xref: /openbmc/linux/fs/ntfs/file.c (revision 3932b9ca)
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30 #include <linux/aio.h>
31 
32 #include <asm/page.h>
33 #include <asm/uaccess.h>
34 
35 #include "attrib.h"
36 #include "bitmap.h"
37 #include "inode.h"
38 #include "debug.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_file_open - called when an inode is about to be opened
46  * @vi:		inode to be opened
47  * @filp:	file structure describing the inode
48  *
49  * Limit file size to the page cache limit on architectures where unsigned long
50  * is 32-bits. This is the most we can do for now without overflowing the page
51  * cache page index. Doing it this way means we don't run into problems because
52  * of existing too large files. It would be better to allow the user to read
53  * the beginning of the file but I doubt very much anyone is going to hit this
54  * check on a 32-bit architecture, so there is no point in adding the extra
55  * complexity required to support this.
56  *
57  * On 64-bit architectures, the check is hopefully optimized away by the
58  * compiler.
59  *
60  * After the check passes, just call generic_file_open() to do its work.
61  */
62 static int ntfs_file_open(struct inode *vi, struct file *filp)
63 {
64 	if (sizeof(unsigned long) < 8) {
65 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 			return -EOVERFLOW;
67 	}
68 	return generic_file_open(vi, filp);
69 }
70 
71 #ifdef NTFS_RW
72 
73 /**
74  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75  * @ni:			ntfs inode of the attribute to extend
76  * @new_init_size:	requested new initialized size in bytes
77  *
78  * Extend the initialized size of an attribute described by the ntfs inode @ni
79  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
80  * the old initialized size and @new_init_size both in the page cache and on
81  * disk (if relevant complete pages are already uptodate in the page cache then
82  * these are simply marked dirty).
83  *
84  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85  * in the resident attribute case, it is tied to the initialized size and, in
86  * the non-resident attribute case, it may not fall below the initialized size.
87  *
88  * Note that if the attribute is resident, we do not need to touch the page
89  * cache at all.  This is because if the page cache page is not uptodate we
90  * bring it uptodate later, when doing the write to the mft record since we
91  * then already have the page mapped.  And if the page is uptodate, the
92  * non-initialized region will already have been zeroed when the page was
93  * brought uptodate and the region may in fact already have been overwritten
94  * with new data via mmap() based writes, so we cannot just zero it.  And since
95  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96  * is unspecified, we choose not to do zeroing and thus we do not need to touch
97  * the page at all.  For a more detailed explanation see ntfs_truncate() in
98  * fs/ntfs/inode.c.
99  *
100  * Return 0 on success and -errno on error.  In the case that an error is
101  * encountered it is possible that the initialized size will already have been
102  * incremented some way towards @new_init_size but it is guaranteed that if
103  * this is the case, the necessary zeroing will also have happened and that all
104  * metadata is self-consistent.
105  *
106  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
107  *	    held by the caller.
108  */
109 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
110 {
111 	s64 old_init_size;
112 	loff_t old_i_size;
113 	pgoff_t index, end_index;
114 	unsigned long flags;
115 	struct inode *vi = VFS_I(ni);
116 	ntfs_inode *base_ni;
117 	MFT_RECORD *m = NULL;
118 	ATTR_RECORD *a;
119 	ntfs_attr_search_ctx *ctx = NULL;
120 	struct address_space *mapping;
121 	struct page *page = NULL;
122 	u8 *kattr;
123 	int err;
124 	u32 attr_len;
125 
126 	read_lock_irqsave(&ni->size_lock, flags);
127 	old_init_size = ni->initialized_size;
128 	old_i_size = i_size_read(vi);
129 	BUG_ON(new_init_size > ni->allocated_size);
130 	read_unlock_irqrestore(&ni->size_lock, flags);
131 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
132 			"old_initialized_size 0x%llx, "
133 			"new_initialized_size 0x%llx, i_size 0x%llx.",
134 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
135 			(unsigned long long)old_init_size,
136 			(unsigned long long)new_init_size, old_i_size);
137 	if (!NInoAttr(ni))
138 		base_ni = ni;
139 	else
140 		base_ni = ni->ext.base_ntfs_ino;
141 	/* Use goto to reduce indentation and we need the label below anyway. */
142 	if (NInoNonResident(ni))
143 		goto do_non_resident_extend;
144 	BUG_ON(old_init_size != old_i_size);
145 	m = map_mft_record(base_ni);
146 	if (IS_ERR(m)) {
147 		err = PTR_ERR(m);
148 		m = NULL;
149 		goto err_out;
150 	}
151 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
152 	if (unlikely(!ctx)) {
153 		err = -ENOMEM;
154 		goto err_out;
155 	}
156 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
157 			CASE_SENSITIVE, 0, NULL, 0, ctx);
158 	if (unlikely(err)) {
159 		if (err == -ENOENT)
160 			err = -EIO;
161 		goto err_out;
162 	}
163 	m = ctx->mrec;
164 	a = ctx->attr;
165 	BUG_ON(a->non_resident);
166 	/* The total length of the attribute value. */
167 	attr_len = le32_to_cpu(a->data.resident.value_length);
168 	BUG_ON(old_i_size != (loff_t)attr_len);
169 	/*
170 	 * Do the zeroing in the mft record and update the attribute size in
171 	 * the mft record.
172 	 */
173 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
174 	memset(kattr + attr_len, 0, new_init_size - attr_len);
175 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
176 	/* Finally, update the sizes in the vfs and ntfs inodes. */
177 	write_lock_irqsave(&ni->size_lock, flags);
178 	i_size_write(vi, new_init_size);
179 	ni->initialized_size = new_init_size;
180 	write_unlock_irqrestore(&ni->size_lock, flags);
181 	goto done;
182 do_non_resident_extend:
183 	/*
184 	 * If the new initialized size @new_init_size exceeds the current file
185 	 * size (vfs inode->i_size), we need to extend the file size to the
186 	 * new initialized size.
187 	 */
188 	if (new_init_size > old_i_size) {
189 		m = map_mft_record(base_ni);
190 		if (IS_ERR(m)) {
191 			err = PTR_ERR(m);
192 			m = NULL;
193 			goto err_out;
194 		}
195 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
196 		if (unlikely(!ctx)) {
197 			err = -ENOMEM;
198 			goto err_out;
199 		}
200 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
201 				CASE_SENSITIVE, 0, NULL, 0, ctx);
202 		if (unlikely(err)) {
203 			if (err == -ENOENT)
204 				err = -EIO;
205 			goto err_out;
206 		}
207 		m = ctx->mrec;
208 		a = ctx->attr;
209 		BUG_ON(!a->non_resident);
210 		BUG_ON(old_i_size != (loff_t)
211 				sle64_to_cpu(a->data.non_resident.data_size));
212 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
213 		flush_dcache_mft_record_page(ctx->ntfs_ino);
214 		mark_mft_record_dirty(ctx->ntfs_ino);
215 		/* Update the file size in the vfs inode. */
216 		i_size_write(vi, new_init_size);
217 		ntfs_attr_put_search_ctx(ctx);
218 		ctx = NULL;
219 		unmap_mft_record(base_ni);
220 		m = NULL;
221 	}
222 	mapping = vi->i_mapping;
223 	index = old_init_size >> PAGE_CACHE_SHIFT;
224 	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
225 	do {
226 		/*
227 		 * Read the page.  If the page is not present, this will zero
228 		 * the uninitialized regions for us.
229 		 */
230 		page = read_mapping_page(mapping, index, NULL);
231 		if (IS_ERR(page)) {
232 			err = PTR_ERR(page);
233 			goto init_err_out;
234 		}
235 		if (unlikely(PageError(page))) {
236 			page_cache_release(page);
237 			err = -EIO;
238 			goto init_err_out;
239 		}
240 		/*
241 		 * Update the initialized size in the ntfs inode.  This is
242 		 * enough to make ntfs_writepage() work.
243 		 */
244 		write_lock_irqsave(&ni->size_lock, flags);
245 		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
246 		if (ni->initialized_size > new_init_size)
247 			ni->initialized_size = new_init_size;
248 		write_unlock_irqrestore(&ni->size_lock, flags);
249 		/* Set the page dirty so it gets written out. */
250 		set_page_dirty(page);
251 		page_cache_release(page);
252 		/*
253 		 * Play nice with the vm and the rest of the system.  This is
254 		 * very much needed as we can potentially be modifying the
255 		 * initialised size from a very small value to a really huge
256 		 * value, e.g.
257 		 *	f = open(somefile, O_TRUNC);
258 		 *	truncate(f, 10GiB);
259 		 *	seek(f, 10GiB);
260 		 *	write(f, 1);
261 		 * And this would mean we would be marking dirty hundreds of
262 		 * thousands of pages or as in the above example more than
263 		 * two and a half million pages!
264 		 *
265 		 * TODO: For sparse pages could optimize this workload by using
266 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
267 		 * would be set in readpage for sparse pages and here we would
268 		 * not need to mark dirty any pages which have this bit set.
269 		 * The only caveat is that we have to clear the bit everywhere
270 		 * where we allocate any clusters that lie in the page or that
271 		 * contain the page.
272 		 *
273 		 * TODO: An even greater optimization would be for us to only
274 		 * call readpage() on pages which are not in sparse regions as
275 		 * determined from the runlist.  This would greatly reduce the
276 		 * number of pages we read and make dirty in the case of sparse
277 		 * files.
