xref: /openbmc/linux/fs/ntfs/file.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/gfp.h>
11 #include <linux/pagemap.h>
12 #include <linux/pagevec.h>
13 #include <linux/sched/signal.h>
14 #include <linux/swap.h>
15 #include <linux/uio.h>
16 #include <linux/writeback.h>
17 
18 #include <asm/page.h>
19 #include <linux/uaccess.h>
20 
21 #include "attrib.h"
22 #include "bitmap.h"
23 #include "inode.h"
24 #include "debug.h"
25 #include "lcnalloc.h"
26 #include "malloc.h"
27 #include "mft.h"
28 #include "ntfs.h"
29 
30 /**
31  * ntfs_file_open - called when an inode is about to be opened
32  * @vi:		inode to be opened
33  * @filp:	file structure describing the inode
34  *
35  * Limit file size to the page cache limit on architectures where unsigned long
36  * is 32-bits. This is the most we can do for now without overflowing the page
37  * cache page index. Doing it this way means we don't run into problems because
38  * of existing too large files. It would be better to allow the user to read
39  * the beginning of the file but I doubt very much anyone is going to hit this
40  * check on a 32-bit architecture, so there is no point in adding the extra
41  * complexity required to support this.
42  *
43  * On 64-bit architectures, the check is hopefully optimized away by the
44  * compiler.
45  *
46  * After the check passes, just call generic_file_open() to do its work.
47  */
48 static int ntfs_file_open(struct inode *vi, struct file *filp)
49 {
50 	if (sizeof(unsigned long) < 8) {
51 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
52 			return -EOVERFLOW;
53 	}
54 	return generic_file_open(vi, filp);
55 }
56 
57 #ifdef NTFS_RW
58 
59 /**
60  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
61  * @ni:			ntfs inode of the attribute to extend
62  * @new_init_size:	requested new initialized size in bytes
63  *
64  * Extend the initialized size of an attribute described by the ntfs inode @ni
65  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
66  * the old initialized size and @new_init_size both in the page cache and on
67  * disk (if relevant complete pages are already uptodate in the page cache then
68  * these are simply marked dirty).
69  *
70  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
71  * in the resident attribute case, it is tied to the initialized size and, in
72  * the non-resident attribute case, it may not fall below the initialized size.
73  *
74  * Note that if the attribute is resident, we do not need to touch the page
75  * cache at all.  This is because if the page cache page is not uptodate we
76  * bring it uptodate later, when doing the write to the mft record since we
77  * then already have the page mapped.  And if the page is uptodate, the
78  * non-initialized region will already have been zeroed when the page was
79  * brought uptodate and the region may in fact already have been overwritten
80  * with new data via mmap() based writes, so we cannot just zero it.  And since
81  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
82  * is unspecified, we choose not to do zeroing and thus we do not need to touch
83  * the page at all.  For a more detailed explanation see ntfs_truncate() in
84  * fs/ntfs/inode.c.
85  *
86  * Return 0 on success and -errno on error.  In the case that an error is
87  * encountered it is possible that the initialized size will already have been
88  * incremented some way towards @new_init_size but it is guaranteed that if
89  * this is the case, the necessary zeroing will also have happened and that all
90  * metadata is self-consistent.
91  *
92  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
93  *	    held by the caller.
94  */
95 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
96 {
97 	s64 old_init_size;
98 	loff_t old_i_size;
99 	pgoff_t index, end_index;
100 	unsigned long flags;
101 	struct inode *vi = VFS_I(ni);
102 	ntfs_inode *base_ni;
103 	MFT_RECORD *m = NULL;
104 	ATTR_RECORD *a;
105 	ntfs_attr_search_ctx *ctx = NULL;
106 	struct address_space *mapping;
107 	struct page *page = NULL;
108 	u8 *kattr;
109 	int err;
110 	u32 attr_len;
111 
112 	read_lock_irqsave(&ni->size_lock, flags);
113 	old_init_size = ni->initialized_size;
114 	old_i_size = i_size_read(vi);
115 	BUG_ON(new_init_size > ni->allocated_size);
116 	read_unlock_irqrestore(&ni->size_lock, flags);
117 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
118 			"old_initialized_size 0x%llx, "
119 			"new_initialized_size 0x%llx, i_size 0x%llx.",
120 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
121 			(unsigned long long)old_init_size,
122 			(unsigned long long)new_init_size, old_i_size);
123 	if (!NInoAttr(ni))
124 		base_ni = ni;
125 	else
126 		base_ni = ni->ext.base_ntfs_ino;
127 	/* Use goto to reduce indentation and we need the label below anyway. */
128 	if (NInoNonResident(ni))
129 		goto do_non_resident_extend;
130 	BUG_ON(old_init_size != old_i_size);
131 	m = map_mft_record(base_ni);
132 	if (IS_ERR(m)) {
133 		err = PTR_ERR(m);
134 		m = NULL;
135 		goto err_out;
136 	}
137 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
138 	if (unlikely(!ctx)) {
139 		err = -ENOMEM;
140 		goto err_out;
141 	}
142 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
143 			CASE_SENSITIVE, 0, NULL, 0, ctx);
144 	if (unlikely(err)) {
145 		if (err == -ENOENT)
146 			err = -EIO;
147 		goto err_out;
148 	}
149 	m = ctx->mrec;
150 	a = ctx->attr;
151 	BUG_ON(a->non_resident);
152 	/* The total length of the attribute value. */
153 	attr_len = le32_to_cpu(a->data.resident.value_length);
154 	BUG_ON(old_i_size != (loff_t)attr_len);
155 	/*
156 	 * Do the zeroing in the mft record and update the attribute size in
157 	 * the mft record.
158 	 */
159 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
160 	memset(kattr + attr_len, 0, new_init_size - attr_len);
161 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
162 	/* Finally, update the sizes in the vfs and ntfs inodes. */
163 	write_lock_irqsave(&ni->size_lock, flags);
164 	i_size_write(vi, new_init_size);
165 	ni->initialized_size = new_init_size;
166 	write_unlock_irqrestore(&ni->size_lock, flags);
167 	goto done;
168 do_non_resident_extend:
169 	/*
170 	 * If the new initialized size @new_init_size exceeds the current file
171 	 * size (vfs inode->i_size), we need to extend the file size to the
172 	 * new initialized size.
173 	 */
174 	if (new_init_size > old_i_size) {
175 		m = map_mft_record(base_ni);
176 		if (IS_ERR(m)) {
177 			err = PTR_ERR(m);
178 			m = NULL;
179 			goto err_out;
180 		}
181 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
182 		if (unlikely(!ctx)) {
183 			err = -ENOMEM;
184 			goto err_out;
185 		}
186 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
187 				CASE_SENSITIVE, 0, NULL, 0, ctx);
188 		if (unlikely(err)) {
189 			if (err == -ENOENT)
190 				err = -EIO;
191 			goto err_out;
192 		}
193 		m = ctx->mrec;
194 		a = ctx->attr;
195 		BUG_ON(!a->non_resident);
196 		BUG_ON(old_i_size != (loff_t)
197 				sle64_to_cpu(a->data.non_resident.data_size));
198 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
199 		flush_dcache_mft_record_page(ctx->ntfs_ino);
200 		mark_mft_record_dirty(ctx->ntfs_ino);
201 		/* Update the file size in the vfs inode. */
202 		i_size_write(vi, new_init_size);
203 		ntfs_attr_put_search_ctx(ctx);
204 		ctx = NULL;
205 		unmap_mft_record(base_ni);
206 		m = NULL;
207 	}
208 	mapping = vi->i_mapping;
209 	index = old_init_size >> PAGE_SHIFT;
210 	end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
211 	do {
212 		/*
213 		 * Read the page.  If the page is not present, this will zero
214 		 * the uninitialized regions for us.
215 		 */
216 		page = read_mapping_page(mapping, index, NULL);
217 		if (IS_ERR(page)) {
218 			err = PTR_ERR(page);
219 			goto init_err_out;
220 		}
221 		if (unlikely(PageError(page))) {
222 			put_page(page);
223 			err = -EIO;
224 			goto init_err_out;
225 		}
226 		/*
227 		 * Update the initialized size in the ntfs inode.  This is
228 		 * enough to make ntfs_writepage() work.
229 		 */
230 		write_lock_irqsave(&ni->size_lock, flags);
231 		ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
232 		if (ni->initialized_size > new_init_size)
233 			ni->initialized_size = new_init_size;
234 		write_unlock_irqrestore(&ni->size_lock, flags);
235 		/* Set the page dirty so it gets written out. */
236 		set_page_dirty(page);
237 		put_page(page);
238 		/*
239 		 * Play nice with the vm and the rest of the system.  This is
240 		 * very much needed as we can potentially be modifying the
241 		 * initialised size from a very small value to a really huge
242 		 * value, e.g.
243 		 *	f = open(somefile, O_TRUNC);
244 		 *	truncate(f, 10GiB);
245 		 *	seek(f, 10GiB);
246 		 *	write(f, 1);
247 		 * And this would mean we would be marking dirty hundreds of
248 		 * thousands of pages or as in the above example more than
249 		 * two and a half million pages!
250 		 *
251 		 * TODO: For sparse pages could optimize this workload by using
252 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
253 		 * would be set in readpage for sparse pages and here we would
254 		 * not need to mark dirty any pages which have this bit set.
