1 /* 2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc. 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/gfp.h> 24 #include <linux/pagemap.h> 25 #include <linux/pagevec.h> 26 #include <linux/sched.h> 27 #include <linux/swap.h> 28 #include <linux/uio.h> 29 #include <linux/writeback.h> 30 #include <linux/aio.h> 31 32 #include <asm/page.h> 33 #include <asm/uaccess.h> 34 35 #include "attrib.h" 36 #include "bitmap.h" 37 #include "inode.h" 38 #include "debug.h" 39 #include "lcnalloc.h" 40 #include "malloc.h" 41 #include "mft.h" 42 #include "ntfs.h" 43 44 /** 45 * ntfs_file_open - called when an inode is about to be opened 46 * @vi: inode to be opened 47 * @filp: file structure describing the inode 48 * 49 * Limit file size to the page cache limit on architectures where unsigned long 50 * is 32-bits. This is the most we can do for now without overflowing the page 51 * cache page index. Doing it this way means we don't run into problems because 52 * of existing too large files. It would be better to allow the user to read 53 * the beginning of the file but I doubt very much anyone is going to hit this 54 * check on a 32-bit architecture, so there is no point in adding the extra 55 * complexity required to support this. 56 * 57 * On 64-bit architectures, the check is hopefully optimized away by the 58 * compiler. 59 * 60 * After the check passes, just call generic_file_open() to do its work. 61 */ 62 static int ntfs_file_open(struct inode *vi, struct file *filp) 63 { 64 if (sizeof(unsigned long) < 8) { 65 if (i_size_read(vi) > MAX_LFS_FILESIZE) 66 return -EOVERFLOW; 67 } 68 return generic_file_open(vi, filp); 69 } 70 71 #ifdef NTFS_RW 72 73 /** 74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute 75 * @ni: ntfs inode of the attribute to extend 76 * @new_init_size: requested new initialized size in bytes 77 * @cached_page: store any allocated but unused page here 78 * @lru_pvec: lru-buffering pagevec of the caller 79 * 80 * Extend the initialized size of an attribute described by the ntfs inode @ni 81 * to @new_init_size bytes. This involves zeroing any non-sparse space between 82 * the old initialized size and @new_init_size both in the page cache and on 83 * disk (if relevant complete pages are already uptodate in the page cache then 84 * these are simply marked dirty). 85 * 86 * As a side-effect, the file size (vfs inode->i_size) may be incremented as, 87 * in the resident attribute case, it is tied to the initialized size and, in 88 * the non-resident attribute case, it may not fall below the initialized size. 89 * 90 * Note that if the attribute is resident, we do not need to touch the page 91 * cache at all. This is because if the page cache page is not uptodate we 92 * bring it uptodate later, when doing the write to the mft record since we 93 * then already have the page mapped. And if the page is uptodate, the 94 * non-initialized region will already have been zeroed when the page was 95 * brought uptodate and the region may in fact already have been overwritten 96 * with new data via mmap() based writes, so we cannot just zero it. And since 97 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped 98 * is unspecified, we choose not to do zeroing and thus we do not need to touch 99 * the page at all. For a more detailed explanation see ntfs_truncate() in 100 * fs/ntfs/inode.c. 101 * 102 * Return 0 on success and -errno on error. In the case that an error is 103 * encountered it is possible that the initialized size will already have been 104 * incremented some way towards @new_init_size but it is guaranteed that if 105 * this is the case, the necessary zeroing will also have happened and that all 106 * metadata is self-consistent. 107 * 108 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be 109 * held by the caller. 110 */ 111 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size) 112 { 113 s64 old_init_size; 114 loff_t old_i_size; 115 pgoff_t index, end_index; 116 unsigned long flags; 117 struct inode *vi = VFS_I(ni); 118 ntfs_inode *base_ni; 119 MFT_RECORD *m = NULL; 120 ATTR_RECORD *a; 121 ntfs_attr_search_ctx *ctx = NULL; 122 struct address_space *mapping; 123 struct page *page = NULL; 124 u8 *kattr; 125 int err; 126 u32 attr_len; 127 128 read_lock_irqsave(&ni->size_lock, flags); 129 old_init_size = ni->initialized_size; 130 old_i_size = i_size_read(vi); 131 BUG_ON(new_init_size > ni->allocated_size); 132 read_unlock_irqrestore(&ni->size_lock, flags); 133 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 134 "old_initialized_size 0x%llx, " 135 "new_initialized_size 0x%llx, i_size 0x%llx.", 136 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 137 (unsigned long long)old_init_size, 138 (unsigned long long)new_init_size, old_i_size); 139 if (!NInoAttr(ni)) 140 base_ni = ni; 141 else 142 base_ni = ni->ext.base_ntfs_ino; 143 /* Use goto to reduce indentation and we need the label below anyway. */ 144 if (NInoNonResident(ni)) 145 goto do_non_resident_extend; 146 BUG_ON(old_init_size != old_i_size); 147 m = map_mft_record(base_ni); 148 if (IS_ERR(m)) { 149 err = PTR_ERR(m); 150 m = NULL; 151 goto err_out; 152 } 153 ctx = ntfs_attr_get_search_ctx(base_ni, m); 154 if (unlikely(!ctx)) { 155 err = -ENOMEM; 156 goto err_out; 157 } 158 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 159 CASE_SENSITIVE, 0, NULL, 0, ctx); 160 if (unlikely(err)) { 161 if (err == -ENOENT) 162 err = -EIO; 163 goto err_out; 164 } 165 m = ctx->mrec; 166 a = ctx->attr; 167 BUG_ON(a->non_resident); 168 /* The total length of the attribute value. */ 169 attr_len = le32_to_cpu(a->data.resident.value_length); 170 BUG_ON(old_i_size != (loff_t)attr_len); 171 /* 172 * Do the zeroing in the mft record and update the attribute size in 173 * the mft record. 174 */ 175 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 176 memset(kattr + attr_len, 0, new_init_size - attr_len); 177 a->data.resident.value_length = cpu_to_le32((u32)new_init_size); 178 /* Finally, update the sizes in the vfs and ntfs inodes. */ 179 write_lock_irqsave(&ni->size_lock, flags); 180 i_size_write(vi, new_init_size); 181 ni->initialized_size = new_init_size; 182 write_unlock_irqrestore(&ni->size_lock, flags); 183 goto done; 184 do_non_resident_extend: 185 /* 186 * If the new initialized size @new_init_size exceeds the current file 187 * size (vfs inode->i_size), we need to extend the file size to the 188 * new initialized size. 189 */ 190 if (new_init_size > old_i_size) { 191 m = map_mft_record(base_ni); 192 if (IS_ERR(m)) { 193 err = PTR_ERR(m); 194 m = NULL; 195 goto err_out; 196 } 197 ctx = ntfs_attr_get_search_ctx(base_ni, m); 198 if (unlikely(!ctx)) { 199 err = -ENOMEM; 200 goto err_out; 201 } 202 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 203 CASE_SENSITIVE, 0, NULL, 0, ctx); 204 if (unlikely(err)) { 205 if (err == -ENOENT) 206 err = -EIO; 207 goto err_out; 208 } 209 m = ctx->mrec; 210 a = ctx->attr; 211 BUG_ON(!a->non_resident); 212 BUG_ON(old_i_size != (loff_t) 213 sle64_to_cpu(a->data.non_resident.data_size)); 214 a->data.non_resident.data_size = cpu_to_sle64(new_init_size); 215 flush_dcache_mft_record_page(ctx->ntfs_ino); 216 mark_mft_record_dirty(ctx->ntfs_ino); 217 /* Update the file size in the vfs inode. */ 218 i_size_write(vi, new_init_size); 219 ntfs_attr_put_search_ctx(ctx); 220 ctx = NULL; 221 unmap_mft_record(base_ni); 222 m = NULL; 223 } 224 mapping = vi->i_mapping; 225 index = old_init_size >> PAGE_CACHE_SHIFT; 226 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 227 do { 228 /* 229 * Read the page. If the page is not present, this will zero 230 * the uninitialized regions for us. 231 */ 232 page = read_mapping_page(mapping, index, NULL); 233 if (IS_ERR(page)) { 234 err = PTR_ERR(page); 235 goto init_err_out; 236 } 237 if (unlikely(PageError(page))) { 238 page_cache_release(page); 239 err = -EIO; 240 goto init_err_out; 241 } 242 /* 243 * Update the initialized size in the ntfs inode. This is 244 * enough to make ntfs_writepage() work. 245 */ 246 write_lock_irqsave(&ni->size_lock, flags); 247 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; 248 if (ni->initialized_size > new_init_size) 249 ni->initialized_size = new_init_size; 250 write_unlock_irqrestore(&ni->size_lock, flags); 251 /* Set the page dirty so it gets written out. */ 252 set_page_dirty(page); 253 page_cache_release(page); 254 /* 255 * Play nice with the vm and the rest of the system. This is 256 * very much needed as we can potentially be modifying the 257 * initialised size from a very small value to a really huge 258 * value, e.g. 259 * f = open(somefile, O_TRUNC); 260 * truncate(f, 10GiB); 261 * seek(f, 10GiB); 262 * write(f, 1); 263 * And this would mean we would be marking dirty hundreds of 264 * thousands of pages or as in the above example more than 265 * two and a half million pages! 