278 		 */
279 		balance_dirty_pages_ratelimited(mapping);
280 		cond_resched();
281 	} while (++index < end_index);
282 	read_lock_irqsave(&ni->size_lock, flags);
283 	BUG_ON(ni->initialized_size != new_init_size);
284 	read_unlock_irqrestore(&ni->size_lock, flags);
285 	/* Now bring in sync the initialized_size in the mft record. */
286 	m = map_mft_record(base_ni);
287 	if (IS_ERR(m)) {
288 		err = PTR_ERR(m);
289 		m = NULL;
290 		goto init_err_out;
291 	}
292 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
293 	if (unlikely(!ctx)) {
294 		err = -ENOMEM;
295 		goto init_err_out;
296 	}
297 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
298 			CASE_SENSITIVE, 0, NULL, 0, ctx);
299 	if (unlikely(err)) {
300 		if (err == -ENOENT)
301 			err = -EIO;
302 		goto init_err_out;
303 	}
304 	m = ctx->mrec;
305 	a = ctx->attr;
306 	BUG_ON(!a->non_resident);
307 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
308 done:
309 	flush_dcache_mft_record_page(ctx->ntfs_ino);
310 	mark_mft_record_dirty(ctx->ntfs_ino);
311 	if (ctx)
312 		ntfs_attr_put_search_ctx(ctx);
313 	if (m)
314 		unmap_mft_record(base_ni);
315 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
316 			(unsigned long long)new_init_size, i_size_read(vi));
317 	return 0;
318 init_err_out:
319 	write_lock_irqsave(&ni->size_lock, flags);
320 	ni->initialized_size = old_init_size;
321 	write_unlock_irqrestore(&ni->size_lock, flags);
322 err_out:
323 	if (ctx)
324 		ntfs_attr_put_search_ctx(ctx);
325 	if (m)
326 		unmap_mft_record(base_ni);
327 	ntfs_debug("Failed.  Returning error code %i.", err);
328 	return err;
329 }
330 
331 /**
332  * ntfs_fault_in_pages_readable -
333  *
334  * Fault a number of userspace pages into pagetables.
335  *
336  * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
337  * with more than two userspace pages as well as handling the single page case
338  * elegantly.
339  *
340  * If you find this difficult to understand, then think of the while loop being
341  * the following code, except that we do without the integer variable ret:
342  *
343  *	do {
344  *		ret = __get_user(c, uaddr);
345  *		uaddr += PAGE_SIZE;
346  *	} while (!ret && uaddr < end);
347  *
348  * Note, the final __get_user() may well run out-of-bounds of the user buffer,
349  * but _not_ out-of-bounds of the page the user buffer belongs to, and since
350  * this is only a read and not a write, and since it is still in the same page,
351  * it should not matter and this makes the code much simpler.
352  */
353 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
354 		int bytes)
355 {
356 	const char __user *end;
357 	volatile char c;
358 
359 	/* Set @end to the first byte outside the last page we care about. */
360 	end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
361 
362 	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
363 		;
364 }
365 
366 /**
367  * ntfs_fault_in_pages_readable_iovec -
368  *
369  * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
370  */
371 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
372 		size_t iov_ofs, int bytes)
373 {
374 	do {
375 		const char __user *buf;
376 		unsigned len;
377 
378 		buf = iov->iov_base + iov_ofs;
379 		len = iov->iov_len - iov_ofs;
380 		if (len > bytes)
381 			len = bytes;
382 		ntfs_fault_in_pages_readable(buf, len);
383 		bytes -= len;
384 		iov++;
385 		iov_ofs = 0;
386 	} while (bytes);
387 }
388 
389 /**
390  * __ntfs_grab_cache_pages - obtain a number of locked pages
391  * @mapping:	address space mapping from which to obtain page cache pages
392  * @index:	starting index in @mapping at which to begin obtaining pages
393  * @nr_pages:	number of page cache pages to obtain
394  * @pages:	array of pages in which to return the obtained page cache pages
395  * @cached_page: allocated but as yet unused page
396  *
397  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
398  * starting at index @index.
399  *
400  * If a page is newly created, add it to lru list
401  *
402  * Note, the page locks are obtained in ascending page index order.
403  */
404 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
405 		pgoff_t index, const unsigned nr_pages, struct page **pages,
406 		struct page **cached_page)
407 {
408 	int err, nr;
409 
410 	BUG_ON(!nr_pages);
411 	err = nr = 0;
412 	do {
413 		pages[nr] = find_lock_page(mapping, index);
414 		if (!pages[nr]) {
415 			if (!*cached_page) {
416 				*cached_page = page_cache_alloc(mapping);
417 				if (unlikely(!*cached_page)) {
418 					err = -ENOMEM;
419 					goto err_out;
420 				}
421 			}
422 			err = add_to_page_cache_lru(*cached_page, mapping, index,
423 					GFP_KERNEL);
424 			if (unlikely(err)) {
425 				if (err == -EEXIST)
426 					continue;
427 				goto err_out;
428 			}
429 			pages[nr] = *cached_page;
430 			*cached_page = NULL;
431 		}
432 		index++;
433 		nr++;
434 	} while (nr < nr_pages);
435 out:
436 	return err;
437 err_out:
438 	while (nr > 0) {
439 		unlock_page(pages[--nr]);
440 		page_cache_release(pages[nr]);
441 	}
442 	goto out;
443 }
444 
445 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
446 {
447 	lock_buffer(bh);
448 	get_bh(bh);
449 	bh->b_end_io = end_buffer_read_sync;
450 	return submit_bh(READ, bh);
451 }
452 
453 /**
454  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
455  * @pages:	array of destination pages
456  * @nr_pages:	number of pages in @pages
457  * @pos:	byte position in file at which the write begins
458  * @bytes:	number of bytes to be written
459  *
460  * This is called for non-resident attributes from ntfs_file_buffered_write()
461  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
462  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
463  * data has not yet been copied into the @pages.
464  *
465  * Need to fill any holes with actual clusters, allocate buffers if necessary,
466  * ensure all the buffers are mapped, and bring uptodate any buffers that are
467  * only partially being written to.
468  *
469  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
470  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
471  * the same cluster and that they are the entirety of that cluster, and that
472  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
473  *
474  * i_size is not to be modified yet.
475  *
476  * Return 0 on success or -errno on error.
477  */
478 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
479 		unsigned nr_pages, s64 pos, size_t bytes)
480 {
481 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
482 	LCN lcn;
483 	s64 bh_pos, vcn_len, end, initialized_size;
484 	sector_t lcn_block;
485 	struct page *page;
486 	struct inode *vi;
487 	ntfs_inode *ni, *base_ni = NULL;
488 	ntfs_volume *vol;
489 	runlist_element *rl, *rl2;
490 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
491 	ntfs_attr_search_ctx *ctx = NULL;
492 	MFT_RECORD *m = NULL;
493 	ATTR_RECORD *a = NULL;
494 	unsigned long flags;
495 	u32 attr_rec_len = 0;
496 	unsigned blocksize, u;
497 	int err, mp_size;
498 	bool rl_write_locked, was_hole, is_retry;
499 	unsigned char blocksize_bits;
500 	struct {
501 		u8 runlist_merged:1;
502 		u8 mft_attr_mapped:1;
503 		u8 mp_rebuilt:1;
504 		u8 attr_switched:1;
505 	} status = { 0, 0, 0, 0 };
506 
507 	BUG_ON(!nr_pages);
508 	BUG_ON(!pages);
509 	BUG_ON(!*pages);
510 	vi = pages[0]->mapping->host;
511 	ni = NTFS_I(vi);
512 	vol = ni->vol;
513 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
514 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
515 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
516 			(long long)pos, bytes);
517 	blocksize = vol->sb->s_blocksize;
518 	blocksize_bits = vol->sb->s_blocksize_bits;
519 	u = 0;
520 	do {
521 		page = pages[u];
522 		BUG_ON(!page);
523 		/*
524 		 * create_empty_buffers() will create uptodate/dirty buffers if
525 		 * the page is uptodate/dirty.
526 		 */
527 		if (!page_has_buffers(page)) {
528 			create_empty_buffers(page, blocksize, 0);
529 			if (unlikely(!page_has_buffers(page)))
530 				return -ENOMEM;
531 		}
532 	} while (++u < nr_pages);
533 	rl_write_locked = false;
534 	rl = NULL;
535 	err = 0;
536 	vcn = lcn = -1;
537 	vcn_len = 0;
538 	lcn_block = -1;
539 	was_hole = false;
540 	cpos = pos >> vol->cluster_size_bits;
541 	end = pos + bytes;
542 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
543 	/*
544 	 * Loop over each page and for each page over each buffer.  Use goto to
545 	 * reduce indentation.
546 	 */
547 	u = 0;
548 do_next_page:
549 	page = pages[u];
550 	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
551 	bh = head = page_buffers(page);
552 	do {
553 		VCN cdelta;
554 		s64 bh_end;
555 		unsigned bh_cofs;
556 
557 		/* Clear buffer_new on all buffers to reinitialise state. */
558 		if (buffer_new(bh))
559 			clear_buffer_new(bh);
560 		bh_end = bh_pos + blocksize;
561 		bh_cpos = bh_pos >> vol->cluster_size_bits;
562 		bh_cofs = bh_pos & vol->cluster_size_mask;
563 		if (buffer_mapped(bh)) {
564 			/*
565 			 * The buffer is already mapped.  If it is uptodate,
566 			 * ignore it.
567 			 */
568 			if (buffer_uptodate(bh))
569 				continue;
570 			/*
571 			 * The buffer is not uptodate.  If the page is uptodate
572 			 * set the buffer uptodate and otherwise ignore it.
573 			 */
574 			if (PageUptodate(page)) {
575 				set_buffer_uptodate(bh);
576 				continue;
577 			}
578 			/*
579 			 * Neither the page nor the buffer are uptodate.  If
580 			 * the buffer is only partially being written to, we
581 			 * need to read it in before the write, i.e. now.
582 			 */
583 			if ((bh_pos < pos && bh_end > pos) ||
584 					(bh_pos < end && bh_end > end)) {
585 				/*
586 				 * If the buffer is fully or partially within
587 				 * the initialized size, do an actual read.
588 				 * Otherwise, simply zero the buffer.
