xref: /openbmc/linux/fs/ntfs/compress.c (revision 050e9baa)
1 /**
2  * compress.c - NTFS kernel compressed attributes handling.
3  *		Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2004 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/buffer_head.h>
26 #include <linux/blkdev.h>
27 #include <linux/vmalloc.h>
28 #include <linux/slab.h>
29 
30 #include "attrib.h"
31 #include "inode.h"
32 #include "debug.h"
33 #include "ntfs.h"
34 
35 /**
36  * ntfs_compression_constants - enum of constants used in the compression code
37  */
38 typedef enum {
39 	/* Token types and access mask. */
40 	NTFS_SYMBOL_TOKEN	=	0,
41 	NTFS_PHRASE_TOKEN	=	1,
42 	NTFS_TOKEN_MASK		=	1,
43 
44 	/* Compression sub-block constants. */
45 	NTFS_SB_SIZE_MASK	=	0x0fff,
46 	NTFS_SB_SIZE		=	0x1000,
47 	NTFS_SB_IS_COMPRESSED	=	0x8000,
48 
49 	/*
50 	 * The maximum compression block size is by definition 16 * the cluster
51 	 * size, with the maximum supported cluster size being 4kiB. Thus the
52 	 * maximum compression buffer size is 64kiB, so we use this when
53 	 * initializing the compression buffer.
54 	 */
55 	NTFS_MAX_CB_SIZE	= 64 * 1024,
56 } ntfs_compression_constants;
57 
58 /**
59  * ntfs_compression_buffer - one buffer for the decompression engine
60  */
61 static u8 *ntfs_compression_buffer;
62 
63 /**
64  * ntfs_cb_lock - spinlock which protects ntfs_compression_buffer
65  */
66 static DEFINE_SPINLOCK(ntfs_cb_lock);
67 
68 /**
69  * allocate_compression_buffers - allocate the decompression buffers
70  *
71  * Caller has to hold the ntfs_lock mutex.
72  *
73  * Return 0 on success or -ENOMEM if the allocations failed.
74  */
75 int allocate_compression_buffers(void)
76 {
77 	BUG_ON(ntfs_compression_buffer);
78 
79 	ntfs_compression_buffer = vmalloc(NTFS_MAX_CB_SIZE);
80 	if (!ntfs_compression_buffer)
81 		return -ENOMEM;
82 	return 0;
83 }
84 
85 /**
86  * free_compression_buffers - free the decompression buffers
87  *
88  * Caller has to hold the ntfs_lock mutex.
89  */
90 void free_compression_buffers(void)
91 {
92 	BUG_ON(!ntfs_compression_buffer);
93 	vfree(ntfs_compression_buffer);
94 	ntfs_compression_buffer = NULL;
95 }
96 
97 /**
98  * zero_partial_compressed_page - zero out of bounds compressed page region
99  */
100 static void zero_partial_compressed_page(struct page *page,
101 		const s64 initialized_size)
102 {
103 	u8 *kp = page_address(page);
104 	unsigned int kp_ofs;
105 
106 	ntfs_debug("Zeroing page region outside initialized size.");
107 	if (((s64)page->index << PAGE_SHIFT) >= initialized_size) {
108 		clear_page(kp);
109 		return;
110 	}
111 	kp_ofs = initialized_size & ~PAGE_MASK;
112 	memset(kp + kp_ofs, 0, PAGE_SIZE - kp_ofs);
113 	return;
114 }
115 
116 /**
117  * handle_bounds_compressed_page - test for&handle out of bounds compressed page
118  */
119 static inline void handle_bounds_compressed_page(struct page *page,
120 		const loff_t i_size, const s64 initialized_size)
121 {
122 	if ((page->index >= (initialized_size >> PAGE_SHIFT)) &&
123 			(initialized_size < i_size))
124 		zero_partial_compressed_page(page, initialized_size);
125 	return;
126 }
127 
128 /**
129  * ntfs_decompress - decompress a compression block into an array of pages
130  * @dest_pages:		destination array of pages
131  * @dest_index:		current index into @dest_pages (IN/OUT)
132  * @dest_ofs:		current offset within @dest_pages[@dest_index] (IN/OUT)
133  * @dest_max_index:	maximum index into @dest_pages (IN)
134  * @dest_max_ofs:	maximum offset within @dest_pages[@dest_max_index] (IN)
135  * @xpage:		the target page (-1 if none) (IN)
136  * @xpage_done:		set to 1 if xpage was completed successfully (IN/OUT)
137  * @cb_start:		compression block to decompress (IN)
138  * @cb_size:		size of compression block @cb_start in bytes (IN)
139  * @i_size:		file size when we started the read (IN)
140  * @initialized_size:	initialized file size when we started the read (IN)
141  *
142  * The caller must have disabled preemption. ntfs_decompress() reenables it when
143  * the critical section is finished.