266 * 267 * TODO: For sparse pages could optimize this workload by using 268 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This 269 * would be set in readpage for sparse pages and here we would 270 * not need to mark dirty any pages which have this bit set. 271 * The only caveat is that we have to clear the bit everywhere 272 * where we allocate any clusters that lie in the page or that 273 * contain the page. 274 * 275 * TODO: An even greater optimization would be for us to only 276 * call readpage() on pages which are not in sparse regions as 277 * determined from the runlist. This would greatly reduce the 278 * number of pages we read and make dirty in the case of sparse 279 * files. 280 */ 281 balance_dirty_pages_ratelimited(mapping); 282 cond_resched(); 283 } while (++index < end_index); 284 read_lock_irqsave(&ni->size_lock, flags); 285 BUG_ON(ni->initialized_size != new_init_size); 286 read_unlock_irqrestore(&ni->size_lock, flags); 287 /* Now bring in sync the initialized_size in the mft record. */ 288 m = map_mft_record(base_ni); 289 if (IS_ERR(m)) { 290 err = PTR_ERR(m); 291 m = NULL; 292 goto init_err_out; 293 } 294 ctx = ntfs_attr_get_search_ctx(base_ni, m); 295 if (unlikely(!ctx)) { 296 err = -ENOMEM; 297 goto init_err_out; 298 } 299 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 300 CASE_SENSITIVE, 0, NULL, 0, ctx); 301 if (unlikely(err)) { 302 if (err == -ENOENT) 303 err = -EIO; 304 goto init_err_out; 305 } 306 m = ctx->mrec; 307 a = ctx->attr; 308 BUG_ON(!a->non_resident); 309 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); 310 done: 311 flush_dcache_mft_record_page(ctx->ntfs_ino); 312 mark_mft_record_dirty(ctx->ntfs_ino); 313 if (ctx) 314 ntfs_attr_put_search_ctx(ctx); 315 if (m) 316 unmap_mft_record(base_ni); 317 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", 318 (unsigned long long)new_init_size, i_size_read(vi)); 319 return 0; 320 init_err_out: 321 write_lock_irqsave(&ni->size_lock, flags); 322 ni->initialized_size = old_init_size; 323 write_unlock_irqrestore(&ni->size_lock, flags); 324 err_out: 325 if (ctx) 326 ntfs_attr_put_search_ctx(ctx); 327 if (m) 328 unmap_mft_record(base_ni); 329 ntfs_debug("Failed. Returning error code %i.", err); 330 return err; 331 } 332 333 /** 334 * ntfs_fault_in_pages_readable - 335 * 336 * Fault a number of userspace pages into pagetables. 337 * 338 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes 339 * with more than two userspace pages as well as handling the single page case 340 * elegantly. 341 * 342 * If you find this difficult to understand, then think of the while loop being 343 * the following code, except that we do without the integer variable ret: 344 * 345 * do { 346 * ret = __get_user(c, uaddr); 347 * uaddr += PAGE_SIZE; 348 * } while (!ret && uaddr < end); 349 * 350 * Note, the final __get_user() may well run out-of-bounds of the user buffer, 351 * but _not_ out-of-bounds of the page the user buffer belongs to, and since 352 * this is only a read and not a write, and since it is still in the same page, 353 * it should not matter and this makes the code much simpler. 354 */ 355 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, 356 int bytes) 357 { 358 const char __user *end; 359 volatile char c; 360 361 /* Set @end to the first byte outside the last page we care about. */ 362 end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes); 363 364 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) 365 ; 366 } 367 368 /** 369 * ntfs_fault_in_pages_readable_iovec - 370 * 371 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. 372 */ 373 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, 374 size_t iov_ofs, int bytes) 375 { 376 do { 377 const char __user *buf; 378 unsigned len; 379 380 buf = iov->iov_base + iov_ofs; 381 len = iov->iov_len - iov_ofs; 382 if (len > bytes) 383 len = bytes; 384 ntfs_fault_in_pages_readable(buf, len); 385 bytes -= len; 386 iov++; 387 iov_ofs = 0; 388 } while (bytes); 389 } 390 391 /** 392 * __ntfs_grab_cache_pages - obtain a number of locked pages 393 * @mapping: address space mapping from which to obtain page cache pages 394 * @index: starting index in @mapping at which to begin obtaining pages 395 * @nr_pages: number of page cache pages to obtain 396 * @pages: array of pages in which to return the obtained page cache pages 397 * @cached_page: allocated but as yet unused page 398 * @lru_pvec: lru-buffering pagevec of caller 399 * 400 * Obtain @nr_pages locked page cache pages from the mapping @mapping and 401 * starting at index @index. 402 * 403 * If a page is newly created, add it to lru list 404 * 405 * Note, the page locks are obtained in ascending page index order. 406 */ 407 static inline int __ntfs_grab_cache_pages(struct address_space *mapping, 408 pgoff_t index, const unsigned nr_pages, struct page **pages, 409 struct page **cached_page) 410 { 411 int err, nr; 412 413 BUG_ON(!nr_pages); 414 err = nr = 0; 415 do { 416 pages[nr] = find_lock_page(mapping, index); 417 if (!pages[nr]) { 418 if (!*cached_page) { 419 *cached_page = page_cache_alloc(mapping); 420 if (unlikely(!*cached_page)) { 421 err = -ENOMEM; 422 goto err_out; 423 } 424 } 425 err = add_to_page_cache_lru(*cached_page, mapping, index, 426 GFP_KERNEL); 427 if (unlikely(err)) { 428 if (err == -EEXIST) 429 continue; 430 goto err_out; 431 } 432 pages[nr] = *cached_page; 433 *cached_page = NULL; 434 } 435 index++; 436 nr++; 437 } while (nr < nr_pages); 438 out: 439 return err; 440 err_out: 441 while (nr > 0) { 442 unlock_page(pages[--nr]); 443 page_cache_release(pages[nr]); 444 } 445 goto out; 446 } 447 448 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) 449 { 450 lock_buffer(bh); 451 get_bh(bh); 452 bh->b_end_io = end_buffer_read_sync; 453 return submit_bh(READ, bh); 454 } 455 456 /** 457 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data 458 * @pages: array of destination pages 459 * @nr_pages: number of pages in @pages 460 * @pos: byte position in file at which the write begins 461 * @bytes: number of bytes to be written 462 * 463 * This is called for non-resident attributes from ntfs_file_buffered_write() 464 * with i_mutex held on the inode (@pages[0]->mapping->host). There are 465 * @nr_pages pages in @pages which are locked but not kmap()ped. The source 466 * data has not yet been copied into the @pages. 467 * 468 * Need to fill any holes with actual clusters, allocate buffers if necessary, 469 * ensure all the buffers are mapped, and bring uptodate any buffers that are 470 * only partially being written to. 471 * 472 * If @nr_pages is greater than one, we are guaranteed that the cluster size is 473 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside 474 * the same cluster and that they are the entirety of that cluster, and that 475 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. 476 * 477 * i_size is not to be modified yet. 478 * 479 * Return 0 on success or -errno on error. 480 */ 481 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, 482 unsigned nr_pages, s64 pos, size_t bytes) 483 { 484 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; 485 LCN lcn; 486 s64 bh_pos, vcn_len, end, initialized_size; 487 sector_t lcn_block; 488 struct page *page; 489 struct inode *vi; 490 ntfs_inode *ni, *base_ni = NULL; 491 ntfs_volume *vol; 492 runlist_element *rl, *rl2; 493 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 494 ntfs_attr_search_ctx *ctx = NULL; 495 MFT_RECORD *m = NULL; 496 ATTR_RECORD *a = NULL; 497 unsigned long flags; 498 u32 attr_rec_len = 0; 499 unsigned blocksize, u; 500 int err, mp_size; 501 bool rl_write_locked, was_hole, is_retry; 502 unsigned char blocksize_bits; 503 struct { 504 u8 runlist_merged:1; 505 u8 mft_attr_mapped:1; 506 u8 mp_rebuilt:1; 507 u8 attr_switched:1; 508 } status = { 0, 0, 0, 0 }; 509 510 BUG_ON(!nr_pages); 511 BUG_ON(!pages); 512 BUG_ON(!*pages); 513 vi = pages[0]->mapping->host; 514 ni = NTFS_I(vi); 515 vol = ni->vol; 516 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 517 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 518 vi->i_ino, ni->type, pages[0]->index, nr_pages, 519 (long long)pos, bytes); 520 blocksize = vol->sb->s_blocksize; 521 blocksize_bits = vol->sb->s_blocksize_bits; 522 u = 0; 523 do { 524 page = pages[u]; 525 BUG_ON(!page); 526 /* 527 * create_empty_buffers() will create uptodate/dirty buffers if 528 * the page is uptodate/dirty. 529 */ 530 if (!page_has_buffers(page)) { 531 create_empty_buffers(page, blocksize, 0); 532 if (unlikely(!page_has_buffers(page))) 533 return -ENOMEM; 534 } 535 } while (++u < nr_pages); 536 rl_write_locked = false; 537 rl = NULL; 538 err = 0; 539 vcn = lcn = -1; 540 vcn_len = 0; 541 lcn_block = -1; 542 was_hole = false; 543 cpos = pos >> vol->cluster_size_bits; 544 end = pos + bytes; 545 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; 546 /* 547 * Loop over each page and for each page over each buffer. Use goto to 548 * reduce indentation. 