1 /* 2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/buffer_head.h> 23 #include <linux/pagemap.h> 24 #include <linux/pagevec.h> 25 #include <linux/sched.h> 26 #include <linux/swap.h> 27 #include <linux/uio.h> 28 #include <linux/writeback.h> 29 30 #include <asm/page.h> 31 #include <asm/uaccess.h> 32 33 #include "attrib.h" 34 #include "bitmap.h" 35 #include "inode.h" 36 #include "debug.h" 37 #include "lcnalloc.h" 38 #include "malloc.h" 39 #include "mft.h" 40 #include "ntfs.h" 41 42 /** 43 * ntfs_file_open - called when an inode is about to be opened 44 * @vi: inode to be opened 45 * @filp: file structure describing the inode 46 * 47 * Limit file size to the page cache limit on architectures where unsigned long 48 * is 32-bits. This is the most we can do for now without overflowing the page 49 * cache page index. Doing it this way means we don't run into problems because 50 * of existing too large files. It would be better to allow the user to read 51 * the beginning of the file but I doubt very much anyone is going to hit this 52 * check on a 32-bit architecture, so there is no point in adding the extra 53 * complexity required to support this. 54 * 55 * On 64-bit architectures, the check is hopefully optimized away by the 56 * compiler. 57 * 58 * After the check passes, just call generic_file_open() to do its work. 59 */ 60 static int ntfs_file_open(struct inode *vi, struct file *filp) 61 { 62 if (sizeof(unsigned long) < 8) { 63 if (i_size_read(vi) > MAX_LFS_FILESIZE) 64 return -EOVERFLOW; 65 } 66 return generic_file_open(vi, filp); 67 } 68 69 #ifdef NTFS_RW 70 71 /** 72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute 73 * @ni: ntfs inode of the attribute to extend 74 * @new_init_size: requested new initialized size in bytes 75 * @cached_page: store any allocated but unused page here 76 * @lru_pvec: lru-buffering pagevec of the caller 77 * 78 * Extend the initialized size of an attribute described by the ntfs inode @ni 79 * to @new_init_size bytes. This involves zeroing any non-sparse space between 80 * the old initialized size and @new_init_size both in the page cache and on 81 * disk (if relevant complete pages are already uptodate in the page cache then 82 * these are simply marked dirty). 83 * 84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as, 85 * in the resident attribute case, it is tied to the initialized size and, in 86 * the non-resident attribute case, it may not fall below the initialized size. 87 * 88 * Note that if the attribute is resident, we do not need to touch the page 89 * cache at all. This is because if the page cache page is not uptodate we 90 * bring it uptodate later, when doing the write to the mft record since we 91 * then already have the page mapped. And if the page is uptodate, the 92 * non-initialized region will already have been zeroed when the page was 93 * brought uptodate and the region may in fact already have been overwritten 94 * with new data via mmap() based writes, so we cannot just zero it. And since 95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped 96 * is unspecified, we choose not to do zeroing and thus we do not need to touch 97 * the page at all. For a more detailed explanation see ntfs_truncate() in 98 * fs/ntfs/inode.c. 99 * 100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple 101 * pages. 102 * 103 * Return 0 on success and -errno on error. In the case that an error is 104 * encountered it is possible that the initialized size will already have been 105 * incremented some way towards @new_init_size but it is guaranteed that if 106 * this is the case, the necessary zeroing will also have happened and that all 107 * metadata is self-consistent. 108 * 109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be 110 * held by the caller. 111 */ 112 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, 113 struct page **cached_page, struct pagevec *lru_pvec) 114 { 115 s64 old_init_size; 116 loff_t old_i_size; 117 pgoff_t index, end_index; 118 unsigned long flags; 119 struct inode *vi = VFS_I(ni); 120 ntfs_inode *base_ni; 121 MFT_RECORD *m = NULL; 122 ATTR_RECORD *a; 123 ntfs_attr_search_ctx *ctx = NULL; 124 struct address_space *mapping; 125 struct page *page = NULL; 126 u8 *kattr; 127 int err; 128 u32 attr_len; 129 130 read_lock_irqsave(&ni->size_lock, flags); 131 old_init_size = ni->initialized_size; 132 old_i_size = i_size_read(vi); 133 BUG_ON(new_init_size > ni->allocated_size); 134 read_unlock_irqrestore(&ni->size_lock, flags); 135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 136 "old_initialized_size 0x%llx, " 137 "new_initialized_size 0x%llx, i_size 0x%llx.", 138 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 139 (unsigned long long)old_init_size, 140 (unsigned long long)new_init_size, old_i_size); 141 if (!NInoAttr(ni)) 142 base_ni = ni; 143 else 144 base_ni = ni->ext.base_ntfs_ino; 145 /* Use goto to reduce indentation and we need the label below anyway. */ 146 if (NInoNonResident(ni)) 147 goto do_non_resident_extend; 148 BUG_ON(old_init_size != old_i_size); 149 m = map_mft_record(base_ni); 150 if (IS_ERR(m)) { 151 err = PTR_ERR(m); 152 m = NULL; 153 goto err_out; 154 } 155 ctx = ntfs_attr_get_search_ctx(base_ni, m); 156 if (unlikely(!ctx)) { 157 err = -ENOMEM; 158 goto err_out; 159 } 160 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 161 CASE_SENSITIVE, 0, NULL, 0, ctx); 162 if (unlikely(err)) { 163 if (err == -ENOENT) 164 err = -EIO; 165 goto err_out; 166 } 167 m = ctx->mrec; 168 a = ctx->attr; 169 BUG_ON(a->non_resident); 170 /* The total length of the attribute value. */ 171 attr_len = le32_to_cpu(a->data.resident.value_length); 172 BUG_ON(old_i_size != (loff_t)attr_len); 173 /* 174 * Do the zeroing in the mft record and update the attribute size in 175 * the mft record. 176 */ 177 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 178 memset(kattr + attr_len, 0, new_init_size - attr_len); 179 a->data.resident.value_length = cpu_to_le32((u32)new_init_size); 180 /* Finally, update the sizes in the vfs and ntfs inodes. */ 181 write_lock_irqsave(&ni->size_lock, flags); 182 i_size_write(vi, new_init_size); 183 ni->initialized_size = new_init_size; 184 write_unlock_irqrestore(&ni->size_lock, flags); 185 goto done; 186 do_non_resident_extend: 187 /* 188 * If the new initialized size @new_init_size exceeds the current file 189 * size (vfs inode->i_size), we need to extend the file size to the 190 * new initialized size. 191 */ 192 if (new_init_size > old_i_size) { 193 m = map_mft_record(base_ni); 194 if (IS_ERR(m)) { 195 err = PTR_ERR(m); 196 m = NULL; 197 goto err_out; 198 } 199 ctx = ntfs_attr_get_search_ctx(base_ni, m); 200 if (unlikely(!ctx)) { 201 err = -ENOMEM; 202 goto err_out; 203 } 204 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 205 CASE_SENSITIVE, 0, NULL, 0, ctx); 206 if (unlikely(err)) { 207 if (err == -ENOENT) 208 err = -EIO; 209 goto err_out; 210 } 211 m = ctx->mrec; 212 a = ctx->attr; 213 BUG_ON(!a->non_resident); 214 BUG_ON(old_i_size != (loff_t) 215 sle64_to_cpu(a->data.non_resident.data_size)); 216 a->data.non_resident.data_size = cpu_to_sle64(new_init_size); 217 flush_dcache_mft_record_page(ctx->ntfs_ino); 218 mark_mft_record_dirty(ctx->ntfs_ino); 219 /* Update the file size in the vfs inode. */ 220 i_size_write(vi, new_init_size); 221 ntfs_attr_put_search_ctx(ctx); 222 ctx = NULL; 223 unmap_mft_record(base_ni); 224 m = NULL; 225 } 226 mapping = vi->i_mapping; 227 index = old_init_size >> PAGE_CACHE_SHIFT; 228 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 229 do { 230 /* 231 * Read the page. If the page is not present, this will zero 232 * the uninitialized regions for us. 233 */ 234 page = read_mapping_page(mapping, index, NULL); 235 if (IS_ERR(page)) { 236 err = PTR_ERR(page); 237 goto init_err_out; 238 } 239 if (unlikely(PageError(page))) { 240 page_cache_release(page); 241 err = -EIO; 242 goto init_err_out; 243 } 244 /* 245 * Update the initialized size in the ntfs inode. This is 246 * enough to make ntfs_writepage() work. 247 */ 248 write_lock_irqsave(&ni->size_lock, flags); 249 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; 250 if (ni->initialized_size > new_init_size) 251 ni->initialized_size = new_init_size; 252 write_unlock_irqrestore(&ni->size_lock, flags); 253 /* Set the page dirty so it gets written out. */ 254 set_page_dirty(page); 255 page_cache_release(page); 256 /* 257 * Play nice with the vm and the rest of the system. This is 258 * very much needed as we can potentially be modifying the 259 * initialised size from a very small value to a really huge 260 * value, e.g. 261 * f = open(somefile, O_TRUNC); 262 * truncate(f, 10GiB); 263 * seek(f, 10GiB); 264 * write(f, 1); 265 * And this would mean we would be marking dirty hundreds of 266 * thousands of pages or as in the above example more than 267 * two and a half million pages! 