xref: /openbmc/linux/fs/ntfs/file.c (revision 64c70b1c)
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2006 Anton Altaparmakov
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
29 #include <linux/sched.h>
30 
31 #include <asm/page.h>
32 #include <asm/uaccess.h>
33 
34 #include "attrib.h"
35 #include "bitmap.h"
36 #include "inode.h"
37 #include "debug.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "ntfs.h"
42 
43 /**
44  * ntfs_file_open - called when an inode is about to be opened
45  * @vi:		inode to be opened
46  * @filp:	file structure describing the inode
47  *
48  * Limit file size to the page cache limit on architectures where unsigned long
49  * is 32-bits. This is the most we can do for now without overflowing the page
50  * cache page index. Doing it this way means we don't run into problems because
51  * of existing too large files. It would be better to allow the user to read
52  * the beginning of the file but I doubt very much anyone is going to hit this
53  * check on a 32-bit architecture, so there is no point in adding the extra
54  * complexity required to support this.
55  *
56  * On 64-bit architectures, the check is hopefully optimized away by the
57  * compiler.
58  *
59  * After the check passes, just call generic_file_open() to do its work.
60  */
61 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 {
63 	if (sizeof(unsigned long) < 8) {
64 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
65 			return -EFBIG;
66 	}
67 	return generic_file_open(vi, filp);
68 }
69 
70 #ifdef NTFS_RW
71 
72 /**
73  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
74  * @ni:			ntfs inode of the attribute to extend
75  * @new_init_size:	requested new initialized size in bytes
76  * @cached_page:	store any allocated but unused page here
77  * @lru_pvec:		lru-buffering pagevec of the caller
78  *
79  * Extend the initialized size of an attribute described by the ntfs inode @ni
80  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
81  * the old initialized size and @new_init_size both in the page cache and on
82  * disk (if relevant complete pages are already uptodate in the page cache then
83  * these are simply marked dirty).
84  *
85  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
86  * in the resident attribute case, it is tied to the initialized size and, in
87  * the non-resident attribute case, it may not fall below the initialized size.
88  *
89  * Note that if the attribute is resident, we do not need to touch the page
90  * cache at all.  This is because if the page cache page is not uptodate we
91  * bring it uptodate later, when doing the write to the mft record since we
92  * then already have the page mapped.  And if the page is uptodate, the
93  * non-initialized region will already have been zeroed when the page was
94  * brought uptodate and the region may in fact already have been overwritten
95  * with new data via mmap() based writes, so we cannot just zero it.  And since
96  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
97  * is unspecified, we choose not to do zeroing and thus we do not need to touch
98  * the page at all.  For a more detailed explanation see ntfs_truncate() in
99  * fs/ntfs/inode.c.
100  *
101  * @cached_page and @lru_pvec are just optimizations for dealing with multiple
102  * pages.
103  *
104  * Return 0 on success and -errno on error.  In the case that an error is
105  * encountered it is possible that the initialized size will already have been
106  * incremented some way towards @new_init_size but it is guaranteed that if
107  * this is the case, the necessary zeroing will also have happened and that all
108  * metadata is self-consistent.
109  *
110  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
111  *	    held by the caller.
112  */
113 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
114 		struct page **cached_page, struct pagevec *lru_pvec)
115 {
116 	s64 old_init_size;
117 	loff_t old_i_size;
118 	pgoff_t index, end_index;
119 	unsigned long flags;
120 	struct inode *vi = VFS_I(ni);
121 	ntfs_inode *base_ni;
122 	MFT_RECORD *m = NULL;
123 	ATTR_RECORD *a;
124 	ntfs_attr_search_ctx *ctx = NULL;
125 	struct address_space *mapping;
126 	struct page *page = NULL;
127 	u8 *kattr;
128 	int err;
129 	u32 attr_len;
130 
131 	read_lock_irqsave(&ni->size_lock, flags);
132 	old_init_size = ni->initialized_size;
133 	old_i_size = i_size_read(vi);
134 	BUG_ON(new_init_size > ni->allocated_size);
135 	read_unlock_irqrestore(&ni->size_lock, flags);
136 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
137 			"old_initialized_size 0x%llx, "
138 			"new_initialized_size 0x%llx, i_size 0x%llx.",
139 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
140 			(unsigned long long)old_init_size,
141 			(unsigned long long)new_init_size, old_i_size);
142 	if (!NInoAttr(ni))
143 		base_ni = ni;
144 	else
145 		base_ni = ni->ext.base_ntfs_ino;
146 	/* Use goto to reduce indentation and we need the label below anyway. */
147 	if (NInoNonResident(ni))
148 		goto do_non_resident_extend;
149 	BUG_ON(old_init_size != old_i_size);
150 	m = map_mft_record(base_ni);
151 	if (IS_ERR(m)) {
152 		err = PTR_ERR(m);
153 		m = NULL;
154 		goto err_out;
155 	}
156 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
157 	if (unlikely(!ctx)) {
158 		err = -ENOMEM;
159 		goto err_out;
160 	}
161 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
162 			CASE_SENSITIVE, 0, NULL, 0, ctx);
163 	if (unlikely(err)) {
164 		if (err == -ENOENT)
165 			err = -EIO;
166 		goto err_out;
167 	}
168 	m = ctx->mrec;
169 	a = ctx->attr;
170 	BUG_ON(a->non_resident);
171 	/* The total length of the attribute value. */
172 	attr_len = le32_to_cpu(a->data.resident.value_length);
173 	BUG_ON(old_i_size != (loff_t)attr_len);
174 	/*
175 	 * Do the zeroing in the mft record and update the attribute size in
176 	 * the mft record.
177 	 */
178 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
179 	memset(kattr + attr_len, 0, new_init_size - attr_len);
180 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
181 	/* Finally, update the sizes in the vfs and ntfs inodes. */
182 	write_lock_irqsave(&ni->size_lock, flags);
183 	i_size_write(vi, new_init_size);
184 	ni->initialized_size = new_init_size;
185 	write_unlock_irqrestore(&ni->size_lock, flags);
186 	goto done;
187 do_non_resident_extend:
188 	/*
189 	 * If the new initialized size @new_init_size exceeds the current file
190 	 * size (vfs inode->i_size), we need to extend the file size to the
191 	 * new initialized size.
192 	 */
193 	if (new_init_size > old_i_size) {
194 		m = map_mft_record(base_ni);
195 		if (IS_ERR(m)) {
196 			err = PTR_ERR(m);
197 			m = NULL;
198 			goto err_out;
199 		}
200 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
201 		if (unlikely(!ctx)) {
202 			err = -ENOMEM;
203 			goto err_out;
204 		}
205 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
206 				CASE_SENSITIVE, 0, NULL, 0, ctx);
207 		if (unlikely(err)) {
208 			if (err == -ENOENT)
209 				err = -EIO;
210 			goto err_out;
211 		}
212 		m = ctx->mrec;
213 		a = ctx->attr;
214 		BUG_ON(!a->non_resident);
215 		BUG_ON(old_i_size != (loff_t)
216 				sle64_to_cpu(a->data.non_resident.data_size));
217 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
218 		flush_dcache_mft_record_page(ctx->ntfs_ino);
219 		mark_mft_record_dirty(ctx->ntfs_ino);
220 		/* Update the file size in the vfs inode. */
221 		i_size_write(vi, new_init_size);
222 		ntfs_attr_put_search_ctx(ctx);
223 		ctx = NULL;
224 		unmap_mft_record(base_ni);
225 		m = NULL;
226 	}
227 	mapping = vi->i_mapping;
228 	index = old_init_size >> PAGE_CACHE_SHIFT;
229 	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
230 	do {
231 		/*
232 		 * Read the page.  If the page is not present, this will zero
233 		 * the uninitialized regions for us.
234 		 */
235 		page = read_mapping_page(mapping, index, NULL);
236 		if (IS_ERR(page)) {
237 			err = PTR_ERR(page);
238 			goto init_err_out;
239 		}
240 		if (unlikely(PageError(page))) {
241 			page_cache_release(page);
242 			err = -EIO;
243 			goto init_err_out;
244 		}
245 		/*
246 		 * Update the initialized size in the ntfs inode.  This is
247 		 * enough to make ntfs_writepage() work.
248 		 */
249 		write_lock_irqsave(&ni->size_lock, flags);
250 		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
251 		if (ni->initialized_size > new_init_size)
252 			ni->initialized_size = new_init_size;
253 		write_unlock_irqrestore(&ni->size_lock, flags);
254 		/* Set the page dirty so it gets written out. */
255 		set_page_dirty(page);
256 		page_cache_release(page);
257 		/*
258 		 * Play nice with the vm and the rest of the system.  This is
259 		 * very much needed as we can potentially be modifying the
260 		 * initialised size from a very small value to a really huge
261 		 * value, e.g.
262 		 *	f = open(somefile, O_TRUNC);
263 		 *	truncate(f, 10GiB);
264 		 *	seek(f, 10GiB);
265 		 *	write(f, 1);
266 		 * And this would mean we would be marking dirty hundreds of
267 		 * thousands of pages or as in the above example more than
268 		 * two and a half million pages!
269 		 *
270 		 * TODO: For sparse pages could optimize this workload by using
271 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
272 		 * would be set in readpage for sparse pages and here we would
273 		 * not need to mark dirty any pages which have this bit set.
274 		 * The only caveat is that we have to clear the bit everywhere
275 		 * where we allocate any clusters that lie in the page or that
276 		 * contain the page.
277 		 *
278 		 * TODO: An even greater optimization would be for us to only
279 		 * call readpage() on pages which are not in sparse regions as
280 		 * determined from the runlist.  This would greatly reduce the
281 		 * number of pages we read and make dirty in the case of sparse
282 		 * files.