549 */ 550 u = 0; 551 do_next_page: 552 page = pages[u]; 553 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 554 bh = head = page_buffers(page); 555 do { 556 VCN cdelta; 557 s64 bh_end; 558 unsigned bh_cofs; 559 560 /* Clear buffer_new on all buffers to reinitialise state. */ 561 if (buffer_new(bh)) 562 clear_buffer_new(bh); 563 bh_end = bh_pos + blocksize; 564 bh_cpos = bh_pos >> vol->cluster_size_bits; 565 bh_cofs = bh_pos & vol->cluster_size_mask; 566 if (buffer_mapped(bh)) { 567 /* 568 * The buffer is already mapped. If it is uptodate, 569 * ignore it. 570 */ 571 if (buffer_uptodate(bh)) 572 continue; 573 /* 574 * The buffer is not uptodate. If the page is uptodate 575 * set the buffer uptodate and otherwise ignore it. 576 */ 577 if (PageUptodate(page)) { 578 set_buffer_uptodate(bh); 579 continue; 580 } 581 /* 582 * Neither the page nor the buffer are uptodate. If 583 * the buffer is only partially being written to, we 584 * need to read it in before the write, i.e. now. 585 */ 586 if ((bh_pos < pos && bh_end > pos) || 587 (bh_pos < end && bh_end > end)) { 588 /* 589 * If the buffer is fully or partially within 590 * the initialized size, do an actual read. 591 * Otherwise, simply zero the buffer. 592 */ 593 read_lock_irqsave(&ni->size_lock, flags); 594 initialized_size = ni->initialized_size; 595 read_unlock_irqrestore(&ni->size_lock, flags); 596 if (bh_pos < initialized_size) { 597 ntfs_submit_bh_for_read(bh); 598 *wait_bh++ = bh; 599 } else { 600 zero_user(page, bh_offset(bh), 601 blocksize); 602 set_buffer_uptodate(bh); 603 } 604 } 605 continue; 606 } 607 /* Unmapped buffer. Need to map it. */ 608 bh->b_bdev = vol->sb->s_bdev; 609 /* 610 * If the current buffer is in the same clusters as the map 611 * cache, there is no need to check the runlist again. The 612 * map cache is made up of @vcn, which is the first cached file 613 * cluster, @vcn_len which is the number of cached file 614 * clusters, @lcn is the device cluster corresponding to @vcn, 615 * and @lcn_block is the block number corresponding to @lcn. 616 */ 617 cdelta = bh_cpos - vcn; 618 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { 619 map_buffer_cached: 620 BUG_ON(lcn < 0); 621 bh->b_blocknr = lcn_block + 622 (cdelta << (vol->cluster_size_bits - 623 blocksize_bits)) + 624 (bh_cofs >> blocksize_bits); 625 set_buffer_mapped(bh); 626 /* 627 * If the page is uptodate so is the buffer. If the 628 * buffer is fully outside the write, we ignore it if 629 * it was already allocated and we mark it dirty so it 630 * gets written out if we allocated it. On the other 631 * hand, if we allocated the buffer but we are not 632 * marking it dirty we set buffer_new so we can do 633 * error recovery. 634 */ 635 if (PageUptodate(page)) { 636 if (!buffer_uptodate(bh)) 637 set_buffer_uptodate(bh); 638 if (unlikely(was_hole)) { 639 /* We allocated the buffer. */ 640 unmap_underlying_metadata(bh->b_bdev, 641 bh->b_blocknr); 642 if (bh_end <= pos || bh_pos >= end) 643 mark_buffer_dirty(bh); 644 else 645 set_buffer_new(bh); 646 } 647 continue; 648 } 649 /* Page is _not_ uptodate. */ 650 if (likely(!was_hole)) { 651 /* 652 * Buffer was already allocated. If it is not 653 * uptodate and is only partially being written 654 * to, we need to read it in before the write, 655 * i.e. now. 656 */ 657 if (!buffer_uptodate(bh) && bh_pos < end && 658 bh_end > pos && 659 (bh_pos < pos || 660 bh_end > end)) { 661 /* 662 * If the buffer is fully or partially 663 * within the initialized size, do an 664 * actual read. Otherwise, simply zero 665 * the buffer. 666 */ 667 read_lock_irqsave(&ni->size_lock, 668 flags); 669 initialized_size = ni->initialized_size; 670 read_unlock_irqrestore(&ni->size_lock, 671 flags); 672 if (bh_pos < initialized_size) { 673 ntfs_submit_bh_for_read(bh); 674 *wait_bh++ = bh; 675 } else { 676 zero_user(page, bh_offset(bh), 677 blocksize); 678 set_buffer_uptodate(bh); 679 } 680 } 681 continue; 682 } 683 /* We allocated the buffer. */ 684 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 685 /* 686 * If the buffer is fully outside the write, zero it, 687 * set it uptodate, and mark it dirty so it gets 688 * written out. If it is partially being written to, 689 * zero region surrounding the write but leave it to 690 * commit write to do anything else. Finally, if the 691 * buffer is fully being overwritten, do nothing. 692 */ 693 if (bh_end <= pos || bh_pos >= end) { 694 if (!buffer_uptodate(bh)) { 695 zero_user(page, bh_offset(bh), 696 blocksize); 697 set_buffer_uptodate(bh); 698 } 699 mark_buffer_dirty(bh); 700 continue; 701 } 702 set_buffer_new(bh); 703 if (!buffer_uptodate(bh) && 704 (bh_pos < pos || bh_end > end)) { 705 u8 *kaddr; 706 unsigned pofs; 707 708 kaddr = kmap_atomic(page); 709 if (bh_pos < pos) { 710 pofs = bh_pos & ~PAGE_CACHE_MASK; 711 memset(kaddr + pofs, 0, pos - bh_pos); 712 } 713 if (bh_end > end) { 714 pofs = end & ~PAGE_CACHE_MASK; 715 memset(kaddr + pofs, 0, bh_end - end); 716 } 717 kunmap_atomic(kaddr); 718 flush_dcache_page(page); 719 } 720 continue; 721 } 722 /* 723 * Slow path: this is the first buffer in the cluster. If it 724 * is outside allocated size and is not uptodate, zero it and 725 * set it uptodate. 726 */ 727 read_lock_irqsave(&ni->size_lock, flags); 728 initialized_size = ni->allocated_size; 729 read_unlock_irqrestore(&ni->size_lock, flags); 730 if (bh_pos > initialized_size) { 731 if (PageUptodate(page)) { 732 if (!buffer_uptodate(bh)) 733 set_buffer_uptodate(bh); 734 } else if (!buffer_uptodate(bh)) { 735 zero_user(page, bh_offset(bh), blocksize); 736 set_buffer_uptodate(bh); 737 } 738 continue; 739 } 740 is_retry = false; 741 if (!rl) { 742 down_read(&ni->runlist.lock); 743 retry_remap: 744 rl = ni->runlist.rl; 745 } 746 if (likely(rl != NULL)) { 747 /* Seek to element containing target cluster. */ 748 while (rl->length && rl[1].vcn <= bh_cpos) 749 rl++; 750 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); 751 if (likely(lcn >= 0)) { 752 /* 753 * Successful remap, setup the map cache and 754 * use that to deal with the buffer. 755 */ 756 was_hole = false; 757 vcn = bh_cpos; 758 vcn_len = rl[1].vcn - vcn; 759 lcn_block = lcn << (vol->cluster_size_bits - 760 blocksize_bits); 761 cdelta = 0; 762 /* 763 * If the number of remaining clusters touched 764 * by the write is smaller or equal to the 765 * number of cached clusters, unlock the 766 * runlist as the map cache will be used from 767 * now on. 768 */ 769 if (likely(vcn + vcn_len >= cend)) { 770 if (rl_write_locked) { 771 up_write(&ni->runlist.lock); 772 rl_write_locked = false; 773 } else 774 up_read(&ni->runlist.lock); 775 rl = NULL; 776 } 777 goto map_buffer_cached; 778 } 779 } else 780 lcn = LCN_RL_NOT_MAPPED; 781 /* 782 * If it is not a hole and not out of bounds, the runlist is 783 * probably unmapped so try to map it now. 784 */ 785 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { 786 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { 787 /* Attempt to map runlist. */ 788 if (!rl_write_locked) { 789 /* 790 * We need the runlist locked for 791 * writing, so if it is locked for 792 * reading relock it now and retry in 793 * case it changed whilst we dropped 794 * the lock. 795 */ 796 up_read(&ni->runlist.lock); 797 down_write(&ni->runlist.lock); 798 rl_write_locked = true; 799 goto retry_remap; 800 } 801 err = ntfs_map_runlist_nolock(ni, bh_cpos, 802 NULL); 803 if (likely(!err)) { 804 is_retry = true; 805 goto retry_remap; 806 } 807 /* 808 * If @vcn is out of bounds, pretend @lcn is 809 * LCN_ENOENT. As long as the buffer is out 810 * of bounds this will work fine. 811 */ 812 if (err == -ENOENT) { 813 lcn = LCN_ENOENT; 814 err = 0; 815 goto rl_not_mapped_enoent; 816 } 817 } else 818 err = -EIO; 819 /* Failed to map the buffer, even after retrying. */ 820 bh->b_blocknr = -1; 821 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 822 "attribute type 0x%x, vcn 0x%llx, " 823 "vcn offset 0x%x, because its " 824 "location on disk could not be " 825 "determined%s (error code %i).", 826 ni->mft_no, ni->type, 827 (unsigned long long)bh_cpos, 828 (unsigned)bh_pos & 829 vol->cluster_size_mask, 830 is_retry ? " even after retrying" : "", 831 err); 832 break; 833 } 834 rl_not_mapped_enoent: 835 /* 836 * The buffer is in a hole or out of bounds. We need to fill 837 * the hole, unless the buffer is in a cluster which is not 838 * touched by the write, in which case we just leave the buffer 839 * unmapped. This can only happen when the cluster size is 840 * less than the page cache size. 841 */ 842 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { 843 bh_cend = (bh_end + vol->cluster_size - 1) >> 844 vol->cluster_size_bits; 845 if ((bh_cend <= cpos || bh_cpos >= cend)) { 846 bh->b_blocknr = -1; 847 /* 848 * If the buffer is uptodate we skip it. If it 849 * is not but the page is uptodate, we can set 850 * the buffer uptodate. If the page is not 851 * uptodate, we can clear the buffer and set it 852 * uptodate. Whether this is worthwhile is 853 * debatable and this could be removed. 