909 written = 0; 1910 /* 1911 * If the write starts beyond the initialized size, extend it up to the 1912 * beginning of the write and initialize all non-sparse space between 1913 * the old initialized size and the new one. This automatically also 1914 * increments the vfs inode->i_size to keep it above or equal to the 1915 * initialized_size. 1916 */ 1917 read_lock_irqsave(&ni->size_lock, flags); 1918 ll = ni->initialized_size; 1919 read_unlock_irqrestore(&ni->size_lock, flags); 1920 if (pos > ll) { 1921 err = ntfs_attr_extend_initialized(ni, pos); 1922 if (err < 0) { 1923 ntfs_error(vol->sb, "Cannot perform write to inode " 1924 "0x%lx, attribute type 0x%x, because " 1925 "extending the initialized size " 1926 "failed (error code %i).", vi->i_ino, 1927 (unsigned)le32_to_cpu(ni->type), err); 1928 status = err; 1929 goto err_out; 1930 } 1931 } 1932 /* 1933 * Determine the number of pages per cluster for non-resident 1934 * attributes. 1935 */ 1936 nr_pages = 1; 1937 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) 1938 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; 1939 /* Finally, perform the actual write. */ 1940 last_vcn = -1; 1941 if (likely(nr_segs == 1)) 1942 buf = iov->iov_base; 1943 do { 1944 VCN vcn; 1945 pgoff_t idx, start_idx; 1946 unsigned ofs, do_pages, u; 1947 size_t copied; 1948 1949 start_idx = idx = pos >> PAGE_CACHE_SHIFT; 1950 ofs = pos & ~PAGE_CACHE_MASK; 1951 bytes = PAGE_CACHE_SIZE - ofs; 1952 do_pages = 1; 1953 if (nr_pages > 1) { 1954 vcn = pos >> vol->cluster_size_bits; 1955 if (vcn != last_vcn) { 1956 last_vcn = vcn; 1957 /* 1958 * Get the lcn of the vcn the write is in. If 1959 * it is a hole, need to lock down all pages in 1960 * the cluster. 1961 */ 1962 down_read(&ni->runlist.lock); 1963 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> 1964 vol->cluster_size_bits, false); 1965 up_read(&ni->runlist.lock); 1966 if (unlikely(lcn < LCN_HOLE)) { 1967 status = -EIO; 1968 if (lcn == LCN_ENOMEM) 1969 status = -ENOMEM; 1970 else 1971 ntfs_error(vol->sb, "Cannot " 1972 "perform write to " 1973 "inode 0x%lx, " 1974 "attribute type 0x%x, " 1975 "because the attribute " 1976 "is corrupt.", 1977 vi->i_ino, (unsigned) 1978 le32_to_cpu(ni->type)); 1979 break; 1980 } 1981 if (lcn == LCN_HOLE) { 1982 start_idx = (pos & ~(s64) 1983 vol->cluster_size_mask) 1984 >> PAGE_CACHE_SHIFT; 1985 bytes = vol->cluster_size - (pos & 1986 vol->cluster_size_mask); 1987 do_pages = nr_pages; 1988 } 1989 } 1990 } 1991 if (bytes > count) 1992 bytes = count; 1993 /* 1994 * Bring in the user page(s) that we will copy from _first_. 1995 * Otherwise there is a nasty deadlock on copying from the same 1996 * page(s) as we are writing to, without it/them being marked 1997 * up-to-date. Note, at present there is nothing to stop the 1998 * pages being swapped out between us bringing them into memory 1999 * and doing the actual copying. 2000 */ 2001 if (likely(nr_segs == 1)) 2002 ntfs_fault_in_pages_readable(buf, bytes); 2003 else 2004 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); 2005 /* Get and lock @do_pages starting at index @start_idx. */ 2006 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, 2007 pages, &cached_page); 2008 if (unlikely(status)) 2009 break; 2010 /* 2011 * For non-resident attributes, we need to fill any holes with 2012 * actual clusters and ensure all bufferes are mapped. We also 2013 * need to bring uptodate any buffers that are only partially 2014 * being written to. 2015 */ 2016 if (NInoNonResident(ni)) { 2017 status = ntfs_prepare_pages_for_non_resident_write( 2018 pages, do_pages, pos, bytes); 2019 if (unlikely(status)) { 2020 loff_t i_size; 2021 2022 do { 2023 unlock_page(pages[--do_pages]); 2024 page_cache_release(pages[do_pages]); 2025 } while (do_pages); 2026 /* 2027 * The write preparation may have instantiated 2028 * allocated space outside i_size. Trim this 2029 * off again. We can ignore any errors in this 2030 * case as we will just be waisting a bit of 2031 * allocated space, which is not a disaster. 