268 * 269 * TODO: For sparse pages could optimize this workload by using 270 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This 271 * would be set in readpage for sparse pages and here we would 272 * not need to mark dirty any pages which have this bit set. 273 * The only caveat is that we have to clear the bit everywhere 274 * where we allocate any clusters that lie in the page or that 275 * contain the page. 276 * 277 * TODO: An even greater optimization would be for us to only 278 * call readpage() on pages which are not in sparse regions as 279 * determined from the runlist. This would greatly reduce the 280 * number of pages we read and make dirty in the case of sparse 281 * files. 282 */ 283 balance_dirty_pages_ratelimited(mapping); 284 cond_resched(); 285 } while (++index < end_index); 286 read_lock_irqsave(&ni->size_lock, flags); 287 BUG_ON(ni->initialized_size != new_init_size); 288 read_unlock_irqrestore(&ni->size_lock, flags); 289 /* Now bring in sync the initialized_size in the mft record. */ 290 m = map_mft_record(base_ni); 291 if (IS_ERR(m)) { 292 err = PTR_ERR(m); 293 m = NULL; 294 goto init_err_out; 295 } 296 ctx = ntfs_attr_get_search_ctx(base_ni, m); 297 if (unlikely(!ctx)) { 298 err = -ENOMEM; 299 goto init_err_out; 300 } 301 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 302 CASE_SENSITIVE, 0, NULL, 0, ctx); 303 if (unlikely(err)) { 304 if (err == -ENOENT) 305 err = -EIO; 306 goto init_err_out; 307 } 308 m = ctx->mrec; 309 a = ctx->attr; 310 BUG_ON(!a->non_resident); 311 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); 312 done: 313 flush_dcache_mft_record_page(ctx->ntfs_ino); 314 mark_mft_record_dirty(ctx->ntfs_ino); 315 if (ctx) 316 ntfs_attr_put_search_ctx(ctx); 317 if (m) 318 unmap_mft_record(base_ni); 319 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", 320 (unsigned long long)new_init_size, i_size_read(vi)); 321 return 0; 322 init_err_out: 323 write_lock_irqsave(&ni->size_lock, flags); 324 ni->initialized_size = old_init_size; 325 write_unlock_irqrestore(&ni->size_lock, flags); 326 err_out: 327 if (ctx) 328 ntfs_attr_put_search_ctx(ctx); 329 if (m) 330 unmap_mft_record(base_ni); 331 ntfs_debug("Failed. Returning error code %i.", err); 332 return err; 333 } 334 335 /** 336 * ntfs_fault_in_pages_readable - 337 * 338 * Fault a number of userspace pages into pagetables. 339 * 340 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes 341 * with more than two userspace pages as well as handling the single page case 342 * elegantly. 343 * 344 * If you find this difficult to understand, then think of the while loop being 345 * the following code, except that we do without the integer variable ret: 346 * 347 * do { 348 * ret = __get_user(c, uaddr); 349 * uaddr += PAGE_SIZE; 350 * } while (!ret && uaddr < end); 351 * 352 * Note, the final __get_user() may well run out-of-bounds of the user buffer, 353 * but _not_ out-of-bounds of the page the user buffer belongs to, and since 354 * this is only a read and not a write, and since it is still in the same page, 355 * it should not matter and this makes the code much simpler. 356 */ 357 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, 358 int bytes) 359 { 360 const char __user *end; 361 volatile char c; 362 363 /* Set @end to the first byte outside the last page we care about. */ 364 end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes); 365 366 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) 367 ; 368 } 369 370 /** 371 * ntfs_fault_in_pages_readable_iovec - 372 * 373 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. 374 */ 375 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, 376 size_t iov_ofs, int bytes) 377 { 378 do { 379 const char __user *buf; 380 unsigned len; 381 382 buf = iov->iov_base + iov_ofs; 383 len = iov->iov_len - iov_ofs; 384 if (len > bytes) 385 len = bytes; 386 ntfs_fault_in_pages_readable(buf, len); 387 bytes -= len; 388 iov++; 389 iov_ofs = 0; 390 } while (bytes); 391 } 392 393 /** 394 * __ntfs_grab_cache_pages - obtain a number of locked pages 395 * @mapping: address space mapping from which to obtain page cache pages 396 * @index: starting index in @mapping at which to begin obtaining pages 397 * @nr_pages: number of page cache pages to obtain 398 * @pages: array of pages in which to return the obtained page cache pages 399 * @cached_page: allocated but as yet unused page 400 * @lru_pvec: lru-buffering pagevec of caller 401 * 402 * Obtain @nr_pages locked page cache pages from the mapping @maping and 403 * starting at index @index. 404 * 405 * If a page is newly created, increment its refcount and add it to the 406 * caller's lru-buffering pagevec @lru_pvec. 407 * 408 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages 409 * are obtained at once instead of just one page and that 0 is returned on 410 * success and -errno on error. 411 * 412 * Note, the page locks are obtained in ascending page index order. 413 */ 414 static inline int __ntfs_grab_cache_pages(struct address_space *mapping, 415 pgoff_t index, const unsigned nr_pages, struct page **pages, 416 struct page **cached_page, struct pagevec *lru_pvec) 417 { 418 int err, nr; 419 420 BUG_ON(!nr_pages); 421 err = nr = 0; 422 do { 423 pages[nr] = find_lock_page(mapping, index); 424 if (!pages[nr]) { 425 if (!*cached_page) { 426 *cached_page = page_cache_alloc(mapping); 427 if (unlikely(!*cached_page)) { 428 err = -ENOMEM; 429 goto err_out; 430 } 431 } 432 err = add_to_page_cache(*cached_page, mapping, index, 433 GFP_KERNEL); 434 if (unlikely(err)) { 435 if (err == -EEXIST) 436 continue; 437 goto err_out; 438 } 439 pages[nr] = *cached_page; 440 page_cache_get(*cached_page); 441 if (unlikely(!pagevec_add(lru_pvec, *cached_page))) 442 __pagevec_lru_add_file(lru_pvec); 443 *cached_page = NULL; 444 } 445 index++; 446 nr++; 447 } while (nr < nr_pages); 448 out: 449 return err; 450 err_out: 451 while (nr > 0) { 452 unlock_page(pages[--nr]); 453 page_cache_release(pages[nr]); 454 } 455 goto out; 456 } 457 458 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) 459 { 460 lock_buffer(bh); 461 get_bh(bh); 462 bh->b_end_io = end_buffer_read_sync; 463 return submit_bh(READ, bh); 464 } 465 466 /** 467 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data 468 * @pages: array of destination pages 469 * @nr_pages: number of pages in @pages 470 * @pos: byte position in file at which the write begins 471 * @bytes: number of bytes to be written 472 * 473 * This is called for non-resident attributes from ntfs_file_buffered_write() 474 * with i_mutex held on the inode (@pages[0]->mapping->host). There are 475 * @nr_pages pages in @pages which are locked but not kmap()ped. The source 476 * data has not yet been copied into the @pages. 477 * 478 * Need to fill any holes with actual clusters, allocate buffers if necessary, 479 * ensure all the buffers are mapped, and bring uptodate any buffers that are 480 * only partially being written to. 481 * 482 * If @nr_pages is greater than one, we are guaranteed that the cluster size is 483 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside 484 * the same cluster and that they are the entirety of that cluster, and that 485 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. 486 * 487 * i_size is not to be modified yet. 488 * 489 * Return 0 on success or -errno on error. 490 */ 491 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, 492 unsigned nr_pages, s64 pos, size_t bytes) 493 { 494 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; 495 LCN lcn; 496 s64 bh_pos, vcn_len, end, initialized_size; 497 sector_t lcn_block; 498 struct page *page; 499 struct inode *vi; 500 ntfs_inode *ni, *base_ni = NULL; 501 ntfs_volume *vol; 502 runlist_element *rl, *rl2; 503 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 504 ntfs_attr_search_ctx *ctx = NULL; 505 MFT_RECORD *m = NULL; 506 ATTR_RECORD *a = NULL; 507 unsigned long flags; 508 u32 attr_rec_len = 0; 509 unsigned blocksize, u; 510 int err, mp_size; 511 bool rl_write_locked, was_hole, is_retry; 512 unsigned char blocksize_bits; 513 struct { 514 u8 runlist_merged:1; 515 u8 mft_attr_mapped:1; 516 u8 mp_rebuilt:1; 517 u8 attr_switched:1; 518 } status = { 0, 0, 0, 0 }; 519 520 BUG_ON(!nr_pages); 521 BUG_ON(!pages); 522 BUG_ON(!*pages); 523 vi = pages[0]->mapping->host; 524 ni = NTFS_I(vi); 525 vol = ni->vol; 526 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 527 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 528 vi->i_ino, ni->type, pages[0]->index, nr_pages, 529 (long long)pos, bytes); 530 blocksize = vol->sb->s_blocksize; 531 blocksize_bits = vol->sb->s_blocksize_bits; 532 u = 0; 533 do { 534 page = pages[u]; 535 BUG_ON(!page); 536 /* 537 * create_empty_buffers() will create uptodate/dirty buffers if 538 * the page is uptodate/dirty. 539 */ 540 if (!page_has_buffers(page)) { 541 create_empty_buffers(page, blocksize, 0); 542 if (unlikely(!page_has_buffers(page))) 543 return -ENOMEM; 544 } 545 } while (++u < nr_pages); 546 rl_write_locked = false; 547 rl = NULL; 548 err = 0; 549 vcn = lcn = -1; 550 vcn_len = 0; 551 lcn_block = -1; 552 was_hole = false; 553 cpos = pos >> vol->cluster_size_bits; 554 end = pos + bytes; 555 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; 556 /* 557 * Loop over each page and for each page over each buffer. Use goto to 558 * reduce indentation. 