283 		 */
284 		balance_dirty_pages_ratelimited(mapping);
285 		cond_resched();
286 	} while (++index < end_index);
287 	read_lock_irqsave(&ni->size_lock, flags);
288 	BUG_ON(ni->initialized_size != new_init_size);
289 	read_unlock_irqrestore(&ni->size_lock, flags);
290 	/* Now bring in sync the initialized_size in the mft record. */
291 	m = map_mft_record(base_ni);
292 	if (IS_ERR(m)) {
293 		err = PTR_ERR(m);
294 		m = NULL;
295 		goto init_err_out;
296 	}
297 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
298 	if (unlikely(!ctx)) {
299 		err = -ENOMEM;
300 		goto init_err_out;
301 	}
302 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
303 			CASE_SENSITIVE, 0, NULL, 0, ctx);
304 	if (unlikely(err)) {
305 		if (err == -ENOENT)
306 			err = -EIO;
307 		goto init_err_out;
308 	}
309 	m = ctx->mrec;
310 	a = ctx->attr;
311 	BUG_ON(!a->non_resident);
312 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
313 done:
314 	flush_dcache_mft_record_page(ctx->ntfs_ino);
315 	mark_mft_record_dirty(ctx->ntfs_ino);
316 	if (ctx)
317 		ntfs_attr_put_search_ctx(ctx);
318 	if (m)
319 		unmap_mft_record(base_ni);
320 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
321 			(unsigned long long)new_init_size, i_size_read(vi));
322 	return 0;
323 init_err_out:
324 	write_lock_irqsave(&ni->size_lock, flags);
325 	ni->initialized_size = old_init_size;
326 	write_unlock_irqrestore(&ni->size_lock, flags);
327 err_out:
328 	if (ctx)
329 		ntfs_attr_put_search_ctx(ctx);
330 	if (m)
331 		unmap_mft_record(base_ni);
332 	ntfs_debug("Failed.  Returning error code %i.", err);
333 	return err;
334 }
335 
336 /**
337  * ntfs_fault_in_pages_readable -
338  *
339  * Fault a number of userspace pages into pagetables.
340  *
341  * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
342  * with more than two userspace pages as well as handling the single page case
343  * elegantly.
344  *
345  * If you find this difficult to understand, then think of the while loop being
346  * the following code, except that we do without the integer variable ret:
347  *
348  *	do {
349  *		ret = __get_user(c, uaddr);
350  *		uaddr += PAGE_SIZE;
351  *	} while (!ret && uaddr < end);
352  *
353  * Note, the final __get_user() may well run out-of-bounds of the user buffer,
354  * but _not_ out-of-bounds of the page the user buffer belongs to, and since
355  * this is only a read and not a write, and since it is still in the same page,
356  * it should not matter and this makes the code much simpler.
357  */
358 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
359 		int bytes)
360 {
361 	const char __user *end;
362 	volatile char c;
363 
364 	/* Set @end to the first byte outside the last page we care about. */
365 	end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
366 
367 	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
368 		;
369 }
370 
371 /**
372  * ntfs_fault_in_pages_readable_iovec -
373  *
374  * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
375  */
376 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
377 		size_t iov_ofs, int bytes)
378 {
379 	do {
380 		const char __user *buf;
381 		unsigned len;
382 
383 		buf = iov->iov_base + iov_ofs;
384 		len = iov->iov_len - iov_ofs;
385 		if (len > bytes)
386 			len = bytes;
387 		ntfs_fault_in_pages_readable(buf, len);
388 		bytes -= len;
389 		iov++;
390 		iov_ofs = 0;
391 	} while (bytes);
392 }
393 
394 /**
395  * __ntfs_grab_cache_pages - obtain a number of locked pages
396  * @mapping:	address space mapping from which to obtain page cache pages
397  * @index:	starting index in @mapping at which to begin obtaining pages
398  * @nr_pages:	number of page cache pages to obtain
399  * @pages:	array of pages in which to return the obtained page cache pages
400  * @cached_page: allocated but as yet unused page
401  * @lru_pvec:	lru-buffering pagevec of caller
402  *
403  * Obtain @nr_pages locked page cache pages from the mapping @maping and
404  * starting at index @index.
405  *
406  * If a page is newly created, increment its refcount and add it to the
407  * caller's lru-buffering pagevec @lru_pvec.
408  *
409  * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
410  * are obtained at once instead of just one page and that 0 is returned on
411  * success and -errno on error.
412  *
413  * Note, the page locks are obtained in ascending page index order.
414  */
415 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
416 		pgoff_t index, const unsigned nr_pages, struct page **pages,
417 		struct page **cached_page, struct pagevec *lru_pvec)
418 {
419 	int err, nr;
420 
421 	BUG_ON(!nr_pages);
422 	err = nr = 0;
423 	do {
424 		pages[nr] = find_lock_page(mapping, index);
425 		if (!pages[nr]) {
426 			if (!*cached_page) {
427 				*cached_page = page_cache_alloc(mapping);
428 				if (unlikely(!*cached_page)) {
429 					err = -ENOMEM;
430 					goto err_out;
431 				}
432 			}
433 			err = add_to_page_cache(*cached_page, mapping, index,
434 					GFP_KERNEL);
435 			if (unlikely(err)) {
436 				if (err == -EEXIST)
437 					continue;
438 				goto err_out;
439 			}
440 			pages[nr] = *cached_page;
441 			page_cache_get(*cached_page);
442 			if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
443 				__pagevec_lru_add(lru_pvec);
444 			*cached_page = NULL;
445 		}
446 		index++;
447 		nr++;
448 	} while (nr < nr_pages);
449 out:
450 	return err;
451 err_out:
452 	while (nr > 0) {
453 		unlock_page(pages[--nr]);
454 		page_cache_release(pages[nr]);
455 	}
456 	goto out;
457 }
458 
459 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
460 {
461 	lock_buffer(bh);
462 	get_bh(bh);
463 	bh->b_end_io = end_buffer_read_sync;
464 	return submit_bh(READ, bh);
465 }
466 
467 /**
468  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
469  * @pages:	array of destination pages
470  * @nr_pages:	number of pages in @pages
471  * @pos:	byte position in file at which the write begins
472  * @bytes:	number of bytes to be written
473  *
474  * This is called for non-resident attributes from ntfs_file_buffered_write()
475  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
476  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
477  * data has not yet been copied into the @pages.
478  *
479  * Need to fill any holes with actual clusters, allocate buffers if necessary,
480  * ensure all the buffers are mapped, and bring uptodate any buffers that are
481  * only partially being written to.
482  *
483  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
484  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
485  * the same cluster and that they are the entirety of that cluster, and that
486  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
487  *
488  * i_size is not to be modified yet.
489  *
490  * Return 0 on success or -errno on error.
491  */
492 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
493 		unsigned nr_pages, s64 pos, size_t bytes)
494 {
495 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
496 	LCN lcn;
497 	s64 bh_pos, vcn_len, end, initialized_size;
498 	sector_t lcn_block;
499 	struct page *page;
500 	struct inode *vi;
501 	ntfs_inode *ni, *base_ni = NULL;
502 	ntfs_volume *vol;
503 	runlist_element *rl, *rl2;
504 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
505 	ntfs_attr_search_ctx *ctx = NULL;
506 	MFT_RECORD *m = NULL;
507 	ATTR_RECORD *a = NULL;
508 	unsigned long flags;
509 	u32 attr_rec_len = 0;
510 	unsigned blocksize, u;
511 	int err, mp_size;
512 	bool rl_write_locked, was_hole, is_retry;
513 	unsigned char blocksize_bits;
514 	struct {
515 		u8 runlist_merged:1;
516 		u8 mft_attr_mapped:1;
517 		u8 mp_rebuilt:1;
518 		u8 attr_switched:1;
519 	} status = { 0, 0, 0, 0 };
520 
521 	BUG_ON(!nr_pages);
522 	BUG_ON(!pages);
523 	BUG_ON(!*pages);
524 	vi = pages[0]->mapping->host;
525 	ni = NTFS_I(vi);
526 	vol = ni->vol;
527 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
528 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
529 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
530 			(long long)pos, bytes);
531 	blocksize = vol->sb->s_blocksize;
532 	blocksize_bits = vol->sb->s_blocksize_bits;
533 	u = 0;
534 	do {
535 		struct page *page = pages[u];
536 		/*
537 		 * create_empty_buffers() will create uptodate/dirty buffers if
538 		 * the page is uptodate/dirty.
539 		 */
540 		if (!page_has_buffers(page)) {
541 			create_empty_buffers(page, blocksize, 0);
542 			if (unlikely(!page_has_buffers(page)))
543 				return -ENOMEM;
544 		}
545 	} while (++u < nr_pages);
546 	rl_write_locked = false;
547 	rl = NULL;
548 	err = 0;
549 	vcn = lcn = -1;
550 	vcn_len = 0;
551 	lcn_block = -1;
552 	was_hole = false;
553 	cpos = pos >> vol->cluster_size_bits;
554 	end = pos + bytes;
555 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
556 	/*
557 	 * Loop over each page and for each page over each buffer.  Use goto to
558 	 * reduce indentation.
559 	 */
560 	u = 0;
561 do_next_page:
562 	page = pages[u];
563 	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
564 	bh = head = page_buffers(page);
565 	do {
566 		VCN cdelta;
567 		s64 bh_end;
568 		unsigned bh_cofs;
569 
570 		/* Clear buffer_new on all buffers to reinitialise state. */
571 		if (buffer_new(bh))
572 			clear_buffer_new(bh);
573 		bh_end = bh_pos + blocksize;
574 		bh_cpos = bh_pos >> vol->cluster_size_bits;
575 		bh_cofs = bh_pos & vol->cluster_size_mask;
576 		if (buffer_mapped(bh)) {
577 			/*
578 			 * The buffer is already mapped.  If it is uptodate,
579 			 * ignore it.
580 			 */
581 			if (buffer_uptodate(bh))
582 				continue;
583 			/*
584 			 * The buffer is not uptodate.  If the page is uptodate
585 			 * set the buffer uptodate and otherwise ignore it.
586 			 */
587 			if (PageUptodate(page)) {
588 				set_buffer_uptodate(bh);
589 				continue;
590 			}
591 			/*
592 			 * Neither the page nor the buffer are uptodate.  If
593 			 * the buffer is only partially being written to, we
594 			 * need to read it in before the write, i.e. now.
595 			 */
596 			if ((bh_pos < pos && bh_end > pos) ||
597 					(bh_pos < end && bh_end > end)) {
598 				/*
599 				 * If the buffer is fully or partially within
600 				 * the initialized size, do an actual read.
601 				 * Otherwise, simply zero the buffer.
