xref: /openbmc/linux/fs/ntfs/attrib.c (revision e40573a4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * attrib.c - NTFS attribute operations.  Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
6  * Copyright (c) 2002 Richard Russon
7  */
8 
9 #include <linux/buffer_head.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 
15 #include "attrib.h"
16 #include "debug.h"
17 #include "layout.h"
18 #include "lcnalloc.h"
19 #include "malloc.h"
20 #include "mft.h"
21 #include "ntfs.h"
22 #include "types.h"
23 
24 /**
25  * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
26  * @ni:		ntfs inode for which to map (part of) a runlist
27  * @vcn:	map runlist part containing this vcn
28  * @ctx:	active attribute search context if present or NULL if not
29  *
30  * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
31  *
32  * If @ctx is specified, it is an active search context of @ni and its base mft
33  * record.  This is needed when ntfs_map_runlist_nolock() encounters unmapped
34  * runlist fragments and allows their mapping.  If you do not have the mft
35  * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
36  * will perform the necessary mapping and unmapping.
37  *
38  * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
39  * restores it before returning.  Thus, @ctx will be left pointing to the same
40  * attribute on return as on entry.  However, the actual pointers in @ctx may
41  * point to different memory locations on return, so you must remember to reset
42  * any cached pointers from the @ctx, i.e. after the call to
43  * ntfs_map_runlist_nolock(), you will probably want to do:
44  *	m = ctx->mrec;
45  *	a = ctx->attr;
46  * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
47  * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
48  *
49  * Return 0 on success and -errno on error.  There is one special error code
50  * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
51  * of bounds of the runlist.
52  *
53  * Note the runlist can be NULL after this function returns if @vcn is zero and
54  * the attribute has zero allocated size, i.e. there simply is no runlist.
55  *
56  * WARNING: If @ctx is supplied, regardless of whether success or failure is
57  *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
58  *	    is no longer valid, i.e. you need to either call
59  *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
60  *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
61  *	    why the mapping of the old inode failed.
62  *
63  * Locking: - The runlist described by @ni must be locked for writing on entry
64  *	      and is locked on return.  Note the runlist will be modified.
65  *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
66  *	      entry and it will be left unmapped on return.
67  *	    - If @ctx is not NULL, the base mft record must be mapped on entry
68  *	      and it will be left mapped on return.
69  */
70 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
71 {
72 	VCN end_vcn;
73 	unsigned long flags;
74 	ntfs_inode *base_ni;
75 	MFT_RECORD *m;
76 	ATTR_RECORD *a;
77 	runlist_element *rl;
78 	struct page *put_this_page = NULL;
79 	int err = 0;
80 	bool ctx_is_temporary, ctx_needs_reset;
81 	ntfs_attr_search_ctx old_ctx = { NULL, };
82 
83 	ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
84 			(unsigned long long)vcn);
85 	if (!NInoAttr(ni))
86 		base_ni = ni;
87 	else
88 		base_ni = ni->ext.base_ntfs_ino;
89 	if (!ctx) {
90 		ctx_is_temporary = ctx_needs_reset = true;
91 		m = map_mft_record(base_ni);
92 		if (IS_ERR(m))
93 			return PTR_ERR(m);
94 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
95 		if (unlikely(!ctx)) {
96 			err = -ENOMEM;
97 			goto err_out;
98 		}
99 	} else {
100 		VCN allocated_size_vcn;
101 
102 		BUG_ON(IS_ERR(ctx->mrec));
103 		a = ctx->attr;
104 		BUG_ON(!a->non_resident);
105 		ctx_is_temporary = false;
106 		end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
107 		read_lock_irqsave(&ni->size_lock, flags);
108 		allocated_size_vcn = ni->allocated_size >>
109 				ni->vol->cluster_size_bits;
110 		read_unlock_irqrestore(&ni->size_lock, flags);
111 		if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
112 			end_vcn = allocated_size_vcn - 1;
113 		/*
114 		 * If we already have the attribute extent containing @vcn in
115 		 * @ctx, no need to look it up again.  We slightly cheat in
116 		 * that if vcn exceeds the allocated size, we will refuse to
117 		 * map the runlist below, so there is definitely no need to get
118 		 * the right attribute extent.
119 		 */
120 		if (vcn >= allocated_size_vcn || (a->type == ni->type &&
121 				a->name_length == ni->name_len &&
122 				!memcmp((u8*)a + le16_to_cpu(a->name_offset),
123 				ni->name, ni->name_len) &&
124 				sle64_to_cpu(a->data.non_resident.lowest_vcn)
125 				<= vcn && end_vcn >= vcn))
126 			ctx_needs_reset = false;
127 		else {
128 			/* Save the old search context. */
129 			old_ctx = *ctx;
130 			/*
131 			 * If the currently mapped (extent) inode is not the
132 			 * base inode we will unmap it when we reinitialize the
133 			 * search context which means we need to get a
134 			 * reference to the page containing the mapped mft
135 			 * record so we do not accidentally drop changes to the
136 			 * mft record when it has not been marked dirty yet.
137 			 */
138 			if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
139 					old_ctx.base_ntfs_ino) {
140 				put_this_page = old_ctx.ntfs_ino->page;
141 				get_page(put_this_page);
142 			}
143 			/*
144 			 * Reinitialize the search context so we can lookup the
145 			 * needed attribute extent.
146 			 */
147 			ntfs_attr_reinit_search_ctx(ctx);
148 			ctx_needs_reset = true;
149 		}
150 	}
151 	if (ctx_needs_reset) {
152 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
153 				CASE_SENSITIVE, vcn, NULL, 0, ctx);
154 		if (unlikely(err)) {
155 			if (err == -ENOENT)
156 				err = -EIO;
157 			goto err_out;
158 		}
159 		BUG_ON(!ctx->attr->non_resident);
160 	}
161 	a = ctx->attr;
162 	/*
163 	 * Only decompress the mapping pairs if @vcn is inside it.  Otherwise
164 	 * we get into problems when we try to map an out of bounds vcn because
165 	 * we then try to map the already mapped runlist fragment and
166 	 * ntfs_mapping_pairs_decompress() fails.
167 	 */
168 	end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
169 	if (unlikely(vcn && vcn >= end_vcn)) {
170 		err = -ENOENT;
171 		goto err_out;
172 	}
173 	rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
174 	if (IS_ERR(rl))
175 		err = PTR_ERR(rl);
176 	else
177 		ni->runlist.rl = rl;
178 err_out:
179 	if (ctx_is_temporary) {
180 		if (likely(ctx))
181 			ntfs_attr_put_search_ctx(ctx);
182 		unmap_mft_record(base_ni);
183 	} else if (ctx_needs_reset) {
184 		/*
185 		 * If there is no attribute list, restoring the search context
186 		 * is accomplished simply by copying the saved context back over
187 		 * the caller supplied context.  If there is an attribute list,
188 		 * things are more complicated as we need to deal with mapping
189 		 * of mft records and resulting potential changes in pointers.
190 		 */
191 		if (NInoAttrList(base_ni)) {
192 			/*
193 			 * If the currently mapped (extent) inode is not the
194 			 * one we had before, we need to unmap it and map the
195 			 * old one.
196 			 */
197 			if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
198 				/*
199 				 * If the currently mapped inode is not the
200 				 * base inode, unmap it.
201 				 */
202 				if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
203 						ctx->base_ntfs_ino) {
204 					unmap_extent_mft_record(ctx->ntfs_ino);
205 					ctx->mrec = ctx->base_mrec;
206 					BUG_ON(!ctx->mrec);
207 				}
208 				/*
209 				 * If the old mapped inode is not the base
210 				 * inode, map it.
211 				 */
212 				if (old_ctx.base_ntfs_ino &&
213 						old_ctx.ntfs_ino !=
214 						old_ctx.base_ntfs_ino) {
215 retry_map:
216 					ctx->mrec = map_mft_record(
217 							old_ctx.ntfs_ino);
218 					/*
219 					 * Something bad has happened.  If out
220 					 * of memory retry till it succeeds.
221 					 * Any other errors are fatal and we
222 					 * return the error code in ctx->mrec.
223 					 * Let the caller deal with it...  We
224 					 * just need to fudge things so the
225 					 * caller can reinit and/or put the
226 					 * search context safely.
227 					 */
228 					if (IS_ERR(ctx->mrec)) {
229 						if (PTR_ERR(ctx->mrec) ==
230 								-ENOMEM) {
231 							schedule();
232 							goto retry_map;
233 						} else
234 							old_ctx.ntfs_ino =
235 								old_ctx.
236 								base_ntfs_ino;
237 					}
238 				}
239 			}
240 			/* Update the changed pointers in the saved context. */
241 			if (ctx->mrec != old_ctx.mrec) {
242 				if (!IS_ERR(ctx->mrec))
243 					old_ctx.attr = (ATTR_RECORD*)(
244 							(u8*)ctx->mrec +
245 							((u8*)old_ctx.attr -
246 							(u8*)old_ctx.mrec));
247 				old_ctx.mrec = ctx->mrec;
248 			}
249 		}
250 		/* Restore the search context to the saved one. */
251 		*ctx = old_ctx;
252 		/*
253 		 * We drop the reference on the page we took earlier.  In the
254 		 * case that IS_ERR(ctx->mrec) is true this means we might lose
255 		 * some changes to the mft record that had been made between
256 		 * the last time it was marked dirty/written out and now.  This
257 		 * at this stage is not a problem as the mapping error is fatal
258 		 * enough that the mft record cannot be written out anyway and
259 		 * the caller is very likely to shutdown the whole inode
260 		 * immediately and mark the volume dirty for chkdsk to pick up
261 		 * the pieces anyway.
262 		 */
263 		if (put_this_page)
264 			put_page(put_this_page);
265 	}
266 	return err;
267 }
268 
269 /**
270  * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
271  * @ni:		ntfs inode for which to map (part of) a runlist
272  * @vcn:	map runlist part containing this vcn
273  *
274  * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
275  *
276  * Return 0 on success and -errno on error.  There is one special error code
277  * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
278  * of bounds of the runlist.
279  *
280  * Locking: - The runlist must be unlocked on entry and is unlocked on return.
281  *	    - This function takes the runlist lock for writing and may modify
282  *	      the runlist.
283  */
284 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
285 {
286 	int err = 0;
287 
288 	down_write(&ni->runlist.lock);
289 	/* Make sure someone else didn't do the work while we were sleeping. */
290 	if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
291 			LCN_RL_NOT_MAPPED))
292 		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
293 	up_write(&ni->runlist.lock);
294 	return err;
295 }
296 
297 /**
298  * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
299  * @ni:			ntfs inode of the attribute whose runlist to search
300  * @vcn:		vcn to convert
301  * @write_locked:	true if the runlist is locked for writing
302  *
303  * Find the virtual cluster number @vcn in the runlist of the ntfs attribute
304  * described by the ntfs inode @ni and return the corresponding logical cluster
305  * number (lcn).
306  *
307  * If the @vcn is not mapped yet, the attempt is made to map the attribute
308  * extent containing the @vcn and the vcn to lcn conversion is retried.
309  *
310  * If @write_locked is true the caller has locked the runlist for writing and
311  * if false for reading.
312  *
313  * Since lcns must be >= 0, we use negative return codes with special meaning:
314  *
315  * Return code	Meaning / Description
316  * ==========================================
317  *  LCN_HOLE	Hole / not allocated on disk.
318  *  LCN_ENOENT	There is no such vcn in the runlist, i.e. @vcn is out of bounds.
319  *  LCN_ENOMEM	Not enough memory to map runlist.
320  *  LCN_EIO	Critical error (runlist/file is corrupt, i/o error, etc).
321  *
322  * Locking: - The runlist must be locked on entry and is left locked on return.
323  *	    - If @write_locked is 'false', i.e. the runlist is locked for reading,
324  *	      the lock may be dropped inside the function so you cannot rely on
325  *	      the runlist still being the same when this function returns.