589 				 */
590 				read_lock_irqsave(&ni->size_lock, flags);
591 				initialized_size = ni->initialized_size;
592 				read_unlock_irqrestore(&ni->size_lock, flags);
593 				if (bh_pos < initialized_size) {
594 					ntfs_submit_bh_for_read(bh);
595 					*wait_bh++ = bh;
596 				} else {
597 					zero_user(page, bh_offset(bh),
598 							blocksize);
599 					set_buffer_uptodate(bh);
600 				}
601 			}
602 			continue;
603 		}
604 		/* Unmapped buffer.  Need to map it. */
605 		bh->b_bdev = vol->sb->s_bdev;
606 		/*
607 		 * If the current buffer is in the same clusters as the map
608 		 * cache, there is no need to check the runlist again.  The
609 		 * map cache is made up of @vcn, which is the first cached file
610 		 * cluster, @vcn_len which is the number of cached file
611 		 * clusters, @lcn is the device cluster corresponding to @vcn,
612 		 * and @lcn_block is the block number corresponding to @lcn.
613 		 */
614 		cdelta = bh_cpos - vcn;
615 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
616 map_buffer_cached:
617 			BUG_ON(lcn < 0);
618 			bh->b_blocknr = lcn_block +
619 					(cdelta << (vol->cluster_size_bits -
620 					blocksize_bits)) +
621 					(bh_cofs >> blocksize_bits);
622 			set_buffer_mapped(bh);
623 			/*
624 			 * If the page is uptodate so is the buffer.  If the
625 			 * buffer is fully outside the write, we ignore it if
626 			 * it was already allocated and we mark it dirty so it
627 			 * gets written out if we allocated it.  On the other
628 			 * hand, if we allocated the buffer but we are not
629 			 * marking it dirty we set buffer_new so we can do
630 			 * error recovery.
631 			 */
632 			if (PageUptodate(page)) {
633 				if (!buffer_uptodate(bh))
634 					set_buffer_uptodate(bh);
635 				if (unlikely(was_hole)) {
636 					/* We allocated the buffer. */
637 					unmap_underlying_metadata(bh->b_bdev,
638 							bh->b_blocknr);
639 					if (bh_end <= pos || bh_pos >= end)
640 						mark_buffer_dirty(bh);
641 					else
642 						set_buffer_new(bh);
643 				}
644 				continue;
645 			}
646 			/* Page is _not_ uptodate. */
647 			if (likely(!was_hole)) {
648 				/*
649 				 * Buffer was already allocated.  If it is not
650 				 * uptodate and is only partially being written
651 				 * to, we need to read it in before the write,
652 				 * i.e. now.
653 				 */
654 				if (!buffer_uptodate(bh) && bh_pos < end &&
655 						bh_end > pos &&
656 						(bh_pos < pos ||
657 						bh_end > end)) {
658 					/*
659 					 * If the buffer is fully or partially
660 					 * within the initialized size, do an
661 					 * actual read.  Otherwise, simply zero
662 					 * the buffer.
663 					 */
664 					read_lock_irqsave(&ni->size_lock,
665 							flags);
666 					initialized_size = ni->initialized_size;
667 					read_unlock_irqrestore(&ni->size_lock,
668 							flags);
669 					if (bh_pos < initialized_size) {
670 						ntfs_submit_bh_for_read(bh);
671 						*wait_bh++ = bh;
672 					} else {
673 						zero_user(page, bh_offset(bh),
674 								blocksize);
675 						set_buffer_uptodate(bh);
676 					}
677 				}
678 				continue;
679 			}
680 			/* We allocated the buffer. */
681 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
682 			/*
683 			 * If the buffer is fully outside the write, zero it,
684 			 * set it uptodate, and mark it dirty so it gets
685 			 * written out.  If it is partially being written to,
686 			 * zero region surrounding the write but leave it to
687 			 * commit write to do anything else.  Finally, if the
688 			 * buffer is fully being overwritten, do nothing.
689 			 */
690 			if (bh_end <= pos || bh_pos >= end) {
691 				if (!buffer_uptodate(bh)) {
692 					zero_user(page, bh_offset(bh),
693 							blocksize);
694 					set_buffer_uptodate(bh);
695 				}
696 				mark_buffer_dirty(bh);
697 				continue;
698 			}
699 			set_buffer_new(bh);
700 			if (!buffer_uptodate(bh) &&
701 					(bh_pos < pos || bh_end > end)) {
702 				u8 *kaddr;
703 				unsigned pofs;
704 
705 				kaddr = kmap_atomic(page);
706 				if (bh_pos < pos) {
707 					pofs = bh_pos & ~PAGE_CACHE_MASK;
708 					memset(kaddr + pofs, 0, pos - bh_pos);
709 				}
710 				if (bh_end > end) {
711 					pofs = end & ~PAGE_CACHE_MASK;
712 					memset(kaddr + pofs, 0, bh_end - end);
713 				}
714 				kunmap_atomic(kaddr);
715 				flush_dcache_page(page);
716 			}
717 			continue;
718 		}
719 		/*
720 		 * Slow path: this is the first buffer in the cluster.  If it
721 		 * is outside allocated size and is not uptodate, zero it and
722 		 * set it uptodate.
723 		 */
724 		read_lock_irqsave(&ni->size_lock, flags);
725 		initialized_size = ni->allocated_size;
726 		read_unlock_irqrestore(&ni->size_lock, flags);
727 		if (bh_pos > initialized_size) {
728 			if (PageUptodate(page)) {
729 				if (!buffer_uptodate(bh))
730 					set_buffer_uptodate(bh);
731 			} else if (!buffer_uptodate(bh)) {
732 				zero_user(page, bh_offset(bh), blocksize);
733 				set_buffer_uptodate(bh);
734 			}
735 			continue;
736 		}
737 		is_retry = false;
738 		if (!rl) {
739 			down_read(&ni->runlist.lock);
740 retry_remap:
741 			rl = ni->runlist.rl;
742 		}
743 		if (likely(rl != NULL)) {
744 			/* Seek to element containing target cluster. */
745 			while (rl->length && rl[1].vcn <= bh_cpos)
746 				rl++;
747 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
748 			if (likely(lcn >= 0)) {
749 				/*
750 				 * Successful remap, setup the map cache and
751 				 * use that to deal with the buffer.
752 				 */
753 				was_hole = false;
754 				vcn = bh_cpos;
755 				vcn_len = rl[1].vcn - vcn;
756 				lcn_block = lcn << (vol->cluster_size_bits -
757 						blocksize_bits);
758 				cdelta = 0;
759 				/*
760 				 * If the number of remaining clusters touched
761 				 * by the write is smaller or equal to the
762 				 * number of cached clusters, unlock the
763 				 * runlist as the map cache will be used from
764 				 * now on.
765 				 */
766 				if (likely(vcn + vcn_len >= cend)) {
767 					if (rl_write_locked) {
768 						up_write(&ni->runlist.lock);
769 						rl_write_locked = false;
770 					} else
771 						up_read(&ni->runlist.lock);
772 					rl = NULL;
773 				}
774 				goto map_buffer_cached;
775 			}
776 		} else
777 			lcn = LCN_RL_NOT_MAPPED;
778 		/*
779 		 * If it is not a hole and not out of bounds, the runlist is
780 		 * probably unmapped so try to map it now.
781 		 */
782 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
783 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
784 				/* Attempt to map runlist. */
785 				if (!rl_write_locked) {
786 					/*
787 					 * We need the runlist locked for
788 					 * writing, so if it is locked for
789 					 * reading relock it now and retry in
790 					 * case it changed whilst we dropped
791 					 * the lock.
792 					 */
793 					up_read(&ni->runlist.lock);
794 					down_write(&ni->runlist.lock);
795 					rl_write_locked = true;
796 					goto retry_remap;
797 				}
798 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
799 						NULL);
800 				if (likely(!err)) {
801 					is_retry = true;
802 					goto retry_remap;
803 				}
804 				/*
805 				 * If @vcn is out of bounds, pretend @lcn is
806 				 * LCN_ENOENT.  As long as the buffer is out
807 				 * of bounds this will work fine.
808 				 */
809 				if (err == -ENOENT) {
810 					lcn = LCN_ENOENT;
811 					err = 0;
812 					goto rl_not_mapped_enoent;
813 				}
814 			} else
815 				err = -EIO;
816 			/* Failed to map the buffer, even after retrying. */
817 			bh->b_blocknr = -1;
818 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
819 					"attribute type 0x%x, vcn 0x%llx, "
820 					"vcn offset 0x%x, because its "
821 					"location on disk could not be "
822 					"determined%s (error code %i).",
823 					ni->mft_no, ni->type,
824 					(unsigned long long)bh_cpos,
825 					(unsigned)bh_pos &
826 					vol->cluster_size_mask,
827 					is_retry ? " even after retrying" : "",
828 					err);
829 			break;
830 		}
831 rl_not_mapped_enoent:
832 		/*
833 		 * The buffer is in a hole or out of bounds.  We need to fill
834 		 * the hole, unless the buffer is in a cluster which is not
835 		 * touched by the write, in which case we just leave the buffer
836 		 * unmapped.  This can only happen when the cluster size is
837 		 * less than the page cache size.
838 		 */
839 		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
840 			bh_cend = (bh_end + vol->cluster_size - 1) >>
841 					vol->cluster_size_bits;
842 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
843 				bh->b_blocknr = -1;
844 				/*
845 				 * If the buffer is uptodate we skip it.  If it
846 				 * is not but the page is uptodate, we can set
847 				 * the buffer uptodate.  If the page is not
848 				 * uptodate, we can clear the buffer and set it
849 				 * uptodate.  Whether this is worthwhile is
850 				 * debatable and this could be removed.
851 				 */
852 				if (PageUptodate(page)) {
853 					if (!buffer_uptodate(bh))
854 						set_buffer_uptodate(bh);
855 				} else if (!buffer_uptodate(bh)) {
856 					zero_user(page, bh_offset(bh),
857 						blocksize);
858 					set_buffer_uptodate(bh);
859 				}
860 				continue;
861 			}
862 		}
863 		/*
864 		 * Out of bounds buffer is invalid if it was not really out of
865 		 * bounds.
866 		 */
867 		BUG_ON(lcn != LCN_HOLE);
868 		/*
869 		 * We need the runlist locked for writing, so if it is locked
870 		 * for reading relock it now and retry in case it changed
871 		 * whilst we dropped the lock.
