1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2002 Richard Russon 7 */ 8 9 #include <linux/buffer_head.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 15 #include "attrib.h" 16 #include "debug.h" 17 #include "layout.h" 18 #include "lcnalloc.h" 19 #include "malloc.h" 20 #include "mft.h" 21 #include "ntfs.h" 22 #include "types.h" 23 24 /** 25 * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode 26 * @ni: ntfs inode for which to map (part of) a runlist 27 * @vcn: map runlist part containing this vcn 28 * @ctx: active attribute search context if present or NULL if not 29 * 30 * Map the part of a runlist containing the @vcn of the ntfs inode @ni. 31 * 32 * If @ctx is specified, it is an active search context of @ni and its base mft 33 * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped 34 * runlist fragments and allows their mapping. If you do not have the mft 35 * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() 36 * will perform the necessary mapping and unmapping. 37 * 38 * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and 39 * restores it before returning. Thus, @ctx will be left pointing to the same 40 * attribute on return as on entry. However, the actual pointers in @ctx may 41 * point to different memory locations on return, so you must remember to reset 42 * any cached pointers from the @ctx, i.e. after the call to 43 * ntfs_map_runlist_nolock(), you will probably want to do: 44 * m = ctx->mrec; 45 * a = ctx->attr; 46 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that 47 * you cache ctx->mrec in a variable @m of type MFT_RECORD *. 48 * 49 * Return 0 on success and -errno on error. There is one special error code 50 * which is not an error as such. This is -ENOENT. It means that @vcn is out 51 * of bounds of the runlist. 52 * 53 * Note the runlist can be NULL after this function returns if @vcn is zero and 54 * the attribute has zero allocated size, i.e. there simply is no runlist. 55 * 56 * WARNING: If @ctx is supplied, regardless of whether success or failure is 57 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx 58 * is no longer valid, i.e. you need to either call 59 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. 60 * In that case PTR_ERR(@ctx->mrec) will give you the error code for 61 * why the mapping of the old inode failed. 62 * 63 * Locking: - The runlist described by @ni must be locked for writing on entry 64 * and is locked on return. Note the runlist will be modified. 65 * - If @ctx is NULL, the base mft record of @ni must not be mapped on 66 * entry and it will be left unmapped on return. 67 * - If @ctx is not NULL, the base mft record must be mapped on entry 68 * and it will be left mapped on return. 69 */ 70 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) 71 { 72 VCN end_vcn; 73 unsigned long flags; 74 ntfs_inode *base_ni; 75 MFT_RECORD *m; 76 ATTR_RECORD *a; 77 runlist_element *rl; 78 struct page *put_this_page = NULL; 79 int err = 0; 80 bool ctx_is_temporary, ctx_needs_reset; 81 ntfs_attr_search_ctx old_ctx = { NULL, }; 82 83 ntfs_debug("Mapping runlist part containing vcn 0x%llx.", 84 (unsigned long long)vcn); 85 if (!NInoAttr(ni)) 86 base_ni = ni; 87 else 88 base_ni = ni->ext.base_ntfs_ino; 89 if (!ctx) { 90 ctx_is_temporary = ctx_needs_reset = true; 91 m = map_mft_record(base_ni); 92 if (IS_ERR(m)) 93 return PTR_ERR(m); 94 ctx = ntfs_attr_get_search_ctx(base_ni, m); 95 if (unlikely(!ctx)) { 96 err = -ENOMEM; 97 goto err_out; 98 } 99 } else { 100 VCN allocated_size_vcn; 101 102 BUG_ON(IS_ERR(ctx->mrec)); 103 a = ctx->attr; 104 BUG_ON(!a->non_resident); 105 ctx_is_temporary = false; 106 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 107 read_lock_irqsave(&ni->size_lock, flags); 108 allocated_size_vcn = ni->allocated_size >> 109 ni->vol->cluster_size_bits; 110 read_unlock_irqrestore(&ni->size_lock, flags); 111 if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) 112 end_vcn = allocated_size_vcn - 1; 113 /* 114 * If we already have the attribute extent containing @vcn in 115 * @ctx, no need to look it up again. We slightly cheat in 116 * that if vcn exceeds the allocated size, we will refuse to 117 * map the runlist below, so there is definitely no need to get 118 * the right attribute extent. 119 */ 120 if (vcn >= allocated_size_vcn || (a->type == ni->type && 121 a->name_length == ni->name_len && 122 !memcmp((u8*)a + le16_to_cpu(a->name_offset), 123 ni->name, ni->name_len) && 124 sle64_to_cpu(a->data.non_resident.lowest_vcn) 125 <= vcn && end_vcn >= vcn)) 126 ctx_needs_reset = false; 127 else { 128 /* Save the old search context. */ 129 old_ctx = *ctx; 130 /* 131 * If the currently mapped (extent) inode is not the 132 * base inode we will unmap it when we reinitialize the 133 * search context which means we need to get a 134 * reference to the page containing the mapped mft 135 * record so we do not accidentally drop changes to the 136 * mft record when it has not been marked dirty yet. 137 */ 138 if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != 139 old_ctx.base_ntfs_ino) { 140 put_this_page = old_ctx.ntfs_ino->page; 141 get_page(put_this_page); 142 } 143 /* 144 * Reinitialize the search context so we can lookup the 145 * needed attribute extent. 146 */ 147 ntfs_attr_reinit_search_ctx(ctx); 148 ctx_needs_reset = true; 149 } 150 } 151 if (ctx_needs_reset) { 152 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 153 CASE_SENSITIVE, vcn, NULL, 0, ctx); 154 if (unlikely(err)) { 155 if (err == -ENOENT) 156 err = -EIO; 157 goto err_out; 158 } 159 BUG_ON(!ctx->attr->non_resident); 160 } 161 a = ctx->attr; 162 /* 163 * Only decompress the mapping pairs if @vcn is inside it. Otherwise 164 * we get into problems when we try to map an out of bounds vcn because 165 * we then try to map the already mapped runlist fragment and 166 * ntfs_mapping_pairs_decompress() fails. 167 */ 168 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; 169 if (unlikely(vcn && vcn >= end_vcn)) { 170 err = -ENOENT; 171 goto err_out; 172 } 173 rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl); 174 if (IS_ERR(rl)) 175 err = PTR_ERR(rl); 176 else 177 ni->runlist.rl = rl; 178 err_out: 179 if (ctx_is_temporary) { 180 if (likely(ctx)) 181 ntfs_attr_put_search_ctx(ctx); 182 unmap_mft_record(base_ni); 183 } else if (ctx_needs_reset) { 184 /* 185 * If there is no attribute list, restoring the search context 186 * is accomplished simply by copying the saved context back over 187 * the caller supplied context. If there is an attribute list, 188 * things are more complicated as we need to deal with mapping 189 * of mft records and resulting potential changes in pointers. 190 */ 191 if (NInoAttrList(base_ni)) { 192 /* 193 * If the currently mapped (extent) inode is not the 194 * one we had before, we need to unmap it and map the 195 * old one. 196 */ 197 if (ctx->ntfs_ino != old_ctx.ntfs_ino) { 198 /* 199 * If the currently mapped inode is not the 200 * base inode, unmap it. 201 */ 202 if (ctx->base_ntfs_ino && ctx->ntfs_ino != 203 ctx->base_ntfs_ino) { 204 unmap_extent_mft_record(ctx->ntfs_ino); 205 ctx->mrec = ctx->base_mrec; 206 BUG_ON(!ctx->mrec); 207 } 208 /* 209 * If the old mapped inode is not the base 210 * inode, map it. 211 */ 212 if (old_ctx.base_ntfs_ino && 213 old_ctx.ntfs_ino != 214 old_ctx.base_ntfs_ino) { 215 retry_map: 216 ctx->mrec = map_mft_record( 217 old_ctx.ntfs_ino); 218 /* 219 * Something bad has happened. If out 220 * of memory retry till it succeeds. 