559 */ 560 u = 0; 561 do_next_page: 562 page = pages[u]; 563 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 564 bh = head = page_buffers(page); 565 do { 566 VCN cdelta; 567 s64 bh_end; 568 unsigned bh_cofs; 569 570 /* Clear buffer_new on all buffers to reinitialise state. */ 571 if (buffer_new(bh)) 572 clear_buffer_new(bh); 573 bh_end = bh_pos + blocksize; 574 bh_cpos = bh_pos >> vol->cluster_size_bits; 575 bh_cofs = bh_pos & vol->cluster_size_mask; 576 if (buffer_mapped(bh)) { 577 /* 578 * The buffer is already mapped. If it is uptodate, 579 * ignore it. 580 */ 581 if (buffer_uptodate(bh)) 582 continue; 583 /* 584 * The buffer is not uptodate. If the page is uptodate 585 * set the buffer uptodate and otherwise ignore it. 586 */ 587 if (PageUptodate(page)) { 588 set_buffer_uptodate(bh); 589 continue; 590 } 591 /* 592 * Neither the page nor the buffer are uptodate. If 593 * the buffer is only partially being written to, we 594 * need to read it in before the write, i.e. now. 595 */ 596 if ((bh_pos < pos && bh_end > pos) || 597 (bh_pos < end && bh_end > end)) { 598 /* 599 * If the buffer is fully or partially within 600 * the initialized size, do an actual read. 601 * Otherwise, simply zero the buffer. 602 */ 603 read_lock_irqsave(&ni->size_lock, flags); 604 initialized_size = ni->initialized_size; 605 read_unlock_irqrestore(&ni->size_lock, flags); 606 if (bh_pos < initialized_size) { 607 ntfs_submit_bh_for_read(bh); 608 *wait_bh++ = bh; 609 } else { 610 zero_user(page, bh_offset(bh), 611 blocksize); 612 set_buffer_uptodate(bh); 613 } 614 } 615 continue; 616 } 617 /* Unmapped buffer. Need to map it. */ 618 bh->b_bdev = vol->sb->s_bdev; 619 /* 620 * If the current buffer is in the same clusters as the map 621 * cache, there is no need to check the runlist again. The 622 * map cache is made up of @vcn, which is the first cached file 623 * cluster, @vcn_len which is the number of cached file 624 * clusters, @lcn is the device cluster corresponding to @vcn, 625 * and @lcn_block is the block number corresponding to @lcn. 626 */ 627 cdelta = bh_cpos - vcn; 628 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { 629 map_buffer_cached: 630 BUG_ON(lcn < 0); 631 bh->b_blocknr = lcn_block + 632 (cdelta << (vol->cluster_size_bits - 633 blocksize_bits)) + 634 (bh_cofs >> blocksize_bits); 635 set_buffer_mapped(bh); 636 /* 637 * If the page is uptodate so is the buffer. If the 638 * buffer is fully outside the write, we ignore it if 639 * it was already allocated and we mark it dirty so it 640 * gets written out if we allocated it. On the other 641 * hand, if we allocated the buffer but we are not 642 * marking it dirty we set buffer_new so we can do 643 * error recovery. 644 */ 645 if (PageUptodate(page)) { 646 if (!buffer_uptodate(bh)) 647 set_buffer_uptodate(bh); 648 if (unlikely(was_hole)) { 649 /* We allocated the buffer. */ 650 unmap_underlying_metadata(bh->b_bdev, 651 bh->b_blocknr); 652 if (bh_end <= pos || bh_pos >= end) 653 mark_buffer_dirty(bh); 654 else 655 set_buffer_new(bh); 656 } 657 continue; 658 } 659 /* Page is _not_ uptodate. */ 660 if (likely(!was_hole)) { 661 /* 662 * Buffer was already allocated. If it is not 663 * uptodate and is only partially being written 664 * to, we need to read it in before the write, 665 * i.e. now. 666 */ 667 if (!buffer_uptodate(bh) && bh_pos < end && 668 bh_end > pos && 669 (bh_pos < pos || 670 bh_end > end)) { 671 /* 672 * If the buffer is fully or partially 673 * within the initialized size, do an 674 * actual read. Otherwise, simply zero 675 * the buffer. 676 */ 677 read_lock_irqsave(&ni->size_lock, 678 flags); 679 initialized_size = ni->initialized_size; 680 read_unlock_irqrestore(&ni->size_lock, 681 flags); 682 if (bh_pos < initialized_size) { 683 ntfs_submit_bh_for_read(bh); 684 *wait_bh++ = bh; 685 } else { 686 zero_user(page, bh_offset(bh), 687 blocksize); 688 set_buffer_uptodate(bh); 689 } 690 } 691 continue; 692 } 693 /* We allocated the buffer. */ 694 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 695 /* 696 * If the buffer is fully outside the write, zero it, 697 * set it uptodate, and mark it dirty so it gets 698 * written out. If it is partially being written to, 699 * zero region surrounding the write but leave it to 700 * commit write to do anything else. Finally, if the 701 * buffer is fully being overwritten, do nothing. 702 */ 703 if (bh_end <= pos || bh_pos >= end) { 704 if (!buffer_uptodate(bh)) { 705 zero_user(page, bh_offset(bh), 706 blocksize); 707 set_buffer_uptodate(bh); 708 } 709 mark_buffer_dirty(bh); 710 continue; 711 } 712 set_buffer_new(bh); 713 if (!buffer_uptodate(bh) && 714 (bh_pos < pos || bh_end > end)) { 715 u8 *kaddr; 716 unsigned pofs; 717 718 kaddr = kmap_atomic(page, KM_USER0); 719 if (bh_pos < pos) { 720 pofs = bh_pos & ~PAGE_CACHE_MASK; 721 memset(kaddr + pofs, 0, pos - bh_pos); 722 } 723 if (bh_end > end) { 724 pofs = end & ~PAGE_CACHE_MASK; 725 memset(kaddr + pofs, 0, bh_end - end); 726 } 727 kunmap_atomic(kaddr, KM_USER0); 728 flush_dcache_page(page); 729 } 730 continue; 731 } 732 /* 733 * Slow path: this is the first buffer in the cluster. If it 734 * is outside allocated size and is not uptodate, zero it and 735 * set it uptodate. 736 */ 737 read_lock_irqsave(&ni->size_lock, flags); 738 initialized_size = ni->allocated_size; 739 read_unlock_irqrestore(&ni->size_lock, flags); 740 if (bh_pos > initialized_size) { 741 if (PageUptodate(page)) { 742 if (!buffer_uptodate(bh)) 743 set_buffer_uptodate(bh); 744 } else if (!buffer_uptodate(bh)) { 745 zero_user(page, bh_offset(bh), blocksize); 746 set_buffer_uptodate(bh); 747 } 748 continue; 749 } 750 is_retry = false; 751 if (!rl) { 752 down_read(&ni->runlist.lock); 753 retry_remap: 754 rl = ni->runlist.rl; 755 } 756 if (likely(rl != NULL)) { 757 /* Seek to element containing target cluster. */ 758 while (rl->length && rl[1].vcn <= bh_cpos) 759 rl++; 760 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); 761 if (likely(lcn >= 0)) { 762 /* 763 * Successful remap, setup the map cache and 764 * use that to deal with the buffer. 765 */ 766 was_hole = false; 767 vcn = bh_cpos; 768 vcn_len = rl[1].vcn - vcn; 769 lcn_block = lcn << (vol->cluster_size_bits - 770 blocksize_bits); 771 cdelta = 0; 772 /* 773 * If the number of remaining clusters touched 774 * by the write is smaller or equal to the 775 * number of cached clusters, unlock the 776 * runlist as the map cache will be used from 777 * now on. 778 */ 779 if (likely(vcn + vcn_len >= cend)) { 780 if (rl_write_locked) { 781 up_write(&ni->runlist.lock); 782 rl_write_locked = false; 783 } else 784 up_read(&ni->runlist.lock); 785 rl = NULL; 786 } 787 goto map_buffer_cached; 788 } 789 } else 790 lcn = LCN_RL_NOT_MAPPED; 791 /* 792 * If it is not a hole and not out of bounds, the runlist is 793 * probably unmapped so try to map it now. 794 */ 795 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { 796 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { 797 /* Attempt to map runlist. */ 798 if (!rl_write_locked) { 799 /* 800 * We need the runlist locked for 801 * writing, so if it is locked for 802 * reading relock it now and retry in 803 * case it changed whilst we dropped 804 * the lock. 805 */ 806 up_read(&ni->runlist.lock); 807 down_write(&ni->runlist.lock); 808 rl_write_locked = true; 809 goto retry_remap; 810 } 811 err = ntfs_map_runlist_nolock(ni, bh_cpos, 812 NULL); 813 if (likely(!err)) { 814 is_retry = true; 815 goto retry_remap; 816 } 817 /* 818 * If @vcn is out of bounds, pretend @lcn is 819 * LCN_ENOENT. As long as the buffer is out 820 * of bounds this will work fine. 821 */ 822 if (err == -ENOENT) { 823 lcn = LCN_ENOENT; 824 err = 0; 825 goto rl_not_mapped_enoent; 826 } 827 } else 828 err = -EIO; 829 /* Failed to map the buffer, even after retrying. */ 830 bh->b_blocknr = -1; 831 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 832 "attribute type 0x%x, vcn 0x%llx, " 833 "vcn offset 0x%x, because its " 834 "location on disk could not be " 835 "determined%s (error code %i).", 836 ni->mft_no, ni->type, 837 (unsigned long long)bh_cpos, 838 (unsigned)bh_pos & 839 vol->cluster_size_mask, 840 is_retry ? " even after retrying" : "", 841 err); 842 break; 843 } 844 rl_not_mapped_enoent: 845 /* 846 * The buffer is in a hole or out of bounds. We need to fill 847 * the hole, unless the buffer is in a cluster which is not 848 * touched by the write, in which case we just leave the buffer 849 * unmapped. This can only happen when the cluster size is 850 * less than the page cache size. 851 */ 852 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { 853 bh_cend = (bh_end + vol->cluster_size - 1) >> 854 vol->cluster_size_bits; 855 if ((bh_cend <= cpos || bh_cpos >= cend)) { 856 bh->b_blocknr = -1; 857 /* 858 * If the buffer is uptodate we skip it. If it 859 * is not but the page is uptodate, we can set 860 * the buffer uptodate. If the page is not 861 * uptodate, we can clear the buffer and set it 862 * uptodate. Whether this is worthwhile is 863 * debatable and this could be removed. 864 */ 865 if (PageUptodate(page)) { 866 if (!buffer_uptodate(bh)) 867 set_buffer_uptodate(bh); 868 } else if (!buffer_uptodate(bh)) { 869 zero_user(page, bh_offset(bh), 870 blocksize); 871 set_buffer_uptodate(bh); 872 } 873 continue; 874 } 875 } 876 /* 877 * Out of bounds buffer is invalid if it was not really out of 878 * bounds. 