872 		 */
873 		BUG_ON(!rl);
874 		if (!rl_write_locked) {
875 			up_read(&ni->runlist.lock);
876 			down_write(&ni->runlist.lock);
877 			rl_write_locked = true;
878 			goto retry_remap;
879 		}
880 		/* Find the previous last allocated cluster. */
881 		BUG_ON(rl->lcn != LCN_HOLE);
882 		lcn = -1;
883 		rl2 = rl;
884 		while (--rl2 >= ni->runlist.rl) {
885 			if (rl2->lcn >= 0) {
886 				lcn = rl2->lcn + rl2->length;
887 				break;
888 			}
889 		}
890 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
891 				false);
892 		if (IS_ERR(rl2)) {
893 			err = PTR_ERR(rl2);
894 			ntfs_debug("Failed to allocate cluster, error code %i.",
895 					err);
896 			break;
897 		}
898 		lcn = rl2->lcn;
899 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
900 		if (IS_ERR(rl)) {
901 			err = PTR_ERR(rl);
902 			if (err != -ENOMEM)
903 				err = -EIO;
904 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
905 				ntfs_error(vol->sb, "Failed to release "
906 						"allocated cluster in error "
907 						"code path.  Run chkdsk to "
908 						"recover the lost cluster.");
909 				NVolSetErrors(vol);
910 			}
911 			ntfs_free(rl2);
912 			break;
913 		}
914 		ni->runlist.rl = rl;
915 		status.runlist_merged = 1;
916 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
917 				(unsigned long long)lcn);
918 		/* Map and lock the mft record and get the attribute record. */
919 		if (!NInoAttr(ni))
920 			base_ni = ni;
921 		else
922 			base_ni = ni->ext.base_ntfs_ino;
923 		m = map_mft_record(base_ni);
924 		if (IS_ERR(m)) {
925 			err = PTR_ERR(m);
926 			break;
927 		}
928 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
929 		if (unlikely(!ctx)) {
930 			err = -ENOMEM;
931 			unmap_mft_record(base_ni);
932 			break;
933 		}
934 		status.mft_attr_mapped = 1;
935 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
936 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
937 		if (unlikely(err)) {
938 			if (err == -ENOENT)
939 				err = -EIO;
940 			break;
941 		}
942 		m = ctx->mrec;
943 		a = ctx->attr;
944 		/*
945 		 * Find the runlist element with which the attribute extent
946 		 * starts.  Note, we cannot use the _attr_ version because we
947 		 * have mapped the mft record.  That is ok because we know the
948 		 * runlist fragment must be mapped already to have ever gotten
949 		 * here, so we can just use the _rl_ version.
950 		 */
951 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
952 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
953 		BUG_ON(!rl2);
954 		BUG_ON(!rl2->length);
955 		BUG_ON(rl2->lcn < LCN_HOLE);
956 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
957 		/*
958 		 * If @highest_vcn is zero, calculate the real highest_vcn
959 		 * (which can really be zero).
960 		 */
961 		if (!highest_vcn)
962 			highest_vcn = (sle64_to_cpu(
963 					a->data.non_resident.allocated_size) >>
964 					vol->cluster_size_bits) - 1;
965 		/*
966 		 * Determine the size of the mapping pairs array for the new
967 		 * extent, i.e. the old extent with the hole filled.
968 		 */
969 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
970 				highest_vcn);
971 		if (unlikely(mp_size <= 0)) {
972 			if (!(err = mp_size))
973 				err = -EIO;
974 			ntfs_debug("Failed to get size for mapping pairs "
975 					"array, error code %i.", err);
976 			break;
977 		}
978 		/*
979 		 * Resize the attribute record to fit the new mapping pairs
980 		 * array.
981 		 */
982 		attr_rec_len = le32_to_cpu(a->length);
983 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
984 				a->data.non_resident.mapping_pairs_offset));
985 		if (unlikely(err)) {
986 			BUG_ON(err != -ENOSPC);
987 			// TODO: Deal with this by using the current attribute
988 			// and fill it with as much of the mapping pairs
989 			// array as possible.  Then loop over each attribute
990 			// extent rewriting the mapping pairs arrays as we go
991 			// along and if when we reach the end we have not
992 			// enough space, try to resize the last attribute
993 			// extent and if even that fails, add a new attribute
994 			// extent.
995 			// We could also try to resize at each step in the hope
996 			// that we will not need to rewrite every single extent.
997 			// Note, we may need to decompress some extents to fill
998 			// the runlist as we are walking the extents...
999 			ntfs_error(vol->sb, "Not enough space in the mft "
1000 					"record for the extended attribute "
1001 					"record.  This case is not "
1002 					"implemented yet.");
1003 			err = -EOPNOTSUPP;
1004 			break ;
1005 		}
1006 		status.mp_rebuilt = 1;
1007 		/*
1008 		 * Generate the mapping pairs array directly into the attribute
1009 		 * record.
1010 		 */
1011 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1012 				a->data.non_resident.mapping_pairs_offset),
1013 				mp_size, rl2, vcn, highest_vcn, NULL);
1014 		if (unlikely(err)) {
1015 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1016 					"attribute type 0x%x, because building "
1017 					"the mapping pairs failed with error "
1018 					"code %i.", vi->i_ino,
1019 					(unsigned)le32_to_cpu(ni->type), err);
1020 			err = -EIO;
1021 			break;
1022 		}
1023 		/* Update the highest_vcn but only if it was not set. */
1024 		if (unlikely(!a->data.non_resident.highest_vcn))
1025 			a->data.non_resident.highest_vcn =
1026 					cpu_to_sle64(highest_vcn);
1027 		/*
1028 		 * If the attribute is sparse/compressed, update the compressed
1029 		 * size in the ntfs_inode structure and the attribute record.
1030 		 */
1031 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1032 			/*
1033 			 * If we are not in the first attribute extent, switch
1034 			 * to it, but first ensure the changes will make it to
1035 			 * disk later.
1036 			 */
1037 			if (a->data.non_resident.lowest_vcn) {
1038 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1039 				mark_mft_record_dirty(ctx->ntfs_ino);
1040 				ntfs_attr_reinit_search_ctx(ctx);
1041 				err = ntfs_attr_lookup(ni->type, ni->name,
1042 						ni->name_len, CASE_SENSITIVE,
1043 						0, NULL, 0, ctx);
1044 				if (unlikely(err)) {
1045 					status.attr_switched = 1;
1046 					break;
1047 				}
1048 				/* @m is not used any more so do not set it. */
1049 				a = ctx->attr;
1050 			}
1051 			write_lock_irqsave(&ni->size_lock, flags);
1052 			ni->itype.compressed.size += vol->cluster_size;
1053 			a->data.non_resident.compressed_size =
1054 					cpu_to_sle64(ni->itype.compressed.size);
1055 			write_unlock_irqrestore(&ni->size_lock, flags);
1056 		}
1057 		/* Ensure the changes make it to disk. */
1058 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1059 		mark_mft_record_dirty(ctx->ntfs_ino);
1060 		ntfs_attr_put_search_ctx(ctx);
1061 		unmap_mft_record(base_ni);
1062 		/* Successfully filled the hole. */
1063 		status.runlist_merged = 0;
1064 		status.mft_attr_mapped = 0;
1065 		status.mp_rebuilt = 0;
1066 		/* Setup the map cache and use that to deal with the buffer. */
1067 		was_hole = true;
1068 		vcn = bh_cpos;
1069 		vcn_len = 1;
1070 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1071 		cdelta = 0;
1072 		/*
1073 		 * If the number of remaining clusters in the @pages is smaller
1074 		 * or equal to the number of cached clusters, unlock the
1075 		 * runlist as the map cache will be used from now on.
1076 		 */
1077 		if (likely(vcn + vcn_len >= cend)) {
1078 			up_write(&ni->runlist.lock);
1079 			rl_write_locked = false;
1080 			rl = NULL;
1081 		}
1082 		goto map_buffer_cached;
1083 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1084 	/* If there are no errors, do the next page. */
1085 	if (likely(!err && ++u < nr_pages))
1086 		goto do_next_page;
1087 	/* If there are no errors, release the runlist lock if we took it. */
1088 	if (likely(!err)) {
1089 		if (unlikely(rl_write_locked)) {
1090 			up_write(&ni->runlist.lock);
1091 			rl_write_locked = false;
1092 		} else if (unlikely(rl))
1093 			up_read(&ni->runlist.lock);
1094 		rl = NULL;
1095 	}
1096 	/* If we issued read requests, let them complete. */
1097 	read_lock_irqsave(&ni->size_lock, flags);
1098 	initialized_size = ni->initialized_size;
1099 	read_unlock_irqrestore(&ni->size_lock, flags);
1100 	while (wait_bh > wait) {
1101 		bh = *--wait_bh;
1102 		wait_on_buffer(bh);
1103 		if (likely(buffer_uptodate(bh))) {
1104 			page = bh->b_page;
1105 			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1106 					bh_offset(bh);
1107 			/*
1108 			 * If the buffer overflows the initialized size, need
1109 			 * to zero the overflowing region.
1110 			 */
1111 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1112 				int ofs = 0;
1113 
1114 				if (likely(bh_pos < initialized_size))
1115 					ofs = initialized_size - bh_pos;
1116 				zero_user_segment(page, bh_offset(bh) + ofs,
1117 						blocksize);
1118 			}
1119 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1120 			err = -EIO;
1121 	}
1122 	if (likely(!err)) {
1123 		/* Clear buffer_new on all buffers. */
1124 		u = 0;
1125 		do {
1126 			bh = head = page_buffers(pages[u]);
1127 			do {
1128 				if (buffer_new(bh))
1129 					clear_buffer_new(bh);
1130 			} while ((bh = bh->b_this_page) != head);
1131 		} while (++u < nr_pages);
1132 		ntfs_debug("Done.");
1133 		return err;
1134 	}
1135 	if (status.attr_switched) {
1136 		/* Get back to the attribute extent we modified. */
1137 		ntfs_attr_reinit_search_ctx(ctx);
1138 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1139 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1140 			ntfs_error(vol->sb, "Failed to find required "
1141 					"attribute extent of attribute in "
1142 					"error code path.  Run chkdsk to "
1143 					"recover.");
1144 			write_lock_irqsave(&ni->size_lock, flags);
1145 			ni->itype.compressed.size += vol->cluster_size;
1146 			write_unlock_irqrestore(&ni->size_lock, flags);
1147 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1148 			mark_mft_record_dirty(ctx->ntfs_ino);
1149 			/*
1150 			 * The only thing that is now wrong is the compressed
1151 			 * size of the base attribute extent which chkdsk
1152 			 * should be able to fix.
