xref: /openbmc/linux/fs/ntfs/file.c (revision 9cfc5c90)
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/backing-dev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/gfp.h>
25 #include <linux/pagemap.h>
26 #include <linux/pagevec.h>
27 #include <linux/sched.h>
28 #include <linux/swap.h>
29 #include <linux/uio.h>
30 #include <linux/writeback.h>
31 
32 #include <asm/page.h>
33 #include <asm/uaccess.h>
34 
35 #include "attrib.h"
36 #include "bitmap.h"
37 #include "inode.h"
38 #include "debug.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_file_open - called when an inode is about to be opened
46  * @vi:		inode to be opened
47  * @filp:	file structure describing the inode
48  *
49  * Limit file size to the page cache limit on architectures where unsigned long
50  * is 32-bits. This is the most we can do for now without overflowing the page
51  * cache page index. Doing it this way means we don't run into problems because
52  * of existing too large files. It would be better to allow the user to read
53  * the beginning of the file but I doubt very much anyone is going to hit this
54  * check on a 32-bit architecture, so there is no point in adding the extra
55  * complexity required to support this.
56  *
57  * On 64-bit architectures, the check is hopefully optimized away by the
58  * compiler.
59  *
60  * After the check passes, just call generic_file_open() to do its work.
61  */
62 static int ntfs_file_open(struct inode *vi, struct file *filp)
63 {
64 	if (sizeof(unsigned long) < 8) {
65 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 			return -EOVERFLOW;
67 	}
68 	return generic_file_open(vi, filp);
69 }
70 
71 #ifdef NTFS_RW
72 
73 /**
74  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75  * @ni:			ntfs inode of the attribute to extend
76  * @new_init_size:	requested new initialized size in bytes
77  *
78  * Extend the initialized size of an attribute described by the ntfs inode @ni
79  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
80  * the old initialized size and @new_init_size both in the page cache and on
81  * disk (if relevant complete pages are already uptodate in the page cache then
82  * these are simply marked dirty).
83  *
84  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85  * in the resident attribute case, it is tied to the initialized size and, in
86  * the non-resident attribute case, it may not fall below the initialized size.
87  *
88  * Note that if the attribute is resident, we do not need to touch the page
89  * cache at all.  This is because if the page cache page is not uptodate we
90  * bring it uptodate later, when doing the write to the mft record since we
91  * then already have the page mapped.  And if the page is uptodate, the
92  * non-initialized region will already have been zeroed when the page was
93  * brought uptodate and the region may in fact already have been overwritten
94  * with new data via mmap() based writes, so we cannot just zero it.  And since
95  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96  * is unspecified, we choose not to do zeroing and thus we do not need to touch
97  * the page at all.  For a more detailed explanation see ntfs_truncate() in
98  * fs/ntfs/inode.c.
99  *
100  * Return 0 on success and -errno on error.  In the case that an error is
101  * encountered it is possible that the initialized size will already have been
102  * incremented some way towards @new_init_size but it is guaranteed that if
103  * this is the case, the necessary zeroing will also have happened and that all
104  * metadata is self-consistent.
105  *
106  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
107  *	    held by the caller.
108  */
109 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
110 {
111 	s64 old_init_size;
112 	loff_t old_i_size;
113 	pgoff_t index, end_index;
114 	unsigned long flags;
115 	struct inode *vi = VFS_I(ni);
116 	ntfs_inode *base_ni;
117 	MFT_RECORD *m = NULL;
118 	ATTR_RECORD *a;
119 	ntfs_attr_search_ctx *ctx = NULL;
120 	struct address_space *mapping;
121 	struct page *page = NULL;
122 	u8 *kattr;
123 	int err;
124 	u32 attr_len;
125 
126 	read_lock_irqsave(&ni->size_lock, flags);
127 	old_init_size = ni->initialized_size;
128 	old_i_size = i_size_read(vi);
129 	BUG_ON(new_init_size > ni->allocated_size);
130 	read_unlock_irqrestore(&ni->size_lock, flags);
131 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
132 			"old_initialized_size 0x%llx, "
133 			"new_initialized_size 0x%llx, i_size 0x%llx.",
134 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
135 			(unsigned long long)old_init_size,
136 			(unsigned long long)new_init_size, old_i_size);
137 	if (!NInoAttr(ni))
138 		base_ni = ni;
139 	else
140 		base_ni = ni->ext.base_ntfs_ino;
141 	/* Use goto to reduce indentation and we need the label below anyway. */
142 	if (NInoNonResident(ni))
143 		goto do_non_resident_extend;
144 	BUG_ON(old_init_size != old_i_size);
145 	m = map_mft_record(base_ni);
146 	if (IS_ERR(m)) {
147 		err = PTR_ERR(m);
148 		m = NULL;
149 		goto err_out;
150 	}
151 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
152 	if (unlikely(!ctx)) {
153 		err = -ENOMEM;
154 		goto err_out;
155 	}
156 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
157 			CASE_SENSITIVE, 0, NULL, 0, ctx);
158 	if (unlikely(err)) {
159 		if (err == -ENOENT)
160 			err = -EIO;
161 		goto err_out;
162 	}
163 	m = ctx->mrec;
164 	a = ctx->attr;
165 	BUG_ON(a->non_resident);
166 	/* The total length of the attribute value. */
167 	attr_len = le32_to_cpu(a->data.resident.value_length);
168 	BUG_ON(old_i_size != (loff_t)attr_len);
169 	/*
170 	 * Do the zeroing in the mft record and update the attribute size in
171 	 * the mft record.
172 	 */
173 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
174 	memset(kattr + attr_len, 0, new_init_size - attr_len);
175 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
176 	/* Finally, update the sizes in the vfs and ntfs inodes. */
177 	write_lock_irqsave(&ni->size_lock, flags);
178 	i_size_write(vi, new_init_size);
179 	ni->initialized_size = new_init_size;
180 	write_unlock_irqrestore(&ni->size_lock, flags);
181 	goto done;
182 do_non_resident_extend:
183 	/*
184 	 * If the new initialized size @new_init_size exceeds the current file
185 	 * size (vfs inode->i_size), we need to extend the file size to the
186 	 * new initialized size.
187 	 */
188 	if (new_init_size > old_i_size) {
189 		m = map_mft_record(base_ni);
190 		if (IS_ERR(m)) {
191 			err = PTR_ERR(m);
192 			m = NULL;
193 			goto err_out;
194 		}
195 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
196 		if (unlikely(!ctx)) {
197 			err = -ENOMEM;
198 			goto err_out;
199 		}
200 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
201 				CASE_SENSITIVE, 0, NULL, 0, ctx);
202 		if (unlikely(err)) {
203 			if (err == -ENOENT)
204 				err = -EIO;
205 			goto err_out;
206 		}
207 		m = ctx->mrec;
208 		a = ctx->attr;
209 		BUG_ON(!a->non_resident);
210 		BUG_ON(old_i_size != (loff_t)
211 				sle64_to_cpu(a->data.non_resident.data_size));
212 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
213 		flush_dcache_mft_record_page(ctx->ntfs_ino);
214 		mark_mft_record_dirty(ctx->ntfs_ino);
215 		/* Update the file size in the vfs inode. */
216 		i_size_write(vi, new_init_size);
217 		ntfs_attr_put_search_ctx(ctx);
218 		ctx = NULL;
219 		unmap_mft_record(base_ni);
220 		m = NULL;
221 	}
222 	mapping = vi->i_mapping;
223 	index = old_init_size >> PAGE_CACHE_SHIFT;
224 	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
225 	do {
226 		/*
227 		 * Read the page.  If the page is not present, this will zero
228 		 * the uninitialized regions for us.
229 		 */
230 		page = read_mapping_page(mapping, index, NULL);
231 		if (IS_ERR(page)) {
232 			err = PTR_ERR(page);
233 			goto init_err_out;
234 		}
235 		if (unlikely(PageError(page))) {
236 			page_cache_release(page);
237 			err = -EIO;
238 			goto init_err_out;
239 		}
240 		/*
241 		 * Update the initialized size in the ntfs inode.  This is
242 		 * enough to make ntfs_writepage() work.
243 		 */
244 		write_lock_irqsave(&ni->size_lock, flags);
245 		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
246 		if (ni->initialized_size > new_init_size)
247 			ni->initialized_size = new_init_size;
248 		write_unlock_irqrestore(&ni->size_lock, flags);
249 		/* Set the page dirty so it gets written out. */
250 		set_page_dirty(page);
251 		page_cache_release(page);
252 		/*
253 		 * Play nice with the vm and the rest of the system.  This is
254 		 * very much needed as we can potentially be modifying the
255 		 * initialised size from a very small value to a really huge
256 		 * value, e.g.
257 		 *	f = open(somefile, O_TRUNC);
258 		 *	truncate(f, 10GiB);
259 		 *	seek(f, 10GiB);
260 		 *	write(f, 1);
261 		 * And this would mean we would be marking dirty hundreds of
262 		 * thousands of pages or as in the above example more than
263 		 * two and a half million pages!
264 		 *
265 		 * TODO: For sparse pages could optimize this workload by using
266 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
267 		 * would be set in readpage for sparse pages and here we would
268 		 * not need to mark dirty any pages which have this bit set.
269 		 * The only caveat is that we have to clear the bit everywhere
270 		 * where we allocate any clusters that lie in the page or that
271 		 * contain the page.