879 */ 880 BUG_ON(lcn != LCN_HOLE); 881 /* 882 * We need the runlist locked for writing, so if it is locked 883 * for reading relock it now and retry in case it changed 884 * whilst we dropped the lock. 885 */ 886 BUG_ON(!rl); 887 if (!rl_write_locked) { 888 up_read(&ni->runlist.lock); 889 down_write(&ni->runlist.lock); 890 rl_write_locked = true; 891 goto retry_remap; 892 } 893 /* Find the previous last allocated cluster. */ 894 BUG_ON(rl->lcn != LCN_HOLE); 895 lcn = -1; 896 rl2 = rl; 897 while (--rl2 >= ni->runlist.rl) { 898 if (rl2->lcn >= 0) { 899 lcn = rl2->lcn + rl2->length; 900 break; 901 } 902 } 903 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, 904 false); 905 if (IS_ERR(rl2)) { 906 err = PTR_ERR(rl2); 907 ntfs_debug("Failed to allocate cluster, error code %i.", 908 err); 909 break; 910 } 911 lcn = rl2->lcn; 912 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 913 if (IS_ERR(rl)) { 914 err = PTR_ERR(rl); 915 if (err != -ENOMEM) 916 err = -EIO; 917 if (ntfs_cluster_free_from_rl(vol, rl2)) { 918 ntfs_error(vol->sb, "Failed to release " 919 "allocated cluster in error " 920 "code path. Run chkdsk to " 921 "recover the lost cluster."); 922 NVolSetErrors(vol); 923 } 924 ntfs_free(rl2); 925 break; 926 } 927 ni->runlist.rl = rl; 928 status.runlist_merged = 1; 929 ntfs_debug("Allocated cluster, lcn 0x%llx.", 930 (unsigned long long)lcn); 931 /* Map and lock the mft record and get the attribute record. */ 932 if (!NInoAttr(ni)) 933 base_ni = ni; 934 else 935 base_ni = ni->ext.base_ntfs_ino; 936 m = map_mft_record(base_ni); 937 if (IS_ERR(m)) { 938 err = PTR_ERR(m); 939 break; 940 } 941 ctx = ntfs_attr_get_search_ctx(base_ni, m); 942 if (unlikely(!ctx)) { 943 err = -ENOMEM; 944 unmap_mft_record(base_ni); 945 break; 946 } 947 status.mft_attr_mapped = 1; 948 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 949 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); 950 if (unlikely(err)) { 951 if (err == -ENOENT) 952 err = -EIO; 953 break; 954 } 955 m = ctx->mrec; 956 a = ctx->attr; 957 /* 958 * Find the runlist element with which the attribute extent 959 * starts. Note, we cannot use the _attr_ version because we 960 * have mapped the mft record. That is ok because we know the 961 * runlist fragment must be mapped already to have ever gotten 962 * here, so we can just use the _rl_ version. 963 */ 964 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); 965 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); 966 BUG_ON(!rl2); 967 BUG_ON(!rl2->length); 968 BUG_ON(rl2->lcn < LCN_HOLE); 969 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 970 /* 971 * If @highest_vcn is zero, calculate the real highest_vcn 972 * (which can really be zero). 973 */ 974 if (!highest_vcn) 975 highest_vcn = (sle64_to_cpu( 976 a->data.non_resident.allocated_size) >> 977 vol->cluster_size_bits) - 1; 978 /* 979 * Determine the size of the mapping pairs array for the new 980 * extent, i.e. the old extent with the hole filled. 981 */ 982 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, 983 highest_vcn); 984 if (unlikely(mp_size <= 0)) { 985 if (!(err = mp_size)) 986 err = -EIO; 987 ntfs_debug("Failed to get size for mapping pairs " 988 "array, error code %i.", err); 989 break; 990 } 991 /* 992 * Resize the attribute record to fit the new mapping pairs 993 * array. 994 */ 995 attr_rec_len = le32_to_cpu(a->length); 996 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( 997 a->data.non_resident.mapping_pairs_offset)); 998 if (unlikely(err)) { 999 BUG_ON(err != -ENOSPC); 1000 // TODO: Deal with this by using the current attribute 1001 // and fill it with as much of the mapping pairs 1002 // array as possible. Then loop over each attribute 1003 // extent rewriting the mapping pairs arrays as we go 1004 // along and if when we reach the end we have not 1005 // enough space, try to resize the last attribute 1006 // extent and if even that fails, add a new attribute 1007 // extent. 1008 // We could also try to resize at each step in the hope 1009 // that we will not need to rewrite every single extent. 1010 // Note, we may need to decompress some extents to fill 1011 // the runlist as we are walking the extents... 1012 ntfs_error(vol->sb, "Not enough space in the mft " 1013 "record for the extended attribute " 1014 "record. This case is not " 1015 "implemented yet."); 1016 err = -EOPNOTSUPP; 1017 break ; 1018 } 1019 status.mp_rebuilt = 1; 1020 /* 1021 * Generate the mapping pairs array directly into the attribute 1022 * record. 1023 */ 1024 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 1025 a->data.non_resident.mapping_pairs_offset), 1026 mp_size, rl2, vcn, highest_vcn, NULL); 1027 if (unlikely(err)) { 1028 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " 1029 "attribute type 0x%x, because building " 1030 "the mapping pairs failed with error " 1031 "code %i.", vi->i_ino, 1032 (unsigned)le32_to_cpu(ni->type), err); 1033 err = -EIO; 1034 break; 1035 } 1036 /* Update the highest_vcn but only if it was not set. */ 1037 if (unlikely(!a->data.non_resident.highest_vcn)) 1038 a->data.non_resident.highest_vcn = 1039 cpu_to_sle64(highest_vcn); 1040 /* 1041 * If the attribute is sparse/compressed, update the compressed 1042 * size in the ntfs_inode structure and the attribute record. 1043 */ 1044 if (likely(NInoSparse(ni) || NInoCompressed(ni))) { 1045 /* 1046 * If we are not in the first attribute extent, switch 1047 * to it, but first ensure the changes will make it to 1048 * disk later. 1049 */ 1050 if (a->data.non_resident.lowest_vcn) { 1051 flush_dcache_mft_record_page(ctx->ntfs_ino); 1052 mark_mft_record_dirty(ctx->ntfs_ino); 1053 ntfs_attr_reinit_search_ctx(ctx); 1054 err = ntfs_attr_lookup(ni->type, ni->name, 1055 ni->name_len, CASE_SENSITIVE, 1056 0, NULL, 0, ctx); 1057 if (unlikely(err)) { 1058 status.attr_switched = 1; 1059 break; 1060 } 1061 /* @m is not used any more so do not set it. */ 1062 a = ctx->attr; 1063 } 1064 write_lock_irqsave(&ni->size_lock, flags); 1065 ni->itype.compressed.size += vol->cluster_size; 1066 a->data.non_resident.compressed_size = 1067 cpu_to_sle64(ni->itype.compressed.size); 1068 write_unlock_irqrestore(&ni->size_lock, flags); 1069 } 1070 /* Ensure the changes make it to disk. */ 1071 flush_dcache_mft_record_page(ctx->ntfs_ino); 1072 mark_mft_record_dirty(ctx->ntfs_ino); 1073 ntfs_attr_put_search_ctx(ctx); 1074 unmap_mft_record(base_ni); 1075 /* Successfully filled the hole. */ 1076 status.runlist_merged = 0; 1077 status.mft_attr_mapped = 0; 1078 status.mp_rebuilt = 0; 1079 /* Setup the map cache and use that to deal with the buffer. */ 1080 was_hole = true; 1081 vcn = bh_cpos; 1082 vcn_len = 1; 1083 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); 1084 cdelta = 0; 1085 /* 1086 * If the number of remaining clusters in the @pages is smaller 1087 * or equal to the number of cached clusters, unlock the 1088 * runlist as the map cache will be used from now on. 1089 */ 1090 if (likely(vcn + vcn_len >= cend)) { 1091 up_write(&ni->runlist.lock); 1092 rl_write_locked = false; 1093 rl = NULL; 1094 } 1095 goto map_buffer_cached; 1096 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1097 /* If there are no errors, do the next page. */ 1098 if (likely(!err && ++u < nr_pages)) 1099 goto do_next_page; 1100 /* If there are no errors, release the runlist lock if we took it. */ 1101 if (likely(!err)) { 1102 if (unlikely(rl_write_locked)) { 1103 up_write(&ni->runlist.lock); 1104 rl_write_locked = false; 1105 } else if (unlikely(rl)) 1106 up_read(&ni->runlist.lock); 1107 rl = NULL; 1108 } 1109 /* If we issued read requests, let them complete. */ 1110 read_lock_irqsave(&ni->size_lock, flags); 1111 initialized_size = ni->initialized_size; 1112 read_unlock_irqrestore(&ni->size_lock, flags); 1113 while (wait_bh > wait) { 1114 bh = *--wait_bh; 1115 wait_on_buffer(bh); 1116 if (likely(buffer_uptodate(bh))) { 1117 page = bh->b_page; 1118 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + 1119 bh_offset(bh); 1120 /* 1121 * If the buffer overflows the initialized size, need 1122 * to zero the overflowing region. 