1153 			 */
1154 			NVolSetErrors(vol);
1155 		} else {
1156 			m = ctx->mrec;
1157 			a = ctx->attr;
1158 			status.attr_switched = 0;
1159 		}
1160 	}
1161 	/*
1162 	 * If the runlist has been modified, need to restore it by punching a
1163 	 * hole into it and we then need to deallocate the on-disk cluster as
1164 	 * well.  Note, we only modify the runlist if we are able to generate a
1165 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1166 	 * is not switched.
1167 	 */
1168 	if (status.runlist_merged && !status.attr_switched) {
1169 		BUG_ON(!rl_write_locked);
1170 		/* Make the file cluster we allocated sparse in the runlist. */
1171 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1172 			ntfs_error(vol->sb, "Failed to punch hole into "
1173 					"attribute runlist in error code "
1174 					"path.  Run chkdsk to recover the "
1175 					"lost cluster.");
1176 			NVolSetErrors(vol);
1177 		} else /* if (success) */ {
1178 			status.runlist_merged = 0;
1179 			/*
1180 			 * Deallocate the on-disk cluster we allocated but only
1181 			 * if we succeeded in punching its vcn out of the
1182 			 * runlist.
1183 			 */
1184 			down_write(&vol->lcnbmp_lock);
1185 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1186 				ntfs_error(vol->sb, "Failed to release "
1187 						"allocated cluster in error "
1188 						"code path.  Run chkdsk to "
1189 						"recover the lost cluster.");
1190 				NVolSetErrors(vol);
1191 			}
1192 			up_write(&vol->lcnbmp_lock);
1193 		}
1194 	}
1195 	/*
1196 	 * Resize the attribute record to its old size and rebuild the mapping
1197 	 * pairs array.  Note, we only can do this if the runlist has been
1198 	 * restored to its old state which also implies that the mapped
1199 	 * attribute extent is not switched.
1200 	 */
1201 	if (status.mp_rebuilt && !status.runlist_merged) {
1202 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1203 			ntfs_error(vol->sb, "Failed to restore attribute "
1204 					"record in error code path.  Run "
1205 					"chkdsk to recover.");
1206 			NVolSetErrors(vol);
1207 		} else /* if (success) */ {
1208 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1209 					le16_to_cpu(a->data.non_resident.
1210 					mapping_pairs_offset), attr_rec_len -
1211 					le16_to_cpu(a->data.non_resident.
1212 					mapping_pairs_offset), ni->runlist.rl,
1213 					vcn, highest_vcn, NULL)) {
1214 				ntfs_error(vol->sb, "Failed to restore "
1215 						"mapping pairs array in error "
1216 						"code path.  Run chkdsk to "
1217 						"recover.");
1218 				NVolSetErrors(vol);
1219 			}
1220 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1221 			mark_mft_record_dirty(ctx->ntfs_ino);
1222 		}
1223 	}
1224 	/* Release the mft record and the attribute. */
1225 	if (status.mft_attr_mapped) {
1226 		ntfs_attr_put_search_ctx(ctx);
1227 		unmap_mft_record(base_ni);
1228 	}
1229 	/* Release the runlist lock. */
1230 	if (rl_write_locked)
1231 		up_write(&ni->runlist.lock);
1232 	else if (rl)
1233 		up_read(&ni->runlist.lock);
1234 	/*
1235 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1236 	 * If BH_New is set, we know that the block was newly allocated above
1237 	 * and that it has not been fully zeroed and marked dirty yet.
1238 	 */
1239 	nr_pages = u;
1240 	u = 0;
1241 	end = bh_cpos << vol->cluster_size_bits;
1242 	do {
1243 		page = pages[u];
1244 		bh = head = page_buffers(page);
1245 		do {
1246 			if (u == nr_pages &&
1247 					((s64)page->index << PAGE_CACHE_SHIFT) +
1248 					bh_offset(bh) >= end)
1249 				break;
1250 			if (!buffer_new(bh))
1251 				continue;
1252 			clear_buffer_new(bh);
1253 			if (!buffer_uptodate(bh)) {
1254 				if (PageUptodate(page))
1255 					set_buffer_uptodate(bh);
1256 				else {
1257 					zero_user(page, bh_offset(bh),
1258 							blocksize);
1259 					set_buffer_uptodate(bh);
1260 				}
1261 			}
1262 			mark_buffer_dirty(bh);
1263 		} while ((bh = bh->b_this_page) != head);
1264 	} while (++u <= nr_pages);
1265 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1266 	return err;
1267 }
1268 
1269 /*
1270  * Copy as much as we can into the pages and return the number of bytes which
1271  * were successfully copied.  If a fault is encountered then clear the pages
1272  * out to (ofs + bytes) and return the number of bytes which were copied.
1273  */
1274 static inline size_t ntfs_copy_from_user(struct page **pages,
1275 		unsigned nr_pages, unsigned ofs, const char __user *buf,
1276 		size_t bytes)
1277 {
1278 	struct page **last_page = pages + nr_pages;
1279 	char *addr;
1280 	size_t total = 0;
1281 	unsigned len;
1282 	int left;
1283 
1284 	do {
1285 		len = PAGE_CACHE_SIZE - ofs;
1286 		if (len > bytes)
1287 			len = bytes;
1288 		addr = kmap_atomic(*pages);
1289 		left = __copy_from_user_inatomic(addr + ofs, buf, len);
1290 		kunmap_atomic(addr);
1291 		if (unlikely(left)) {
1292 			/* Do it the slow way. */
1293 			addr = kmap(*pages);
1294 			left = __copy_from_user(addr + ofs, buf, len);
1295 			kunmap(*pages);
1296 			if (unlikely(left))
1297 				goto err_out;
1298 		}
1299 		total += len;
1300 		bytes -= len;
1301 		if (!bytes)
1302 			break;
1303 		buf += len;
1304 		ofs = 0;
1305 	} while (++pages < last_page);
1306 out:
1307 	return total;
1308 err_out:
1309 	total += len - left;
1310 	/* Zero the rest of the target like __copy_from_user(). */
1311 	while (++pages < last_page) {
1312 		bytes -= len;
1313 		if (!bytes)
1314 			break;
1315 		len = PAGE_CACHE_SIZE;
1316 		if (len > bytes)
1317 			len = bytes;
1318 		zero_user(*pages, 0, len);
1319 	}
1320 	goto out;
1321 }
1322 
1323 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1324 		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1325 {
1326 	size_t total = 0;
1327 
1328 	while (1) {
1329 		const char __user *buf = iov->iov_base + iov_ofs;
1330 		unsigned len;
1331 		size_t left;
1332 
1333 		len = iov->iov_len - iov_ofs;
1334 		if (len > bytes)
1335 			len = bytes;
1336 		left = __copy_from_user_inatomic(vaddr, buf, len);
1337 		total += len;
1338 		bytes -= len;
1339 		vaddr += len;
1340 		if (unlikely(left)) {
1341 			total -= left;
1342 			break;
1343 		}
1344 		if (!bytes)
1345 			break;
1346 		iov++;
1347 		iov_ofs = 0;
1348 	}
1349 	return total;
1350 }
1351 
1352 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1353 		size_t *iov_ofsp, size_t bytes)
1354 {
1355 	const struct iovec *iov = *iovp;
1356 	size_t iov_ofs = *iov_ofsp;
1357 
1358 	while (bytes) {
1359 		unsigned len;
1360 
1361 		len = iov->iov_len - iov_ofs;
1362 		if (len > bytes)
1363 			len = bytes;
1364 		bytes -= len;
1365 		iov_ofs += len;
1366 		if (iov->iov_len == iov_ofs) {
1367 			iov++;
1368 			iov_ofs = 0;
1369 		}
1370 	}
1371 	*iovp = iov;
1372 	*iov_ofsp = iov_ofs;
1373 }
1374 
1375 /*
1376  * This has the same side-effects and return value as ntfs_copy_from_user().
1377  * The difference is that on a fault we need to memset the remainder of the
1378  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1379  * single-segment behaviour.
1380  *
1381  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1382  * atomic and when not atomic.  This is ok because it calls
1383  * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1384  * fact, the only difference between __copy_from_user_inatomic() and
1385  * __copy_from_user() is that the latter calls might_sleep() and the former
1386  * should not zero the tail of the buffer on error.  And on many architectures
1387  * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1388  * makes no difference at all on those architectures.