221 * Any other errors are fatal and we 222 * return the error code in ctx->mrec. 223 * Let the caller deal with it... We 224 * just need to fudge things so the 225 * caller can reinit and/or put the 226 * search context safely. 227 */ 228 if (IS_ERR(ctx->mrec)) { 229 if (PTR_ERR(ctx->mrec) == 230 -ENOMEM) { 231 schedule(); 232 goto retry_map; 233 } else 234 old_ctx.ntfs_ino = 235 old_ctx. 236 base_ntfs_ino; 237 } 238 } 239 } 240 /* Update the changed pointers in the saved context. */ 241 if (ctx->mrec != old_ctx.mrec) { 242 if (!IS_ERR(ctx->mrec)) 243 old_ctx.attr = (ATTR_RECORD*)( 244 (u8*)ctx->mrec + 245 ((u8*)old_ctx.attr - 246 (u8*)old_ctx.mrec)); 247 old_ctx.mrec = ctx->mrec; 248 } 249 } 250 /* Restore the search context to the saved one. */ 251 *ctx = old_ctx; 252 /* 253 * We drop the reference on the page we took earlier. In the 254 * case that IS_ERR(ctx->mrec) is true this means we might lose 255 * some changes to the mft record that had been made between 256 * the last time it was marked dirty/written out and now. This 257 * at this stage is not a problem as the mapping error is fatal 258 * enough that the mft record cannot be written out anyway and 259 * the caller is very likely to shutdown the whole inode 260 * immediately and mark the volume dirty for chkdsk to pick up 261 * the pieces anyway. 262 */ 263 if (put_this_page) 264 put_page(put_this_page); 265 } 266 return err; 267 } 268 269 /** 270 * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode 271 * @ni: ntfs inode for which to map (part of) a runlist 272 * @vcn: map runlist part containing this vcn 273 * 274 * Map the part of a runlist containing the @vcn of the ntfs inode @ni. 275 * 276 * Return 0 on success and -errno on error. There is one special error code 277 * which is not an error as such. This is -ENOENT. It means that @vcn is out 278 * of bounds of the runlist. 279 * 280 * Locking: - The runlist must be unlocked on entry and is unlocked on return. 281 * - This function takes the runlist lock for writing and may modify 282 * the runlist. 283 */ 284 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) 285 { 286 int err = 0; 287 288 down_write(&ni->runlist.lock); 289 /* Make sure someone else didn't do the work while we were sleeping. */ 290 if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= 291 LCN_RL_NOT_MAPPED)) 292 err = ntfs_map_runlist_nolock(ni, vcn, NULL); 293 up_write(&ni->runlist.lock); 294 return err; 295 } 296 297 /** 298 * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode 299 * @ni: ntfs inode of the attribute whose runlist to search 300 * @vcn: vcn to convert 301 * @write_locked: true if the runlist is locked for writing 302 * 303 * Find the virtual cluster number @vcn in the runlist of the ntfs attribute 304 * described by the ntfs inode @ni and return the corresponding logical cluster 305 * number (lcn). 306 * 307 * If the @vcn is not mapped yet, the attempt is made to map the attribute 308 * extent containing the @vcn and the vcn to lcn conversion is retried. 309 * 310 * If @write_locked is true the caller has locked the runlist for writing and 311 * if false for reading. 312 * 313 * Since lcns must be >= 0, we use negative return codes with special meaning: 314 * 315 * Return code Meaning / Description 316 * ========================================== 317 * LCN_HOLE Hole / not allocated on disk. 318 * LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds. 319 * LCN_ENOMEM Not enough memory to map runlist. 320 * LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc). 321 * 322 * Locking: - The runlist must be locked on entry and is left locked on return. 323 * - If @write_locked is 'false', i.e. the runlist is locked for reading, 324 * the lock may be dropped inside the function so you cannot rely on 325 * the runlist still being the same when this function returns. 326 */ 327 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, 328 const bool write_locked) 329 { 330 LCN lcn; 331 unsigned long flags; 332 bool is_retry = false; 333 334 BUG_ON(!ni); 335 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", 336 ni->mft_no, (unsigned long long)vcn, 337 write_locked ? "write" : "read"); 338 BUG_ON(!NInoNonResident(ni)); 339 BUG_ON(vcn < 0); 340 if (!ni->runlist.rl) { 341 read_lock_irqsave(&ni->size_lock, flags); 342 if (!ni->allocated_size) { 343 read_unlock_irqrestore(&ni->size_lock, flags); 344 return LCN_ENOENT; 345 } 346 read_unlock_irqrestore(&ni->size_lock, flags); 347 } 348 retry_remap: 349 /* Convert vcn to lcn. If that fails map the runlist and retry once. */ 350 lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn); 351 if (likely(lcn >= LCN_HOLE)) { 352 ntfs_debug("Done, lcn 0x%llx.", (long long)lcn); 353 return lcn; 354 } 355 if (lcn != LCN_RL_NOT_MAPPED) { 356 if (lcn != LCN_ENOENT) 357 lcn = LCN_EIO; 358 } else if (!is_retry) { 359 int err; 360 361 if (!write_locked) { 362 up_read(&ni->runlist.lock); 363 down_write(&ni->runlist.lock); 364 if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != 365 LCN_RL_NOT_MAPPED)) { 366 up_write(&ni->runlist.lock); 367 down_read(&ni->runlist.lock); 368 goto retry_remap; 369 } 370 } 371 err = ntfs_map_runlist_nolock(ni, vcn, NULL); 372 if (!write_locked) { 373 up_write(&ni->runlist.lock); 374 down_read(&ni->runlist.lock); 375 } 376 if (likely(!err)) { 377 is_retry = true; 378 goto retry_remap; 379 } 380 if (err == -ENOENT) 381 lcn = LCN_ENOENT; 382 else if (err == -ENOMEM) 383 lcn = LCN_ENOMEM; 384 else 385 lcn = LCN_EIO; 386 } 387 if (lcn != LCN_ENOENT) 388 ntfs_error(ni->vol->sb, "Failed with error code %lli.", 389 (long long)lcn); 390 return lcn; 391 } 392 393 /** 394 * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode 395 * @ni: ntfs inode describing the runlist to search 396 * @vcn: vcn to find 397 * @ctx: active attribute search context if present or NULL if not 398 * 399 * Find the virtual cluster number @vcn in the runlist described by the ntfs 400 * inode @ni and return the address of the runlist element containing the @vcn. 401 * 402 * If the @vcn is not mapped yet, the attempt is made to map the attribute 403 * extent containing the @vcn and the vcn to lcn conversion is retried. 404 * 405 * If @ctx is specified, it is an active search context of @ni and its base mft 406 * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped 407 * runlist fragments and allows their mapping. If you do not have the mft 408 * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() 409 * will perform the necessary mapping and unmapping. 