854 */ 855 if (PageUptodate(page)) { 856 if (!buffer_uptodate(bh)) 857 set_buffer_uptodate(bh); 858 } else if (!buffer_uptodate(bh)) { 859 zero_user(page, bh_offset(bh), 860 blocksize); 861 set_buffer_uptodate(bh); 862 } 863 continue; 864 } 865 } 866 /* 867 * Out of bounds buffer is invalid if it was not really out of 868 * bounds. 869 */ 870 BUG_ON(lcn != LCN_HOLE); 871 /* 872 * We need the runlist locked for writing, so if it is locked 873 * for reading relock it now and retry in case it changed 874 * whilst we dropped the lock. 875 */ 876 BUG_ON(!rl); 877 if (!rl_write_locked) { 878 up_read(&ni->runlist.lock); 879 down_write(&ni->runlist.lock); 880 rl_write_locked = true; 881 goto retry_remap; 882 } 883 /* Find the previous last allocated cluster. */ 884 BUG_ON(rl->lcn != LCN_HOLE); 885 lcn = -1; 886 rl2 = rl; 887 while (--rl2 >= ni->runlist.rl) { 888 if (rl2->lcn >= 0) { 889 lcn = rl2->lcn + rl2->length; 890 break; 891 } 892 } 893 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, 894 false); 895 if (IS_ERR(rl2)) { 896 err = PTR_ERR(rl2); 897 ntfs_debug("Failed to allocate cluster, error code %i.", 898 err); 899 break; 900 } 901 lcn = rl2->lcn; 902 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 903 if (IS_ERR(rl)) { 904 err = PTR_ERR(rl); 905 if (err != -ENOMEM) 906 err = -EIO; 907 if (ntfs_cluster_free_from_rl(vol, rl2)) { 908 ntfs_error(vol->sb, "Failed to release " 909 "allocated cluster in error " 910 "code path. Run chkdsk to " 911 "recover the lost cluster."); 912 NVolSetErrors(vol); 913 } 914 ntfs_free(rl2); 915 break; 916 } 917 ni->runlist.rl = rl; 918 status.runlist_merged = 1; 919 ntfs_debug("Allocated cluster, lcn 0x%llx.", 920 (unsigned long long)lcn); 921 /* Map and lock the mft record and get the attribute record. */ 922 if (!NInoAttr(ni)) 923 base_ni = ni; 924 else 925 base_ni = ni->ext.base_ntfs_ino; 926 m = map_mft_record(base_ni); 927 if (IS_ERR(m)) { 928 err = PTR_ERR(m); 929 break; 930 } 931 ctx = ntfs_attr_get_search_ctx(base_ni, m); 932 if (unlikely(!ctx)) { 933 err = -ENOMEM; 934 unmap_mft_record(base_ni); 935 break; 936 } 937 status.mft_attr_mapped = 1; 938 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 939 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); 940 if (unlikely(err)) { 941 if (err == -ENOENT) 942 err = -EIO; 943 break; 944 } 945 m = ctx->mrec; 946 a = ctx->attr; 947 /* 948 * Find the runlist element with which the attribute extent 949 * starts. Note, we cannot use the _attr_ version because we 950 * have mapped the mft record. That is ok because we know the 951 * runlist fragment must be mapped already to have ever gotten 952 * here, so we can just use the _rl_ version. 953 */ 954 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); 955 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); 956 BUG_ON(!rl2); 957 BUG_ON(!rl2->length); 958 BUG_ON(rl2->lcn < LCN_HOLE); 959 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 960 /* 961 * If @highest_vcn is zero, calculate the real highest_vcn 962 * (which can really be zero). 963 */ 964 if (!highest_vcn) 965 highest_vcn = (sle64_to_cpu( 966 a->data.non_resident.allocated_size) >> 967 vol->cluster_size_bits) - 1; 968 /* 969 * Determine the size of the mapping pairs array for the new 970 * extent, i.e. the old extent with the hole filled. 971 */ 972 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, 973 highest_vcn); 974 if (unlikely(mp_size <= 0)) { 975 if (!(err = mp_size)) 976 err = -EIO; 977 ntfs_debug("Failed to get size for mapping pairs " 978 "array, error code %i.", err); 979 break; 980 } 981 /* 982 * Resize the attribute record to fit the new mapping pairs 983 * array. 984 */ 985 attr_rec_len = le32_to_cpu(a->length); 986 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( 987 a->data.non_resident.mapping_pairs_offset)); 988 if (unlikely(err)) { 989 BUG_ON(err != -ENOSPC); 990 // TODO: Deal with this by using the current attribute 991 // and fill it with as much of the mapping pairs 992 // array as possible. Then loop over each attribute 993 // extent rewriting the mapping pairs arrays as we go 994 // along and if when we reach the end we have not 995 // enough space, try to resize the last attribute 996 // extent and if even that fails, add a new attribute 997 // extent. 998 // We could also try to resize at each step in the hope 999 // that we will not need to rewrite every single extent. 1000 // Note, we may need to decompress some extents to fill 1001 // the runlist as we are walking the extents... 1002 ntfs_error(vol->sb, "Not enough space in the mft " 1003 "record for the extended attribute " 1004 "record. This case is not " 1005 "implemented yet."); 1006 err = -EOPNOTSUPP; 1007 break ; 1008 } 1009 status.mp_rebuilt = 1; 1010 /* 1011 * Generate the mapping pairs array directly into the attribute 1012 * record. 1013 */ 1014 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1015 a->data.non_resident.mapping_pairs_offset), 1016 mp_size, rl2, vcn, highest_vcn, NULL); 1017 if (unlikely(err)) { 1018 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " 1019 "attribute type 0x%x, because building " 1020 "the mapping pairs failed with error " 1021 "code %i.", vi->i_ino, 1022 (unsigned)le32_to_cpu(ni->type), err); 1023 err = -EIO; 1024 break; 1025 } 1026 /* Update the highest_vcn but only if it was not set. */ 1027 if (unlikely(!a->data.non_resident.highest_vcn)) 1028 a->data.non_resident.highest_vcn = 1029 cpu_to_sle64(highest_vcn); 1030 /* 1031 * If the attribute is sparse/compressed, update the compressed 1032 * size in the ntfs_inode structure and the attribute record. 1033 */ 1034 if (likely(NInoSparse(ni) || NInoCompressed(ni))) { 1035 /* 1036 * If we are not in the first attribute extent, switch 1037 * to it, but first ensure the changes will make it to 1038 * disk later. 1039 */ 1040 if (a->data.non_resident.lowest_vcn) { 1041 flush_dcache_mft_record_page(ctx->ntfs_ino); 1042 mark_mft_record_dirty(ctx->ntfs_ino); 1043 ntfs_attr_reinit_search_ctx(ctx); 1044 err = ntfs_attr_lookup(ni->type, ni->name, 1045 ni->name_len, CASE_SENSITIVE, 1046 0, NULL, 0, ctx); 1047 if (unlikely(err)) { 1048 status.attr_switched = 1; 1049 break; 1050 } 1051 /* @m is not used any more so do not set it. */ 1052 a = ctx->attr; 1053 } 1054 write_lock_irqsave(&ni->size_lock, flags); 1055 ni->itype.compressed.size += vol->cluster_size; 1056 a->data.non_resident.compressed_size = 1057 cpu_to_sle64(ni->itype.compressed.size); 1058 write_unlock_irqrestore(&ni->size_lock, flags); 1059 } 1060 /* Ensure the changes make it to disk. */ 1061 flush_dcache_mft_record_page(ctx->ntfs_ino); 1062 mark_mft_record_dirty(ctx->ntfs_ino); 1063 ntfs_attr_put_search_ctx(ctx); 1064 unmap_mft_record(base_ni); 1065 /* Successfully filled the hole. */ 1066 status.runlist_merged = 0; 1067 status.mft_attr_mapped = 0; 1068 status.mp_rebuilt = 0; 1069 /* Setup the map cache and use that to deal with the buffer. */ 1070 was_hole = true; 1071 vcn = bh_cpos; 1072 vcn_len = 1; 1073 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); 1074 cdelta = 0; 1075 /* 1076 * If the number of remaining clusters in the @pages is smaller 1077 * or equal to the number of cached clusters, unlock the 1078 * runlist as the map cache will be used from now on. 1079 */ 1080 if (likely(vcn + vcn_len >= cend)) { 1081 up_write(&ni->runlist.lock); 1082 rl_write_locked = false; 1083 rl = NULL; 1084 } 1085 goto map_buffer_cached; 1086 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1087 /* If there are no errors, do the next page. */ 1088 if (likely(!err && ++u < nr_pages)) 1089 goto do_next_page; 1090 /* If there are no errors, release the runlist lock if we took it. */ 1091 if (likely(!err)) { 1092 if (unlikely(rl_write_locked)) { 1093 up_write(&ni->runlist.lock); 1094 rl_write_locked = false; 1095 } else if (unlikely(rl)) 1096 up_read(&ni->runlist.lock); 1097 rl = NULL; 1098 } 1099 /* If we issued read requests, let them complete. */ 1100 read_lock_irqsave(&ni->size_lock, flags); 1101 initialized_size = ni->initialized_size; 1102 read_unlock_irqrestore(&ni->size_lock, flags); 1103 while (wait_bh > wait) { 1104 bh = *--wait_bh; 1105 wait_on_buffer(bh); 1106 if (likely(buffer_uptodate(bh))) { 1107 page = bh->b_page; 1108 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + 1109 bh_offset(bh); 1110 /* 1111 * If the buffer overflows the initialized size, need 1112 * to zero the overflowing region. 