255 		 * The only caveat is that we have to clear the bit everywhere
256 		 * where we allocate any clusters that lie in the page or that
257 		 * contain the page.
258 		 *
259 		 * TODO: An even greater optimization would be for us to only
260 		 * call readpage() on pages which are not in sparse regions as
261 		 * determined from the runlist.  This would greatly reduce the
262 		 * number of pages we read and make dirty in the case of sparse
263 		 * files.
264 		 */
265 		balance_dirty_pages_ratelimited(mapping);
266 		cond_resched();
267 	} while (++index < end_index);
268 	read_lock_irqsave(&ni->size_lock, flags);
269 	BUG_ON(ni->initialized_size != new_init_size);
270 	read_unlock_irqrestore(&ni->size_lock, flags);
271 	/* Now bring in sync the initialized_size in the mft record. */
272 	m = map_mft_record(base_ni);
273 	if (IS_ERR(m)) {
274 		err = PTR_ERR(m);
275 		m = NULL;
276 		goto init_err_out;
277 	}
278 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
279 	if (unlikely(!ctx)) {
280 		err = -ENOMEM;
281 		goto init_err_out;
282 	}
283 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
284 			CASE_SENSITIVE, 0, NULL, 0, ctx);
285 	if (unlikely(err)) {
286 		if (err == -ENOENT)
287 			err = -EIO;
288 		goto init_err_out;
289 	}
290 	m = ctx->mrec;
291 	a = ctx->attr;
292 	BUG_ON(!a->non_resident);
293 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
294 done:
295 	flush_dcache_mft_record_page(ctx->ntfs_ino);
296 	mark_mft_record_dirty(ctx->ntfs_ino);
297 	if (ctx)
298 		ntfs_attr_put_search_ctx(ctx);
299 	if (m)
300 		unmap_mft_record(base_ni);
301 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
302 			(unsigned long long)new_init_size, i_size_read(vi));
303 	return 0;
304 init_err_out:
305 	write_lock_irqsave(&ni->size_lock, flags);
306 	ni->initialized_size = old_init_size;
307 	write_unlock_irqrestore(&ni->size_lock, flags);
308 err_out:
309 	if (ctx)
310 		ntfs_attr_put_search_ctx(ctx);
311 	if (m)
312 		unmap_mft_record(base_ni);
313 	ntfs_debug("Failed.  Returning error code %i.", err);
314 	return err;
315 }
316 
317 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
318 		struct iov_iter *from)
319 {
320 	loff_t pos;
321 	s64 end, ll;
322 	ssize_t err;
323 	unsigned long flags;
324 	struct file *file = iocb->ki_filp;
325 	struct inode *vi = file_inode(file);
326 	ntfs_inode *ni = NTFS_I(vi);
327 	ntfs_volume *vol = ni->vol;
328 
329 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
330 			"0x%llx, count 0x%zx.", vi->i_ino,
331 			(unsigned)le32_to_cpu(ni->type),
332 			(unsigned long long)iocb->ki_pos,
333 			iov_iter_count(from));
334 	err = generic_write_checks(iocb, from);
335 	if (unlikely(err <= 0))
336 		goto out;
337 	/*
338 	 * All checks have passed.  Before we start doing any writing we want
339 	 * to abort any totally illegal writes.
340 	 */
341 	BUG_ON(NInoMstProtected(ni));
342 	BUG_ON(ni->type != AT_DATA);
343 	/* If file is encrypted, deny access, just like NT4. */
344 	if (NInoEncrypted(ni)) {
345 		/* Only $DATA attributes can be encrypted. */
346 		/*
347 		 * Reminder for later: Encrypted files are _always_
348 		 * non-resident so that the content can always be encrypted.
349 		 */
350 		ntfs_debug("Denying write access to encrypted file.");
351 		err = -EACCES;
352 		goto out;
353 	}
354 	if (NInoCompressed(ni)) {
355 		/* Only unnamed $DATA attribute can be compressed. */
356 		BUG_ON(ni->name_len);
357 		/*
358 		 * Reminder for later: If resident, the data is not actually
359 		 * compressed.  Only on the switch to non-resident does
360 		 * compression kick in.  This is in contrast to encrypted files
361 		 * (see above).
362 		 */
363 		ntfs_error(vi->i_sb, "Writing to compressed files is not "
364 				"implemented yet.  Sorry.");
365 		err = -EOPNOTSUPP;
366 		goto out;
367 	}
368 	err = file_remove_privs(file);
369 	if (unlikely(err))
370 		goto out;
371 	/*
372 	 * Our ->update_time method always succeeds thus file_update_time()
373 	 * cannot fail either so there is no need to check the return code.
374 	 */
375 	file_update_time(file);
376 	pos = iocb->ki_pos;
377 	/* The first byte after the last cluster being written to. */
378 	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
379 			~(u64)vol->cluster_size_mask;
380 	/*
381 	 * If the write goes beyond the allocated size, extend the allocation
382 	 * to cover the whole of the write, rounded up to the nearest cluster.
383 	 */
384 	read_lock_irqsave(&ni->size_lock, flags);
385 	ll = ni->allocated_size;
386 	read_unlock_irqrestore(&ni->size_lock, flags);
387 	if (end > ll) {
388 		/*
389 		 * Extend the allocation without changing the data size.
390 		 *
391 		 * Note we ensure the allocation is big enough to at least
392 		 * write some data but we do not require the allocation to be
393 		 * complete, i.e. it may be partial.
394 		 */
395 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
396 		if (likely(ll >= 0)) {
397 			BUG_ON(pos >= ll);
398 			/* If the extension was partial truncate the write. */
399 			if (end > ll) {
400 				ntfs_debug("Truncating write to inode 0x%lx, "
401 						"attribute type 0x%x, because "
402 						"the allocation was only "
403 						"partially extended.",
404 						vi->i_ino, (unsigned)
405 						le32_to_cpu(ni->type));
406 				iov_iter_truncate(from, ll - pos);
407 			}
408 		} else {
409 			err = ll;
410 			read_lock_irqsave(&ni->size_lock, flags);
411 			ll = ni->allocated_size;
412 			read_unlock_irqrestore(&ni->size_lock, flags);
413 			/* Perform a partial write if possible or fail. */
414 			if (pos < ll) {
415 				ntfs_debug("Truncating write to inode 0x%lx "
416 						"attribute type 0x%x, because "
417 						"extending the allocation "
418 						"failed (error %d).",
419 						vi->i_ino, (unsigned)
420 						le32_to_cpu(ni->type),
421 						(int)-err);
422 				iov_iter_truncate(from, ll - pos);
423 			} else {
424 				if (err != -ENOSPC)
425 					ntfs_error(vi->i_sb, "Cannot perform "
426 							"write to inode "
427 							"0x%lx, attribute "
428 							"type 0x%x, because "
429 							"extending the "
430 							"allocation failed "
431 							"(error %ld).",
432 							vi->i_ino, (unsigned)
433 							le32_to_cpu(ni->type),
434 							(long)-err);
435 				else
436 					ntfs_debug("Cannot perform write to "
437 							"inode 0x%lx, "
438 							"attribute type 0x%x, "
439 							"because there is not "
440 							"space left.",
441 							vi->i_ino, (unsigned)
442 							le32_to_cpu(ni->type));
443 				goto out;
444 			}
445 		}
446 	}
447 	/*
448 	 * If the write starts beyond the initialized size, extend it up to the
449 	 * beginning of the write and initialize all non-sparse space between
450 	 * the old initialized size and the new one.  This automatically also
451 	 * increments the vfs inode->i_size to keep it above or equal to the
452 	 * initialized_size.
453 	 */
454 	read_lock_irqsave(&ni->size_lock, flags);
455 	ll = ni->initialized_size;
456 	read_unlock_irqrestore(&ni->size_lock, flags);
457 	if (pos > ll) {
458 		/*
459 		 * Wait for ongoing direct i/o to complete before proceeding.
460 		 * New direct i/o cannot start as we hold i_mutex.
461 		 */
462 		inode_dio_wait(vi);
463 		err = ntfs_attr_extend_initialized(ni, pos);
464 		if (unlikely(err < 0))
465 			ntfs_error(vi->i_sb, "Cannot perform write to inode "
466 					"0x%lx, attribute type 0x%x, because "
467 					"extending the initialized size "
468 					"failed (error %d).", vi->i_ino,
469 					(unsigned)le32_to_cpu(ni->type),
470 					(int)-err);
471 	}
472 out:
473 	return err;
474 }
475 
476 /**
477  * __ntfs_grab_cache_pages - obtain a number of locked pages
478  * @mapping:	address space mapping from which to obtain page cache pages
479  * @index:	starting index in @mapping at which to begin obtaining pages
480  * @nr_pages:	number of page cache pages to obtain
481  * @pages:	array of pages in which to return the obtained page cache pages
482  * @cached_page: allocated but as yet unused page
483  *
484  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
485  * starting at index @index.
486  *
487  * If a page is newly created, add it to lru list
488  *
489  * Note, the page locks are obtained in ascending page index order.