410 * 411 * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and 412 * restores it before returning. Thus, @ctx will be left pointing to the same 413 * attribute on return as on entry. However, the actual pointers in @ctx may 414 * point to different memory locations on return, so you must remember to reset 415 * any cached pointers from the @ctx, i.e. after the call to 416 * ntfs_attr_find_vcn_nolock(), you will probably want to do: 417 * m = ctx->mrec; 418 * a = ctx->attr; 419 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that 420 * you cache ctx->mrec in a variable @m of type MFT_RECORD *. 421 * Note you need to distinguish between the lcn of the returned runlist element 422 * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on 423 * read and allocate clusters on write. 424 * 425 * Return the runlist element containing the @vcn on success and 426 * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR() 427 * to decide if the return is success or failure and PTR_ERR() to get to the 428 * error code if IS_ERR() is true. 429 * 430 * The possible error return codes are: 431 * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. 432 * -ENOMEM - Not enough memory to map runlist. 433 * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). 434 * 435 * WARNING: If @ctx is supplied, regardless of whether success or failure is 436 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx 437 * is no longer valid, i.e. you need to either call 438 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. 439 * In that case PTR_ERR(@ctx->mrec) will give you the error code for 440 * why the mapping of the old inode failed. 441 * 442 * Locking: - The runlist described by @ni must be locked for writing on entry 443 * and is locked on return. Note the runlist may be modified when 444 * needed runlist fragments need to be mapped. 445 * - If @ctx is NULL, the base mft record of @ni must not be mapped on 446 * entry and it will be left unmapped on return. 447 * - If @ctx is not NULL, the base mft record must be mapped on entry 448 * and it will be left mapped on return. 449 */ 450 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, 451 ntfs_attr_search_ctx *ctx) 452 { 453 unsigned long flags; 454 runlist_element *rl; 455 int err = 0; 456 bool is_retry = false; 457 458 BUG_ON(!ni); 459 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", 460 ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); 461 BUG_ON(!NInoNonResident(ni)); 462 BUG_ON(vcn < 0); 463 if (!ni->runlist.rl) { 464 read_lock_irqsave(&ni->size_lock, flags); 465 if (!ni->allocated_size) { 466 read_unlock_irqrestore(&ni->size_lock, flags); 467 return ERR_PTR(-ENOENT); 468 } 469 read_unlock_irqrestore(&ni->size_lock, flags); 470 } 471 retry_remap: 472 rl = ni->runlist.rl; 473 if (likely(rl && vcn >= rl[0].vcn)) { 474 while (likely(rl->length)) { 475 if (unlikely(vcn < rl[1].vcn)) { 476 if (likely(rl->lcn >= LCN_HOLE)) { 477 ntfs_debug("Done."); 478 return rl; 479 } 480 break; 481 } 482 rl++; 483 } 484 if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { 485 if (likely(rl->lcn == LCN_ENOENT)) 486 err = -ENOENT; 487 else 488 err = -EIO; 489 } 490 } 491 if (!err && !is_retry) { 492 /* 493 * If the search context is invalid we cannot map the unmapped 494 * region. 495 */ 496 if (IS_ERR(ctx->mrec)) 497 err = PTR_ERR(ctx->mrec); 498 else { 499 /* 500 * The @vcn is in an unmapped region, map the runlist 501 * and retry. 502 */ 503 err = ntfs_map_runlist_nolock(ni, vcn, ctx); 504 if (likely(!err)) { 505 is_retry = true; 506 goto retry_remap; 507 } 508 } 509 if (err == -EINVAL) 510 err = -EIO; 511 } else if (!err) 512 err = -EIO; 513 if (err != -ENOENT) 514 ntfs_error(ni->vol->sb, "Failed with error code %i.", err); 515 return ERR_PTR(err); 516 } 517 518 /** 519 * ntfs_attr_find - find (next) attribute in mft record 520 * @type: attribute type to find 521 * @name: attribute name to find (optional, i.e. NULL means don't care) 522 * @name_len: attribute name length (only needed if @name present) 523 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 524 * @val: attribute value to find (optional, resident attributes only) 525 * @val_len: attribute value length 526 * @ctx: search context with mft record and attribute to search from 527 * 528 * You should not need to call this function directly. Use ntfs_attr_lookup() 529 * instead. 530 * 531 * ntfs_attr_find() takes a search context @ctx as parameter and searches the 532 * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an 533 * attribute of @type, optionally @name and @val. 534 * 535 * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will 536 * point to the found attribute. 537 * 538 * If the attribute is not found, ntfs_attr_find() returns -ENOENT and 539 * @ctx->attr will point to the attribute before which the attribute being 540 * searched for would need to be inserted if such an action were to be desired. 541 * 542 * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is 543 * undefined and in particular do not rely on it not changing. 544 * 545 * If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it 546 * is 'false', the search begins after @ctx->attr. 547 * 548 * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and 549 * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record 550 * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at 551 * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case 552 * sensitive. When @name is present, @name_len is the @name length in Unicode 553 * characters. 554 * 555 * If @name is not present (NULL), we assume that the unnamed attribute is 556 * being searched for. 557 * 558 * Finally, the resident attribute value @val is looked for, if present. If 559 * @val is not present (NULL), @val_len is ignored. 560 * 561 * ntfs_attr_find() only searches the specified mft record and it ignores the 562 * presence of an attribute list attribute (unless it is the one being searched 563 * for, obviously). If you need to take attribute lists into consideration, 564 * use ntfs_attr_lookup() instead (see below). This also means that you cannot 565 * use ntfs_attr_find() to search for extent records of non-resident 566 * attributes, as extents with lowest_vcn != 0 are usually described by the 567 * attribute list attribute only. - Note that it is possible that the first 568 * extent is only in the attribute list while the last extent is in the base 569 * mft record, so do not rely on being able to find the first extent in the 570 * base mft record. 571 * 572 * Warning: Never use @val when looking for attribute types which can be 573 * non-resident as this most likely will result in a crash! 574 */ 575 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, 576 const u32 name_len, const IGNORE_CASE_BOOL ic, 577 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) 578 { 579 ATTR_RECORD *a; 580 ntfs_volume *vol = ctx->ntfs_ino->vol; 581 ntfschar *upcase = vol->upcase; 582 u32 upcase_len = vol->upcase_len; 583 584 /* 585 * Iterate over attributes in mft record starting at @ctx->attr, or the 586 * attribute following that, if @ctx->is_first is 'true'. 