326  */
327 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
328 		const bool write_locked)
329 {
330 	LCN lcn;
331 	unsigned long flags;
332 	bool is_retry = false;
333 
334 	BUG_ON(!ni);
335 	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
336 			ni->mft_no, (unsigned long long)vcn,
337 			write_locked ? "write" : "read");
338 	BUG_ON(!NInoNonResident(ni));
339 	BUG_ON(vcn < 0);
340 	if (!ni->runlist.rl) {
341 		read_lock_irqsave(&ni->size_lock, flags);
342 		if (!ni->allocated_size) {
343 			read_unlock_irqrestore(&ni->size_lock, flags);
344 			return LCN_ENOENT;
345 		}
346 		read_unlock_irqrestore(&ni->size_lock, flags);
347 	}
348 retry_remap:
349 	/* Convert vcn to lcn.  If that fails map the runlist and retry once. */
350 	lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
351 	if (likely(lcn >= LCN_HOLE)) {
352 		ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
353 		return lcn;
354 	}
355 	if (lcn != LCN_RL_NOT_MAPPED) {
356 		if (lcn != LCN_ENOENT)
357 			lcn = LCN_EIO;
358 	} else if (!is_retry) {
359 		int err;
360 
361 		if (!write_locked) {
362 			up_read(&ni->runlist.lock);
363 			down_write(&ni->runlist.lock);
364 			if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
365 					LCN_RL_NOT_MAPPED)) {
366 				up_write(&ni->runlist.lock);
367 				down_read(&ni->runlist.lock);
368 				goto retry_remap;
369 			}
370 		}
371 		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
372 		if (!write_locked) {
373 			up_write(&ni->runlist.lock);
374 			down_read(&ni->runlist.lock);
375 		}
376 		if (likely(!err)) {
377 			is_retry = true;
378 			goto retry_remap;
379 		}
380 		if (err == -ENOENT)
381 			lcn = LCN_ENOENT;
382 		else if (err == -ENOMEM)
383 			lcn = LCN_ENOMEM;
384 		else
385 			lcn = LCN_EIO;
386 	}
387 	if (lcn != LCN_ENOENT)
388 		ntfs_error(ni->vol->sb, "Failed with error code %lli.",
389 				(long long)lcn);
390 	return lcn;
391 }
392 
393 /**
394  * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
395  * @ni:		ntfs inode describing the runlist to search
396  * @vcn:	vcn to find
397  * @ctx:	active attribute search context if present or NULL if not
398  *
399  * Find the virtual cluster number @vcn in the runlist described by the ntfs
400  * inode @ni and return the address of the runlist element containing the @vcn.
401  *
402  * If the @vcn is not mapped yet, the attempt is made to map the attribute
403  * extent containing the @vcn and the vcn to lcn conversion is retried.
404  *
405  * If @ctx is specified, it is an active search context of @ni and its base mft
406  * record.  This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
407  * runlist fragments and allows their mapping.  If you do not have the mft
408  * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
409  * will perform the necessary mapping and unmapping.
410  *
411  * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
412  * restores it before returning.  Thus, @ctx will be left pointing to the same
413  * attribute on return as on entry.  However, the actual pointers in @ctx may
414  * point to different memory locations on return, so you must remember to reset
415  * any cached pointers from the @ctx, i.e. after the call to
416  * ntfs_attr_find_vcn_nolock(), you will probably want to do:
417  *	m = ctx->mrec;
418  *	a = ctx->attr;
419  * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
420  * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
421  * Note you need to distinguish between the lcn of the returned runlist element
422  * being >= 0 and LCN_HOLE.  In the later case you have to return zeroes on
423  * read and allocate clusters on write.
424  *
425  * Return the runlist element containing the @vcn on success and
426  * ERR_PTR(-errno) on error.  You need to test the return value with IS_ERR()
427  * to decide if the return is success or failure and PTR_ERR() to get to the
428  * error code if IS_ERR() is true.
429  *
430  * The possible error return codes are:
431  *	-ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
432  *	-ENOMEM - Not enough memory to map runlist.
433  *	-EIO	- Critical error (runlist/file is corrupt, i/o error, etc).
434  *
435  * WARNING: If @ctx is supplied, regardless of whether success or failure is
436  *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
437  *	    is no longer valid, i.e. you need to either call
438  *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
439  *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
440  *	    why the mapping of the old inode failed.
441  *
442  * Locking: - The runlist described by @ni must be locked for writing on entry
443  *	      and is locked on return.  Note the runlist may be modified when
444  *	      needed runlist fragments need to be mapped.
445  *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
446  *	      entry and it will be left unmapped on return.
447  *	    - If @ctx is not NULL, the base mft record must be mapped on entry
448  *	      and it will be left mapped on return.
449  */
450 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
451 		ntfs_attr_search_ctx *ctx)
452 {
453 	unsigned long flags;
454 	runlist_element *rl;
455 	int err = 0;
456 	bool is_retry = false;
457 
458 	BUG_ON(!ni);
459 	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
460 			ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
461 	BUG_ON(!NInoNonResident(ni));
462 	BUG_ON(vcn < 0);
463 	if (!ni->runlist.rl) {
464 		read_lock_irqsave(&ni->size_lock, flags);
465 		if (!ni->allocated_size) {
466 			read_unlock_irqrestore(&ni->size_lock, flags);
467 			return ERR_PTR(-ENOENT);
468 		}
469 		read_unlock_irqrestore(&ni->size_lock, flags);
470 	}
471 retry_remap:
472 	rl = ni->runlist.rl;
473 	if (likely(rl && vcn >= rl[0].vcn)) {
474 		while (likely(rl->length)) {
475 			if (unlikely(vcn < rl[1].vcn)) {
476 				if (likely(rl->lcn >= LCN_HOLE)) {
477 					ntfs_debug("Done.");
478 					return rl;
479 				}
480 				break;
481 			}
482 			rl++;
483 		}
484 		if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
485 			if (likely(rl->lcn == LCN_ENOENT))
486 				err = -ENOENT;
487 			else
488 				err = -EIO;
489 		}
490 	}
491 	if (!err && !is_retry) {
492 		/*
493 		 * If the search context is invalid we cannot map the unmapped
494 		 * region.
495 		 */
496 		if (IS_ERR(ctx->mrec))
497 			err = PTR_ERR(ctx->mrec);
498 		else {
499 			/*
500 			 * The @vcn is in an unmapped region, map the runlist
501 			 * and retry.
502 			 */
503 			err = ntfs_map_runlist_nolock(ni, vcn, ctx);
504 			if (likely(!err)) {
505 				is_retry = true;
506 				goto retry_remap;
507 			}
508 		}
509 		if (err == -EINVAL)
510 			err = -EIO;
511 	} else if (!err)
512 		err = -EIO;
513 	if (err != -ENOENT)
514 		ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
515 	return ERR_PTR(err);
516 }
517 
518 /**
519  * ntfs_attr_find - find (next) attribute in mft record
520  * @type:	attribute type to find
521  * @name:	attribute name to find (optional, i.e. NULL means don't care)
522  * @name_len:	attribute name length (only needed if @name present)
523  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
524  * @val:	attribute value to find (optional, resident attributes only)
525  * @val_len:	attribute value length
526  * @ctx:	search context with mft record and attribute to search from
527  *
528  * You should not need to call this function directly.  Use ntfs_attr_lookup()
529  * instead.
530  *
531  * ntfs_attr_find() takes a search context @ctx as parameter and searches the
532  * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
533  * attribute of @type, optionally @name and @val.
534  *
535  * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
536  * point to the found attribute.
537  *
538  * If the attribute is not found, ntfs_attr_find() returns -ENOENT and
539  * @ctx->attr will point to the attribute before which the attribute being
540  * searched for would need to be inserted if such an action were to be desired.
541  *
542  * On actual error, ntfs_attr_find() returns -EIO.  In this case @ctx->attr is
543  * undefined and in particular do not rely on it not changing.
544  *
545  * If @ctx->is_first is 'true', the search begins with @ctx->attr itself.  If it
546  * is 'false', the search begins after @ctx->attr.
547  *
548  * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
549  * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
550  * @ctx->mrec belongs.  This is so we can get at the ntfs volume and hence at
551  * the upcase table.  If @ic is CASE_SENSITIVE, the comparison is case
552  * sensitive.  When @name is present, @name_len is the @name length in Unicode
553  * characters.
554  *
555  * If @name is not present (NULL), we assume that the unnamed attribute is
556  * being searched for.
557  *
558  * Finally, the resident attribute value @val is looked for, if present.  If
559  * @val is not present (NULL), @val_len is ignored.
560  *
561  * ntfs_attr_find() only searches the specified mft record and it ignores the
562  * presence of an attribute list attribute (unless it is the one being searched
563  * for, obviously).  If you need to take attribute lists into consideration,
564  * use ntfs_attr_lookup() instead (see below).  This also means that you cannot
565  * use ntfs_attr_find() to search for extent records of non-resident
566  * attributes, as extents with lowest_vcn != 0 are usually described by the
567  * attribute list attribute only. - Note that it is possible that the first
568  * extent is only in the attribute list while the last extent is in the base
569  * mft record, so do not rely on being able to find the first extent in the
570  * base mft record.
571  *
572  * Warning: Never use @val when looking for attribute types which can be
573  *	    non-resident as this most likely will result in a crash!
574  */
575 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
576 		const u32 name_len, const IGNORE_CASE_BOOL ic,
577 		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
578 {
579 	ATTR_RECORD *a;
580 	ntfs_volume *vol = ctx->ntfs_ino->vol;
581 	ntfschar *upcase = vol->upcase;
582 	u32 upcase_len = vol->upcase_len;
583 
584 	/*
585 	 * Iterate over attributes in mft record starting at @ctx->attr, or the
586 	 * attribute following that, if @ctx->is_first is 'true'.
587 	 */
588 	if (ctx->is_first) {
589 		a = ctx->attr;
590 		ctx->is_first = false;
591 	} else
592 		a = (ATTR_RECORD*)((u8*)ctx->attr +
593 				le32_to_cpu(ctx->attr->length));
594 	for (;;	a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
595 		u8 *mrec_end = (u8 *)ctx->mrec +
596 		               le32_to_cpu(ctx->mrec->bytes_allocated);
597 		u8 *name_end = (u8 *)a + le16_to_cpu(a->name_offset) +
598 			       a->name_length * sizeof(ntfschar);
599 		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > mrec_end ||
600 		    name_end > mrec_end)
601 			break;
602 		ctx->attr = a;
603 		if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
604 				a->type == AT_END))
605 			return -ENOENT;
606 		if (unlikely(!a->length))
607 			break;
608 		if (a->type != type)
609 			continue;
610 		/*
611 		 * If @name is present, compare the two names.  If @name is
612 		 * missing, assume we want an unnamed attribute.
613 		 */
614 		if (!name) {
615 			/* The search failed if the found attribute is named. */
616 			if (a->name_length)
617 				return -ENOENT;
618 		} else if (!ntfs_are_names_equal(name, name_len,
619 			    (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
620 			    a->name_length, ic, upcase, upcase_len)) {
621 			register int rc;
622 
623 			rc = ntfs_collate_names(name, name_len,
624 					(ntfschar*)((u8*)a +
625 					le16_to_cpu(a->name_offset)),
626 					a->name_length, 1, IGNORE_CASE,
627 					upcase, upcase_len);
628 			/*
629 			 * If @name collates before a->name, there is no
630 			 * matching attribute.
631 			 */
632 			if (rc == -1)
633 				return -ENOENT;
634 			/* If the strings are not equal, continue search. */
635 			if (rc)
636 				continue;
637 			rc = ntfs_collate_names(name, name_len,
638 					(ntfschar*)((u8*)a +
639 					le16_to_cpu(a->name_offset)),
640 					a->name_length, 1, CASE_SENSITIVE,
641 					upcase, upcase_len);
642 			if (rc == -1)
643 				return -ENOENT;
644 			if (rc)
645 				continue;
646 		}
647 		/*
648 		 * The names match or @name not present and attribute is
649 		 * unnamed.  If no @val specified, we have found the attribute
650 		 * and are done.
651 		 */
652 		if (!val)
653 			return 0;
654 		/* @val is present; compare values. */
655 		else {
656 			register int rc;
657 
658 			rc = memcmp(val, (u8*)a + le16_to_cpu(
659 					a->data.resident.value_offset),
660 					min_t(u32, val_len, le32_to_cpu(
661 					a->data.resident.value_length)));
662 			/*
663 			 * If @val collates before the current attribute's
664 			 * value, there is no matching attribute.
665 			 */
666 			if (!rc) {
667 				register u32 avl;
668 
669 				avl = le32_to_cpu(
670 						a->data.resident.value_length);
671 				if (val_len == avl)
672 					return 0;
673 				if (val_len < avl)
674 					return -ENOENT;
675 			} else if (rc < 0)
676 				return -ENOENT;
677 		}
678 	}
679 	ntfs_error(vol->sb, "Inode is corrupt.  Run chkdsk.");
680 	NVolSetErrors(vol);
681 	return -EIO;
682 }
683 
684 /**
685  * load_attribute_list - load an attribute list into memory
686  * @vol:		ntfs volume from which to read
687  * @runlist:		runlist of the attribute list
688  * @al_start:		destination buffer
689  * @size:		size of the destination buffer in bytes
690  * @initialized_size:	initialized size of the attribute list
691  *
692  * Walk the runlist @runlist and load all clusters from it copying them into
693  * the linear buffer @al. The maximum number of bytes copied to @al is @size
694  * bytes. Note, @size does not need to be a multiple of the cluster size. If
695  * @initialized_size is less than @size, the region in @al between
696  * @initialized_size and @size will be zeroed and not read from disk.
697  *
698  * Return 0 on success or -errno on error.