2032 */ 2033 i_size = i_size_read(vi); 2034 if (pos + bytes > i_size) { 2035 ntfs_write_failed(mapping, pos + bytes); 2036 } 2037 break; 2038 } 2039 } 2040 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; 2041 if (likely(nr_segs == 1)) { 2042 copied = ntfs_copy_from_user(pages + u, do_pages - u, 2043 ofs, buf, bytes); 2044 buf += copied; 2045 } else 2046 copied = ntfs_copy_from_user_iovec(pages + u, 2047 do_pages - u, ofs, &iov, &iov_ofs, 2048 bytes); 2049 ntfs_flush_dcache_pages(pages + u, do_pages - u); 2050 status = ntfs_commit_pages_after_write(pages, do_pages, pos, 2051 bytes); 2052 if (likely(!status)) { 2053 written += copied; 2054 count -= copied; 2055 pos += copied; 2056 if (unlikely(copied != bytes)) 2057 status = -EFAULT; 2058 } 2059 do { 2060 unlock_page(pages[--do_pages]); 2061 page_cache_release(pages[do_pages]); 2062 } while (do_pages); 2063 if (unlikely(status)) 2064 break; 2065 balance_dirty_pages_ratelimited(mapping); 2066 cond_resched(); 2067 } while (count); 2068 err_out: 2069 *ppos = pos; 2070 if (cached_page) 2071 page_cache_release(cached_page); 2072 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", 2073 written ? "written" : "status", (unsigned long)written, 2074 (long)status); 2075 return written ? written : status; 2076 } 2077 2078 /** 2079 * ntfs_file_aio_write_nolock - 2080 */ 2081 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, 2082 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) 2083 { 2084 struct file *file = iocb->ki_filp; 2085 struct address_space *mapping = file->f_mapping; 2086 struct inode *inode = mapping->host; 2087 loff_t pos; 2088 size_t count; /* after file limit checks */ 2089 ssize_t written, err; 2090 2091 count = iov_length(iov, nr_segs); 2092 pos = *ppos; 2093 /* We can write back this queue in page reclaim. */ 2094 current->backing_dev_info = mapping->backing_dev_info; 2095 written = 0; 2096 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2097 if (err) 2098 goto out; 2099 if (!count) 2100 goto out; 2101 err = file_remove_suid(file); 2102 if (err) 2103 goto out; 2104 err = file_update_time(file); 2105 if (err) 2106 goto out; 2107 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, 2108 count); 2109 out: 2110 current->backing_dev_info = NULL; 2111 return written ? written : err; 2112 } 2113 2114 /** 2115 * ntfs_file_aio_write - 2116 */ 2117 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2118 unsigned long nr_segs, loff_t pos) 2119 { 2120 struct file *file = iocb->ki_filp; 2121 struct address_space *mapping = file->f_mapping; 2122 struct inode *inode = mapping->host; 2123 ssize_t ret; 2124 2125 BUG_ON(iocb->ki_pos != pos); 2126 2127 mutex_lock(&inode->i_mutex); 2128 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); 2129 mutex_unlock(&inode->i_mutex); 2130 if (ret > 0) { 2131 int err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2132 if (err < 0) 2133 ret = err; 2134 } 2135 return ret; 2136 } 2137 2138 /** 2139 * ntfs_file_fsync - sync a file to disk 2140 * @filp: file to be synced 2141 * @datasync: if non-zero only flush user data and not metadata 2142 * 2143 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync 2144 * system calls. This function is inspired by fs/buffer.c::file_fsync(). 