1 /* 2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/pagemap.h> 24 #include <linux/pagevec.h> 25 #include <linux/sched.h> 26 #include <linux/swap.h> 27 #include <linux/uio.h> 28 #include <linux/writeback.h> 29 30 #include <asm/page.h> 31 #include <asm/uaccess.h> 32 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "inode.h" 36 #include "debug.h" 37 #include "lcnalloc.h" 38 #include "malloc.h" 39 #include "mft.h" 40 #include "ntfs.h" 41 42 /** 43 * ntfs_file_open - called when an inode is about to be opened 44 * @vi: inode to be opened 45 * @filp: file structure describing the inode 46 * 47 * Limit file size to the page cache limit on architectures where unsigned long 48 * is 32-bits. This is the most we can do for now without overflowing the page 49 * cache page index. Doing it this way means we don't run into problems because 50 * of existing too large files. It would be better to allow the user to read 51 * the beginning of the file but I doubt very much anyone is going to hit this 52 * check on a 32-bit architecture, so there is no point in adding the extra 53 * complexity required to support this. 54 * 55 * On 64-bit architectures, the check is hopefully optimized away by the 56 * compiler. 57 * 58 * After the check passes, just call generic_file_open() to do its work. 59 */ 60 static int ntfs_file_open(struct inode *vi, struct file *filp) 61 { 62 if (sizeof(unsigned long) < 8) { 63 if (i_size_read(vi) > MAX_LFS_FILESIZE) 64 return -EOVERFLOW; 65 } 66 return generic_file_open(vi, filp); 67 } 68 69 #ifdef NTFS_RW 70 71 /** 72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute 73 * @ni: ntfs inode of the attribute to extend 74 * @new_init_size: requested new initialized size in bytes 75 * @cached_page: store any allocated but unused page here 76 * @lru_pvec: lru-buffering pagevec of the caller 77 * 78 * Extend the initialized size of an attribute described by the ntfs inode @ni 79 * to @new_init_size bytes. This involves zeroing any non-sparse space between 80 * the old initialized size and @new_init_size both in the page cache and on 81 * disk (if relevant complete pages are already uptodate in the page cache then 82 * these are simply marked dirty). 83 * 84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as, 85 * in the resident attribute case, it is tied to the initialized size and, in 86 * the non-resident attribute case, it may not fall below the initialized size. 87 * 88 * Note that if the attribute is resident, we do not need to touch the page 89 * cache at all. This is because if the page cache page is not uptodate we 90 * bring it uptodate later, when doing the write to the mft record since we 91 * then already have the page mapped. And if the page is uptodate, the 92 * non-initialized region will already have been zeroed when the page was 93 * brought uptodate and the region may in fact already have been overwritten 94 * with new data via mmap() based writes, so we cannot just zero it. And since 95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped 96 * is unspecified, we choose not to do zeroing and thus we do not need to touch 97 * the page at all. For a more detailed explanation see ntfs_truncate() in 98 * fs/ntfs/inode.c. 99 * 100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple 101 * pages. 102 * 103 * Return 0 on success and -errno on error. In the case that an error is 104 * encountered it is possible that the initialized size will already have been 105 * incremented some way towards @new_init_size but it is guaranteed that if 106 * this is the case, the necessary zeroing will also have happened and that all 107 * metadata is self-consistent. 108 * 109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be 110 * held by the caller. 111 */ 112 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, 113 struct page **cached_page, struct pagevec *lru_pvec) 114 { 115 s64 old_init_size; 116 loff_t old_i_size; 117 pgoff_t index, end_index; 118 unsigned long flags; 119 struct inode *vi = VFS_I(ni); 120 ntfs_inode *base_ni; 121 MFT_RECORD *m = NULL; 122 ATTR_RECORD *a; 123 ntfs_attr_search_ctx *ctx = NULL; 124 struct address_space *mapping; 125 struct page *page = NULL; 126 u8 *kattr; 127 int err; 128 u32 attr_len; 129 130 read_lock_irqsave(&ni->size_lock, flags); 131 old_init_size = ni->initialized_size; 132 old_i_size = i_size_read(vi); 133 BUG_ON(new_init_size > ni->allocated_size); 134 read_unlock_irqrestore(&ni->size_lock, flags); 135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 136 "old_initialized_size 0x%llx, " 137 "new_initialized_size 0x%llx, i_size 0x%llx.", 138 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 139 (unsigned long long)old_init_size, 140 (unsigned long long)new_init_size, old_i_size); 141 if (!NInoAttr(ni)) 142 base_ni = ni; 143 else 144 base_ni = ni->ext.base_ntfs_ino; 145 /* Use goto to reduce indentation and we need the label below anyway. */ 146 if (NInoNonResident(ni)) 147 goto do_non_resident_extend; 148 BUG_ON(old_init_size != old_i_size); 149 m = map_mft_record(base_ni); 150 if (IS_ERR(m)) { 151 err = PTR_ERR(m); 152 m = NULL; 153 goto err_out; 154 } 155 ctx = ntfs_attr_get_search_ctx(base_ni, m); 156 if (unlikely(!ctx)) { 157 err = -ENOMEM; 158 goto err_out; 159 } 160 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 161 CASE_SENSITIVE, 0, NULL, 0, ctx); 162 if (unlikely(err)) { 163 if (err == -ENOENT) 164 err = -EIO; 165 goto err_out; 166 } 167 m = ctx->mrec; 168 a = ctx->attr; 169 BUG_ON(a->non_resident); 170 /* The total length of the attribute value. */ 171 attr_len = le32_to_cpu(a->data.resident.value_length); 172 BUG_ON(old_i_size != (loff_t)attr_len); 173 /* 174 * Do the zeroing in the mft record and update the attribute size in 175 * the mft record. 176 */ 177 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 178 memset(kattr + attr_len, 0, new_init_size - attr_len); 179 a->data.resident.value_length = cpu_to_le32((u32)new_init_size); 180 /* Finally, update the sizes in the vfs and ntfs inodes. */ 181 write_lock_irqsave(&ni->size_lock, flags); 182 i_size_write(vi, new_init_size); 183 ni->initialized_size = new_init_size; 184 write_unlock_irqrestore(&ni->size_lock, flags); 185 goto done; 186 do_non_resident_extend: 187 /* 188 * If the new initialized size @new_init_size exceeds the current file 189 * size (vfs inode->i_size), we need to extend the file size to the 190 * new initialized size. 191 */ 192 if (new_init_size > old_i_size) { 193 m = map_mft_record(base_ni); 194 if (IS_ERR(m)) { 195 err = PTR_ERR(m); 196 m = NULL; 197 goto err_out; 198 } 199 ctx = ntfs_attr_get_search_ctx(base_ni, m); 200 if (unlikely(!ctx)) { 201 err = -ENOMEM; 202 goto err_out; 203 } 204 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 205 CASE_SENSITIVE, 0, NULL, 0, ctx); 206 if (unlikely(err)) { 207 if (err == -ENOENT) 208 err = -EIO; 209 goto err_out; 210 } 211 m = ctx->mrec; 212 a = ctx->attr; 213 BUG_ON(!a->non_resident); 214 BUG_ON(old_i_size != (loff_t) 215 sle64_to_cpu(a->data.non_resident.data_size)); 216 a->data.non_resident.data_size = cpu_to_sle64(new_init_size); 217 flush_dcache_mft_record_page(ctx->ntfs_ino); 218 mark_mft_record_dirty(ctx->ntfs_ino); 219 /* Update the file size in the vfs inode. */ 220 i_size_write(vi, new_init_size); 221 ntfs_attr_put_search_ctx(ctx); 222 ctx = NULL; 223 unmap_mft_record(base_ni); 224 m = NULL; 225 } 226 mapping = vi->i_mapping; 227 index = old_init_size >> PAGE_CACHE_SHIFT; 228 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 229 do { 230 /* 231 * Read the page. If the page is not present, this will zero 232 * the uninitialized regions for us. 233 */ 234 page = read_mapping_page(mapping, index, NULL); 235 if (IS_ERR(page)) { 236 err = PTR_ERR(page); 237 goto init_err_out; 238 } 239 if (unlikely(PageError(page))) { 240 page_cache_release(page); 241 err = -EIO; 242 goto init_err_out; 243 } 244 /* 245 * Update the initialized size in the ntfs inode. This is 246 * enough to make ntfs_writepage() work. 247 */ 248 write_lock_irqsave(&ni->size_lock, flags); 249 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; 250 if (ni->initialized_size > new_init_size) 251 ni->initialized_size = new_init_size; 252 write_unlock_irqrestore(&ni->size_lock, flags); 253 /* Set the page dirty so it gets written out. */ 254 set_page_dirty(page); 255 page_cache_release(page); 256 /* 257 * Play nice with the vm and the rest of the system. This is 258 * very much needed as we can potentially be modifying the 259 * initialised size from a very small value to a really huge 260 * value, e.g. 261 * f = open(somefile, O_TRUNC); 262 * truncate(f, 10GiB); 263 * seek(f, 10GiB); 264 * write(f, 1); 265 * And this would mean we would be marking dirty hundreds of 266 * thousands of pages or as in the above example more than 267 * two and a half million pages! 