699  */
700 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
701 		const s64 size, const s64 initialized_size)
702 {
703 	LCN lcn;
704 	u8 *al = al_start;
705 	u8 *al_end = al + initialized_size;
706 	runlist_element *rl;
707 	struct buffer_head *bh;
708 	struct super_block *sb;
709 	unsigned long block_size;
710 	unsigned long block, max_block;
711 	int err = 0;
712 	unsigned char block_size_bits;
713 
714 	ntfs_debug("Entering.");
715 	if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
716 			initialized_size > size)
717 		return -EINVAL;
718 	if (!initialized_size) {
719 		memset(al, 0, size);
720 		return 0;
721 	}
722 	sb = vol->sb;
723 	block_size = sb->s_blocksize;
724 	block_size_bits = sb->s_blocksize_bits;
725 	down_read(&runlist->lock);
726 	rl = runlist->rl;
727 	if (!rl) {
728 		ntfs_error(sb, "Cannot read attribute list since runlist is "
729 				"missing.");
730 		goto err_out;
731 	}
732 	/* Read all clusters specified by the runlist one run at a time. */
733 	while (rl->length) {
734 		lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
735 		ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
736 				(unsigned long long)rl->vcn,
737 				(unsigned long long)lcn);
738 		/* The attribute list cannot be sparse. */
739 		if (lcn < 0) {
740 			ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed.  Cannot "
741 					"read attribute list.");
742 			goto err_out;
743 		}
744 		block = lcn << vol->cluster_size_bits >> block_size_bits;
745 		/* Read the run from device in chunks of block_size bytes. */
746 		max_block = block + (rl->length << vol->cluster_size_bits >>
747 				block_size_bits);
748 		ntfs_debug("max_block = 0x%lx.", max_block);
749 		do {
750 			ntfs_debug("Reading block = 0x%lx.", block);
751 			bh = sb_bread(sb, block);
752 			if (!bh) {
753 				ntfs_error(sb, "sb_bread() failed. Cannot "
754 						"read attribute list.");
755 				goto err_out;
756 			}
757 			if (al + block_size >= al_end)
758 				goto do_final;
759 			memcpy(al, bh->b_data, block_size);
760 			brelse(bh);
761 			al += block_size;
762 		} while (++block < max_block);
763 		rl++;
764 	}
765 	if (initialized_size < size) {
766 initialize:
767 		memset(al_start + initialized_size, 0, size - initialized_size);
768 	}
769 done:
770 	up_read(&runlist->lock);
771 	return err;
772 do_final:
773 	if (al < al_end) {
774 		/*
775 		 * Partial block.
776 		 *
777 		 * Note: The attribute list can be smaller than its allocation
778 		 * by multiple clusters.  This has been encountered by at least
779 		 * two people running Windows XP, thus we cannot do any
780 		 * truncation sanity checking here. (AIA)
781 		 */
782 		memcpy(al, bh->b_data, al_end - al);
783 		brelse(bh);
784 		if (initialized_size < size)
785 			goto initialize;
786 		goto done;
787 	}
788 	brelse(bh);
789 	/* Real overflow! */
790 	ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
791 			"is truncated.");
792 err_out:
793 	err = -EIO;
794 	goto done;
795 }
796 
797 /**
798  * ntfs_external_attr_find - find an attribute in the attribute list of an inode
799  * @type:	attribute type to find
800  * @name:	attribute name to find (optional, i.e. NULL means don't care)
801  * @name_len:	attribute name length (only needed if @name present)
802  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
803  * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
804  * @val:	attribute value to find (optional, resident attributes only)
805  * @val_len:	attribute value length
806  * @ctx:	search context with mft record and attribute to search from
807  *
808  * You should not need to call this function directly.  Use ntfs_attr_lookup()
809  * instead.
810  *
811  * Find an attribute by searching the attribute list for the corresponding
812  * attribute list entry.  Having found the entry, map the mft record if the
813  * attribute is in a different mft record/inode, ntfs_attr_find() the attribute
814  * in there and return it.
815  *
816  * On first search @ctx->ntfs_ino must be the base mft record and @ctx must
817  * have been obtained from a call to ntfs_attr_get_search_ctx().  On subsequent
818  * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
819  * then the base inode).
820  *
821  * After finishing with the attribute/mft record you need to call
822  * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
823  * mapped inodes, etc).
824  *
825  * If the attribute is found, ntfs_external_attr_find() returns 0 and
826  * @ctx->attr will point to the found attribute.  @ctx->mrec will point to the
827  * mft record in which @ctx->attr is located and @ctx->al_entry will point to
828  * the attribute list entry for the attribute.
829  *
830  * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
831  * @ctx->attr will point to the attribute in the base mft record before which
832  * the attribute being searched for would need to be inserted if such an action
833  * were to be desired.  @ctx->mrec will point to the mft record in which
834  * @ctx->attr is located and @ctx->al_entry will point to the attribute list
835  * entry of the attribute before which the attribute being searched for would
836  * need to be inserted if such an action were to be desired.
837  *
838  * Thus to insert the not found attribute, one wants to add the attribute to
839  * @ctx->mrec (the base mft record) and if there is not enough space, the
840  * attribute should be placed in a newly allocated extent mft record.  The
841  * attribute list entry for the inserted attribute should be inserted in the
842  * attribute list attribute at @ctx->al_entry.
843  *
844  * On actual error, ntfs_external_attr_find() returns -EIO.  In this case
845  * @ctx->attr is undefined and in particular do not rely on it not changing.
846  */
847 static int ntfs_external_attr_find(const ATTR_TYPE type,
848 		const ntfschar *name, const u32 name_len,
849 		const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
850 		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
851 {
852 	ntfs_inode *base_ni, *ni;
853 	ntfs_volume *vol;
854 	ATTR_LIST_ENTRY *al_entry, *next_al_entry;
855 	u8 *al_start, *al_end;
856 	ATTR_RECORD *a;
857 	ntfschar *al_name;
858 	u32 al_name_len;
859 	int err = 0;
860 	static const char *es = " Unmount and run chkdsk.";
861 
862 	ni = ctx->ntfs_ino;
863 	base_ni = ctx->base_ntfs_ino;
864 	ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
865 	if (!base_ni) {
866 		/* First call happens with the base mft record. */
867 		base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
868 		ctx->base_mrec = ctx->mrec;
869 	}
870 	if (ni == base_ni)
871 		ctx->base_attr = ctx->attr;
872 	if (type == AT_END)
873 		goto not_found;
874 	vol = base_ni->vol;
875 	al_start = base_ni->attr_list;
876 	al_end = al_start + base_ni->attr_list_size;
877 	if (!ctx->al_entry)
878 		ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
879 	/*
880 	 * Iterate over entries in attribute list starting at @ctx->al_entry,
881 	 * or the entry following that, if @ctx->is_first is 'true'.
882 	 */
883 	if (ctx->is_first) {
884 		al_entry = ctx->al_entry;
885 		ctx->is_first = false;
886 	} else
887 		al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
888 				le16_to_cpu(ctx->al_entry->length));
889 	for (;; al_entry = next_al_entry) {
890 		/* Out of bounds check. */
891 		if ((u8*)al_entry < base_ni->attr_list ||
892 				(u8*)al_entry > al_end)
893 			break;	/* Inode is corrupt. */
894 		ctx->al_entry = al_entry;
895 		/* Catch the end of the attribute list. */
896 		if ((u8*)al_entry == al_end)
897 			goto not_found;
898 		if (!al_entry->length)
899 			break;
900 		if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
901 				le16_to_cpu(al_entry->length) > al_end)
902 			break;
903 		next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
904 				le16_to_cpu(al_entry->length));
905 		if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
906 			goto not_found;
907 		if (type != al_entry->type)
908 			continue;
909 		/*
910 		 * If @name is present, compare the two names.  If @name is
911 		 * missing, assume we want an unnamed attribute.
912 		 */
913 		al_name_len = al_entry->name_length;
914 		al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
915 		if (!name) {
916 			if (al_name_len)
917 				goto not_found;
918 		} else if (!ntfs_are_names_equal(al_name, al_name_len, name,
919 				name_len, ic, vol->upcase, vol->upcase_len)) {
920 			register int rc;
921 
922 			rc = ntfs_collate_names(name, name_len, al_name,
923 					al_name_len, 1, IGNORE_CASE,
924 					vol->upcase, vol->upcase_len);
925 			/*
926 			 * If @name collates before al_name, there is no
927 			 * matching attribute.
928 			 */
929 			if (rc == -1)
930 				goto not_found;
931 			/* If the strings are not equal, continue search. */
932 			if (rc)
933 				continue;
934 			/*
935 			 * FIXME: Reverse engineering showed 0, IGNORE_CASE but
936 			 * that is inconsistent with ntfs_attr_find().  The
937 			 * subsequent rc checks were also different.  Perhaps I
938 			 * made a mistake in one of the two.  Need to recheck
939 			 * which is correct or at least see what is going on...
940 			 * (AIA)
941 			 */
942 			rc = ntfs_collate_names(name, name_len, al_name,
943 					al_name_len, 1, CASE_SENSITIVE,
944 					vol->upcase, vol->upcase_len);
945 			if (rc == -1)
946 				goto not_found;
947 			if (rc)
948 				continue;
949 		}
950 		/*
951 		 * The names match or @name not present and attribute is
952 		 * unnamed.  Now check @lowest_vcn.  Continue search if the
953 		 * next attribute list entry still fits @lowest_vcn.  Otherwise
954 		 * we have reached the right one or the search has failed.
955 		 */
956 		if (lowest_vcn && (u8*)next_al_entry >= al_start	    &&
957 				(u8*)next_al_entry + 6 < al_end		    &&
958 				(u8*)next_al_entry + le16_to_cpu(
959 					next_al_entry->length) <= al_end    &&
960 				sle64_to_cpu(next_al_entry->lowest_vcn) <=
961 					lowest_vcn			    &&
962 				next_al_entry->type == al_entry->type	    &&
963 				next_al_entry->name_length == al_name_len   &&
964 				ntfs_are_names_equal((ntfschar*)((u8*)
965 					next_al_entry +
966 					next_al_entry->name_offset),
967 					next_al_entry->name_length,
968 					al_name, al_name_len, CASE_SENSITIVE,
969 					vol->upcase, vol->upcase_len))
970 			continue;
971 		if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
972 			if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
973 				ntfs_error(vol->sb, "Found stale mft "
974 						"reference in attribute list "
975 						"of base inode 0x%lx.%s",
976 						base_ni->mft_no, es);
977 				err = -EIO;
978 				break;
979 			}
980 		} else { /* Mft references do not match. */
981 			/* If there is a mapped record unmap it first. */
982 			if (ni != base_ni)
983 				unmap_extent_mft_record(ni);
984 			/* Do we want the base record back? */
985 			if (MREF_LE(al_entry->mft_reference) ==
986 					base_ni->mft_no) {
987 				ni = ctx->ntfs_ino = base_ni;
988 				ctx->mrec = ctx->base_mrec;
989 			} else {
990 				/* We want an extent record. */
991 				ctx->mrec = map_extent_mft_record(base_ni,
992 						le64_to_cpu(
993 						al_entry->mft_reference), &ni);
994 				if (IS_ERR(ctx->mrec)) {
995 					ntfs_error(vol->sb, "Failed to map "
996 							"extent mft record "
997 							"0x%lx of base inode "
998 							"0x%lx.%s",
999 							MREF_LE(al_entry->
1000 							mft_reference),
1001 							base_ni->mft_no, es);
1002 					err = PTR_ERR(ctx->mrec);
1003 					if (err == -ENOENT)
1004 						err = -EIO;
1005 					/* Cause @ctx to be sanitized below. */
1006 					ni = NULL;
1007 					break;
1008 				}
1009 				ctx->ntfs_ino = ni;
1010 			}
1011 			ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1012 					le16_to_cpu(ctx->mrec->attrs_offset));
1013 		}
1014 		/*
1015 		 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
1016 		 * mft record containing the attribute represented by the
1017 		 * current al_entry.
1018 		 */
1019 		/*
1020 		 * We could call into ntfs_attr_find() to find the right
1021 		 * attribute in this mft record but this would be less
1022 		 * efficient and not quite accurate as ntfs_attr_find() ignores
1023 		 * the attribute instance numbers for example which become
1024 		 * important when one plays with attribute lists.  Also,
1025 		 * because a proper match has been found in the attribute list
1026 		 * entry above, the comparison can now be optimized.  So it is
1027 		 * worth re-implementing a simplified ntfs_attr_find() here.
1028 		 */
1029 		a = ctx->attr;
1030 		/*
1031 		 * Use a manual loop so we can still use break and continue
1032 		 * with the same meanings as above.
1033 		 */
1034 do_next_attr_loop:
1035 		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
1036 				le32_to_cpu(ctx->mrec->bytes_allocated))
1037 			break;
1038 		if (a->type == AT_END)
1039 			break;
1040 		if (!a->length)
1041 			break;
1042 		if (al_entry->instance != a->instance)
1043 			goto do_next_attr;
1044 		/*
1045 		 * If the type and/or the name are mismatched between the
1046 		 * attribute list entry and the attribute record, there is
1047 		 * corruption so we break and return error EIO.
1048 		 */
1049 		if (al_entry->type != a->type)
1050 			break;
1051 		if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
1052 				le16_to_cpu(a->name_offset)), a->name_length,
1053 				al_name, al_name_len, CASE_SENSITIVE,
1054 				vol->upcase, vol->upcase_len))
1055 			break;
1056 		ctx->attr = a;
1057 		/*
1058 		 * If no @val specified or @val specified and it matches, we
1059 		 * have found it!