587 */ 588 if (ctx->is_first) { 589 a = ctx->attr; 590 ctx->is_first = false; 591 } else 592 a = (ATTR_RECORD*)((u8*)ctx->attr + 593 le32_to_cpu(ctx->attr->length)); 594 for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { 595 u8 *mrec_end = (u8 *)ctx->mrec + 596 le32_to_cpu(ctx->mrec->bytes_allocated); 597 u8 *name_end = (u8 *)a + le16_to_cpu(a->name_offset) + 598 a->name_length * sizeof(ntfschar); 599 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > mrec_end || 600 name_end > mrec_end) 601 break; 602 ctx->attr = a; 603 if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || 604 a->type == AT_END)) 605 return -ENOENT; 606 if (unlikely(!a->length)) 607 break; 608 if (a->type != type) 609 continue; 610 /* 611 * If @name is present, compare the two names. If @name is 612 * missing, assume we want an unnamed attribute. 613 */ 614 if (!name) { 615 /* The search failed if the found attribute is named. */ 616 if (a->name_length) 617 return -ENOENT; 618 } else if (!ntfs_are_names_equal(name, name_len, 619 (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), 620 a->name_length, ic, upcase, upcase_len)) { 621 register int rc; 622 623 rc = ntfs_collate_names(name, name_len, 624 (ntfschar*)((u8*)a + 625 le16_to_cpu(a->name_offset)), 626 a->name_length, 1, IGNORE_CASE, 627 upcase, upcase_len); 628 /* 629 * If @name collates before a->name, there is no 630 * matching attribute. 631 */ 632 if (rc == -1) 633 return -ENOENT; 634 /* If the strings are not equal, continue search. */ 635 if (rc) 636 continue; 637 rc = ntfs_collate_names(name, name_len, 638 (ntfschar*)((u8*)a + 639 le16_to_cpu(a->name_offset)), 640 a->name_length, 1, CASE_SENSITIVE, 641 upcase, upcase_len); 642 if (rc == -1) 643 return -ENOENT; 644 if (rc) 645 continue; 646 } 647 /* 648 * The names match or @name not present and attribute is 649 * unnamed. If no @val specified, we have found the attribute 650 * and are done. 651 */ 652 if (!val) 653 return 0; 654 /* @val is present; compare values. */ 655 else { 656 register int rc; 657 658 rc = memcmp(val, (u8*)a + le16_to_cpu( 659 a->data.resident.value_offset), 660 min_t(u32, val_len, le32_to_cpu( 661 a->data.resident.value_length))); 662 /* 663 * If @val collates before the current attribute's 664 * value, there is no matching attribute. 665 */ 666 if (!rc) { 667 register u32 avl; 668 669 avl = le32_to_cpu( 670 a->data.resident.value_length); 671 if (val_len == avl) 672 return 0; 673 if (val_len < avl) 674 return -ENOENT; 675 } else if (rc < 0) 676 return -ENOENT; 677 } 678 } 679 ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk."); 680 NVolSetErrors(vol); 681 return -EIO; 682 } 683 684 /** 685 * load_attribute_list - load an attribute list into memory 686 * @vol: ntfs volume from which to read 687 * @runlist: runlist of the attribute list 688 * @al_start: destination buffer 689 * @size: size of the destination buffer in bytes 690 * @initialized_size: initialized size of the attribute list 691 * 692 * Walk the runlist @runlist and load all clusters from it copying them into 693 * the linear buffer @al. The maximum number of bytes copied to @al is @size 694 * bytes. Note, @size does not need to be a multiple of the cluster size. If 695 * @initialized_size is less than @size, the region in @al between 696 * @initialized_size and @size will be zeroed and not read from disk. 697 * 698 * Return 0 on success or -errno on error. 699 */ 700 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, 701 const s64 size, const s64 initialized_size) 702 { 703 LCN lcn; 704 u8 *al = al_start; 705 u8 *al_end = al + initialized_size; 706 runlist_element *rl; 707 struct buffer_head *bh; 708 struct super_block *sb; 709 unsigned long block_size; 710 unsigned long block, max_block; 711 int err = 0; 712 unsigned char block_size_bits; 713 714 ntfs_debug("Entering."); 715 if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || 716 initialized_size > size) 717 return -EINVAL; 718 if (!initialized_size) { 719 memset(al, 0, size); 720 return 0; 721 } 722 sb = vol->sb; 723 block_size = sb->s_blocksize; 724 block_size_bits = sb->s_blocksize_bits; 725 down_read(&runlist->lock); 726 rl = runlist->rl; 727 if (!rl) { 728 ntfs_error(sb, "Cannot read attribute list since runlist is " 729 "missing."); 730 goto err_out; 731 } 732 /* Read all clusters specified by the runlist one run at a time. */ 733 while (rl->length) { 734 lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); 735 ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", 736 (unsigned long long)rl->vcn, 737 (unsigned long long)lcn); 738 /* The attribute list cannot be sparse. */ 739 if (lcn < 0) { 740 ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot " 741 "read attribute list."); 742 goto err_out; 743 } 744 block = lcn << vol->cluster_size_bits >> block_size_bits; 745 /* Read the run from device in chunks of block_size bytes. */ 746 max_block = block + (rl->length << vol->cluster_size_bits >> 747 block_size_bits); 748 ntfs_debug("max_block = 0x%lx.", max_block); 749 do { 750 ntfs_debug("Reading block = 0x%lx.", block); 751 bh = sb_bread(sb, block); 752 if (!bh) { 753 ntfs_error(sb, "sb_bread() failed. Cannot " 754 "read attribute list."); 755 goto err_out; 756 } 757 if (al + block_size >= al_end) 758 goto do_final; 759 memcpy(al, bh->b_data, block_size); 760 brelse(bh); 761 al += block_size; 762 } while (++block < max_block); 763 rl++; 764 } 765 if (initialized_size < size) { 766 initialize: 767 memset(al_start + initialized_size, 0, size - initialized_size); 768 } 769 done: 770 up_read(&runlist->lock); 771 return err; 772 do_final: 773 if (al < al_end) { 774 /* 775 * Partial block. 776 * 777 * Note: The attribute list can be smaller than its allocation 778 * by multiple clusters. This has been encountered by at least 779 * two people running Windows XP, thus we cannot do any 780 * truncation sanity checking here. (AIA) 781 */ 782 memcpy(al, bh->b_data, al_end - al); 783 brelse(bh); 784 if (initialized_size < size) 785 goto initialize; 786 goto done; 787 } 788 brelse(bh); 789 /* Real overflow! */ 790 ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " 791 "is truncated."); 792 err_out: 793 err = -EIO; 794 goto done; 795 } 796 797 /** 798 * ntfs_external_attr_find - find an attribute in the attribute list of an inode 799 * @type: attribute type to find 800 * @name: attribute name to find (optional, i.e. NULL means don't care) 801 * @name_len: attribute name length (only needed if @name present) 802 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 803 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) 804 * @val: attribute value to find (optional, resident attributes only) 805 * @val_len: attribute value length 806 * @ctx: search context with mft record and attribute to search from 807 * 808 * You should not need to call this function directly. Use ntfs_attr_lookup() 809 * instead. 810 * 811 * Find an attribute by searching the attribute list for the corresponding 812 * attribute list entry. Having found the entry, map the mft record if the 813 * attribute is in a different mft record/inode, ntfs_attr_find() the attribute 814 * in there and return it. 815 * 816 * On first search @ctx->ntfs_ino must be the base mft record and @ctx must 817 * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent 818 * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is 819 * then the base inode). 