268 * 269 * TODO: For sparse pages could optimize this workload by using 270 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This 271 * would be set in readpage for sparse pages and here we would 272 * not need to mark dirty any pages which have this bit set. 273 * The only caveat is that we have to clear the bit everywhere 274 * where we allocate any clusters that lie in the page or that 275 * contain the page. 276 * 277 * TODO: An even greater optimization would be for us to only 278 * call readpage() on pages which are not in sparse regions as 279 * determined from the runlist. This would greatly reduce the 280 * number of pages we read and make dirty in the case of sparse 281 * files. 282 */ 283 balance_dirty_pages_ratelimited(mapping); 284 cond_resched(); 285 } while (++index < end_index); 286 read_lock_irqsave(&ni->size_lock, flags); 287 BUG_ON(ni->initialized_size != new_init_size); 288 read_unlock_irqrestore(&ni->size_lock, flags); 289 /* Now bring in sync the initialized_size in the mft record. */ 290 m = map_mft_record(base_ni); 291 if (IS_ERR(m)) { 292 err = PTR_ERR(m); 293 m = NULL; 294 goto init_err_out; 295 } 296 ctx = ntfs_attr_get_search_ctx(base_ni, m); 297 if (unlikely(!ctx)) { 298 err = -ENOMEM; 299 goto init_err_out; 300 } 301 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 302 CASE_SENSITIVE, 0, NULL, 0, ctx); 303 if (unlikely(err)) { 304 if (err == -ENOENT) 305 err = -EIO; 306 goto init_err_out; 307 } 308 m = ctx->mrec; 309 a = ctx->attr; 310 BUG_ON(!a->non_resident); 311 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); 312 done: 313 flush_dcache_mft_record_page(ctx->ntfs_ino); 314 mark_mft_record_dirty(ctx->ntfs_ino); 315 if (ctx) 316 ntfs_attr_put_search_ctx(ctx); 317 if (m) 318 unmap_mft_record(base_ni); 319 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", 320 (unsigned long long)new_init_size, i_size_read(vi)); 321 return 0; 322 init_err_out: 323 write_lock_irqsave(&ni->size_lock, flags); 324 ni->initialized_size = old_init_size; 325 write_unlock_irqrestore(&ni->size_lock, flags); 326 err_out: 327 if (ctx) 328 ntfs_attr_put_search_ctx(ctx); 329 if (m) 330 unmap_mft_record(base_ni); 331 ntfs_debug("Failed. Returning error code %i.", err); 332 return err; 333 } 334 335 /** 336 * ntfs_fault_in_pages_readable - 337 * 338 * Fault a number of userspace pages into pagetables. 339 * 340 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes 341 * with more than two userspace pages as well as handling the single page case 342 * elegantly. 343 * 344 * If you find this difficult to understand, then think of the while loop being 345 * the following code, except that we do without the integer variable ret: 346 * 347 * do { 348 * ret = __get_user(c, uaddr); 349 * uaddr += PAGE_SIZE; 350 * } while (!ret && uaddr < end); 351 * 352 * Note, the final __get_user() may well run out-of-bounds of the user buffer, 353 * but _not_ out-of-bounds of the page the user buffer belongs to, and since 354 * this is only a read and not a write, and since it is still in the same page, 355 * it should not matter and this makes the code much simpler. 356 */ 357 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, 358 int bytes) 359 { 360 const char __user *end; 361 volatile char c; 362 363 /* Set @end to the first byte outside the last page we care about. */ 364 end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes); 365 366 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) 367 ; 368 } 369 370 /** 371 * ntfs_fault_in_pages_readable_iovec - 372 * 373 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. 374 */ 375 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, 376 size_t iov_ofs, int bytes) 377 { 378 do { 379 const char __user *buf; 380 unsigned len; 381 382 buf = iov->iov_base + iov_ofs; 383 len = iov->iov_len - iov_ofs; 384 if (len > bytes) 385 len = bytes; 386 ntfs_fault_in_pages_readable(buf, len); 387 bytes -= len; 388 iov++; 389 iov_ofs = 0; 390 } while (bytes); 391 } 392 393 /** 394 * __ntfs_grab_cache_pages - obtain a number of locked pages 395 * @mapping: address space mapping from which to obtain page cache pages 396 * @index: starting index in @mapping at which to begin obtaining pages 397 * @nr_pages: number of page cache pages to obtain 398 * @pages: array of pages in which to return the obtained page cache pages 399 * @cached_page: allocated but as yet unused page 400 * @lru_pvec: lru-buffering pagevec of caller 401 * 402 * Obtain @nr_pages locked page cache pages from the mapping @maping and 403 * starting at index @index. 404 * 405 * If a page is newly created, increment its refcount and add it to the 406 * caller's lru-buffering pagevec @lru_pvec. 407 * 408 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages 409 * are obtained at once instead of just one page and that 0 is returned on 410 * success and -errno on error. 411 * 412 * Note, the page locks are obtained in ascending page index order. 413 */ 414 static inline int __ntfs_grab_cache_pages(struct address_space *mapping, 415 pgoff_t index, const unsigned nr_pages, struct page **pages, 416 struct page **cached_page, struct pagevec *lru_pvec) 417 { 418 int err, nr; 419 420 BUG_ON(!nr_pages); 421 err = nr = 0; 422 do { 423 pages[nr] = find_lock_page(mapping, index); 424 if (!pages[nr]) { 425 if (!*cached_page) { 426 *cached_page = page_cache_alloc(mapping); 427 if (unlikely(!*cached_page)) { 428 err = -ENOMEM; 429 goto err_out; 430 } 431 } 432 err = add_to_page_cache(*cached_page, mapping, index, 433 GFP_KERNEL); 434 if (unlikely(err)) { 435 if (err == -EEXIST) 436 continue; 437 goto err_out; 438 } 439 pages[nr] = *cached_page; 440 page_cache_get(*cached_page); 441 if (unlikely(!pagevec_add(lru_pvec, *cached_page))) 442 __pagevec_lru_add(lru_pvec); 443 *cached_page = NULL; 444 } 445 index++; 446 nr++; 447 } while (nr < nr_pages); 448 out: 449 return err; 450 err_out: 451 while (nr > 0) { 452 unlock_page(pages[--nr]); 453 page_cache_release(pages[nr]); 454 } 455 goto out; 456 } 457 458 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) 459 { 460 lock_buffer(bh); 461 get_bh(bh); 462 bh->b_end_io = end_buffer_read_sync; 463 return submit_bh(READ, bh); 464 } 465 466 /** 467 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data 468 * @pages: array of destination pages 469 * @nr_pages: number of pages in @pages 470 * @pos: byte position in file at which the write begins 471 * @bytes: number of bytes to be written 472 * 473 * This is called for non-resident attributes from ntfs_file_buffered_write() 474 * with i_mutex held on the inode (@pages[0]->mapping->host). There are 475 * @nr_pages pages in @pages which are locked but not kmap()ped. The source 476 * data has not yet been copied into the @pages. 477 * 478 * Need to fill any holes with actual clusters, allocate buffers if necessary, 479 * ensure all the buffers are mapped, and bring uptodate any buffers that are 480 * only partially being written to. 481 * 482 * If @nr_pages is greater than one, we are guaranteed that the cluster size is 483 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside 484 * the same cluster and that they are the entirety of that cluster, and that 485 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. 486 * 487 * i_size is not to be modified yet. 488 * 489 * Return 0 on success or -errno on error. 490 */ 491 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, 492 unsigned nr_pages, s64 pos, size_t bytes) 493 { 494 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; 495 LCN lcn; 496 s64 bh_pos, vcn_len, end, initialized_size; 497 sector_t lcn_block; 498 struct page *page; 499 struct inode *vi; 500 ntfs_inode *ni, *base_ni = NULL; 501 ntfs_volume *vol; 502 runlist_element *rl, *rl2; 503 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 504 ntfs_attr_search_ctx *ctx = NULL; 505 MFT_RECORD *m = NULL; 506 ATTR_RECORD *a = NULL; 507 unsigned long flags; 508 u32 attr_rec_len = 0; 509 unsigned blocksize, u; 510 int err, mp_size; 511 bool rl_write_locked, was_hole, is_retry; 512 unsigned char blocksize_bits; 513 struct { 514 u8 runlist_merged:1; 515 u8 mft_attr_mapped:1; 516 u8 mp_rebuilt:1; 517 u8 attr_switched:1; 518 } status = { 0, 0, 0, 0 }; 519 520 BUG_ON(!nr_pages); 521 BUG_ON(!pages); 522 BUG_ON(!*pages); 523 vi = pages[0]->mapping->host; 524 ni = NTFS_I(vi); 525 vol = ni->vol; 526 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 527 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 528 vi->i_ino, ni->type, pages[0]->index, nr_pages, 529 (long long)pos, bytes); 530 blocksize = vol->sb->s_blocksize; 531 blocksize_bits = vol->sb->s_blocksize_bits; 532 u = 0; 533 do { 534 page = pages[u]; 535 BUG_ON(!page); 536 /* 537 * create_empty_buffers() will create uptodate/dirty buffers if 538 * the page is uptodate/dirty. 539 */ 540 if (!page_has_buffers(page)) { 541 create_empty_buffers(page, blocksize, 0); 542 if (unlikely(!page_has_buffers(page))) 543 return -ENOMEM; 544 } 545 } while (++u < nr_pages); 546 rl_write_locked = false; 547 rl = NULL; 548 err = 0; 549 vcn = lcn = -1; 550 vcn_len = 0; 551 lcn_block = -1; 552 was_hole = false; 553 cpos = pos >> vol->cluster_size_bits; 554 end = pos + bytes; 555 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; 556 /* 557 * Loop over each page and for each page over each buffer. Use goto to 558 * reduce indentation. 