1060 		 */
1061 		if (!val || (!a->non_resident && le32_to_cpu(
1062 				a->data.resident.value_length) == val_len &&
1063 				!memcmp((u8*)a +
1064 				le16_to_cpu(a->data.resident.value_offset),
1065 				val, val_len))) {
1066 			ntfs_debug("Done, found.");
1067 			return 0;
1068 		}
1069 do_next_attr:
1070 		/* Proceed to the next attribute in the current mft record. */
1071 		a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
1072 		goto do_next_attr_loop;
1073 	}
1074 	if (!err) {
1075 		ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
1076 				"attribute list attribute.%s", base_ni->mft_no,
1077 				es);
1078 		err = -EIO;
1079 	}
1080 	if (ni != base_ni) {
1081 		if (ni)
1082 			unmap_extent_mft_record(ni);
1083 		ctx->ntfs_ino = base_ni;
1084 		ctx->mrec = ctx->base_mrec;
1085 		ctx->attr = ctx->base_attr;
1086 	}
1087 	if (err != -ENOMEM)
1088 		NVolSetErrors(vol);
1089 	return err;
1090 not_found:
1091 	/*
1092 	 * If we were looking for AT_END, we reset the search context @ctx and
1093 	 * use ntfs_attr_find() to seek to the end of the base mft record.
1094 	 */
1095 	if (type == AT_END) {
1096 		ntfs_attr_reinit_search_ctx(ctx);
1097 		return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
1098 				ctx);
1099 	}
1100 	/*
1101 	 * The attribute was not found.  Before we return, we want to ensure
1102 	 * @ctx->mrec and @ctx->attr indicate the position at which the
1103 	 * attribute should be inserted in the base mft record.  Since we also
1104 	 * want to preserve @ctx->al_entry we cannot reinitialize the search
1105 	 * context using ntfs_attr_reinit_search_ctx() as this would set
1106 	 * @ctx->al_entry to NULL.  Thus we do the necessary bits manually (see
1107 	 * ntfs_attr_init_search_ctx() below).  Note, we _only_ preserve
1108 	 * @ctx->al_entry as the remaining fields (base_*) are identical to
1109 	 * their non base_ counterparts and we cannot set @ctx->base_attr
1110 	 * correctly yet as we do not know what @ctx->attr will be set to by
1111 	 * the call to ntfs_attr_find() below.
1112 	 */
1113 	if (ni != base_ni)
1114 		unmap_extent_mft_record(ni);
1115 	ctx->mrec = ctx->base_mrec;
1116 	ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1117 			le16_to_cpu(ctx->mrec->attrs_offset));
1118 	ctx->is_first = true;
1119 	ctx->ntfs_ino = base_ni;
1120 	ctx->base_ntfs_ino = NULL;
1121 	ctx->base_mrec = NULL;
1122 	ctx->base_attr = NULL;
1123 	/*
1124 	 * In case there are multiple matches in the base mft record, need to
1125 	 * keep enumerating until we get an attribute not found response (or
1126 	 * another error), otherwise we would keep returning the same attribute
1127 	 * over and over again and all programs using us for enumeration would
1128 	 * lock up in a tight loop.
1129 	 */
1130 	do {
1131 		err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
1132 				ctx);
1133 	} while (!err);
1134 	ntfs_debug("Done, not found.");
1135 	return err;
1136 }
1137 
1138 /**
1139  * ntfs_attr_lookup - find an attribute in an ntfs inode
1140  * @type:	attribute type to find
1141  * @name:	attribute name to find (optional, i.e. NULL means don't care)
1142  * @name_len:	attribute name length (only needed if @name present)
1143  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
1144  * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
1145  * @val:	attribute value to find (optional, resident attributes only)
1146  * @val_len:	attribute value length
1147  * @ctx:	search context with mft record and attribute to search from
1148  *
1149  * Find an attribute in an ntfs inode.  On first search @ctx->ntfs_ino must
1150  * be the base mft record and @ctx must have been obtained from a call to
1151  * ntfs_attr_get_search_ctx().
1152  *
1153  * This function transparently handles attribute lists and @ctx is used to
1154  * continue searches where they were left off at.
1155  *
1156  * After finishing with the attribute/mft record you need to call
1157  * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
1158  * mapped inodes, etc).
1159  *
1160  * Return 0 if the search was successful and -errno if not.
1161  *
1162  * When 0, @ctx->attr is the found attribute and it is in mft record
1163  * @ctx->mrec.  If an attribute list attribute is present, @ctx->al_entry is
1164  * the attribute list entry of the found attribute.
1165  *
1166  * When -ENOENT, @ctx->attr is the attribute which collates just after the
1167  * attribute being searched for, i.e. if one wants to add the attribute to the
1168  * mft record this is the correct place to insert it into.  If an attribute
1169  * list attribute is present, @ctx->al_entry is the attribute list entry which
1170  * collates just after the attribute list entry of the attribute being searched
1171  * for, i.e. if one wants to add the attribute to the mft record this is the
1172  * correct place to insert its attribute list entry into.
1173  *
1174  * When -errno != -ENOENT, an error occurred during the lookup.  @ctx->attr is
1175  * then undefined and in particular you should not rely on it not changing.
1176  */
1177 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
1178 		const u32 name_len, const IGNORE_CASE_BOOL ic,
1179 		const VCN lowest_vcn, const u8 *val, const u32 val_len,
1180 		ntfs_attr_search_ctx *ctx)
1181 {
1182 	ntfs_inode *base_ni;
1183 
1184 	ntfs_debug("Entering.");
1185 	BUG_ON(IS_ERR(ctx->mrec));
1186 	if (ctx->base_ntfs_ino)
1187 		base_ni = ctx->base_ntfs_ino;
1188 	else
1189 		base_ni = ctx->ntfs_ino;
1190 	/* Sanity check, just for debugging really. */
1191 	BUG_ON(!base_ni);
1192 	if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
1193 		return ntfs_attr_find(type, name, name_len, ic, val, val_len,
1194 				ctx);
1195 	return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
1196 			val, val_len, ctx);
1197 }
1198 
1199 /**
1200  * ntfs_attr_init_search_ctx - initialize an attribute search context
1201  * @ctx:	attribute search context to initialize
1202  * @ni:		ntfs inode with which to initialize the search context
1203  * @mrec:	mft record with which to initialize the search context
1204  *
1205  * Initialize the attribute search context @ctx with @ni and @mrec.
1206  */
1207 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
1208 		ntfs_inode *ni, MFT_RECORD *mrec)
1209 {
1210 	*ctx = (ntfs_attr_search_ctx) {
1211 		.mrec = mrec,
1212 		/* Sanity checks are performed elsewhere. */
1213 		.attr = (ATTR_RECORD*)((u8*)mrec +
1214 				le16_to_cpu(mrec->attrs_offset)),
1215 		.is_first = true,
1216 		.ntfs_ino = ni,
1217 	};
1218 }
1219 
1220 /**
1221  * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
1222  * @ctx:	attribute search context to reinitialize
1223  *
1224  * Reinitialize the attribute search context @ctx, unmapping an associated
1225  * extent mft record if present, and initialize the search context again.
1226  *
1227  * This is used when a search for a new attribute is being started to reset
1228  * the search context to the beginning.
1229  */
1230 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
1231 {
1232 	if (likely(!ctx->base_ntfs_ino)) {
1233 		/* No attribute list. */
1234 		ctx->is_first = true;
1235 		/* Sanity checks are performed elsewhere. */
1236 		ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1237 				le16_to_cpu(ctx->mrec->attrs_offset));
1238 		/*
1239 		 * This needs resetting due to ntfs_external_attr_find() which
1240 		 * can leave it set despite having zeroed ctx->base_ntfs_ino.
1241 		 */
1242 		ctx->al_entry = NULL;
1243 		return;
1244 	} /* Attribute list. */
1245 	if (ctx->ntfs_ino != ctx->base_ntfs_ino)
1246 		unmap_extent_mft_record(ctx->ntfs_ino);
1247 	ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
1248 	return;
1249 }
1250 
1251 /**
1252  * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
1253  * @ni:		ntfs inode with which to initialize the search context
1254  * @mrec:	mft record with which to initialize the search context
1255  *
1256  * Allocate a new attribute search context, initialize it with @ni and @mrec,
1257  * and return it. Return NULL if allocation failed.
1258  */
1259 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
1260 {
1261 	ntfs_attr_search_ctx *ctx;
1262 
1263 	ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
1264 	if (ctx)
1265 		ntfs_attr_init_search_ctx(ctx, ni, mrec);
1266 	return ctx;
1267 }
1268 
1269 /**
1270  * ntfs_attr_put_search_ctx - release an attribute search context
1271  * @ctx:	attribute search context to free
1272  *
1273  * Release the attribute search context @ctx, unmapping an associated extent
1274  * mft record if present.
1275  */
1276 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
1277 {
1278 	if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
1279 		unmap_extent_mft_record(ctx->ntfs_ino);
1280 	kmem_cache_free(ntfs_attr_ctx_cache, ctx);
1281 	return;
1282 }
1283 
1284 #ifdef NTFS_RW
1285 
1286 /**
1287  * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
1288  * @vol:	ntfs volume to which the attribute belongs
1289  * @type:	attribute type which to find
1290  *
1291  * Search for the attribute definition record corresponding to the attribute
1292  * @type in the $AttrDef system file.
1293  *
1294  * Return the attribute type definition record if found and NULL if not found.
1295  */
1296 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
1297 		const ATTR_TYPE type)
1298 {
1299 	ATTR_DEF *ad;
1300 
1301 	BUG_ON(!vol->attrdef);
1302 	BUG_ON(!type);
1303 	for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
1304 			vol->attrdef_size && ad->type; ++ad) {
1305 		/* We have not found it yet, carry on searching. */
1306 		if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
1307 			continue;
1308 		/* We found the attribute; return it. */
1309 		if (likely(ad->type == type))
1310 			return ad;
1311 		/* We have gone too far already.  No point in continuing. */
1312 		break;
1313 	}
1314 	/* Attribute not found. */
1315 	ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
1316 			le32_to_cpu(type));
1317 	return NULL;
1318 }
1319 
1320 /**
1321  * ntfs_attr_size_bounds_check - check a size of an attribute type for validity
1322  * @vol:	ntfs volume to which the attribute belongs
1323  * @type:	attribute type which to check
1324  * @size:	size which to check
1325  *
1326  * Check whether the @size in bytes is valid for an attribute of @type on the
1327  * ntfs volume @vol.  This information is obtained from $AttrDef system file.
1328  *
1329  * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
1330  * listed in $AttrDef.
1331  */
1332 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
1333 		const s64 size)
1334 {
1335 	ATTR_DEF *ad;
1336 
1337 	BUG_ON(size < 0);
1338 	/*
1339 	 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
1340 	 * listed in $AttrDef.
1341 	 */
1342 	if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
1343 		return -ERANGE;
1344 	/* Get the $AttrDef entry for the attribute @type. */
1345 	ad = ntfs_attr_find_in_attrdef(vol, type);
1346 	if (unlikely(!ad))
1347 		return -ENOENT;
1348 	/* Do the bounds check. */
1349 	if (((sle64_to_cpu(ad->min_size) > 0) &&
1350 			size < sle64_to_cpu(ad->min_size)) ||
1351 			((sle64_to_cpu(ad->max_size) > 0) && size >
1352 			sle64_to_cpu(ad->max_size)))
1353 		return -ERANGE;
1354 	return 0;
1355 }
1356 
1357 /**
1358  * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
1359  * @vol:	ntfs volume to which the attribute belongs
1360  * @type:	attribute type which to check
1361  *
1362  * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1363  * be non-resident.  This information is obtained from $AttrDef system file.
1364  *
1365  * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
1366  * -ENOENT if the attribute is not listed in $AttrDef.
1367  */
1368 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1369 {
1370 	ATTR_DEF *ad;
1371 
1372 	/* Find the attribute definition record in $AttrDef. */
1373 	ad = ntfs_attr_find_in_attrdef(vol, type);
1374 	if (unlikely(!ad))
1375 		return -ENOENT;
1376 	/* Check the flags and return the result. */
1377 	if (ad->flags & ATTR_DEF_RESIDENT)
1378 		return -EPERM;
1379 	return 0;
1380 }
1381 
1382 /**
1383  * ntfs_attr_can_be_resident - check if an attribute can be resident
1384  * @vol:	ntfs volume to which the attribute belongs
1385  * @type:	attribute type which to check
1386  *
1387  * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1388  * be resident.  This information is derived from our ntfs knowledge and may
1389  * not be completely accurate, especially when user defined attributes are
1390  * present.  Basically we allow everything to be resident except for index
1391  * allocation and $EA attributes.
1392  *
1393  * Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
1394  *
1395  * Warning: In the system file $MFT the attribute $Bitmap must be non-resident
1396  *	    otherwise windows will not boot (blue screen of death)!  We cannot
1397  *	    check for this here as we do not know which inode's $Bitmap is
1398  *	    being asked about so the caller needs to special case this.