272 		 *
273 		 * TODO: An even greater optimization would be for us to only
274 		 * call readpage() on pages which are not in sparse regions as
275 		 * determined from the runlist.  This would greatly reduce the
276 		 * number of pages we read and make dirty in the case of sparse
277 		 * files.
278 		 */
279 		balance_dirty_pages_ratelimited(mapping);
280 		cond_resched();
281 	} while (++index < end_index);
282 	read_lock_irqsave(&ni->size_lock, flags);
283 	BUG_ON(ni->initialized_size != new_init_size);
284 	read_unlock_irqrestore(&ni->size_lock, flags);
285 	/* Now bring in sync the initialized_size in the mft record. */
286 	m = map_mft_record(base_ni);
287 	if (IS_ERR(m)) {
288 		err = PTR_ERR(m);
289 		m = NULL;
290 		goto init_err_out;
291 	}
292 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
293 	if (unlikely(!ctx)) {
294 		err = -ENOMEM;
295 		goto init_err_out;
296 	}
297 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
298 			CASE_SENSITIVE, 0, NULL, 0, ctx);
299 	if (unlikely(err)) {
300 		if (err == -ENOENT)
301 			err = -EIO;
302 		goto init_err_out;
303 	}
304 	m = ctx->mrec;
305 	a = ctx->attr;
306 	BUG_ON(!a->non_resident);
307 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
308 done:
309 	flush_dcache_mft_record_page(ctx->ntfs_ino);
310 	mark_mft_record_dirty(ctx->ntfs_ino);
311 	if (ctx)
312 		ntfs_attr_put_search_ctx(ctx);
313 	if (m)
314 		unmap_mft_record(base_ni);
315 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
316 			(unsigned long long)new_init_size, i_size_read(vi));
317 	return 0;
318 init_err_out:
319 	write_lock_irqsave(&ni->size_lock, flags);
320 	ni->initialized_size = old_init_size;
321 	write_unlock_irqrestore(&ni->size_lock, flags);
322 err_out:
323 	if (ctx)
324 		ntfs_attr_put_search_ctx(ctx);
325 	if (m)
326 		unmap_mft_record(base_ni);
327 	ntfs_debug("Failed.  Returning error code %i.", err);
328 	return err;
329 }
330 
331 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
332 		struct iov_iter *from)
333 {
334 	loff_t pos;
335 	s64 end, ll;
336 	ssize_t err;
337 	unsigned long flags;
338 	struct file *file = iocb->ki_filp;
339 	struct inode *vi = file_inode(file);
340 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
341 	ntfs_volume *vol = ni->vol;
342 
343 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
344 			"0x%llx, count 0x%zx.", vi->i_ino,
345 			(unsigned)le32_to_cpu(ni->type),
346 			(unsigned long long)iocb->ki_pos,
347 			iov_iter_count(from));
348 	err = generic_write_checks(iocb, from);
349 	if (unlikely(err <= 0))
350 		goto out;
351 	/*
352 	 * All checks have passed.  Before we start doing any writing we want
353 	 * to abort any totally illegal writes.
354 	 */
355 	BUG_ON(NInoMstProtected(ni));
356 	BUG_ON(ni->type != AT_DATA);
357 	/* If file is encrypted, deny access, just like NT4. */
358 	if (NInoEncrypted(ni)) {
359 		/* Only $DATA attributes can be encrypted. */
360 		/*
361 		 * Reminder for later: Encrypted files are _always_
362 		 * non-resident so that the content can always be encrypted.
363 		 */
364 		ntfs_debug("Denying write access to encrypted file.");
365 		err = -EACCES;
366 		goto out;
367 	}
368 	if (NInoCompressed(ni)) {
369 		/* Only unnamed $DATA attribute can be compressed. */
370 		BUG_ON(ni->name_len);
371 		/*
372 		 * Reminder for later: If resident, the data is not actually
373 		 * compressed.  Only on the switch to non-resident does
374 		 * compression kick in.  This is in contrast to encrypted files
375 		 * (see above).
376 		 */
377 		ntfs_error(vi->i_sb, "Writing to compressed files is not "
378 				"implemented yet.  Sorry.");
379 		err = -EOPNOTSUPP;
380 		goto out;
381 	}
382 	base_ni = ni;
383 	if (NInoAttr(ni))
384 		base_ni = ni->ext.base_ntfs_ino;
385 	err = file_remove_privs(file);
386 	if (unlikely(err))
387 		goto out;
388 	/*
389 	 * Our ->update_time method always succeeds thus file_update_time()
390 	 * cannot fail either so there is no need to check the return code.
391 	 */
392 	file_update_time(file);
393 	pos = iocb->ki_pos;
394 	/* The first byte after the last cluster being written to. */
395 	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
396 			~(u64)vol->cluster_size_mask;
397 	/*
398 	 * If the write goes beyond the allocated size, extend the allocation
399 	 * to cover the whole of the write, rounded up to the nearest cluster.
400 	 */
401 	read_lock_irqsave(&ni->size_lock, flags);
402 	ll = ni->allocated_size;
403 	read_unlock_irqrestore(&ni->size_lock, flags);
404 	if (end > ll) {
405 		/*
406 		 * Extend the allocation without changing the data size.
407 		 *
408 		 * Note we ensure the allocation is big enough to at least
409 		 * write some data but we do not require the allocation to be
410 		 * complete, i.e. it may be partial.
411 		 */
412 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
413 		if (likely(ll >= 0)) {
414 			BUG_ON(pos >= ll);
415 			/* If the extension was partial truncate the write. */
416 			if (end > ll) {
417 				ntfs_debug("Truncating write to inode 0x%lx, "
418 						"attribute type 0x%x, because "
419 						"the allocation was only "
420 						"partially extended.",
421 						vi->i_ino, (unsigned)
422 						le32_to_cpu(ni->type));
423 				iov_iter_truncate(from, ll - pos);
424 			}
425 		} else {
426 			err = ll;
427 			read_lock_irqsave(&ni->size_lock, flags);
428 			ll = ni->allocated_size;
429 			read_unlock_irqrestore(&ni->size_lock, flags);
430 			/* Perform a partial write if possible or fail. */
431 			if (pos < ll) {
432 				ntfs_debug("Truncating write to inode 0x%lx "
433 						"attribute type 0x%x, because "
434 						"extending the allocation "
435 						"failed (error %d).",
436 						vi->i_ino, (unsigned)
437 						le32_to_cpu(ni->type),
438 						(int)-err);
439 				iov_iter_truncate(from, ll - pos);
440 			} else {
441 				if (err != -ENOSPC)
442 					ntfs_error(vi->i_sb, "Cannot perform "
443 							"write to inode "
444 							"0x%lx, attribute "
445 							"type 0x%x, because "
446 							"extending the "
447 							"allocation failed "
448 							"(error %ld).",
449 							vi->i_ino, (unsigned)
450 							le32_to_cpu(ni->type),
451 							(long)-err);
452 				else
453 					ntfs_debug("Cannot perform write to "
454 							"inode 0x%lx, "
455 							"attribute type 0x%x, "
456 							"because there is not "
457 							"space left.",
458 							vi->i_ino, (unsigned)
459 							le32_to_cpu(ni->type));
460 				goto out;
461 			}
462 		}
463 	}
464 	/*
465 	 * If the write starts beyond the initialized size, extend it up to the
466 	 * beginning of the write and initialize all non-sparse space between
467 	 * the old initialized size and the new one.  This automatically also
468 	 * increments the vfs inode->i_size to keep it above or equal to the
469 	 * initialized_size.
470 	 */
471 	read_lock_irqsave(&ni->size_lock, flags);
472 	ll = ni->initialized_size;
473 	read_unlock_irqrestore(&ni->size_lock, flags);
474 	if (pos > ll) {
475 		/*
476 		 * Wait for ongoing direct i/o to complete before proceeding.
477 		 * New direct i/o cannot start as we hold i_mutex.
478 		 */
479 		inode_dio_wait(vi);
480 		err = ntfs_attr_extend_initialized(ni, pos);
481 		if (unlikely(err < 0))
482 			ntfs_error(vi->i_sb, "Cannot perform write to inode "
483 					"0x%lx, attribute type 0x%x, because "
484 					"extending the initialized size "
485 					"failed (error %d).", vi->i_ino,
486 					(unsigned)le32_to_cpu(ni->type),
487 					(int)-err);
488 	}
489 out:
490 	return err;
491 }
492 
493 /**
494  * __ntfs_grab_cache_pages - obtain a number of locked pages
495  * @mapping:	address space mapping from which to obtain page cache pages
496  * @index:	starting index in @mapping at which to begin obtaining pages
497  * @nr_pages:	number of page cache pages to obtain
498  * @pages:	array of pages in which to return the obtained page cache pages
499  * @cached_page: allocated but as yet unused page
500  *
501  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
502  * starting at index @index.
503  *
504  * If a page is newly created, add it to lru list
505  *
506  * Note, the page locks are obtained in ascending page index order.