559 */ 560 u = 0; 561 do_next_page: 562 page = pages[u]; 563 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 564 bh = head = page_buffers(page); 565 do { 566 VCN cdelta; 567 s64 bh_end; 568 unsigned bh_cofs; 569 570 /* Clear buffer_new on all buffers to reinitialise state. */ 571 if (buffer_new(bh)) 572 clear_buffer_new(bh); 573 bh_end = bh_pos + blocksize; 574 bh_cpos = bh_pos >> vol->cluster_size_bits; 575 bh_cofs = bh_pos & vol->cluster_size_mask; 576 if (buffer_mapped(bh)) { 577 /* 578 * The buffer is already mapped. If it is uptodate, 579 * ignore it. 580 */ 581 if (buffer_uptodate(bh)) 582 continue; 583 /* 584 * The buffer is not uptodate. If the page is uptodate 585 * set the buffer uptodate and otherwise ignore it. 586 */ 587 if (PageUptodate(page)) { 588 set_buffer_uptodate(bh); 589 continue; 590 } 591 /* 592 * Neither the page nor the buffer are uptodate. If 593 * the buffer is only partially being written to, we 594 * need to read it in before the write, i.e. now. 595 */ 596 if ((bh_pos < pos && bh_end > pos) || 597 (bh_pos < end && bh_end > end)) { 598 /* 599 * If the buffer is fully or partially within 600 * the initialized size, do an actual read. 601 * Otherwise, simply zero the buffer. 602 */ 603 read_lock_irqsave(&ni->size_lock, flags); 604 initialized_size = ni->initialized_size; 605 read_unlock_irqrestore(&ni->size_lock, flags); 606 if (bh_pos < initialized_size) { 607 ntfs_submit_bh_for_read(bh); 608 *wait_bh++ = bh; 609 } else { 610 zero_user_page(page, bh_offset(bh), 611 blocksize, KM_USER0); 612 set_buffer_uptodate(bh); 613 } 614 } 615 continue; 616 } 617 /* Unmapped buffer. Need to map it. */ 618 bh->b_bdev = vol->sb->s_bdev; 619 /* 620 * If the current buffer is in the same clusters as the map 621 * cache, there is no need to check the runlist again. The 622 * map cache is made up of @vcn, which is the first cached file 623 * cluster, @vcn_len which is the number of cached file 624 * clusters, @lcn is the device cluster corresponding to @vcn, 625 * and @lcn_block is the block number corresponding to @lcn. 626 */ 627 cdelta = bh_cpos - vcn; 628 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { 629 map_buffer_cached: 630 BUG_ON(lcn < 0); 631 bh->b_blocknr = lcn_block + 632 (cdelta << (vol->cluster_size_bits - 633 blocksize_bits)) + 634 (bh_cofs >> blocksize_bits); 635 set_buffer_mapped(bh); 636 /* 637 * If the page is uptodate so is the buffer. If the 638 * buffer is fully outside the write, we ignore it if 639 * it was already allocated and we mark it dirty so it 640 * gets written out if we allocated it. On the other 641 * hand, if we allocated the buffer but we are not 642 * marking it dirty we set buffer_new so we can do 643 * error recovery. 644 */ 645 if (PageUptodate(page)) { 646 if (!buffer_uptodate(bh)) 647 set_buffer_uptodate(bh); 648 if (unlikely(was_hole)) { 649 /* We allocated the buffer. */ 650 unmap_underlying_metadata(bh->b_bdev, 651 bh->b_blocknr); 652 if (bh_end <= pos || bh_pos >= end) 653 mark_buffer_dirty(bh); 654 else 655 set_buffer_new(bh); 656 } 657 continue; 658 } 659 /* Page is _not_ uptodate. */ 660 if (likely(!was_hole)) { 661 /* 662 * Buffer was already allocated. If it is not 663 * uptodate and is only partially being written 664 * to, we need to read it in before the write, 665 * i.e. now. 666 */ 667 if (!buffer_uptodate(bh) && bh_pos < end && 668 bh_end > pos && 669 (bh_pos < pos || 670 bh_end > end)) { 671 /* 672 * If the buffer is fully or partially 673 * within the initialized size, do an 674 * actual read. Otherwise, simply zero 675 * the buffer. 676 */ 677 read_lock_irqsave(&ni->size_lock, 678 flags); 679 initialized_size = ni->initialized_size; 680 read_unlock_irqrestore(&ni->size_lock, 681 flags); 682 if (bh_pos < initialized_size) { 683 ntfs_submit_bh_for_read(bh); 684 *wait_bh++ = bh; 685 } else { 686 zero_user_page(page, 687 bh_offset(bh), 688 blocksize, KM_USER0); 689 set_buffer_uptodate(bh); 690 } 691 } 692 continue; 693 } 694 /* We allocated the buffer. */ 695 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 696 /* 697 * If the buffer is fully outside the write, zero it, 698 * set it uptodate, and mark it dirty so it gets 699 * written out. If it is partially being written to, 700 * zero region surrounding the write but leave it to 701 * commit write to do anything else. Finally, if the 702 * buffer is fully being overwritten, do nothing. 703 */ 704 if (bh_end <= pos || bh_pos >= end) { 705 if (!buffer_uptodate(bh)) { 706 zero_user_page(page, bh_offset(bh), 707 blocksize, KM_USER0); 708 set_buffer_uptodate(bh); 709 } 710 mark_buffer_dirty(bh); 711 continue; 712 } 713 set_buffer_new(bh); 714 if (!buffer_uptodate(bh) && 715 (bh_pos < pos || bh_end > end)) { 716 u8 *kaddr; 717 unsigned pofs; 718 719 kaddr = kmap_atomic(page, KM_USER0); 720 if (bh_pos < pos) { 721 pofs = bh_pos & ~PAGE_CACHE_MASK; 722 memset(kaddr + pofs, 0, pos - bh_pos); 723 } 724 if (bh_end > end) { 725 pofs = end & ~PAGE_CACHE_MASK; 726 memset(kaddr + pofs, 0, bh_end - end); 727 } 728 kunmap_atomic(kaddr, KM_USER0); 729 flush_dcache_page(page); 730 } 731 continue; 732 } 733 /* 734 * Slow path: this is the first buffer in the cluster. If it 735 * is outside allocated size and is not uptodate, zero it and 736 * set it uptodate. 737 */ 738 read_lock_irqsave(&ni->size_lock, flags); 739 initialized_size = ni->allocated_size; 740 read_unlock_irqrestore(&ni->size_lock, flags); 741 if (bh_pos > initialized_size) { 742 if (PageUptodate(page)) { 743 if (!buffer_uptodate(bh)) 744 set_buffer_uptodate(bh); 745 } else if (!buffer_uptodate(bh)) { 746 zero_user_page(page, bh_offset(bh), blocksize, 747 KM_USER0); 748 set_buffer_uptodate(bh); 749 } 750 continue; 751 } 752 is_retry = false; 753 if (!rl) { 754 down_read(&ni->runlist.lock); 755 retry_remap: 756 rl = ni->runlist.rl; 757 } 758 if (likely(rl != NULL)) { 759 /* Seek to element containing target cluster. */ 760 while (rl->length && rl[1].vcn <= bh_cpos) 761 rl++; 762 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); 763 if (likely(lcn >= 0)) { 764 /* 765 * Successful remap, setup the map cache and 766 * use that to deal with the buffer. 767 */ 768 was_hole = false; 769 vcn = bh_cpos; 770 vcn_len = rl[1].vcn - vcn; 771 lcn_block = lcn << (vol->cluster_size_bits - 772 blocksize_bits); 773 cdelta = 0; 774 /* 775 * If the number of remaining clusters touched 776 * by the write is smaller or equal to the 777 * number of cached clusters, unlock the 778 * runlist as the map cache will be used from 779 * now on. 780 */ 781 if (likely(vcn + vcn_len >= cend)) { 782 if (rl_write_locked) { 783 up_write(&ni->runlist.lock); 784 rl_write_locked = false; 785 } else 786 up_read(&ni->runlist.lock); 787 rl = NULL; 788 } 789 goto map_buffer_cached; 790 } 791 } else 792 lcn = LCN_RL_NOT_MAPPED; 793 /* 794 * If it is not a hole and not out of bounds, the runlist is 795 * probably unmapped so try to map it now. 796 */ 797 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { 798 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { 799 /* Attempt to map runlist. */ 800 if (!rl_write_locked) { 801 /* 802 * We need the runlist locked for 803 * writing, so if it is locked for 804 * reading relock it now and retry in 805 * case it changed whilst we dropped 806 * the lock. 807 */ 808 up_read(&ni->runlist.lock); 809 down_write(&ni->runlist.lock); 810 rl_write_locked = true; 811 goto retry_remap; 812 } 813 err = ntfs_map_runlist_nolock(ni, bh_cpos, 814 NULL); 815 if (likely(!err)) { 816 is_retry = true; 817 goto retry_remap; 818 } 819 /* 820 * If @vcn is out of bounds, pretend @lcn is 821 * LCN_ENOENT. As long as the buffer is out 822 * of bounds this will work fine. 823 */ 824 if (err == -ENOENT) { 825 lcn = LCN_ENOENT; 826 err = 0; 827 goto rl_not_mapped_enoent; 828 } 829 } else 830 err = -EIO; 831 /* Failed to map the buffer, even after retrying. */ 832 bh->b_blocknr = -1; 833 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 834 "attribute type 0x%x, vcn 0x%llx, " 835 "vcn offset 0x%x, because its " 836 "location on disk could not be " 837 "determined%s (error code %i).", 838 ni->mft_no, ni->type, 839 (unsigned long long)bh_cpos, 840 (unsigned)bh_pos & 841 vol->cluster_size_mask, 842 is_retry ? " even after retrying" : "", 843 err); 844 break; 845 } 846 rl_not_mapped_enoent: 847 /* 848 * The buffer is in a hole or out of bounds. We need to fill 849 * the hole, unless the buffer is in a cluster which is not 850 * touched by the write, in which case we just leave the buffer 851 * unmapped. This can only happen when the cluster size is 852 * less than the page cache size. 853 */ 854 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { 855 bh_cend = (bh_end + vol->cluster_size - 1) >> 856 vol->cluster_size_bits; 857 if ((bh_cend <= cpos || bh_cpos >= cend)) { 858 bh->b_blocknr = -1; 859 /* 860 * If the buffer is uptodate we skip it. If it 861 * is not but the page is uptodate, we can set 862 * the buffer uptodate. If the page is not 863 * uptodate, we can clear the buffer and set it 864 * uptodate. Whether this is worthwhile is 865 * debatable and this could be removed. 866 */ 867 if (PageUptodate(page)) { 868 if (!buffer_uptodate(bh)) 869 set_buffer_uptodate(bh); 870 } else if (!buffer_uptodate(bh)) { 871 zero_user_page(page, bh_offset(bh), 872 blocksize, KM_USER0); 873 set_buffer_uptodate(bh); 874 } 875 continue; 876 } 877 } 878 /* 879 * Out of bounds buffer is invalid if it was not really out of 880 * bounds. 