1399  */
1400 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1401 {
1402 	if (type == AT_INDEX_ALLOCATION)
1403 		return -EPERM;
1404 	return 0;
1405 }
1406 
1407 /**
1408  * ntfs_attr_record_resize - resize an attribute record
1409  * @m:		mft record containing attribute record
1410  * @a:		attribute record to resize
1411  * @new_size:	new size in bytes to which to resize the attribute record @a
1412  *
1413  * Resize the attribute record @a, i.e. the resident part of the attribute, in
1414  * the mft record @m to @new_size bytes.
1415  *
1416  * Return 0 on success and -errno on error.  The following error codes are
1417  * defined:
1418  *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1419  *
1420  * Note: On error, no modifications have been performed whatsoever.
1421  *
1422  * Warning: If you make a record smaller without having copied all the data you
1423  *	    are interested in the data may be overwritten.
1424  */
1425 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
1426 {
1427 	ntfs_debug("Entering for new_size %u.", new_size);
1428 	/* Align to 8 bytes if it is not already done. */
1429 	if (new_size & 7)
1430 		new_size = (new_size + 7) & ~7;
1431 	/* If the actual attribute length has changed, move things around. */
1432 	if (new_size != le32_to_cpu(a->length)) {
1433 		u32 new_muse = le32_to_cpu(m->bytes_in_use) -
1434 				le32_to_cpu(a->length) + new_size;
1435 		/* Not enough space in this mft record. */
1436 		if (new_muse > le32_to_cpu(m->bytes_allocated))
1437 			return -ENOSPC;
1438 		/* Move attributes following @a to their new location. */
1439 		memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
1440 				le32_to_cpu(m->bytes_in_use) - ((u8*)a -
1441 				(u8*)m) - le32_to_cpu(a->length));
1442 		/* Adjust @m to reflect the change in used space. */
1443 		m->bytes_in_use = cpu_to_le32(new_muse);
1444 		/* Adjust @a to reflect the new size. */
1445 		if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
1446 			a->length = cpu_to_le32(new_size);
1447 	}
1448 	return 0;
1449 }
1450 
1451 /**
1452  * ntfs_resident_attr_value_resize - resize the value of a resident attribute
1453  * @m:		mft record containing attribute record
1454  * @a:		attribute record whose value to resize
1455  * @new_size:	new size in bytes to which to resize the attribute value of @a
1456  *
1457  * Resize the value of the attribute @a in the mft record @m to @new_size bytes.
1458  * If the value is made bigger, the newly allocated space is cleared.
1459  *
1460  * Return 0 on success and -errno on error.  The following error codes are
1461  * defined:
1462  *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1463  *
1464  * Note: On error, no modifications have been performed whatsoever.
1465  *
1466  * Warning: If you make a record smaller without having copied all the data you
1467  *	    are interested in the data may be overwritten.
1468  */
1469 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
1470 		const u32 new_size)
1471 {
1472 	u32 old_size;
1473 
1474 	/* Resize the resident part of the attribute record. */
1475 	if (ntfs_attr_record_resize(m, a,
1476 			le16_to_cpu(a->data.resident.value_offset) + new_size))
1477 		return -ENOSPC;
1478 	/*
1479 	 * The resize succeeded!  If we made the attribute value bigger, clear
1480 	 * the area between the old size and @new_size.
1481 	 */
1482 	old_size = le32_to_cpu(a->data.resident.value_length);
1483 	if (new_size > old_size)
1484 		memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1485 				old_size, 0, new_size - old_size);
1486 	/* Finally update the length of the attribute value. */
1487 	a->data.resident.value_length = cpu_to_le32(new_size);
1488 	return 0;
1489 }
1490 
1491 /**
1492  * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
1493  * @ni:		ntfs inode describing the attribute to convert
1494  * @data_size:	size of the resident data to copy to the non-resident attribute
1495  *
1496  * Convert the resident ntfs attribute described by the ntfs inode @ni to a
1497  * non-resident one.
1498  *
1499  * @data_size must be equal to the attribute value size.  This is needed since
1500  * we need to know the size before we can map the mft record and our callers
1501  * always know it.  The reason we cannot simply read the size from the vfs
1502  * inode i_size is that this is not necessarily uptodate.  This happens when
1503  * ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
1504  *
1505  * Return 0 on success and -errno on error.  The following error return codes
1506  * are defined:
1507  *	-EPERM	- The attribute is not allowed to be non-resident.
1508  *	-ENOMEM	- Not enough memory.
1509  *	-ENOSPC	- Not enough disk space.
1510  *	-EINVAL	- Attribute not defined on the volume.
1511  *	-EIO	- I/o error or other error.
1512  * Note that -ENOSPC is also returned in the case that there is not enough
1513  * space in the mft record to do the conversion.  This can happen when the mft
1514  * record is already very full.  The caller is responsible for trying to make
1515  * space in the mft record and trying again.  FIXME: Do we need a separate
1516  * error return code for this kind of -ENOSPC or is it always worth trying
1517  * again in case the attribute may then fit in a resident state so no need to
1518  * make it non-resident at all?  Ho-hum...  (AIA)
1519  *
1520  * NOTE to self: No changes in the attribute list are required to move from
1521  *		 a resident to a non-resident attribute.
1522  *
1523  * Locking: - The caller must hold i_mutex on the inode.
1524  */
1525 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
1526 {
1527 	s64 new_size;
1528 	struct inode *vi = VFS_I(ni);
1529 	ntfs_volume *vol = ni->vol;
1530 	ntfs_inode *base_ni;
1531 	MFT_RECORD *m;
1532 	ATTR_RECORD *a;
1533 	ntfs_attr_search_ctx *ctx;
1534 	struct page *page;
1535 	runlist_element *rl;
1536 	u8 *kaddr;
1537 	unsigned long flags;
1538 	int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
1539 	u32 attr_size;
1540 	u8 old_res_attr_flags;
1541 
1542 	/* Check that the attribute is allowed to be non-resident. */
1543 	err = ntfs_attr_can_be_non_resident(vol, ni->type);
1544 	if (unlikely(err)) {
1545 		if (err == -EPERM)
1546 			ntfs_debug("Attribute is not allowed to be "
1547 					"non-resident.");
1548 		else
1549 			ntfs_debug("Attribute not defined on the NTFS "
1550 					"volume!");
1551 		return err;
1552 	}
1553 	/*
1554 	 * FIXME: Compressed and encrypted attributes are not supported when
1555 	 * writing and we should never have gotten here for them.
1556 	 */
1557 	BUG_ON(NInoCompressed(ni));
1558 	BUG_ON(NInoEncrypted(ni));
1559 	/*
1560 	 * The size needs to be aligned to a cluster boundary for allocation
1561 	 * purposes.
1562 	 */
1563 	new_size = (data_size + vol->cluster_size - 1) &
1564 			~(vol->cluster_size - 1);
1565 	if (new_size > 0) {
1566 		/*
1567 		 * Will need the page later and since the page lock nests
1568 		 * outside all ntfs locks, we need to get the page now.
1569 		 */
1570 		page = find_or_create_page(vi->i_mapping, 0,
1571 				mapping_gfp_mask(vi->i_mapping));
1572 		if (unlikely(!page))
1573 			return -ENOMEM;
1574 		/* Start by allocating clusters to hold the attribute value. */
1575 		rl = ntfs_cluster_alloc(vol, 0, new_size >>
1576 				vol->cluster_size_bits, -1, DATA_ZONE, true);
1577 		if (IS_ERR(rl)) {
1578 			err = PTR_ERR(rl);
1579 			ntfs_debug("Failed to allocate cluster%s, error code "
1580 					"%i.", (new_size >>
1581 					vol->cluster_size_bits) > 1 ? "s" : "",
1582 					err);
1583 			goto page_err_out;
1584 		}
1585 	} else {
1586 		rl = NULL;
1587 		page = NULL;
1588 	}
1589 	/* Determine the size of the mapping pairs array. */
1590 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
1591 	if (unlikely(mp_size < 0)) {
1592 		err = mp_size;
1593 		ntfs_debug("Failed to get size for mapping pairs array, error "
1594 				"code %i.", err);
1595 		goto rl_err_out;
1596 	}
1597 	down_write(&ni->runlist.lock);
1598 	if (!NInoAttr(ni))
1599 		base_ni = ni;
1600 	else
1601 		base_ni = ni->ext.base_ntfs_ino;
1602 	m = map_mft_record(base_ni);
1603 	if (IS_ERR(m)) {
1604 		err = PTR_ERR(m);
1605 		m = NULL;
1606 		ctx = NULL;
1607 		goto err_out;
1608 	}
1609 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1610 	if (unlikely(!ctx)) {
1611 		err = -ENOMEM;
1612 		goto err_out;
1613 	}
1614 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1615 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1616 	if (unlikely(err)) {
1617 		if (err == -ENOENT)
1618 			err = -EIO;
1619 		goto err_out;
1620 	}
1621 	m = ctx->mrec;
1622 	a = ctx->attr;
1623 	BUG_ON(NInoNonResident(ni));
1624 	BUG_ON(a->non_resident);
1625 	/*
1626 	 * Calculate new offsets for the name and the mapping pairs array.
1627 	 */
1628 	if (NInoSparse(ni) || NInoCompressed(ni))
1629 		name_ofs = (offsetof(ATTR_REC,
1630 				data.non_resident.compressed_size) +
1631 				sizeof(a->data.non_resident.compressed_size) +
1632 				7) & ~7;
1633 	else
1634 		name_ofs = (offsetof(ATTR_REC,
1635 				data.non_resident.compressed_size) + 7) & ~7;
1636 	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1637 	/*
1638 	 * Determine the size of the resident part of the now non-resident
1639 	 * attribute record.
1640 	 */
1641 	arec_size = (mp_ofs + mp_size + 7) & ~7;
1642 	/*
1643 	 * If the page is not uptodate bring it uptodate by copying from the
1644 	 * attribute value.
1645 	 */
1646 	attr_size = le32_to_cpu(a->data.resident.value_length);
1647 	BUG_ON(attr_size != data_size);
1648 	if (page && !PageUptodate(page)) {
1649 		kaddr = kmap_atomic(page);
1650 		memcpy(kaddr, (u8*)a +
1651 				le16_to_cpu(a->data.resident.value_offset),
1652 				attr_size);
1653 		memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size);
1654 		kunmap_atomic(kaddr);
1655 		flush_dcache_page(page);
1656 		SetPageUptodate(page);
1657 	}
1658 	/* Backup the attribute flag. */
1659 	old_res_attr_flags = a->data.resident.flags;
1660 	/* Resize the resident part of the attribute record. */
1661 	err = ntfs_attr_record_resize(m, a, arec_size);
1662 	if (unlikely(err))
1663 		goto err_out;
1664 	/*
1665 	 * Convert the resident part of the attribute record to describe a
1666 	 * non-resident attribute.
1667 	 */
1668 	a->non_resident = 1;
1669 	/* Move the attribute name if it exists and update the offset. */
1670 	if (a->name_length)
1671 		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1672 				a->name_length * sizeof(ntfschar));
1673 	a->name_offset = cpu_to_le16(name_ofs);
1674 	/* Setup the fields specific to non-resident attributes. */
1675 	a->data.non_resident.lowest_vcn = 0;
1676 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
1677 			vol->cluster_size_bits);
1678 	a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
1679 	memset(&a->data.non_resident.reserved, 0,
1680 			sizeof(a->data.non_resident.reserved));
1681 	a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
1682 	a->data.non_resident.data_size =
1683 			a->data.non_resident.initialized_size =
1684 			cpu_to_sle64(attr_size);
1685 	if (NInoSparse(ni) || NInoCompressed(ni)) {
1686 		a->data.non_resident.compression_unit = 0;
1687 		if (NInoCompressed(ni) || vol->major_ver < 3)
1688 			a->data.non_resident.compression_unit = 4;
1689 		a->data.non_resident.compressed_size =
1690 				a->data.non_resident.allocated_size;
1691 	} else
1692 		a->data.non_resident.compression_unit = 0;
1693 	/* Generate the mapping pairs array into the attribute record. */
1694 	err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
1695 			arec_size - mp_ofs, rl, 0, -1, NULL);
1696 	if (unlikely(err)) {
1697 		ntfs_debug("Failed to build mapping pairs, error code %i.",
1698 				err);
1699 		goto undo_err_out;
1700 	}
1701 	/* Setup the in-memory attribute structure to be non-resident. */
1702 	ni->runlist.rl = rl;
1703 	write_lock_irqsave(&ni->size_lock, flags);
1704 	ni->allocated_size = new_size;
1705 	if (NInoSparse(ni) || NInoCompressed(ni)) {
1706 		ni->itype.compressed.size = ni->allocated_size;
1707 		if (a->data.non_resident.compression_unit) {
1708 			ni->itype.compressed.block_size = 1U << (a->data.