490  */
491 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
492 		pgoff_t index, const unsigned nr_pages, struct page **pages,
493 		struct page **cached_page)
494 {
495 	int err, nr;
496 
497 	BUG_ON(!nr_pages);
498 	err = nr = 0;
499 	do {
500 		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
501 				FGP_ACCESSED);
502 		if (!pages[nr]) {
503 			if (!*cached_page) {
504 				*cached_page = page_cache_alloc(mapping);
505 				if (unlikely(!*cached_page)) {
506 					err = -ENOMEM;
507 					goto err_out;
508 				}
509 			}
510 			err = add_to_page_cache_lru(*cached_page, mapping,
511 				   index,
512 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
513 			if (unlikely(err)) {
514 				if (err == -EEXIST)
515 					continue;
516 				goto err_out;
517 			}
518 			pages[nr] = *cached_page;
519 			*cached_page = NULL;
520 		}
521 		index++;
522 		nr++;
523 	} while (nr < nr_pages);
524 out:
525 	return err;
526 err_out:
527 	while (nr > 0) {
528 		unlock_page(pages[--nr]);
529 		put_page(pages[nr]);
530 	}
531 	goto out;
532 }
533 
534 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
535 {
536 	lock_buffer(bh);
537 	get_bh(bh);
538 	bh->b_end_io = end_buffer_read_sync;
539 	return submit_bh(REQ_OP_READ, 0, bh);
540 }
541 
542 /**
543  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
544  * @pages:	array of destination pages
545  * @nr_pages:	number of pages in @pages
546  * @pos:	byte position in file at which the write begins
547  * @bytes:	number of bytes to be written
548  *
549  * This is called for non-resident attributes from ntfs_file_buffered_write()
550  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
551  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
552  * data has not yet been copied into the @pages.
553  *
554  * Need to fill any holes with actual clusters, allocate buffers if necessary,
555  * ensure all the buffers are mapped, and bring uptodate any buffers that are
556  * only partially being written to.
557  *
558  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
559  * greater than PAGE_SIZE, that all pages in @pages are entirely inside
560  * the same cluster and that they are the entirety of that cluster, and that
561  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
562  *
563  * i_size is not to be modified yet.
564  *
565  * Return 0 on success or -errno on error.
566  */
567 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
568 		unsigned nr_pages, s64 pos, size_t bytes)
569 {
570 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
571 	LCN lcn;
572 	s64 bh_pos, vcn_len, end, initialized_size;
573 	sector_t lcn_block;
574 	struct page *page;
575 	struct inode *vi;
576 	ntfs_inode *ni, *base_ni = NULL;
577 	ntfs_volume *vol;
578 	runlist_element *rl, *rl2;
579 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
580 	ntfs_attr_search_ctx *ctx = NULL;
581 	MFT_RECORD *m = NULL;
582 	ATTR_RECORD *a = NULL;
583 	unsigned long flags;
584 	u32 attr_rec_len = 0;
585 	unsigned blocksize, u;
586 	int err, mp_size;
587 	bool rl_write_locked, was_hole, is_retry;
588 	unsigned char blocksize_bits;
589 	struct {
590 		u8 runlist_merged:1;
591 		u8 mft_attr_mapped:1;
592 		u8 mp_rebuilt:1;
593 		u8 attr_switched:1;
594 	} status = { 0, 0, 0, 0 };
595 
596 	BUG_ON(!nr_pages);
597 	BUG_ON(!pages);
598 	BUG_ON(!*pages);
599 	vi = pages[0]->mapping->host;
600 	ni = NTFS_I(vi);
601 	vol = ni->vol;
602 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
603 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
604 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
605 			(long long)pos, bytes);
606 	blocksize = vol->sb->s_blocksize;
607 	blocksize_bits = vol->sb->s_blocksize_bits;
608 	u = 0;
609 	do {
610 		page = pages[u];
611 		BUG_ON(!page);
612 		/*
613 		 * create_empty_buffers() will create uptodate/dirty buffers if
614 		 * the page is uptodate/dirty.
615 		 */
616 		if (!page_has_buffers(page)) {
617 			create_empty_buffers(page, blocksize, 0);
618 			if (unlikely(!page_has_buffers(page)))
619 				return -ENOMEM;
620 		}
621 	} while (++u < nr_pages);
622 	rl_write_locked = false;
623 	rl = NULL;
624 	err = 0;
625 	vcn = lcn = -1;
626 	vcn_len = 0;
627 	lcn_block = -1;
628 	was_hole = false;
629 	cpos = pos >> vol->cluster_size_bits;
630 	end = pos + bytes;
631 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
632 	/*
633 	 * Loop over each page and for each page over each buffer.  Use goto to
634 	 * reduce indentation.
635 	 */
636 	u = 0;
637 do_next_page:
638 	page = pages[u];
639 	bh_pos = (s64)page->index << PAGE_SHIFT;
640 	bh = head = page_buffers(page);
641 	do {
642 		VCN cdelta;
643 		s64 bh_end;
644 		unsigned bh_cofs;
645 
646 		/* Clear buffer_new on all buffers to reinitialise state. */
647 		if (buffer_new(bh))
648 			clear_buffer_new(bh);
649 		bh_end = bh_pos + blocksize;
650 		bh_cpos = bh_pos >> vol->cluster_size_bits;
651 		bh_cofs = bh_pos & vol->cluster_size_mask;
652 		if (buffer_mapped(bh)) {
653 			/*
654 			 * The buffer is already mapped.  If it is uptodate,
655 			 * ignore it.
656 			 */
657 			if (buffer_uptodate(bh))
658 				continue;
659 			/*
660 			 * The buffer is not uptodate.  If the page is uptodate
661 			 * set the buffer uptodate and otherwise ignore it.
662 			 */
663 			if (PageUptodate(page)) {
664 				set_buffer_uptodate(bh);
665 				continue;
666 			}
667 			/*
668 			 * Neither the page nor the buffer are uptodate.  If
669 			 * the buffer is only partially being written to, we
670 			 * need to read it in before the write, i.e. now.
671 			 */
672 			if ((bh_pos < pos && bh_end > pos) ||
673 					(bh_pos < end && bh_end > end)) {
674 				/*
675 				 * If the buffer is fully or partially within
676 				 * the initialized size, do an actual read.
677 				 * Otherwise, simply zero the buffer.
678 				 */
679 				read_lock_irqsave(&ni->size_lock, flags);
680 				initialized_size = ni->initialized_size;
681 				read_unlock_irqrestore(&ni->size_lock, flags);
682 				if (bh_pos < initialized_size) {
683 					ntfs_submit_bh_for_read(bh);
684 					*wait_bh++ = bh;
685 				} else {
686 					zero_user(page, bh_offset(bh),
687 							blocksize);
688 					set_buffer_uptodate(bh);
689 				}
690 			}
691 			continue;
692 		}
693 		/* Unmapped buffer.  Need to map it. */
694 		bh->b_bdev = vol->sb->s_bdev;
695 		/*
696 		 * If the current buffer is in the same clusters as the map
697 		 * cache, there is no need to check the runlist again.  The
698 		 * map cache is made up of @vcn, which is the first cached file
699 		 * cluster, @vcn_len which is the number of cached file
700 		 * clusters, @lcn is the device cluster corresponding to @vcn,
701 		 * and @lcn_block is the block number corresponding to @lcn.
702 		 */
703 		cdelta = bh_cpos - vcn;
704 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
705 map_buffer_cached:
706 			BUG_ON(lcn < 0);
707 			bh->b_blocknr = lcn_block +
708 					(cdelta << (vol->cluster_size_bits -
709 					blocksize_bits)) +
710 					(bh_cofs >> blocksize_bits);
711 			set_buffer_mapped(bh);
712 			/*
713 			 * If the page is uptodate so is the buffer.  If the
714 			 * buffer is fully outside the write, we ignore it if
715 			 * it was already allocated and we mark it dirty so it
716 			 * gets written out if we allocated it.  On the other
717 			 * hand, if we allocated the buffer but we are not
718 			 * marking it dirty we set buffer_new so we can do
719 			 * error recovery.
720 			 */
721 			if (PageUptodate(page)) {
722 				if (!buffer_uptodate(bh))
723 					set_buffer_uptodate(bh);
724 				if (unlikely(was_hole)) {
725 					/* We allocated the buffer. */
726 					clean_bdev_bh_alias(bh);
727 					if (bh_end <= pos || bh_pos >= end)
728 						mark_buffer_dirty(bh);
729 					else
730 						set_buffer_new(bh);
731 				}
732 				continue;
733 			}
734 			/* Page is _not_ uptodate. */
735 			if (likely(!was_hole)) {
736 				/*
737 				 * Buffer was already allocated.  If it is not
738 				 * uptodate and is only partially being written
739 				 * to, we need to read it in before the write,
740 				 * i.e. now.
741 				 */
742 				if (!buffer_uptodate(bh) && bh_pos < end &&
743 						bh_end > pos &&
744 						(bh_pos < pos ||
745 						bh_end > end)) {
746 					/*
747 					 * If the buffer is fully or partially
748 					 * within the initialized size, do an
749 					 * actual read.  Otherwise, simply zero
750 					 * the buffer.
751 					 */
752 					read_lock_irqsave(&ni->size_lock,
753 							flags);
754 					initialized_size = ni->initialized_size;
755 					read_unlock_irqrestore(&ni->size_lock,
756 							flags);
757 					if (bh_pos < initialized_size) {
758 						ntfs_submit_bh_for_read(bh);
759 						*wait_bh++ = bh;
760 					} else {
761 						zero_user(page, bh_offset(bh),
762 								blocksize);
763 						set_buffer_uptodate(bh);
764 					}
765 				}
766 				continue;
767 			}
768 			/* We allocated the buffer. */
769 			clean_bdev_bh_alias(bh);
770 			/*
771 			 * If the buffer is fully outside the write, zero it,
772 			 * set it uptodate, and mark it dirty so it gets
773 			 * written out.  If it is partially being written to,
774 			 * zero region surrounding the write but leave it to
775 			 * commit write to do anything else.  Finally, if the
776 			 * buffer is fully being overwritten, do nothing.