1123 */ 1124 if (unlikely(bh_pos + blocksize > initialized_size)) { 1125 int ofs = 0; 1126 1127 if (likely(bh_pos < initialized_size)) 1128 ofs = initialized_size - bh_pos; 1129 zero_user_segment(page, bh_offset(bh) + ofs, 1130 blocksize); 1131 } 1132 } else /* if (unlikely(!buffer_uptodate(bh))) */ 1133 err = -EIO; 1134 } 1135 if (likely(!err)) { 1136 /* Clear buffer_new on all buffers. */ 1137 u = 0; 1138 do { 1139 bh = head = page_buffers(pages[u]); 1140 do { 1141 if (buffer_new(bh)) 1142 clear_buffer_new(bh); 1143 } while ((bh = bh->b_this_page) != head); 1144 } while (++u < nr_pages); 1145 ntfs_debug("Done."); 1146 return err; 1147 } 1148 if (status.attr_switched) { 1149 /* Get back to the attribute extent we modified. */ 1150 ntfs_attr_reinit_search_ctx(ctx); 1151 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1152 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { 1153 ntfs_error(vol->sb, "Failed to find required " 1154 "attribute extent of attribute in " 1155 "error code path. Run chkdsk to " 1156 "recover."); 1157 write_lock_irqsave(&ni->size_lock, flags); 1158 ni->itype.compressed.size += vol->cluster_size; 1159 write_unlock_irqrestore(&ni->size_lock, flags); 1160 flush_dcache_mft_record_page(ctx->ntfs_ino); 1161 mark_mft_record_dirty(ctx->ntfs_ino); 1162 /* 1163 * The only thing that is now wrong is the compressed 1164 * size of the base attribute extent which chkdsk 1165 * should be able to fix. 1166 */ 1167 NVolSetErrors(vol); 1168 } else { 1169 m = ctx->mrec; 1170 a = ctx->attr; 1171 status.attr_switched = 0; 1172 } 1173 } 1174 /* 1175 * If the runlist has been modified, need to restore it by punching a 1176 * hole into it and we then need to deallocate the on-disk cluster as 1177 * well. Note, we only modify the runlist if we are able to generate a 1178 * new mapping pairs array, i.e. only when the mapped attribute extent 1179 * is not switched. 1180 */ 1181 if (status.runlist_merged && !status.attr_switched) { 1182 BUG_ON(!rl_write_locked); 1183 /* Make the file cluster we allocated sparse in the runlist. */ 1184 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { 1185 ntfs_error(vol->sb, "Failed to punch hole into " 1186 "attribute runlist in error code " 1187 "path. Run chkdsk to recover the " 1188 "lost cluster."); 1189 NVolSetErrors(vol); 1190 } else /* if (success) */ { 1191 status.runlist_merged = 0; 1192 /* 1193 * Deallocate the on-disk cluster we allocated but only 1194 * if we succeeded in punching its vcn out of the 1195 * runlist. 1196 */ 1197 down_write(&vol->lcnbmp_lock); 1198 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { 1199 ntfs_error(vol->sb, "Failed to release " 1200 "allocated cluster in error " 1201 "code path. Run chkdsk to " 1202 "recover the lost cluster."); 1203 NVolSetErrors(vol); 1204 } 1205 up_write(&vol->lcnbmp_lock); 1206 } 1207 } 1208 /* 1209 * Resize the attribute record to its old size and rebuild the mapping 1210 * pairs array. Note, we only can do this if the runlist has been 1211 * restored to its old state which also implies that the mapped 1212 * attribute extent is not switched. 1213 */ 1214 if (status.mp_rebuilt && !status.runlist_merged) { 1215 if (ntfs_attr_record_resize(m, a, attr_rec_len)) { 1216 ntfs_error(vol->sb, "Failed to restore attribute " 1217 "record in error code path. Run " 1218 "chkdsk to recover."); 1219 NVolSetErrors(vol); 1220 } else /* if (success) */ { 1221 if (ntfs_mapping_pairs_build(vol, (u8*)a + 1222 le16_to_cpu(a->data.non_resident. 1223 mapping_pairs_offset), attr_rec_len - 1224 le16_to_cpu(a->data.non_resident. 1225 mapping_pairs_offset), ni->runlist.rl, 1226 vcn, highest_vcn, NULL)) { 1227 ntfs_error(vol->sb, "Failed to restore " 1228 "mapping pairs array in error " 1229 "code path. Run chkdsk to " 1230 "recover."); 1231 NVolSetErrors(vol); 1232 } 1233 flush_dcache_mft_record_page(ctx->ntfs_ino); 1234 mark_mft_record_dirty(ctx->ntfs_ino); 1235 } 1236 } 1237 /* Release the mft record and the attribute. */ 1238 if (status.mft_attr_mapped) { 1239 ntfs_attr_put_search_ctx(ctx); 1240 unmap_mft_record(base_ni); 1241 } 1242 /* Release the runlist lock. */ 1243 if (rl_write_locked) 1244 up_write(&ni->runlist.lock); 1245 else if (rl) 1246 up_read(&ni->runlist.lock); 1247 /* 1248 * Zero out any newly allocated blocks to avoid exposing stale data. 1249 * If BH_New is set, we know that the block was newly allocated above 1250 * and that it has not been fully zeroed and marked dirty yet. 1251 */ 1252 nr_pages = u; 1253 u = 0; 1254 end = bh_cpos << vol->cluster_size_bits; 1255 do { 1256 page = pages[u]; 1257 bh = head = page_buffers(page); 1258 do { 1259 if (u == nr_pages && 1260 ((s64)page->index << PAGE_CACHE_SHIFT) + 1261 bh_offset(bh) >= end) 1262 break; 1263 if (!buffer_new(bh)) 1264 continue; 1265 clear_buffer_new(bh); 1266 if (!buffer_uptodate(bh)) { 1267 if (PageUptodate(page)) 1268 set_buffer_uptodate(bh); 1269 else { 1270 zero_user(page, bh_offset(bh), 1271 blocksize); 1272 set_buffer_uptodate(bh); 1273 } 1274 } 1275 mark_buffer_dirty(bh); 1276 } while ((bh = bh->b_this_page) != head); 1277 } while (++u <= nr_pages); 1278 ntfs_error(vol->sb, "Failed. Returning error code %i.", err); 1279 return err; 1280 } 1281 1282 /* 1283 * Copy as much as we can into the pages and return the number of bytes which 1284 * were sucessfully copied. If a fault is encountered then clear the pages 1285 * out to (ofs + bytes) and return the number of bytes which were copied. 1286 */ 1287 static inline size_t ntfs_copy_from_user(struct page **pages, 1288 unsigned nr_pages, unsigned ofs, const char __user *buf, 1289 size_t bytes) 1290 { 1291 struct page **last_page = pages + nr_pages; 1292 char *addr; 1293 size_t total = 0; 1294 unsigned len; 1295 int left; 1296 1297 do { 1298 len = PAGE_CACHE_SIZE - ofs; 1299 if (len > bytes) 1300 len = bytes; 1301 addr = kmap_atomic(*pages, KM_USER0); 1302 left = __copy_from_user_inatomic(addr + ofs, buf, len); 1303 kunmap_atomic(addr, KM_USER0); 1304 if (unlikely(left)) { 1305 /* Do it the slow way. */ 1306 addr = kmap(*pages); 1307 left = __copy_from_user(addr + ofs, buf, len); 1308 kunmap(*pages); 1309 if (unlikely(left)) 1310 goto err_out; 1311 } 1312 total += len; 1313 bytes -= len; 1314 if (!bytes) 1315 break; 1316 buf += len; 1317 ofs = 0; 1318 } while (++pages < last_page); 1319 out: 1320 return total; 1321 err_out: 1322 total += len - left; 1323 /* Zero the rest of the target like __copy_from_user(). */ 1324 while (++pages < last_page) { 1325 bytes -= len; 1326 if (!bytes) 1327 break; 1328 len = PAGE_CACHE_SIZE; 1329 if (len > bytes) 1330 len = bytes; 1331 zero_user(*pages, 0, len); 1332 } 1333 goto out; 1334 } 1335 1336 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, 1337 const struct iovec *iov, size_t iov_ofs, size_t bytes) 1338 { 1339 size_t total = 0; 1340 1341 while (1) { 1342 const char __user *buf = iov->iov_base + iov_ofs; 1343 unsigned len; 1344 size_t left; 1345 1346 len = iov->iov_len - iov_ofs; 1347 if (len > bytes) 1348 len = bytes; 1349 left = __copy_from_user_inatomic(vaddr, buf, len); 1350 total += len; 1351 bytes -= len; 1352 vaddr += len; 1353 if (unlikely(left)) { 1354 total -= left; 1355 break; 1356 } 1357 if (!bytes) 1358 break; 1359 iov++; 1360 iov_ofs = 0; 1361 } 1362 return total; 1363 } 1364 1365 static inline void ntfs_set_next_iovec(const struct iovec **iovp, 1366 size_t *iov_ofsp, size_t bytes) 1367 { 1368 const struct iovec *iov = *iovp; 1369 size_t iov_ofs = *iov_ofsp; 1370 1371 while (bytes) { 1372 unsigned len; 1373 1374 len = iov->iov_len - iov_ofs; 1375 if (len > bytes) 1376 len = bytes; 1377 bytes -= len; 1378 iov_ofs += len; 1379 if (iov->iov_len == iov_ofs) { 1380 iov++; 1381 iov_ofs = 0; 1382 } 1383 } 1384 *iovp = iov; 1385 *iov_ofsp = iov_ofs; 1386 } 1387 1388 /* 1389 * This has the same side-effects and return value as ntfs_copy_from_user(). 1390 * The difference is that on a fault we need to memset the remainder of the 1391 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s 1392 * single-segment behaviour. 1393 * 1394 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both 1395 * when atomic and when not atomic. This is ok because 1396 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic() 1397 * and it is ok to call this when non-atomic. 1398 * Infact, the only difference between __copy_from_user_inatomic() and 1399 * __copy_from_user() is that the latter calls might_sleep() and the former 1400 * should not zero the tail of the buffer on error. And on many 1401 * architectures __copy_from_user_inatomic() is just defined to 1402 * __copy_from_user() so it makes no difference at all on those architectures. 1403 */ 1404 static inline size_t ntfs_copy_from_user_iovec(struct page **pages, 1405 unsigned nr_pages, unsigned ofs, const struct iovec **iov, 1406 size_t *iov_ofs, size_t bytes) 1407 { 1408 struct page **last_page = pages + nr_pages; 1409 char *addr; 1410 size_t copied, len, total = 0; 1411 1412 do { 1413 len = PAGE_CACHE_SIZE - ofs; 1414 if (len > bytes) 1415 len = bytes; 1416 addr = kmap_atomic(*pages, KM_USER0); 1417 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, 1418 *iov, *iov_ofs, len); 1419 kunmap_atomic(addr, KM_USER0); 1420 if (unlikely(copied != len)) { 1421 /* Do it the slow way. */ 1422 addr = kmap(*pages); 1423 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, 1424 *iov, *iov_ofs, len); 1425 /* 1426 * Zero the rest of the target like __copy_from_user(). 1427 */ 1428 memset(addr + ofs + copied, 0, len - copied); 1429 kunmap(*pages); 1430 if (unlikely(copied != len)) 1431 goto err_out; 1432 } 1433 total += len; 1434 bytes -= len; 1435 if (!bytes) 1436 break; 1437 ntfs_set_next_iovec(iov, iov_ofs, len); 1438 ofs = 0; 1439 } while (++pages < last_page); 1440 out: 1441 return total; 1442 err_out: 1443 total += copied; 1444 /* Zero the rest of the target like __copy_from_user(). */ 1445 while (++pages < last_page) { 1446 bytes -= len; 1447 if (!bytes) 1448 break; 1449 len = PAGE_CACHE_SIZE; 1450 if (len > bytes) 1451 len = bytes; 1452 zero_user(*pages, 0, len); 1453 } 1454 goto out; 1455 } 1456 1457 static inline void ntfs_flush_dcache_pages(struct page **pages, 1458 unsigned nr_pages) 1459 { 1460 BUG_ON(!nr_pages); 1461 /* 1462 * Warning: Do not do the decrement at the same time as the call to 1463 * flush_dcache_page() because it is a NULL macro on i386 and hence the 1464 * decrement never happens so the loop never terminates. 