1709 					non_resident.compression_unit +
1710 					vol->cluster_size_bits);
1711 			ni->itype.compressed.block_size_bits =
1712 					ffs(ni->itype.compressed.block_size) -
1713 					1;
1714 			ni->itype.compressed.block_clusters = 1U <<
1715 					a->data.non_resident.compression_unit;
1716 		} else {
1717 			ni->itype.compressed.block_size = 0;
1718 			ni->itype.compressed.block_size_bits = 0;
1719 			ni->itype.compressed.block_clusters = 0;
1720 		}
1721 		vi->i_blocks = ni->itype.compressed.size >> 9;
1722 	} else
1723 		vi->i_blocks = ni->allocated_size >> 9;
1724 	write_unlock_irqrestore(&ni->size_lock, flags);
1725 	/*
1726 	 * This needs to be last since the address space operations ->read_folio
1727 	 * and ->writepage can run concurrently with us as they are not
1728 	 * serialized on i_mutex.  Note, we are not allowed to fail once we flip
1729 	 * this switch, which is another reason to do this last.
1730 	 */
1731 	NInoSetNonResident(ni);
1732 	/* Mark the mft record dirty, so it gets written back. */
1733 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1734 	mark_mft_record_dirty(ctx->ntfs_ino);
1735 	ntfs_attr_put_search_ctx(ctx);
1736 	unmap_mft_record(base_ni);
1737 	up_write(&ni->runlist.lock);
1738 	if (page) {
1739 		set_page_dirty(page);
1740 		unlock_page(page);
1741 		put_page(page);
1742 	}
1743 	ntfs_debug("Done.");
1744 	return 0;
1745 undo_err_out:
1746 	/* Convert the attribute back into a resident attribute. */
1747 	a->non_resident = 0;
1748 	/* Move the attribute name if it exists and update the offset. */
1749 	name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
1750 			sizeof(a->data.resident.reserved) + 7) & ~7;
1751 	if (a->name_length)
1752 		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1753 				a->name_length * sizeof(ntfschar));
1754 	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1755 	a->name_offset = cpu_to_le16(name_ofs);
1756 	arec_size = (mp_ofs + attr_size + 7) & ~7;
1757 	/* Resize the resident part of the attribute record. */
1758 	err2 = ntfs_attr_record_resize(m, a, arec_size);
1759 	if (unlikely(err2)) {
1760 		/*
1761 		 * This cannot happen (well if memory corruption is at work it
1762 		 * could happen in theory), but deal with it as well as we can.
1763 		 * If the old size is too small, truncate the attribute,
1764 		 * otherwise simply give it a larger allocated size.
1765 		 * FIXME: Should check whether chkdsk complains when the
1766 		 * allocated size is much bigger than the resident value size.
1767 		 */
1768 		arec_size = le32_to_cpu(a->length);
1769 		if ((mp_ofs + attr_size) > arec_size) {
1770 			err2 = attr_size;
1771 			attr_size = arec_size - mp_ofs;
1772 			ntfs_error(vol->sb, "Failed to undo partial resident "
1773 					"to non-resident attribute "
1774 					"conversion.  Truncating inode 0x%lx, "
1775 					"attribute type 0x%x from %i bytes to "
1776 					"%i bytes to maintain metadata "
1777 					"consistency.  THIS MEANS YOU ARE "
1778 					"LOSING %i BYTES DATA FROM THIS %s.",
1779 					vi->i_ino,
1780 					(unsigned)le32_to_cpu(ni->type),
1781 					err2, attr_size, err2 - attr_size,
1782 					((ni->type == AT_DATA) &&
1783 					!ni->name_len) ? "FILE": "ATTRIBUTE");
1784 			write_lock_irqsave(&ni->size_lock, flags);
1785 			ni->initialized_size = attr_size;
1786 			i_size_write(vi, attr_size);
1787 			write_unlock_irqrestore(&ni->size_lock, flags);
1788 		}
1789 	}
1790 	/* Setup the fields specific to resident attributes. */
1791 	a->data.resident.value_length = cpu_to_le32(attr_size);
1792 	a->data.resident.value_offset = cpu_to_le16(mp_ofs);
1793 	a->data.resident.flags = old_res_attr_flags;
1794 	memset(&a->data.resident.reserved, 0,
1795 			sizeof(a->data.resident.reserved));
1796 	/* Copy the data from the page back to the attribute value. */
1797 	if (page) {
1798 		kaddr = kmap_atomic(page);
1799 		memcpy((u8*)a + mp_ofs, kaddr, attr_size);
1800 		kunmap_atomic(kaddr);
1801 	}
1802 	/* Setup the allocated size in the ntfs inode in case it changed. */
1803 	write_lock_irqsave(&ni->size_lock, flags);
1804 	ni->allocated_size = arec_size - mp_ofs;
1805 	write_unlock_irqrestore(&ni->size_lock, flags);
1806 	/* Mark the mft record dirty, so it gets written back. */
1807 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1808 	mark_mft_record_dirty(ctx->ntfs_ino);
1809 err_out:
1810 	if (ctx)
1811 		ntfs_attr_put_search_ctx(ctx);
1812 	if (m)
1813 		unmap_mft_record(base_ni);
1814 	ni->runlist.rl = NULL;
1815 	up_write(&ni->runlist.lock);
1816 rl_err_out:
1817 	if (rl) {
1818 		if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
1819 			ntfs_error(vol->sb, "Failed to release allocated "
1820 					"cluster(s) in error code path.  Run "
1821 					"chkdsk to recover the lost "
1822 					"cluster(s).");
1823 			NVolSetErrors(vol);
1824 		}
1825 		ntfs_free(rl);
1826 page_err_out:
1827 		unlock_page(page);
1828 		put_page(page);
1829 	}
1830 	if (err == -EINVAL)
1831 		err = -EIO;
1832 	return err;
1833 }
1834 
1835 /**
1836  * ntfs_attr_extend_allocation - extend the allocated space of an attribute
1837  * @ni:			ntfs inode of the attribute whose allocation to extend
1838  * @new_alloc_size:	new size in bytes to which to extend the allocation to
1839  * @new_data_size:	new size in bytes to which to extend the data to
1840  * @data_start:		beginning of region which is required to be non-sparse
1841  *
1842  * Extend the allocated space of an attribute described by the ntfs inode @ni
1843  * to @new_alloc_size bytes.  If @data_start is -1, the whole extension may be
1844  * implemented as a hole in the file (as long as both the volume and the ntfs
1845  * inode @ni have sparse support enabled).  If @data_start is >= 0, then the
1846  * region between the old allocated size and @data_start - 1 may be made sparse
1847  * but the regions between @data_start and @new_alloc_size must be backed by
1848  * actual clusters.
1849  *
1850  * If @new_data_size is -1, it is ignored.  If it is >= 0, then the data size
1851  * of the attribute is extended to @new_data_size.  Note that the i_size of the
1852  * vfs inode is not updated.  Only the data size in the base attribute record
1853  * is updated.  The caller has to update i_size separately if this is required.
1854  * WARNING: It is a BUG() for @new_data_size to be smaller than the old data
1855  * size as well as for @new_data_size to be greater than @new_alloc_size.
1856  *
1857  * For resident attributes this involves resizing the attribute record and if
1858  * necessary moving it and/or other attributes into extent mft records and/or
1859  * converting the attribute to a non-resident attribute which in turn involves
1860  * extending the allocation of a non-resident attribute as described below.
1861  *
1862  * For non-resident attributes this involves allocating clusters in the data
1863  * zone on the volume (except for regions that are being made sparse) and
1864  * extending the run list to describe the allocated clusters as well as
1865  * updating the mapping pairs array of the attribute.  This in turn involves
1866  * resizing the attribute record and if necessary moving it and/or other
1867  * attributes into extent mft records and/or splitting the attribute record
1868  * into multiple extent attribute records.
1869  *
1870  * Also, the attribute list attribute is updated if present and in some of the
1871  * above cases (the ones where extent mft records/attributes come into play),
1872  * an attribute list attribute is created if not already present.
1873  *
1874  * Return the new allocated size on success and -errno on error.  In the case
1875  * that an error is encountered but a partial extension at least up to
1876  * @data_start (if present) is possible, the allocation is partially extended
1877  * and this is returned.  This means the caller must check the returned size to
1878  * determine if the extension was partial.  If @data_start is -1 then partial
1879  * allocations are not performed.
1880  *
1881  * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
1882  *
1883  * Locking: This function takes the runlist lock of @ni for writing as well as
1884  * locking the mft record of the base ntfs inode.  These locks are maintained
1885  * throughout execution of the function.  These locks are required so that the
1886  * attribute can be resized safely and so that it can for example be converted
1887  * from resident to non-resident safely.
1888  *
1889  * TODO: At present attribute list attribute handling is not implemented.
1890  *
1891  * TODO: At present it is not safe to call this function for anything other
1892  * than the $DATA attribute(s) of an uncompressed and unencrypted file.
1893  */
1894 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
1895 		const s64 new_data_size, const s64 data_start)
1896 {
1897 	VCN vcn;
1898 	s64 ll, allocated_size, start = data_start;
1899 	struct inode *vi = VFS_I(ni);
1900 	ntfs_volume *vol = ni->vol;
1901 	ntfs_inode *base_ni;
1902 	MFT_RECORD *m;
1903 	ATTR_RECORD *a;
1904 	ntfs_attr_search_ctx *ctx;
1905 	runlist_element *rl, *rl2;
1906 	unsigned long flags;
1907 	int err, mp_size;
1908 	u32 attr_len = 0; /* Silence stupid gcc warning. */
1909 	bool mp_rebuilt;
1910 
1911 #ifdef DEBUG
1912 	read_lock_irqsave(&ni->size_lock, flags);
1913 	allocated_size = ni->allocated_size;
1914 	read_unlock_irqrestore(&ni->size_lock, flags);
1915 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1916 			"old_allocated_size 0x%llx, "
1917 			"new_allocated_size 0x%llx, new_data_size 0x%llx, "
1918 			"data_start 0x%llx.", vi->i_ino,
1919 			(unsigned)le32_to_cpu(ni->type),
1920 			(unsigned long long)allocated_size,
1921 			(unsigned long long)new_alloc_size,
1922 			(unsigned long long)new_data_size,
1923 			(unsigned long long)start);
1924 #endif
1925 retry_extend:
1926 	/*
1927 	 * For non-resident attributes, @start and @new_size need to be aligned
1928 	 * to cluster boundaries for allocation purposes.
1929 	 */
1930 	if (NInoNonResident(ni)) {
1931 		if (start > 0)
1932 			start &= ~(s64)vol->cluster_size_mask;
1933 		new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
1934 				~(s64)vol->cluster_size_mask;
1935 	}
1936 	BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
1937 	/* Check if new size is allowed in $AttrDef. */
1938 	err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
1939 	if (unlikely(err)) {
1940 		/* Only emit errors when the write will fail completely. */
1941 		read_lock_irqsave(&ni->size_lock, flags);
1942 		allocated_size = ni->allocated_size;
1943 		read_unlock_irqrestore(&ni->size_lock, flags);
1944 		if (start < 0 || start >= allocated_size) {
1945 			if (err == -ERANGE) {
1946 				ntfs_error(vol->sb, "Cannot extend allocation "
1947 						"of inode 0x%lx, attribute "
1948 						"type 0x%x, because the new "
1949 						"allocation would exceed the "
1950 						"maximum allowed size for "
1951 						"this attribute type.",
1952 						vi->i_ino, (unsigned)
1953 						le32_to_cpu(ni->type));
1954 			} else {
1955 				ntfs_error(vol->sb, "Cannot extend allocation "
1956 						"of inode 0x%lx, attribute "
1957 						"type 0x%x, because this "
1958 						"attribute type is not "
1959 						"defined on the NTFS volume.  "
1960 						"Possible corruption!  You "
1961 						"should run chkdsk!",
1962 						vi->i_ino, (unsigned)
1963 						le32_to_cpu(ni->type));
1964 			}
1965 		}
1966 		/* Translate error code to be POSIX conformant for write(2). */
1967 		if (err == -ERANGE)
1968 			err = -EFBIG;
1969 		else
1970 			err = -EIO;
1971 		return err;
1972 	}
1973 	if (!NInoAttr(ni))
1974 		base_ni = ni;
1975 	else
1976 		base_ni = ni->ext.base_ntfs_ino;
1977 	/*
1978 	 * We will be modifying both the runlist (if non-resident) and the mft
1979 	 * record so lock them both down.
1980 	 */
1981 	down_write(&ni->runlist.lock);
1982 	m = map_mft_record(base_ni);
1983 	if (IS_ERR(m)) {
1984 		err = PTR_ERR(m);
1985 		m = NULL;
1986 		ctx = NULL;
1987 		goto err_out;
1988 	}
1989 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1990 	if (unlikely(!ctx)) {
1991 		err = -ENOMEM;
1992 		goto err_out;
1993 	}
1994 	read_lock_irqsave(&ni->size_lock, flags);
1995 	allocated_size = ni->allocated_size;
1996 	read_unlock_irqrestore(&ni->size_lock, flags);
1997 	/*
1998 	 * If non-resident, seek to the last extent.  If resident, there is
1999 	 * only one extent, so seek to that.