777 			 */
778 			if (bh_end <= pos || bh_pos >= end) {
779 				if (!buffer_uptodate(bh)) {
780 					zero_user(page, bh_offset(bh),
781 							blocksize);
782 					set_buffer_uptodate(bh);
783 				}
784 				mark_buffer_dirty(bh);
785 				continue;
786 			}
787 			set_buffer_new(bh);
788 			if (!buffer_uptodate(bh) &&
789 					(bh_pos < pos || bh_end > end)) {
790 				u8 *kaddr;
791 				unsigned pofs;
792 
793 				kaddr = kmap_atomic(page);
794 				if (bh_pos < pos) {
795 					pofs = bh_pos & ~PAGE_MASK;
796 					memset(kaddr + pofs, 0, pos - bh_pos);
797 				}
798 				if (bh_end > end) {
799 					pofs = end & ~PAGE_MASK;
800 					memset(kaddr + pofs, 0, bh_end - end);
801 				}
802 				kunmap_atomic(kaddr);
803 				flush_dcache_page(page);
804 			}
805 			continue;
806 		}
807 		/*
808 		 * Slow path: this is the first buffer in the cluster.  If it
809 		 * is outside allocated size and is not uptodate, zero it and
810 		 * set it uptodate.
811 		 */
812 		read_lock_irqsave(&ni->size_lock, flags);
813 		initialized_size = ni->allocated_size;
814 		read_unlock_irqrestore(&ni->size_lock, flags);
815 		if (bh_pos > initialized_size) {
816 			if (PageUptodate(page)) {
817 				if (!buffer_uptodate(bh))
818 					set_buffer_uptodate(bh);
819 			} else if (!buffer_uptodate(bh)) {
820 				zero_user(page, bh_offset(bh), blocksize);
821 				set_buffer_uptodate(bh);
822 			}
823 			continue;
824 		}
825 		is_retry = false;
826 		if (!rl) {
827 			down_read(&ni->runlist.lock);
828 retry_remap:
829 			rl = ni->runlist.rl;
830 		}
831 		if (likely(rl != NULL)) {
832 			/* Seek to element containing target cluster. */
833 			while (rl->length && rl[1].vcn <= bh_cpos)
834 				rl++;
835 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
836 			if (likely(lcn >= 0)) {
837 				/*
838 				 * Successful remap, setup the map cache and
839 				 * use that to deal with the buffer.
840 				 */
841 				was_hole = false;
842 				vcn = bh_cpos;
843 				vcn_len = rl[1].vcn - vcn;
844 				lcn_block = lcn << (vol->cluster_size_bits -
845 						blocksize_bits);
846 				cdelta = 0;
847 				/*
848 				 * If the number of remaining clusters touched
849 				 * by the write is smaller or equal to the
850 				 * number of cached clusters, unlock the
851 				 * runlist as the map cache will be used from
852 				 * now on.
853 				 */
854 				if (likely(vcn + vcn_len >= cend)) {
855 					if (rl_write_locked) {
856 						up_write(&ni->runlist.lock);
857 						rl_write_locked = false;
858 					} else
859 						up_read(&ni->runlist.lock);
860 					rl = NULL;
861 				}
862 				goto map_buffer_cached;
863 			}
864 		} else
865 			lcn = LCN_RL_NOT_MAPPED;
866 		/*
867 		 * If it is not a hole and not out of bounds, the runlist is
868 		 * probably unmapped so try to map it now.
869 		 */
870 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
871 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
872 				/* Attempt to map runlist. */
873 				if (!rl_write_locked) {
874 					/*
875 					 * We need the runlist locked for
876 					 * writing, so if it is locked for
877 					 * reading relock it now and retry in
878 					 * case it changed whilst we dropped
879 					 * the lock.
880 					 */
881 					up_read(&ni->runlist.lock);
882 					down_write(&ni->runlist.lock);
883 					rl_write_locked = true;
884 					goto retry_remap;
885 				}
886 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
887 						NULL);
888 				if (likely(!err)) {
889 					is_retry = true;
890 					goto retry_remap;
891 				}
892 				/*
893 				 * If @vcn is out of bounds, pretend @lcn is
894 				 * LCN_ENOENT.  As long as the buffer is out
895 				 * of bounds this will work fine.
896 				 */
897 				if (err == -ENOENT) {
898 					lcn = LCN_ENOENT;
899 					err = 0;
900 					goto rl_not_mapped_enoent;
901 				}
902 			} else
903 				err = -EIO;
904 			/* Failed to map the buffer, even after retrying. */
905 			bh->b_blocknr = -1;
906 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
907 					"attribute type 0x%x, vcn 0x%llx, "
908 					"vcn offset 0x%x, because its "
909 					"location on disk could not be "
910 					"determined%s (error code %i).",
911 					ni->mft_no, ni->type,
912 					(unsigned long long)bh_cpos,
913 					(unsigned)bh_pos &
914 					vol->cluster_size_mask,
915 					is_retry ? " even after retrying" : "",
916 					err);
917 			break;
918 		}
919 rl_not_mapped_enoent:
920 		/*
921 		 * The buffer is in a hole or out of bounds.  We need to fill
922 		 * the hole, unless the buffer is in a cluster which is not
923 		 * touched by the write, in which case we just leave the buffer
924 		 * unmapped.  This can only happen when the cluster size is
925 		 * less than the page cache size.
926 		 */
927 		if (unlikely(vol->cluster_size < PAGE_SIZE)) {
928 			bh_cend = (bh_end + vol->cluster_size - 1) >>
929 					vol->cluster_size_bits;
930 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
931 				bh->b_blocknr = -1;
932 				/*
933 				 * If the buffer is uptodate we skip it.  If it
934 				 * is not but the page is uptodate, we can set
935 				 * the buffer uptodate.  If the page is not
936 				 * uptodate, we can clear the buffer and set it
937 				 * uptodate.  Whether this is worthwhile is
938 				 * debatable and this could be removed.
939 				 */
940 				if (PageUptodate(page)) {
941 					if (!buffer_uptodate(bh))
942 						set_buffer_uptodate(bh);
943 				} else if (!buffer_uptodate(bh)) {
944 					zero_user(page, bh_offset(bh),
945 						blocksize);
946 					set_buffer_uptodate(bh);
947 				}
948 				continue;
949 			}
950 		}
951 		/*
952 		 * Out of bounds buffer is invalid if it was not really out of
953 		 * bounds.
954 		 */
955 		BUG_ON(lcn != LCN_HOLE);
956 		/*
957 		 * We need the runlist locked for writing, so if it is locked
958 		 * for reading relock it now and retry in case it changed
959 		 * whilst we dropped the lock.
960 		 */
961 		BUG_ON(!rl);
962 		if (!rl_write_locked) {
963 			up_read(&ni->runlist.lock);
964 			down_write(&ni->runlist.lock);
965 			rl_write_locked = true;
966 			goto retry_remap;
967 		}
968 		/* Find the previous last allocated cluster. */
969 		BUG_ON(rl->lcn != LCN_HOLE);
970 		lcn = -1;
971 		rl2 = rl;
972 		while (--rl2 >= ni->runlist.rl) {
973 			if (rl2->lcn >= 0) {
974 				lcn = rl2->lcn + rl2->length;
975 				break;
976 			}
977 		}
978 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
979 				false);
980 		if (IS_ERR(rl2)) {
981 			err = PTR_ERR(rl2);
982 			ntfs_debug("Failed to allocate cluster, error code %i.",
983 					err);
984 			break;
985 		}
986 		lcn = rl2->lcn;
987 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
988 		if (IS_ERR(rl)) {
989 			err = PTR_ERR(rl);
990 			if (err != -ENOMEM)
991 				err = -EIO;
992 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
993 				ntfs_error(vol->sb, "Failed to release "
994 						"allocated cluster in error "
995 						"code path.  Run chkdsk to "
996 						"recover the lost cluster.");
997 				NVolSetErrors(vol);
998 			}
999 			ntfs_free(rl2);
1000 			break;
1001 		}
1002 		ni->runlist.rl = rl;
1003 		status.runlist_merged = 1;
1004 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
1005 				(unsigned long long)lcn);
1006 		/* Map and lock the mft record and get the attribute record. */
1007 		if (!NInoAttr(ni))
1008 			base_ni = ni;
1009 		else
1010 			base_ni = ni->ext.base_ntfs_ino;
1011 		m = map_mft_record(base_ni);
1012 		if (IS_ERR(m)) {
1013 			err = PTR_ERR(m);
1014 			break;
1015 		}
1016 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1017 		if (unlikely(!ctx)) {
1018 			err = -ENOMEM;
1019 			unmap_mft_record(base_ni);
1020 			break;
1021 		}
1022 		status.mft_attr_mapped = 1;
1023 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1024 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1025 		if (unlikely(err)) {
1026 			if (err == -ENOENT)
1027 				err = -EIO;
1028 			break;
1029 		}
1030 		m = ctx->mrec;
1031 		a = ctx->attr;
1032 		/*
1033 		 * Find the runlist element with which the attribute extent
1034 		 * starts.  Note, we cannot use the _attr_ version because we
1035 		 * have mapped the mft record.  That is ok because we know the
1036 		 * runlist fragment must be mapped already to have ever gotten
1037 		 * here, so we can just use the _rl_ version.