1389  */
1390 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1391 		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1392 		size_t *iov_ofs, size_t bytes)
1393 {
1394 	struct page **last_page = pages + nr_pages;
1395 	char *addr;
1396 	size_t copied, len, total = 0;
1397 
1398 	do {
1399 		len = PAGE_CACHE_SIZE - ofs;
1400 		if (len > bytes)
1401 			len = bytes;
1402 		addr = kmap_atomic(*pages);
1403 		copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1404 				*iov, *iov_ofs, len);
1405 		kunmap_atomic(addr);
1406 		if (unlikely(copied != len)) {
1407 			/* Do it the slow way. */
1408 			addr = kmap(*pages);
1409 			copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1410 					ofs, *iov, *iov_ofs, len);
1411 			if (unlikely(copied != len))
1412 				goto err_out;
1413 			kunmap(*pages);
1414 		}
1415 		total += len;
1416 		ntfs_set_next_iovec(iov, iov_ofs, len);
1417 		bytes -= len;
1418 		if (!bytes)
1419 			break;
1420 		ofs = 0;
1421 	} while (++pages < last_page);
1422 out:
1423 	return total;
1424 err_out:
1425 	BUG_ON(copied > len);
1426 	/* Zero the rest of the target like __copy_from_user(). */
1427 	memset(addr + ofs + copied, 0, len - copied);
1428 	kunmap(*pages);
1429 	total += copied;
1430 	ntfs_set_next_iovec(iov, iov_ofs, copied);
1431 	while (++pages < last_page) {
1432 		bytes -= len;
1433 		if (!bytes)
1434 			break;
1435 		len = PAGE_CACHE_SIZE;
1436 		if (len > bytes)
1437 			len = bytes;
1438 		zero_user(*pages, 0, len);
1439 	}
1440 	goto out;
1441 }
1442 
1443 static inline void ntfs_flush_dcache_pages(struct page **pages,
1444 		unsigned nr_pages)
1445 {
1446 	BUG_ON(!nr_pages);
1447 	/*
1448 	 * Warning: Do not do the decrement at the same time as the call to
1449 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1450 	 * decrement never happens so the loop never terminates.
1451 	 */
1452 	do {
1453 		--nr_pages;
1454 		flush_dcache_page(pages[nr_pages]);
1455 	} while (nr_pages > 0);
1456 }
1457 
1458 /**
1459  * ntfs_commit_pages_after_non_resident_write - commit the received data
1460  * @pages:	array of destination pages
1461  * @nr_pages:	number of pages in @pages
1462  * @pos:	byte position in file at which the write begins
1463  * @bytes:	number of bytes to be written
1464  *
1465  * See description of ntfs_commit_pages_after_write(), below.
1466  */
1467 static inline int ntfs_commit_pages_after_non_resident_write(
1468 		struct page **pages, const unsigned nr_pages,
1469 		s64 pos, size_t bytes)
1470 {
1471 	s64 end, initialized_size;
1472 	struct inode *vi;
1473 	ntfs_inode *ni, *base_ni;
1474 	struct buffer_head *bh, *head;
1475 	ntfs_attr_search_ctx *ctx;
1476 	MFT_RECORD *m;
1477 	ATTR_RECORD *a;
1478 	unsigned long flags;
1479 	unsigned blocksize, u;
1480 	int err;
1481 
1482 	vi = pages[0]->mapping->host;
1483 	ni = NTFS_I(vi);
1484 	blocksize = vi->i_sb->s_blocksize;
1485 	end = pos + bytes;
1486 	u = 0;
1487 	do {
1488 		s64 bh_pos;
1489 		struct page *page;
1490 		bool partial;
1491 
1492 		page = pages[u];
1493 		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1494 		bh = head = page_buffers(page);
1495 		partial = false;
1496 		do {
1497 			s64 bh_end;
1498 
1499 			bh_end = bh_pos + blocksize;
1500 			if (bh_end <= pos || bh_pos >= end) {
1501 				if (!buffer_uptodate(bh))
1502 					partial = true;
1503 			} else {
1504 				set_buffer_uptodate(bh);
1505 				mark_buffer_dirty(bh);
1506 			}
1507 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1508 		/*
1509 		 * If all buffers are now uptodate but the page is not, set the
1510 		 * page uptodate.
1511 		 */
1512 		if (!partial && !PageUptodate(page))
1513 			SetPageUptodate(page);
1514 	} while (++u < nr_pages);
1515 	/*
1516 	 * Finally, if we do not need to update initialized_size or i_size we
1517 	 * are finished.
1518 	 */
1519 	read_lock_irqsave(&ni->size_lock, flags);
1520 	initialized_size = ni->initialized_size;
1521 	read_unlock_irqrestore(&ni->size_lock, flags);
1522 	if (end <= initialized_size) {
1523 		ntfs_debug("Done.");
1524 		return 0;
1525 	}
1526 	/*
1527 	 * Update initialized_size/i_size as appropriate, both in the inode and
1528 	 * the mft record.
1529 	 */
1530 	if (!NInoAttr(ni))
1531 		base_ni = ni;
1532 	else
1533 		base_ni = ni->ext.base_ntfs_ino;
1534 	/* Map, pin, and lock the mft record. */
1535 	m = map_mft_record(base_ni);
1536 	if (IS_ERR(m)) {
1537 		err = PTR_ERR(m);
1538 		m = NULL;
1539 		ctx = NULL;
1540 		goto err_out;
1541 	}
1542 	BUG_ON(!NInoNonResident(ni));
1543 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1544 	if (unlikely(!ctx)) {
1545 		err = -ENOMEM;
1546 		goto err_out;
1547 	}
1548 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1549 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1550 	if (unlikely(err)) {
1551 		if (err == -ENOENT)
1552 			err = -EIO;
1553 		goto err_out;
1554 	}
1555 	a = ctx->attr;
1556 	BUG_ON(!a->non_resident);
1557 	write_lock_irqsave(&ni->size_lock, flags);
1558 	BUG_ON(end > ni->allocated_size);
1559 	ni->initialized_size = end;
1560 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1561 	if (end > i_size_read(vi)) {
1562 		i_size_write(vi, end);
1563 		a->data.non_resident.data_size =
1564 				a->data.non_resident.initialized_size;
1565 	}
1566 	write_unlock_irqrestore(&ni->size_lock, flags);
1567 	/* Mark the mft record dirty, so it gets written back. */
1568 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1569 	mark_mft_record_dirty(ctx->ntfs_ino);
1570 	ntfs_attr_put_search_ctx(ctx);
1571 	unmap_mft_record(base_ni);
1572 	ntfs_debug("Done.");
1573 	return 0;
1574 err_out:
1575 	if (ctx)
1576 		ntfs_attr_put_search_ctx(ctx);
1577 	if (m)
1578 		unmap_mft_record(base_ni);
1579 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1580 			"code %i).", err);
1581 	if (err != -ENOMEM)
1582 		NVolSetErrors(ni->vol);
1583 	return err;
1584 }
1585 
1586 /**
1587  * ntfs_commit_pages_after_write - commit the received data
1588  * @pages:	array of destination pages
1589  * @nr_pages:	number of pages in @pages
1590  * @pos:	byte position in file at which the write begins
1591  * @bytes:	number of bytes to be written
1592  *
1593  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1594  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1595  * locked but not kmap()ped.  The source data has already been copied into the
1596  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1597  * the data was copied (for non-resident attributes only) and it returned
1598  * success.
1599  *
1600  * Need to set uptodate and mark dirty all buffers within the boundary of the
1601  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1602  *
1603  * Setting the buffers dirty ensures that they get written out later when
1604  * ntfs_writepage() is invoked by the VM.
1605  *
1606  * Finally, we need to update i_size and initialized_size as appropriate both
1607  * in the inode and the mft record.
1608  *
1609  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1610  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1611  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1612  * that case, it also marks the inode dirty.
1613  *
1614  * If things have gone as outlined in
1615  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1616  * content modifications here for non-resident attributes.  For resident
1617  * attributes we need to do the uptodate bringing here which we combine with
1618  * the copying into the mft record which means we save one atomic kmap.
1619  *
1620  * Return 0 on success or -errno on error.
1621  */
1622 static int ntfs_commit_pages_after_write(struct page **pages,
1623 		const unsigned nr_pages, s64 pos, size_t bytes)
1624 {
1625 	s64 end, initialized_size;
1626 	loff_t i_size;
1627 	struct inode *vi;
1628 	ntfs_inode *ni, *base_ni;
1629 	struct page *page;
1630 	ntfs_attr_search_ctx *ctx;
1631 	MFT_RECORD *m;
1632 	ATTR_RECORD *a;
1633 	char *kattr, *kaddr;
1634 	unsigned long flags;
1635 	u32 attr_len;
1636 	int err;
1637 
1638 	BUG_ON(!nr_pages);
1639 	BUG_ON(!pages);
1640 	page = pages[0];
1641 	BUG_ON(!page);
1642 	vi = page->mapping->host;
1643 	ni = NTFS_I(vi);
1644 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1645 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1646 			vi->i_ino, ni->type, page->index, nr_pages,
1647 			(long long)pos, bytes);
1648 	if (NInoNonResident(ni))
1649 		return ntfs_commit_pages_after_non_resident_write(pages,
1650 				nr_pages, pos, bytes);
1651 	BUG_ON(nr_pages > 1);
1652 	/*
1653 	 * Attribute is resident, implying it is not compressed, encrypted, or
1654 	 * sparse.
1655 	 */
1656 	if (!NInoAttr(ni))
1657 		base_ni = ni;
1658 	else
1659 		base_ni = ni->ext.base_ntfs_ino;
1660 	BUG_ON(NInoNonResident(ni));
1661 	/* Map, pin, and lock the mft record. */
1662 	m = map_mft_record(base_ni);
1663 	if (IS_ERR(m)) {
1664 		err = PTR_ERR(m);
1665 		m = NULL;
1666 		ctx = NULL;
1667 		goto err_out;
1668 	}
1669 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1670 	if (unlikely(!ctx)) {
1671 		err = -ENOMEM;
1672 		goto err_out;
1673 	}
1674 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1675 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1676 	if (unlikely(err)) {
1677 		if (err == -ENOENT)
1678 			err = -EIO;
1679 		goto err_out;
1680 	}
1681 	a = ctx->attr;
1682 	BUG_ON(a->non_resident);
1683 	/* The total length of the attribute value. */
1684 	attr_len = le32_to_cpu(a->data.resident.value_length);
1685 	i_size = i_size_read(vi);
1686 	BUG_ON(attr_len != i_size);
1687 	BUG_ON(pos > attr_len);
1688 	end = pos + bytes;
1689 	BUG_ON(end > le32_to_cpu(a->length) -
1690 			le16_to_cpu(a->data.resident.value_offset));
1691 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1692 	kaddr = kmap_atomic(page);
1693 	/* Copy the received data from the page to the mft record. */
1694 	memcpy(kattr + pos, kaddr + pos, bytes);
1695 	/* Update the attribute length if necessary. */
1696 	if (end > attr_len) {
1697 		attr_len = end;
1698 		a->data.resident.value_length = cpu_to_le32(attr_len);
1699 	}
1700 	/*
1701 	 * If the page is not uptodate, bring the out of bounds area(s)
1702 	 * uptodate by copying data from the mft record to the page.