1465 */ 1466 do { 1467 --nr_pages; 1468 flush_dcache_page(pages[nr_pages]); 1469 } while (nr_pages > 0); 1470 } 1471 1472 /** 1473 * ntfs_commit_pages_after_non_resident_write - commit the received data 1474 * @pages: array of destination pages 1475 * @nr_pages: number of pages in @pages 1476 * @pos: byte position in file at which the write begins 1477 * @bytes: number of bytes to be written 1478 * 1479 * See description of ntfs_commit_pages_after_write(), below. 1480 */ 1481 static inline int ntfs_commit_pages_after_non_resident_write( 1482 struct page **pages, const unsigned nr_pages, 1483 s64 pos, size_t bytes) 1484 { 1485 s64 end, initialized_size; 1486 struct inode *vi; 1487 ntfs_inode *ni, *base_ni; 1488 struct buffer_head *bh, *head; 1489 ntfs_attr_search_ctx *ctx; 1490 MFT_RECORD *m; 1491 ATTR_RECORD *a; 1492 unsigned long flags; 1493 unsigned blocksize, u; 1494 int err; 1495 1496 vi = pages[0]->mapping->host; 1497 ni = NTFS_I(vi); 1498 blocksize = vi->i_sb->s_blocksize; 1499 end = pos + bytes; 1500 u = 0; 1501 do { 1502 s64 bh_pos; 1503 struct page *page; 1504 bool partial; 1505 1506 page = pages[u]; 1507 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; 1508 bh = head = page_buffers(page); 1509 partial = false; 1510 do { 1511 s64 bh_end; 1512 1513 bh_end = bh_pos + blocksize; 1514 if (bh_end <= pos || bh_pos >= end) { 1515 if (!buffer_uptodate(bh)) 1516 partial = true; 1517 } else { 1518 set_buffer_uptodate(bh); 1519 mark_buffer_dirty(bh); 1520 } 1521 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); 1522 /* 1523 * If all buffers are now uptodate but the page is not, set the 1524 * page uptodate. 1525 */ 1526 if (!partial && !PageUptodate(page)) 1527 SetPageUptodate(page); 1528 } while (++u < nr_pages); 1529 /* 1530 * Finally, if we do not need to update initialized_size or i_size we 1531 * are finished. 1532 */ 1533 read_lock_irqsave(&ni->size_lock, flags); 1534 initialized_size = ni->initialized_size; 1535 read_unlock_irqrestore(&ni->size_lock, flags); 1536 if (end <= initialized_size) { 1537 ntfs_debug("Done."); 1538 return 0; 1539 } 1540 /* 1541 * Update initialized_size/i_size as appropriate, both in the inode and 1542 * the mft record. 1543 */ 1544 if (!NInoAttr(ni)) 1545 base_ni = ni; 1546 else 1547 base_ni = ni->ext.base_ntfs_ino; 1548 /* Map, pin, and lock the mft record. */ 1549 m = map_mft_record(base_ni); 1550 if (IS_ERR(m)) { 1551 err = PTR_ERR(m); 1552 m = NULL; 1553 ctx = NULL; 1554 goto err_out; 1555 } 1556 BUG_ON(!NInoNonResident(ni)); 1557 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1558 if (unlikely(!ctx)) { 1559 err = -ENOMEM; 1560 goto err_out; 1561 } 1562 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1563 CASE_SENSITIVE, 0, NULL, 0, ctx); 1564 if (unlikely(err)) { 1565 if (err == -ENOENT) 1566 err = -EIO; 1567 goto err_out; 1568 } 1569 a = ctx->attr; 1570 BUG_ON(!a->non_resident); 1571 write_lock_irqsave(&ni->size_lock, flags); 1572 BUG_ON(end > ni->allocated_size); 1573 ni->initialized_size = end; 1574 a->data.non_resident.initialized_size = cpu_to_sle64(end); 1575 if (end > i_size_read(vi)) { 1576 i_size_write(vi, end); 1577 a->data.non_resident.data_size = 1578 a->data.non_resident.initialized_size; 1579 } 1580 write_unlock_irqrestore(&ni->size_lock, flags); 1581 /* Mark the mft record dirty, so it gets written back. */ 1582 flush_dcache_mft_record_page(ctx->ntfs_ino); 1583 mark_mft_record_dirty(ctx->ntfs_ino); 1584 ntfs_attr_put_search_ctx(ctx); 1585 unmap_mft_record(base_ni); 1586 ntfs_debug("Done."); 1587 return 0; 1588 err_out: 1589 if (ctx) 1590 ntfs_attr_put_search_ctx(ctx); 1591 if (m) 1592 unmap_mft_record(base_ni); 1593 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " 1594 "code %i).", err); 1595 if (err != -ENOMEM) 1596 NVolSetErrors(ni->vol); 1597 return err; 1598 } 1599 1600 /** 1601 * ntfs_commit_pages_after_write - commit the received data 1602 * @pages: array of destination pages 1603 * @nr_pages: number of pages in @pages 1604 * @pos: byte position in file at which the write begins 1605 * @bytes: number of bytes to be written 1606 * 1607 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode 1608 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are 1609 * locked but not kmap()ped. The source data has already been copied into the 1610 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before 1611 * the data was copied (for non-resident attributes only) and it returned 1612 * success. 1613 * 1614 * Need to set uptodate and mark dirty all buffers within the boundary of the 1615 * write. If all buffers in a page are uptodate we set the page uptodate, too. 1616 * 1617 * Setting the buffers dirty ensures that they get written out later when 1618 * ntfs_writepage() is invoked by the VM. 1619 * 1620 * Finally, we need to update i_size and initialized_size as appropriate both 1621 * in the inode and the mft record. 1622 * 1623 * This is modelled after fs/buffer.c::generic_commit_write(), which marks 1624 * buffers uptodate and dirty, sets the page uptodate if all buffers in the 1625 * page are uptodate, and updates i_size if the end of io is beyond i_size. In 1626 * that case, it also marks the inode dirty. 1627 * 1628 * If things have gone as outlined in 1629 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page 1630 * content modifications here for non-resident attributes. For resident 1631 * attributes we need to do the uptodate bringing here which we combine with 1632 * the copying into the mft record which means we save one atomic kmap. 1633 * 1634 * Return 0 on success or -errno on error. 1635 */ 1636 static int ntfs_commit_pages_after_write(struct page **pages, 1637 const unsigned nr_pages, s64 pos, size_t bytes) 1638 { 1639 s64 end, initialized_size; 1640 loff_t i_size; 1641 struct inode *vi; 1642 ntfs_inode *ni, *base_ni; 1643 struct page *page; 1644 ntfs_attr_search_ctx *ctx; 1645 MFT_RECORD *m; 1646 ATTR_RECORD *a; 1647 char *kattr, *kaddr; 1648 unsigned long flags; 1649 u32 attr_len; 1650 int err; 1651 1652 BUG_ON(!nr_pages); 1653 BUG_ON(!pages); 1654 page = pages[0]; 1655 BUG_ON(!page); 1656 vi = page->mapping->host; 1657 ni = NTFS_I(vi); 1658 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " 1659 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", 1660 vi->i_ino, ni->type, page->index, nr_pages, 1661 (long long)pos, bytes); 1662 if (NInoNonResident(ni)) 1663 return ntfs_commit_pages_after_non_resident_write(pages, 1664 nr_pages, pos, bytes); 1665 BUG_ON(nr_pages > 1); 1666 /* 1667 * Attribute is resident, implying it is not compressed, encrypted, or 1668 * sparse. 1669 */ 1670 if (!NInoAttr(ni)) 1671 base_ni = ni; 1672 else 1673 base_ni = ni->ext.base_ntfs_ino; 1674 BUG_ON(NInoNonResident(ni)); 1675 /* Map, pin, and lock the mft record. */ 1676 m = map_mft_record(base_ni); 1677 if (IS_ERR(m)) { 1678 err = PTR_ERR(m); 1679 m = NULL; 1680 ctx = NULL; 1681 goto err_out; 1682 } 1683 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1684 if (unlikely(!ctx)) { 1685 err = -ENOMEM; 1686 goto err_out; 1687 } 1688 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1689 CASE_SENSITIVE, 0, NULL, 0, ctx); 1690 if (unlikely(err)) { 1691 if (err == -ENOENT) 1692 err = -EIO; 1693 goto err_out; 1694 } 1695 a = ctx->attr; 1696 BUG_ON(a->non_resident); 1697 /* The total length of the attribute value. */ 1698 attr_len = le32_to_cpu(a->data.resident.value_length); 1699 i_size = i_size_read(vi); 1700 BUG_ON(attr_len != i_size); 1701 BUG_ON(pos > attr_len); 1702 end = pos + bytes; 1703 BUG_ON(end > le32_to_cpu(a->length) - 1704 le16_to_cpu(a->data.resident.value_offset)); 1705 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); 1706 kaddr = kmap_atomic(page, KM_USER0); 1707 /* Copy the received data from the page to the mft record. */ 1708 memcpy(kattr + pos, kaddr + pos, bytes); 1709 /* Update the attribute length if necessary. */ 1710 if (end > attr_len) { 1711 attr_len = end; 1712 a->data.resident.value_length = cpu_to_le32(attr_len); 1713 } 1714 /* 1715 * If the page is not uptodate, bring the out of bounds area(s) 1716 * uptodate by copying data from the mft record to the page. 1717 */ 1718 if (!PageUptodate(page)) { 1719 if (pos > 0) 1720 memcpy(kaddr, kattr, pos); 1721 if (end < attr_len) 1722 memcpy(kaddr + end, kattr + end, attr_len - end); 1723 /* Zero the region outside the end of the attribute value. */ 1724 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1725 flush_dcache_page(page); 1726 SetPageUptodate(page); 1727 } 1728 kunmap_atomic(kaddr, KM_USER0); 1729 /* Update initialized_size/i_size if necessary. */ 1730 read_lock_irqsave(&ni->size_lock, flags); 1731 initialized_size = ni->initialized_size; 1732 BUG_ON(end > ni->allocated_size); 1733 read_unlock_irqrestore(&ni->size_lock, flags); 1734 BUG_ON(initialized_size != i_size); 