144  *
145  * This decompresses the compression block @cb_start into the array of
146  * destination pages @dest_pages starting at index @dest_index into @dest_pages
147  * and at offset @dest_pos into the page @dest_pages[@dest_index].
148  *
149  * When the page @dest_pages[@xpage] is completed, @xpage_done is set to 1.
150  * If xpage is -1 or @xpage has not been completed, @xpage_done is not modified.
151  *
152  * @cb_start is a pointer to the compression block which needs decompressing
153  * and @cb_size is the size of @cb_start in bytes (8-64kiB).
154  *
155  * Return 0 if success or -EOVERFLOW on error in the compressed stream.
156  * @xpage_done indicates whether the target page (@dest_pages[@xpage]) was
157  * completed during the decompression of the compression block (@cb_start).
158  *
159  * Warning: This function *REQUIRES* PAGE_SIZE >= 4096 or it will blow up
160  * unpredicatbly! You have been warned!
161  *
162  * Note to hackers: This function may not sleep until it has finished accessing
163  * the compression block @cb_start as it is a per-CPU buffer.
164  */
165 static int ntfs_decompress(struct page *dest_pages[], int *dest_index,
166 		int *dest_ofs, const int dest_max_index, const int dest_max_ofs,
167 		const int xpage, char *xpage_done, u8 *const cb_start,
168 		const u32 cb_size, const loff_t i_size,
169 		const s64 initialized_size)
170 {
171 	/*
172 	 * Pointers into the compressed data, i.e. the compression block (cb),
173 	 * and the therein contained sub-blocks (sb).
174 	 */
175 	u8 *cb_end = cb_start + cb_size; /* End of cb. */
176 	u8 *cb = cb_start;	/* Current position in cb. */
177 	u8 *cb_sb_start = cb;	/* Beginning of the current sb in the cb. */
178 	u8 *cb_sb_end;		/* End of current sb / beginning of next sb. */
179 
180 	/* Variables for uncompressed data / destination. */
181 	struct page *dp;	/* Current destination page being worked on. */
182 	u8 *dp_addr;		/* Current pointer into dp. */
183 	u8 *dp_sb_start;	/* Start of current sub-block in dp. */
184 	u8 *dp_sb_end;		/* End of current sb in dp (dp_sb_start +
185 				   NTFS_SB_SIZE). */
186 	u16 do_sb_start;	/* @dest_ofs when starting this sub-block. */
187 	u16 do_sb_end;		/* @dest_ofs of end of this sb (do_sb_start +
188 				   NTFS_SB_SIZE). */
189 
190 	/* Variables for tag and token parsing. */
191 	u8 tag;			/* Current tag. */
192 	int token;		/* Loop counter for the eight tokens in tag. */
193 
194 	/* Need this because we can't sleep, so need two stages. */
195 	int completed_pages[dest_max_index - *dest_index + 1];
196 	int nr_completed_pages = 0;
197 
198 	/* Default error code. */
199 	int err = -EOVERFLOW;
200 
201 	ntfs_debug("Entering, cb_size = 0x%x.", cb_size);
202 do_next_sb:
203 	ntfs_debug("Beginning sub-block at offset = 0x%zx in the cb.",
204 			cb - cb_start);
205 	/*
206 	 * Have we reached the end of the compression block or the end of the
207 	 * decompressed data?  The latter can happen for example if the current
208 	 * position in the compression block is one byte before its end so the
209 	 * first two checks do not detect it.
210 	 */
211 	if (cb == cb_end || !le16_to_cpup((le16*)cb) ||
212 			(*dest_index == dest_max_index &&
213 			*dest_ofs == dest_max_ofs)) {
214 		int i;
215 
216 		ntfs_debug("Completed. Returning success (0).");
217 		err = 0;
218 return_error:
219 		/* We can sleep from now on, so we drop lock. */
220 		spin_unlock(&ntfs_cb_lock);
221 		/* Second stage: finalize completed pages. */
222 		if (nr_completed_pages > 0) {
223 			for (i = 0; i < nr_completed_pages; i++) {
224 				int di = completed_pages[i];
225 
226 				dp = dest_pages[di];
227 				/*
228 				 * If we are outside the initialized size, zero
229 				 * the out of bounds page range.