602 				 */
603 				read_lock_irqsave(&ni->size_lock, flags);
604 				initialized_size = ni->initialized_size;
605 				read_unlock_irqrestore(&ni->size_lock, flags);
606 				if (bh_pos < initialized_size) {
607 					ntfs_submit_bh_for_read(bh);
608 					*wait_bh++ = bh;
609 				} else {
610 					zero_user_page(page, bh_offset(bh),
611 							blocksize, KM_USER0);
612 					set_buffer_uptodate(bh);
613 				}
614 			}
615 			continue;
616 		}
617 		/* Unmapped buffer.  Need to map it. */
618 		bh->b_bdev = vol->sb->s_bdev;
619 		/*
620 		 * If the current buffer is in the same clusters as the map
621 		 * cache, there is no need to check the runlist again.  The
622 		 * map cache is made up of @vcn, which is the first cached file
623 		 * cluster, @vcn_len which is the number of cached file
624 		 * clusters, @lcn is the device cluster corresponding to @vcn,
625 		 * and @lcn_block is the block number corresponding to @lcn.
626 		 */
627 		cdelta = bh_cpos - vcn;
628 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
629 map_buffer_cached:
630 			BUG_ON(lcn < 0);
631 			bh->b_blocknr = lcn_block +
632 					(cdelta << (vol->cluster_size_bits -
633 					blocksize_bits)) +
634 					(bh_cofs >> blocksize_bits);
635 			set_buffer_mapped(bh);
636 			/*
637 			 * If the page is uptodate so is the buffer.  If the
638 			 * buffer is fully outside the write, we ignore it if
639 			 * it was already allocated and we mark it dirty so it
640 			 * gets written out if we allocated it.  On the other
641 			 * hand, if we allocated the buffer but we are not
642 			 * marking it dirty we set buffer_new so we can do
643 			 * error recovery.
644 			 */
645 			if (PageUptodate(page)) {
646 				if (!buffer_uptodate(bh))
647 					set_buffer_uptodate(bh);
648 				if (unlikely(was_hole)) {
649 					/* We allocated the buffer. */
650 					unmap_underlying_metadata(bh->b_bdev,
651 							bh->b_blocknr);
652 					if (bh_end <= pos || bh_pos >= end)
653 						mark_buffer_dirty(bh);
654 					else
655 						set_buffer_new(bh);
656 				}
657 				continue;
658 			}
659 			/* Page is _not_ uptodate. */
660 			if (likely(!was_hole)) {
661 				/*
662 				 * Buffer was already allocated.  If it is not
663 				 * uptodate and is only partially being written
664 				 * to, we need to read it in before the write,
665 				 * i.e. now.
666 				 */
667 				if (!buffer_uptodate(bh) && bh_pos < end &&
668 						bh_end > pos &&
669 						(bh_pos < pos ||
670 						bh_end > end)) {
671 					/*
672 					 * If the buffer is fully or partially
673 					 * within the initialized size, do an
674 					 * actual read.  Otherwise, simply zero
675 					 * the buffer.
676 					 */
677 					read_lock_irqsave(&ni->size_lock,
678 							flags);
679 					initialized_size = ni->initialized_size;
680 					read_unlock_irqrestore(&ni->size_lock,
681 							flags);
682 					if (bh_pos < initialized_size) {
683 						ntfs_submit_bh_for_read(bh);
684 						*wait_bh++ = bh;
685 					} else {
686 						zero_user_page(page,
687 							bh_offset(bh),
688 							blocksize, KM_USER0);
689 						set_buffer_uptodate(bh);
690 					}
691 				}
692 				continue;
693 			}
694 			/* We allocated the buffer. */
695 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
696 			/*
697 			 * If the buffer is fully outside the write, zero it,
698 			 * set it uptodate, and mark it dirty so it gets
699 			 * written out.  If it is partially being written to,
700 			 * zero region surrounding the write but leave it to
701 			 * commit write to do anything else.  Finally, if the
702 			 * buffer is fully being overwritten, do nothing.
703 			 */
704 			if (bh_end <= pos || bh_pos >= end) {
705 				if (!buffer_uptodate(bh)) {
706 					zero_user_page(page, bh_offset(bh),
707 							blocksize, KM_USER0);
708 					set_buffer_uptodate(bh);
709 				}
710 				mark_buffer_dirty(bh);
711 				continue;
712 			}
713 			set_buffer_new(bh);
714 			if (!buffer_uptodate(bh) &&
715 					(bh_pos < pos || bh_end > end)) {
716 				u8 *kaddr;
717 				unsigned pofs;
718 
719 				kaddr = kmap_atomic(page, KM_USER0);
720 				if (bh_pos < pos) {
721 					pofs = bh_pos & ~PAGE_CACHE_MASK;
722 					memset(kaddr + pofs, 0, pos - bh_pos);
723 				}
724 				if (bh_end > end) {
725 					pofs = end & ~PAGE_CACHE_MASK;
726 					memset(kaddr + pofs, 0, bh_end - end);
727 				}
728 				kunmap_atomic(kaddr, KM_USER0);
729 				flush_dcache_page(page);
730 			}
731 			continue;
732 		}
733 		/*
734 		 * Slow path: this is the first buffer in the cluster.  If it
735 		 * is outside allocated size and is not uptodate, zero it and
736 		 * set it uptodate.
737 		 */
738 		read_lock_irqsave(&ni->size_lock, flags);
739 		initialized_size = ni->allocated_size;
740 		read_unlock_irqrestore(&ni->size_lock, flags);
741 		if (bh_pos > initialized_size) {
742 			if (PageUptodate(page)) {
743 				if (!buffer_uptodate(bh))
744 					set_buffer_uptodate(bh);
745 			} else if (!buffer_uptodate(bh)) {
746 				zero_user_page(page, bh_offset(bh), blocksize,
747 						KM_USER0);
748 				set_buffer_uptodate(bh);
749 			}
750 			continue;
751 		}
752 		is_retry = false;
753 		if (!rl) {
754 			down_read(&ni->runlist.lock);
755 retry_remap:
756 			rl = ni->runlist.rl;
757 		}
758 		if (likely(rl != NULL)) {
759 			/* Seek to element containing target cluster. */
760 			while (rl->length && rl[1].vcn <= bh_cpos)
761 				rl++;
762 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
763 			if (likely(lcn >= 0)) {
764 				/*
765 				 * Successful remap, setup the map cache and
766 				 * use that to deal with the buffer.
767 				 */
768 				was_hole = false;
769 				vcn = bh_cpos;
770 				vcn_len = rl[1].vcn - vcn;
771 				lcn_block = lcn << (vol->cluster_size_bits -
772 						blocksize_bits);
773 				cdelta = 0;
774 				/*
775 				 * If the number of remaining clusters touched
776 				 * by the write is smaller or equal to the
777 				 * number of cached clusters, unlock the
778 				 * runlist as the map cache will be used from
779 				 * now on.
780 				 */
781 				if (likely(vcn + vcn_len >= cend)) {
782 					if (rl_write_locked) {
783 						up_write(&ni->runlist.lock);
784 						rl_write_locked = false;
785 					} else
786 						up_read(&ni->runlist.lock);
787 					rl = NULL;
788 				}
789 				goto map_buffer_cached;
790 			}
791 		} else
792 			lcn = LCN_RL_NOT_MAPPED;
793 		/*
794 		 * If it is not a hole and not out of bounds, the runlist is
795 		 * probably unmapped so try to map it now.
796 		 */
797 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
798 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
799 				/* Attempt to map runlist. */
800 				if (!rl_write_locked) {
801 					/*
802 					 * We need the runlist locked for
803 					 * writing, so if it is locked for
804 					 * reading relock it now and retry in
805 					 * case it changed whilst we dropped
806 					 * the lock.
807 					 */
808 					up_read(&ni->runlist.lock);
809 					down_write(&ni->runlist.lock);
810 					rl_write_locked = true;
811 					goto retry_remap;
812 				}
813 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
814 						NULL);
815 				if (likely(!err)) {
816 					is_retry = true;
817 					goto retry_remap;
818 				}
819 				/*
820 				 * If @vcn is out of bounds, pretend @lcn is
821 				 * LCN_ENOENT.  As long as the buffer is out
822 				 * of bounds this will work fine.
823 				 */
824 				if (err == -ENOENT) {
825 					lcn = LCN_ENOENT;
826 					err = 0;
827 					goto rl_not_mapped_enoent;
828 				}
829 			} else
830 				err = -EIO;
831 			/* Failed to map the buffer, even after retrying. */
832 			bh->b_blocknr = -1;
833 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
834 					"attribute type 0x%x, vcn 0x%llx, "
835 					"vcn offset 0x%x, because its "
836 					"location on disk could not be "
837 					"determined%s (error code %i).",
838 					ni->mft_no, ni->type,
839 					(unsigned long long)bh_cpos,
840 					(unsigned)bh_pos &
841 					vol->cluster_size_mask,
842 					is_retry ? " even after retrying" : "",
843 					err);
844 			break;
845 		}
846 rl_not_mapped_enoent:
847 		/*
848 		 * The buffer is in a hole or out of bounds.  We need to fill
849 		 * the hole, unless the buffer is in a cluster which is not
850 		 * touched by the write, in which case we just leave the buffer
851 		 * unmapped.  This can only happen when the cluster size is
852 		 * less than the page cache size.
853 		 */
854 		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
855 			bh_cend = (bh_end + vol->cluster_size - 1) >>
856 					vol->cluster_size_bits;
857 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
858 				bh->b_blocknr = -1;
859 				/*
860 				 * If the buffer is uptodate we skip it.  If it
861 				 * is not but the page is uptodate, we can set
862 				 * the buffer uptodate.  If the page is not
863 				 * uptodate, we can clear the buffer and set it
864 				 * uptodate.  Whether this is worthwhile is
865 				 * debatable and this could be removed.
866 				 */
867 				if (PageUptodate(page)) {
868 					if (!buffer_uptodate(bh))
869 						set_buffer_uptodate(bh);
870 				} else if (!buffer_uptodate(bh)) {
871 					zero_user_page(page, bh_offset(bh),
872 							blocksize, KM_USER0);
873 					set_buffer_uptodate(bh);
874 				}
875 				continue;
876 			}
877 		}
878 		/*
879 		 * Out of bounds buffer is invalid if it was not really out of
880 		 * bounds.
881 		 */
882 		BUG_ON(lcn != LCN_HOLE);
883 		/*
884 		 * We need the runlist locked for writing, so if it is locked
885 		 * for reading relock it now and retry in case it changed
886 		 * whilst we dropped the lock.