1735 if (end > initialized_size) { 1736 write_lock_irqsave(&ni->size_lock, flags); 1737 ni->initialized_size = end; 1738 i_size_write(vi, end); 1739 write_unlock_irqrestore(&ni->size_lock, flags); 1740 } 1741 /* Mark the mft record dirty, so it gets written back. */ 1742 flush_dcache_mft_record_page(ctx->ntfs_ino); 1743 mark_mft_record_dirty(ctx->ntfs_ino); 1744 ntfs_attr_put_search_ctx(ctx); 1745 unmap_mft_record(base_ni); 1746 ntfs_debug("Done."); 1747 return 0; 1748 err_out: 1749 if (err == -ENOMEM) { 1750 ntfs_warning(vi->i_sb, "Error allocating memory required to " 1751 "commit the write."); 1752 if (PageUptodate(page)) { 1753 ntfs_warning(vi->i_sb, "Page is uptodate, setting " 1754 "dirty so the write will be retried " 1755 "later on by the VM."); 1756 /* 1757 * Put the page on mapping->dirty_pages, but leave its 1758 * buffers' dirty state as-is. 1759 */ 1760 __set_page_dirty_nobuffers(page); 1761 err = 0; 1762 } else 1763 ntfs_error(vi->i_sb, "Page is not uptodate. Written " 1764 "data has been lost."); 1765 } else { 1766 ntfs_error(vi->i_sb, "Resident attribute commit write failed " 1767 "with error %i.", err); 1768 NVolSetErrors(ni->vol); 1769 } 1770 if (ctx) 1771 ntfs_attr_put_search_ctx(ctx); 1772 if (m) 1773 unmap_mft_record(base_ni); 1774 return err; 1775 } 1776 1777 /** 1778 * ntfs_file_buffered_write - 1779 * 1780 * Locking: The vfs is holding ->i_mutex on the inode. 1781 */ 1782 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, 1783 const struct iovec *iov, unsigned long nr_segs, 1784 loff_t pos, loff_t *ppos, size_t count) 1785 { 1786 struct file *file = iocb->ki_filp; 1787 struct address_space *mapping = file->f_mapping; 1788 struct inode *vi = mapping->host; 1789 ntfs_inode *ni = NTFS_I(vi); 1790 ntfs_volume *vol = ni->vol; 1791 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; 1792 struct page *cached_page = NULL; 1793 char __user *buf = NULL; 1794 s64 end, ll; 1795 VCN last_vcn; 1796 LCN lcn; 1797 unsigned long flags; 1798 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */ 1799 ssize_t status, written; 1800 unsigned nr_pages; 1801 int err; 1802 struct pagevec lru_pvec; 1803 1804 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1805 "pos 0x%llx, count 0x%lx.", 1806 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 1807 (unsigned long long)pos, (unsigned long)count); 1808 if (unlikely(!count)) 1809 return 0; 1810 BUG_ON(NInoMstProtected(ni)); 1811 /* 1812 * If the attribute is not an index root and it is encrypted or 1813 * compressed, we cannot write to it yet. Note we need to check for 1814 * AT_INDEX_ALLOCATION since this is the type of both directory and 1815 * index inodes. 1816 */ 1817 if (ni->type != AT_INDEX_ALLOCATION) { 1818 /* If file is encrypted, deny access, just like NT4. */ 1819 if (NInoEncrypted(ni)) { 1820 /* 1821 * Reminder for later: Encrypted files are _always_ 1822 * non-resident so that the content can always be 1823 * encrypted. 1824 */ 1825 ntfs_debug("Denying write access to encrypted file."); 1826 return -EACCES; 1827 } 1828 if (NInoCompressed(ni)) { 1829 /* Only unnamed $DATA attribute can be compressed. */ 1830 BUG_ON(ni->type != AT_DATA); 1831 BUG_ON(ni->name_len); 1832 /* 1833 * Reminder for later: If resident, the data is not 1834 * actually compressed. Only on the switch to non- 1835 * resident does compression kick in. This is in 1836 * contrast to encrypted files (see above). 1837 */ 1838 ntfs_error(vi->i_sb, "Writing to compressed files is " 1839 "not implemented yet. Sorry."); 1840 return -EOPNOTSUPP; 1841 } 1842 } 1843 /* 1844 * If a previous ntfs_truncate() failed, repeat it and abort if it 1845 * fails again. 1846 */ 1847 if (unlikely(NInoTruncateFailed(ni))) { 1848 down_write(&vi->i_alloc_sem); 1849 err = ntfs_truncate(vi); 1850 up_write(&vi->i_alloc_sem); 1851 if (err || NInoTruncateFailed(ni)) { 1852 if (!err) 1853 err = -EIO; 1854 ntfs_error(vol->sb, "Cannot perform write to inode " 1855 "0x%lx, attribute type 0x%x, because " 1856 "ntfs_truncate() failed (error code " 1857 "%i).", vi->i_ino, 1858 (unsigned)le32_to_cpu(ni->type), err); 1859 return err; 1860 } 1861 } 1862 /* The first byte after the write. */ 1863 end = pos + count; 1864 /* 1865 * If the write goes beyond the allocated size, extend the allocation 1866 * to cover the whole of the write, rounded up to the nearest cluster. 1867 */ 1868 read_lock_irqsave(&ni->size_lock, flags); 1869 ll = ni->allocated_size; 1870 read_unlock_irqrestore(&ni->size_lock, flags); 1871 if (end > ll) { 1872 /* Extend the allocation without changing the data size. */ 1873 ll = ntfs_attr_extend_allocation(ni, end, -1, pos); 1874 if (likely(ll >= 0)) { 1875 BUG_ON(pos >= ll); 1876 /* If the extension was partial truncate the write. */ 1877 if (end > ll) { 1878 ntfs_debug("Truncating write to inode 0x%lx, " 1879 "attribute type 0x%x, because " 1880 "the allocation was only " 1881 "partially extended.", 1882 vi->i_ino, (unsigned) 1883 le32_to_cpu(ni->type)); 1884 end = ll; 1885 count = ll - pos; 1886 } 1887 } else { 1888 err = ll; 1889 read_lock_irqsave(&ni->size_lock, flags); 1890 ll = ni->allocated_size; 1891 read_unlock_irqrestore(&ni->size_lock, flags); 1892 /* Perform a partial write if possible or fail. */ 1893 if (pos < ll) { 1894 ntfs_debug("Truncating write to inode 0x%lx, " 1895 "attribute type 0x%x, because " 1896 "extending the allocation " 1897 "failed (error code %i).", 1898 vi->i_ino, (unsigned) 1899 le32_to_cpu(ni->type), err); 1900 end = ll; 1901 count = ll - pos; 1902 } else { 1903 ntfs_error(vol->sb, "Cannot perform write to " 1904 "inode 0x%lx, attribute type " 1905 "0x%x, because extending the " 1906 "allocation failed (error " 1907 "code %i).", vi->i_ino, 1908 (unsigned) 1909 le32_to_cpu(ni->type), err); 1910 return err; 1911 } 1912 } 1913 } 1914 pagevec_init(&lru_pvec, 0); 1915 written = 0; 1916 /* 1917 * If the write starts beyond the initialized size, extend it up to the 1918 * beginning of the write and initialize all non-sparse space between 1919 * the old initialized size and the new one. This automatically also 1920 * increments the vfs inode->i_size to keep it above or equal to the 1921 * initialized_size. 1922 */ 1923 read_lock_irqsave(&ni->size_lock, flags); 1924 ll = ni->initialized_size; 1925 read_unlock_irqrestore(&ni->size_lock, flags); 1926 if (pos > ll) { 1927 err = ntfs_attr_extend_initialized(ni, pos, &cached_page, 1928 &lru_pvec); 1929 if (err < 0) { 1930 ntfs_error(vol->sb, "Cannot perform write to inode " 1931 "0x%lx, attribute type 0x%x, because " 1932 "extending the initialized size " 1933 "failed (error code %i).", vi->i_ino, 1934 (unsigned)le32_to_cpu(ni->type), err); 1935 status = err; 1936 goto err_out; 1937 } 1938 } 1939 /* 1940 * Determine the number of pages per cluster for non-resident 1941 * attributes. 1942 */ 1943 nr_pages = 1; 1944 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) 1945 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; 1946 /* Finally, perform the actual write. */ 1947 last_vcn = -1; 1948 if (likely(nr_segs == 1)) 1949 buf = iov->iov_base; 1950 do { 1951 VCN vcn; 1952 pgoff_t idx, start_idx; 1953 unsigned ofs, do_pages, u; 1954 size_t copied; 1955 1956 start_idx = idx = pos >> PAGE_CACHE_SHIFT; 1957 ofs = pos & ~PAGE_CACHE_MASK; 1958 bytes = PAGE_CACHE_SIZE - ofs; 1959 do_pages = 1; 1960 if (nr_pages > 1) { 1961 vcn = pos >> vol->cluster_size_bits; 1962 if (vcn != last_vcn) { 1963 last_vcn = vcn; 1964 /* 1965 * Get the lcn of the vcn the write is in. If 1966 * it is a hole, need to lock down all pages in 1967 * the cluster. 1968 */ 1969 down_read(&ni->runlist.lock); 1970 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> 1971 vol->cluster_size_bits, false); 1972 up_read(&ni->runlist.lock); 1973 if (unlikely(lcn < LCN_HOLE)) { 1974 status = -EIO; 1975 if (lcn == LCN_ENOMEM) 1976 status = -ENOMEM; 1977 else 1978 ntfs_error(vol->sb, "Cannot " 1979 "perform write to " 1980 "inode 0x%lx, " 1981 "attribute type 0x%x, " 1982 "because the attribute " 1983 "is corrupt.", 1984 vi->i_ino, (unsigned) 1985 le32_to_cpu(ni->type)); 1986 break; 1987 } 1988 if (lcn == LCN_HOLE) { 1989 start_idx = (pos & ~(s64) 1990 vol->cluster_size_mask) 1991 >> PAGE_CACHE_SHIFT; 1992 bytes = vol->cluster_size - (pos & 1993 vol->cluster_size_mask); 1994 do_pages = nr_pages; 1995 } 1996 } 1997 } 1998 if (bytes > count) 1999 bytes = count; 2000 /* 2001 * Bring in the user page(s) that we will copy from _first_. 2002 * Otherwise there is a nasty deadlock on copying from the same 2003 * page(s) as we are writing to, without it/them being marked 2004 * up-to-date. Note, at present there is nothing to stop the 2005 * pages being swapped out between us bringing them into memory 2006 * and doing the actual copying. 