507  */
508 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
509 		pgoff_t index, const unsigned nr_pages, struct page **pages,
510 		struct page **cached_page)
511 {
512 	int err, nr;
513 
514 	BUG_ON(!nr_pages);
515 	err = nr = 0;
516 	do {
517 		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
518 				FGP_ACCESSED);
519 		if (!pages[nr]) {
520 			if (!*cached_page) {
521 				*cached_page = page_cache_alloc(mapping);
522 				if (unlikely(!*cached_page)) {
523 					err = -ENOMEM;
524 					goto err_out;
525 				}
526 			}
527 			err = add_to_page_cache_lru(*cached_page, mapping,
528 				   index,
529 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
530 			if (unlikely(err)) {
531 				if (err == -EEXIST)
532 					continue;
533 				goto err_out;
534 			}
535 			pages[nr] = *cached_page;
536 			*cached_page = NULL;
537 		}
538 		index++;
539 		nr++;
540 	} while (nr < nr_pages);
541 out:
542 	return err;
543 err_out:
544 	while (nr > 0) {
545 		unlock_page(pages[--nr]);
546 		page_cache_release(pages[nr]);
547 	}
548 	goto out;
549 }
550 
551 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
552 {
553 	lock_buffer(bh);
554 	get_bh(bh);
555 	bh->b_end_io = end_buffer_read_sync;
556 	return submit_bh(READ, bh);
557 }
558 
559 /**
560  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
561  * @pages:	array of destination pages
562  * @nr_pages:	number of pages in @pages
563  * @pos:	byte position in file at which the write begins
564  * @bytes:	number of bytes to be written
565  *
566  * This is called for non-resident attributes from ntfs_file_buffered_write()
567  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
568  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
569  * data has not yet been copied into the @pages.
570  *
571  * Need to fill any holes with actual clusters, allocate buffers if necessary,
572  * ensure all the buffers are mapped, and bring uptodate any buffers that are
573  * only partially being written to.
574  *
575  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
576  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
577  * the same cluster and that they are the entirety of that cluster, and that
578  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
579  *
580  * i_size is not to be modified yet.
581  *
582  * Return 0 on success or -errno on error.
583  */
584 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
585 		unsigned nr_pages, s64 pos, size_t bytes)
586 {
587 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
588 	LCN lcn;
589 	s64 bh_pos, vcn_len, end, initialized_size;
590 	sector_t lcn_block;
591 	struct page *page;
592 	struct inode *vi;
593 	ntfs_inode *ni, *base_ni = NULL;
594 	ntfs_volume *vol;
595 	runlist_element *rl, *rl2;
596 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
597 	ntfs_attr_search_ctx *ctx = NULL;
598 	MFT_RECORD *m = NULL;
599 	ATTR_RECORD *a = NULL;
600 	unsigned long flags;
601 	u32 attr_rec_len = 0;
602 	unsigned blocksize, u;
603 	int err, mp_size;
604 	bool rl_write_locked, was_hole, is_retry;
605 	unsigned char blocksize_bits;
606 	struct {
607 		u8 runlist_merged:1;
608 		u8 mft_attr_mapped:1;
609 		u8 mp_rebuilt:1;
610 		u8 attr_switched:1;
611 	} status = { 0, 0, 0, 0 };
612 
613 	BUG_ON(!nr_pages);
614 	BUG_ON(!pages);
615 	BUG_ON(!*pages);
616 	vi = pages[0]->mapping->host;
617 	ni = NTFS_I(vi);
618 	vol = ni->vol;
619 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
620 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
621 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
622 			(long long)pos, bytes);
623 	blocksize = vol->sb->s_blocksize;
624 	blocksize_bits = vol->sb->s_blocksize_bits;
625 	u = 0;
626 	do {
627 		page = pages[u];
628 		BUG_ON(!page);
629 		/*
630 		 * create_empty_buffers() will create uptodate/dirty buffers if
631 		 * the page is uptodate/dirty.
632 		 */
633 		if (!page_has_buffers(page)) {
634 			create_empty_buffers(page, blocksize, 0);
635 			if (unlikely(!page_has_buffers(page)))
636 				return -ENOMEM;
637 		}
638 	} while (++u < nr_pages);
639 	rl_write_locked = false;
640 	rl = NULL;
641 	err = 0;
642 	vcn = lcn = -1;
643 	vcn_len = 0;
644 	lcn_block = -1;
645 	was_hole = false;
646 	cpos = pos >> vol->cluster_size_bits;
647 	end = pos + bytes;
648 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
649 	/*
650 	 * Loop over each page and for each page over each buffer.  Use goto to
651 	 * reduce indentation.
652 	 */
653 	u = 0;
654 do_next_page:
655 	page = pages[u];
656 	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
657 	bh = head = page_buffers(page);
658 	do {
659 		VCN cdelta;
660 		s64 bh_end;
661 		unsigned bh_cofs;
662 
663 		/* Clear buffer_new on all buffers to reinitialise state. */
664 		if (buffer_new(bh))
665 			clear_buffer_new(bh);
666 		bh_end = bh_pos + blocksize;
667 		bh_cpos = bh_pos >> vol->cluster_size_bits;
668 		bh_cofs = bh_pos & vol->cluster_size_mask;
669 		if (buffer_mapped(bh)) {
670 			/*
671 			 * The buffer is already mapped.  If it is uptodate,
672 			 * ignore it.
673 			 */
674 			if (buffer_uptodate(bh))
675 				continue;
676 			/*
677 			 * The buffer is not uptodate.  If the page is uptodate
678 			 * set the buffer uptodate and otherwise ignore it.
679 			 */
680 			if (PageUptodate(page)) {
681 				set_buffer_uptodate(bh);
682 				continue;
683 			}
684 			/*
685 			 * Neither the page nor the buffer are uptodate.  If
686 			 * the buffer is only partially being written to, we
687 			 * need to read it in before the write, i.e. now.
688 			 */
689 			if ((bh_pos < pos && bh_end > pos) ||
690 					(bh_pos < end && bh_end > end)) {
691 				/*
692 				 * If the buffer is fully or partially within
693 				 * the initialized size, do an actual read.
694 				 * Otherwise, simply zero the buffer.
695 				 */
696 				read_lock_irqsave(&ni->size_lock, flags);
697 				initialized_size = ni->initialized_size;
698 				read_unlock_irqrestore(&ni->size_lock, flags);
699 				if (bh_pos < initialized_size) {
700 					ntfs_submit_bh_for_read(bh);
701 					*wait_bh++ = bh;
702 				} else {
703 					zero_user(page, bh_offset(bh),
704 							blocksize);
705 					set_buffer_uptodate(bh);
706 				}
707 			}
708 			continue;
709 		}
710 		/* Unmapped buffer.  Need to map it. */
711 		bh->b_bdev = vol->sb->s_bdev;
712 		/*
713 		 * If the current buffer is in the same clusters as the map
714 		 * cache, there is no need to check the runlist again.  The
715 		 * map cache is made up of @vcn, which is the first cached file
716 		 * cluster, @vcn_len which is the number of cached file
717 		 * clusters, @lcn is the device cluster corresponding to @vcn,
718 		 * and @lcn_block is the block number corresponding to @lcn.
719 		 */
720 		cdelta = bh_cpos - vcn;
721 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
722 map_buffer_cached:
723 			BUG_ON(lcn < 0);
724 			bh->b_blocknr = lcn_block +
725 					(cdelta << (vol->cluster_size_bits -
726 					blocksize_bits)) +
727 					(bh_cofs >> blocksize_bits);
728 			set_buffer_mapped(bh);
729 			/*
730 			 * If the page is uptodate so is the buffer.  If the
731 			 * buffer is fully outside the write, we ignore it if
732 			 * it was already allocated and we mark it dirty so it
733 			 * gets written out if we allocated it.  On the other
734 			 * hand, if we allocated the buffer but we are not
735 			 * marking it dirty we set buffer_new so we can do
736 			 * error recovery.
737 			 */
738 			if (PageUptodate(page)) {
739 				if (!buffer_uptodate(bh))
740 					set_buffer_uptodate(bh);
741 				if (unlikely(was_hole)) {
742 					/* We allocated the buffer. */
743 					unmap_underlying_metadata(bh->b_bdev,
744 							bh->b_blocknr);
745 					if (bh_end <= pos || bh_pos >= end)
746 						mark_buffer_dirty(bh);
747 					else
748 						set_buffer_new(bh);
749 				}
750 				continue;
751 			}
752 			/* Page is _not_ uptodate. */
753 			if (likely(!was_hole)) {
754 				/*
755 				 * Buffer was already allocated.  If it is not
756 				 * uptodate and is only partially being written
757 				 * to, we need to read it in before the write,
758 				 * i.e. now.
759 				 */
760 				if (!buffer_uptodate(bh) && bh_pos < end &&
761 						bh_end > pos &&
762 						(bh_pos < pos ||
763 						bh_end > end)) {
764 					/*
765 					 * If the buffer is fully or partially
766 					 * within the initialized size, do an
767 					 * actual read.  Otherwise, simply zero
768 					 * the buffer.
769 					 */
770 					read_lock_irqsave(&ni->size_lock,
771 							flags);
772 					initialized_size = ni->initialized_size;
773 					read_unlock_irqrestore(&ni->size_lock,
774 							flags);
775 					if (bh_pos < initialized_size) {
776 						ntfs_submit_bh_for_read(bh);
777 						*wait_bh++ = bh;
778 					} else {
779 						zero_user(page, bh_offset(bh),
780 								blocksize);
781 						set_buffer_uptodate(bh);
782 					}
783 				}
784 				continue;
785 			}
786 			/* We allocated the buffer. */
787 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
788 			/*
789 			 * If the buffer is fully outside the write, zero it,
790 			 * set it uptodate, and mark it dirty so it gets
791 			 * written out.  If it is partially being written to,
792 			 * zero region surrounding the write but leave it to
793 			 * commit write to do anything else.  Finally, if the
794 			 * buffer is fully being overwritten, do nothing.