2000 	 */
2001 	vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
2002 			0;
2003 	/*
2004 	 * Abort if someone did the work whilst we waited for the locks.  If we
2005 	 * just converted the attribute from resident to non-resident it is
2006 	 * likely that exactly this has happened already.  We cannot quite
2007 	 * abort if we need to update the data size.
2008 	 */
2009 	if (unlikely(new_alloc_size <= allocated_size)) {
2010 		ntfs_debug("Allocated size already exceeds requested size.");
2011 		new_alloc_size = allocated_size;
2012 		if (new_data_size < 0)
2013 			goto done;
2014 		/*
2015 		 * We want the first attribute extent so that we can update the
2016 		 * data size.
2017 		 */
2018 		vcn = 0;
2019 	}
2020 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2021 			CASE_SENSITIVE, vcn, NULL, 0, ctx);
2022 	if (unlikely(err)) {
2023 		if (err == -ENOENT)
2024 			err = -EIO;
2025 		goto err_out;
2026 	}
2027 	m = ctx->mrec;
2028 	a = ctx->attr;
2029 	/* Use goto to reduce indentation. */
2030 	if (a->non_resident)
2031 		goto do_non_resident_extend;
2032 	BUG_ON(NInoNonResident(ni));
2033 	/* The total length of the attribute value. */
2034 	attr_len = le32_to_cpu(a->data.resident.value_length);
2035 	/*
2036 	 * Extend the attribute record to be able to store the new attribute
2037 	 * size.  ntfs_attr_record_resize() will not do anything if the size is
2038 	 * not changing.
2039 	 */
2040 	if (new_alloc_size < vol->mft_record_size &&
2041 			!ntfs_attr_record_resize(m, a,
2042 			le16_to_cpu(a->data.resident.value_offset) +
2043 			new_alloc_size)) {
2044 		/* The resize succeeded! */
2045 		write_lock_irqsave(&ni->size_lock, flags);
2046 		ni->allocated_size = le32_to_cpu(a->length) -
2047 				le16_to_cpu(a->data.resident.value_offset);
2048 		write_unlock_irqrestore(&ni->size_lock, flags);
2049 		if (new_data_size >= 0) {
2050 			BUG_ON(new_data_size < attr_len);
2051 			a->data.resident.value_length =
2052 					cpu_to_le32((u32)new_data_size);
2053 		}
2054 		goto flush_done;
2055 	}
2056 	/*
2057 	 * We have to drop all the locks so we can call
2058 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2059 	 * locking the first page cache page and only if that fails dropping
2060 	 * the locks, locking the page, and redoing all the locking and
2061 	 * lookups.  While this would be a huge optimisation, it is not worth
2062 	 * it as this is definitely a slow code path.
2063 	 */
2064 	ntfs_attr_put_search_ctx(ctx);
2065 	unmap_mft_record(base_ni);
2066 	up_write(&ni->runlist.lock);
2067 	/*
2068 	 * Not enough space in the mft record, try to make the attribute
2069 	 * non-resident and if successful restart the extension process.
2070 	 */
2071 	err = ntfs_attr_make_non_resident(ni, attr_len);
2072 	if (likely(!err))
2073 		goto retry_extend;
2074 	/*
2075 	 * Could not make non-resident.  If this is due to this not being
2076 	 * permitted for this attribute type or there not being enough space,
2077 	 * try to make other attributes non-resident.  Otherwise fail.
2078 	 */
2079 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2080 		/* Only emit errors when the write will fail completely. */
2081 		read_lock_irqsave(&ni->size_lock, flags);
2082 		allocated_size = ni->allocated_size;
2083 		read_unlock_irqrestore(&ni->size_lock, flags);
2084 		if (start < 0 || start >= allocated_size)
2085 			ntfs_error(vol->sb, "Cannot extend allocation of "
2086 					"inode 0x%lx, attribute type 0x%x, "
2087 					"because the conversion from resident "
2088 					"to non-resident attribute failed "
2089 					"with error code %i.", vi->i_ino,
2090 					(unsigned)le32_to_cpu(ni->type), err);
2091 		if (err != -ENOMEM)
2092 			err = -EIO;
2093 		goto conv_err_out;
2094 	}
2095 	/* TODO: Not implemented from here, abort. */
2096 	read_lock_irqsave(&ni->size_lock, flags);
2097 	allocated_size = ni->allocated_size;
2098 	read_unlock_irqrestore(&ni->size_lock, flags);
2099 	if (start < 0 || start >= allocated_size) {
2100 		if (err == -ENOSPC)
2101 			ntfs_error(vol->sb, "Not enough space in the mft "
2102 					"record/on disk for the non-resident "
2103 					"attribute value.  This case is not "
2104 					"implemented yet.");
2105 		else /* if (err == -EPERM) */
2106 			ntfs_error(vol->sb, "This attribute type may not be "
2107 					"non-resident.  This case is not "
2108 					"implemented yet.");
2109 	}
2110 	err = -EOPNOTSUPP;
2111 	goto conv_err_out;
2112 #if 0
2113 	// TODO: Attempt to make other attributes non-resident.
2114 	if (!err)
2115 		goto do_resident_extend;
2116 	/*
2117 	 * Both the attribute list attribute and the standard information
2118 	 * attribute must remain in the base inode.  Thus, if this is one of
2119 	 * these attributes, we have to try to move other attributes out into
2120 	 * extent mft records instead.
2121 	 */
2122 	if (ni->type == AT_ATTRIBUTE_LIST ||
2123 			ni->type == AT_STANDARD_INFORMATION) {
2124 		// TODO: Attempt to move other attributes into extent mft
2125 		// records.
2126 		err = -EOPNOTSUPP;
2127 		if (!err)
2128 			goto do_resident_extend;
2129 		goto err_out;
2130 	}
2131 	// TODO: Attempt to move this attribute to an extent mft record, but
2132 	// only if it is not already the only attribute in an mft record in
2133 	// which case there would be nothing to gain.
2134 	err = -EOPNOTSUPP;
2135 	if (!err)
2136 		goto do_resident_extend;
2137 	/* There is nothing we can do to make enough space. )-: */
2138 	goto err_out;
2139 #endif
2140 do_non_resident_extend:
2141 	BUG_ON(!NInoNonResident(ni));
2142 	if (new_alloc_size == allocated_size) {
2143 		BUG_ON(vcn);
2144 		goto alloc_done;
2145 	}
2146 	/*
2147 	 * If the data starts after the end of the old allocation, this is a
2148 	 * $DATA attribute and sparse attributes are enabled on the volume and
2149 	 * for this inode, then create a sparse region between the old
2150 	 * allocated size and the start of the data.  Otherwise simply proceed
2151 	 * with filling the whole space between the old allocated size and the
2152 	 * new allocated size with clusters.
2153 	 */
2154 	if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
2155 			!NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
2156 		goto skip_sparse;
2157 	// TODO: This is not implemented yet.  We just fill in with real
2158 	// clusters for now...
2159 	ntfs_debug("Inserting holes is not-implemented yet.  Falling back to "
2160 			"allocating real clusters instead.");
2161 skip_sparse:
2162 	rl = ni->runlist.rl;
2163 	if (likely(rl)) {
2164 		/* Seek to the end of the runlist. */
2165 		while (rl->length)
2166 			rl++;
2167 	}
2168 	/* If this attribute extent is not mapped, map it now. */
2169 	if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
2170 			(rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
2171 			(rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
2172 		if (!rl && !allocated_size)
2173 			goto first_alloc;
2174 		rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2175 		if (IS_ERR(rl)) {
2176 			err = PTR_ERR(rl);
2177 			if (start < 0 || start >= allocated_size)
2178 				ntfs_error(vol->sb, "Cannot extend allocation "
2179 						"of inode 0x%lx, attribute "
2180 						"type 0x%x, because the "
2181 						"mapping of a runlist "
2182 						"fragment failed with error "
2183 						"code %i.", vi->i_ino,
2184 						(unsigned)le32_to_cpu(ni->type),
2185 						err);
2186 			if (err != -ENOMEM)
2187 				err = -EIO;
2188 			goto err_out;
2189 		}
2190 		ni->runlist.rl = rl;
2191 		/* Seek to the end of the runlist. */
2192 		while (rl->length)
2193 			rl++;
2194 	}
2195 	/*
2196 	 * We now know the runlist of the last extent is mapped and @rl is at
2197 	 * the end of the runlist.  We want to begin allocating clusters
2198 	 * starting at the last allocated cluster to reduce fragmentation.  If
2199 	 * there are no valid LCNs in the attribute we let the cluster
2200 	 * allocator choose the starting cluster.
2201 	 */
2202 	/* If the last LCN is a hole or simillar seek back to last real LCN. */
2203 	while (rl->lcn < 0 && rl > ni->runlist.rl)
2204 		rl--;
2205 first_alloc:
2206 	// FIXME: Need to implement partial allocations so at least part of the
2207 	// write can be performed when start >= 0.  (Needed for POSIX write(2)
2208 	// conformance.)
2209 	rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
2210 			(new_alloc_size - allocated_size) >>
2211 			vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
2212 			rl->lcn + rl->length : -1, DATA_ZONE, true);
2213 	if (IS_ERR(rl2)) {
2214 		err = PTR_ERR(rl2);
2215 		if (start < 0 || start >= allocated_size)
2216 			ntfs_error(vol->sb, "Cannot extend allocation of "
2217 					"inode 0x%lx, attribute type 0x%x, "
2218 					"because the allocation of clusters "
2219 					"failed with error code %i.", vi->i_ino,
2220 					(unsigned)le32_to_cpu(ni->type), err);
2221 		if (err != -ENOMEM && err != -ENOSPC)
2222 			err = -EIO;
2223 		goto err_out;
2224 	}
2225 	rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
2226 	if (IS_ERR(rl)) {
2227 		err = PTR_ERR(rl);
2228 		if (start < 0 || start >= allocated_size)
2229 			ntfs_error(vol->sb, "Cannot extend allocation of "
2230 					"inode 0x%lx, attribute type 0x%x, "
2231 					"because the runlist merge failed "
2232 					"with error code %i.", vi->i_ino,
2233 					(unsigned)le32_to_cpu(ni->type), err);
2234 		if (err != -ENOMEM)
2235 			err = -EIO;
2236 		if (ntfs_cluster_free_from_rl(vol, rl2)) {
2237 			ntfs_error(vol->sb, "Failed to release allocated "
2238 					"cluster(s) in error code path.  Run "
2239 					"chkdsk to recover the lost "
2240 					"cluster(s).");
2241 			NVolSetErrors(vol);
2242 		}
2243 		ntfs_free(rl2);
2244 		goto err_out;
2245 	}
2246 	ni->runlist.rl = rl;
2247 	ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
2248 			allocated_size) >> vol->cluster_size_bits);
2249 	/* Find the runlist element with which the attribute extent starts. */
2250 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
2251 	rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
2252 	BUG_ON(!rl2);
2253 	BUG_ON(!rl2->length);
2254 	BUG_ON(rl2->lcn < LCN_HOLE);
2255 	mp_rebuilt = false;
2256 	/* Get the size for the new mapping pairs array for this extent. */
2257 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
2258 	if (unlikely(mp_size <= 0)) {
2259 		err = mp_size;
2260 		if (start < 0 || start >= allocated_size)
2261 			ntfs_error(vol->sb, "Cannot extend allocation of "
2262 					"inode 0x%lx, attribute type 0x%x, "
2263 					"because determining the size for the "
2264 					"mapping pairs failed with error code "
2265 					"%i.", vi->i_ino,
2266 					(unsigned)le32_to_cpu(ni->type), err);
2267 		err = -EIO;
2268 		goto undo_alloc;
2269 	}
2270 	/* Extend the attribute record to fit the bigger mapping pairs array. */
2271 	attr_len = le32_to_cpu(a->length);
2272 	err = ntfs_attr_record_resize(m, a, mp_size +
2273 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2274 	if (unlikely(err)) {
2275 		BUG_ON(err != -ENOSPC);
2276 		// TODO: Deal with this by moving this extent to a new mft
2277 		// record or by starting a new extent in a new mft record,
2278 		// possibly by extending this extent partially and filling it
2279 		// and creating a new extent for the remainder, or by making
2280 		// other attributes non-resident and/or by moving other
2281 		// attributes out of this mft record.
2282 		if (start < 0 || start >= allocated_size)
2283 			ntfs_error(vol->sb, "Not enough space in the mft "
2284 					"record for the extended attribute "
2285 					"record.  This case is not "
2286 					"implemented yet.");
2287 		err = -EOPNOTSUPP;
2288 		goto undo_alloc;
2289 	}
2290 	mp_rebuilt = true;
2291 	/* Generate the mapping pairs array directly into the attr record. */
2292 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2293 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2294 			mp_size, rl2, ll, -1, NULL);
2295 	if (unlikely(err)) {
2296 		if (start < 0 || start >= allocated_size)
2297 			ntfs_error(vol->sb, "Cannot extend allocation of "
2298 					"inode 0x%lx, attribute type 0x%x, "
2299 					"because building the mapping pairs "
2300 					"failed with error code %i.", vi->i_ino,
2301 					(unsigned)le32_to_cpu(ni->type), err);
2302 		err = -EIO;
2303 		goto undo_alloc;
2304 	}
2305 	/* Update the highest_vcn. */
2306 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2307 			vol->cluster_size_bits) - 1);
2308 	/*
2309 	 * We now have extended the allocated size of the attribute.  Reflect
2310 	 * this in the ntfs_inode structure and the attribute record.