881 */ 882 BUG_ON(lcn != LCN_HOLE); 883 /* 884 * We need the runlist locked for writing, so if it is locked 885 * for reading relock it now and retry in case it changed 886 * whilst we dropped the lock. 887 */ 888 BUG_ON(!rl); 889 if (!rl_write_locked) { 890 up_read(&ni->runlist.lock); 891 down_write(&ni->runlist.lock); 892 rl_write_locked = true; 893 goto retry_remap; 894 } 895 /* Find the previous last allocated cluster. */ 896 BUG_ON(rl->lcn != LCN_HOLE); 897 lcn = -1; 898 rl2 = rl; 899 while (--rl2 >= ni->runlist.rl) { 900 if (rl2->lcn >= 0) { 901 lcn = rl2->lcn + rl2->length; 902 break; 903 } 904 } 905 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, 906 false); 907 if (IS_ERR(rl2)) { 908 err = PTR_ERR(rl2); 909 ntfs_debug("Failed to allocate cluster, error code %i.", 910 err); 911 break; 912 } 913 lcn = rl2->lcn; 914 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 915 if (IS_ERR(rl)) { 916 err = PTR_ERR(rl); 917 if (err != -ENOMEM) 918 err = -EIO; 919 if (ntfs_cluster_free_from_rl(vol, rl2)) { 920 ntfs_error(vol->sb, "Failed to release " 921 "allocated cluster in error " 922 "code path. Run chkdsk to " 923 "recover the lost cluster."); 924 NVolSetErrors(vol); 925 } 926 ntfs_free(rl2); 927 break; 928 } 929 ni->runlist.rl = rl; 930 status.runlist_merged = 1; 931 ntfs_debug("Allocated cluster, lcn 0x%llx.", 932 (unsigned long long)lcn); 933 /* Map and lock the mft record and get the attribute record. */ 934 if (!NInoAttr(ni)) 935 base_ni = ni; 936 else 937 base_ni = ni->ext.base_ntfs_ino; 938 m = map_mft_record(base_ni); 939 if (IS_ERR(m)) { 940 err = PTR_ERR(m); 941 break; 942 } 943 ctx = ntfs_attr_get_search_ctx(base_ni, m); 944 if (unlikely(!ctx)) { 945 err = -ENOMEM; 946 unmap_mft_record(base_ni); 947 break; 948 } 949 status.mft_attr_mapped = 1; 950 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 951 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); 952 if (unlikely(err)) { 953 if (err == -ENOENT) 954 err = -EIO; 955 break; 956 } 957 m = ctx->mrec; 958 a = ctx->attr; 959 /* 960 * Find the runlist element with which the attribute extent 961 * starts. Note, we cannot use the _attr_ version because we 962 * have mapped the mft record. That is ok because we know the 963 * runlist fragment must be mapped already to have ever gotten 964 * here, so we can just use the _rl_ version. 965 */ 966 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); 967 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); 968 BUG_ON(!rl2); 969 BUG_ON(!rl2->length); 970 BUG_ON(rl2->lcn < LCN_HOLE); 971 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 972 /* 973 * If @highest_vcn is zero, calculate the real highest_vcn 974 * (which can really be zero). 975 */ 976 if (!highest_vcn) 977 highest_vcn = (sle64_to_cpu( 978 a->data.non_resident.allocated_size) >> 979 vol->cluster_size_bits) - 1; 980 /* 981 * Determine the size of the mapping pairs array for the new 982 * extent, i.e. the old extent with the hole filled. 983 */ 984 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, 985 highest_vcn); 986 if (unlikely(mp_size <= 0)) { 987 if (!(err = mp_size)) 988 err = -EIO; 989 ntfs_debug("Failed to get size for mapping pairs " 990 "array, error code %i.", err); 991 break; 992 } 993 /* 994 * Resize the attribute record to fit the new mapping pairs 995 * array. 996 */ 997 attr_rec_len = le32_to_cpu(a->length); 998 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( 999 a->data.non_resident.mapping_pairs_offset)); 1000 if (unlikely(err)) { 1001 BUG_ON(err != -ENOSPC); 1002 // TODO: Deal with this by using the current attribute 1003 // and fill it with as much of the mapping pairs 1004 // array as possible. Then loop over each attribute 1005 // extent rewriting the mapping pairs arrays as we go 1006 // along and if when we reach the end we have not 1007 // enough space, try to resize the last attribute 1008 // extent and if even that fails, add a new attribute 1009 // extent. 1010 // We could also try to resize at each step in the hope 1011 // that we will not need to rewrite every single extent. 1012 // Note, we may need to decompress some extents to fill 1013 // the runlist as we are walking the extents... 1014 ntfs_error(vol->sb, "Not enough space in the mft " 1015 "record for the extended attribute " 1016 "record. This case is not " 1017 "implemented yet."); 1018 err = -EOPNOTSUPP; 1019 break ; 1020 } 1021 status.mp_rebuilt = 1; 1022 /* 1023 * Generate the mapping pairs array directly into the attribute 1024 * record. 1025 */ 1026 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1027 a->data.non_resident.mapping_pairs_offset), 1028 mp_size, rl2, vcn, highest_vcn, NULL); 1029 if (unlikely(err)) { 1030 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " 1031 "attribute type 0x%x, because building " 1032 "the mapping pairs failed with error " 1033 "code %i.", vi->i_ino, 1034 (unsigned)le32_to_cpu(ni->type), err); 1035 err = -EIO; 1036 break; 1037 } 1038 /* Update the highest_vcn but only if it was not set. */ 1039 if (unlikely(!a->data.non_resident.highest_vcn)) 1040 a->data.non_resident.highest_vcn = 1041 cpu_to_sle64(highest_vcn); 1042 /* 1043 * If the attribute is sparse/compressed, update the compressed 1044 * size in the ntfs_inode structure and the attribute record. 1045 */ 1046 if (likely(NInoSparse(ni) || NInoCompressed(ni))) { 1047 /* 1048 * If we are not in the first attribute extent, switch 1049 * to it, but first ensure the changes will make it to 1050 * disk later. 1051 */ 1052 if (a->data.non_resident.lowest_vcn) { 1053 flush_dcache_mft_record_page(ctx->ntfs_ino); 1054 mark_mft_record_dirty(ctx->ntfs_ino); 1055 ntfs_attr_reinit_search_ctx(ctx); 1056 err = ntfs_attr_lookup(ni->type, ni->name, 1057 ni->name_len, CASE_SENSITIVE, 1058 0, NULL, 0, ctx); 1059 if (unlikely(err)) { 1060 status.attr_switched = 1; 1061 break; 1062 } 1063 /* @m is not used any more so do not set it. */ 1064 a = ctx->attr; 1065 } 1066 write_lock_irqsave(&ni->size_lock, flags); 1067 ni->itype.compressed.size += vol->cluster_size; 1068 a->data.non_resident.compressed_size = 1069 cpu_to_sle64(ni->itype.compressed.size); 1070 write_unlock_irqrestore(&ni->size_lock, flags); 1071 } 1072 /* Ensure the changes make it to disk. */ 1073 flush_dcache_mft_record_page(ctx->ntfs_ino); 1074 mark_mft_record_dirty(ctx->ntfs_ino); 1075 ntfs_attr_put_search_ctx(ctx); 1076 unmap_mft_record(base_ni); 1077 /* Successfully filled the hole. */ 1078 status.runlist_merged = 0; 1079 status.mft_attr_mapped = 0; 1080 status.mp_rebuilt = 0; 1081 /* Setup the map cache and use that to deal with the buffer. */ 1082 was_hole = true; 1083 vcn = bh_cpos; 1084 vcn_len = 1; 1085 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); 1086 cdelta = 0; 1087 /* 1088 * If the number of remaining clusters in the @pages is smaller 1089 * or equal to the number of cached clusters, unlock the 1090 * runlist as the map cache will be used from now on. 1091 */ 1092 if (likely(vcn + vcn_len >= cend)) { 1093 up_write(&ni->runlist.lock); 1094 rl_write_locked = false; 1095 rl = NULL; 1096 } 1097 goto map_buffer_cached; 1098 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1099 /* If there are no errors, do the next page. */ 1100 if (likely(!err && ++u < nr_pages)) 1101 goto do_next_page; 1102 /* If there are no errors, release the runlist lock if we took it. */ 1103 if (likely(!err)) { 1104 if (unlikely(rl_write_locked)) { 1105 up_write(&ni->runlist.lock); 1106 rl_write_locked = false; 1107 } else if (unlikely(rl)) 1108 up_read(&ni->runlist.lock); 1109 rl = NULL; 1110 } 1111 /* If we issued read requests, let them complete. */ 1112 read_lock_irqsave(&ni->size_lock, flags); 1113 initialized_size = ni->initialized_size; 1114 read_unlock_irqrestore(&ni->size_lock, flags); 1115 while (wait_bh > wait) { 1116 bh = *--wait_bh; 1117 wait_on_buffer(bh); 1118 if (likely(buffer_uptodate(bh))) { 1119 page = bh->b_page; 1120 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + 1121 bh_offset(bh); 1122 /* 1123 * If the buffer overflows the initialized size, need 1124 * to zero the overflowing region. 