230 				 */
231 				handle_bounds_compressed_page(dp, i_size,
232 						initialized_size);
233 				flush_dcache_page(dp);
234 				kunmap(dp);
235 				SetPageUptodate(dp);
236 				unlock_page(dp);
237 				if (di == xpage)
238 					*xpage_done = 1;
239 				else
240 					put_page(dp);
241 				dest_pages[di] = NULL;
242 			}
243 		}
244 		return err;
245 	}
246 
247 	/* Setup offsets for the current sub-block destination. */
248 	do_sb_start = *dest_ofs;
249 	do_sb_end = do_sb_start + NTFS_SB_SIZE;
250 
251 	/* Check that we are still within allowed boundaries. */
252 	if (*dest_index == dest_max_index && do_sb_end > dest_max_ofs)
253 		goto return_overflow;
254 
255 	/* Does the minimum size of a compressed sb overflow valid range? */
256 	if (cb + 6 > cb_end)
257 		goto return_overflow;
258 
259 	/* Setup the current sub-block source pointers and validate range. */
260 	cb_sb_start = cb;
261 	cb_sb_end = cb_sb_start + (le16_to_cpup((le16*)cb) & NTFS_SB_SIZE_MASK)
262 			+ 3;
263 	if (cb_sb_end > cb_end)
264 		goto return_overflow;
265 
266 	/* Get the current destination page. */
267 	dp = dest_pages[*dest_index];
268 	if (!dp) {
269 		/* No page present. Skip decompression of this sub-block. */
270 		cb = cb_sb_end;
271 
272 		/* Advance destination position to next sub-block. */
273 		*dest_ofs = (*dest_ofs + NTFS_SB_SIZE) & ~PAGE_MASK;
274 		if (!*dest_ofs && (++*dest_index > dest_max_index))
275 			goto return_overflow;
276 		goto do_next_sb;
277 	}
278 
279 	/* We have a valid destination page. Setup the destination pointers. */
280 	dp_addr = (u8*)page_address(dp) + do_sb_start;
281 
282 	/* Now, we are ready to process the current sub-block (sb). */
283 	if (!(le16_to_cpup((le16*)cb) & NTFS_SB_IS_COMPRESSED)) {
284 		ntfs_debug("Found uncompressed sub-block.");
285 		/* This sb is not compressed, just copy it into destination. */
286 
287 		/* Advance source position to first data byte. */
288 		cb += 2;
289 
290 		/* An uncompressed sb must be full size. */
291 		if (cb_sb_end - cb != NTFS_SB_SIZE)
292 			goto return_overflow;
293 
294 		/* Copy the block and advance the source position. */
295 		memcpy(dp_addr, cb, NTFS_SB_SIZE);
296 		cb += NTFS_SB_SIZE;
297 
298 		/* Advance destination position to next sub-block. */
299 		*dest_ofs += NTFS_SB_SIZE;
300 		if (!(*dest_ofs &= ~PAGE_MASK)) {
301 finalize_page:
302 			/*
303 			 * First stage: add current page index to array of
304 			 * completed pages.
305 			 */
306 			completed_pages[nr_completed_pages++] = *dest_index;
307 			if (++*dest_index > dest_max_index)
308 				goto return_overflow;
309 		}
310 		goto do_next_sb;
311 	}
312 	ntfs_debug("Found compressed sub-block.");
313 	/* This sb is compressed, decompress it into destination. */
314 
315 	/* Setup destination pointers. */
316 	dp_sb_start = dp_addr;
317 	dp_sb_end = dp_sb_start + NTFS_SB_SIZE;
318 
319 	/* Forward to the first tag in the sub-block. */
320 	cb += 2;
321 do_next_tag:
322 	if (cb == cb_sb_end) {
323 		/* Check if the decompressed sub-block was not full-length. */
324 		if (dp_addr < dp_sb_end) {
325 			int nr_bytes = do_sb_end - *dest_ofs;
326 
327 			ntfs_debug("Filling incomplete sub-block with "
328 					"zeroes.");
329 			/* Zero remainder and update destination position. */
330 			memset(dp_addr, 0, nr_bytes);
331 			*dest_ofs += nr_bytes;
332 		}
333 		/* We have finished the current sub-block. */
334 		if (!(*dest_ofs &= ~PAGE_MASK))
335 			goto finalize_page;
336 		goto do_next_sb;
337 	}
338 
339 	/* Check we are still in range. */
340 	if (cb > cb_sb_end || dp_addr > dp_sb_end)
341 		goto return_overflow;
342 
343 	/* Get the next tag and advance to first token. */
344 	tag = *cb++;
345 
346 	/* Parse the eight tokens described by the tag. */
347 	for (token = 0; token < 8; token++, tag >>= 1) {
348 		u16 lg, pt, length, max_non_overlap;
349 		register u16 i;
350 		u8 *dp_back_addr;
351 
352 		/* Check if we are done / still in range. */
353 		if (cb >= cb_sb_end || dp_addr > dp_sb_end)
354 			break;
355 
356 		/* Determine token type and parse appropriately.*/
357 		if ((tag & NTFS_TOKEN_MASK) == NTFS_SYMBOL_TOKEN) {
358 			/*
359 			 * We have a symbol token, copy the symbol across, and
360 			 * advance the source and destination positions.