795 			 */
796 			if (bh_end <= pos || bh_pos >= end) {
797 				if (!buffer_uptodate(bh)) {
798 					zero_user(page, bh_offset(bh),
799 							blocksize);
800 					set_buffer_uptodate(bh);
801 				}
802 				mark_buffer_dirty(bh);
803 				continue;
804 			}
805 			set_buffer_new(bh);
806 			if (!buffer_uptodate(bh) &&
807 					(bh_pos < pos || bh_end > end)) {
808 				u8 *kaddr;
809 				unsigned pofs;
810 
811 				kaddr = kmap_atomic(page);
812 				if (bh_pos < pos) {
813 					pofs = bh_pos & ~PAGE_CACHE_MASK;
814 					memset(kaddr + pofs, 0, pos - bh_pos);
815 				}
816 				if (bh_end > end) {
817 					pofs = end & ~PAGE_CACHE_MASK;
818 					memset(kaddr + pofs, 0, bh_end - end);
819 				}
820 				kunmap_atomic(kaddr);
821 				flush_dcache_page(page);
822 			}
823 			continue;
824 		}
825 		/*
826 		 * Slow path: this is the first buffer in the cluster.  If it
827 		 * is outside allocated size and is not uptodate, zero it and
828 		 * set it uptodate.
829 		 */
830 		read_lock_irqsave(&ni->size_lock, flags);
831 		initialized_size = ni->allocated_size;
832 		read_unlock_irqrestore(&ni->size_lock, flags);
833 		if (bh_pos > initialized_size) {
834 			if (PageUptodate(page)) {
835 				if (!buffer_uptodate(bh))
836 					set_buffer_uptodate(bh);
837 			} else if (!buffer_uptodate(bh)) {
838 				zero_user(page, bh_offset(bh), blocksize);
839 				set_buffer_uptodate(bh);
840 			}
841 			continue;
842 		}
843 		is_retry = false;
844 		if (!rl) {
845 			down_read(&ni->runlist.lock);
846 retry_remap:
847 			rl = ni->runlist.rl;
848 		}
849 		if (likely(rl != NULL)) {
850 			/* Seek to element containing target cluster. */
851 			while (rl->length && rl[1].vcn <= bh_cpos)
852 				rl++;
853 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
854 			if (likely(lcn >= 0)) {
855 				/*
856 				 * Successful remap, setup the map cache and
857 				 * use that to deal with the buffer.
858 				 */
859 				was_hole = false;
860 				vcn = bh_cpos;
861 				vcn_len = rl[1].vcn - vcn;
862 				lcn_block = lcn << (vol->cluster_size_bits -
863 						blocksize_bits);
864 				cdelta = 0;
865 				/*
866 				 * If the number of remaining clusters touched
867 				 * by the write is smaller or equal to the
868 				 * number of cached clusters, unlock the
869 				 * runlist as the map cache will be used from
870 				 * now on.
871 				 */
872 				if (likely(vcn + vcn_len >= cend)) {
873 					if (rl_write_locked) {
874 						up_write(&ni->runlist.lock);
875 						rl_write_locked = false;
876 					} else
877 						up_read(&ni->runlist.lock);
878 					rl = NULL;
879 				}
880 				goto map_buffer_cached;
881 			}
882 		} else
883 			lcn = LCN_RL_NOT_MAPPED;
884 		/*
885 		 * If it is not a hole and not out of bounds, the runlist is
886 		 * probably unmapped so try to map it now.
887 		 */
888 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
889 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
890 				/* Attempt to map runlist. */
891 				if (!rl_write_locked) {
892 					/*
893 					 * We need the runlist locked for
894 					 * writing, so if it is locked for
895 					 * reading relock it now and retry in
896 					 * case it changed whilst we dropped
897 					 * the lock.
898 					 */
899 					up_read(&ni->runlist.lock);
900 					down_write(&ni->runlist.lock);
901 					rl_write_locked = true;
902 					goto retry_remap;
903 				}
904 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
905 						NULL);
906 				if (likely(!err)) {
907 					is_retry = true;
908 					goto retry_remap;
909 				}
910 				/*
911 				 * If @vcn is out of bounds, pretend @lcn is
912 				 * LCN_ENOENT.  As long as the buffer is out
913 				 * of bounds this will work fine.
914 				 */
915 				if (err == -ENOENT) {
916 					lcn = LCN_ENOENT;
917 					err = 0;
918 					goto rl_not_mapped_enoent;
919 				}
920 			} else
921 				err = -EIO;
922 			/* Failed to map the buffer, even after retrying. */
923 			bh->b_blocknr = -1;
924 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
925 					"attribute type 0x%x, vcn 0x%llx, "
926 					"vcn offset 0x%x, because its "
927 					"location on disk could not be "
928 					"determined%s (error code %i).",
929 					ni->mft_no, ni->type,
930 					(unsigned long long)bh_cpos,
931 					(unsigned)bh_pos &
932 					vol->cluster_size_mask,
933 					is_retry ? " even after retrying" : "",
934 					err);
935 			break;
936 		}
937 rl_not_mapped_enoent:
938 		/*
939 		 * The buffer is in a hole or out of bounds.  We need to fill
940 		 * the hole, unless the buffer is in a cluster which is not
941 		 * touched by the write, in which case we just leave the buffer
942 		 * unmapped.  This can only happen when the cluster size is
943 		 * less than the page cache size.
944 		 */
945 		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
946 			bh_cend = (bh_end + vol->cluster_size - 1) >>
947 					vol->cluster_size_bits;
948 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
949 				bh->b_blocknr = -1;
950 				/*
951 				 * If the buffer is uptodate we skip it.  If it
952 				 * is not but the page is uptodate, we can set
953 				 * the buffer uptodate.  If the page is not
954 				 * uptodate, we can clear the buffer and set it
955 				 * uptodate.  Whether this is worthwhile is
956 				 * debatable and this could be removed.
957 				 */
958 				if (PageUptodate(page)) {
959 					if (!buffer_uptodate(bh))
960 						set_buffer_uptodate(bh);
961 				} else if (!buffer_uptodate(bh)) {
962 					zero_user(page, bh_offset(bh),
963 						blocksize);
964 					set_buffer_uptodate(bh);
965 				}
966 				continue;
967 			}
968 		}
969 		/*
970 		 * Out of bounds buffer is invalid if it was not really out of
971 		 * bounds.
972 		 */
973 		BUG_ON(lcn != LCN_HOLE);
974 		/*
975 		 * We need the runlist locked for writing, so if it is locked
976 		 * for reading relock it now and retry in case it changed
977 		 * whilst we dropped the lock.
978 		 */
979 		BUG_ON(!rl);
980 		if (!rl_write_locked) {
981 			up_read(&ni->runlist.lock);
982 			down_write(&ni->runlist.lock);
983 			rl_write_locked = true;
984 			goto retry_remap;
985 		}
986 		/* Find the previous last allocated cluster. */
987 		BUG_ON(rl->lcn != LCN_HOLE);
988 		lcn = -1;
989 		rl2 = rl;
990 		while (--rl2 >= ni->runlist.rl) {
991 			if (rl2->lcn >= 0) {
992 				lcn = rl2->lcn + rl2->length;
993 				break;
994 			}
995 		}
996 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
997 				false);
998 		if (IS_ERR(rl2)) {
999 			err = PTR_ERR(rl2);
1000 			ntfs_debug("Failed to allocate cluster, error code %i.",
1001 					err);
1002 			break;
1003 		}
1004 		lcn = rl2->lcn;
1005 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
1006 		if (IS_ERR(rl)) {
1007 			err = PTR_ERR(rl);
1008 			if (err != -ENOMEM)
1009 				err = -EIO;
1010 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1011 				ntfs_error(vol->sb, "Failed to release "
1012 						"allocated cluster in error "
1013 						"code path.  Run chkdsk to "
1014 						"recover the lost cluster.");
1015 				NVolSetErrors(vol);
1016 			}
1017 			ntfs_free(rl2);
1018 			break;
1019 		}
1020 		ni->runlist.rl = rl;
1021 		status.runlist_merged = 1;
1022 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
1023 				(unsigned long long)lcn);
1024 		/* Map and lock the mft record and get the attribute record. */
1025 		if (!NInoAttr(ni))
1026 			base_ni = ni;
1027 		else
1028 			base_ni = ni->ext.base_ntfs_ino;
1029 		m = map_mft_record(base_ni);
1030 		if (IS_ERR(m)) {
1031 			err = PTR_ERR(m);
1032 			break;
1033 		}
1034 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1035 		if (unlikely(!ctx)) {
1036 			err = -ENOMEM;
1037 			unmap_mft_record(base_ni);
1038 			break;
1039 		}
1040 		status.mft_attr_mapped = 1;
1041 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1042 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1043 		if (unlikely(err)) {
1044 			if (err == -ENOENT)
1045 				err = -EIO;
1046 			break;
1047 		}
1048 		m = ctx->mrec;
1049 		a = ctx->attr;
1050 		/*
1051 		 * Find the runlist element with which the attribute extent
1052 		 * starts.  Note, we cannot use the _attr_ version because we
1053 		 * have mapped the mft record.  That is ok because we know the
1054 		 * runlist fragment must be mapped already to have ever gotten
1055 		 * here, so we can just use the _rl_ version.