887 		 */
888 		BUG_ON(!rl);
889 		if (!rl_write_locked) {
890 			up_read(&ni->runlist.lock);
891 			down_write(&ni->runlist.lock);
892 			rl_write_locked = true;
893 			goto retry_remap;
894 		}
895 		/* Find the previous last allocated cluster. */
896 		BUG_ON(rl->lcn != LCN_HOLE);
897 		lcn = -1;
898 		rl2 = rl;
899 		while (--rl2 >= ni->runlist.rl) {
900 			if (rl2->lcn >= 0) {
901 				lcn = rl2->lcn + rl2->length;
902 				break;
903 			}
904 		}
905 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
906 				false);
907 		if (IS_ERR(rl2)) {
908 			err = PTR_ERR(rl2);
909 			ntfs_debug("Failed to allocate cluster, error code %i.",
910 					err);
911 			break;
912 		}
913 		lcn = rl2->lcn;
914 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
915 		if (IS_ERR(rl)) {
916 			err = PTR_ERR(rl);
917 			if (err != -ENOMEM)
918 				err = -EIO;
919 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
920 				ntfs_error(vol->sb, "Failed to release "
921 						"allocated cluster in error "
922 						"code path.  Run chkdsk to "
923 						"recover the lost cluster.");
924 				NVolSetErrors(vol);
925 			}
926 			ntfs_free(rl2);
927 			break;
928 		}
929 		ni->runlist.rl = rl;
930 		status.runlist_merged = 1;
931 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
932 				(unsigned long long)lcn);
933 		/* Map and lock the mft record and get the attribute record. */
934 		if (!NInoAttr(ni))
935 			base_ni = ni;
936 		else
937 			base_ni = ni->ext.base_ntfs_ino;
938 		m = map_mft_record(base_ni);
939 		if (IS_ERR(m)) {
940 			err = PTR_ERR(m);
941 			break;
942 		}
943 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
944 		if (unlikely(!ctx)) {
945 			err = -ENOMEM;
946 			unmap_mft_record(base_ni);
947 			break;
948 		}
949 		status.mft_attr_mapped = 1;
950 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
951 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
952 		if (unlikely(err)) {
953 			if (err == -ENOENT)
954 				err = -EIO;
955 			break;
956 		}
957 		m = ctx->mrec;
958 		a = ctx->attr;
959 		/*
960 		 * Find the runlist element with which the attribute extent
961 		 * starts.  Note, we cannot use the _attr_ version because we
962 		 * have mapped the mft record.  That is ok because we know the
963 		 * runlist fragment must be mapped already to have ever gotten
964 		 * here, so we can just use the _rl_ version.
965 		 */
966 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
967 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
968 		BUG_ON(!rl2);
969 		BUG_ON(!rl2->length);
970 		BUG_ON(rl2->lcn < LCN_HOLE);
971 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
972 		/*
973 		 * If @highest_vcn is zero, calculate the real highest_vcn
974 		 * (which can really be zero).
975 		 */
976 		if (!highest_vcn)
977 			highest_vcn = (sle64_to_cpu(
978 					a->data.non_resident.allocated_size) >>
979 					vol->cluster_size_bits) - 1;
980 		/*
981 		 * Determine the size of the mapping pairs array for the new
982 		 * extent, i.e. the old extent with the hole filled.
983 		 */
984 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
985 				highest_vcn);
986 		if (unlikely(mp_size <= 0)) {
987 			if (!(err = mp_size))
988 				err = -EIO;
989 			ntfs_debug("Failed to get size for mapping pairs "
990 					"array, error code %i.", err);
991 			break;
992 		}
993 		/*
994 		 * Resize the attribute record to fit the new mapping pairs
995 		 * array.
996 		 */
997 		attr_rec_len = le32_to_cpu(a->length);
998 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
999 				a->data.non_resident.mapping_pairs_offset));
1000 		if (unlikely(err)) {
1001 			BUG_ON(err != -ENOSPC);
1002 			// TODO: Deal with this by using the current attribute
1003 			// and fill it with as much of the mapping pairs
1004 			// array as possible.  Then loop over each attribute
1005 			// extent rewriting the mapping pairs arrays as we go
1006 			// along and if when we reach the end we have not
1007 			// enough space, try to resize the last attribute
1008 			// extent and if even that fails, add a new attribute
1009 			// extent.
1010 			// We could also try to resize at each step in the hope
1011 			// that we will not need to rewrite every single extent.
1012 			// Note, we may need to decompress some extents to fill
1013 			// the runlist as we are walking the extents...
1014 			ntfs_error(vol->sb, "Not enough space in the mft "
1015 					"record for the extended attribute "
1016 					"record.  This case is not "
1017 					"implemented yet.");
1018 			err = -EOPNOTSUPP;
1019 			break ;
1020 		}
1021 		status.mp_rebuilt = 1;
1022 		/*
1023 		 * Generate the mapping pairs array directly into the attribute
1024 		 * record.
1025 		 */
1026 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1027 				a->data.non_resident.mapping_pairs_offset),
1028 				mp_size, rl2, vcn, highest_vcn, NULL);
1029 		if (unlikely(err)) {
1030 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1031 					"attribute type 0x%x, because building "
1032 					"the mapping pairs failed with error "
1033 					"code %i.", vi->i_ino,
1034 					(unsigned)le32_to_cpu(ni->type), err);
1035 			err = -EIO;
1036 			break;
1037 		}
1038 		/* Update the highest_vcn but only if it was not set. */
1039 		if (unlikely(!a->data.non_resident.highest_vcn))
1040 			a->data.non_resident.highest_vcn =
1041 					cpu_to_sle64(highest_vcn);
1042 		/*
1043 		 * If the attribute is sparse/compressed, update the compressed
1044 		 * size in the ntfs_inode structure and the attribute record.
1045 		 */
1046 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1047 			/*
1048 			 * If we are not in the first attribute extent, switch
1049 			 * to it, but first ensure the changes will make it to
1050 			 * disk later.
1051 			 */
1052 			if (a->data.non_resident.lowest_vcn) {
1053 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1054 				mark_mft_record_dirty(ctx->ntfs_ino);
1055 				ntfs_attr_reinit_search_ctx(ctx);
1056 				err = ntfs_attr_lookup(ni->type, ni->name,
1057 						ni->name_len, CASE_SENSITIVE,
1058 						0, NULL, 0, ctx);
1059 				if (unlikely(err)) {
1060 					status.attr_switched = 1;
1061 					break;
1062 				}
1063 				/* @m is not used any more so do not set it. */
1064 				a = ctx->attr;
1065 			}
1066 			write_lock_irqsave(&ni->size_lock, flags);
1067 			ni->itype.compressed.size += vol->cluster_size;
1068 			a->data.non_resident.compressed_size =
1069 					cpu_to_sle64(ni->itype.compressed.size);
1070 			write_unlock_irqrestore(&ni->size_lock, flags);
1071 		}
1072 		/* Ensure the changes make it to disk. */
1073 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1074 		mark_mft_record_dirty(ctx->ntfs_ino);
1075 		ntfs_attr_put_search_ctx(ctx);
1076 		unmap_mft_record(base_ni);
1077 		/* Successfully filled the hole. */
1078 		status.runlist_merged = 0;
1079 		status.mft_attr_mapped = 0;
1080 		status.mp_rebuilt = 0;
1081 		/* Setup the map cache and use that to deal with the buffer. */
1082 		was_hole = true;
1083 		vcn = bh_cpos;
1084 		vcn_len = 1;
1085 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1086 		cdelta = 0;
1087 		/*
1088 		 * If the number of remaining clusters in the @pages is smaller
1089 		 * or equal to the number of cached clusters, unlock the
1090 		 * runlist as the map cache will be used from now on.
1091 		 */
1092 		if (likely(vcn + vcn_len >= cend)) {
1093 			up_write(&ni->runlist.lock);
1094 			rl_write_locked = false;
1095 			rl = NULL;
1096 		}
1097 		goto map_buffer_cached;
1098 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1099 	/* If there are no errors, do the next page. */
1100 	if (likely(!err && ++u < nr_pages))
1101 		goto do_next_page;
1102 	/* If there are no errors, release the runlist lock if we took it. */
1103 	if (likely(!err)) {
1104 		if (unlikely(rl_write_locked)) {
1105 			up_write(&ni->runlist.lock);
1106 			rl_write_locked = false;
1107 		} else if (unlikely(rl))
1108 			up_read(&ni->runlist.lock);
1109 		rl = NULL;
1110 	}
1111 	/* If we issued read requests, let them complete. */
1112 	read_lock_irqsave(&ni->size_lock, flags);
1113 	initialized_size = ni->initialized_size;
1114 	read_unlock_irqrestore(&ni->size_lock, flags);
1115 	while (wait_bh > wait) {
1116 		bh = *--wait_bh;
1117 		wait_on_buffer(bh);
1118 		if (likely(buffer_uptodate(bh))) {
1119 			page = bh->b_page;
1120 			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1121 					bh_offset(bh);
1122 			/*
1123 			 * If the buffer overflows the initialized size, need
1124 			 * to zero the overflowing region.
1125 			 */
1126 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1127 				int ofs = 0;
1128 
1129 				if (likely(bh_pos < initialized_size))
1130 					ofs = initialized_size - bh_pos;
1131 				zero_user_page(page, bh_offset(bh) + ofs,
1132 						blocksize - ofs, KM_USER0);
1133 			}
1134 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1135 			err = -EIO;
1136 	}
1137 	if (likely(!err)) {
1138 		/* Clear buffer_new on all buffers. */
1139 		u = 0;
1140 		do {
1141 			bh = head = page_buffers(pages[u]);
1142 			do {
1143 				if (buffer_new(bh))
1144 					clear_buffer_new(bh);
1145 			} while ((bh = bh->b_this_page) != head);
1146 		} while (++u < nr_pages);
1147 		ntfs_debug("Done.");
1148 		return err;
1149 	}
1150 	if (status.attr_switched) {
1151 		/* Get back to the attribute extent we modified. */
1152 		ntfs_attr_reinit_search_ctx(ctx);
1153 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1154 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1155 			ntfs_error(vol->sb, "Failed to find required "
1156 					"attribute extent of attribute in "
1157 					"error code path.  Run chkdsk to "
1158 					"recover.");
1159 			write_lock_irqsave(&ni->size_lock, flags);
1160 			ni->itype.compressed.size += vol->cluster_size;
1161 			write_unlock_irqrestore(&ni->size_lock, flags);
1162 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1163 			mark_mft_record_dirty(ctx->ntfs_ino);
1164 			/*
1165 			 * The only thing that is now wrong is the compressed
1166 			 * size of the base attribute extent which chkdsk
1167 			 * should be able to fix.