1038 		 */
1039 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1040 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1041 		BUG_ON(!rl2);
1042 		BUG_ON(!rl2->length);
1043 		BUG_ON(rl2->lcn < LCN_HOLE);
1044 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1045 		/*
1046 		 * If @highest_vcn is zero, calculate the real highest_vcn
1047 		 * (which can really be zero).
1048 		 */
1049 		if (!highest_vcn)
1050 			highest_vcn = (sle64_to_cpu(
1051 					a->data.non_resident.allocated_size) >>
1052 					vol->cluster_size_bits) - 1;
1053 		/*
1054 		 * Determine the size of the mapping pairs array for the new
1055 		 * extent, i.e. the old extent with the hole filled.
1056 		 */
1057 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1058 				highest_vcn);
1059 		if (unlikely(mp_size <= 0)) {
1060 			if (!(err = mp_size))
1061 				err = -EIO;
1062 			ntfs_debug("Failed to get size for mapping pairs "
1063 					"array, error code %i.", err);
1064 			break;
1065 		}
1066 		/*
1067 		 * Resize the attribute record to fit the new mapping pairs
1068 		 * array.
1069 		 */
1070 		attr_rec_len = le32_to_cpu(a->length);
1071 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1072 				a->data.non_resident.mapping_pairs_offset));
1073 		if (unlikely(err)) {
1074 			BUG_ON(err != -ENOSPC);
1075 			// TODO: Deal with this by using the current attribute
1076 			// and fill it with as much of the mapping pairs
1077 			// array as possible.  Then loop over each attribute
1078 			// extent rewriting the mapping pairs arrays as we go
1079 			// along and if when we reach the end we have not
1080 			// enough space, try to resize the last attribute
1081 			// extent and if even that fails, add a new attribute
1082 			// extent.
1083 			// We could also try to resize at each step in the hope
1084 			// that we will not need to rewrite every single extent.
1085 			// Note, we may need to decompress some extents to fill
1086 			// the runlist as we are walking the extents...
1087 			ntfs_error(vol->sb, "Not enough space in the mft "
1088 					"record for the extended attribute "
1089 					"record.  This case is not "
1090 					"implemented yet.");
1091 			err = -EOPNOTSUPP;
1092 			break ;
1093 		}
1094 		status.mp_rebuilt = 1;
1095 		/*
1096 		 * Generate the mapping pairs array directly into the attribute
1097 		 * record.
1098 		 */
1099 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1100 				a->data.non_resident.mapping_pairs_offset),
1101 				mp_size, rl2, vcn, highest_vcn, NULL);
1102 		if (unlikely(err)) {
1103 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1104 					"attribute type 0x%x, because building "
1105 					"the mapping pairs failed with error "
1106 					"code %i.", vi->i_ino,
1107 					(unsigned)le32_to_cpu(ni->type), err);
1108 			err = -EIO;
1109 			break;
1110 		}
1111 		/* Update the highest_vcn but only if it was not set. */
1112 		if (unlikely(!a->data.non_resident.highest_vcn))
1113 			a->data.non_resident.highest_vcn =
1114 					cpu_to_sle64(highest_vcn);
1115 		/*
1116 		 * If the attribute is sparse/compressed, update the compressed
1117 		 * size in the ntfs_inode structure and the attribute record.
1118 		 */
1119 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1120 			/*
1121 			 * If we are not in the first attribute extent, switch
1122 			 * to it, but first ensure the changes will make it to
1123 			 * disk later.
1124 			 */
1125 			if (a->data.non_resident.lowest_vcn) {
1126 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1127 				mark_mft_record_dirty(ctx->ntfs_ino);
1128 				ntfs_attr_reinit_search_ctx(ctx);
1129 				err = ntfs_attr_lookup(ni->type, ni->name,
1130 						ni->name_len, CASE_SENSITIVE,
1131 						0, NULL, 0, ctx);
1132 				if (unlikely(err)) {
1133 					status.attr_switched = 1;
1134 					break;
1135 				}
1136 				/* @m is not used any more so do not set it. */
1137 				a = ctx->attr;
1138 			}
1139 			write_lock_irqsave(&ni->size_lock, flags);
1140 			ni->itype.compressed.size += vol->cluster_size;
1141 			a->data.non_resident.compressed_size =
1142 					cpu_to_sle64(ni->itype.compressed.size);
1143 			write_unlock_irqrestore(&ni->size_lock, flags);
1144 		}
1145 		/* Ensure the changes make it to disk. */
1146 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1147 		mark_mft_record_dirty(ctx->ntfs_ino);
1148 		ntfs_attr_put_search_ctx(ctx);
1149 		unmap_mft_record(base_ni);
1150 		/* Successfully filled the hole. */
1151 		status.runlist_merged = 0;
1152 		status.mft_attr_mapped = 0;
1153 		status.mp_rebuilt = 0;
1154 		/* Setup the map cache and use that to deal with the buffer. */
1155 		was_hole = true;
1156 		vcn = bh_cpos;
1157 		vcn_len = 1;
1158 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1159 		cdelta = 0;
1160 		/*
1161 		 * If the number of remaining clusters in the @pages is smaller
1162 		 * or equal to the number of cached clusters, unlock the
1163 		 * runlist as the map cache will be used from now on.
1164 		 */
1165 		if (likely(vcn + vcn_len >= cend)) {
1166 			up_write(&ni->runlist.lock);
1167 			rl_write_locked = false;
1168 			rl = NULL;
1169 		}
1170 		goto map_buffer_cached;
1171 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1172 	/* If there are no errors, do the next page. */
1173 	if (likely(!err && ++u < nr_pages))
1174 		goto do_next_page;
1175 	/* If there are no errors, release the runlist lock if we took it. */
1176 	if (likely(!err)) {
1177 		if (unlikely(rl_write_locked)) {
1178 			up_write(&ni->runlist.lock);
1179 			rl_write_locked = false;
1180 		} else if (unlikely(rl))
1181 			up_read(&ni->runlist.lock);
1182 		rl = NULL;
1183 	}
1184 	/* If we issued read requests, let them complete. */
1185 	read_lock_irqsave(&ni->size_lock, flags);
1186 	initialized_size = ni->initialized_size;
1187 	read_unlock_irqrestore(&ni->size_lock, flags);
1188 	while (wait_bh > wait) {
1189 		bh = *--wait_bh;
1190 		wait_on_buffer(bh);
1191 		if (likely(buffer_uptodate(bh))) {
1192 			page = bh->b_page;
1193 			bh_pos = ((s64)page->index << PAGE_SHIFT) +
1194 					bh_offset(bh);
1195 			/*
1196 			 * If the buffer overflows the initialized size, need
1197 			 * to zero the overflowing region.
1198 			 */
1199 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1200 				int ofs = 0;
1201 
1202 				if (likely(bh_pos < initialized_size))
1203 					ofs = initialized_size - bh_pos;
1204 				zero_user_segment(page, bh_offset(bh) + ofs,
1205 						blocksize);
1206 			}
1207 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1208 			err = -EIO;
1209 	}
1210 	if (likely(!err)) {
1211 		/* Clear buffer_new on all buffers. */
1212 		u = 0;
1213 		do {
1214 			bh = head = page_buffers(pages[u]);
1215 			do {
1216 				if (buffer_new(bh))
1217 					clear_buffer_new(bh);
1218 			} while ((bh = bh->b_this_page) != head);
1219 		} while (++u < nr_pages);
1220 		ntfs_debug("Done.");
1221 		return err;
1222 	}
1223 	if (status.attr_switched) {
1224 		/* Get back to the attribute extent we modified. */
1225 		ntfs_attr_reinit_search_ctx(ctx);
1226 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1227 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1228 			ntfs_error(vol->sb, "Failed to find required "
1229 					"attribute extent of attribute in "
1230 					"error code path.  Run chkdsk to "
1231 					"recover.");
1232 			write_lock_irqsave(&ni->size_lock, flags);
1233 			ni->itype.compressed.size += vol->cluster_size;
1234 			write_unlock_irqrestore(&ni->size_lock, flags);
1235 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1236 			mark_mft_record_dirty(ctx->ntfs_ino);
1237 			/*
1238 			 * The only thing that is now wrong is the compressed
1239 			 * size of the base attribute extent which chkdsk
1240 			 * should be able to fix.
1241 			 */
1242 			NVolSetErrors(vol);
1243 		} else {
1244 			m = ctx->mrec;
1245 			a = ctx->attr;
1246 			status.attr_switched = 0;
1247 		}
1248 	}
1249 	/*
1250 	 * If the runlist has been modified, need to restore it by punching a
1251 	 * hole into it and we then need to deallocate the on-disk cluster as
1252 	 * well.  Note, we only modify the runlist if we are able to generate a
1253 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1254 	 * is not switched.