1056 		 */
1057 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1058 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1059 		BUG_ON(!rl2);
1060 		BUG_ON(!rl2->length);
1061 		BUG_ON(rl2->lcn < LCN_HOLE);
1062 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1063 		/*
1064 		 * If @highest_vcn is zero, calculate the real highest_vcn
1065 		 * (which can really be zero).
1066 		 */
1067 		if (!highest_vcn)
1068 			highest_vcn = (sle64_to_cpu(
1069 					a->data.non_resident.allocated_size) >>
1070 					vol->cluster_size_bits) - 1;
1071 		/*
1072 		 * Determine the size of the mapping pairs array for the new
1073 		 * extent, i.e. the old extent with the hole filled.
1074 		 */
1075 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1076 				highest_vcn);
1077 		if (unlikely(mp_size <= 0)) {
1078 			if (!(err = mp_size))
1079 				err = -EIO;
1080 			ntfs_debug("Failed to get size for mapping pairs "
1081 					"array, error code %i.", err);
1082 			break;
1083 		}
1084 		/*
1085 		 * Resize the attribute record to fit the new mapping pairs
1086 		 * array.
1087 		 */
1088 		attr_rec_len = le32_to_cpu(a->length);
1089 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1090 				a->data.non_resident.mapping_pairs_offset));
1091 		if (unlikely(err)) {
1092 			BUG_ON(err != -ENOSPC);
1093 			// TODO: Deal with this by using the current attribute
1094 			// and fill it with as much of the mapping pairs
1095 			// array as possible.  Then loop over each attribute
1096 			// extent rewriting the mapping pairs arrays as we go
1097 			// along and if when we reach the end we have not
1098 			// enough space, try to resize the last attribute
1099 			// extent and if even that fails, add a new attribute
1100 			// extent.
1101 			// We could also try to resize at each step in the hope
1102 			// that we will not need to rewrite every single extent.
1103 			// Note, we may need to decompress some extents to fill
1104 			// the runlist as we are walking the extents...
1105 			ntfs_error(vol->sb, "Not enough space in the mft "
1106 					"record for the extended attribute "
1107 					"record.  This case is not "
1108 					"implemented yet.");
1109 			err = -EOPNOTSUPP;
1110 			break ;
1111 		}
1112 		status.mp_rebuilt = 1;
1113 		/*
1114 		 * Generate the mapping pairs array directly into the attribute
1115 		 * record.
1116 		 */
1117 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1118 				a->data.non_resident.mapping_pairs_offset),
1119 				mp_size, rl2, vcn, highest_vcn, NULL);
1120 		if (unlikely(err)) {
1121 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1122 					"attribute type 0x%x, because building "
1123 					"the mapping pairs failed with error "
1124 					"code %i.", vi->i_ino,
1125 					(unsigned)le32_to_cpu(ni->type), err);
1126 			err = -EIO;
1127 			break;
1128 		}
1129 		/* Update the highest_vcn but only if it was not set. */
1130 		if (unlikely(!a->data.non_resident.highest_vcn))
1131 			a->data.non_resident.highest_vcn =
1132 					cpu_to_sle64(highest_vcn);
1133 		/*
1134 		 * If the attribute is sparse/compressed, update the compressed
1135 		 * size in the ntfs_inode structure and the attribute record.
1136 		 */
1137 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1138 			/*
1139 			 * If we are not in the first attribute extent, switch
1140 			 * to it, but first ensure the changes will make it to
1141 			 * disk later.
1142 			 */
1143 			if (a->data.non_resident.lowest_vcn) {
1144 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1145 				mark_mft_record_dirty(ctx->ntfs_ino);
1146 				ntfs_attr_reinit_search_ctx(ctx);
1147 				err = ntfs_attr_lookup(ni->type, ni->name,
1148 						ni->name_len, CASE_SENSITIVE,
1149 						0, NULL, 0, ctx);
1150 				if (unlikely(err)) {
1151 					status.attr_switched = 1;
1152 					break;
1153 				}
1154 				/* @m is not used any more so do not set it. */
1155 				a = ctx->attr;
1156 			}
1157 			write_lock_irqsave(&ni->size_lock, flags);
1158 			ni->itype.compressed.size += vol->cluster_size;
1159 			a->data.non_resident.compressed_size =
1160 					cpu_to_sle64(ni->itype.compressed.size);
1161 			write_unlock_irqrestore(&ni->size_lock, flags);
1162 		}
1163 		/* Ensure the changes make it to disk. */
1164 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1165 		mark_mft_record_dirty(ctx->ntfs_ino);
1166 		ntfs_attr_put_search_ctx(ctx);
1167 		unmap_mft_record(base_ni);
1168 		/* Successfully filled the hole. */
1169 		status.runlist_merged = 0;
1170 		status.mft_attr_mapped = 0;
1171 		status.mp_rebuilt = 0;
1172 		/* Setup the map cache and use that to deal with the buffer. */
1173 		was_hole = true;
1174 		vcn = bh_cpos;
1175 		vcn_len = 1;
1176 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1177 		cdelta = 0;
1178 		/*
1179 		 * If the number of remaining clusters in the @pages is smaller
1180 		 * or equal to the number of cached clusters, unlock the
1181 		 * runlist as the map cache will be used from now on.
1182 		 */
1183 		if (likely(vcn + vcn_len >= cend)) {
1184 			up_write(&ni->runlist.lock);
1185 			rl_write_locked = false;
1186 			rl = NULL;
1187 		}
1188 		goto map_buffer_cached;
1189 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1190 	/* If there are no errors, do the next page. */
1191 	if (likely(!err && ++u < nr_pages))
1192 		goto do_next_page;
1193 	/* If there are no errors, release the runlist lock if we took it. */
1194 	if (likely(!err)) {
1195 		if (unlikely(rl_write_locked)) {
1196 			up_write(&ni->runlist.lock);
1197 			rl_write_locked = false;
1198 		} else if (unlikely(rl))
1199 			up_read(&ni->runlist.lock);
1200 		rl = NULL;
1201 	}
1202 	/* If we issued read requests, let them complete. */
1203 	read_lock_irqsave(&ni->size_lock, flags);
1204 	initialized_size = ni->initialized_size;
1205 	read_unlock_irqrestore(&ni->size_lock, flags);
1206 	while (wait_bh > wait) {
1207 		bh = *--wait_bh;
1208 		wait_on_buffer(bh);
1209 		if (likely(buffer_uptodate(bh))) {
1210 			page = bh->b_page;
1211 			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1212 					bh_offset(bh);
1213 			/*
1214 			 * If the buffer overflows the initialized size, need
1215 			 * to zero the overflowing region.
1216 			 */
1217 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1218 				int ofs = 0;
1219 
1220 				if (likely(bh_pos < initialized_size))
1221 					ofs = initialized_size - bh_pos;
1222 				zero_user_segment(page, bh_offset(bh) + ofs,
1223 						blocksize);
1224 			}
1225 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1226 			err = -EIO;
1227 	}
1228 	if (likely(!err)) {
1229 		/* Clear buffer_new on all buffers. */
1230 		u = 0;
1231 		do {
1232 			bh = head = page_buffers(pages[u]);
1233 			do {
1234 				if (buffer_new(bh))
1235 					clear_buffer_new(bh);
1236 			} while ((bh = bh->b_this_page) != head);
1237 		} while (++u < nr_pages);
1238 		ntfs_debug("Done.");
1239 		return err;
1240 	}
1241 	if (status.attr_switched) {
1242 		/* Get back to the attribute extent we modified. */
1243 		ntfs_attr_reinit_search_ctx(ctx);
1244 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1245 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1246 			ntfs_error(vol->sb, "Failed to find required "
1247 					"attribute extent of attribute in "
1248 					"error code path.  Run chkdsk to "
1249 					"recover.");
1250 			write_lock_irqsave(&ni->size_lock, flags);
1251 			ni->itype.compressed.size += vol->cluster_size;
1252 			write_unlock_irqrestore(&ni->size_lock, flags);
1253 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1254 			mark_mft_record_dirty(ctx->ntfs_ino);
1255 			/*
1256 			 * The only thing that is now wrong is the compressed
1257 			 * size of the base attribute extent which chkdsk
1258 			 * should be able to fix.
1259 			 */
1260 			NVolSetErrors(vol);
1261 		} else {
1262 			m = ctx->mrec;
1263 			a = ctx->attr;
1264 			status.attr_switched = 0;
1265 		}
1266 	}
1267 	/*
1268 	 * If the runlist has been modified, need to restore it by punching a
1269 	 * hole into it and we then need to deallocate the on-disk cluster as
1270 	 * well.  Note, we only modify the runlist if we are able to generate a
1271 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1272 	 * is not switched.