1125 */ 1126 if (unlikely(bh_pos + blocksize > initialized_size)) { 1127 int ofs = 0; 1128 1129 if (likely(bh_pos < initialized_size)) 1130 ofs = initialized_size - bh_pos; 1131 zero_user_page(page, bh_offset(bh) + ofs, 1132 blocksize - ofs, KM_USER0); 1133 } 1134 } else /* if (unlikely(!buffer_uptodate(bh))) */ 1135 err = -EIO; 1136 } 1137 if (likely(!err)) { 1138 /* Clear buffer_new on all buffers. */ 1139 u = 0; 1140 do { 1141 bh = head = page_buffers(pages[u]); 1142 do { 1143 if (buffer_new(bh)) 1144 clear_buffer_new(bh); 1145 } while ((bh = bh->b_this_page) != head); 1146 } while (++u < nr_pages); 1147 ntfs_debug("Done."); 1148 return err; 1149 } 1150 if (status.attr_switched) { 1151 /* Get back to the attribute extent we modified. */ 1152 ntfs_attr_reinit_search_ctx(ctx); 1153 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1154 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { 1155 ntfs_error(vol->sb, "Failed to find required " 1156 "attribute extent of attribute in " 1157 "error code path. Run chkdsk to " 1158 "recover."); 1159 write_lock_irqsave(&ni->size_lock, flags); 1160 ni->itype.compressed.size += vol->cluster_size; 1161 write_unlock_irqrestore(&ni->size_lock, flags); 1162 flush_dcache_mft_record_page(ctx->ntfs_ino); 1163 mark_mft_record_dirty(ctx->ntfs_ino); 1164 /* 1165 * The only thing that is now wrong is the compressed 1166 * size of the base attribute extent which chkdsk 1167 * should be able to fix. 1168 */ 1169 NVolSetErrors(vol); 1170 } else { 1171 m = ctx->mrec; 1172 a = ctx->attr; 1173 status.attr_switched = 0; 1174 } 1175 } 1176 /* 1177 * If the runlist has been modified, need to restore it by punching a 1178 * hole into it and we then need to deallocate the on-disk cluster as 1179 * well. Note, we only modify the runlist if we are able to generate a 1180 * new mapping pairs array, i.e. only when the mapped attribute extent 1181 * is not switched. 1182 */ 1183 if (status.runlist_merged && !status.attr_switched) { 1184 BUG_ON(!rl_write_locked); 1185 /* Make the file cluster we allocated sparse in the runlist. */ 1186 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { 1187 ntfs_error(vol->sb, "Failed to punch hole into " 1188 "attribute runlist in error code " 1189 "path. Run chkdsk to recover the " 1190 "lost cluster."); 1191 NVolSetErrors(vol); 1192 } else /* if (success) */ { 1193 status.runlist_merged = 0; 1194 /* 1195 * Deallocate the on-disk cluster we allocated but only 1196 * if we succeeded in punching its vcn out of the 1197 * runlist. 1198 */ 1199 down_write(&vol->lcnbmp_lock); 1200 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1201 ntfs_error(vol->sb, "Failed to release " 1202 "allocated cluster in error " 1203 "code path. Run chkdsk to " 1204 "recover the lost cluster."); 1205 NVolSetErrors(vol); 1206 } 1207 up_write(&vol->lcnbmp_lock); 1208 } 1209 } 1210 /* 1211 * Resize the attribute record to its old size and rebuild the mapping 1212 * pairs array. Note, we only can do this if the runlist has been 1213 * restored to its old state which also implies that the mapped 1214 * attribute extent is not switched. 1215 */ 1216 if (status.mp_rebuilt && !status.runlist_merged) { 1217 if (ntfs_attr_record_resize(m, a, attr_rec_len)) { 1218 ntfs_error(vol->sb, "Failed to restore attribute " 1219 "record in error code path. Run " 1220 "chkdsk to recover."); 1221 NVolSetErrors(vol); 1222 } else /* if (success) */ { 1223 if (ntfs_mapping_pairs_build(vol, (u8*)a + 1224 le16_to_cpu(a->data.non_resident. 1225 mapping_pairs_offset), attr_rec_len - 1226 le16_to_cpu(a->data.non_resident. 1227 mapping_pairs_offset), ni->runlist.rl, 1228 vcn, highest_vcn, NULL)) { 1229 ntfs_error(vol->sb, "Failed to restore " 1230 "mapping pairs array in error " 1231 "code path. Run chkdsk to " 1232 "recover."); 1233 NVolSetErrors(vol); 1234 } 1235 flush_dcache_mft_record_page(ctx->ntfs_ino); 1236 mark_mft_record_dirty(ctx->ntfs_ino); 1237 } 1238 } 1239 /* Release the mft record and the attribute. */ 1240 if (status.mft_attr_mapped) { 1241 ntfs_attr_put_search_ctx(ctx); 1242 unmap_mft_record(base_ni); 1243 } 1244 /* Release the runlist lock. */ 1245 if (rl_write_locked) 1246 up_write(&ni->runlist.lock); 1247 else if (rl) 1248 up_read(&ni->runlist.lock); 1249 /* 1250 * Zero out any newly allocated blocks to avoid exposing stale data. 1251 * If BH_New is set, we know that the block was newly allocated above 1252 * and that it has not been fully zeroed and marked dirty yet. 1253 */ 1254 nr_pages = u; 1255 u = 0; 1256 end = bh_cpos << vol->cluster_size_bits; 1257 do { 1258 page = pages[u]; 1259 bh = head = page_buffers(page); 1260 do { 1261 if (u == nr_pages && 1262 ((s64)page->index << PAGE_CACHE_SHIFT) + 1263 bh_offset(bh) >= end) 1264 break; 1265 if (!buffer_new(bh)) 1266 continue; 1267 clear_buffer_new(bh); 1268 if (!buffer_uptodate(bh)) { 1269 if (PageUptodate(page)) 1270 set_buffer_uptodate(bh); 1271 else { 1272 zero_user_page(page, bh_offset(bh), 1273 blocksize, KM_USER0); 1274 set_buffer_uptodate(bh); 1275 } 1276 } 1277 mark_buffer_dirty(bh); 1278 } while ((bh = bh->b_this_page) != head); 1279 } while (++u <= nr_pages); 1280 ntfs_error(vol->sb, "Failed. Returning error code %i.", err); 1281 return err; 1282 } 1283 1284 /* 1285 * Copy as much as we can into the pages and return the number of bytes which 1286 * were sucessfully copied. If a fault is encountered then clear the pages 1287 * out to (ofs + bytes) and return the number of bytes which were copied. 1288 */ 1289 static inline size_t ntfs_copy_from_user(struct page **pages, 1290 unsigned nr_pages, unsigned ofs, const char __user *buf, 1291 size_t bytes) 1292 { 1293 struct page **last_page = pages + nr_pages; 1294 char *addr; 1295 size_t total = 0; 1296 unsigned len; 1297 int left; 1298 1299 do { 1300 len = PAGE_CACHE_SIZE - ofs; 1301 if (len > bytes) 1302 len = bytes; 1303 addr = kmap_atomic(*pages, KM_USER0); 1304 left = __copy_from_user_inatomic(addr + ofs, buf, len); 1305 kunmap_atomic(addr, KM_USER0); 1306 if (unlikely(left)) { 1307 /* Do it the slow way. */ 1308 addr = kmap(*pages); 1309 left = __copy_from_user(addr + ofs, buf, len); 1310 kunmap(*pages); 1311 if (unlikely(left)) 1312 goto err_out; 1313 } 1314 total += len; 1315 bytes -= len; 1316 if (!bytes) 1317 break; 1318 buf += len; 1319 ofs = 0; 1320 } while (++pages < last_page); 1321 out: 1322 return total; 1323 err_out: 1324 total += len - left; 1325 /* Zero the rest of the target like __copy_from_user(). */ 1326 while (++pages < last_page) { 1327 bytes -= len; 1328 if (!bytes) 1329 break; 1330 len = PAGE_CACHE_SIZE; 1331 if (len > bytes) 1332 len = bytes; 1333 zero_user_page(*pages, 0, len, KM_USER0); 1334 } 1335 goto out; 1336 } 1337 1338 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, 1339 const struct iovec *iov, size_t iov_ofs, size_t bytes) 1340 { 1341 size_t total = 0; 1342 1343 while (1) { 1344 const char __user *buf = iov->iov_base + iov_ofs; 1345 unsigned len; 1346 size_t left; 1347 1348 len = iov->iov_len - iov_ofs; 1349 if (len > bytes) 1350 len = bytes; 1351 left = __copy_from_user_inatomic(vaddr, buf, len); 1352 total += len; 1353 bytes -= len; 1354 vaddr += len; 1355 if (unlikely(left)) { 1356 total -= left; 1357 break; 1358 } 1359 if (!bytes) 1360 break; 1361 iov++; 1362 iov_ofs = 0; 1363 } 1364 return total; 1365 } 1366 1367 static inline void ntfs_set_next_iovec(const struct iovec **iovp, 1368 size_t *iov_ofsp, size_t bytes) 1369 { 1370 const struct iovec *iov = *iovp; 1371 size_t iov_ofs = *iov_ofsp; 1372 1373 while (bytes) { 1374 unsigned len; 1375 1376 len = iov->iov_len - iov_ofs; 1377 if (len > bytes) 1378 len = bytes; 1379 bytes -= len; 1380 iov_ofs += len; 1381 if (iov->iov_len == iov_ofs) { 1382 iov++; 1383 iov_ofs = 0; 1384 } 1385 } 1386 *iovp = iov; 1387 *iov_ofsp = iov_ofs; 1388 } 1389 1390 /* 1391 * This has the same side-effects and return value as ntfs_copy_from_user(). 1392 * The difference is that on a fault we need to memset the remainder of the 1393 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s 1394 * single-segment behaviour. 1395 * 1396 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both 1397 * when atomic and when not atomic. This is ok because 1398 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic() 1399 * and it is ok to call this when non-atomic. 1400 * Infact, the only difference between __copy_from_user_inatomic() and 1401 * __copy_from_user() is that the latter calls might_sleep() and the former 1402 * should not zero the tail of the buffer on error. And on many 1403 * architectures __copy_from_user_inatomic() is just defined to 1404 * __copy_from_user() so it makes no difference at all on those architectures. 1405 */ 1406 static inline size_t ntfs_copy_from_user_iovec(struct page **pages, 1407 unsigned nr_pages, unsigned ofs, const struct iovec **iov, 1408 size_t *iov_ofs, size_t bytes) 1409 { 1410 struct page **last_page = pages + nr_pages; 1411 char *addr; 1412 size_t copied, len, total = 0; 1413 1414 do { 1415 len = PAGE_CACHE_SIZE - ofs; 1416 if (len > bytes) 1417 len = bytes; 1418 addr = kmap_atomic(*pages, KM_USER0); 1419 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, 1420 *iov, *iov_ofs, len); 1421 kunmap_atomic(addr, KM_USER0); 1422 if (unlikely(copied != len)) { 1423 /* Do it the slow way. */ 1424 addr = kmap(*pages); 1425 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, 1426 *iov, *iov_ofs, len); 1427 /* 1428 * Zero the rest of the target like __copy_from_user(). 1429 */ 1430 memset(addr + ofs + copied, 0, len - copied); 1431 kunmap(*pages); 1432 if (unlikely(copied != len)) 1433 goto err_out; 1434 } 1435 total += len; 1436 bytes -= len; 1437 if (!bytes) 1438 break; 1439 ntfs_set_next_iovec(iov, iov_ofs, len); 1440 ofs = 0; 1441 } while (++pages < last_page); 1442 out: 1443 return total; 1444 err_out: 1445 total += copied; 1446 /* Zero the rest of the target like __copy_from_user(). */ 1447 while (++pages < last_page) { 1448 bytes -= len; 1449 if (!bytes) 1450 break; 1451 len = PAGE_CACHE_SIZE; 1452 if (len > bytes) 1453 len = bytes; 1454 zero_user_page(*pages, 0, len, KM_USER0); 1455 } 1456 goto out; 1457 } 1458 1459 static inline void ntfs_flush_dcache_pages(struct page **pages, 1460 unsigned nr_pages) 1461 { 1462 BUG_ON(!nr_pages); 1463 /* 1464 * Warning: Do not do the decrement at the same time as the call to 1465 * flush_dcache_page() because it is a NULL macro on i386 and hence the 1466 * decrement never happens so the loop never terminates. 