1113 */ 1114 if (unlikely(bh_pos + blocksize > initialized_size)) { 1115 int ofs = 0; 1116 1117 if (likely(bh_pos < initialized_size)) 1118 ofs = initialized_size - bh_pos; 1119 zero_user_segment(page, bh_offset(bh) + ofs, 1120 blocksize); 1121 } 1122 } else /* if (unlikely(!buffer_uptodate(bh))) */ 1123 err = -EIO; 1124 } 1125 if (likely(!err)) { 1126 /* Clear buffer_new on all buffers. */ 1127 u = 0; 1128 do { 1129 bh = head = page_buffers(pages[u]); 1130 do { 1131 if (buffer_new(bh)) 1132 clear_buffer_new(bh); 1133 } while ((bh = bh->b_this_page) != head); 1134 } while (++u < nr_pages); 1135 ntfs_debug("Done."); 1136 return err; 1137 } 1138 if (status.attr_switched) { 1139 /* Get back to the attribute extent we modified. */ 1140 ntfs_attr_reinit_search_ctx(ctx); 1141 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1142 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { 1143 ntfs_error(vol->sb, "Failed to find required " 1144 "attribute extent of attribute in " 1145 "error code path. Run chkdsk to " 1146 "recover."); 1147 write_lock_irqsave(&ni->size_lock, flags); 1148 ni->itype.compressed.size += vol->cluster_size; 1149 write_unlock_irqrestore(&ni->size_lock, flags); 1150 flush_dcache_mft_record_page(ctx->ntfs_ino); 1151 mark_mft_record_dirty(ctx->ntfs_ino); 1152 /* 1153 * The only thing that is now wrong is the compressed 1154 * size of the base attribute extent which chkdsk 1155 * should be able to fix. 1156 */ 1157 NVolSetErrors(vol); 1158 } else { 1159 m = ctx->mrec; 1160 a = ctx->attr; 1161 status.attr_switched = 0; 1162 } 1163 } 1164 /* 1165 * If the runlist has been modified, need to restore it by punching a 1166 * hole into it and we then need to deallocate the on-disk cluster as 1167 * well. Note, we only modify the runlist if we are able to generate a 1168 * new mapping pairs array, i.e. only when the mapped attribute extent 1169 * is not switched. 1170 */ 1171 if (status.runlist_merged && !status.attr_switched) { 1172 BUG_ON(!rl_write_locked); 1173 /* Make the file cluster we allocated sparse in the runlist. */ 1174 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { 1175 ntfs_error(vol->sb, "Failed to punch hole into " 1176 "attribute runlist in error code " 1177 "path. Run chkdsk to recover the " 1178 "lost cluster."); 1179 NVolSetErrors(vol); 1180 } else /* if (success) */ { 1181 status.runlist_merged = 0; 1182 /* 1183 * Deallocate the on-disk cluster we allocated but only 1184 * if we succeeded in punching its vcn out of the 1185 * runlist. 1186 */ 1187 down_write(&vol->lcnbmp_lock); 1188 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1189 ntfs_error(vol->sb, "Failed to release " 1190 "allocated cluster in error " 1191 "code path. Run chkdsk to " 1192 "recover the lost cluster."); 1193 NVolSetErrors(vol); 1194 } 1195 up_write(&vol->lcnbmp_lock); 1196 } 1197 } 1198 /* 1199 * Resize the attribute record to its old size and rebuild the mapping 1200 * pairs array. Note, we only can do this if the runlist has been 1201 * restored to its old state which also implies that the mapped 1202 * attribute extent is not switched. 1203 */ 1204 if (status.mp_rebuilt && !status.runlist_merged) { 1205 if (ntfs_attr_record_resize(m, a, attr_rec_len)) { 1206 ntfs_error(vol->sb, "Failed to restore attribute " 1207 "record in error code path. Run " 1208 "chkdsk to recover."); 1209 NVolSetErrors(vol); 1210 } else /* if (success) */ { 1211 if (ntfs_mapping_pairs_build(vol, (u8*)a + 1212 le16_to_cpu(a->data.non_resident. 1213 mapping_pairs_offset), attr_rec_len - 1214 le16_to_cpu(a->data.non_resident. 1215 mapping_pairs_offset), ni->runlist.rl, 1216 vcn, highest_vcn, NULL)) { 1217 ntfs_error(vol->sb, "Failed to restore " 1218 "mapping pairs array in error " 1219 "code path. Run chkdsk to " 1220 "recover."); 1221 NVolSetErrors(vol); 1222 } 1223 flush_dcache_mft_record_page(ctx->ntfs_ino); 1224 mark_mft_record_dirty(ctx->ntfs_ino); 1225 } 1226 } 1227 /* Release the mft record and the attribute. */ 1228 if (status.mft_attr_mapped) { 1229 ntfs_attr_put_search_ctx(ctx); 1230 unmap_mft_record(base_ni); 1231 } 1232 /* Release the runlist lock. */ 1233 if (rl_write_locked) 1234 up_write(&ni->runlist.lock); 1235 else if (rl) 1236 up_read(&ni->runlist.lock); 1237 /* 1238 * Zero out any newly allocated blocks to avoid exposing stale data. 1239 * If BH_New is set, we know that the block was newly allocated above 1240 * and that it has not been fully zeroed and marked dirty yet. 1241 */ 1242 nr_pages = u; 1243 u = 0; 1244 end = bh_cpos << vol->cluster_size_bits; 1245 do { 1246 page = pages[u]; 1247 bh = head = page_buffers(page); 1248 do { 1249 if (u == nr_pages && 1250 ((s64)page->index << PAGE_CACHE_SHIFT) + 1251 bh_offset(bh) >= end) 1252 break; 1253 if (!buffer_new(bh)) 1254 continue; 1255 clear_buffer_new(bh); 1256 if (!buffer_uptodate(bh)) { 1257 if (PageUptodate(page)) 1258 set_buffer_uptodate(bh); 1259 else { 1260 zero_user(page, bh_offset(bh), 1261 blocksize); 1262 set_buffer_uptodate(bh); 1263 } 1264 } 1265 mark_buffer_dirty(bh); 1266 } while ((bh = bh->b_this_page) != head); 1267 } while (++u <= nr_pages); 1268 ntfs_error(vol->sb, "Failed. Returning error code %i.", err); 1269 return err; 1270 } 1271 1272 /* 1273 * Copy as much as we can into the pages and return the number of bytes which 1274 * were successfully copied. If a fault is encountered then clear the pages 1275 * out to (ofs + bytes) and return the number of bytes which were copied. 1276 */ 1277 static inline size_t ntfs_copy_from_user(struct page **pages, 1278 unsigned nr_pages, unsigned ofs, const char __user *buf, 1279 size_t bytes) 1280 { 1281 struct page **last_page = pages + nr_pages; 1282 char *addr; 1283 size_t total = 0; 1284 unsigned len; 1285 int left; 1286 1287 do { 1288 len = PAGE_CACHE_SIZE - ofs; 1289 if (len > bytes) 1290 len = bytes; 1291 addr = kmap_atomic(*pages); 1292 left = __copy_from_user_inatomic(addr + ofs, buf, len); 1293 kunmap_atomic(addr); 1294 if (unlikely(left)) { 1295 /* Do it the slow way. */ 1296 addr = kmap(*pages); 1297 left = __copy_from_user(addr + ofs, buf, len); 1298 kunmap(*pages); 1299 if (unlikely(left)) 1300 goto err_out; 1301 } 1302 total += len; 1303 bytes -= len; 1304 if (!bytes) 1305 break; 1306 buf += len; 1307 ofs = 0; 1308 } while (++pages < last_page); 1309 out: 1310 return total; 1311 err_out: 1312 total += len - left; 1313 /* Zero the rest of the target like __copy_from_user(). */ 1314 while (++pages < last_page) { 1315 bytes -= len; 1316 if (!bytes) 1317 break; 1318 len = PAGE_CACHE_SIZE; 1319 if (len > bytes) 1320 len = bytes; 1321 zero_user(*pages, 0, len); 1322 } 1323 goto out; 1324 } 1325 1326 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, 1327 const struct iovec *iov, size_t iov_ofs, size_t bytes) 1328 { 1329 size_t total = 0; 1330 1331 while (1) { 1332 const char __user *buf = iov->iov_base + iov_ofs; 1333 unsigned len; 1334 size_t left; 1335 1336 len = iov->iov_len - iov_ofs; 1337 if (len > bytes) 1338 len = bytes; 1339 left = __copy_from_user_inatomic(vaddr, buf, len); 1340 total += len; 1341 bytes -= len; 1342 vaddr += len; 1343 if (unlikely(left)) { 1344 total -= left; 1345 break; 1346 } 1347 if (!bytes) 1348 break; 1349 iov++; 1350 iov_ofs = 0; 1351 } 1352 return total; 1353 } 1354 1355 static inline void ntfs_set_next_iovec(const struct iovec **iovp, 1356 size_t *iov_ofsp, size_t bytes) 1357 { 1358 const struct iovec *iov = *iovp; 1359 size_t iov_ofs = *iov_ofsp; 1360 1361 while (bytes) { 1362 unsigned len; 1363 1364 len = iov->iov_len - iov_ofs; 1365 if (len > bytes) 1366 len = bytes; 1367 bytes -= len; 1368 iov_ofs += len; 1369 if (iov->iov_len == iov_ofs) { 1370 iov++; 1371 iov_ofs = 0; 1372 } 1373 } 1374 *iovp = iov; 1375 *iov_ofsp = iov_ofs; 1376 } 1377 1378 /* 1379 * This has the same side-effects and return value as ntfs_copy_from_user(). 1380 * The difference is that on a fault we need to memset the remainder of the 1381 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s 1382 * single-segment behaviour. 1383 * 1384 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when 1385 * atomic and when not atomic. This is ok because it calls 1386 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In 1387 * fact, the only difference between __copy_from_user_inatomic() and 1388 * __copy_from_user() is that the latter calls might_sleep() and the former 1389 * should not zero the tail of the buffer on error. And on many architectures 1390 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it 1391 * makes no difference at all on those architectures. 