820 * 821 * After finishing with the attribute/mft record you need to call 822 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any 823 * mapped inodes, etc). 824 * 825 * If the attribute is found, ntfs_external_attr_find() returns 0 and 826 * @ctx->attr will point to the found attribute. @ctx->mrec will point to the 827 * mft record in which @ctx->attr is located and @ctx->al_entry will point to 828 * the attribute list entry for the attribute. 829 * 830 * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and 831 * @ctx->attr will point to the attribute in the base mft record before which 832 * the attribute being searched for would need to be inserted if such an action 833 * were to be desired. @ctx->mrec will point to the mft record in which 834 * @ctx->attr is located and @ctx->al_entry will point to the attribute list 835 * entry of the attribute before which the attribute being searched for would 836 * need to be inserted if such an action were to be desired. 837 * 838 * Thus to insert the not found attribute, one wants to add the attribute to 839 * @ctx->mrec (the base mft record) and if there is not enough space, the 840 * attribute should be placed in a newly allocated extent mft record. The 841 * attribute list entry for the inserted attribute should be inserted in the 842 * attribute list attribute at @ctx->al_entry. 843 * 844 * On actual error, ntfs_external_attr_find() returns -EIO. In this case 845 * @ctx->attr is undefined and in particular do not rely on it not changing. 846 */ 847 static int ntfs_external_attr_find(const ATTR_TYPE type, 848 const ntfschar *name, const u32 name_len, 849 const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, 850 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) 851 { 852 ntfs_inode *base_ni, *ni; 853 ntfs_volume *vol; 854 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 855 u8 *al_start, *al_end; 856 ATTR_RECORD *a; 857 ntfschar *al_name; 858 u32 al_name_len; 859 int err = 0; 860 static const char *es = " Unmount and run chkdsk."; 861 862 ni = ctx->ntfs_ino; 863 base_ni = ctx->base_ntfs_ino; 864 ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); 865 if (!base_ni) { 866 /* First call happens with the base mft record. */ 867 base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; 868 ctx->base_mrec = ctx->mrec; 869 } 870 if (ni == base_ni) 871 ctx->base_attr = ctx->attr; 872 if (type == AT_END) 873 goto not_found; 874 vol = base_ni->vol; 875 al_start = base_ni->attr_list; 876 al_end = al_start + base_ni->attr_list_size; 877 if (!ctx->al_entry) 878 ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; 879 /* 880 * Iterate over entries in attribute list starting at @ctx->al_entry, 881 * or the entry following that, if @ctx->is_first is 'true'. 882 */ 883 if (ctx->is_first) { 884 al_entry = ctx->al_entry; 885 ctx->is_first = false; 886 } else 887 al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + 888 le16_to_cpu(ctx->al_entry->length)); 889 for (;; al_entry = next_al_entry) { 890 /* Out of bounds check. */ 891 if ((u8*)al_entry < base_ni->attr_list || 892 (u8*)al_entry > al_end) 893 break; /* Inode is corrupt. */ 894 ctx->al_entry = al_entry; 895 /* Catch the end of the attribute list. */ 896 if ((u8*)al_entry == al_end) 897 goto not_found; 898 if (!al_entry->length) 899 break; 900 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 901 le16_to_cpu(al_entry->length) > al_end) 902 break; 903 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 904 le16_to_cpu(al_entry->length)); 905 if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) 906 goto not_found; 907 if (type != al_entry->type) 908 continue; 909 /* 910 * If @name is present, compare the two names. If @name is 911 * missing, assume we want an unnamed attribute. 912 */ 913 al_name_len = al_entry->name_length; 914 al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); 915 if (!name) { 916 if (al_name_len) 917 goto not_found; 918 } else if (!ntfs_are_names_equal(al_name, al_name_len, name, 919 name_len, ic, vol->upcase, vol->upcase_len)) { 920 register int rc; 921 922 rc = ntfs_collate_names(name, name_len, al_name, 923 al_name_len, 1, IGNORE_CASE, 924 vol->upcase, vol->upcase_len); 925 /* 926 * If @name collates before al_name, there is no 927 * matching attribute. 928 */ 929 if (rc == -1) 930 goto not_found; 931 /* If the strings are not equal, continue search. */ 932 if (rc) 933 continue; 934 /* 935 * FIXME: Reverse engineering showed 0, IGNORE_CASE but 936 * that is inconsistent with ntfs_attr_find(). The 937 * subsequent rc checks were also different. Perhaps I 938 * made a mistake in one of the two. Need to recheck 939 * which is correct or at least see what is going on... 940 * (AIA) 941 */ 942 rc = ntfs_collate_names(name, name_len, al_name, 943 al_name_len, 1, CASE_SENSITIVE, 944 vol->upcase, vol->upcase_len); 945 if (rc == -1) 946 goto not_found; 947 if (rc) 948 continue; 949 } 950 /* 951 * The names match or @name not present and attribute is 952 * unnamed. Now check @lowest_vcn. Continue search if the 953 * next attribute list entry still fits @lowest_vcn. Otherwise 954 * we have reached the right one or the search has failed. 955 */ 956 if (lowest_vcn && (u8*)next_al_entry >= al_start && 957 (u8*)next_al_entry + 6 < al_end && 958 (u8*)next_al_entry + le16_to_cpu( 959 next_al_entry->length) <= al_end && 960 sle64_to_cpu(next_al_entry->lowest_vcn) <= 961 lowest_vcn && 962 next_al_entry->type == al_entry->type && 963 next_al_entry->name_length == al_name_len && 964 ntfs_are_names_equal((ntfschar*)((u8*) 965 next_al_entry + 966 next_al_entry->name_offset), 967 next_al_entry->name_length, 968 al_name, al_name_len, CASE_SENSITIVE, 969 vol->upcase, vol->upcase_len)) 970 continue; 971 if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { 972 if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { 973 ntfs_error(vol->sb, "Found stale mft " 974 "reference in attribute list " 975 "of base inode 0x%lx.%s", 976 base_ni->mft_no, es); 977 err = -EIO; 978 break; 979 } 980 } else { /* Mft references do not match. */ 981 /* If there is a mapped record unmap it first. */ 982 if (ni != base_ni) 983 unmap_extent_mft_record(ni); 984 /* Do we want the base record back? */ 985 if (MREF_LE(al_entry->mft_reference) == 986 base_ni->mft_no) { 987 ni = ctx->ntfs_ino = base_ni; 988 ctx->mrec = ctx->base_mrec; 989 } else { 990 /* We want an extent record. */ 991 ctx->mrec = map_extent_mft_record(base_ni, 992 le64_to_cpu( 993 al_entry->mft_reference), &ni); 994 if (IS_ERR(ctx->mrec)) { 995 ntfs_error(vol->sb, "Failed to map " 996 "extent mft record " 997 "0x%lx of base inode " 998 "0x%lx.%s", 999 MREF_LE(al_entry-> 1000 mft_reference), 1001 base_ni->mft_no, es); 1002 err = PTR_ERR(ctx->mrec); 1003 if (err == -ENOENT) 1004 err = -EIO; 1005 /* Cause @ctx to be sanitized below. */ 1006 ni = NULL; 1007 break; 1008 } 1009 ctx->ntfs_ino = ni; 1010 } 1011 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1012 le16_to_cpu(ctx->mrec->attrs_offset)); 1013 } 1014 /* 1015 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the 1016 * mft record containing the attribute represented by the 1017 * current al_entry. 