1255 	 */
1256 	if (status.runlist_merged && !status.attr_switched) {
1257 		BUG_ON(!rl_write_locked);
1258 		/* Make the file cluster we allocated sparse in the runlist. */
1259 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1260 			ntfs_error(vol->sb, "Failed to punch hole into "
1261 					"attribute runlist in error code "
1262 					"path.  Run chkdsk to recover the "
1263 					"lost cluster.");
1264 			NVolSetErrors(vol);
1265 		} else /* if (success) */ {
1266 			status.runlist_merged = 0;
1267 			/*
1268 			 * Deallocate the on-disk cluster we allocated but only
1269 			 * if we succeeded in punching its vcn out of the
1270 			 * runlist.
1271 			 */
1272 			down_write(&vol->lcnbmp_lock);
1273 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1274 				ntfs_error(vol->sb, "Failed to release "
1275 						"allocated cluster in error "
1276 						"code path.  Run chkdsk to "
1277 						"recover the lost cluster.");
1278 				NVolSetErrors(vol);
1279 			}
1280 			up_write(&vol->lcnbmp_lock);
1281 		}
1282 	}
1283 	/*
1284 	 * Resize the attribute record to its old size and rebuild the mapping
1285 	 * pairs array.  Note, we only can do this if the runlist has been
1286 	 * restored to its old state which also implies that the mapped
1287 	 * attribute extent is not switched.
1288 	 */
1289 	if (status.mp_rebuilt && !status.runlist_merged) {
1290 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1291 			ntfs_error(vol->sb, "Failed to restore attribute "
1292 					"record in error code path.  Run "
1293 					"chkdsk to recover.");
1294 			NVolSetErrors(vol);
1295 		} else /* if (success) */ {
1296 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1297 					le16_to_cpu(a->data.non_resident.
1298 					mapping_pairs_offset), attr_rec_len -
1299 					le16_to_cpu(a->data.non_resident.
1300 					mapping_pairs_offset), ni->runlist.rl,
1301 					vcn, highest_vcn, NULL)) {
1302 				ntfs_error(vol->sb, "Failed to restore "
1303 						"mapping pairs array in error "
1304 						"code path.  Run chkdsk to "
1305 						"recover.");
1306 				NVolSetErrors(vol);
1307 			}
1308 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1309 			mark_mft_record_dirty(ctx->ntfs_ino);
1310 		}
1311 	}
1312 	/* Release the mft record and the attribute. */
1313 	if (status.mft_attr_mapped) {
1314 		ntfs_attr_put_search_ctx(ctx);
1315 		unmap_mft_record(base_ni);
1316 	}
1317 	/* Release the runlist lock. */
1318 	if (rl_write_locked)
1319 		up_write(&ni->runlist.lock);
1320 	else if (rl)
1321 		up_read(&ni->runlist.lock);
1322 	/*
1323 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1324 	 * If BH_New is set, we know that the block was newly allocated above
1325 	 * and that it has not been fully zeroed and marked dirty yet.
1326 	 */
1327 	nr_pages = u;
1328 	u = 0;
1329 	end = bh_cpos << vol->cluster_size_bits;
1330 	do {
1331 		page = pages[u];
1332 		bh = head = page_buffers(page);
1333 		do {
1334 			if (u == nr_pages &&
1335 					((s64)page->index << PAGE_SHIFT) +
1336 					bh_offset(bh) >= end)
1337 				break;
1338 			if (!buffer_new(bh))
1339 				continue;
1340 			clear_buffer_new(bh);
1341 			if (!buffer_uptodate(bh)) {
1342 				if (PageUptodate(page))
1343 					set_buffer_uptodate(bh);
1344 				else {
1345 					zero_user(page, bh_offset(bh),
1346 							blocksize);
1347 					set_buffer_uptodate(bh);
1348 				}
1349 			}
1350 			mark_buffer_dirty(bh);
1351 		} while ((bh = bh->b_this_page) != head);
1352 	} while (++u <= nr_pages);
1353 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1354 	return err;
1355 }
1356 
1357 static inline void ntfs_flush_dcache_pages(struct page **pages,
1358 		unsigned nr_pages)
1359 {
1360 	BUG_ON(!nr_pages);
1361 	/*
1362 	 * Warning: Do not do the decrement at the same time as the call to
1363 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1364 	 * decrement never happens so the loop never terminates.
1365 	 */
1366 	do {
1367 		--nr_pages;
1368 		flush_dcache_page(pages[nr_pages]);
1369 	} while (nr_pages > 0);
1370 }
1371 
1372 /**
1373  * ntfs_commit_pages_after_non_resident_write - commit the received data
1374  * @pages:	array of destination pages
1375  * @nr_pages:	number of pages in @pages
1376  * @pos:	byte position in file at which the write begins
1377  * @bytes:	number of bytes to be written
1378  *
1379  * See description of ntfs_commit_pages_after_write(), below.
1380  */
1381 static inline int ntfs_commit_pages_after_non_resident_write(
1382 		struct page **pages, const unsigned nr_pages,
1383 		s64 pos, size_t bytes)
1384 {
1385 	s64 end, initialized_size;
1386 	struct inode *vi;
1387 	ntfs_inode *ni, *base_ni;
1388 	struct buffer_head *bh, *head;
1389 	ntfs_attr_search_ctx *ctx;
1390 	MFT_RECORD *m;
1391 	ATTR_RECORD *a;
1392 	unsigned long flags;
1393 	unsigned blocksize, u;
1394 	int err;
1395 
1396 	vi = pages[0]->mapping->host;
1397 	ni = NTFS_I(vi);
1398 	blocksize = vi->i_sb->s_blocksize;
1399 	end = pos + bytes;
1400 	u = 0;
1401 	do {
1402 		s64 bh_pos;
1403 		struct page *page;
1404 		bool partial;
1405 
1406 		page = pages[u];
1407 		bh_pos = (s64)page->index << PAGE_SHIFT;
1408 		bh = head = page_buffers(page);
1409 		partial = false;
1410 		do {
1411 			s64 bh_end;
1412 
1413 			bh_end = bh_pos + blocksize;
1414 			if (bh_end <= pos || bh_pos >= end) {
1415 				if (!buffer_uptodate(bh))
1416 					partial = true;
1417 			} else {
1418 				set_buffer_uptodate(bh);
1419 				mark_buffer_dirty(bh);
1420 			}
1421 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1422 		/*
1423 		 * If all buffers are now uptodate but the page is not, set the
1424 		 * page uptodate.
1425 		 */
1426 		if (!partial && !PageUptodate(page))
1427 			SetPageUptodate(page);
1428 	} while (++u < nr_pages);
1429 	/*
1430 	 * Finally, if we do not need to update initialized_size or i_size we
1431 	 * are finished.
1432 	 */
1433 	read_lock_irqsave(&ni->size_lock, flags);
1434 	initialized_size = ni->initialized_size;
1435 	read_unlock_irqrestore(&ni->size_lock, flags);
1436 	if (end <= initialized_size) {
1437 		ntfs_debug("Done.");
1438 		return 0;
1439 	}
1440 	/*
1441 	 * Update initialized_size/i_size as appropriate, both in the inode and
1442 	 * the mft record.
1443 	 */
1444 	if (!NInoAttr(ni))
1445 		base_ni = ni;
1446 	else
1447 		base_ni = ni->ext.base_ntfs_ino;
1448 	/* Map, pin, and lock the mft record. */
1449 	m = map_mft_record(base_ni);
1450 	if (IS_ERR(m)) {
1451 		err = PTR_ERR(m);
1452 		m = NULL;
1453 		ctx = NULL;
1454 		goto err_out;
1455 	}
1456 	BUG_ON(!NInoNonResident(ni));
1457 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1458 	if (unlikely(!ctx)) {
1459 		err = -ENOMEM;
1460 		goto err_out;
1461 	}
1462 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1463 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1464 	if (unlikely(err)) {
1465 		if (err == -ENOENT)
1466 			err = -EIO;
1467 		goto err_out;
1468 	}
1469 	a = ctx->attr;
1470 	BUG_ON(!a->non_resident);
1471 	write_lock_irqsave(&ni->size_lock, flags);
1472 	BUG_ON(end > ni->allocated_size);
1473 	ni->initialized_size = end;
1474 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1475 	if (end > i_size_read(vi)) {
1476 		i_size_write(vi, end);
1477 		a->data.non_resident.data_size =
1478 				a->data.non_resident.initialized_size;
1479 	}
1480 	write_unlock_irqrestore(&ni->size_lock, flags);
1481 	/* Mark the mft record dirty, so it gets written back. */
1482 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1483 	mark_mft_record_dirty(ctx->ntfs_ino);
1484 	ntfs_attr_put_search_ctx(ctx);
1485 	unmap_mft_record(base_ni);
1486 	ntfs_debug("Done.");
1487 	return 0;
1488 err_out:
1489 	if (ctx)
1490 		ntfs_attr_put_search_ctx(ctx);
1491 	if (m)
1492 		unmap_mft_record(base_ni);
1493 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1494 			"code %i).", err);
1495 	if (err != -ENOMEM)
1496 		NVolSetErrors(ni->vol);
1497 	return err;
1498 }
1499 
1500 /**
1501  * ntfs_commit_pages_after_write - commit the received data
1502  * @pages:	array of destination pages
1503  * @nr_pages:	number of pages in @pages
1504  * @pos:	byte position in file at which the write begins
1505  * @bytes:	number of bytes to be written
1506  *
1507  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1508  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1509  * locked but not kmap()ped.  The source data has already been copied into the
1510  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1511  * the data was copied (for non-resident attributes only) and it returned
1512  * success.