1703 	 */
1704 	if (!PageUptodate(page)) {
1705 		if (pos > 0)
1706 			memcpy(kaddr, kattr, pos);
1707 		if (end < attr_len)
1708 			memcpy(kaddr + end, kattr + end, attr_len - end);
1709 		/* Zero the region outside the end of the attribute value. */
1710 		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1711 		flush_dcache_page(page);
1712 		SetPageUptodate(page);
1713 	}
1714 	kunmap_atomic(kaddr);
1715 	/* Update initialized_size/i_size if necessary. */
1716 	read_lock_irqsave(&ni->size_lock, flags);
1717 	initialized_size = ni->initialized_size;
1718 	BUG_ON(end > ni->allocated_size);
1719 	read_unlock_irqrestore(&ni->size_lock, flags);
1720 	BUG_ON(initialized_size != i_size);
1721 	if (end > initialized_size) {
1722 		write_lock_irqsave(&ni->size_lock, flags);
1723 		ni->initialized_size = end;
1724 		i_size_write(vi, end);
1725 		write_unlock_irqrestore(&ni->size_lock, flags);
1726 	}
1727 	/* Mark the mft record dirty, so it gets written back. */
1728 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1729 	mark_mft_record_dirty(ctx->ntfs_ino);
1730 	ntfs_attr_put_search_ctx(ctx);
1731 	unmap_mft_record(base_ni);
1732 	ntfs_debug("Done.");
1733 	return 0;
1734 err_out:
1735 	if (err == -ENOMEM) {
1736 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1737 				"commit the write.");
1738 		if (PageUptodate(page)) {
1739 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1740 					"dirty so the write will be retried "
1741 					"later on by the VM.");
1742 			/*
1743 			 * Put the page on mapping->dirty_pages, but leave its
1744 			 * buffers' dirty state as-is.
1745 			 */
1746 			__set_page_dirty_nobuffers(page);
1747 			err = 0;
1748 		} else
1749 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1750 					"data has been lost.");
1751 	} else {
1752 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1753 				"with error %i.", err);
1754 		NVolSetErrors(ni->vol);
1755 	}
1756 	if (ctx)
1757 		ntfs_attr_put_search_ctx(ctx);
1758 	if (m)
1759 		unmap_mft_record(base_ni);
1760 	return err;
1761 }
1762 
1763 static void ntfs_write_failed(struct address_space *mapping, loff_t to)
1764 {
1765 	struct inode *inode = mapping->host;
1766 
1767 	if (to > inode->i_size) {
1768 		truncate_pagecache(inode, inode->i_size);
1769 		ntfs_truncate_vfs(inode);
1770 	}
1771 }
1772 
1773 /**
1774  * ntfs_file_buffered_write -
1775  *
1776  * Locking: The vfs is holding ->i_mutex on the inode.
1777  */
1778 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1779 		const struct iovec *iov, unsigned long nr_segs,
1780 		loff_t pos, loff_t *ppos, size_t count)
1781 {
1782 	struct file *file = iocb->ki_filp;
1783 	struct address_space *mapping = file->f_mapping;
1784 	struct inode *vi = mapping->host;
1785 	ntfs_inode *ni = NTFS_I(vi);
1786 	ntfs_volume *vol = ni->vol;
1787 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1788 	struct page *cached_page = NULL;
1789 	char __user *buf = NULL;
1790 	s64 end, ll;
1791 	VCN last_vcn;
1792 	LCN lcn;
1793 	unsigned long flags;
1794 	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1795 	ssize_t status, written;
1796 	unsigned nr_pages;
1797 	int err;
1798 
1799 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1800 			"pos 0x%llx, count 0x%lx.",
1801 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1802 			(unsigned long long)pos, (unsigned long)count);
1803 	if (unlikely(!count))
1804 		return 0;
1805 	BUG_ON(NInoMstProtected(ni));
1806 	/*
1807 	 * If the attribute is not an index root and it is encrypted or
1808 	 * compressed, we cannot write to it yet.  Note we need to check for
1809 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1810 	 * index inodes.
1811 	 */
1812 	if (ni->type != AT_INDEX_ALLOCATION) {
1813 		/* If file is encrypted, deny access, just like NT4. */
1814 		if (NInoEncrypted(ni)) {
1815 			/*
1816 			 * Reminder for later: Encrypted files are _always_
1817 			 * non-resident so that the content can always be
1818 			 * encrypted.
1819 			 */
1820 			ntfs_debug("Denying write access to encrypted file.");
1821 			return -EACCES;
1822 		}
1823 		if (NInoCompressed(ni)) {
1824 			/* Only unnamed $DATA attribute can be compressed. */
1825 			BUG_ON(ni->type != AT_DATA);
1826 			BUG_ON(ni->name_len);
1827 			/*
1828 			 * Reminder for later: If resident, the data is not
1829 			 * actually compressed.  Only on the switch to non-
1830 			 * resident does compression kick in.  This is in
1831 			 * contrast to encrypted files (see above).
1832 			 */
1833 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1834 					"not implemented yet.  Sorry.");
1835 			return -EOPNOTSUPP;
1836 		}
1837 	}
1838 	/*
1839 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1840 	 * fails again.
1841 	 */
1842 	if (unlikely(NInoTruncateFailed(ni))) {
1843 		inode_dio_wait(vi);
1844 		err = ntfs_truncate(vi);
1845 		if (err || NInoTruncateFailed(ni)) {
1846 			if (!err)
1847 				err = -EIO;
1848 			ntfs_error(vol->sb, "Cannot perform write to inode "
1849 					"0x%lx, attribute type 0x%x, because "
1850 					"ntfs_truncate() failed (error code "
1851 					"%i).", vi->i_ino,
1852 					(unsigned)le32_to_cpu(ni->type), err);
1853 			return err;
1854 		}
1855 	}
1856 	/* The first byte after the write. */
1857 	end = pos + count;
1858 	/*
1859 	 * If the write goes beyond the allocated size, extend the allocation
1860 	 * to cover the whole of the write, rounded up to the nearest cluster.
1861 	 */
1862 	read_lock_irqsave(&ni->size_lock, flags);
1863 	ll = ni->allocated_size;
1864 	read_unlock_irqrestore(&ni->size_lock, flags);
1865 	if (end > ll) {
1866 		/* Extend the allocation without changing the data size. */
1867 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1868 		if (likely(ll >= 0)) {
1869 			BUG_ON(pos >= ll);
1870 			/* If the extension was partial truncate the write. */
1871 			if (end > ll) {
1872 				ntfs_debug("Truncating write to inode 0x%lx, "
1873 						"attribute type 0x%x, because "
1874 						"the allocation was only "
1875 						"partially extended.",
1876 						vi->i_ino, (unsigned)
1877 						le32_to_cpu(ni->type));
1878 				end = ll;
1879 				count = ll - pos;
1880 			}
1881 		} else {
1882 			err = ll;
1883 			read_lock_irqsave(&ni->size_lock, flags);
1884 			ll = ni->allocated_size;
1885 			read_unlock_irqrestore(&ni->size_lock, flags);
1886 			/* Perform a partial write if possible or fail. */
1887 			if (pos < ll) {
1888 				ntfs_debug("Truncating write to inode 0x%lx, "
1889 						"attribute type 0x%x, because "
1890 						"extending the allocation "
1891 						"failed (error code %i).",
1892 						vi->i_ino, (unsigned)
1893 						le32_to_cpu(ni->type), err);
1894 				end = ll;
1895 				count = ll - pos;
1896 			} else {
1897 				ntfs_error(vol->sb, "Cannot perform write to "
1898 						"inode 0x%lx, attribute type "
1899 						"0x%x, because extending the "
1900 						"allocation failed (error "
1901 						"code %i).", vi->i_ino,
1902 						(unsigned)
1903 						le32_to_cpu(ni->type), err);
1904 				return err;
1905 			}
1906 		}
1907 	}
1908 	written = 0;
1909 	/*
1910 	 * If the write starts beyond the initialized size, extend it up to the
1911 	 * beginning of the write and initialize all non-sparse space between
1912 	 * the old initialized size and the new one.  This automatically also
1913 	 * increments the vfs inode->i_size to keep it above or equal to the
1914 	 * initialized_size.
1915 	 */
1916 	read_lock_irqsave(&ni->size_lock, flags);
1917 	ll = ni->initialized_size;
1918 	read_unlock_irqrestore(&ni->size_lock, flags);
1919 	if (pos > ll) {
1920 		err = ntfs_attr_extend_initialized(ni, pos);
1921 		if (err < 0) {
1922 			ntfs_error(vol->sb, "Cannot perform write to inode "
1923 					"0x%lx, attribute type 0x%x, because "
1924 					"extending the initialized size "
1925 					"failed (error code %i).", vi->i_ino,
1926 					(unsigned)le32_to_cpu(ni->type), err);
1927 			status = err;
1928 			goto err_out;
1929 		}
1930 	}
1931 	/*
1932 	 * Determine the number of pages per cluster for non-resident
1933 	 * attributes.
1934 	 */
1935 	nr_pages = 1;
1936 	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1937 		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1938 	/* Finally, perform the actual write. */
1939 	last_vcn = -1;
1940 	if (likely(nr_segs == 1))
1941 		buf = iov->iov_base;
1942 	do {
1943 		VCN vcn;
1944 		pgoff_t idx, start_idx;
1945 		unsigned ofs, do_pages, u;
1946 		size_t copied;
1947 
1948 		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1949 		ofs = pos & ~PAGE_CACHE_MASK;
1950 		bytes = PAGE_CACHE_SIZE - ofs;
1951 		do_pages = 1;
1952 		if (nr_pages > 1) {
1953 			vcn = pos >> vol->cluster_size_bits;
1954 			if (vcn != last_vcn) {
1955 				last_vcn = vcn;
1956 				/*
1957 				 * Get the lcn of the vcn the write is in.  If
1958 				 * it is a hole, need to lock down all pages in
1959 				 * the cluster.