1018 */ 1019 /* 1020 * We could call into ntfs_attr_find() to find the right 1021 * attribute in this mft record but this would be less 1022 * efficient and not quite accurate as ntfs_attr_find() ignores 1023 * the attribute instance numbers for example which become 1024 * important when one plays with attribute lists. Also, 1025 * because a proper match has been found in the attribute list 1026 * entry above, the comparison can now be optimized. So it is 1027 * worth re-implementing a simplified ntfs_attr_find() here. 1028 */ 1029 a = ctx->attr; 1030 /* 1031 * Use a manual loop so we can still use break and continue 1032 * with the same meanings as above. 1033 */ 1034 do_next_attr_loop: 1035 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + 1036 le32_to_cpu(ctx->mrec->bytes_allocated)) 1037 break; 1038 if (a->type == AT_END) 1039 break; 1040 if (!a->length) 1041 break; 1042 if (al_entry->instance != a->instance) 1043 goto do_next_attr; 1044 /* 1045 * If the type and/or the name are mismatched between the 1046 * attribute list entry and the attribute record, there is 1047 * corruption so we break and return error EIO. 1048 */ 1049 if (al_entry->type != a->type) 1050 break; 1051 if (!ntfs_are_names_equal((ntfschar*)((u8*)a + 1052 le16_to_cpu(a->name_offset)), a->name_length, 1053 al_name, al_name_len, CASE_SENSITIVE, 1054 vol->upcase, vol->upcase_len)) 1055 break; 1056 ctx->attr = a; 1057 /* 1058 * If no @val specified or @val specified and it matches, we 1059 * have found it! 1060 */ 1061 if (!val || (!a->non_resident && le32_to_cpu( 1062 a->data.resident.value_length) == val_len && 1063 !memcmp((u8*)a + 1064 le16_to_cpu(a->data.resident.value_offset), 1065 val, val_len))) { 1066 ntfs_debug("Done, found."); 1067 return 0; 1068 } 1069 do_next_attr: 1070 /* Proceed to the next attribute in the current mft record. */ 1071 a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); 1072 goto do_next_attr_loop; 1073 } 1074 if (!err) { 1075 ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " 1076 "attribute list attribute.%s", base_ni->mft_no, 1077 es); 1078 err = -EIO; 1079 } 1080 if (ni != base_ni) { 1081 if (ni) 1082 unmap_extent_mft_record(ni); 1083 ctx->ntfs_ino = base_ni; 1084 ctx->mrec = ctx->base_mrec; 1085 ctx->attr = ctx->base_attr; 1086 } 1087 if (err != -ENOMEM) 1088 NVolSetErrors(vol); 1089 return err; 1090 not_found: 1091 /* 1092 * If we were looking for AT_END, we reset the search context @ctx and 1093 * use ntfs_attr_find() to seek to the end of the base mft record. 1094 */ 1095 if (type == AT_END) { 1096 ntfs_attr_reinit_search_ctx(ctx); 1097 return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, 1098 ctx); 1099 } 1100 /* 1101 * The attribute was not found. Before we return, we want to ensure 1102 * @ctx->mrec and @ctx->attr indicate the position at which the 1103 * attribute should be inserted in the base mft record. Since we also 1104 * want to preserve @ctx->al_entry we cannot reinitialize the search 1105 * context using ntfs_attr_reinit_search_ctx() as this would set 1106 * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see 1107 * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve 1108 * @ctx->al_entry as the remaining fields (base_*) are identical to 1109 * their non base_ counterparts and we cannot set @ctx->base_attr 1110 * correctly yet as we do not know what @ctx->attr will be set to by 1111 * the call to ntfs_attr_find() below. 1112 */ 1113 if (ni != base_ni) 1114 unmap_extent_mft_record(ni); 1115 ctx->mrec = ctx->base_mrec; 1116 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1117 le16_to_cpu(ctx->mrec->attrs_offset)); 1118 ctx->is_first = true; 1119 ctx->ntfs_ino = base_ni; 1120 ctx->base_ntfs_ino = NULL; 1121 ctx->base_mrec = NULL; 1122 ctx->base_attr = NULL; 1123 /* 1124 * In case there are multiple matches in the base mft record, need to 1125 * keep enumerating until we get an attribute not found response (or 1126 * another error), otherwise we would keep returning the same attribute 1127 * over and over again and all programs using us for enumeration would 1128 * lock up in a tight loop. 1129 */ 1130 do { 1131 err = ntfs_attr_find(type, name, name_len, ic, val, val_len, 1132 ctx); 1133 } while (!err); 1134 ntfs_debug("Done, not found."); 1135 return err; 1136 } 1137 1138 /** 1139 * ntfs_attr_lookup - find an attribute in an ntfs inode 1140 * @type: attribute type to find 1141 * @name: attribute name to find (optional, i.e. NULL means don't care) 1142 * @name_len: attribute name length (only needed if @name present) 1143 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 1144 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) 1145 * @val: attribute value to find (optional, resident attributes only) 1146 * @val_len: attribute value length 1147 * @ctx: search context with mft record and attribute to search from 1148 * 1149 * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must 1150 * be the base mft record and @ctx must have been obtained from a call to 1151 * ntfs_attr_get_search_ctx(). 1152 * 1153 * This function transparently handles attribute lists and @ctx is used to 1154 * continue searches where they were left off at. 1155 * 1156 * After finishing with the attribute/mft record you need to call 1157 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any 1158 * mapped inodes, etc). 1159 * 1160 * Return 0 if the search was successful and -errno if not. 1161 * 1162 * When 0, @ctx->attr is the found attribute and it is in mft record 1163 * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is 1164 * the attribute list entry of the found attribute. 1165 * 1166 * When -ENOENT, @ctx->attr is the attribute which collates just after the 1167 * attribute being searched for, i.e. if one wants to add the attribute to the 1168 * mft record this is the correct place to insert it into. If an attribute 1169 * list attribute is present, @ctx->al_entry is the attribute list entry which 1170 * collates just after the attribute list entry of the attribute being searched 1171 * for, i.e. if one wants to add the attribute to the mft record this is the 1172 * correct place to insert its attribute list entry into. 1173 * 1174 * When -errno != -ENOENT, an error occurred during the lookup. @ctx->attr is 1175 * then undefined and in particular you should not rely on it not changing. 