1392 */ 1393 static inline size_t ntfs_copy_from_user_iovec(struct page **pages, 1394 unsigned nr_pages, unsigned ofs, const struct iovec **iov, 1395 size_t *iov_ofs, size_t bytes) 1396 { 1397 struct page **last_page = pages + nr_pages; 1398 char *addr; 1399 size_t copied, len, total = 0; 1400 1401 do { 1402 len = PAGE_CACHE_SIZE - ofs; 1403 if (len > bytes) 1404 len = bytes; 1405 addr = kmap_atomic(*pages); 1406 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, 1407 *iov, *iov_ofs, len); 1408 kunmap_atomic(addr); 1409 if (unlikely(copied != len)) { 1410 /* Do it the slow way. */ 1411 addr = kmap(*pages); 1412 copied = __ntfs_copy_from_user_iovec_inatomic(addr + 1413 ofs, *iov, *iov_ofs, len); 1414 if (unlikely(copied != len)) 1415 goto err_out; 1416 kunmap(*pages); 1417 } 1418 total += len; 1419 ntfs_set_next_iovec(iov, iov_ofs, len); 1420 bytes -= len; 1421 if (!bytes) 1422 break; 1423 ofs = 0; 1424 } while (++pages < last_page); 1425 out: 1426 return total; 1427 err_out: 1428 BUG_ON(copied > len); 1429 /* Zero the rest of the target like __copy_from_user(). */ 1430 memset(addr + ofs + copied, 0, len - copied); 1431 kunmap(*pages); 1432 total += copied; 1433 ntfs_set_next_iovec(iov, iov_ofs, copied); 1434 while (++pages < last_page) { 1435 bytes -= len; 1436 if (!bytes) 1437 break; 1438 len = PAGE_CACHE_SIZE; 1439 if (len > bytes) 1440 len = bytes; 1441 zero_user(*pages, 0, len); 1442 } 1443 goto out; 1444 } 1445 1446 static inline void ntfs_flush_dcache_pages(struct page **pages, 1447 unsigned nr_pages) 1448 { 1449 BUG_ON(!nr_pages); 1450 /* 1451 * Warning: Do not do the decrement at the same time as the call to 1452 * flush_dcache_page() because it is a NULL macro on i386 and hence the 1453 * decrement never happens so the loop never terminates. 1454 */ 1455 do { 1456 --nr_pages; 1457 flush_dcache_page(pages[nr_pages]); 1458 } while (nr_pages > 0); 1459 } 1460 1461 /** 1462 * ntfs_commit_pages_after_non_resident_write - commit the received data 1463 * @pages: array of destination pages 1464 * @nr_pages: number of pages in @pages 1465 * @pos: byte position in file at which the write begins 1466 * @bytes: number of bytes to be written 1467 * 1468 * See description of ntfs_commit_pages_after_write(), below. 1469 */ 1470 static inline int ntfs_commit_pages_after_non_resident_write( 1471 struct page **pages, const unsigned nr_pages, 1472 s64 pos, size_t bytes) 1473 { 1474 s64 end, initialized_size; 1475 struct inode *vi; 1476 ntfs_inode *ni, *base_ni; 1477 struct buffer_head *bh, *head; 1478 ntfs_attr_search_ctx *ctx; 1479 MFT_RECORD *m; 1480 ATTR_RECORD *a; 1481 unsigned long flags; 1482 unsigned blocksize, u; 1483 int err; 1484 1485 vi = pages[0]->mapping->host; 1486 ni = NTFS_I(vi); 1487 blocksize = vi->i_sb->s_blocksize; 1488 end = pos + bytes; 1489 u = 0; 1490 do { 1491 s64 bh_pos; 1492 struct page *page; 1493 bool partial; 1494 1495 page = pages[u]; 1496 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 1497 bh = head = page_buffers(page); 1498 partial = false; 1499 do { 1500 s64 bh_end; 1501 1502 bh_end = bh_pos + blocksize; 1503 if (bh_end <= pos || bh_pos >= end) { 1504 if (!buffer_uptodate(bh)) 1505 partial = true; 1506 } else { 1507 set_buffer_uptodate(bh); 1508 mark_buffer_dirty(bh); 1509 } 1510 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1511 /* 1512 * If all buffers are now uptodate but the page is not, set the 1513 * page uptodate. 1514 */ 1515 if (!partial && !PageUptodate(page)) 1516 SetPageUptodate(page); 1517 } while (++u < nr_pages); 1518 /* 1519 * Finally, if we do not need to update initialized_size or i_size we 1520 * are finished. 1521 */ 1522 read_lock_irqsave(&ni->size_lock, flags); 1523 initialized_size = ni->initialized_size; 1524 read_unlock_irqrestore(&ni->size_lock, flags); 1525 if (end <= initialized_size) { 1526 ntfs_debug("Done."); 1527 return 0; 1528 } 1529 /* 1530 * Update initialized_size/i_size as appropriate, both in the inode and 1531 * the mft record. 1532 */ 1533 if (!NInoAttr(ni)) 1534 base_ni = ni; 1535 else 1536 base_ni = ni->ext.base_ntfs_ino; 1537 /* Map, pin, and lock the mft record. */ 1538 m = map_mft_record(base_ni); 1539 if (IS_ERR(m)) { 1540 err = PTR_ERR(m); 1541 m = NULL; 1542 ctx = NULL; 1543 goto err_out; 1544 } 1545 BUG_ON(!NInoNonResident(ni)); 1546 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1547 if (unlikely(!ctx)) { 1548 err = -ENOMEM; 1549 goto err_out; 1550 } 1551 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1552 CASE_SENSITIVE, 0, NULL, 0, ctx); 1553 if (unlikely(err)) { 1554 if (err == -ENOENT) 1555 err = -EIO; 1556 goto err_out; 1557 } 1558 a = ctx->attr; 1559 BUG_ON(!a->non_resident); 1560 write_lock_irqsave(&ni->size_lock, flags); 1561 BUG_ON(end > ni->allocated_size); 1562 ni->initialized_size = end; 1563 a->data.non_resident.initialized_size = cpu_to_sle64(end); 1564 if (end > i_size_read(vi)) { 1565 i_size_write(vi, end); 1566 a->data.non_resident.data_size = 1567 a->data.non_resident.initialized_size; 1568 } 1569 write_unlock_irqrestore(&ni->size_lock, flags); 1570 /* Mark the mft record dirty, so it gets written back. */ 1571 flush_dcache_mft_record_page(ctx->ntfs_ino); 1572 mark_mft_record_dirty(ctx->ntfs_ino); 1573 ntfs_attr_put_search_ctx(ctx); 1574 unmap_mft_record(base_ni); 1575 ntfs_debug("Done."); 1576 return 0; 1577 err_out: 1578 if (ctx) 1579 ntfs_attr_put_search_ctx(ctx); 1580 if (m) 1581 unmap_mft_record(base_ni); 1582 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " 1583 "code %i).", err); 1584 if (err != -ENOMEM) 1585 NVolSetErrors(ni->vol); 1586 return err; 1587 } 1588 1589 /** 1590 * ntfs_commit_pages_after_write - commit the received data 1591 * @pages: array of destination pages 1592 * @nr_pages: number of pages in @pages 1593 * @pos: byte position in file at which the write begins 1594 * @bytes: number of bytes to be written 1595 * 1596 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode 1597 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are 1598 * locked but not kmap()ped. The source data has already been copied into the 1599 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before 1600 * the data was copied (for non-resident attributes only) and it returned 1601 * success. 1602 * 1603 * Need to set uptodate and mark dirty all buffers within the boundary of the 1604 * write. If all buffers in a page are uptodate we set the page uptodate, too. 1605 * 1606 * Setting the buffers dirty ensures that they get written out later when 1607 * ntfs_writepage() is invoked by the VM. 1608 * 1609 * Finally, we need to update i_size and initialized_size as appropriate both 1610 * in the inode and the mft record. 1611 * 1612 * This is modelled after fs/buffer.c::generic_commit_write(), which marks 1613 * buffers uptodate and dirty, sets the page uptodate if all buffers in the 1614 * page are uptodate, and updates i_size if the end of io is beyond i_size. In 1615 * that case, it also marks the inode dirty. 1616 * 1617 * If things have gone as outlined in 1618 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page 1619 * content modifications here for non-resident attributes. For resident 1620 * attributes we need to do the uptodate bringing here which we combine with 1621 * the copying into the mft record which means we save one atomic kmap. 1622 * 1623 * Return 0 on success or -errno on error. 1624 */ 1625 static int ntfs_commit_pages_after_write(struct page **pages, 1626 const unsigned nr_pages, s64 pos, size_t bytes) 1627 { 1628 s64 end, initialized_size; 1629 loff_t i_size; 1630 struct inode *vi; 1631 ntfs_inode *ni, *base_ni; 1632 struct page *page; 1633 ntfs_attr_search_ctx *ctx; 1634 MFT_RECORD *m; 1635 ATTR_RECORD *a; 1636 char *kattr, *kaddr; 1637 unsigned long flags; 1638 u32 attr_len; 1639 int err; 1640 1641 BUG_ON(!nr_pages); 1642 BUG_ON(!pages); 1643 page = pages[0]; 1644 BUG_ON(!page); 1645 vi = page->mapping->host; 1646 ni = NTFS_I(vi); 1647 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 1648 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 1649 vi->i_ino, ni->type, page->index, nr_pages, 1650 (long long)pos, bytes); 1651 if (NInoNonResident(ni)) 1652 return ntfs_commit_pages_after_non_resident_write(pages, 1653 nr_pages, pos, bytes); 1654 BUG_ON(nr_pages > 1); 1655 /* 1656 * Attribute is resident, implying it is not compressed, encrypted, or 1657 * sparse. 