1467 */ 1468 do { 1469 --nr_pages; 1470 flush_dcache_page(pages[nr_pages]); 1471 } while (nr_pages > 0); 1472 } 1473 1474 /** 1475 * ntfs_commit_pages_after_non_resident_write - commit the received data 1476 * @pages: array of destination pages 1477 * @nr_pages: number of pages in @pages 1478 * @pos: byte position in file at which the write begins 1479 * @bytes: number of bytes to be written 1480 * 1481 * See description of ntfs_commit_pages_after_write(), below. 1482 */ 1483 static inline int ntfs_commit_pages_after_non_resident_write( 1484 struct page **pages, const unsigned nr_pages, 1485 s64 pos, size_t bytes) 1486 { 1487 s64 end, initialized_size; 1488 struct inode *vi; 1489 ntfs_inode *ni, *base_ni; 1490 struct buffer_head *bh, *head; 1491 ntfs_attr_search_ctx *ctx; 1492 MFT_RECORD *m; 1493 ATTR_RECORD *a; 1494 unsigned long flags; 1495 unsigned blocksize, u; 1496 int err; 1497 1498 vi = pages[0]->mapping->host; 1499 ni = NTFS_I(vi); 1500 blocksize = vi->i_sb->s_blocksize; 1501 end = pos + bytes; 1502 u = 0; 1503 do { 1504 s64 bh_pos; 1505 struct page *page; 1506 bool partial; 1507 1508 page = pages[u]; 1509 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 1510 bh = head = page_buffers(page); 1511 partial = false; 1512 do { 1513 s64 bh_end; 1514 1515 bh_end = bh_pos + blocksize; 1516 if (bh_end <= pos || bh_pos >= end) { 1517 if (!buffer_uptodate(bh)) 1518 partial = true; 1519 } else { 1520 set_buffer_uptodate(bh); 1521 mark_buffer_dirty(bh); 1522 } 1523 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1524 /* 1525 * If all buffers are now uptodate but the page is not, set the 1526 * page uptodate. 1527 */ 1528 if (!partial && !PageUptodate(page)) 1529 SetPageUptodate(page); 1530 } while (++u < nr_pages); 1531 /* 1532 * Finally, if we do not need to update initialized_size or i_size we 1533 * are finished. 1534 */ 1535 read_lock_irqsave(&ni->size_lock, flags); 1536 initialized_size = ni->initialized_size; 1537 read_unlock_irqrestore(&ni->size_lock, flags); 1538 if (end <= initialized_size) { 1539 ntfs_debug("Done."); 1540 return 0; 1541 } 1542 /* 1543 * Update initialized_size/i_size as appropriate, both in the inode and 1544 * the mft record. 1545 */ 1546 if (!NInoAttr(ni)) 1547 base_ni = ni; 1548 else 1549 base_ni = ni->ext.base_ntfs_ino; 1550 /* Map, pin, and lock the mft record. */ 1551 m = map_mft_record(base_ni); 1552 if (IS_ERR(m)) { 1553 err = PTR_ERR(m); 1554 m = NULL; 1555 ctx = NULL; 1556 goto err_out; 1557 } 1558 BUG_ON(!NInoNonResident(ni)); 1559 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1560 if (unlikely(!ctx)) { 1561 err = -ENOMEM; 1562 goto err_out; 1563 } 1564 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1565 CASE_SENSITIVE, 0, NULL, 0, ctx); 1566 if (unlikely(err)) { 1567 if (err == -ENOENT) 1568 err = -EIO; 1569 goto err_out; 1570 } 1571 a = ctx->attr; 1572 BUG_ON(!a->non_resident); 1573 write_lock_irqsave(&ni->size_lock, flags); 1574 BUG_ON(end > ni->allocated_size); 1575 ni->initialized_size = end; 1576 a->data.non_resident.initialized_size = cpu_to_sle64(end); 1577 if (end > i_size_read(vi)) { 1578 i_size_write(vi, end); 1579 a->data.non_resident.data_size = 1580 a->data.non_resident.initialized_size; 1581 } 1582 write_unlock_irqrestore(&ni->size_lock, flags); 1583 /* Mark the mft record dirty, so it gets written back. */ 1584 flush_dcache_mft_record_page(ctx->ntfs_ino); 1585 mark_mft_record_dirty(ctx->ntfs_ino); 1586 ntfs_attr_put_search_ctx(ctx); 1587 unmap_mft_record(base_ni); 1588 ntfs_debug("Done."); 1589 return 0; 1590 err_out: 1591 if (ctx) 1592 ntfs_attr_put_search_ctx(ctx); 1593 if (m) 1594 unmap_mft_record(base_ni); 1595 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " 1596 "code %i).", err); 1597 if (err != -ENOMEM) 1598 NVolSetErrors(ni->vol); 1599 return err; 1600 } 1601 1602 /** 1603 * ntfs_commit_pages_after_write - commit the received data 1604 * @pages: array of destination pages 1605 * @nr_pages: number of pages in @pages 1606 * @pos: byte position in file at which the write begins 1607 * @bytes: number of bytes to be written 1608 * 1609 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode 1610 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are 1611 * locked but not kmap()ped. The source data has already been copied into the 1612 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before 1613 * the data was copied (for non-resident attributes only) and it returned 1614 * success. 1615 * 1616 * Need to set uptodate and mark dirty all buffers within the boundary of the 1617 * write. If all buffers in a page are uptodate we set the page uptodate, too. 1618 * 1619 * Setting the buffers dirty ensures that they get written out later when 1620 * ntfs_writepage() is invoked by the VM. 1621 * 1622 * Finally, we need to update i_size and initialized_size as appropriate both 1623 * in the inode and the mft record. 1624 * 1625 * This is modelled after fs/buffer.c::generic_commit_write(), which marks 1626 * buffers uptodate and dirty, sets the page uptodate if all buffers in the 1627 * page are uptodate, and updates i_size if the end of io is beyond i_size. In 1628 * that case, it also marks the inode dirty. 1629 * 1630 * If things have gone as outlined in 1631 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page 1632 * content modifications here for non-resident attributes. For resident 1633 * attributes we need to do the uptodate bringing here which we combine with 1634 * the copying into the mft record which means we save one atomic kmap. 1635 * 1636 * Return 0 on success or -errno on error. 1637 */ 1638 static int ntfs_commit_pages_after_write(struct page **pages, 1639 const unsigned nr_pages, s64 pos, size_t bytes) 1640 { 1641 s64 end, initialized_size; 1642 loff_t i_size; 1643 struct inode *vi; 1644 ntfs_inode *ni, *base_ni; 1645 struct page *page; 1646 ntfs_attr_search_ctx *ctx; 1647 MFT_RECORD *m; 1648 ATTR_RECORD *a; 1649 char *kattr, *kaddr; 1650 unsigned long flags; 1651 u32 attr_len; 1652 int err; 1653 1654 BUG_ON(!nr_pages); 1655 BUG_ON(!pages); 1656 page = pages[0]; 1657 BUG_ON(!page); 1658 vi = page->mapping->host; 1659 ni = NTFS_I(vi); 1660 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 1661 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 1662 vi->i_ino, ni->type, page->index, nr_pages, 1663 (long long)pos, bytes); 1664 if (NInoNonResident(ni)) 1665 return ntfs_commit_pages_after_non_resident_write(pages, 1666 nr_pages, pos, bytes); 1667 BUG_ON(nr_pages > 1); 1668 /* 1669 * Attribute is resident, implying it is not compressed, encrypted, or 1670 * sparse. 1671 */ 1672 if (!NInoAttr(ni)) 1673 base_ni = ni; 1674 else 1675 base_ni = ni->ext.base_ntfs_ino; 1676 BUG_ON(NInoNonResident(ni)); 1677 /* Map, pin, and lock the mft record. */ 1678 m = map_mft_record(base_ni); 1679 if (IS_ERR(m)) { 1680 err = PTR_ERR(m); 1681 m = NULL; 1682 ctx = NULL; 1683 goto err_out; 1684 } 1685 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1686 if (unlikely(!ctx)) { 1687 err = -ENOMEM; 1688 goto err_out; 1689 } 1690 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1691 CASE_SENSITIVE, 0, NULL, 0, ctx); 1692 if (unlikely(err)) { 1693 if (err == -ENOENT) 1694 err = -EIO; 1695 goto err_out; 1696 } 1697 a = ctx->attr; 1698 BUG_ON(a->non_resident); 1699 /* The total length of the attribute value. */ 1700 attr_len = le32_to_cpu(a->data.resident.value_length); 1701 i_size = i_size_read(vi); 1702 BUG_ON(attr_len != i_size); 1703 BUG_ON(pos > attr_len); 1704 end = pos + bytes; 1705 BUG_ON(end > le32_to_cpu(a->length) - 1706 le16_to_cpu(a->data.resident.value_offset)); 1707 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 1708 kaddr = kmap_atomic(page, KM_USER0); 1709 /* Copy the received data from the page to the mft record. */ 1710 memcpy(kattr + pos, kaddr + pos, bytes); 1711 /* Update the attribute length if necessary. */ 1712 if (end > attr_len) { 1713 attr_len = end; 1714 a->data.resident.value_length = cpu_to_le32(attr_len); 1715 } 1716 /* 1717 * If the page is not uptodate, bring the out of bounds area(s) 1718 * uptodate by copying data from the mft record to the page. 1719 */ 1720 if (!PageUptodate(page)) { 1721 if (pos > 0) 1722 memcpy(kaddr, kattr, pos); 1723 if (end < attr_len) 1724 memcpy(kaddr + end, kattr + end, attr_len - end); 1725 /* Zero the region outside the end of the attribute value. */ 1726 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1727 flush_dcache_page(page); 1728 SetPageUptodate(page); 1729 } 1730 kunmap_atomic(kaddr, KM_USER0); 1731 /* Update initialized_size/i_size if necessary. */ 1732 read_lock_irqsave(&ni->size_lock, flags); 1733 initialized_size = ni->initialized_size; 1734 BUG_ON(end > ni->allocated_size); 1735 read_unlock_irqrestore(&ni->size_lock, flags); 1736 BUG_ON(initialized_size != i_size); 1737 if (end > initialized_size) { 1738 write_lock_irqsave(&ni->size_lock, flags); 1739 ni->initialized_size = end; 1740 i_size_write(vi, end); 1741 write_unlock_irqrestore(&ni->size_lock, flags); 1742 } 1743 /* Mark the mft record dirty, so it gets written back. */ 1744 flush_dcache_mft_record_page(ctx->ntfs_ino); 1745 mark_mft_record_dirty(ctx->ntfs_ino); 1746 ntfs_attr_put_search_ctx(ctx); 1747 unmap_mft_record(base_ni); 1748 ntfs_debug("Done."); 1749 return 0; 1750 err_out: 1751 if (err == -ENOMEM) { 1752 ntfs_warning(vi->i_sb, "Error allocating memory required to " 1753 "commit the write."); 1754 if (PageUptodate(page)) { 1755 ntfs_warning(vi->i_sb, "Page is uptodate, setting " 1756 "dirty so the write will be retried " 1757 "later on by the VM."); 1758 /* 1759 * Put the page on mapping->dirty_pages, but leave its 1760 * buffers' dirty state as-is. 1761 */ 1762 __set_page_dirty_nobuffers(page); 1763 err = 0; 1764 } else 1765 ntfs_error(vi->i_sb, "Page is not uptodate. Written " 1766 "data has been lost."); 1767 } else { 1768 ntfs_error(vi->i_sb, "Resident attribute commit write failed " 1769 "with error %i.", err); 1770 NVolSetErrors(ni->vol); 1771 } 1772 if (ctx) 1773 ntfs_attr_put_search_ctx(ctx); 1774 if (m) 1775 unmap_mft_record(base_ni); 1776 return err; 1777 } 1778 1779 /** 1780 * ntfs_file_buffered_write - 1781 * 1782 * Locking: The vfs is holding ->i_mutex on the inode. 1783 */ 1784 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, 1785 const struct iovec *iov, unsigned long nr_segs, 1786 loff_t pos, loff_t *ppos, size_t count) 1787 { 1788 struct file *file = iocb->ki_filp; 1789 struct address_space *mapping = file->f_mapping; 1790 struct inode *vi = mapping->host; 1791 ntfs_inode *ni = NTFS_I(vi); 1792 ntfs_volume *vol = ni->vol; 1793 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; 1794 struct page *cached_page = NULL; 1795 char __user *buf = NULL; 1796 s64 end, ll; 1797 VCN last_vcn; 1798 LCN lcn; 1799 unsigned long flags; 1800 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ 1801 ssize_t status, written; 1802 unsigned nr_pages; 1803 int err; 1804 struct pagevec lru_pvec; 1805 1806 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1807 "pos 0x%llx, count 0x%lx.", 1808 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 1809 (unsigned long long)pos, (unsigned long)count); 1810 if (unlikely(!count)) 1811 return 0; 1812 BUG_ON(NInoMstProtected(ni)); 1813 /* 1814 * If the attribute is not an index root and it is encrypted or 1815 * compressed, we cannot write to it yet. Note we need to check for 1816 * AT_INDEX_ALLOCATION since this is the type of both directory and 1817 * index inodes. 1818 */ 1819 if (ni->type != AT_INDEX_ALLOCATION) { 1820 /* If file is encrypted, deny access, just like NT4. */ 1821 if (NInoEncrypted(ni)) { 1822 /* 1823 * Reminder for later: Encrypted files are _always_ 1824 * non-resident so that the content can always be 1825 * encrypted. 1826 */ 1827 ntfs_debug("Denying write access to encrypted file."); 1828 return -EACCES; 1829 } 1830 if (NInoCompressed(ni)) { 1831 /* Only unnamed $DATA attribute can be compressed. */ 1832 BUG_ON(ni->type != AT_DATA); 1833 BUG_ON(ni->name_len); 1834 /* 1835 * Reminder for later: If resident, the data is not 1836 * actually compressed. Only on the switch to non- 1837 * resident does compression kick in. This is in 1838 * contrast to encrypted files (see above). 1839 */ 1840 ntfs_error(vi->i_sb, "Writing to compressed files is " 1841 "not implemented yet. Sorry."); 1842 return -EOPNOTSUPP; 1843 } 1844 } 1845 /* 1846 * If a previous ntfs_truncate() failed, repeat it and abort if it 1847 * fails again. 1848 */ 1849 if (unlikely(NInoTruncateFailed(ni))) { 1850 down_write(&vi->i_alloc_sem); 1851 err = ntfs_truncate(vi); 1852 up_write(&vi->i_alloc_sem); 1853 if (err || NInoTruncateFailed(ni)) { 1854 if (!err) 1855 err = -EIO; 1856 ntfs_error(vol->sb, "Cannot perform write to inode " 1857 "0x%lx, attribute type 0x%x, because " 1858 "ntfs_truncate() failed (error code " 1859 "%i).", vi->i_ino, 1860 (unsigned)le32_to_cpu(ni->type), err); 1861 return err; 1862 } 1863 } 1864 /* The first byte after the write. */ 1865 end = pos + count; 1866 /* 1867 * If the write goes beyond the allocated size, extend the allocation 1868 * to cover the whole of the write, rounded up to the nearest cluster. 1869 */ 1870 read_lock_irqsave(&ni->size_lock, flags); 1871 ll = ni->allocated_size; 1872 read_unlock_irqrestore(&ni->size_lock, flags); 1873 if (end > ll) { 1874 /* Extend the allocation without changing the data size. */ 1875 ll = ntfs_attr_extend_allocation(ni, end, -1, pos); 1876 if (likely(ll >= 0)) { 1877 BUG_ON(pos >= ll); 1878 /* If the extension was partial truncate the write. */ 1879 if (end > ll) { 1880 ntfs_debug("Truncating write to inode 0x%lx, " 1881 "attribute type 0x%x, because " 1882 "the allocation was only " 1883 "partially extended.", 1884 vi->i_ino, (unsigned) 1885 le32_to_cpu(ni->type)); 1886 end = ll; 1887 count = ll - pos; 1888 } 1889 } else { 1890 err = ll; 1891 read_lock_irqsave(&ni->size_lock, flags); 1892 ll = ni->allocated_size; 1893 read_unlock_irqrestore(&ni->size_lock, flags); 1894 /* Perform a partial write if possible or fail. */ 1895 if (pos < ll) { 1896 ntfs_debug("Truncating write to inode 0x%lx, " 1897 "attribute type 0x%x, because " 1898 "extending the allocation " 1899 "failed (error code %i).", 1900 vi->i_ino, (unsigned) 1901 le32_to_cpu(ni->type), err); 1902 end = ll; 1903 count = ll - pos; 1904 } else { 1905 ntfs_error(vol->sb, "Cannot perform write to " 1906 "inode 0x%lx, attribute type " 1907 "0x%x, because extending the " 1908 "allocation failed (error " 1909 "code %i).", vi->i_ino, 1910 (unsigned) 1911 le32_to_cpu(ni->type), err); 1912 return err; 1913 } 1914 } 1915 } 1916 pagevec_init(&lru_pvec, 0); 1917 written = 0; 1918 /* 1919 * If the write starts beyond the initialized size, extend it up to the 1920 * beginning of the write and initialize all non-sparse space between 1921 * the old initialized size and the new one. This automatically also 1922 * increments the vfs inode->i_size to keep it above or equal to the 1923 * initialized_size. 1924 */ 1925 read_lock_irqsave(&ni->size_lock, flags); 1926 ll = ni->initialized_size; 1927 read_unlock_irqrestore(&ni->size_lock, flags); 1928 if (pos > ll) { 1929 err = ntfs_attr_extend_initialized(ni, pos, &cached_page, 1930 &lru_pvec); 1931 if (err < 0) { 1932 ntfs_error(vol->sb, "Cannot perform write to inode " 1933 "0x%lx, attribute type 0x%x, because " 1934 "extending the initialized size " 1935 "failed (error code %i).", vi->i_ino, 1936 (unsigned)le32_to_cpu(ni->type), err); 1937 status = err; 1938 goto err_out; 1939 } 1940 } 1941 /* 1942 * Determine the number of pages per cluster for non-resident 1943 * attributes. 1944 */ 1945 nr_pages = 1; 1946 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) 1947 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; 1948 /* Finally, perform the actual write. */ 1949 last_vcn = -1; 1950 if (likely(nr_segs == 1)) 1951 buf = iov->iov_base; 1952 do { 1953 VCN vcn; 1954 pgoff_t idx, start_idx; 1955 unsigned ofs, do_pages, u; 1956 size_t copied; 1957 1958 start_idx = idx = pos >> PAGE_CACHE_SHIFT; 1959 ofs = pos & ~PAGE_CACHE_MASK; 1960 bytes = PAGE_CACHE_SIZE - ofs; 1961 do_pages = 1; 1962 if (nr_pages > 1) { 1963 vcn = pos >> vol->cluster_size_bits; 1964 if (vcn != last_vcn) { 1965 last_vcn = vcn; 1966 /* 1967 * Get the lcn of the vcn the write is in. If 1968 * it is a hole, need to lock down all pages in 1969 * the cluster. 1970 */ 1971 down_read(&ni->runlist.lock); 1972 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> 1973 vol->cluster_size_bits, false); 1974 up_read(&ni->runlist.lock); 1975 if (unlikely(lcn < LCN_HOLE)) { 1976 status = -EIO; 1977 if (lcn == LCN_ENOMEM) 1978 status = -ENOMEM; 1979 else 1980 ntfs_error(vol->sb, "Cannot " 1981 "perform write to " 1982 "inode 0x%lx, " 1983 "attribute type 0x%x, " 1984 "because the attribute " 1985 "is corrupt.", 1986 vi->i_ino, (unsigned) 1987 le32_to_cpu(ni->type)); 1988 break; 1989 } 1990 if (lcn == LCN_HOLE) { 1991 start_idx = (pos & ~(s64) 1992 vol->cluster_size_mask) 1993 >> PAGE_CACHE_SHIFT; 1994 bytes = vol->cluster_size - (pos & 1995 vol->cluster_size_mask); 1996 do_pages = nr_pages; 1997 } 1998 } 1999 } 2000 if (bytes > count) 2001 bytes = count; 2002 /* 2003 * Bring in the user page(s) that we will copy from _first_. 2004 * Otherwise there is a nasty deadlock on copying from the same 2005 * page(s) as we are writing to, without it/them being marked 2006 * up-to-date. Note, at present there is nothing to stop the 2007 * pages being swapped out between us bringing them into memory 2008 * and doing the actual copying. 