2145 * 2146 * If @datasync is false, write the mft record and all associated extent mft 2147 * records as well as the $DATA attribute and then sync the block device. 2148 * 2149 * If @datasync is true and the attribute is non-resident, we skip the writing 2150 * of the mft record and all associated extent mft records (this might still 2151 * happen due to the write_inode_now() call). 2152 * 2153 * Also, if @datasync is true, we do not wait on the inode to be written out 2154 * but we always wait on the page cache pages to be written out. 2155 * 2156 * Locking: Caller must hold i_mutex on the inode. 2157 * 2158 * TODO: We should probably also write all attribute/index inodes associated 2159 * with this inode but since we have no simple way of getting to them we ignore 2160 * this problem for now. 2161 */ 2162 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end, 2163 int datasync) 2164 { 2165 struct inode *vi = filp->f_mapping->host; 2166 int err, ret = 0; 2167 2168 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2169 2170 err = filemap_write_and_wait_range(vi->i_mapping, start, end); 2171 if (err) 2172 return err; 2173 mutex_lock(&vi->i_mutex); 2174 2175 BUG_ON(S_ISDIR(vi->i_mode)); 2176 if (!datasync || !NInoNonResident(NTFS_I(vi))) 2177 ret = __ntfs_write_inode(vi, 1); 2178 write_inode_now(vi, !datasync); 2179 /* 2180 * NOTE: If we were to use mapping->private_list (see ext2 and 2181 * fs/buffer.c) for dirty blocks then we could optimize the below to be 2182 * sync_mapping_buffers(vi->i_mapping). 2183 */ 2184 err = sync_blockdev(vi->i_sb->s_bdev); 2185 if (unlikely(err && !ret)) 2186 ret = err; 2187 if (likely(!ret)) 2188 ntfs_debug("Done."); 2189 else 2190 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " 2191 "%u.", datasync ? "data" : "", vi->i_ino, -ret); 2192 mutex_unlock(&vi->i_mutex); 2193 return ret; 2194 } 2195 2196 #endif /* NTFS_RW */ 2197 2198 const struct file_operations ntfs_file_ops = { 2199 .llseek = generic_file_llseek, /* Seek inside file. */ 2200 .read = new_sync_read, /* Read from file. */ 2201 .read_iter = generic_file_read_iter, /* Async read from file. */ 2202 #ifdef NTFS_RW 2203 .write = do_sync_write, /* Write to file. */ 2204 .aio_write = ntfs_file_aio_write, /* Async write to file. */ 2205 /*.release = ,*/ /* Last file is closed. See 2206 fs/ext2/file.c:: 2207 ext2_release_file() for 2208 how to use this to discard 2209 preallocated space for 2210 write opened files. */ 2211 .fsync = ntfs_file_fsync, /* Sync a file to disk. */ 2212 /*.aio_fsync = ,*/ /* Sync all outstanding async 2213 i/o operations on a 2214 kiocb. */ 2215 #endif /* NTFS_RW */ 2216 /*.ioctl = ,*/ /* Perform function on the 2217 mounted filesystem. */ 2218 .mmap = generic_file_mmap, /* Mmap file. */ 2219 .open = ntfs_file_open, /* Open file. */ 2220 .splice_read = generic_file_splice_read /* Zero-copy data send with 2221 the data source being on 2222 the ntfs partition. We do 2223 not need to care about the 2224 data destination. */ 2225 /*.sendpage = ,*/ /* Zero-copy data send with 2226 the data destination being 2227 on the ntfs partition. We 2228 do not need to care about 2229 the data source. */ 2230 }; 2231 2232 const struct inode_operations ntfs_file_inode_ops = { 2233 #ifdef NTFS_RW 2234 .setattr = ntfs_setattr, 2235 #endif /* NTFS_RW */ 2236 }; 2237 2238 const struct file_operations ntfs_empty_file_ops = {}; 2239 2240 const struct inode_operations ntfs_empty_inode_ops = {}; 2241