1513  *
1514  * Need to set uptodate and mark dirty all buffers within the boundary of the
1515  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1516  *
1517  * Setting the buffers dirty ensures that they get written out later when
1518  * ntfs_writepage() is invoked by the VM.
1519  *
1520  * Finally, we need to update i_size and initialized_size as appropriate both
1521  * in the inode and the mft record.
1522  *
1523  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1524  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1525  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1526  * that case, it also marks the inode dirty.
1527  *
1528  * If things have gone as outlined in
1529  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1530  * content modifications here for non-resident attributes.  For resident
1531  * attributes we need to do the uptodate bringing here which we combine with
1532  * the copying into the mft record which means we save one atomic kmap.
1533  *
1534  * Return 0 on success or -errno on error.
1535  */
1536 static int ntfs_commit_pages_after_write(struct page **pages,
1537 		const unsigned nr_pages, s64 pos, size_t bytes)
1538 {
1539 	s64 end, initialized_size;
1540 	loff_t i_size;
1541 	struct inode *vi;
1542 	ntfs_inode *ni, *base_ni;
1543 	struct page *page;
1544 	ntfs_attr_search_ctx *ctx;
1545 	MFT_RECORD *m;
1546 	ATTR_RECORD *a;
1547 	char *kattr, *kaddr;
1548 	unsigned long flags;
1549 	u32 attr_len;
1550 	int err;
1551 
1552 	BUG_ON(!nr_pages);
1553 	BUG_ON(!pages);
1554 	page = pages[0];
1555 	BUG_ON(!page);
1556 	vi = page->mapping->host;
1557 	ni = NTFS_I(vi);
1558 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1559 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1560 			vi->i_ino, ni->type, page->index, nr_pages,
1561 			(long long)pos, bytes);
1562 	if (NInoNonResident(ni))
1563 		return ntfs_commit_pages_after_non_resident_write(pages,
1564 				nr_pages, pos, bytes);
1565 	BUG_ON(nr_pages > 1);
1566 	/*
1567 	 * Attribute is resident, implying it is not compressed, encrypted, or
1568 	 * sparse.
1569 	 */
1570 	if (!NInoAttr(ni))
1571 		base_ni = ni;
1572 	else
1573 		base_ni = ni->ext.base_ntfs_ino;
1574 	BUG_ON(NInoNonResident(ni));
1575 	/* Map, pin, and lock the mft record. */
1576 	m = map_mft_record(base_ni);
1577 	if (IS_ERR(m)) {
1578 		err = PTR_ERR(m);
1579 		m = NULL;
1580 		ctx = NULL;
1581 		goto err_out;
1582 	}
1583 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1584 	if (unlikely(!ctx)) {
1585 		err = -ENOMEM;
1586 		goto err_out;
1587 	}
1588 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1589 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1590 	if (unlikely(err)) {
1591 		if (err == -ENOENT)
1592 			err = -EIO;
1593 		goto err_out;
1594 	}
1595 	a = ctx->attr;
1596 	BUG_ON(a->non_resident);
1597 	/* The total length of the attribute value. */
1598 	attr_len = le32_to_cpu(a->data.resident.value_length);
1599 	i_size = i_size_read(vi);
1600 	BUG_ON(attr_len != i_size);
1601 	BUG_ON(pos > attr_len);
1602 	end = pos + bytes;
1603 	BUG_ON(end > le32_to_cpu(a->length) -
1604 			le16_to_cpu(a->data.resident.value_offset));
1605 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1606 	kaddr = kmap_atomic(page);
1607 	/* Copy the received data from the page to the mft record. */
1608 	memcpy(kattr + pos, kaddr + pos, bytes);
1609 	/* Update the attribute length if necessary. */
1610 	if (end > attr_len) {
1611 		attr_len = end;
1612 		a->data.resident.value_length = cpu_to_le32(attr_len);
1613 	}
1614 	/*
1615 	 * If the page is not uptodate, bring the out of bounds area(s)
1616 	 * uptodate by copying data from the mft record to the page.
1617 	 */
1618 	if (!PageUptodate(page)) {
1619 		if (pos > 0)
1620 			memcpy(kaddr, kattr, pos);
1621 		if (end < attr_len)
1622 			memcpy(kaddr + end, kattr + end, attr_len - end);
1623 		/* Zero the region outside the end of the attribute value. */
1624 		memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1625 		flush_dcache_page(page);
1626 		SetPageUptodate(page);
1627 	}
1628 	kunmap_atomic(kaddr);
1629 	/* Update initialized_size/i_size if necessary. */
1630 	read_lock_irqsave(&ni->size_lock, flags);
1631 	initialized_size = ni->initialized_size;
1632 	BUG_ON(end > ni->allocated_size);
1633 	read_unlock_irqrestore(&ni->size_lock, flags);
1634 	BUG_ON(initialized_size != i_size);
1635 	if (end > initialized_size) {
1636 		write_lock_irqsave(&ni->size_lock, flags);
1637 		ni->initialized_size = end;
1638 		i_size_write(vi, end);
1639 		write_unlock_irqrestore(&ni->size_lock, flags);
1640 	}
1641 	/* Mark the mft record dirty, so it gets written back. */
1642 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1643 	mark_mft_record_dirty(ctx->ntfs_ino);
1644 	ntfs_attr_put_search_ctx(ctx);
1645 	unmap_mft_record(base_ni);
1646 	ntfs_debug("Done.");
1647 	return 0;
1648 err_out:
1649 	if (err == -ENOMEM) {
1650 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1651 				"commit the write.");
1652 		if (PageUptodate(page)) {
1653 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1654 					"dirty so the write will be retried "
1655 					"later on by the VM.");
1656 			/*
1657 			 * Put the page on mapping->dirty_pages, but leave its
1658 			 * buffers' dirty state as-is.
1659 			 */
1660 			__set_page_dirty_nobuffers(page);
1661 			err = 0;
1662 		} else
1663 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1664 					"data has been lost.");
1665 	} else {
1666 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1667 				"with error %i.", err);
1668 		NVolSetErrors(ni->vol);
1669 	}
1670 	if (ctx)
1671 		ntfs_attr_put_search_ctx(ctx);
1672 	if (m)
1673 		unmap_mft_record(base_ni);
1674 	return err;
1675 }
1676 
1677 /*
1678  * Copy as much as we can into the pages and return the number of bytes which
1679  * were successfully copied.  If a fault is encountered then clear the pages
1680  * out to (ofs + bytes) and return the number of bytes which were copied.
1681  */
1682 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1683 		unsigned ofs, struct iov_iter *i, size_t bytes)
1684 {
1685 	struct page **last_page = pages + nr_pages;
1686 	size_t total = 0;
1687 	struct iov_iter data = *i;
1688 	unsigned len, copied;
1689 
1690 	do {
1691 		len = PAGE_SIZE - ofs;
1692 		if (len > bytes)
1693 			len = bytes;
1694 		copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs,
1695 				len);
1696 		total += copied;
1697 		bytes -= copied;
1698 		if (!bytes)
1699 			break;
1700 		iov_iter_advance(&data, copied);
1701 		if (copied < len)
1702 			goto err;
1703 		ofs = 0;
1704 	} while (++pages < last_page);
1705 out:
1706 	return total;
1707 err:
1708 	/* Zero the rest of the target like __copy_from_user(). */
1709 	len = PAGE_SIZE - copied;
1710 	do {
1711 		if (len > bytes)
1712 			len = bytes;
1713 		zero_user(*pages, copied, len);
1714 		bytes -= len;
1715 		copied = 0;
1716 		len = PAGE_SIZE;
1717 	} while (++pages < last_page);
1718 	goto out;
1719 }
1720 
1721 /**
1722  * ntfs_perform_write - perform buffered write to a file
1723  * @file:	file to write to
1724  * @i:		iov_iter with data to write
1725  * @pos:	byte offset in file at which to begin writing to
1726  */
1727 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1728 		loff_t pos)
1729 {
1730 	struct address_space *mapping = file->f_mapping;
1731 	struct inode *vi = mapping->host;
1732 	ntfs_inode *ni = NTFS_I(vi);
1733 	ntfs_volume *vol = ni->vol;
1734 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1735 	struct page *cached_page = NULL;
1736 	VCN last_vcn;
1737 	LCN lcn;
1738 	size_t bytes;
1739 	ssize_t status, written = 0;
1740 	unsigned nr_pages;
1741 
1742 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1743 			"0x%llx, count 0x%lx.", vi->i_ino,
1744 			(unsigned)le32_to_cpu(ni->type),
1745 			(unsigned long long)pos,
1746 			(unsigned long)iov_iter_count(i));
1747 	/*
1748 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1749 	 * fails again.
1750 	 */
1751 	if (unlikely(NInoTruncateFailed(ni))) {
1752 		int err;
1753 
1754 		inode_dio_wait(vi);
1755 		err = ntfs_truncate(vi);
1756 		if (err || NInoTruncateFailed(ni)) {
1757 			if (!err)
1758 				err = -EIO;
1759 			ntfs_error(vol->sb, "Cannot perform write to inode "
1760 					"0x%lx, attribute type 0x%x, because "
1761 					"ntfs_truncate() failed (error code "
1762 					"%i).", vi->i_ino,
1763 					(unsigned)le32_to_cpu(ni->type), err);
1764 			return err;
1765 		}
1766 	}
1767 	/*
1768 	 * Determine the number of pages per cluster for non-resident
1769 	 * attributes.