2311 	 */
2312 	if (a->data.non_resident.lowest_vcn) {
2313 		/*
2314 		 * We are not in the first attribute extent, switch to it, but
2315 		 * first ensure the changes will make it to disk later.
2316 		 */
2317 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2318 		mark_mft_record_dirty(ctx->ntfs_ino);
2319 		ntfs_attr_reinit_search_ctx(ctx);
2320 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2321 				CASE_SENSITIVE, 0, NULL, 0, ctx);
2322 		if (unlikely(err))
2323 			goto restore_undo_alloc;
2324 		/* @m is not used any more so no need to set it. */
2325 		a = ctx->attr;
2326 	}
2327 	write_lock_irqsave(&ni->size_lock, flags);
2328 	ni->allocated_size = new_alloc_size;
2329 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2330 	/*
2331 	 * FIXME: This would fail if @ni is a directory, $MFT, or an index,
2332 	 * since those can have sparse/compressed set.  For example can be
2333 	 * set compressed even though it is not compressed itself and in that
2334 	 * case the bit means that files are to be created compressed in the
2335 	 * directory...  At present this is ok as this code is only called for
2336 	 * regular files, and only for their $DATA attribute(s).
2337 	 * FIXME: The calculation is wrong if we created a hole above.  For now
2338 	 * it does not matter as we never create holes.
2339 	 */
2340 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2341 		ni->itype.compressed.size += new_alloc_size - allocated_size;
2342 		a->data.non_resident.compressed_size =
2343 				cpu_to_sle64(ni->itype.compressed.size);
2344 		vi->i_blocks = ni->itype.compressed.size >> 9;
2345 	} else
2346 		vi->i_blocks = new_alloc_size >> 9;
2347 	write_unlock_irqrestore(&ni->size_lock, flags);
2348 alloc_done:
2349 	if (new_data_size >= 0) {
2350 		BUG_ON(new_data_size <
2351 				sle64_to_cpu(a->data.non_resident.data_size));
2352 		a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
2353 	}
2354 flush_done:
2355 	/* Ensure the changes make it to disk. */
2356 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2357 	mark_mft_record_dirty(ctx->ntfs_ino);
2358 done:
2359 	ntfs_attr_put_search_ctx(ctx);
2360 	unmap_mft_record(base_ni);
2361 	up_write(&ni->runlist.lock);
2362 	ntfs_debug("Done, new_allocated_size 0x%llx.",
2363 			(unsigned long long)new_alloc_size);
2364 	return new_alloc_size;
2365 restore_undo_alloc:
2366 	if (start < 0 || start >= allocated_size)
2367 		ntfs_error(vol->sb, "Cannot complete extension of allocation "
2368 				"of inode 0x%lx, attribute type 0x%x, because "
2369 				"lookup of first attribute extent failed with "
2370 				"error code %i.", vi->i_ino,
2371 				(unsigned)le32_to_cpu(ni->type), err);
2372 	if (err == -ENOENT)
2373 		err = -EIO;
2374 	ntfs_attr_reinit_search_ctx(ctx);
2375 	if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
2376 			allocated_size >> vol->cluster_size_bits, NULL, 0,
2377 			ctx)) {
2378 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
2379 				"attribute in error code path.  Run chkdsk to "
2380 				"recover.");
2381 		write_lock_irqsave(&ni->size_lock, flags);
2382 		ni->allocated_size = new_alloc_size;
2383 		/*
2384 		 * FIXME: This would fail if @ni is a directory...  See above.
2385 		 * FIXME: The calculation is wrong if we created a hole above.
2386 		 * For now it does not matter as we never create holes.
2387 		 */
2388 		if (NInoSparse(ni) || NInoCompressed(ni)) {
2389 			ni->itype.compressed.size += new_alloc_size -
2390 					allocated_size;
2391 			vi->i_blocks = ni->itype.compressed.size >> 9;
2392 		} else
2393 			vi->i_blocks = new_alloc_size >> 9;
2394 		write_unlock_irqrestore(&ni->size_lock, flags);
2395 		ntfs_attr_put_search_ctx(ctx);
2396 		unmap_mft_record(base_ni);
2397 		up_write(&ni->runlist.lock);
2398 		/*
2399 		 * The only thing that is now wrong is the allocated size of the
2400 		 * base attribute extent which chkdsk should be able to fix.
2401 		 */
2402 		NVolSetErrors(vol);
2403 		return err;
2404 	}
2405 	ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
2406 			(allocated_size >> vol->cluster_size_bits) - 1);
2407 undo_alloc:
2408 	ll = allocated_size >> vol->cluster_size_bits;
2409 	if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
2410 		ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
2411 				"in error code path.  Run chkdsk to recover "
2412 				"the lost cluster(s).");
2413 		NVolSetErrors(vol);
2414 	}
2415 	m = ctx->mrec;
2416 	a = ctx->attr;
2417 	/*
2418 	 * If the runlist truncation fails and/or the search context is no
2419 	 * longer valid, we cannot resize the attribute record or build the
2420 	 * mapping pairs array thus we mark the inode bad so that no access to
2421 	 * the freed clusters can happen.
2422 	 */
2423 	if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
2424 		ntfs_error(vol->sb, "Failed to %s in error code path.  Run "
2425 				"chkdsk to recover.", IS_ERR(m) ?
2426 				"restore attribute search context" :
2427 				"truncate attribute runlist");
2428 		NVolSetErrors(vol);
2429 	} else if (mp_rebuilt) {
2430 		if (ntfs_attr_record_resize(m, a, attr_len)) {
2431 			ntfs_error(vol->sb, "Failed to restore attribute "
2432 					"record in error code path.  Run "
2433 					"chkdsk to recover.");
2434 			NVolSetErrors(vol);
2435 		} else /* if (success) */ {
2436 			if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
2437 					a->data.non_resident.
2438 					mapping_pairs_offset), attr_len -
2439 					le16_to_cpu(a->data.non_resident.
2440 					mapping_pairs_offset), rl2, ll, -1,
2441 					NULL)) {
2442 				ntfs_error(vol->sb, "Failed to restore "
2443 						"mapping pairs array in error "
2444 						"code path.  Run chkdsk to "
2445 						"recover.");
2446 				NVolSetErrors(vol);
2447 			}
2448 			flush_dcache_mft_record_page(ctx->ntfs_ino);
2449 			mark_mft_record_dirty(ctx->ntfs_ino);
2450 		}
2451 	}
2452 err_out:
2453 	if (ctx)
2454 		ntfs_attr_put_search_ctx(ctx);
2455 	if (m)
2456 		unmap_mft_record(base_ni);
2457 	up_write(&ni->runlist.lock);
2458 conv_err_out:
2459 	ntfs_debug("Failed.  Returning error code %i.", err);
2460 	return err;
2461 }
2462 
2463 /**
2464  * ntfs_attr_set - fill (a part of) an attribute with a byte
2465  * @ni:		ntfs inode describing the attribute to fill
2466  * @ofs:	offset inside the attribute at which to start to fill
2467  * @cnt:	number of bytes to fill
2468  * @val:	the unsigned 8-bit value with which to fill the attribute
2469  *
2470  * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
2471  * byte offset @ofs inside the attribute with the constant byte @val.
2472  *
2473  * This function is effectively like memset() applied to an ntfs attribute.
2474  * Note thie function actually only operates on the page cache pages belonging
2475  * to the ntfs attribute and it marks them dirty after doing the memset().
2476  * Thus it relies on the vm dirty page write code paths to cause the modified
2477  * pages to be written to the mft record/disk.
2478  *
2479  * Return 0 on success and -errno on error.  An error code of -ESPIPE means
2480  * that @ofs + @cnt were outside the end of the attribute and no write was
2481  * performed.
2482  */
2483 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
2484 {
2485 	ntfs_volume *vol = ni->vol;
2486 	struct address_space *mapping;
2487 	struct page *page;
2488 	u8 *kaddr;
2489 	pgoff_t idx, end;
2490 	unsigned start_ofs, end_ofs, size;
2491 
2492 	ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
2493 			(long long)ofs, (long long)cnt, val);
2494 	BUG_ON(ofs < 0);
2495 	BUG_ON(cnt < 0);
2496 	if (!cnt)
2497 		goto done;
2498 	/*
2499 	 * FIXME: Compressed and encrypted attributes are not supported when
2500 	 * writing and we should never have gotten here for them.
2501 	 */
2502 	BUG_ON(NInoCompressed(ni));
2503 	BUG_ON(NInoEncrypted(ni));
2504 	mapping = VFS_I(ni)->i_mapping;
2505 	/* Work out the starting index and page offset. */
2506 	idx = ofs >> PAGE_SHIFT;
2507 	start_ofs = ofs & ~PAGE_MASK;
2508 	/* Work out the ending index and page offset. */
2509 	end = ofs + cnt;
2510 	end_ofs = end & ~PAGE_MASK;
2511 	/* If the end is outside the inode size return -ESPIPE. */
2512 	if (unlikely(end > i_size_read(VFS_I(ni)))) {
2513 		ntfs_error(vol->sb, "Request exceeds end of attribute.");
2514 		return -ESPIPE;
2515 	}
2516 	end >>= PAGE_SHIFT;
2517 	/* If there is a first partial page, need to do it the slow way. */
2518 	if (start_ofs) {
2519 		page = read_mapping_page(mapping, idx, NULL);
2520 		if (IS_ERR(page)) {
2521 			ntfs_error(vol->sb, "Failed to read first partial "
2522 					"page (error, index 0x%lx).", idx);
2523 			return PTR_ERR(page);
2524 		}
2525 		/*
2526 		 * If the last page is the same as the first page, need to
2527 		 * limit the write to the end offset.
2528 		 */
2529 		size = PAGE_SIZE;
2530 		if (idx == end)
2531 			size = end_ofs;
2532 		kaddr = kmap_atomic(page);
2533 		memset(kaddr + start_ofs, val, size - start_ofs);
2534 		flush_dcache_page(page);
2535 		kunmap_atomic(kaddr);
2536 		set_page_dirty(page);
2537 		put_page(page);
2538 		balance_dirty_pages_ratelimited(mapping);
2539 		cond_resched();
2540 		if (idx == end)
2541 			goto done;
2542 		idx++;
2543 	}
2544 	/* Do the whole pages the fast way. */
2545 	for (; idx < end; idx++) {
2546 		/* Find or create the current page.  (The page is locked.) */
2547 		page = grab_cache_page(mapping, idx);
2548 		if (unlikely(!page)) {
2549 			ntfs_error(vol->sb, "Insufficient memory to grab "
2550 					"page (index 0x%lx).", idx);
2551 			return -ENOMEM;
2552 		}
2553 		kaddr = kmap_atomic(page);
2554 		memset(kaddr, val, PAGE_SIZE);
2555 		flush_dcache_page(page);
2556 		kunmap_atomic(kaddr);
2557 		/*
2558 		 * If the page has buffers, mark them uptodate since buffer
2559 		 * state and not page state is definitive in 2.6 kernels.
2560 		 */
2561 		if (page_has_buffers(page)) {
2562 			struct buffer_head *bh, *head;
2563 
2564 			bh = head = page_buffers(page);
2565 			do {
2566 				set_buffer_uptodate(bh);
2567 			} while ((bh = bh->b_this_page) != head);
2568 		}
2569 		/* Now that buffers are uptodate, set the page uptodate, too. */
2570 		SetPageUptodate(page);
2571 		/*
2572 		 * Set the page and all its buffers dirty and mark the inode
2573 		 * dirty, too.  The VM will write the page later on.
2574 		 */
2575 		set_page_dirty(page);
2576 		/* Finally unlock and release the page. */
2577 		unlock_page(page);
2578 		put_page(page);
2579 		balance_dirty_pages_ratelimited(mapping);
2580 		cond_resched();
2581 	}
2582 	/* If there is a last partial page, need to do it the slow way. */
2583 	if (end_ofs) {
2584 		page = read_mapping_page(mapping, idx, NULL);
2585 		if (IS_ERR(page)) {
2586 			ntfs_error(vol->sb, "Failed to read last partial page "
2587 					"(error, index 0x%lx).", idx);
2588 			return PTR_ERR(page);
2589 		}
2590 		kaddr = kmap_atomic(page);
2591 		memset(kaddr, val, end_ofs);
2592 		flush_dcache_page(page);
2593 		kunmap_atomic(kaddr);
2594 		set_page_dirty(page);
2595 		put_page(page);
2596 		balance_dirty_pages_ratelimited(mapping);
2597 		cond_resched();
2598 	}
2599 done:
2600 	ntfs_debug("Done.");
2601 	return 0;
2602 }
2603 
2604 #endif /* NTFS_RW */
2605