361 			 */
362 			*dp_addr++ = *cb++;
363 			++*dest_ofs;
364 
365 			/* Continue with the next token. */
366 			continue;
367 		}
368 
369 		/*
370 		 * We have a phrase token. Make sure it is not the first tag in
371 		 * the sb as this is illegal and would confuse the code below.
372 		 */
373 		if (dp_addr == dp_sb_start)
374 			goto return_overflow;
375 
376 		/*
377 		 * Determine the number of bytes to go back (p) and the number
378 		 * of bytes to copy (l). We use an optimized algorithm in which
379 		 * we first calculate log2(current destination position in sb),
380 		 * which allows determination of l and p in O(1) rather than
381 		 * O(n). We just need an arch-optimized log2() function now.
382 		 */
383 		lg = 0;
384 		for (i = *dest_ofs - do_sb_start - 1; i >= 0x10; i >>= 1)
385 			lg++;
386 
387 		/* Get the phrase token into i. */
388 		pt = le16_to_cpup((le16*)cb);
389 
390 		/*
391 		 * Calculate starting position of the byte sequence in
392 		 * the destination using the fact that p = (pt >> (12 - lg)) + 1
393 		 * and make sure we don't go too far back.
394 		 */
395 		dp_back_addr = dp_addr - (pt >> (12 - lg)) - 1;
396 		if (dp_back_addr < dp_sb_start)
397 			goto return_overflow;
398 
399 		/* Now calculate the length of the byte sequence. */
400 		length = (pt & (0xfff >> lg)) + 3;
401 
402 		/* Advance destination position and verify it is in range. */
403 		*dest_ofs += length;
404 		if (*dest_ofs > do_sb_end)
405 			goto return_overflow;
406 
407 		/* The number of non-overlapping bytes. */
408 		max_non_overlap = dp_addr - dp_back_addr;
409 
410 		if (length <= max_non_overlap) {
411 			/* The byte sequence doesn't overlap, just copy it. */
412 			memcpy(dp_addr, dp_back_addr, length);
413 
414 			/* Advance destination pointer. */
415 			dp_addr += length;
416 		} else {
417 			/*
418 			 * The byte sequence does overlap, copy non-overlapping
419 			 * part and then do a slow byte by byte copy for the
420 			 * overlapping part. Also, advance the destination
421 			 * pointer.
422 			 */
423 			memcpy(dp_addr, dp_back_addr, max_non_overlap);
424 			dp_addr += max_non_overlap;
425 			dp_back_addr += max_non_overlap;
426 			length -= max_non_overlap;
427 			while (length--)
428 				*dp_addr++ = *dp_back_addr++;
429 		}
430 
431 		/* Advance source position and continue with the next token. */
432 		cb += 2;
433 	}
434 
435 	/* No tokens left in the current tag. Continue with the next tag. */
436 	goto do_next_tag;
437 
438 return_overflow:
439 	ntfs_error(NULL, "Failed. Returning -EOVERFLOW.");
440 	goto return_error;
441 }
442 
443 /**
444  * ntfs_read_compressed_block - read a compressed block into the page cache
445  * @page:	locked page in the compression block(s) we need to read
446  *
447  * When we are called the page has already been verified to be locked and the
448  * attribute is known to be non-resident, not encrypted, but compressed.
449  *
450  * 1. Determine which compression block(s) @page is in.
451  * 2. Get hold of all pages corresponding to this/these compression block(s).
452  * 3. Read the (first) compression block.
453  * 4. Decompress it into the corresponding pages.
454  * 5. Throw the compressed data away and proceed to 3. for the next compression
455  *    block or return success if no more compression blocks left.
456  *
457  * Warning: We have to be careful what we do about existing pages. They might
458  * have been written to so that we would lose data if we were to just overwrite
459  * them with the out-of-date uncompressed data.
460  *
461  * FIXME: For PAGE_SIZE > cb_size we are not doing the Right Thing(TM) at
462  * the end of the file I think. We need to detect this case and zero the out
463  * of bounds remainder of the page in question and mark it as handled. At the
464  * moment we would just return -EIO on such a page. This bug will only become
465  * apparent if pages are above 8kiB and the NTFS volume only uses 512 byte
466  * clusters so is probably not going to be seen by anyone. Still this should
467  * be fixed. (AIA)
468  *
469  * FIXME: Again for PAGE_SIZE > cb_size we are screwing up both in
470  * handling sparse and compressed cbs. (AIA)
471  *
472  * FIXME: At the moment we don't do any zeroing out in the case that
473  * initialized_size is less than data_size. This should be safe because of the
474  * nature of the compression algorithm used. Just in case we check and output
475  * an error message in read inode if the two sizes are not equal for a
476  * compressed file. (AIA)
477  */
478 int ntfs_read_compressed_block(struct page *page)
479 {
480 	loff_t i_size;
481 	s64 initialized_size;
482 	struct address_space *mapping = page->mapping;
483 	ntfs_inode *ni = NTFS_I(mapping->host);
484 	ntfs_volume *vol = ni->vol;
485 	struct super_block *sb = vol->sb;
486 	runlist_element *rl;
487 	unsigned long flags, block_size = sb->s_blocksize;
488 	unsigned char block_size_bits = sb->s_blocksize_bits;
489 	u8 *cb, *cb_pos, *cb_end;
490 	struct buffer_head **bhs;
491 	unsigned long offset, index = page->index;
492 	u32 cb_size = ni->itype.compressed.block_size;
493 	u64 cb_size_mask = cb_size - 1UL;
494 	VCN vcn;
495 	LCN lcn;
496 	/* The first wanted vcn (minimum alignment is PAGE_SIZE). */
497 	VCN start_vcn = (((s64)index << PAGE_SHIFT) & ~cb_size_mask) >>
498 			vol->cluster_size_bits;
499 	/*
500 	 * The first vcn after the last wanted vcn (minimum alignment is again
501 	 * PAGE_SIZE.