1168 			 */
1169 			NVolSetErrors(vol);
1170 		} else {
1171 			m = ctx->mrec;
1172 			a = ctx->attr;
1173 			status.attr_switched = 0;
1174 		}
1175 	}
1176 	/*
1177 	 * If the runlist has been modified, need to restore it by punching a
1178 	 * hole into it and we then need to deallocate the on-disk cluster as
1179 	 * well.  Note, we only modify the runlist if we are able to generate a
1180 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1181 	 * is not switched.
1182 	 */
1183 	if (status.runlist_merged && !status.attr_switched) {
1184 		BUG_ON(!rl_write_locked);
1185 		/* Make the file cluster we allocated sparse in the runlist. */
1186 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1187 			ntfs_error(vol->sb, "Failed to punch hole into "
1188 					"attribute runlist in error code "
1189 					"path.  Run chkdsk to recover the "
1190 					"lost cluster.");
1191 			NVolSetErrors(vol);
1192 		} else /* if (success) */ {
1193 			status.runlist_merged = 0;
1194 			/*
1195 			 * Deallocate the on-disk cluster we allocated but only
1196 			 * if we succeeded in punching its vcn out of the
1197 			 * runlist.
1198 			 */
1199 			down_write(&vol->lcnbmp_lock);
1200 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1201 				ntfs_error(vol->sb, "Failed to release "
1202 						"allocated cluster in error "
1203 						"code path.  Run chkdsk to "
1204 						"recover the lost cluster.");
1205 				NVolSetErrors(vol);
1206 			}
1207 			up_write(&vol->lcnbmp_lock);
1208 		}
1209 	}
1210 	/*
1211 	 * Resize the attribute record to its old size and rebuild the mapping
1212 	 * pairs array.  Note, we only can do this if the runlist has been
1213 	 * restored to its old state which also implies that the mapped
1214 	 * attribute extent is not switched.
1215 	 */
1216 	if (status.mp_rebuilt && !status.runlist_merged) {
1217 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1218 			ntfs_error(vol->sb, "Failed to restore attribute "
1219 					"record in error code path.  Run "
1220 					"chkdsk to recover.");
1221 			NVolSetErrors(vol);
1222 		} else /* if (success) */ {
1223 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1224 					le16_to_cpu(a->data.non_resident.
1225 					mapping_pairs_offset), attr_rec_len -
1226 					le16_to_cpu(a->data.non_resident.
1227 					mapping_pairs_offset), ni->runlist.rl,
1228 					vcn, highest_vcn, NULL)) {
1229 				ntfs_error(vol->sb, "Failed to restore "
1230 						"mapping pairs array in error "
1231 						"code path.  Run chkdsk to "
1232 						"recover.");
1233 				NVolSetErrors(vol);
1234 			}
1235 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1236 			mark_mft_record_dirty(ctx->ntfs_ino);
1237 		}
1238 	}
1239 	/* Release the mft record and the attribute. */
1240 	if (status.mft_attr_mapped) {
1241 		ntfs_attr_put_search_ctx(ctx);
1242 		unmap_mft_record(base_ni);
1243 	}
1244 	/* Release the runlist lock. */
1245 	if (rl_write_locked)
1246 		up_write(&ni->runlist.lock);
1247 	else if (rl)
1248 		up_read(&ni->runlist.lock);
1249 	/*
1250 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1251 	 * If BH_New is set, we know that the block was newly allocated above
1252 	 * and that it has not been fully zeroed and marked dirty yet.
1253 	 */
1254 	nr_pages = u;
1255 	u = 0;
1256 	end = bh_cpos << vol->cluster_size_bits;
1257 	do {
1258 		page = pages[u];
1259 		bh = head = page_buffers(page);
1260 		do {
1261 			if (u == nr_pages &&
1262 					((s64)page->index << PAGE_CACHE_SHIFT) +
1263 					bh_offset(bh) >= end)
1264 				break;
1265 			if (!buffer_new(bh))
1266 				continue;
1267 			clear_buffer_new(bh);
1268 			if (!buffer_uptodate(bh)) {
1269 				if (PageUptodate(page))
1270 					set_buffer_uptodate(bh);
1271 				else {
1272 					zero_user_page(page, bh_offset(bh),
1273 							blocksize, KM_USER0);
1274 					set_buffer_uptodate(bh);
1275 				}
1276 			}
1277 			mark_buffer_dirty(bh);
1278 		} while ((bh = bh->b_this_page) != head);
1279 	} while (++u <= nr_pages);
1280 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1281 	return err;
1282 }
1283 
1284 /*
1285  * Copy as much as we can into the pages and return the number of bytes which
1286  * were sucessfully copied.  If a fault is encountered then clear the pages
1287  * out to (ofs + bytes) and return the number of bytes which were copied.
1288  */
1289 static inline size_t ntfs_copy_from_user(struct page **pages,
1290 		unsigned nr_pages, unsigned ofs, const char __user *buf,
1291 		size_t bytes)
1292 {
1293 	struct page **last_page = pages + nr_pages;
1294 	char *kaddr;
1295 	size_t total = 0;
1296 	unsigned len;
1297 	int left;
1298 
1299 	do {
1300 		len = PAGE_CACHE_SIZE - ofs;
1301 		if (len > bytes)
1302 			len = bytes;
1303 		kaddr = kmap_atomic(*pages, KM_USER0);
1304 		left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1305 		kunmap_atomic(kaddr, KM_USER0);
1306 		if (unlikely(left)) {
1307 			/* Do it the slow way. */
1308 			kaddr = kmap(*pages);
1309 			left = __copy_from_user(kaddr + ofs, buf, len);
1310 			kunmap(*pages);
1311 			if (unlikely(left))
1312 				goto err_out;
1313 		}
1314 		total += len;
1315 		bytes -= len;
1316 		if (!bytes)
1317 			break;
1318 		buf += len;
1319 		ofs = 0;
1320 	} while (++pages < last_page);
1321 out:
1322 	return total;
1323 err_out:
1324 	total += len - left;
1325 	/* Zero the rest of the target like __copy_from_user(). */
1326 	while (++pages < last_page) {
1327 		bytes -= len;
1328 		if (!bytes)
1329 			break;
1330 		len = PAGE_CACHE_SIZE;
1331 		if (len > bytes)
1332 			len = bytes;
1333 		zero_user_page(*pages, 0, len, KM_USER0);
1334 	}
1335 	goto out;
1336 }
1337 
1338 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1339 		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1340 {
1341 	size_t total = 0;
1342 
1343 	while (1) {
1344 		const char __user *buf = iov->iov_base + iov_ofs;
1345 		unsigned len;
1346 		size_t left;
1347 
1348 		len = iov->iov_len - iov_ofs;
1349 		if (len > bytes)
1350 			len = bytes;
1351 		left = __copy_from_user_inatomic(vaddr, buf, len);
1352 		total += len;
1353 		bytes -= len;
1354 		vaddr += len;
1355 		if (unlikely(left)) {
1356 			total -= left;
1357 			break;
1358 		}
1359 		if (!bytes)
1360 			break;
1361 		iov++;
1362 		iov_ofs = 0;
1363 	}
1364 	return total;
1365 }
1366 
1367 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1368 		size_t *iov_ofsp, size_t bytes)
1369 {
1370 	const struct iovec *iov = *iovp;
1371 	size_t iov_ofs = *iov_ofsp;
1372 
1373 	while (bytes) {
1374 		unsigned len;
1375 
1376 		len = iov->iov_len - iov_ofs;
1377 		if (len > bytes)
1378 			len = bytes;
1379 		bytes -= len;
1380 		iov_ofs += len;
1381 		if (iov->iov_len == iov_ofs) {
1382 			iov++;
1383 			iov_ofs = 0;
1384 		}
1385 	}
1386 	*iovp = iov;
1387 	*iov_ofsp = iov_ofs;
1388 }
1389 
1390 /*
1391  * This has the same side-effects and return value as ntfs_copy_from_user().
1392  * The difference is that on a fault we need to memset the remainder of the
1393  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1394  * single-segment behaviour.
1395  *
1396  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1397  * when atomic and when not atomic.  This is ok because
1398  * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1399  * and it is ok to call this when non-atomic.
1400  * Infact, the only difference between __copy_from_user_inatomic() and
1401  * __copy_from_user() is that the latter calls might_sleep() and the former
1402  * should not zero the tail of the buffer on error.  And on many
1403  * architectures __copy_from_user_inatomic() is just defined to
1404  * __copy_from_user() so it makes no difference at all on those architectures.
1405  */
1406 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1407 		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1408 		size_t *iov_ofs, size_t bytes)
1409 {
1410 	struct page **last_page = pages + nr_pages;
1411 	char *kaddr;
1412 	size_t copied, len, total = 0;
1413 
1414 	do {
1415 		len = PAGE_CACHE_SIZE - ofs;
1416 		if (len > bytes)
1417 			len = bytes;
1418 		kaddr = kmap_atomic(*pages, KM_USER0);
1419 		copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1420 				*iov, *iov_ofs, len);
1421 		kunmap_atomic(kaddr, KM_USER0);
1422 		if (unlikely(copied != len)) {
1423 			/* Do it the slow way. */
1424 			kaddr = kmap(*pages);
1425 			copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1426 					*iov, *iov_ofs, len);
1427 			/*
1428 			 * Zero the rest of the target like __copy_from_user().