1273 	 */
1274 	if (status.runlist_merged && !status.attr_switched) {
1275 		BUG_ON(!rl_write_locked);
1276 		/* Make the file cluster we allocated sparse in the runlist. */
1277 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1278 			ntfs_error(vol->sb, "Failed to punch hole into "
1279 					"attribute runlist in error code "
1280 					"path.  Run chkdsk to recover the "
1281 					"lost cluster.");
1282 			NVolSetErrors(vol);
1283 		} else /* if (success) */ {
1284 			status.runlist_merged = 0;
1285 			/*
1286 			 * Deallocate the on-disk cluster we allocated but only
1287 			 * if we succeeded in punching its vcn out of the
1288 			 * runlist.
1289 			 */
1290 			down_write(&vol->lcnbmp_lock);
1291 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1292 				ntfs_error(vol->sb, "Failed to release "
1293 						"allocated cluster in error "
1294 						"code path.  Run chkdsk to "
1295 						"recover the lost cluster.");
1296 				NVolSetErrors(vol);
1297 			}
1298 			up_write(&vol->lcnbmp_lock);
1299 		}
1300 	}
1301 	/*
1302 	 * Resize the attribute record to its old size and rebuild the mapping
1303 	 * pairs array.  Note, we only can do this if the runlist has been
1304 	 * restored to its old state which also implies that the mapped
1305 	 * attribute extent is not switched.
1306 	 */
1307 	if (status.mp_rebuilt && !status.runlist_merged) {
1308 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1309 			ntfs_error(vol->sb, "Failed to restore attribute "
1310 					"record in error code path.  Run "
1311 					"chkdsk to recover.");
1312 			NVolSetErrors(vol);
1313 		} else /* if (success) */ {
1314 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1315 					le16_to_cpu(a->data.non_resident.
1316 					mapping_pairs_offset), attr_rec_len -
1317 					le16_to_cpu(a->data.non_resident.
1318 					mapping_pairs_offset), ni->runlist.rl,
1319 					vcn, highest_vcn, NULL)) {
1320 				ntfs_error(vol->sb, "Failed to restore "
1321 						"mapping pairs array in error "
1322 						"code path.  Run chkdsk to "
1323 						"recover.");
1324 				NVolSetErrors(vol);
1325 			}
1326 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1327 			mark_mft_record_dirty(ctx->ntfs_ino);
1328 		}
1329 	}
1330 	/* Release the mft record and the attribute. */
1331 	if (status.mft_attr_mapped) {
1332 		ntfs_attr_put_search_ctx(ctx);
1333 		unmap_mft_record(base_ni);
1334 	}
1335 	/* Release the runlist lock. */
1336 	if (rl_write_locked)
1337 		up_write(&ni->runlist.lock);
1338 	else if (rl)
1339 		up_read(&ni->runlist.lock);
1340 	/*
1341 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1342 	 * If BH_New is set, we know that the block was newly allocated above
1343 	 * and that it has not been fully zeroed and marked dirty yet.
1344 	 */
1345 	nr_pages = u;
1346 	u = 0;
1347 	end = bh_cpos << vol->cluster_size_bits;
1348 	do {
1349 		page = pages[u];
1350 		bh = head = page_buffers(page);
1351 		do {
1352 			if (u == nr_pages &&
1353 					((s64)page->index << PAGE_CACHE_SHIFT) +
1354 					bh_offset(bh) >= end)
1355 				break;
1356 			if (!buffer_new(bh))
1357 				continue;
1358 			clear_buffer_new(bh);
1359 			if (!buffer_uptodate(bh)) {
1360 				if (PageUptodate(page))
1361 					set_buffer_uptodate(bh);
1362 				else {
1363 					zero_user(page, bh_offset(bh),
1364 							blocksize);
1365 					set_buffer_uptodate(bh);
1366 				}
1367 			}
1368 			mark_buffer_dirty(bh);
1369 		} while ((bh = bh->b_this_page) != head);
1370 	} while (++u <= nr_pages);
1371 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1372 	return err;
1373 }
1374 
1375 static inline void ntfs_flush_dcache_pages(struct page **pages,
1376 		unsigned nr_pages)
1377 {
1378 	BUG_ON(!nr_pages);
1379 	/*
1380 	 * Warning: Do not do the decrement at the same time as the call to
1381 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1382 	 * decrement never happens so the loop never terminates.
1383 	 */
1384 	do {
1385 		--nr_pages;
1386 		flush_dcache_page(pages[nr_pages]);
1387 	} while (nr_pages > 0);
1388 }
1389 
1390 /**
1391  * ntfs_commit_pages_after_non_resident_write - commit the received data
1392  * @pages:	array of destination pages
1393  * @nr_pages:	number of pages in @pages
1394  * @pos:	byte position in file at which the write begins
1395  * @bytes:	number of bytes to be written
1396  *
1397  * See description of ntfs_commit_pages_after_write(), below.
1398  */
1399 static inline int ntfs_commit_pages_after_non_resident_write(
1400 		struct page **pages, const unsigned nr_pages,
1401 		s64 pos, size_t bytes)
1402 {
1403 	s64 end, initialized_size;
1404 	struct inode *vi;
1405 	ntfs_inode *ni, *base_ni;
1406 	struct buffer_head *bh, *head;
1407 	ntfs_attr_search_ctx *ctx;
1408 	MFT_RECORD *m;
1409 	ATTR_RECORD *a;
1410 	unsigned long flags;
1411 	unsigned blocksize, u;
1412 	int err;
1413 
1414 	vi = pages[0]->mapping->host;
1415 	ni = NTFS_I(vi);
1416 	blocksize = vi->i_sb->s_blocksize;
1417 	end = pos + bytes;
1418 	u = 0;
1419 	do {
1420 		s64 bh_pos;
1421 		struct page *page;
1422 		bool partial;
1423 
1424 		page = pages[u];
1425 		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1426 		bh = head = page_buffers(page);
1427 		partial = false;
1428 		do {
1429 			s64 bh_end;
1430 
1431 			bh_end = bh_pos + blocksize;
1432 			if (bh_end <= pos || bh_pos >= end) {
1433 				if (!buffer_uptodate(bh))
1434 					partial = true;
1435 			} else {
1436 				set_buffer_uptodate(bh);
1437 				mark_buffer_dirty(bh);
1438 			}
1439 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1440 		/*
1441 		 * If all buffers are now uptodate but the page is not, set the
1442 		 * page uptodate.
1443 		 */
1444 		if (!partial && !PageUptodate(page))
1445 			SetPageUptodate(page);
1446 	} while (++u < nr_pages);
1447 	/*
1448 	 * Finally, if we do not need to update initialized_size or i_size we
1449 	 * are finished.
1450 	 */
1451 	read_lock_irqsave(&ni->size_lock, flags);
1452 	initialized_size = ni->initialized_size;
1453 	read_unlock_irqrestore(&ni->size_lock, flags);
1454 	if (end <= initialized_size) {
1455 		ntfs_debug("Done.");
1456 		return 0;
1457 	}
1458 	/*
1459 	 * Update initialized_size/i_size as appropriate, both in the inode and
1460 	 * the mft record.
1461 	 */
1462 	if (!NInoAttr(ni))
1463 		base_ni = ni;
1464 	else
1465 		base_ni = ni->ext.base_ntfs_ino;
1466 	/* Map, pin, and lock the mft record. */
1467 	m = map_mft_record(base_ni);
1468 	if (IS_ERR(m)) {
1469 		err = PTR_ERR(m);
1470 		m = NULL;
1471 		ctx = NULL;
1472 		goto err_out;
1473 	}
1474 	BUG_ON(!NInoNonResident(ni));
1475 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1476 	if (unlikely(!ctx)) {
1477 		err = -ENOMEM;
1478 		goto err_out;
1479 	}
1480 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1481 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1482 	if (unlikely(err)) {
1483 		if (err == -ENOENT)
1484 			err = -EIO;
1485 		goto err_out;
1486 	}
1487 	a = ctx->attr;
1488 	BUG_ON(!a->non_resident);
1489 	write_lock_irqsave(&ni->size_lock, flags);
1490 	BUG_ON(end > ni->allocated_size);
1491 	ni->initialized_size = end;
1492 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1493 	if (end > i_size_read(vi)) {
1494 		i_size_write(vi, end);
1495 		a->data.non_resident.data_size =
1496 				a->data.non_resident.initialized_size;
1497 	}
1498 	write_unlock_irqrestore(&ni->size_lock, flags);
1499 	/* Mark the mft record dirty, so it gets written back. */
1500 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1501 	mark_mft_record_dirty(ctx->ntfs_ino);
1502 	ntfs_attr_put_search_ctx(ctx);
1503 	unmap_mft_record(base_ni);
1504 	ntfs_debug("Done.");
1505 	return 0;
1506 err_out:
1507 	if (ctx)
1508 		ntfs_attr_put_search_ctx(ctx);
1509 	if (m)
1510 		unmap_mft_record(base_ni);
1511 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1512 			"code %i).", err);
1513 	if (err != -ENOMEM)
1514 		NVolSetErrors(ni->vol);
1515 	return err;
1516 }
1517 
1518 /**
1519  * ntfs_commit_pages_after_write - commit the received data
1520  * @pages:	array of destination pages
1521  * @nr_pages:	number of pages in @pages
1522  * @pos:	byte position in file at which the write begins
1523  * @bytes:	number of bytes to be written
1524  *
1525  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1526  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1527  * locked but not kmap()ped.  The source data has already been copied into the
1528  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1529  * the data was copied (for non-resident attributes only) and it returned
1530  * success.