502 	 */
503 	VCN end_vcn = ((((s64)(index + 1UL) << PAGE_SHIFT) + cb_size - 1)
504 			& ~cb_size_mask) >> vol->cluster_size_bits;
505 	/* Number of compression blocks (cbs) in the wanted vcn range. */
506 	unsigned int nr_cbs = (end_vcn - start_vcn) << vol->cluster_size_bits
507 			>> ni->itype.compressed.block_size_bits;
508 	/*
509 	 * Number of pages required to store the uncompressed data from all
510 	 * compression blocks (cbs) overlapping @page. Due to alignment
511 	 * guarantees of start_vcn and end_vcn, no need to round up here.
512 	 */
513 	unsigned int nr_pages = (end_vcn - start_vcn) <<
514 			vol->cluster_size_bits >> PAGE_SHIFT;
515 	unsigned int xpage, max_page, cur_page, cur_ofs, i;
516 	unsigned int cb_clusters, cb_max_ofs;
517 	int block, max_block, cb_max_page, bhs_size, nr_bhs, err = 0;
518 	struct page **pages;
519 	unsigned char xpage_done = 0;
520 
521 	ntfs_debug("Entering, page->index = 0x%lx, cb_size = 0x%x, nr_pages = "
522 			"%i.", index, cb_size, nr_pages);
523 	/*
524 	 * Bad things happen if we get here for anything that is not an
525 	 * unnamed $DATA attribute.
526 	 */
527 	BUG_ON(ni->type != AT_DATA);
528 	BUG_ON(ni->name_len);
529 
530 	pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS);
531 
532 	/* Allocate memory to store the buffer heads we need. */
533 	bhs_size = cb_size / block_size * sizeof(struct buffer_head *);
534 	bhs = kmalloc(bhs_size, GFP_NOFS);
535 
536 	if (unlikely(!pages || !bhs)) {
537 		kfree(bhs);
538 		kfree(pages);
539 		unlock_page(page);
540 		ntfs_error(vol->sb, "Failed to allocate internal buffers.");
541 		return -ENOMEM;
542 	}
543 
544 	/*
545 	 * We have already been given one page, this is the one we must do.
546 	 * Once again, the alignment guarantees keep it simple.
547 	 */
548 	offset = start_vcn << vol->cluster_size_bits >> PAGE_SHIFT;
549 	xpage = index - offset;
550 	pages[xpage] = page;
551 	/*
552 	 * The remaining pages need to be allocated and inserted into the page
553 	 * cache, alignment guarantees keep all the below much simpler. (-8
554 	 */
555 	read_lock_irqsave(&ni->size_lock, flags);
556 	i_size = i_size_read(VFS_I(ni));
557 	initialized_size = ni->initialized_size;
558 	read_unlock_irqrestore(&ni->size_lock, flags);
559 	max_page = ((i_size + PAGE_SIZE - 1) >> PAGE_SHIFT) -
560 			offset;
561 	/* Is the page fully outside i_size? (truncate in progress) */
562 	if (xpage >= max_page) {
563 		kfree(bhs);
564 		kfree(pages);
565 		zero_user(page, 0, PAGE_SIZE);
566 		ntfs_debug("Compressed read outside i_size - truncated?");
567 		SetPageUptodate(page);
568 		unlock_page(page);
569 		return 0;
570 	}
571 	if (nr_pages < max_page)
572 		max_page = nr_pages;
573 	for (i = 0; i < max_page; i++, offset++) {
574 		if (i != xpage)
575 			pages[i] = grab_cache_page_nowait(mapping, offset);
576 		page = pages[i];
577 		if (page) {
578 			/*
579 			 * We only (re)read the page if it isn't already read
580 			 * in and/or dirty or we would be losing data or at
581 			 * least wasting our time.