1429 			 */
1430 			memset(kaddr + ofs + copied, 0, len - copied);
1431 			kunmap(*pages);
1432 			if (unlikely(copied != len))
1433 				goto err_out;
1434 		}
1435 		total += len;
1436 		bytes -= len;
1437 		if (!bytes)
1438 			break;
1439 		ntfs_set_next_iovec(iov, iov_ofs, len);
1440 		ofs = 0;
1441 	} while (++pages < last_page);
1442 out:
1443 	return total;
1444 err_out:
1445 	total += copied;
1446 	/* Zero the rest of the target like __copy_from_user(). */
1447 	while (++pages < last_page) {
1448 		bytes -= len;
1449 		if (!bytes)
1450 			break;
1451 		len = PAGE_CACHE_SIZE;
1452 		if (len > bytes)
1453 			len = bytes;
1454 		zero_user_page(*pages, 0, len, KM_USER0);
1455 	}
1456 	goto out;
1457 }
1458 
1459 static inline void ntfs_flush_dcache_pages(struct page **pages,
1460 		unsigned nr_pages)
1461 {
1462 	BUG_ON(!nr_pages);
1463 	/*
1464 	 * Warning: Do not do the decrement at the same time as the call to
1465 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1466 	 * decrement never happens so the loop never terminates.
1467 	 */
1468 	do {
1469 		--nr_pages;
1470 		flush_dcache_page(pages[nr_pages]);
1471 	} while (nr_pages > 0);
1472 }
1473 
1474 /**
1475  * ntfs_commit_pages_after_non_resident_write - commit the received data
1476  * @pages:	array of destination pages
1477  * @nr_pages:	number of pages in @pages
1478  * @pos:	byte position in file at which the write begins
1479  * @bytes:	number of bytes to be written
1480  *
1481  * See description of ntfs_commit_pages_after_write(), below.
1482  */
1483 static inline int ntfs_commit_pages_after_non_resident_write(
1484 		struct page **pages, const unsigned nr_pages,
1485 		s64 pos, size_t bytes)
1486 {
1487 	s64 end, initialized_size;
1488 	struct inode *vi;
1489 	ntfs_inode *ni, *base_ni;
1490 	struct buffer_head *bh, *head;
1491 	ntfs_attr_search_ctx *ctx;
1492 	MFT_RECORD *m;
1493 	ATTR_RECORD *a;
1494 	unsigned long flags;
1495 	unsigned blocksize, u;
1496 	int err;
1497 
1498 	vi = pages[0]->mapping->host;
1499 	ni = NTFS_I(vi);
1500 	blocksize = vi->i_sb->s_blocksize;
1501 	end = pos + bytes;
1502 	u = 0;
1503 	do {
1504 		s64 bh_pos;
1505 		struct page *page;
1506 		bool partial;
1507 
1508 		page = pages[u];
1509 		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1510 		bh = head = page_buffers(page);
1511 		partial = false;
1512 		do {
1513 			s64 bh_end;
1514 
1515 			bh_end = bh_pos + blocksize;
1516 			if (bh_end <= pos || bh_pos >= end) {
1517 				if (!buffer_uptodate(bh))
1518 					partial = true;
1519 			} else {
1520 				set_buffer_uptodate(bh);
1521 				mark_buffer_dirty(bh);
1522 			}
1523 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1524 		/*
1525 		 * If all buffers are now uptodate but the page is not, set the
1526 		 * page uptodate.
1527 		 */
1528 		if (!partial && !PageUptodate(page))
1529 			SetPageUptodate(page);
1530 	} while (++u < nr_pages);
1531 	/*
1532 	 * Finally, if we do not need to update initialized_size or i_size we
1533 	 * are finished.
1534 	 */
1535 	read_lock_irqsave(&ni->size_lock, flags);
1536 	initialized_size = ni->initialized_size;
1537 	read_unlock_irqrestore(&ni->size_lock, flags);
1538 	if (end <= initialized_size) {
1539 		ntfs_debug("Done.");
1540 		return 0;
1541 	}
1542 	/*
1543 	 * Update initialized_size/i_size as appropriate, both in the inode and
1544 	 * the mft record.
1545 	 */
1546 	if (!NInoAttr(ni))
1547 		base_ni = ni;
1548 	else
1549 		base_ni = ni->ext.base_ntfs_ino;
1550 	/* Map, pin, and lock the mft record. */
1551 	m = map_mft_record(base_ni);
1552 	if (IS_ERR(m)) {
1553 		err = PTR_ERR(m);
1554 		m = NULL;
1555 		ctx = NULL;
1556 		goto err_out;
1557 	}
1558 	BUG_ON(!NInoNonResident(ni));
1559 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1560 	if (unlikely(!ctx)) {
1561 		err = -ENOMEM;
1562 		goto err_out;
1563 	}
1564 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1565 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1566 	if (unlikely(err)) {
1567 		if (err == -ENOENT)
1568 			err = -EIO;
1569 		goto err_out;
1570 	}
1571 	a = ctx->attr;
1572 	BUG_ON(!a->non_resident);
1573 	write_lock_irqsave(&ni->size_lock, flags);
1574 	BUG_ON(end > ni->allocated_size);
1575 	ni->initialized_size = end;
1576 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1577 	if (end > i_size_read(vi)) {
1578 		i_size_write(vi, end);
1579 		a->data.non_resident.data_size =
1580 				a->data.non_resident.initialized_size;
1581 	}
1582 	write_unlock_irqrestore(&ni->size_lock, flags);
1583 	/* Mark the mft record dirty, so it gets written back. */
1584 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1585 	mark_mft_record_dirty(ctx->ntfs_ino);
1586 	ntfs_attr_put_search_ctx(ctx);
1587 	unmap_mft_record(base_ni);
1588 	ntfs_debug("Done.");
1589 	return 0;
1590 err_out:
1591 	if (ctx)
1592 		ntfs_attr_put_search_ctx(ctx);
1593 	if (m)
1594 		unmap_mft_record(base_ni);
1595 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1596 			"code %i).", err);
1597 	if (err != -ENOMEM)
1598 		NVolSetErrors(ni->vol);
1599 	return err;
1600 }
1601 
1602 /**
1603  * ntfs_commit_pages_after_write - commit the received data
1604  * @pages:	array of destination pages
1605  * @nr_pages:	number of pages in @pages
1606  * @pos:	byte position in file at which the write begins
1607  * @bytes:	number of bytes to be written
1608  *
1609  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1610  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1611  * locked but not kmap()ped.  The source data has already been copied into the
1612  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1613  * the data was copied (for non-resident attributes only) and it returned
1614  * success.
1615  *
1616  * Need to set uptodate and mark dirty all buffers within the boundary of the
1617  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1618  *
1619  * Setting the buffers dirty ensures that they get written out later when
1620  * ntfs_writepage() is invoked by the VM.
1621  *
1622  * Finally, we need to update i_size and initialized_size as appropriate both
1623  * in the inode and the mft record.
1624  *
1625  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1626  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1627  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1628  * that case, it also marks the inode dirty.
1629  *
1630  * If things have gone as outlined in
1631  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1632  * content modifications here for non-resident attributes.  For resident
1633  * attributes we need to do the uptodate bringing here which we combine with
1634  * the copying into the mft record which means we save one atomic kmap.
1635  *
1636  * Return 0 on success or -errno on error.
1637  */
1638 static int ntfs_commit_pages_after_write(struct page **pages,
1639 		const unsigned nr_pages, s64 pos, size_t bytes)
1640 {
1641 	s64 end, initialized_size;
1642 	loff_t i_size;
1643 	struct inode *vi;
1644 	ntfs_inode *ni, *base_ni;
1645 	struct page *page;
1646 	ntfs_attr_search_ctx *ctx;
1647 	MFT_RECORD *m;
1648 	ATTR_RECORD *a;
1649 	char *kattr, *kaddr;
1650 	unsigned long flags;
1651 	u32 attr_len;
1652 	int err;
1653 
1654 	BUG_ON(!nr_pages);
1655 	BUG_ON(!pages);
1656 	page = pages[0];
1657 	BUG_ON(!page);
1658 	vi = page->mapping->host;
1659 	ni = NTFS_I(vi);
1660 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1661 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1662 			vi->i_ino, ni->type, page->index, nr_pages,
1663 			(long long)pos, bytes);
1664 	if (NInoNonResident(ni))
1665 		return ntfs_commit_pages_after_non_resident_write(pages,
1666 				nr_pages, pos, bytes);
1667 	BUG_ON(nr_pages > 1);
1668 	/*
1669 	 * Attribute is resident, implying it is not compressed, encrypted, or
1670 	 * sparse.
1671 	 */
1672 	if (!NInoAttr(ni))
1673 		base_ni = ni;
1674 	else
1675 		base_ni = ni->ext.base_ntfs_ino;
1676 	BUG_ON(NInoNonResident(ni));
1677 	/* Map, pin, and lock the mft record. */
1678 	m = map_mft_record(base_ni);
1679 	if (IS_ERR(m)) {
1680 		err = PTR_ERR(m);
1681 		m = NULL;
1682 		ctx = NULL;
1683 		goto err_out;
1684 	}
1685 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1686 	if (unlikely(!ctx)) {
1687 		err = -ENOMEM;
1688 		goto err_out;
1689 	}
1690 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1691 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1692 	if (unlikely(err)) {
1693 		if (err == -ENOENT)
1694 			err = -EIO;
1695 		goto err_out;
1696 	}
1697 	a = ctx->attr;
1698 	BUG_ON(a->non_resident);
1699 	/* The total length of the attribute value. */
1700 	attr_len = le32_to_cpu(a->data.resident.value_length);
1701 	i_size = i_size_read(vi);
1702 	BUG_ON(attr_len != i_size);
1703 	BUG_ON(pos > attr_len);
1704 	end = pos + bytes;
1705 	BUG_ON(end > le32_to_cpu(a->length) -
1706 			le16_to_cpu(a->data.resident.value_offset));
1707 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1708 	kaddr = kmap_atomic(page, KM_USER0);
1709 	/* Copy the received data from the page to the mft record. */
1710 	memcpy(kattr + pos, kaddr + pos, bytes);
1711 	/* Update the attribute length if necessary. */
1712 	if (end > attr_len) {
1713 		attr_len = end;
1714 		a->data.resident.value_length = cpu_to_le32(attr_len);
1715 	}
1716 	/*
1717 	 * If the page is not uptodate, bring the out of bounds area(s)
1718 	 * uptodate by copying data from the mft record to the page.