2007 */ 2008 if (likely(nr_segs == 1)) 2009 ntfs_fault_in_pages_readable(buf, bytes); 2010 else 2011 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); 2012 /* Get and lock @do_pages starting at index @start_idx. */ 2013 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, 2014 pages, &cached_page, &lru_pvec); 2015 if (unlikely(status)) 2016 break; 2017 /* 2018 * For non-resident attributes, we need to fill any holes with 2019 * actual clusters and ensure all bufferes are mapped. We also 2020 * need to bring uptodate any buffers that are only partially 2021 * being written to. 2022 */ 2023 if (NInoNonResident(ni)) { 2024 status = ntfs_prepare_pages_for_non_resident_write( 2025 pages, do_pages, pos, bytes); 2026 if (unlikely(status)) { 2027 loff_t i_size; 2028 2029 do { 2030 unlock_page(pages[--do_pages]); 2031 page_cache_release(pages[do_pages]); 2032 } while (do_pages); 2033 /* 2034 * The write preparation may have instantiated 2035 * allocated space outside i_size. Trim this 2036 * off again. We can ignore any errors in this 2037 * case as we will just be waisting a bit of 2038 * allocated space, which is not a disaster. 2039 */ 2040 i_size = i_size_read(vi); 2041 if (pos + bytes > i_size) 2042 vmtruncate(vi, i_size); 2043 break; 2044 } 2045 } 2046 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; 2047 if (likely(nr_segs == 1)) { 2048 copied = ntfs_copy_from_user(pages + u, do_pages - u, 2049 ofs, buf, bytes); 2050 buf += copied; 2051 } else 2052 copied = ntfs_copy_from_user_iovec(pages + u, 2053 do_pages - u, ofs, &iov, &iov_ofs, 2054 bytes); 2055 ntfs_flush_dcache_pages(pages + u, do_pages - u); 2056 status = ntfs_commit_pages_after_write(pages, do_pages, pos, 2057 bytes); 2058 if (likely(!status)) { 2059 written += copied; 2060 count -= copied; 2061 pos += copied; 2062 if (unlikely(copied != bytes)) 2063 status = -EFAULT; 2064 } 2065 do { 2066 unlock_page(pages[--do_pages]); 2067 mark_page_accessed(pages[do_pages]); 2068 page_cache_release(pages[do_pages]); 2069 } while (do_pages); 2070 if (unlikely(status)) 2071 break; 2072 balance_dirty_pages_ratelimited(mapping); 2073 cond_resched(); 2074 } while (count); 2075 err_out: 2076 *ppos = pos; 2077 if (cached_page) 2078 page_cache_release(cached_page); 2079 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ 2080 if (likely(!status)) { 2081 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { 2082 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) 2083 status = generic_osync_inode(vi, mapping, 2084 OSYNC_METADATA|OSYNC_DATA); 2085 } 2086 } 2087 pagevec_lru_add_file(&lru_pvec); 2088 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", 2089 written ? "written" : "status", (unsigned long)written, 2090 (long)status); 2091 return written ? written : status; 2092 } 2093 2094 /** 2095 * ntfs_file_aio_write_nolock - 2096 */ 2097 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, 2098 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) 2099 { 2100 struct file *file = iocb->ki_filp; 2101 struct address_space *mapping = file->f_mapping; 2102 struct inode *inode = mapping->host; 2103 loff_t pos; 2104 size_t count; /* after file limit checks */ 2105 ssize_t written, err; 2106 2107 count = 0; 2108 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 2109 if (err) 2110 return err; 2111 pos = *ppos; 2112 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2113 /* We can write back this queue in page reclaim. */ 2114 current->backing_dev_info = mapping->backing_dev_info; 2115 written = 0; 2116 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2117 if (err) 2118 goto out; 2119 if (!count) 2120 goto out; 2121 err = file_remove_suid(file); 2122 if (err) 2123 goto out; 2124 file_update_time(file); 2125 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, 2126 count); 2127 out: 2128 current->backing_dev_info = NULL; 2129 return written ? written : err; 2130 } 2131 2132 /** 2133 * ntfs_file_aio_write - 2134 */ 2135 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2136 unsigned long nr_segs, loff_t pos) 2137 { 2138 struct file *file = iocb->ki_filp; 2139 struct address_space *mapping = file->f_mapping; 2140 struct inode *inode = mapping->host; 2141 ssize_t ret; 2142 2143 BUG_ON(iocb->ki_pos != pos); 2144 2145 mutex_lock(&inode->i_mutex); 2146 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); 2147 mutex_unlock(&inode->i_mutex); 2148 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2149 int err = sync_page_range(inode, mapping, pos, ret); 2150 if (err < 0) 2151 ret = err; 2152 } 2153 return ret; 2154 } 2155 2156 /** 2157 * ntfs_file_writev - 2158 * 2159 * Basically the same as generic_file_writev() except that it ends up calling 2160 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). 2161 */ 2162 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, 2163 unsigned long nr_segs, loff_t *ppos) 2164 { 2165 struct address_space *mapping = file->f_mapping; 2166 struct inode *inode = mapping->host; 2167 struct kiocb kiocb; 2168 ssize_t ret; 2169 2170 mutex_lock(&inode->i_mutex); 2171 init_sync_kiocb(&kiocb, file); 2172 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2173 if (ret == -EIOCBQUEUED) 2174 ret = wait_on_sync_kiocb(&kiocb); 2175 mutex_unlock(&inode->i_mutex); 2176 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2177 int err = sync_page_range(inode, mapping, *ppos - ret, ret); 2178 if (err < 0) 2179 ret = err; 2180 } 2181 return ret; 2182 } 2183 2184 /** 2185 * ntfs_file_write - simple wrapper for ntfs_file_writev() 2186 */ 2187 static ssize_t ntfs_file_write(struct file *file, const char __user *buf, 2188 size_t count, loff_t *ppos) 2189 { 2190 struct iovec local_iov = { .iov_base = (void __user *)buf, 2191 .iov_len = count }; 2192 2193 return ntfs_file_writev(file, &local_iov, 1, ppos); 2194 } 2195 2196 /** 2197 * ntfs_file_fsync - sync a file to disk 2198 * @filp: file to be synced 2199 * @dentry: dentry describing the file to sync 2200 * @datasync: if non-zero only flush user data and not metadata 2201 * 2202 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync 2203 * system calls. This function is inspired by fs/buffer.c::file_fsync(). 2204 * 2205 * If @datasync is false, write the mft record and all associated extent mft 2206 * records as well as the $DATA attribute and then sync the block device. 2207 * 2208 * If @datasync is true and the attribute is non-resident, we skip the writing 2209 * of the mft record and all associated extent mft records (this might still 2210 * happen due to the write_inode_now() call). 2211 * 2212 * Also, if @datasync is true, we do not wait on the inode to be written out 2213 * but we always wait on the page cache pages to be written out. 2214 * 2215 * Note: In the past @filp could be NULL so we ignore it as we don't need it 2216 * anyway. 2217 * 2218 * Locking: Caller must hold i_mutex on the inode. 2219 * 2220 * TODO: We should probably also write all attribute/index inodes associated 2221 * with this inode but since we have no simple way of getting to them we ignore 2222 * this problem for now. 2223 */ 2224 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, 2225 int datasync) 2226 { 2227 struct inode *vi = dentry->d_inode; 2228 int err, ret = 0; 2229 2230 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2231 BUG_ON(S_ISDIR(vi->i_mode)); 2232 if (!datasync || !NInoNonResident(NTFS_I(vi))) 2233 ret = ntfs_write_inode(vi, 1); 2234 write_inode_now(vi, !datasync); 2235 /* 2236 * NOTE: If we were to use mapping->private_list (see ext2 and 2237 * fs/buffer.c) for dirty blocks then we could optimize the below to be 2238 * sync_mapping_buffers(vi->i_mapping). 2239 */ 2240 err = sync_blockdev(vi->i_sb->s_bdev); 2241 if (unlikely(err && !ret)) 2242 ret = err; 2243 if (likely(!ret)) 2244 ntfs_debug("Done."); 2245 else 2246 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error " 2247 "%u.", datasync ? "data" : "", vi->i_ino, -ret); 2248 return ret; 2249 } 2250 2251 #endif /* NTFS_RW */ 2252 2253 const struct file_operations ntfs_file_ops = { 2254 .llseek = generic_file_llseek, /* Seek inside file. */ 2255 .read = do_sync_read, /* Read from file. */ 2256 .aio_read = generic_file_aio_read, /* Async read from file. */ 2257 #ifdef NTFS_RW 2258 .write = ntfs_file_write, /* Write to file. */ 2259 .aio_write = ntfs_file_aio_write, /* Async write to file. */ 2260 /*.release = ,*/ /* Last file is closed. See 2261 fs/ext2/file.c:: 2262 ext2_release_file() for 2263 how to use this to discard 2264 preallocated space for 2265 write opened files. */ 2266 .fsync = ntfs_file_fsync, /* Sync a file to disk. */ 2267 /*.aio_fsync = ,*/ /* Sync all outstanding async 2268 i/o operations on a 2269 kiocb. */ 2270 #endif /* NTFS_RW */ 2271 /*.ioctl = ,*/ /* Perform function on the 2272 mounted filesystem. */ 2273 .mmap = generic_file_mmap, /* Mmap file. */ 2274 .open = ntfs_file_open, /* Open file. */ 2275 .splice_read = generic_file_splice_read /* Zero-copy data send with 2276 the data source being on 2277 the ntfs partition. We do 2278 not need to care about the 2279 data destination. */ 2280 /*.sendpage = ,*/ /* Zero-copy data send with 2281 the data destination being 2282 on the ntfs partition. We 2283 do not need to care about 2284 the data source. */ 2285 }; 2286 2287 const struct inode_operations ntfs_file_inode_ops = { 2288 #ifdef NTFS_RW 2289 .truncate = ntfs_truncate_vfs, 2290 .setattr = ntfs_setattr, 2291 #endif /* NTFS_RW */ 2292 }; 2293 2294 const struct file_operations ntfs_empty_file_ops = {}; 2295 2296 const struct inode_operations ntfs_empty_inode_ops = {}; 2297