1531  *
1532  * Need to set uptodate and mark dirty all buffers within the boundary of the
1533  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1534  *
1535  * Setting the buffers dirty ensures that they get written out later when
1536  * ntfs_writepage() is invoked by the VM.
1537  *
1538  * Finally, we need to update i_size and initialized_size as appropriate both
1539  * in the inode and the mft record.
1540  *
1541  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1542  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1543  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1544  * that case, it also marks the inode dirty.
1545  *
1546  * If things have gone as outlined in
1547  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1548  * content modifications here for non-resident attributes.  For resident
1549  * attributes we need to do the uptodate bringing here which we combine with
1550  * the copying into the mft record which means we save one atomic kmap.
1551  *
1552  * Return 0 on success or -errno on error.
1553  */
1554 static int ntfs_commit_pages_after_write(struct page **pages,
1555 		const unsigned nr_pages, s64 pos, size_t bytes)
1556 {
1557 	s64 end, initialized_size;
1558 	loff_t i_size;
1559 	struct inode *vi;
1560 	ntfs_inode *ni, *base_ni;
1561 	struct page *page;
1562 	ntfs_attr_search_ctx *ctx;
1563 	MFT_RECORD *m;
1564 	ATTR_RECORD *a;
1565 	char *kattr, *kaddr;
1566 	unsigned long flags;
1567 	u32 attr_len;
1568 	int err;
1569 
1570 	BUG_ON(!nr_pages);
1571 	BUG_ON(!pages);
1572 	page = pages[0];
1573 	BUG_ON(!page);
1574 	vi = page->mapping->host;
1575 	ni = NTFS_I(vi);
1576 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1577 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1578 			vi->i_ino, ni->type, page->index, nr_pages,
1579 			(long long)pos, bytes);
1580 	if (NInoNonResident(ni))
1581 		return ntfs_commit_pages_after_non_resident_write(pages,
1582 				nr_pages, pos, bytes);
1583 	BUG_ON(nr_pages > 1);
1584 	/*
1585 	 * Attribute is resident, implying it is not compressed, encrypted, or
1586 	 * sparse.
1587 	 */
1588 	if (!NInoAttr(ni))
1589 		base_ni = ni;
1590 	else
1591 		base_ni = ni->ext.base_ntfs_ino;
1592 	BUG_ON(NInoNonResident(ni));
1593 	/* Map, pin, and lock the mft record. */
1594 	m = map_mft_record(base_ni);
1595 	if (IS_ERR(m)) {
1596 		err = PTR_ERR(m);
1597 		m = NULL;
1598 		ctx = NULL;
1599 		goto err_out;
1600 	}
1601 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1602 	if (unlikely(!ctx)) {
1603 		err = -ENOMEM;
1604 		goto err_out;
1605 	}
1606 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1607 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1608 	if (unlikely(err)) {
1609 		if (err == -ENOENT)
1610 			err = -EIO;
1611 		goto err_out;
1612 	}
1613 	a = ctx->attr;
1614 	BUG_ON(a->non_resident);
1615 	/* The total length of the attribute value. */
1616 	attr_len = le32_to_cpu(a->data.resident.value_length);
1617 	i_size = i_size_read(vi);
1618 	BUG_ON(attr_len != i_size);
1619 	BUG_ON(pos > attr_len);
1620 	end = pos + bytes;
1621 	BUG_ON(end > le32_to_cpu(a->length) -
1622 			le16_to_cpu(a->data.resident.value_offset));
1623 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1624 	kaddr = kmap_atomic(page);
1625 	/* Copy the received data from the page to the mft record. */
1626 	memcpy(kattr + pos, kaddr + pos, bytes);
1627 	/* Update the attribute length if necessary. */
1628 	if (end > attr_len) {
1629 		attr_len = end;
1630 		a->data.resident.value_length = cpu_to_le32(attr_len);
1631 	}
1632 	/*
1633 	 * If the page is not uptodate, bring the out of bounds area(s)
1634 	 * uptodate by copying data from the mft record to the page.
1635 	 */
1636 	if (!PageUptodate(page)) {
1637 		if (pos > 0)
1638 			memcpy(kaddr, kattr, pos);
1639 		if (end < attr_len)
1640 			memcpy(kaddr + end, kattr + end, attr_len - end);
1641 		/* Zero the region outside the end of the attribute value. */
1642 		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1643 		flush_dcache_page(page);
1644 		SetPageUptodate(page);
1645 	}
1646 	kunmap_atomic(kaddr);
1647 	/* Update initialized_size/i_size if necessary. */
1648 	read_lock_irqsave(&ni->size_lock, flags);
1649 	initialized_size = ni->initialized_size;
1650 	BUG_ON(end > ni->allocated_size);
1651 	read_unlock_irqrestore(&ni->size_lock, flags);
1652 	BUG_ON(initialized_size != i_size);
1653 	if (end > initialized_size) {
1654 		write_lock_irqsave(&ni->size_lock, flags);
1655 		ni->initialized_size = end;
1656 		i_size_write(vi, end);
1657 		write_unlock_irqrestore(&ni->size_lock, flags);
1658 	}
1659 	/* Mark the mft record dirty, so it gets written back. */
1660 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1661 	mark_mft_record_dirty(ctx->ntfs_ino);
1662 	ntfs_attr_put_search_ctx(ctx);
1663 	unmap_mft_record(base_ni);
1664 	ntfs_debug("Done.");
1665 	return 0;
1666 err_out:
1667 	if (err == -ENOMEM) {
1668 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1669 				"commit the write.");
1670 		if (PageUptodate(page)) {
1671 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1672 					"dirty so the write will be retried "
1673 					"later on by the VM.");
1674 			/*
1675 			 * Put the page on mapping->dirty_pages, but leave its
1676 			 * buffers' dirty state as-is.
1677 			 */
1678 			__set_page_dirty_nobuffers(page);
1679 			err = 0;
1680 		} else
1681 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1682 					"data has been lost.");
1683 	} else {
1684 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1685 				"with error %i.", err);
1686 		NVolSetErrors(ni->vol);
1687 	}
1688 	if (ctx)
1689 		ntfs_attr_put_search_ctx(ctx);
1690 	if (m)
1691 		unmap_mft_record(base_ni);
1692 	return err;
1693 }
1694 
1695 /*
1696  * Copy as much as we can into the pages and return the number of bytes which
1697  * were successfully copied.  If a fault is encountered then clear the pages
1698  * out to (ofs + bytes) and return the number of bytes which were copied.
1699  */
1700 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1701 		unsigned ofs, struct iov_iter *i, size_t bytes)
1702 {
1703 	struct page **last_page = pages + nr_pages;
1704 	size_t total = 0;
1705 	struct iov_iter data = *i;
1706 	unsigned len, copied;
1707 
1708 	do {
1709 		len = PAGE_CACHE_SIZE - ofs;
1710 		if (len > bytes)
1711 			len = bytes;
1712 		copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs,
1713 				len);
1714 		total += copied;
1715 		bytes -= copied;
1716 		if (!bytes)
1717 			break;
1718 		iov_iter_advance(&data, copied);
1719 		if (copied < len)
1720 			goto err;
1721 		ofs = 0;
1722 	} while (++pages < last_page);
1723 out:
1724 	return total;
1725 err:
1726 	/* Zero the rest of the target like __copy_from_user(). */
1727 	len = PAGE_CACHE_SIZE - copied;
1728 	do {
1729 		if (len > bytes)
1730 			len = bytes;
1731 		zero_user(*pages, copied, len);
1732 		bytes -= len;
1733 		copied = 0;
1734 		len = PAGE_CACHE_SIZE;
1735 	} while (++pages < last_page);
1736 	goto out;
1737 }
1738 
1739 /**
1740  * ntfs_perform_write - perform buffered write to a file
1741  * @file:	file to write to
1742  * @i:		iov_iter with data to write
1743  * @pos:	byte offset in file at which to begin writing to
1744  */
1745 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1746 		loff_t pos)
1747 {
1748 	struct address_space *mapping = file->f_mapping;
1749 	struct inode *vi = mapping->host;
1750 	ntfs_inode *ni = NTFS_I(vi);
1751 	ntfs_volume *vol = ni->vol;
1752 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1753 	struct page *cached_page = NULL;
1754 	VCN last_vcn;
1755 	LCN lcn;
1756 	size_t bytes;
1757 	ssize_t status, written = 0;
1758 	unsigned nr_pages;
1759 
1760 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1761 			"0x%llx, count 0x%lx.", vi->i_ino,
1762 			(unsigned)le32_to_cpu(ni->type),
1763 			(unsigned long long)pos,
1764 			(unsigned long)iov_iter_count(i));
1765 	/*
1766 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1767 	 * fails again.
1768 	 */
1769 	if (unlikely(NInoTruncateFailed(ni))) {
1770 		int err;
1771 
1772 		inode_dio_wait(vi);
1773 		err = ntfs_truncate(vi);
1774 		if (err || NInoTruncateFailed(ni)) {
1775 			if (!err)
1776 				err = -EIO;
1777 			ntfs_error(vol->sb, "Cannot perform write to inode "
1778 					"0x%lx, attribute type 0x%x, because "
1779 					"ntfs_truncate() failed (error code "
1780 					"%i).", vi->i_ino,
1781 					(unsigned)le32_to_cpu(ni->type), err);
1782 			return err;
1783 		}
1784 	}
1785 	/*
1786 	 * Determine the number of pages per cluster for non-resident
1787 	 * attributes.