582 			 */
583 			if (!PageDirty(page) && (!PageUptodate(page) ||
584 					PageError(page))) {
585 				ClearPageError(page);
586 				kmap(page);
587 				continue;
588 			}
589 			unlock_page(page);
590 			put_page(page);
591 			pages[i] = NULL;
592 		}
593 	}
594 
595 	/*
596 	 * We have the runlist, and all the destination pages we need to fill.
597 	 * Now read the first compression block.
598 	 */
599 	cur_page = 0;
600 	cur_ofs = 0;
601 	cb_clusters = ni->itype.compressed.block_clusters;
602 do_next_cb:
603 	nr_cbs--;
604 	nr_bhs = 0;
605 
606 	/* Read all cb buffer heads one cluster at a time. */
607 	rl = NULL;
608 	for (vcn = start_vcn, start_vcn += cb_clusters; vcn < start_vcn;
609 			vcn++) {
610 		bool is_retry = false;
611 
612 		if (!rl) {
613 lock_retry_remap:
614 			down_read(&ni->runlist.lock);
615 			rl = ni->runlist.rl;
616 		}
617 		if (likely(rl != NULL)) {
618 			/* Seek to element containing target vcn. */
619 			while (rl->length && rl[1].vcn <= vcn)
620 				rl++;
621 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
622 		} else
623 			lcn = LCN_RL_NOT_MAPPED;
624 		ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
625 				(unsigned long long)vcn,
626 				(unsigned long long)lcn);
627 		if (lcn < 0) {
628 			/*
629 			 * When we reach the first sparse cluster we have
630 			 * finished with the cb.
631 			 */
632 			if (lcn == LCN_HOLE)
633 				break;
634 			if (is_retry || lcn != LCN_RL_NOT_MAPPED)
635 				goto rl_err;
636 			is_retry = true;
637 			/*
638 			 * Attempt to map runlist, dropping lock for the
639 			 * duration.
640 			 */
641 			up_read(&ni->runlist.lock);
642 			if (!ntfs_map_runlist(ni, vcn))
643 				goto lock_retry_remap;
644 			goto map_rl_err;
645 		}
646 		block = lcn << vol->cluster_size_bits >> block_size_bits;
647 		/* Read the lcn from device in chunks of block_size bytes. */
648 		max_block = block + (vol->cluster_size >> block_size_bits);
649 		do {
650 			ntfs_debug("block = 0x%x.", block);
651 			if (unlikely(!(bhs[nr_bhs] = sb_getblk(sb, block))))
652 				goto getblk_err;
653 			nr_bhs++;
654 		} while (++block < max_block);
655 	}
656 
657 	/* Release the lock if we took it. */
658 	if (rl)
659 		up_read(&ni->runlist.lock);
660 
661 	/* Setup and initiate io on all buffer heads. */
662 	for (i = 0; i < nr_bhs; i++) {
663 		struct buffer_head *tbh = bhs[i];
664 
665 		if (!trylock_buffer(tbh))
666 			continue;
667 		if (unlikely(buffer_uptodate(tbh))) {
668 			unlock_buffer(tbh);
669 			continue;
670 		}
671 		get_bh(tbh);
672 		tbh->b_end_io = end_buffer_read_sync;
673 		submit_bh(REQ_OP_READ, 0, tbh);
674 	}
675 
676 	/* Wait for io completion on all buffer heads. */
677 	for (i = 0; i < nr_bhs; i++) {
678 		struct buffer_head *tbh = bhs[i];
679 
680 		if (buffer_uptodate(tbh))
681 			continue;
682 		wait_on_buffer(tbh);
683 		/*
684 		 * We need an optimization barrier here, otherwise we start
685 		 * hitting the below fixup code when accessing a loopback
686 		 * mounted ntfs partition. This indicates either there is a
687 		 * race condition in the loop driver or, more likely, gcc
688 		 * overoptimises the code without the barrier and it doesn't
689 		 * do the Right Thing(TM).
690 		 */
691 		barrier();
692 		if (unlikely(!buffer_uptodate(tbh))) {
693 			ntfs_warning(vol->sb, "Buffer is unlocked but not "
694 					"uptodate! Unplugging the disk queue "
695 					"and rescheduling.");
696 			get_bh(tbh);
697 			io_schedule();
698 			put_bh(tbh);
699 			if (unlikely(!buffer_uptodate(tbh)))
700 				goto read_err;
701 			ntfs_warning(vol->sb, "Buffer is now uptodate. Good.");
702 		}
703 	}
704 
705 	/*
706 	 * Get the compression buffer. We must not sleep any more
707 	 * until we are finished with it.