1719 	 */
1720 	if (!PageUptodate(page)) {
1721 		if (pos > 0)
1722 			memcpy(kaddr, kattr, pos);
1723 		if (end < attr_len)
1724 			memcpy(kaddr + end, kattr + end, attr_len - end);
1725 		/* Zero the region outside the end of the attribute value. */
1726 		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1727 		flush_dcache_page(page);
1728 		SetPageUptodate(page);
1729 	}
1730 	kunmap_atomic(kaddr, KM_USER0);
1731 	/* Update initialized_size/i_size if necessary. */
1732 	read_lock_irqsave(&ni->size_lock, flags);
1733 	initialized_size = ni->initialized_size;
1734 	BUG_ON(end > ni->allocated_size);
1735 	read_unlock_irqrestore(&ni->size_lock, flags);
1736 	BUG_ON(initialized_size != i_size);
1737 	if (end > initialized_size) {
1738 		unsigned long flags;
1739 
1740 		write_lock_irqsave(&ni->size_lock, flags);
1741 		ni->initialized_size = end;
1742 		i_size_write(vi, end);
1743 		write_unlock_irqrestore(&ni->size_lock, flags);
1744 	}
1745 	/* Mark the mft record dirty, so it gets written back. */
1746 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1747 	mark_mft_record_dirty(ctx->ntfs_ino);
1748 	ntfs_attr_put_search_ctx(ctx);
1749 	unmap_mft_record(base_ni);
1750 	ntfs_debug("Done.");
1751 	return 0;
1752 err_out:
1753 	if (err == -ENOMEM) {
1754 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1755 				"commit the write.");
1756 		if (PageUptodate(page)) {
1757 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1758 					"dirty so the write will be retried "
1759 					"later on by the VM.");
1760 			/*
1761 			 * Put the page on mapping->dirty_pages, but leave its
1762 			 * buffers' dirty state as-is.
1763 			 */
1764 			__set_page_dirty_nobuffers(page);
1765 			err = 0;
1766 		} else
1767 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1768 					"data has been lost.");
1769 	} else {
1770 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1771 				"with error %i.", err);
1772 		NVolSetErrors(ni->vol);
1773 	}
1774 	if (ctx)
1775 		ntfs_attr_put_search_ctx(ctx);
1776 	if (m)
1777 		unmap_mft_record(base_ni);
1778 	return err;
1779 }
1780 
1781 /**
1782  * ntfs_file_buffered_write -
1783  *
1784  * Locking: The vfs is holding ->i_mutex on the inode.
1785  */
1786 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1787 		const struct iovec *iov, unsigned long nr_segs,
1788 		loff_t pos, loff_t *ppos, size_t count)
1789 {
1790 	struct file *file = iocb->ki_filp;
1791 	struct address_space *mapping = file->f_mapping;
1792 	struct inode *vi = mapping->host;
1793 	ntfs_inode *ni = NTFS_I(vi);
1794 	ntfs_volume *vol = ni->vol;
1795 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1796 	struct page *cached_page = NULL;
1797 	char __user *buf = NULL;
1798 	s64 end, ll;
1799 	VCN last_vcn;
1800 	LCN lcn;
1801 	unsigned long flags;
1802 	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1803 	ssize_t status, written;
1804 	unsigned nr_pages;
1805 	int err;
1806 	struct pagevec lru_pvec;
1807 
1808 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1809 			"pos 0x%llx, count 0x%lx.",
1810 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1811 			(unsigned long long)pos, (unsigned long)count);
1812 	if (unlikely(!count))
1813 		return 0;
1814 	BUG_ON(NInoMstProtected(ni));
1815 	/*
1816 	 * If the attribute is not an index root and it is encrypted or
1817 	 * compressed, we cannot write to it yet.  Note we need to check for
1818 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1819 	 * index inodes.
1820 	 */
1821 	if (ni->type != AT_INDEX_ALLOCATION) {
1822 		/* If file is encrypted, deny access, just like NT4. */
1823 		if (NInoEncrypted(ni)) {
1824 			/*
1825 			 * Reminder for later: Encrypted files are _always_
1826 			 * non-resident so that the content can always be
1827 			 * encrypted.
1828 			 */
1829 			ntfs_debug("Denying write access to encrypted file.");
1830 			return -EACCES;
1831 		}
1832 		if (NInoCompressed(ni)) {
1833 			/* Only unnamed $DATA attribute can be compressed. */
1834 			BUG_ON(ni->type != AT_DATA);
1835 			BUG_ON(ni->name_len);
1836 			/*
1837 			 * Reminder for later: If resident, the data is not
1838 			 * actually compressed.  Only on the switch to non-
1839 			 * resident does compression kick in.  This is in
1840 			 * contrast to encrypted files (see above).
1841 			 */
1842 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1843 					"not implemented yet.  Sorry.");
1844 			return -EOPNOTSUPP;
1845 		}
1846 	}
1847 	/*
1848 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1849 	 * fails again.
1850 	 */
1851 	if (unlikely(NInoTruncateFailed(ni))) {
1852 		down_write(&vi->i_alloc_sem);
1853 		err = ntfs_truncate(vi);
1854 		up_write(&vi->i_alloc_sem);
1855 		if (err || NInoTruncateFailed(ni)) {
1856 			if (!err)
1857 				err = -EIO;
1858 			ntfs_error(vol->sb, "Cannot perform write to inode "
1859 					"0x%lx, attribute type 0x%x, because "
1860 					"ntfs_truncate() failed (error code "
1861 					"%i).", vi->i_ino,
1862 					(unsigned)le32_to_cpu(ni->type), err);
1863 			return err;
1864 		}
1865 	}
1866 	/* The first byte after the write. */
1867 	end = pos + count;
1868 	/*
1869 	 * If the write goes beyond the allocated size, extend the allocation
1870 	 * to cover the whole of the write, rounded up to the nearest cluster.
1871 	 */
1872 	read_lock_irqsave(&ni->size_lock, flags);
1873 	ll = ni->allocated_size;
1874 	read_unlock_irqrestore(&ni->size_lock, flags);
1875 	if (end > ll) {
1876 		/* Extend the allocation without changing the data size. */
1877 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1878 		if (likely(ll >= 0)) {
1879 			BUG_ON(pos >= ll);
1880 			/* If the extension was partial truncate the write. */
1881 			if (end > ll) {
1882 				ntfs_debug("Truncating write to inode 0x%lx, "
1883 						"attribute type 0x%x, because "
1884 						"the allocation was only "
1885 						"partially extended.",
1886 						vi->i_ino, (unsigned)
1887 						le32_to_cpu(ni->type));
1888 				end = ll;
1889 				count = ll - pos;
1890 			}
1891 		} else {
1892 			err = ll;
1893 			read_lock_irqsave(&ni->size_lock, flags);
1894 			ll = ni->allocated_size;
1895 			read_unlock_irqrestore(&ni->size_lock, flags);
1896 			/* Perform a partial write if possible or fail. */
1897 			if (pos < ll) {
1898 				ntfs_debug("Truncating write to inode 0x%lx, "
1899 						"attribute type 0x%x, because "
1900 						"extending the allocation "
1901 						"failed (error code %i).",
1902 						vi->i_ino, (unsigned)
1903 						le32_to_cpu(ni->type), err);
1904 				end = ll;
1905 				count = ll - pos;
1906 			} else {
1907 				ntfs_error(vol->sb, "Cannot perform write to "
1908 						"inode 0x%lx, attribute type "
1909 						"0x%x, because extending the "
1910 						"allocation failed (error "
1911 						"code %i).", vi->i_ino,
1912 						(unsigned)
1913 						le32_to_cpu(ni->type), err);
1914 				return err;
1915 			}
1916 		}
1917 	}
1918 	pagevec_init(&lru_pvec, 0);
1919 	written = 0;
1920 	/*
1921 	 * If the write starts beyond the initialized size, extend it up to the
1922 	 * beginning of the write and initialize all non-sparse space between
1923 	 * the old initialized size and the new one.  This automatically also
1924 	 * increments the vfs inode->i_size to keep it above or equal to the
1925 	 * initialized_size.
1926 	 */
1927 	read_lock_irqsave(&ni->size_lock, flags);
1928 	ll = ni->initialized_size;
1929 	read_unlock_irqrestore(&ni->size_lock, flags);
1930 	if (pos > ll) {
1931 		err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1932 				&lru_pvec);
1933 		if (err < 0) {
1934 			ntfs_error(vol->sb, "Cannot perform write to inode "
1935 					"0x%lx, attribute type 0x%x, because "
1936 					"extending the initialized size "
1937 					"failed (error code %i).", vi->i_ino,
1938 					(unsigned)le32_to_cpu(ni->type), err);
1939 			status = err;
1940 			goto err_out;
1941 		}
1942 	}
1943 	/*
1944 	 * Determine the number of pages per cluster for non-resident
1945 	 * attributes.
1946 	 */
1947 	nr_pages = 1;
1948 	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1949 		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1950 	/* Finally, perform the actual write. */
1951 	last_vcn = -1;
1952 	if (likely(nr_segs == 1))
1953 		buf = iov->iov_base;
1954 	do {
1955 		VCN vcn;
1956 		pgoff_t idx, start_idx;
1957 		unsigned ofs, do_pages, u;
1958 		size_t copied;
1959 
1960 		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1961 		ofs = pos & ~PAGE_CACHE_MASK;
1962 		bytes = PAGE_CACHE_SIZE - ofs;
1963 		do_pages = 1;
1964 		if (nr_pages > 1) {
1965 			vcn = pos >> vol->cluster_size_bits;
1966 			if (vcn != last_vcn) {
1967 				last_vcn = vcn;
1968 				/*
1969 				 * Get the lcn of the vcn the write is in.  If
1970 				 * it is a hole, need to lock down all pages in
1971 				 * the cluster.
1972 				 */
1973 				down_read(&ni->runlist.lock);
1974 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1975 						vol->cluster_size_bits, false);
1976 				up_read(&ni->runlist.lock);
1977 				if (unlikely(lcn < LCN_HOLE)) {
1978 					status = -EIO;
1979 					if (lcn == LCN_ENOMEM)
1980 						status = -ENOMEM;
1981 					else
1982 						ntfs_error(vol->sb, "Cannot "
1983 							"perform write to "
1984 							"inode 0x%lx, "
1985 							"attribute type 0x%x, "
1986 							"because the attribute "
1987 							"is corrupt.",
1988 							vi->i_ino, (unsigned)
1989 							le32_to_cpu(ni->type));
1990 					break;
1991 				}
1992 				if (lcn == LCN_HOLE) {
1993 					start_idx = (pos & ~(s64)
1994 							vol->cluster_size_mask)
1995 							>> PAGE_CACHE_SHIFT;
1996 					bytes = vol->cluster_size - (pos &
1997 							vol->cluster_size_mask);
1998 					do_pages = nr_pages;
1999 				}
2000 			}
2001 		}
2002 		if (bytes > count)
2003 			bytes = count;
2004 		/*
2005 		 * Bring in the user page(s) that we will copy from _first_.