1788 	 */
1789 	nr_pages = 1;
1790 	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1791 		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1792 	last_vcn = -1;
1793 	do {
1794 		VCN vcn;
1795 		pgoff_t idx, start_idx;
1796 		unsigned ofs, do_pages, u;
1797 		size_t copied;
1798 
1799 		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1800 		ofs = pos & ~PAGE_CACHE_MASK;
1801 		bytes = PAGE_CACHE_SIZE - ofs;
1802 		do_pages = 1;
1803 		if (nr_pages > 1) {
1804 			vcn = pos >> vol->cluster_size_bits;
1805 			if (vcn != last_vcn) {
1806 				last_vcn = vcn;
1807 				/*
1808 				 * Get the lcn of the vcn the write is in.  If
1809 				 * it is a hole, need to lock down all pages in
1810 				 * the cluster.
1811 				 */
1812 				down_read(&ni->runlist.lock);
1813 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1814 						vol->cluster_size_bits, false);
1815 				up_read(&ni->runlist.lock);
1816 				if (unlikely(lcn < LCN_HOLE)) {
1817 					if (lcn == LCN_ENOMEM)
1818 						status = -ENOMEM;
1819 					else {
1820 						status = -EIO;
1821 						ntfs_error(vol->sb, "Cannot "
1822 							"perform write to "
1823 							"inode 0x%lx, "
1824 							"attribute type 0x%x, "
1825 							"because the attribute "
1826 							"is corrupt.",
1827 							vi->i_ino, (unsigned)
1828 							le32_to_cpu(ni->type));
1829 					}
1830 					break;
1831 				}
1832 				if (lcn == LCN_HOLE) {
1833 					start_idx = (pos & ~(s64)
1834 							vol->cluster_size_mask)
1835 							>> PAGE_CACHE_SHIFT;
1836 					bytes = vol->cluster_size - (pos &
1837 							vol->cluster_size_mask);
1838 					do_pages = nr_pages;
1839 				}
1840 			}
1841 		}
1842 		if (bytes > iov_iter_count(i))
1843 			bytes = iov_iter_count(i);
1844 again:
1845 		/*
1846 		 * Bring in the user page(s) that we will copy from _first_.
1847 		 * Otherwise there is a nasty deadlock on copying from the same
1848 		 * page(s) as we are writing to, without it/them being marked
1849 		 * up-to-date.  Note, at present there is nothing to stop the
1850 		 * pages being swapped out between us bringing them into memory
1851 		 * and doing the actual copying.
1852 		 */
1853 		if (unlikely(iov_iter_fault_in_multipages_readable(i, bytes))) {
1854 			status = -EFAULT;
1855 			break;
1856 		}
1857 		/* Get and lock @do_pages starting at index @start_idx. */
1858 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1859 				pages, &cached_page);
1860 		if (unlikely(status))
1861 			break;
1862 		/*
1863 		 * For non-resident attributes, we need to fill any holes with
1864 		 * actual clusters and ensure all bufferes are mapped.  We also
1865 		 * need to bring uptodate any buffers that are only partially
1866 		 * being written to.
1867 		 */
1868 		if (NInoNonResident(ni)) {
1869 			status = ntfs_prepare_pages_for_non_resident_write(
1870 					pages, do_pages, pos, bytes);
1871 			if (unlikely(status)) {
1872 				do {
1873 					unlock_page(pages[--do_pages]);
1874 					page_cache_release(pages[do_pages]);
1875 				} while (do_pages);
1876 				break;
1877 			}
1878 		}
1879 		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
1880 		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1881 					i, bytes);
1882 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1883 		status = 0;
1884 		if (likely(copied == bytes)) {
1885 			status = ntfs_commit_pages_after_write(pages, do_pages,
1886 					pos, bytes);
1887 			if (!status)
1888 				status = bytes;
1889 		}
1890 		do {
1891 			unlock_page(pages[--do_pages]);
1892 			page_cache_release(pages[do_pages]);
1893 		} while (do_pages);
1894 		if (unlikely(status < 0))
1895 			break;
1896 		copied = status;
1897 		cond_resched();
1898 		if (unlikely(!copied)) {
1899 			size_t sc;
1900 
1901 			/*
1902 			 * We failed to copy anything.  Fall back to single
1903 			 * segment length write.
1904 			 *
1905 			 * This is needed to avoid possible livelock in the
1906 			 * case that all segments in the iov cannot be copied
1907 			 * at once without a pagefault.
1908 			 */
1909 			sc = iov_iter_single_seg_count(i);
1910 			if (bytes > sc)
1911 				bytes = sc;
1912 			goto again;
1913 		}
1914 		iov_iter_advance(i, copied);
1915 		pos += copied;
1916 		written += copied;
1917 		balance_dirty_pages_ratelimited(mapping);
1918 		if (fatal_signal_pending(current)) {
1919 			status = -EINTR;
1920 			break;
1921 		}
1922 	} while (iov_iter_count(i));
1923 	if (cached_page)
1924 		page_cache_release(cached_page);
1925 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1926 			written ? "written" : "status", (unsigned long)written,
1927 			(long)status);
1928 	return written ? written : status;
1929 }
1930 
1931 /**
1932  * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1933  * @iocb:	IO state structure
1934  * @from:	iov_iter with data to write
1935  *
1936  * Basically the same as generic_file_write_iter() except that it ends up
1937  * up calling ntfs_perform_write() instead of generic_perform_write() and that
1938  * O_DIRECT is not implemented.
1939  */
1940 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1941 {
1942 	struct file *file = iocb->ki_filp;
1943 	struct inode *vi = file_inode(file);
1944 	ssize_t written = 0;
1945 	ssize_t err;
1946 
1947 	mutex_lock(&vi->i_mutex);
1948 	/* We can write back this queue in page reclaim. */
1949 	current->backing_dev_info = inode_to_bdi(vi);
1950 	err = ntfs_prepare_file_for_write(iocb, from);
1951 	if (iov_iter_count(from) && !err)
1952 		written = ntfs_perform_write(file, from, iocb->ki_pos);
1953 	current->backing_dev_info = NULL;
1954 	mutex_unlock(&vi->i_mutex);
1955 	if (likely(written > 0)) {
1956 		err = generic_write_sync(file, iocb->ki_pos, written);
1957 		if (err < 0)
1958 			written = 0;
1959 	}
1960 	iocb->ki_pos += written;
1961 	return written ? written : err;
1962 }
1963 
1964 /**
1965  * ntfs_file_fsync - sync a file to disk
1966  * @filp:	file to be synced
1967  * @datasync:	if non-zero only flush user data and not metadata
1968  *
1969  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1970  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1971  *
1972  * If @datasync is false, write the mft record and all associated extent mft
1973  * records as well as the $DATA attribute and then sync the block device.
1974  *
1975  * If @datasync is true and the attribute is non-resident, we skip the writing
1976  * of the mft record and all associated extent mft records (this might still
1977  * happen due to the write_inode_now() call).
1978  *
1979  * Also, if @datasync is true, we do not wait on the inode to be written out
1980  * but we always wait on the page cache pages to be written out.
1981  *
1982  * Locking: Caller must hold i_mutex on the inode.
1983  *
1984  * TODO: We should probably also write all attribute/index inodes associated
1985  * with this inode but since we have no simple way of getting to them we ignore
1986  * this problem for now.
1987  */
1988 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1989 			   int datasync)
1990 {
1991 	struct inode *vi = filp->f_mapping->host;
1992 	int err, ret = 0;
1993 
1994 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1995 
1996 	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
1997 	if (err)
1998 		return err;
1999 	mutex_lock(&vi->i_mutex);
2000 
2001 	BUG_ON(S_ISDIR(vi->i_mode));
2002 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2003 		ret = __ntfs_write_inode(vi, 1);
2004 	write_inode_now(vi, !datasync);
2005 	/*
2006 	 * NOTE: If we were to use mapping->private_list (see ext2 and
2007 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2008 	 * sync_mapping_buffers(vi->i_mapping).
2009 	 */
2010 	err = sync_blockdev(vi->i_sb->s_bdev);
2011 	if (unlikely(err && !ret))
2012 		ret = err;
2013 	if (likely(!ret))
2014 		ntfs_debug("Done.");
2015 	else
2016 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2017 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2018 	mutex_unlock(&vi->i_mutex);
2019 	return ret;
2020 }
2021 
2022 #endif /* NTFS_RW */
2023 
2024 const struct file_operations ntfs_file_ops = {
2025 	.llseek		= generic_file_llseek,
2026 	.read_iter	= generic_file_read_iter,
2027 #ifdef NTFS_RW
2028 	.write_iter	= ntfs_file_write_iter,
2029 	.fsync		= ntfs_file_fsync,
2030 #endif /* NTFS_RW */
2031 	.mmap		= generic_file_mmap,
2032 	.open		= ntfs_file_open,
2033 	.splice_read	= generic_file_splice_read,
2034 };
2035 
2036 const struct inode_operations ntfs_file_inode_ops = {
2037 #ifdef NTFS_RW
2038 	.setattr	= ntfs_setattr,
2039 #endif /* NTFS_RW */
2040 };
2041 
2042 const struct file_operations ntfs_empty_file_ops = {};
2043 
2044 const struct inode_operations ntfs_empty_inode_ops = {};
2045