708 	 */
709 	spin_lock(&ntfs_cb_lock);
710 	cb = ntfs_compression_buffer;
711 
712 	BUG_ON(!cb);
713 
714 	cb_pos = cb;
715 	cb_end = cb + cb_size;
716 
717 	/* Copy the buffer heads into the contiguous buffer. */
718 	for (i = 0; i < nr_bhs; i++) {
719 		memcpy(cb_pos, bhs[i]->b_data, block_size);
720 		cb_pos += block_size;
721 	}
722 
723 	/* Just a precaution. */
724 	if (cb_pos + 2 <= cb + cb_size)
725 		*(u16*)cb_pos = 0;
726 
727 	/* Reset cb_pos back to the beginning. */
728 	cb_pos = cb;
729 
730 	/* We now have both source (if present) and destination. */
731 	ntfs_debug("Successfully read the compression block.");
732 
733 	/* The last page and maximum offset within it for the current cb. */
734 	cb_max_page = (cur_page << PAGE_SHIFT) + cur_ofs + cb_size;
735 	cb_max_ofs = cb_max_page & ~PAGE_MASK;
736 	cb_max_page >>= PAGE_SHIFT;
737 
738 	/* Catch end of file inside a compression block. */
739 	if (cb_max_page > max_page)
740 		cb_max_page = max_page;
741 
742 	if (vcn == start_vcn - cb_clusters) {
743 		/* Sparse cb, zero out page range overlapping the cb. */
744 		ntfs_debug("Found sparse compression block.");
745 		/* We can sleep from now on, so we drop lock. */
746 		spin_unlock(&ntfs_cb_lock);
747 		if (cb_max_ofs)
748 			cb_max_page--;
749 		for (; cur_page < cb_max_page; cur_page++) {
750 			page = pages[cur_page];
751 			if (page) {
752 				if (likely(!cur_ofs))
753 					clear_page(page_address(page));
754 				else
755 					memset(page_address(page) + cur_ofs, 0,
756 							PAGE_SIZE -
757 							cur_ofs);
758 				flush_dcache_page(page);
759 				kunmap(page);
760 				SetPageUptodate(page);
761 				unlock_page(page);
762 				if (cur_page == xpage)
763 					xpage_done = 1;
764 				else
765 					put_page(page);
766 				pages[cur_page] = NULL;
767 			}
768 			cb_pos += PAGE_SIZE - cur_ofs;
769 			cur_ofs = 0;
770 			if (cb_pos >= cb_end)
771 				break;
772 		}
773 		/* If we have a partial final page, deal with it now. */
774 		if (cb_max_ofs && cb_pos < cb_end) {
775 			page = pages[cur_page];
776 			if (page)
777 				memset(page_address(page) + cur_ofs, 0,
778 						cb_max_ofs - cur_ofs);
779 			/*
780 			 * No need to update cb_pos at this stage:
781 			 *	cb_pos += cb_max_ofs - cur_ofs;
782 			 */
783 			cur_ofs = cb_max_ofs;
784 		}
785 	} else if (vcn == start_vcn) {
786 		/* We can't sleep so we need two stages. */
787 		unsigned int cur2_page = cur_page;
788 		unsigned int cur_ofs2 = cur_ofs;
789 		u8 *cb_pos2 = cb_pos;
790 
791 		ntfs_debug("Found uncompressed compression block.");
792 		/* Uncompressed cb, copy it to the destination pages. */
793 		/*
794 		 * TODO: As a big optimization, we could detect this case
795 		 * before we read all the pages and use block_read_full_page()
796 		 * on all full pages instead (we still have to treat partial
797 		 * pages especially but at least we are getting rid of the
798 		 * synchronous io for the majority of pages.
799 		 * Or if we choose not to do the read-ahead/-behind stuff, we
800 		 * could just return block_read_full_page(pages[xpage]) as long
801 		 * as PAGE_SIZE <= cb_size.
802 		 */
803 		if (cb_max_ofs)
804 			cb_max_page--;
805 		/* First stage: copy data into destination pages. */
806 		for (; cur_page < cb_max_page; cur_page++) {
807 			page = pages[cur_page];
808 			if (page)
809 				memcpy(page_address(page) + cur_ofs, cb_pos,
810 						PAGE_SIZE - cur_ofs);
811 			cb_pos += PAGE_SIZE - cur_ofs;
812 			cur_ofs = 0;
813 			if (cb_pos >= cb_end)
814 				break;
815 		}
816 		/* If we have a partial final page, deal with it now. */
817 		if (cb_max_ofs && cb_pos < cb_end) {
818 			page = pages[cur_page];
819 			if (page)
820 				memcpy(page_address(page) + cur_ofs, cb_pos,
821 						cb_max_ofs - cur_ofs);
822 			cb_pos += cb_max_ofs - cur_ofs;
823 			cur_ofs = cb_max_ofs;
824 		}
825 		/* We can sleep from now on, so drop lock. */
826 		spin_unlock(&ntfs_cb_lock);
827 		/* Second stage: finalize pages. */
828 		for (; cur2_page < cb_max_page; cur2_page++) {
829 			page = pages[cur2_page];
830 			if (page) {
831 				/*
832 				 * If we are outside the initialized size, zero
833 				 * the out of bounds page range.