2006 		 * Otherwise there is a nasty deadlock on copying from the same
2007 		 * page(s) as we are writing to, without it/them being marked
2008 		 * up-to-date.  Note, at present there is nothing to stop the
2009 		 * pages being swapped out between us bringing them into memory
2010 		 * and doing the actual copying.
2011 		 */
2012 		if (likely(nr_segs == 1))
2013 			ntfs_fault_in_pages_readable(buf, bytes);
2014 		else
2015 			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2016 		/* Get and lock @do_pages starting at index @start_idx. */
2017 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2018 				pages, &cached_page, &lru_pvec);
2019 		if (unlikely(status))
2020 			break;
2021 		/*
2022 		 * For non-resident attributes, we need to fill any holes with
2023 		 * actual clusters and ensure all bufferes are mapped.  We also
2024 		 * need to bring uptodate any buffers that are only partially
2025 		 * being written to.
2026 		 */
2027 		if (NInoNonResident(ni)) {
2028 			status = ntfs_prepare_pages_for_non_resident_write(
2029 					pages, do_pages, pos, bytes);
2030 			if (unlikely(status)) {
2031 				loff_t i_size;
2032 
2033 				do {
2034 					unlock_page(pages[--do_pages]);
2035 					page_cache_release(pages[do_pages]);
2036 				} while (do_pages);
2037 				/*
2038 				 * The write preparation may have instantiated
2039 				 * allocated space outside i_size.  Trim this
2040 				 * off again.  We can ignore any errors in this
2041 				 * case as we will just be waisting a bit of
2042 				 * allocated space, which is not a disaster.
2043 				 */
2044 				i_size = i_size_read(vi);
2045 				if (pos + bytes > i_size)
2046 					vmtruncate(vi, i_size);
2047 				break;
2048 			}
2049 		}
2050 		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2051 		if (likely(nr_segs == 1)) {
2052 			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2053 					ofs, buf, bytes);
2054 			buf += copied;
2055 		} else
2056 			copied = ntfs_copy_from_user_iovec(pages + u,
2057 					do_pages - u, ofs, &iov, &iov_ofs,
2058 					bytes);
2059 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2060 		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2061 				bytes);
2062 		if (likely(!status)) {
2063 			written += copied;
2064 			count -= copied;
2065 			pos += copied;
2066 			if (unlikely(copied != bytes))
2067 				status = -EFAULT;
2068 		}
2069 		do {
2070 			unlock_page(pages[--do_pages]);
2071 			mark_page_accessed(pages[do_pages]);
2072 			page_cache_release(pages[do_pages]);
2073 		} while (do_pages);
2074 		if (unlikely(status))
2075 			break;
2076 		balance_dirty_pages_ratelimited(mapping);
2077 		cond_resched();
2078 	} while (count);
2079 err_out:
2080 	*ppos = pos;
2081 	if (cached_page)
2082 		page_cache_release(cached_page);
2083 	/* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2084 	if (likely(!status)) {
2085 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2086 			if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2087 				status = generic_osync_inode(vi, mapping,
2088 						OSYNC_METADATA|OSYNC_DATA);
2089 		}
2090   	}
2091 	pagevec_lru_add(&lru_pvec);
2092 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2093 			written ? "written" : "status", (unsigned long)written,
2094 			(long)status);
2095 	return written ? written : status;
2096 }
2097 
2098 /**
2099  * ntfs_file_aio_write_nolock -
2100  */
2101 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2102 		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2103 {
2104 	struct file *file = iocb->ki_filp;
2105 	struct address_space *mapping = file->f_mapping;
2106 	struct inode *inode = mapping->host;
2107 	loff_t pos;
2108 	size_t count;		/* after file limit checks */
2109 	ssize_t written, err;
2110 
2111 	count = 0;
2112 	err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2113 	if (err)
2114 		return err;
2115 	pos = *ppos;
2116 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2117 	/* We can write back this queue in page reclaim. */
2118 	current->backing_dev_info = mapping->backing_dev_info;
2119 	written = 0;
2120 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2121 	if (err)
2122 		goto out;
2123 	if (!count)
2124 		goto out;
2125 	err = remove_suid(file->f_path.dentry);
2126 	if (err)
2127 		goto out;
2128 	file_update_time(file);
2129 	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2130 			count);
2131 out:
2132 	current->backing_dev_info = NULL;
2133 	return written ? written : err;
2134 }
2135 
2136 /**
2137  * ntfs_file_aio_write -
2138  */
2139 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2140 		unsigned long nr_segs, loff_t pos)
2141 {
2142 	struct file *file = iocb->ki_filp;
2143 	struct address_space *mapping = file->f_mapping;
2144 	struct inode *inode = mapping->host;
2145 	ssize_t ret;
2146 
2147 	BUG_ON(iocb->ki_pos != pos);
2148 
2149 	mutex_lock(&inode->i_mutex);
2150 	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2151 	mutex_unlock(&inode->i_mutex);
2152 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2153 		int err = sync_page_range(inode, mapping, pos, ret);
2154 		if (err < 0)
2155 			ret = err;
2156 	}
2157 	return ret;
2158 }
2159 
2160 /**
2161  * ntfs_file_writev -
2162  *
2163  * Basically the same as generic_file_writev() except that it ends up calling
2164  * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2165  */
2166 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2167 		unsigned long nr_segs, loff_t *ppos)
2168 {
2169 	struct address_space *mapping = file->f_mapping;
2170 	struct inode *inode = mapping->host;
2171 	struct kiocb kiocb;
2172 	ssize_t ret;
2173 
2174 	mutex_lock(&inode->i_mutex);
2175 	init_sync_kiocb(&kiocb, file);
2176 	ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2177 	if (ret == -EIOCBQUEUED)
2178 		ret = wait_on_sync_kiocb(&kiocb);
2179 	mutex_unlock(&inode->i_mutex);
2180 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2181 		int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2182 		if (err < 0)
2183 			ret = err;
2184 	}
2185 	return ret;
2186 }
2187 
2188 /**
2189  * ntfs_file_write - simple wrapper for ntfs_file_writev()
2190  */
2191 static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2192 		size_t count, loff_t *ppos)
2193 {
2194 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2195 				   .iov_len = count };
2196 
2197 	return ntfs_file_writev(file, &local_iov, 1, ppos);
2198 }
2199 
2200 /**
2201  * ntfs_file_fsync - sync a file to disk
2202  * @filp:	file to be synced
2203  * @dentry:	dentry describing the file to sync
2204  * @datasync:	if non-zero only flush user data and not metadata
2205  *
2206  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2207  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2208  *
2209  * If @datasync is false, write the mft record and all associated extent mft
2210  * records as well as the $DATA attribute and then sync the block device.
2211  *
2212  * If @datasync is true and the attribute is non-resident, we skip the writing
2213  * of the mft record and all associated extent mft records (this might still
2214  * happen due to the write_inode_now() call).
2215  *
2216  * Also, if @datasync is true, we do not wait on the inode to be written out
2217  * but we always wait on the page cache pages to be written out.
2218  *
2219  * Note: In the past @filp could be NULL so we ignore it as we don't need it
2220  * anyway.
2221  *
2222  * Locking: Caller must hold i_mutex on the inode.
2223  *
2224  * TODO: We should probably also write all attribute/index inodes associated
2225  * with this inode but since we have no simple way of getting to them we ignore
2226  * this problem for now.
2227  */
2228 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2229 		int datasync)
2230 {
2231 	struct inode *vi = dentry->d_inode;
2232 	int err, ret = 0;
2233 
2234 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2235 	BUG_ON(S_ISDIR(vi->i_mode));
2236 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2237 		ret = ntfs_write_inode(vi, 1);
2238 	write_inode_now(vi, !datasync);
2239 	/*
2240 	 * NOTE: If we were to use mapping->private_list (see ext2 and
2241 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2242 	 * sync_mapping_buffers(vi->i_mapping).
2243 	 */
2244 	err = sync_blockdev(vi->i_sb->s_bdev);
2245 	if (unlikely(err && !ret))
2246 		ret = err;
2247 	if (likely(!ret))
2248 		ntfs_debug("Done.");
2249 	else
2250 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2251 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2252 	return ret;
2253 }
2254 
2255 #endif /* NTFS_RW */
2256 
2257 const struct file_operations ntfs_file_ops = {
2258 	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2259 	.read		= do_sync_read,		 /* Read from file. */
2260 	.aio_read	= generic_file_aio_read, /* Async read from file. */
2261 #ifdef NTFS_RW
2262 	.write		= ntfs_file_write,	 /* Write to file. */
2263 	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2264 	/*.release	= ,*/			 /* Last file is closed.  See
2265 						    fs/ext2/file.c::
2266 						    ext2_release_file() for
2267 						    how to use this to discard
2268 						    preallocated space for
2269 						    write opened files. */
2270 	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2271 	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2272 						    i/o operations on a
2273 						    kiocb. */
2274 #endif /* NTFS_RW */
2275 	/*.ioctl	= ,*/			 /* Perform function on the
2276 						    mounted filesystem. */
2277 	.mmap		= generic_file_mmap,	 /* Mmap file. */
2278 	.open		= ntfs_file_open,	 /* Open file. */
2279 	.splice_read	= generic_file_splice_read /* Zero-copy data send with
2280 						    the data source being on
2281 						    the ntfs partition.  We do
2282 						    not need to care about the
2283 						    data destination. */
2284 	/*.sendpage	= ,*/			 /* Zero-copy data send with
2285 						    the data destination being
2286 						    on the ntfs partition.  We
2287 						    do not need to care about
2288 						    the data source. */
2289 };
2290 
2291 const struct inode_operations ntfs_file_inode_ops = {
2292 #ifdef NTFS_RW
2293 	.truncate	= ntfs_truncate_vfs,
2294 	.setattr	= ntfs_setattr,
2295 #endif /* NTFS_RW */
2296 };
2297 
2298 const struct file_operations ntfs_empty_file_ops = {};
2299 
2300 const struct inode_operations ntfs_empty_inode_ops = {};
2301