1176 */ 1177 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, 1178 const u32 name_len, const IGNORE_CASE_BOOL ic, 1179 const VCN lowest_vcn, const u8 *val, const u32 val_len, 1180 ntfs_attr_search_ctx *ctx) 1181 { 1182 ntfs_inode *base_ni; 1183 1184 ntfs_debug("Entering."); 1185 BUG_ON(IS_ERR(ctx->mrec)); 1186 if (ctx->base_ntfs_ino) 1187 base_ni = ctx->base_ntfs_ino; 1188 else 1189 base_ni = ctx->ntfs_ino; 1190 /* Sanity check, just for debugging really. */ 1191 BUG_ON(!base_ni); 1192 if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) 1193 return ntfs_attr_find(type, name, name_len, ic, val, val_len, 1194 ctx); 1195 return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, 1196 val, val_len, ctx); 1197 } 1198 1199 /** 1200 * ntfs_attr_init_search_ctx - initialize an attribute search context 1201 * @ctx: attribute search context to initialize 1202 * @ni: ntfs inode with which to initialize the search context 1203 * @mrec: mft record with which to initialize the search context 1204 * 1205 * Initialize the attribute search context @ctx with @ni and @mrec. 1206 */ 1207 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, 1208 ntfs_inode *ni, MFT_RECORD *mrec) 1209 { 1210 *ctx = (ntfs_attr_search_ctx) { 1211 .mrec = mrec, 1212 /* Sanity checks are performed elsewhere. */ 1213 .attr = (ATTR_RECORD*)((u8*)mrec + 1214 le16_to_cpu(mrec->attrs_offset)), 1215 .is_first = true, 1216 .ntfs_ino = ni, 1217 }; 1218 } 1219 1220 /** 1221 * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context 1222 * @ctx: attribute search context to reinitialize 1223 * 1224 * Reinitialize the attribute search context @ctx, unmapping an associated 1225 * extent mft record if present, and initialize the search context again. 1226 * 1227 * This is used when a search for a new attribute is being started to reset 1228 * the search context to the beginning. 1229 */ 1230 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) 1231 { 1232 if (likely(!ctx->base_ntfs_ino)) { 1233 /* No attribute list. */ 1234 ctx->is_first = true; 1235 /* Sanity checks are performed elsewhere. */ 1236 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1237 le16_to_cpu(ctx->mrec->attrs_offset)); 1238 /* 1239 * This needs resetting due to ntfs_external_attr_find() which 1240 * can leave it set despite having zeroed ctx->base_ntfs_ino. 1241 */ 1242 ctx->al_entry = NULL; 1243 return; 1244 } /* Attribute list. */ 1245 if (ctx->ntfs_ino != ctx->base_ntfs_ino) 1246 unmap_extent_mft_record(ctx->ntfs_ino); 1247 ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); 1248 return; 1249 } 1250 1251 /** 1252 * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context 1253 * @ni: ntfs inode with which to initialize the search context 1254 * @mrec: mft record with which to initialize the search context 1255 * 1256 * Allocate a new attribute search context, initialize it with @ni and @mrec, 1257 * and return it. Return NULL if allocation failed. 1258 */ 1259 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) 1260 { 1261 ntfs_attr_search_ctx *ctx; 1262 1263 ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS); 1264 if (ctx) 1265 ntfs_attr_init_search_ctx(ctx, ni, mrec); 1266 return ctx; 1267 } 1268 1269 /** 1270 * ntfs_attr_put_search_ctx - release an attribute search context 1271 * @ctx: attribute search context to free 1272 * 1273 * Release the attribute search context @ctx, unmapping an associated extent 1274 * mft record if present. 1275 */ 1276 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) 1277 { 1278 if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) 1279 unmap_extent_mft_record(ctx->ntfs_ino); 1280 kmem_cache_free(ntfs_attr_ctx_cache, ctx); 1281 return; 1282 } 1283 1284 #ifdef NTFS_RW 1285 1286 /** 1287 * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file 1288 * @vol: ntfs volume to which the attribute belongs 1289 * @type: attribute type which to find 1290 * 1291 * Search for the attribute definition record corresponding to the attribute 1292 * @type in the $AttrDef system file. 1293 * 1294 * Return the attribute type definition record if found and NULL if not found. 1295 */ 1296 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, 1297 const ATTR_TYPE type) 1298 { 1299 ATTR_DEF *ad; 1300 1301 BUG_ON(!vol->attrdef); 1302 BUG_ON(!type); 1303 for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < 1304 vol->attrdef_size && ad->type; ++ad) { 1305 /* We have not found it yet, carry on searching. */ 1306 if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) 1307 continue; 1308 /* We found the attribute; return it. */ 1309 if (likely(ad->type == type)) 1310 return ad; 1311 /* We have gone too far already. No point in continuing. */ 1312 break; 1313 } 1314 /* Attribute not found. */ 1315 ntfs_debug("Attribute type 0x%x not found in $AttrDef.", 1316 le32_to_cpu(type)); 1317 return NULL; 1318 } 1319 1320 /** 1321 * ntfs_attr_size_bounds_check - check a size of an attribute type for validity 1322 * @vol: ntfs volume to which the attribute belongs 1323 * @type: attribute type which to check 1324 * @size: size which to check 1325 * 1326 * Check whether the @size in bytes is valid for an attribute of @type on the 1327 * ntfs volume @vol. This information is obtained from $AttrDef system file. 1328 * 1329 * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not 1330 * listed in $AttrDef. 1331 */ 1332 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, 1333 const s64 size) 1334 { 1335 ATTR_DEF *ad; 1336 1337 BUG_ON(size < 0); 1338 /* 1339 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not 1340 * listed in $AttrDef. 1341 */ 1342 if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) 1343 return -ERANGE; 1344 /* Get the $AttrDef entry for the attribute @type. */ 1345 ad = ntfs_attr_find_in_attrdef(vol, type); 1346 if (unlikely(!ad)) 1347 return -ENOENT; 1348 /* Do the bounds check. */ 1349 if (((sle64_to_cpu(ad->min_size) > 0) && 1350 size < sle64_to_cpu(ad->min_size)) || 1351 ((sle64_to_cpu(ad->max_size) > 0) && size > 1352 sle64_to_cpu(ad->max_size))) 1353 return -ERANGE; 1354 return 0; 1355 } 1356 1357 /** 1358 * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident 1359 * @vol: ntfs volume to which the attribute belongs 1360 * @type: attribute type which to check 1361 * 1362 * Check whether the attribute of @type on the ntfs volume @vol is allowed to 1363 * be non-resident. This information is obtained from $AttrDef system file. 1364 * 1365 * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and 1366 * -ENOENT if the attribute is not listed in $AttrDef. 1367 */ 1368 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) 1369 { 1370 ATTR_DEF *ad; 1371 1372 /* Find the attribute definition record in $AttrDef. */ 1373 ad = ntfs_attr_find_in_attrdef(vol, type); 1374 if (unlikely(!ad)) 1375 return -ENOENT; 1376 /* Check the flags and return the result. */ 1377 if (ad->flags & ATTR_DEF_RESIDENT) 1378 return -EPERM; 1379 return 0; 1380 } 1381 1382 /** 1383 * ntfs_attr_can_be_resident - check if an attribute can be resident 1384 * @vol: ntfs volume to which the attribute belongs 1385 * @type: attribute type which to check 1386 * 1387 * Check whether the attribute of @type on the ntfs volume @vol is allowed to 1388 * be resident. This information is derived from our ntfs knowledge and may 1389 * not be completely accurate, especially when user defined attributes are 1390 * present. Basically we allow everything to be resident except for index 1391 * allocation and $EA attributes. 1392 * 1393 * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. 