834 				 */
835 				handle_bounds_compressed_page(page, i_size,
836 						initialized_size);
837 				flush_dcache_page(page);
838 				kunmap(page);
839 				SetPageUptodate(page);
840 				unlock_page(page);
841 				if (cur2_page == xpage)
842 					xpage_done = 1;
843 				else
844 					put_page(page);
845 				pages[cur2_page] = NULL;
846 			}
847 			cb_pos2 += PAGE_SIZE - cur_ofs2;
848 			cur_ofs2 = 0;
849 			if (cb_pos2 >= cb_end)
850 				break;
851 		}
852 	} else {
853 		/* Compressed cb, decompress it into the destination page(s). */
854 		unsigned int prev_cur_page = cur_page;
855 
856 		ntfs_debug("Found compressed compression block.");
857 		err = ntfs_decompress(pages, &cur_page, &cur_ofs,
858 				cb_max_page, cb_max_ofs, xpage, &xpage_done,
859 				cb_pos,	cb_size - (cb_pos - cb), i_size,
860 				initialized_size);
861 		/*
862 		 * We can sleep from now on, lock already dropped by
863 		 * ntfs_decompress().
864 		 */
865 		if (err) {
866 			ntfs_error(vol->sb, "ntfs_decompress() failed in inode "
867 					"0x%lx with error code %i. Skipping "
868 					"this compression block.",
869 					ni->mft_no, -err);
870 			/* Release the unfinished pages. */
871 			for (; prev_cur_page < cur_page; prev_cur_page++) {
872 				page = pages[prev_cur_page];
873 				if (page) {
874 					flush_dcache_page(page);
875 					kunmap(page);
876 					unlock_page(page);
877 					if (prev_cur_page != xpage)
878 						put_page(page);
879 					pages[prev_cur_page] = NULL;
880 				}
881 			}
882 		}
883 	}
884 
885 	/* Release the buffer heads. */
886 	for (i = 0; i < nr_bhs; i++)
887 		brelse(bhs[i]);
888 
889 	/* Do we have more work to do? */
890 	if (nr_cbs)
891 		goto do_next_cb;
892 
893 	/* We no longer need the list of buffer heads. */
894 	kfree(bhs);
895 
896 	/* Clean up if we have any pages left. Should never happen. */
897 	for (cur_page = 0; cur_page < max_page; cur_page++) {
898 		page = pages[cur_page];
899 		if (page) {
900 			ntfs_error(vol->sb, "Still have pages left! "
901 					"Terminating them with extreme "
902 					"prejudice.  Inode 0x%lx, page index "
903 					"0x%lx.", ni->mft_no, page->index);
904 			flush_dcache_page(page);
905 			kunmap(page);
906 			unlock_page(page);
907 			if (cur_page != xpage)
908 				put_page(page);
909 			pages[cur_page] = NULL;
910 		}
911 	}
912 
913 	/* We no longer need the list of pages. */
914 	kfree(pages);
915 
916 	/* If we have completed the requested page, we return success. */
917 	if (likely(xpage_done))
918 		return 0;
919 
920 	ntfs_debug("Failed. Returning error code %s.", err == -EOVERFLOW ?
921 			"EOVERFLOW" : (!err ? "EIO" : "unknown error"));
922 	return err < 0 ? err : -EIO;
923 
924 read_err:
925 	ntfs_error(vol->sb, "IO error while reading compressed data.");
926 	/* Release the buffer heads. */
927 	for (i = 0; i < nr_bhs; i++)
928 		brelse(bhs[i]);
929 	goto err_out;
930 
931 map_rl_err:
932 	ntfs_error(vol->sb, "ntfs_map_runlist() failed. Cannot read "
933 			"compression block.");
934 	goto err_out;
935 
936 rl_err:
937 	up_read(&ni->runlist.lock);
938 	ntfs_error(vol->sb, "ntfs_rl_vcn_to_lcn() failed. Cannot read "
939 			"compression block.");
940 	goto err_out;
941 
942 getblk_err:
943 	up_read(&ni->runlist.lock);
944 	ntfs_error(vol->sb, "getblk() failed. Cannot read compression block.");
945 
946 err_out:
947 	kfree(bhs);
948 	for (i = cur_page; i < max_page; i++) {
949 		page = pages[i];
950 		if (page) {
951 			flush_dcache_page(page);
952 			kunmap(page);
953 			unlock_page(page);
954 			if (i != xpage)
955 				put_page(page);
956 		}
957 	}
958 	kfree(pages);
959 	return -EIO;
960 }
961