1658 */ 1659 if (!NInoAttr(ni)) 1660 base_ni = ni; 1661 else 1662 base_ni = ni->ext.base_ntfs_ino; 1663 BUG_ON(NInoNonResident(ni)); 1664 /* Map, pin, and lock the mft record. */ 1665 m = map_mft_record(base_ni); 1666 if (IS_ERR(m)) { 1667 err = PTR_ERR(m); 1668 m = NULL; 1669 ctx = NULL; 1670 goto err_out; 1671 } 1672 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1673 if (unlikely(!ctx)) { 1674 err = -ENOMEM; 1675 goto err_out; 1676 } 1677 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1678 CASE_SENSITIVE, 0, NULL, 0, ctx); 1679 if (unlikely(err)) { 1680 if (err == -ENOENT) 1681 err = -EIO; 1682 goto err_out; 1683 } 1684 a = ctx->attr; 1685 BUG_ON(a->non_resident); 1686 /* The total length of the attribute value. */ 1687 attr_len = le32_to_cpu(a->data.resident.value_length); 1688 i_size = i_size_read(vi); 1689 BUG_ON(attr_len != i_size); 1690 BUG_ON(pos > attr_len); 1691 end = pos + bytes; 1692 BUG_ON(end > le32_to_cpu(a->length) - 1693 le16_to_cpu(a->data.resident.value_offset)); 1694 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 1695 kaddr = kmap_atomic(page); 1696 /* Copy the received data from the page to the mft record. */ 1697 memcpy(kattr + pos, kaddr + pos, bytes); 1698 /* Update the attribute length if necessary. */ 1699 if (end > attr_len) { 1700 attr_len = end; 1701 a->data.resident.value_length = cpu_to_le32(attr_len); 1702 } 1703 /* 1704 * If the page is not uptodate, bring the out of bounds area(s) 1705 * uptodate by copying data from the mft record to the page. 1706 */ 1707 if (!PageUptodate(page)) { 1708 if (pos > 0) 1709 memcpy(kaddr, kattr, pos); 1710 if (end < attr_len) 1711 memcpy(kaddr + end, kattr + end, attr_len - end); 1712 /* Zero the region outside the end of the attribute value. */ 1713 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1714 flush_dcache_page(page); 1715 SetPageUptodate(page); 1716 } 1717 kunmap_atomic(kaddr); 1718 /* Update initialized_size/i_size if necessary. */ 1719 read_lock_irqsave(&ni->size_lock, flags); 1720 initialized_size = ni->initialized_size; 1721 BUG_ON(end > ni->allocated_size); 1722 read_unlock_irqrestore(&ni->size_lock, flags); 1723 BUG_ON(initialized_size != i_size); 1724 if (end > initialized_size) { 1725 write_lock_irqsave(&ni->size_lock, flags); 1726 ni->initialized_size = end; 1727 i_size_write(vi, end); 1728 write_unlock_irqrestore(&ni->size_lock, flags); 1729 } 1730 /* Mark the mft record dirty, so it gets written back. */ 1731 flush_dcache_mft_record_page(ctx->ntfs_ino); 1732 mark_mft_record_dirty(ctx->ntfs_ino); 1733 ntfs_attr_put_search_ctx(ctx); 1734 unmap_mft_record(base_ni); 1735 ntfs_debug("Done."); 1736 return 0; 1737 err_out: 1738 if (err == -ENOMEM) { 1739 ntfs_warning(vi->i_sb, "Error allocating memory required to " 1740 "commit the write."); 1741 if (PageUptodate(page)) { 1742 ntfs_warning(vi->i_sb, "Page is uptodate, setting " 1743 "dirty so the write will be retried " 1744 "later on by the VM."); 1745 /* 1746 * Put the page on mapping->dirty_pages, but leave its 1747 * buffers' dirty state as-is. 1748 */ 1749 __set_page_dirty_nobuffers(page); 1750 err = 0; 1751 } else 1752 ntfs_error(vi->i_sb, "Page is not uptodate. Written " 1753 "data has been lost."); 1754 } else { 1755 ntfs_error(vi->i_sb, "Resident attribute commit write failed " 1756 "with error %i.", err); 1757 NVolSetErrors(ni->vol); 1758 } 1759 if (ctx) 1760 ntfs_attr_put_search_ctx(ctx); 1761 if (m) 1762 unmap_mft_record(base_ni); 1763 return err; 1764 } 1765 1766 static void ntfs_write_failed(struct address_space *mapping, loff_t to) 1767 { 1768 struct inode *inode = mapping->host; 1769 1770 if (to > inode->i_size) { 1771 truncate_pagecache(inode, inode->i_size); 1772 ntfs_truncate_vfs(inode); 1773 } 1774 } 1775 1776 /** 1777 * ntfs_file_buffered_write - 1778 * 1779 * Locking: The vfs is holding ->i_mutex on the inode. 1780 */ 1781 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, 1782 const struct iovec *iov, unsigned long nr_segs, 1783 loff_t pos, loff_t *ppos, size_t count) 1784 { 1785 struct file *file = iocb->ki_filp; 1786 struct address_space *mapping = file->f_mapping; 1787 struct inode *vi = mapping->host; 1788 ntfs_inode *ni = NTFS_I(vi); 1789 ntfs_volume *vol = ni->vol; 1790 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; 1791 struct page *cached_page = NULL; 1792 char __user *buf = NULL; 1793 s64 end, ll; 1794 VCN last_vcn; 1795 LCN lcn; 1796 unsigned long flags; 1797 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ 1798 ssize_t status, written; 1799 unsigned nr_pages; 1800 int err; 1801 1802 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1803 "pos 0x%llx, count 0x%lx.", 1804 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 1805 (unsigned long long)pos, (unsigned long)count); 1806 if (unlikely(!count)) 1807 return 0; 1808 BUG_ON(NInoMstProtected(ni)); 1809 /* 1810 * If the attribute is not an index root and it is encrypted or 1811 * compressed, we cannot write to it yet. Note we need to check for 1812 * AT_INDEX_ALLOCATION since this is the type of both directory and 1813 * index inodes. 1814 */ 1815 if (ni->type != AT_INDEX_ALLOCATION) { 1816 /* If file is encrypted, deny access, just like NT4. */ 1817 if (NInoEncrypted(ni)) { 1818 /* 1819 * Reminder for later: Encrypted files are _always_ 1820 * non-resident so that the content can always be 1821 * encrypted. 1822 */ 1823 ntfs_debug("Denying write access to encrypted file."); 1824 return -EACCES; 1825 } 1826 if (NInoCompressed(ni)) { 1827 /* Only unnamed $DATA attribute can be compressed. */ 1828 BUG_ON(ni->type != AT_DATA); 1829 BUG_ON(ni->name_len); 1830 /* 1831 * Reminder for later: If resident, the data is not 1832 * actually compressed. Only on the switch to non- 1833 * resident does compression kick in. This is in 1834 * contrast to encrypted files (see above). 1835 */ 1836 ntfs_error(vi->i_sb, "Writing to compressed files is " 1837 "not implemented yet. Sorry."); 1838 return -EOPNOTSUPP; 1839 } 1840 } 1841 /* 1842 * If a previous ntfs_truncate() failed, repeat it and abort if it 1843 * fails again. 1844 */ 1845 if (unlikely(NInoTruncateFailed(ni))) { 1846 inode_dio_wait(vi); 1847 err = ntfs_truncate(vi); 1848 if (err || NInoTruncateFailed(ni)) { 1849 if (!err) 1850 err = -EIO; 1851 ntfs_error(vol->sb, "Cannot perform write to inode " 1852 "0x%lx, attribute type 0x%x, because " 1853 "ntfs_truncate() failed (error code " 1854 "%i).", vi->i_ino, 1855 (unsigned)le32_to_cpu(ni->type), err); 1856 return err; 1857 } 1858 } 1859 /* The first byte after the write. */ 1860 end = pos + count; 1861 /* 1862 * If the write goes beyond the allocated size, extend the allocation 1863 * to cover the whole of the write, rounded up to the nearest cluster. 1864 */ 1865 read_lock_irqsave(&ni->size_lock, flags); 1866 ll = ni->allocated_size; 1867 read_unlock_irqrestore(&ni->size_lock, flags); 1868 if (end > ll) { 1869 /* Extend the allocation without changing the data size. */ 1870 ll = ntfs_attr_extend_allocation(ni, end, -1, pos); 1871 if (likely(ll >= 0)) { 1872 BUG_ON(pos >= ll); 1873 /* If the extension was partial truncate the write. */ 1874 if (end > ll) { 1875 ntfs_debug("Truncating write to inode 0x%lx, " 1876 "attribute type 0x%x, because " 1877 "the allocation was only " 1878 "partially extended.", 1879 vi->i_ino, (unsigned) 1880 le32_to_cpu(ni->type)); 1881 end = ll; 1882 count = ll - pos; 1883 } 1884 } else { 1885 err = ll; 1886 read_lock_irqsave(&ni->size_lock, flags); 1887 ll = ni->allocated_size; 1888 read_unlock_irqrestore(&ni->size_lock, flags); 1889 /* Perform a partial write if possible or fail. */ 1890 if (pos < ll) { 1891 ntfs_debug("Truncating write to inode 0x%lx, " 1892 "attribute type 0x%x, because " 1893 "extending the allocation " 1894 "failed (error code %i).", 1895 vi->i_ino, (unsigned) 1896 le32_to_cpu(ni->type), err); 1897 end = ll; 1898 count = ll - pos; 1899 } else { 1900 ntfs_error(vol->sb, "Cannot perform write to " 1901 "inode 0x%lx, attribute type " 1902 "0x%x, because extending the " 1903 "allocation failed (error " 1904 "code %i).", vi->i_ino, 1905 (unsigned) 1906 le32_to_cpu(ni->type), err); 1907 return err; 1908 } 1909 } 1910 } 1911 written = 0; 1912 /* 1913 * If the write starts beyond the initialized size, extend it up to the 1914 * beginning of the write and initialize all non-sparse space between 1915 * the old initialized size and the new one. This automatically also 1916 * increments the vfs inode->i_size to keep it above or equal to the 1917 * initialized_size. 1918 */ 1919 read_lock_irqsave(&ni->size_lock, flags); 1920 ll = ni->initialized_size; 1921 read_unlock_irqrestore(&ni->size_lock, flags); 1922 if (pos > ll) { 1923 err = ntfs_attr_extend_initialized(ni, pos); 1924 if (err < 0) { 1925 ntfs_error(vol->sb, "Cannot perform write to inode " 1926 "0x%lx, attribute type 0x%x, because " 1927 "extending the initialized size " 1928 "failed (error code %i).", vi->i_ino, 1929 (unsigned)le32_to_cpu(ni->type), err); 1930 status = err; 1931 goto err_out; 1932 } 1933 } 1934 /* 1935 * Determine the number of pages per cluster for non-resident 1936 * attributes. 1937 */ 1938 nr_pages = 1; 1939 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) 1940 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; 1941 /* Finally, perform the actual write. */ 1942 last_vcn = -1; 1943 if (likely(nr_segs == 1)) 1944 buf = iov->iov_base; 1945 do { 1946 VCN vcn; 1947 pgoff_t idx, start_idx; 1948 unsigned ofs, do_pages, u; 1949 size_t copied; 1950 1951 start_idx = idx = pos >> PAGE_CACHE_SHIFT; 1952 ofs = pos & ~PAGE_CACHE_MASK; 1953 bytes = PAGE_CACHE_SIZE - ofs; 1954 do_pages = 1; 1955 if (nr_pages > 1) { 1956 vcn = pos >> vol->cluster_size_bits; 1957 if (vcn != last_vcn) { 1958 last_vcn = vcn; 1959 /* 1960 * Get the lcn of the vcn the write is in. If 1961 * it is a hole, need to lock down all pages in 1962 * the cluster. 