1960 				 */
1961 				down_read(&ni->runlist.lock);
1962 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1963 						vol->cluster_size_bits, false);
1964 				up_read(&ni->runlist.lock);
1965 				if (unlikely(lcn < LCN_HOLE)) {
1966 					status = -EIO;
1967 					if (lcn == LCN_ENOMEM)
1968 						status = -ENOMEM;
1969 					else
1970 						ntfs_error(vol->sb, "Cannot "
1971 							"perform write to "
1972 							"inode 0x%lx, "
1973 							"attribute type 0x%x, "
1974 							"because the attribute "
1975 							"is corrupt.",
1976 							vi->i_ino, (unsigned)
1977 							le32_to_cpu(ni->type));
1978 					break;
1979 				}
1980 				if (lcn == LCN_HOLE) {
1981 					start_idx = (pos & ~(s64)
1982 							vol->cluster_size_mask)
1983 							>> PAGE_CACHE_SHIFT;
1984 					bytes = vol->cluster_size - (pos &
1985 							vol->cluster_size_mask);
1986 					do_pages = nr_pages;
1987 				}
1988 			}
1989 		}
1990 		if (bytes > count)
1991 			bytes = count;
1992 		/*
1993 		 * Bring in the user page(s) that we will copy from _first_.
1994 		 * Otherwise there is a nasty deadlock on copying from the same
1995 		 * page(s) as we are writing to, without it/them being marked
1996 		 * up-to-date.  Note, at present there is nothing to stop the
1997 		 * pages being swapped out between us bringing them into memory
1998 		 * and doing the actual copying.
1999 		 */
2000 		if (likely(nr_segs == 1))
2001 			ntfs_fault_in_pages_readable(buf, bytes);
2002 		else
2003 			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2004 		/* Get and lock @do_pages starting at index @start_idx. */
2005 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2006 				pages, &cached_page);
2007 		if (unlikely(status))
2008 			break;
2009 		/*
2010 		 * For non-resident attributes, we need to fill any holes with
2011 		 * actual clusters and ensure all bufferes are mapped.  We also
2012 		 * need to bring uptodate any buffers that are only partially
2013 		 * being written to.
2014 		 */
2015 		if (NInoNonResident(ni)) {
2016 			status = ntfs_prepare_pages_for_non_resident_write(
2017 					pages, do_pages, pos, bytes);
2018 			if (unlikely(status)) {
2019 				loff_t i_size;
2020 
2021 				do {
2022 					unlock_page(pages[--do_pages]);
2023 					page_cache_release(pages[do_pages]);
2024 				} while (do_pages);
2025 				/*
2026 				 * The write preparation may have instantiated
2027 				 * allocated space outside i_size.  Trim this
2028 				 * off again.  We can ignore any errors in this
2029 				 * case as we will just be waisting a bit of
2030 				 * allocated space, which is not a disaster.
2031 				 */
2032 				i_size = i_size_read(vi);
2033 				if (pos + bytes > i_size) {
2034 					ntfs_write_failed(mapping, pos + bytes);
2035 				}
2036 				break;
2037 			}
2038 		}
2039 		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2040 		if (likely(nr_segs == 1)) {
2041 			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2042 					ofs, buf, bytes);
2043 			buf += copied;
2044 		} else
2045 			copied = ntfs_copy_from_user_iovec(pages + u,
2046 					do_pages - u, ofs, &iov, &iov_ofs,
2047 					bytes);
2048 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2049 		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2050 				bytes);
2051 		if (likely(!status)) {
2052 			written += copied;
2053 			count -= copied;
2054 			pos += copied;
2055 			if (unlikely(copied != bytes))
2056 				status = -EFAULT;
2057 		}
2058 		do {
2059 			unlock_page(pages[--do_pages]);
2060 			page_cache_release(pages[do_pages]);
2061 		} while (do_pages);
2062 		if (unlikely(status))
2063 			break;
2064 		balance_dirty_pages_ratelimited(mapping);
2065 		cond_resched();
2066 	} while (count);
2067 err_out:
2068 	*ppos = pos;
2069 	if (cached_page)
2070 		page_cache_release(cached_page);
2071 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2072 			written ? "written" : "status", (unsigned long)written,
2073 			(long)status);
2074 	return written ? written : status;
2075 }
2076 
2077 /**
2078  * ntfs_file_aio_write_nolock -
2079  */
2080 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2081 		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2082 {
2083 	struct file *file = iocb->ki_filp;
2084 	struct address_space *mapping = file->f_mapping;
2085 	struct inode *inode = mapping->host;
2086 	loff_t pos;
2087 	size_t count;		/* after file limit checks */
2088 	ssize_t written, err;
2089 
2090 	count = iov_length(iov, nr_segs);
2091 	pos = *ppos;
2092 	/* We can write back this queue in page reclaim. */
2093 	current->backing_dev_info = mapping->backing_dev_info;
2094 	written = 0;
2095 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2096 	if (err)
2097 		goto out;
2098 	if (!count)
2099 		goto out;
2100 	err = file_remove_suid(file);
2101 	if (err)
2102 		goto out;
2103 	err = file_update_time(file);
2104 	if (err)
2105 		goto out;
2106 	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2107 			count);
2108 out:
2109 	current->backing_dev_info = NULL;
2110 	return written ? written : err;
2111 }
2112 
2113 /**
2114  * ntfs_file_aio_write -
2115  */
2116 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2117 		unsigned long nr_segs, loff_t pos)
2118 {
2119 	struct file *file = iocb->ki_filp;
2120 	struct address_space *mapping = file->f_mapping;
2121 	struct inode *inode = mapping->host;
2122 	ssize_t ret;
2123 
2124 	BUG_ON(iocb->ki_pos != pos);
2125 
2126 	mutex_lock(&inode->i_mutex);
2127 	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2128 	mutex_unlock(&inode->i_mutex);
2129 	if (ret > 0) {
2130 		int err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2131 		if (err < 0)
2132 			ret = err;
2133 	}
2134 	return ret;
2135 }
2136 
2137 /**
2138  * ntfs_file_fsync - sync a file to disk
2139  * @filp:	file to be synced
2140  * @datasync:	if non-zero only flush user data and not metadata
2141  *
2142  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2143  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2144  *
2145  * If @datasync is false, write the mft record and all associated extent mft
2146  * records as well as the $DATA attribute and then sync the block device.
2147  *
2148  * If @datasync is true and the attribute is non-resident, we skip the writing
2149  * of the mft record and all associated extent mft records (this might still
2150  * happen due to the write_inode_now() call).
2151  *
2152  * Also, if @datasync is true, we do not wait on the inode to be written out
2153  * but we always wait on the page cache pages to be written out.
2154  *
2155  * Locking: Caller must hold i_mutex on the inode.
2156  *
2157  * TODO: We should probably also write all attribute/index inodes associated
2158  * with this inode but since we have no simple way of getting to them we ignore
2159  * this problem for now.
2160  */
2161 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2162 			   int datasync)
2163 {
2164 	struct inode *vi = filp->f_mapping->host;
2165 	int err, ret = 0;
2166 
2167 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2168 
2169 	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2170 	if (err)
2171 		return err;
2172 	mutex_lock(&vi->i_mutex);
2173 
2174 	BUG_ON(S_ISDIR(vi->i_mode));
2175 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2176 		ret = __ntfs_write_inode(vi, 1);
2177 	write_inode_now(vi, !datasync);
2178 	/*
2179 	 * NOTE: If we were to use mapping->private_list (see ext2 and
2180 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2181 	 * sync_mapping_buffers(vi->i_mapping).
2182 	 */
2183 	err = sync_blockdev(vi->i_sb->s_bdev);
2184 	if (unlikely(err && !ret))
2185 		ret = err;
2186 	if (likely(!ret))
2187 		ntfs_debug("Done.");
2188 	else
2189 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2190 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2191 	mutex_unlock(&vi->i_mutex);
2192 	return ret;
2193 }
2194 
2195 #endif /* NTFS_RW */
2196 
2197 const struct file_operations ntfs_file_ops = {
2198 	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2199 	.read		= new_sync_read,	 /* Read from file. */
2200 	.read_iter	= generic_file_read_iter, /* Async read from file. */
2201 #ifdef NTFS_RW
2202 	.write		= do_sync_write,	 /* Write to file. */
2203 	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2204 	/*.release	= ,*/			 /* Last file is closed.  See
2205 						    fs/ext2/file.c::
2206 						    ext2_release_file() for
2207 						    how to use this to discard
2208 						    preallocated space for
2209 						    write opened files. */
2210 	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2211 	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2212 						    i/o operations on a
2213 						    kiocb. */
2214 #endif /* NTFS_RW */
2215 	/*.ioctl	= ,*/			 /* Perform function on the
2216 						    mounted filesystem. */
2217 	.mmap		= generic_file_mmap,	 /* Mmap file. */
2218 	.open		= ntfs_file_open,	 /* Open file. */
2219 	.splice_read	= generic_file_splice_read /* Zero-copy data send with
2220 						    the data source being on
2221 						    the ntfs partition.  We do
2222 						    not need to care about the
2223 						    data destination. */
2224 	/*.sendpage	= ,*/			 /* Zero-copy data send with
2225 						    the data destination being
2226 						    on the ntfs partition.  We
2227 						    do not need to care about
2228 						    the data source. */
2229 };
2230 
2231 const struct inode_operations ntfs_file_inode_ops = {
2232 #ifdef NTFS_RW
2233 	.setattr	= ntfs_setattr,
2234 #endif /* NTFS_RW */
2235 };
2236 
2237 const struct file_operations ntfs_empty_file_ops = {};
2238 
2239 const struct inode_operations ntfs_empty_inode_ops = {};
2240