2009 */ 2010 if (likely(nr_segs == 1)) 2011 ntfs_fault_in_pages_readable(buf, bytes); 2012 else 2013 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); 2014 /* Get and lock @do_pages starting at index @start_idx. */ 2015 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, 2016 pages, &cached_page, &lru_pvec); 2017 if (unlikely(status)) 2018 break; 2019 /* 2020 * For non-resident attributes, we need to fill any holes with 2021 * actual clusters and ensure all bufferes are mapped. We also 2022 * need to bring uptodate any buffers that are only partially 2023 * being written to. 2024 */ 2025 if (NInoNonResident(ni)) { 2026 status = ntfs_prepare_pages_for_non_resident_write( 2027 pages, do_pages, pos, bytes); 2028 if (unlikely(status)) { 2029 loff_t i_size; 2030 2031 do { 2032 unlock_page(pages[--do_pages]); 2033 page_cache_release(pages[do_pages]); 2034 } while (do_pages); 2035 /* 2036 * The write preparation may have instantiated 2037 * allocated space outside i_size. Trim this 2038 * off again. We can ignore any errors in this 2039 * case as we will just be waisting a bit of 2040 * allocated space, which is not a disaster. 2041 */ 2042 i_size = i_size_read(vi); 2043 if (pos + bytes > i_size) 2044 vmtruncate(vi, i_size); 2045 break; 2046 } 2047 } 2048 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; 2049 if (likely(nr_segs == 1)) { 2050 copied = ntfs_copy_from_user(pages + u, do_pages - u, 2051 ofs, buf, bytes); 2052 buf += copied; 2053 } else 2054 copied = ntfs_copy_from_user_iovec(pages + u, 2055 do_pages - u, ofs, &iov, &iov_ofs, 2056 bytes); 2057 ntfs_flush_dcache_pages(pages + u, do_pages - u); 2058 status = ntfs_commit_pages_after_write(pages, do_pages, pos, 2059 bytes); 2060 if (likely(!status)) { 2061 written += copied; 2062 count -= copied; 2063 pos += copied; 2064 if (unlikely(copied != bytes)) 2065 status = -EFAULT; 2066 } 2067 do { 2068 unlock_page(pages[--do_pages]); 2069 mark_page_accessed(pages[do_pages]); 2070 page_cache_release(pages[do_pages]); 2071 } while (do_pages); 2072 if (unlikely(status)) 2073 break; 2074 balance_dirty_pages_ratelimited(mapping); 2075 cond_resched(); 2076 } while (count); 2077 err_out: 2078 *ppos = pos; 2079 if (cached_page) 2080 page_cache_release(cached_page); 2081 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ 2082 if (likely(!status)) { 2083 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { 2084 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) 2085 status = generic_osync_inode(vi, mapping, 2086 OSYNC_METADATA|OSYNC_DATA); 2087 } 2088 } 2089 pagevec_lru_add(&lru_pvec); 2090 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", 2091 written ? "written" : "status", (unsigned long)written, 2092 (long)status); 2093 return written ? written : status; 2094 } 2095 2096 /** 2097 * ntfs_file_aio_write_nolock - 2098 */ 2099 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, 2100 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) 2101 { 2102 struct file *file = iocb->ki_filp; 2103 struct address_space *mapping = file->f_mapping; 2104 struct inode *inode = mapping->host; 2105 loff_t pos; 2106 size_t count; /* after file limit checks */ 2107 ssize_t written, err; 2108 2109 count = 0; 2110 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 2111 if (err) 2112 return err; 2113 pos = *ppos; 2114 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2115 /* We can write back this queue in page reclaim. */ 2116 current->backing_dev_info = mapping->backing_dev_info; 2117 written = 0; 2118 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2119 if (err) 2120 goto out; 2121 if (!count) 2122 goto out; 2123 err = remove_suid(file->f_path.dentry); 2124 if (err) 2125 goto out; 2126 file_update_time(file); 2127 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, 2128 count); 2129 out: 2130 current->backing_dev_info = NULL; 2131 return written ? written : err; 2132 } 2133 2134 /** 2135 * ntfs_file_aio_write - 2136 */ 2137 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2138 unsigned long nr_segs, loff_t pos) 2139 { 2140 struct file *file = iocb->ki_filp; 2141 struct address_space *mapping = file->f_mapping; 2142 struct inode *inode = mapping->host; 2143 ssize_t ret; 2144 2145 BUG_ON(iocb->ki_pos != pos); 2146 2147 mutex_lock(&inode->i_mutex); 2148 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); 2149 mutex_unlock(&inode->i_mutex); 2150 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2151 int err = sync_page_range(inode, mapping, pos, ret); 2152 if (err < 0) 2153 ret = err; 2154 } 2155 return ret; 2156 } 2157 2158 /** 2159 * ntfs_file_writev - 2160 * 2161 * Basically the same as generic_file_writev() except that it ends up calling 2162 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). 2163 */ 2164 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, 2165 unsigned long nr_segs, loff_t *ppos) 2166 { 2167 struct address_space *mapping = file->f_mapping; 2168 struct inode *inode = mapping->host; 2169 struct kiocb kiocb; 2170 ssize_t ret; 2171 2172 mutex_lock(&inode->i_mutex); 2173 init_sync_kiocb(&kiocb, file); 2174 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2175 if (ret == -EIOCBQUEUED) 2176 ret = wait_on_sync_kiocb(&kiocb); 2177 mutex_unlock(&inode->i_mutex); 2178 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2179 int err = sync_page_range(inode, mapping, *ppos - ret, ret); 2180 if (err < 0) 2181 ret = err; 2182 } 2183 return ret; 2184 } 2185 2186 /** 2187 * ntfs_file_write - simple wrapper for ntfs_file_writev() 2188 */ 2189 static ssize_t ntfs_file_write(struct file *file, const char __user *buf, 2190 size_t count, loff_t *ppos) 2191 { 2192 struct iovec local_iov = { .iov_base = (void __user *)buf, 2193 .iov_len = count }; 2194 2195 return ntfs_file_writev(file, &local_iov, 1, ppos); 2196 } 2197 2198 /** 2199 * ntfs_file_fsync - sync a file to disk 2200 * @filp: file to be synced 2201 * @dentry: dentry describing the file to sync 2202 * @datasync: if non-zero only flush user data and not metadata 2203 * 2204 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync 2205 * system calls. This function is inspired by fs/buffer.c::file_fsync(). 2206 * 2207 * If @datasync is false, write the mft record and all associated extent mft 2208 * records as well as the $DATA attribute and then sync the block device. 2209 * 2210 * If @datasync is true and the attribute is non-resident, we skip the writing 2211 * of the mft record and all associated extent mft records (this might still 2212 * happen due to the write_inode_now() call). 2213 * 2214 * Also, if @datasync is true, we do not wait on the inode to be written out 2215 * but we always wait on the page cache pages to be written out. 2216 * 2217 * Note: In the past @filp could be NULL so we ignore it as we don't need it 2218 * anyway. 2219 * 2220 * Locking: Caller must hold i_mutex on the inode. 2221 * 2222 * TODO: We should probably also write all attribute/index inodes associated 2223 * with this inode but since we have no simple way of getting to them we ignore 2224 * this problem for now. 2225 */ 2226 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, 2227 int datasync) 2228 { 2229 struct inode *vi = dentry->d_inode; 2230 int err, ret = 0; 2231 2232 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2233 BUG_ON(S_ISDIR(vi->i_mode)); 2234 if (!datasync || !NInoNonResident(NTFS_I(vi))) 2235 ret = ntfs_write_inode(vi, 1); 2236 write_inode_now(vi, !datasync); 2237 /* 2238 * NOTE: If we were to use mapping->private_list (see ext2 and 2239 * fs/buffer.c) for dirty blocks then we could optimize the below to be 2240 * sync_mapping_buffers(vi->i_mapping). 2241 */ 2242 err = sync_blockdev(vi->i_sb->s_bdev); 2243 if (unlikely(err && !ret)) 2244 ret = err; 2245 if (likely(!ret)) 2246 ntfs_debug("Done."); 2247 else 2248 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " 2249 "%u.", datasync ? "data" : "", vi->i_ino, -ret); 2250 return ret; 2251 } 2252 2253 #endif /* NTFS_RW */ 2254 2255 const struct file_operations ntfs_file_ops = { 2256 .llseek = generic_file_llseek, /* Seek inside file. */ 2257 .read = do_sync_read, /* Read from file. */ 2258 .aio_read = generic_file_aio_read, /* Async read from file. */ 2259 #ifdef NTFS_RW 2260 .write = ntfs_file_write, /* Write to file. */ 2261 .aio_write = ntfs_file_aio_write, /* Async write to file. */ 2262 /*.release = ,*/ /* Last file is closed. See 2263 fs/ext2/file.c:: 2264 ext2_release_file() for 2265 how to use this to discard 2266 preallocated space for 2267 write opened files. */ 2268 .fsync = ntfs_file_fsync, /* Sync a file to disk. */ 2269 /*.aio_fsync = ,*/ /* Sync all outstanding async 2270 i/o operations on a 2271 kiocb. */ 2272 #endif /* NTFS_RW */ 2273 /*.ioctl = ,*/ /* Perform function on the 2274 mounted filesystem. */ 2275 .mmap = generic_file_mmap, /* Mmap file. */ 2276 .open = ntfs_file_open, /* Open file. */ 2277 .splice_read = generic_file_splice_read /* Zero-copy data send with 2278 the data source being on 2279 the ntfs partition. We do 2280 not need to care about the 2281 data destination. */ 2282 /*.sendpage = ,*/ /* Zero-copy data send with 2283 the data destination being 2284 on the ntfs partition. We 2285 do not need to care about 2286 the data source. */ 2287 }; 2288 2289 const struct inode_operations ntfs_file_inode_ops = { 2290 #ifdef NTFS_RW 2291 .truncate = ntfs_truncate_vfs, 2292 .setattr = ntfs_setattr, 2293 #endif /* NTFS_RW */ 2294 }; 2295 2296 const struct file_operations ntfs_empty_file_ops = {}; 2297 2298 const struct inode_operations ntfs_empty_inode_ops = {}; 2299