1963 */ 1964 down_read(&ni->runlist.lock); 1965 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> 1966 vol->cluster_size_bits, false); 1967 up_read(&ni->runlist.lock); 1968 if (unlikely(lcn < LCN_HOLE)) { 1969 status = -EIO; 1970 if (lcn == LCN_ENOMEM) 1971 status = -ENOMEM; 1972 else 1973 ntfs_error(vol->sb, "Cannot " 1974 "perform write to " 1975 "inode 0x%lx, " 1976 "attribute type 0x%x, " 1977 "because the attribute " 1978 "is corrupt.", 1979 vi->i_ino, (unsigned) 1980 le32_to_cpu(ni->type)); 1981 break; 1982 } 1983 if (lcn == LCN_HOLE) { 1984 start_idx = (pos & ~(s64) 1985 vol->cluster_size_mask) 1986 >> PAGE_CACHE_SHIFT; 1987 bytes = vol->cluster_size - (pos & 1988 vol->cluster_size_mask); 1989 do_pages = nr_pages; 1990 } 1991 } 1992 } 1993 if (bytes > count) 1994 bytes = count; 1995 /* 1996 * Bring in the user page(s) that we will copy from _first_. 1997 * Otherwise there is a nasty deadlock on copying from the same 1998 * page(s) as we are writing to, without it/them being marked 1999 * up-to-date. Note, at present there is nothing to stop the 2000 * pages being swapped out between us bringing them into memory 2001 * and doing the actual copying. 2002 */ 2003 if (likely(nr_segs == 1)) 2004 ntfs_fault_in_pages_readable(buf, bytes); 2005 else 2006 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); 2007 /* Get and lock @do_pages starting at index @start_idx. */ 2008 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, 2009 pages, &cached_page); 2010 if (unlikely(status)) 2011 break; 2012 /* 2013 * For non-resident attributes, we need to fill any holes with 2014 * actual clusters and ensure all bufferes are mapped. We also 2015 * need to bring uptodate any buffers that are only partially 2016 * being written to. 2017 */ 2018 if (NInoNonResident(ni)) { 2019 status = ntfs_prepare_pages_for_non_resident_write( 2020 pages, do_pages, pos, bytes); 2021 if (unlikely(status)) { 2022 loff_t i_size; 2023 2024 do { 2025 unlock_page(pages[--do_pages]); 2026 page_cache_release(pages[do_pages]); 2027 } while (do_pages); 2028 /* 2029 * The write preparation may have instantiated 2030 * allocated space outside i_size. Trim this 2031 * off again. We can ignore any errors in this 2032 * case as we will just be waisting a bit of 2033 * allocated space, which is not a disaster. 2034 */ 2035 i_size = i_size_read(vi); 2036 if (pos + bytes > i_size) { 2037 ntfs_write_failed(mapping, pos + bytes); 2038 } 2039 break; 2040 } 2041 } 2042 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; 2043 if (likely(nr_segs == 1)) { 2044 copied = ntfs_copy_from_user(pages + u, do_pages - u, 2045 ofs, buf, bytes); 2046 buf += copied; 2047 } else 2048 copied = ntfs_copy_from_user_iovec(pages + u, 2049 do_pages - u, ofs, &iov, &iov_ofs, 2050 bytes); 2051 ntfs_flush_dcache_pages(pages + u, do_pages - u); 2052 status = ntfs_commit_pages_after_write(pages, do_pages, pos, 2053 bytes); 2054 if (likely(!status)) { 2055 written += copied; 2056 count -= copied; 2057 pos += copied; 2058 if (unlikely(copied != bytes)) 2059 status = -EFAULT; 2060 } 2061 do { 2062 unlock_page(pages[--do_pages]); 2063 mark_page_accessed(pages[do_pages]); 2064 page_cache_release(pages[do_pages]); 2065 } while (do_pages); 2066 if (unlikely(status)) 2067 break; 2068 balance_dirty_pages_ratelimited(mapping); 2069 cond_resched(); 2070 } while (count); 2071 err_out: 2072 *ppos = pos; 2073 if (cached_page) 2074 page_cache_release(cached_page); 2075 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", 2076 written ? "written" : "status", (unsigned long)written, 2077 (long)status); 2078 return written ? written : status; 2079 } 2080 2081 /** 2082 * ntfs_file_aio_write_nolock - 2083 */ 2084 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, 2085 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) 2086 { 2087 struct file *file = iocb->ki_filp; 2088 struct address_space *mapping = file->f_mapping; 2089 struct inode *inode = mapping->host; 2090 loff_t pos; 2091 size_t count; /* after file limit checks */ 2092 ssize_t written, err; 2093 2094 count = 0; 2095 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 2096 if (err) 2097 return err; 2098 pos = *ppos; 2099 /* We can write back this queue in page reclaim. */ 2100 current->backing_dev_info = mapping->backing_dev_info; 2101 written = 0; 2102 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2103 if (err) 2104 goto out; 2105 if (!count) 2106 goto out; 2107 err = file_remove_suid(file); 2108 if (err) 2109 goto out; 2110 err = file_update_time(file); 2111 if (err) 2112 goto out; 2113 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, 2114 count); 2115 out: 2116 current->backing_dev_info = NULL; 2117 return written ? written : err; 2118 } 2119 2120 /** 2121 * ntfs_file_aio_write - 2122 */ 2123 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2124 unsigned long nr_segs, loff_t pos) 2125 { 2126 struct file *file = iocb->ki_filp; 2127 struct address_space *mapping = file->f_mapping; 2128 struct inode *inode = mapping->host; 2129 ssize_t ret; 2130 2131 BUG_ON(iocb->ki_pos != pos); 2132 2133 mutex_lock(&inode->i_mutex); 2134 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); 2135 mutex_unlock(&inode->i_mutex); 2136 if (ret > 0) { 2137 int err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2138 if (err < 0) 2139 ret = err; 2140 } 2141 return ret; 2142 } 2143 2144 /** 2145 * ntfs_file_fsync - sync a file to disk 2146 * @filp: file to be synced 2147 * @datasync: if non-zero only flush user data and not metadata 2148 * 2149 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync 2150 * system calls. This function is inspired by fs/buffer.c::file_fsync(). 2151 * 2152 * If @datasync is false, write the mft record and all associated extent mft 2153 * records as well as the $DATA attribute and then sync the block device. 2154 * 2155 * If @datasync is true and the attribute is non-resident, we skip the writing 2156 * of the mft record and all associated extent mft records (this might still 2157 * happen due to the write_inode_now() call). 2158 * 2159 * Also, if @datasync is true, we do not wait on the inode to be written out 2160 * but we always wait on the page cache pages to be written out. 2161 * 2162 * Locking: Caller must hold i_mutex on the inode. 2163 * 2164 * TODO: We should probably also write all attribute/index inodes associated 2165 * with this inode but since we have no simple way of getting to them we ignore 2166 * this problem for now. 2167 */ 2168 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end, 2169 int datasync) 2170 { 2171 struct inode *vi = filp->f_mapping->host; 2172 int err, ret = 0; 2173 2174 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2175 2176 err = filemap_write_and_wait_range(vi->i_mapping, start, end); 2177 if (err) 2178 return err; 2179 mutex_lock(&vi->i_mutex); 2180 2181 BUG_ON(S_ISDIR(vi->i_mode)); 2182 if (!datasync || !NInoNonResident(NTFS_I(vi))) 2183 ret = __ntfs_write_inode(vi, 1); 2184 write_inode_now(vi, !datasync); 2185 /* 2186 * NOTE: If we were to use mapping->private_list (see ext2 and 2187 * fs/buffer.c) for dirty blocks then we could optimize the below to be 2188 * sync_mapping_buffers(vi->i_mapping). 2189 */ 2190 err = sync_blockdev(vi->i_sb->s_bdev); 2191 if (unlikely(err && !ret)) 2192 ret = err; 2193 if (likely(!ret)) 2194 ntfs_debug("Done."); 2195 else 2196 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " 2197 "%u.", datasync ? "data" : "", vi->i_ino, -ret); 2198 mutex_unlock(&vi->i_mutex); 2199 return ret; 2200 } 2201 2202 #endif /* NTFS_RW */ 2203 2204 const struct file_operations ntfs_file_ops = { 2205 .llseek = generic_file_llseek, /* Seek inside file. */ 2206 .read = do_sync_read, /* Read from file. */ 2207 .aio_read = generic_file_aio_read, /* Async read from file. */ 2208 #ifdef NTFS_RW 2209 .write = do_sync_write, /* Write to file. */ 2210 .aio_write = ntfs_file_aio_write, /* Async write to file. */ 2211 /*.release = ,*/ /* Last file is closed. See 2212 fs/ext2/file.c:: 2213 ext2_release_file() for 2214 how to use this to discard 2215 preallocated space for 2216 write opened files. */ 2217 .fsync = ntfs_file_fsync, /* Sync a file to disk. */ 2218 /*.aio_fsync = ,*/ /* Sync all outstanding async 2219 i/o operations on a 2220 kiocb. */ 2221 #endif /* NTFS_RW */ 2222 /*.ioctl = ,*/ /* Perform function on the 2223 mounted filesystem. */ 2224 .mmap = generic_file_mmap, /* Mmap file. */ 2225 .open = ntfs_file_open, /* Open file. */ 2226 .splice_read = generic_file_splice_read /* Zero-copy data send with 2227 the data source being on 2228 the ntfs partition. We do 2229 not need to care about the 2230 data destination. */ 2231 /*.sendpage = ,*/ /* Zero-copy data send with 2232 the data destination being 2233 on the ntfs partition. We 2234 do not need to care about 2235 the data source. */ 2236 }; 2237 2238 const struct inode_operations ntfs_file_inode_ops = { 2239 #ifdef NTFS_RW 2240 .setattr = ntfs_setattr, 2241 #endif /* NTFS_RW */ 2242 }; 2243 2244 const struct file_operations ntfs_empty_file_ops = {}; 2245 2246 const struct inode_operations ntfs_empty_inode_ops = {}; 2247