1770 	 */
1771 	nr_pages = 1;
1772 	if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1773 		nr_pages = vol->cluster_size >> PAGE_SHIFT;
1774 	last_vcn = -1;
1775 	do {
1776 		VCN vcn;
1777 		pgoff_t idx, start_idx;
1778 		unsigned ofs, do_pages, u;
1779 		size_t copied;
1780 
1781 		start_idx = idx = pos >> PAGE_SHIFT;
1782 		ofs = pos & ~PAGE_MASK;
1783 		bytes = PAGE_SIZE - ofs;
1784 		do_pages = 1;
1785 		if (nr_pages > 1) {
1786 			vcn = pos >> vol->cluster_size_bits;
1787 			if (vcn != last_vcn) {
1788 				last_vcn = vcn;
1789 				/*
1790 				 * Get the lcn of the vcn the write is in.  If
1791 				 * it is a hole, need to lock down all pages in
1792 				 * the cluster.
1793 				 */
1794 				down_read(&ni->runlist.lock);
1795 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1796 						vol->cluster_size_bits, false);
1797 				up_read(&ni->runlist.lock);
1798 				if (unlikely(lcn < LCN_HOLE)) {
1799 					if (lcn == LCN_ENOMEM)
1800 						status = -ENOMEM;
1801 					else {
1802 						status = -EIO;
1803 						ntfs_error(vol->sb, "Cannot "
1804 							"perform write to "
1805 							"inode 0x%lx, "
1806 							"attribute type 0x%x, "
1807 							"because the attribute "
1808 							"is corrupt.",
1809 							vi->i_ino, (unsigned)
1810 							le32_to_cpu(ni->type));
1811 					}
1812 					break;
1813 				}
1814 				if (lcn == LCN_HOLE) {
1815 					start_idx = (pos & ~(s64)
1816 							vol->cluster_size_mask)
1817 							>> PAGE_SHIFT;
1818 					bytes = vol->cluster_size - (pos &
1819 							vol->cluster_size_mask);
1820 					do_pages = nr_pages;
1821 				}
1822 			}
1823 		}
1824 		if (bytes > iov_iter_count(i))
1825 			bytes = iov_iter_count(i);
1826 again:
1827 		/*
1828 		 * Bring in the user page(s) that we will copy from _first_.
1829 		 * Otherwise there is a nasty deadlock on copying from the same
1830 		 * page(s) as we are writing to, without it/them being marked
1831 		 * up-to-date.  Note, at present there is nothing to stop the
1832 		 * pages being swapped out between us bringing them into memory
1833 		 * and doing the actual copying.
1834 		 */
1835 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
1836 			status = -EFAULT;
1837 			break;
1838 		}
1839 		/* Get and lock @do_pages starting at index @start_idx. */
1840 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1841 				pages, &cached_page);
1842 		if (unlikely(status))
1843 			break;
1844 		/*
1845 		 * For non-resident attributes, we need to fill any holes with
1846 		 * actual clusters and ensure all bufferes are mapped.  We also
1847 		 * need to bring uptodate any buffers that are only partially
1848 		 * being written to.
1849 		 */
1850 		if (NInoNonResident(ni)) {
1851 			status = ntfs_prepare_pages_for_non_resident_write(
1852 					pages, do_pages, pos, bytes);
1853 			if (unlikely(status)) {
1854 				do {
1855 					unlock_page(pages[--do_pages]);
1856 					put_page(pages[do_pages]);
1857 				} while (do_pages);
1858 				break;
1859 			}
1860 		}
1861 		u = (pos >> PAGE_SHIFT) - pages[0]->index;
1862 		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1863 					i, bytes);
1864 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1865 		status = 0;
1866 		if (likely(copied == bytes)) {
1867 			status = ntfs_commit_pages_after_write(pages, do_pages,
1868 					pos, bytes);
1869 			if (!status)
1870 				status = bytes;
1871 		}
1872 		do {
1873 			unlock_page(pages[--do_pages]);
1874 			put_page(pages[do_pages]);
1875 		} while (do_pages);
1876 		if (unlikely(status < 0))
1877 			break;
1878 		copied = status;
1879 		cond_resched();
1880 		if (unlikely(!copied)) {
1881 			size_t sc;
1882 
1883 			/*
1884 			 * We failed to copy anything.  Fall back to single
1885 			 * segment length write.
1886 			 *
1887 			 * This is needed to avoid possible livelock in the
1888 			 * case that all segments in the iov cannot be copied
1889 			 * at once without a pagefault.
1890 			 */
1891 			sc = iov_iter_single_seg_count(i);
1892 			if (bytes > sc)
1893 				bytes = sc;
1894 			goto again;
1895 		}
1896 		iov_iter_advance(i, copied);
1897 		pos += copied;
1898 		written += copied;
1899 		balance_dirty_pages_ratelimited(mapping);
1900 		if (fatal_signal_pending(current)) {
1901 			status = -EINTR;
1902 			break;
1903 		}
1904 	} while (iov_iter_count(i));
1905 	if (cached_page)
1906 		put_page(cached_page);
1907 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1908 			written ? "written" : "status", (unsigned long)written,
1909 			(long)status);
1910 	return written ? written : status;
1911 }
1912 
1913 /**
1914  * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1915  * @iocb:	IO state structure
1916  * @from:	iov_iter with data to write
1917  *
1918  * Basically the same as generic_file_write_iter() except that it ends up
1919  * up calling ntfs_perform_write() instead of generic_perform_write() and that
1920  * O_DIRECT is not implemented.
1921  */
1922 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1923 {
1924 	struct file *file = iocb->ki_filp;
1925 	struct inode *vi = file_inode(file);
1926 	ssize_t written = 0;
1927 	ssize_t err;
1928 
1929 	inode_lock(vi);
1930 	/* We can write back this queue in page reclaim. */
1931 	current->backing_dev_info = inode_to_bdi(vi);
1932 	err = ntfs_prepare_file_for_write(iocb, from);
1933 	if (iov_iter_count(from) && !err)
1934 		written = ntfs_perform_write(file, from, iocb->ki_pos);
1935 	current->backing_dev_info = NULL;
1936 	inode_unlock(vi);
1937 	iocb->ki_pos += written;
1938 	if (likely(written > 0))
1939 		written = generic_write_sync(iocb, written);
1940 	return written ? written : err;
1941 }
1942 
1943 /**
1944  * ntfs_file_fsync - sync a file to disk
1945  * @filp:	file to be synced
1946  * @datasync:	if non-zero only flush user data and not metadata
1947  *
1948  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1949  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1950  *
1951  * If @datasync is false, write the mft record and all associated extent mft
1952  * records as well as the $DATA attribute and then sync the block device.
1953  *
1954  * If @datasync is true and the attribute is non-resident, we skip the writing
1955  * of the mft record and all associated extent mft records (this might still
1956  * happen due to the write_inode_now() call).
1957  *
1958  * Also, if @datasync is true, we do not wait on the inode to be written out
1959  * but we always wait on the page cache pages to be written out.
1960  *
1961  * Locking: Caller must hold i_mutex on the inode.
1962  *
1963  * TODO: We should probably also write all attribute/index inodes associated
1964  * with this inode but since we have no simple way of getting to them we ignore
1965  * this problem for now.
1966  */
1967 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1968 			   int datasync)
1969 {
1970 	struct inode *vi = filp->f_mapping->host;
1971 	int err, ret = 0;
1972 
1973 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1974 
1975 	err = file_write_and_wait_range(filp, start, end);
1976 	if (err)
1977 		return err;
1978 	inode_lock(vi);
1979 
1980 	BUG_ON(S_ISDIR(vi->i_mode));
1981 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
1982 		ret = __ntfs_write_inode(vi, 1);
1983 	write_inode_now(vi, !datasync);
1984 	/*
1985 	 * NOTE: If we were to use mapping->private_list (see ext2 and
1986 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1987 	 * sync_mapping_buffers(vi->i_mapping).
1988 	 */
1989 	err = sync_blockdev(vi->i_sb->s_bdev);
1990 	if (unlikely(err && !ret))
1991 		ret = err;
1992 	if (likely(!ret))
1993 		ntfs_debug("Done.");
1994 	else
1995 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
1996 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
1997 	inode_unlock(vi);
1998 	return ret;
1999 }
2000 
2001 #endif /* NTFS_RW */
2002 
2003 const struct file_operations ntfs_file_ops = {
2004 	.llseek		= generic_file_llseek,
2005 	.read_iter	= generic_file_read_iter,
2006 #ifdef NTFS_RW
2007 	.write_iter	= ntfs_file_write_iter,
2008 	.fsync		= ntfs_file_fsync,
2009 #endif /* NTFS_RW */
2010 	.mmap		= generic_file_mmap,
2011 	.open		= ntfs_file_open,
2012 	.splice_read	= generic_file_splice_read,
2013 };
2014 
2015 const struct inode_operations ntfs_file_inode_ops = {
2016 #ifdef NTFS_RW
2017 	.setattr	= ntfs_setattr,
2018 #endif /* NTFS_RW */
2019 };
2020 
2021 const struct file_operations ntfs_empty_file_ops = {};
2022 
2023 const struct inode_operations ntfs_empty_inode_ops = {};
2024