1394 * 1395 * Warning: In the system file $MFT the attribute $Bitmap must be non-resident 1396 * otherwise windows will not boot (blue screen of death)! We cannot 1397 * check for this here as we do not know which inode's $Bitmap is 1398 * being asked about so the caller needs to special case this. 1399 */ 1400 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) 1401 { 1402 if (type == AT_INDEX_ALLOCATION) 1403 return -EPERM; 1404 return 0; 1405 } 1406 1407 /** 1408 * ntfs_attr_record_resize - resize an attribute record 1409 * @m: mft record containing attribute record 1410 * @a: attribute record to resize 1411 * @new_size: new size in bytes to which to resize the attribute record @a 1412 * 1413 * Resize the attribute record @a, i.e. the resident part of the attribute, in 1414 * the mft record @m to @new_size bytes. 1415 * 1416 * Return 0 on success and -errno on error. The following error codes are 1417 * defined: 1418 * -ENOSPC - Not enough space in the mft record @m to perform the resize. 1419 * 1420 * Note: On error, no modifications have been performed whatsoever. 1421 * 1422 * Warning: If you make a record smaller without having copied all the data you 1423 * are interested in the data may be overwritten. 1424 */ 1425 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) 1426 { 1427 ntfs_debug("Entering for new_size %u.", new_size); 1428 /* Align to 8 bytes if it is not already done. */ 1429 if (new_size & 7) 1430 new_size = (new_size + 7) & ~7; 1431 /* If the actual attribute length has changed, move things around. */ 1432 if (new_size != le32_to_cpu(a->length)) { 1433 u32 new_muse = le32_to_cpu(m->bytes_in_use) - 1434 le32_to_cpu(a->length) + new_size; 1435 /* Not enough space in this mft record. */ 1436 if (new_muse > le32_to_cpu(m->bytes_allocated)) 1437 return -ENOSPC; 1438 /* Move attributes following @a to their new location. */ 1439 memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), 1440 le32_to_cpu(m->bytes_in_use) - ((u8*)a - 1441 (u8*)m) - le32_to_cpu(a->length)); 1442 /* Adjust @m to reflect the change in used space. */ 1443 m->bytes_in_use = cpu_to_le32(new_muse); 1444 /* Adjust @a to reflect the new size. */ 1445 if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) 1446 a->length = cpu_to_le32(new_size); 1447 } 1448 return 0; 1449 } 1450 1451 /** 1452 * ntfs_resident_attr_value_resize - resize the value of a resident attribute 1453 * @m: mft record containing attribute record 1454 * @a: attribute record whose value to resize 1455 * @new_size: new size in bytes to which to resize the attribute value of @a 1456 * 1457 * Resize the value of the attribute @a in the mft record @m to @new_size bytes. 1458 * If the value is made bigger, the newly allocated space is cleared. 1459 * 1460 * Return 0 on success and -errno on error. The following error codes are 1461 * defined: 1462 * -ENOSPC - Not enough space in the mft record @m to perform the resize. 1463 * 1464 * Note: On error, no modifications have been performed whatsoever. 1465 * 1466 * Warning: If you make a record smaller without having copied all the data you 1467 * are interested in the data may be overwritten. 1468 */ 1469 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, 1470 const u32 new_size) 1471 { 1472 u32 old_size; 1473 1474 /* Resize the resident part of the attribute record. */ 1475 if (ntfs_attr_record_resize(m, a, 1476 le16_to_cpu(a->data.resident.value_offset) + new_size)) 1477 return -ENOSPC; 1478 /* 1479 * The resize succeeded! If we made the attribute value bigger, clear 1480 * the area between the old size and @new_size. 1481 */ 1482 old_size = le32_to_cpu(a->data.resident.value_length); 1483 if (new_size > old_size) 1484 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + 1485 old_size, 0, new_size - old_size); 1486 /* Finally update the length of the attribute value. */ 1487 a->data.resident.value_length = cpu_to_le32(new_size); 1488 return 0; 1489 } 1490 1491 /** 1492 * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute 1493 * @ni: ntfs inode describing the attribute to convert 1494 * @data_size: size of the resident data to copy to the non-resident attribute 1495 * 1496 * Convert the resident ntfs attribute described by the ntfs inode @ni to a 1497 * non-resident one. 1498 * 1499 * @data_size must be equal to the attribute value size. This is needed since 1500 * we need to know the size before we can map the mft record and our callers 1501 * always know it. The reason we cannot simply read the size from the vfs 1502 * inode i_size is that this is not necessarily uptodate. This happens when 1503 * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). 1504 * 1505 * Return 0 on success and -errno on error. The following error return codes 1506 * are defined: 1507 * -EPERM - The attribute is not allowed to be non-resident. 1508 * -ENOMEM - Not enough memory. 1509 * -ENOSPC - Not enough disk space. 1510 * -EINVAL - Attribute not defined on the volume. 1511 * -EIO - I/o error or other error. 1512 * Note that -ENOSPC is also returned in the case that there is not enough 1513 * space in the mft record to do the conversion. This can happen when the mft 1514 * record is already very full. The caller is responsible for trying to make 1515 * space in the mft record and trying again. FIXME: Do we need a separate 1516 * error return code for this kind of -ENOSPC or is it always worth trying 1517 * again in case the attribute may then fit in a resident state so no need to 1518 * make it non-resident at all? Ho-hum... (AIA) 1519 * 1520 * NOTE to self: No changes in the attribute list are required to move from 1521 * a resident to a non-resident attribute. 1522 * 1523 * Locking: - The caller must hold i_mutex on the inode. 1524 */ 1525 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) 1526 { 1527 s64 new_size; 1528 struct inode *vi = VFS_I(ni); 1529 ntfs_volume *vol = ni->vol; 1530 ntfs_inode *base_ni; 1531 MFT_RECORD *m; 1532 ATTR_RECORD *a; 1533 ntfs_attr_search_ctx *ctx; 1534 struct page *page; 1535 runlist_element *rl; 1536 u8 *kaddr; 1537 unsigned long flags; 1538 int mp_size, mp_ofs, name_ofs, arec_size, err, err2; 1539 u32 attr_size; 1540 u8 old_res_attr_flags; 1541 1542 /* Check that the attribute is allowed to be non-resident. */ 1543 err = ntfs_attr_can_be_non_resident(vol, ni->type); 1544 if (unlikely(err)) { 1545 if (err == -EPERM) 1546 ntfs_debug("Attribute is not allowed to be " 1547 "non-resident."); 1548 else 1549 ntfs_debug("Attribute not defined on the NTFS " 1550 "volume!"); 1551 return err; 1552 } 1553 /* 1554 * FIXME: Compressed and encrypted attributes are not supported when 1555 * writing and we should never have gotten here for them. 1556 */ 1557 BUG_ON(NInoCompressed(ni)); 1558 BUG_ON(NInoEncrypted(ni)); 1559 /* 1560 * The size needs to be aligned to a cluster boundary for allocation 1561 * purposes. 1562 */ 1563 new_size = (data_size + vol->cluster_size - 1) & 1564 ~(vol->cluster_size - 1); 1565 if (new_size > 0) { 1566 /* 1567 * Will need the page later and since the page lock nests 1568 * outside all ntfs locks, we need to get the page now. 1569 */ 1570 page = find_or_create_page(vi->i_mapping, 0, 1571 mapping_gfp_mask(vi->i_mapping)); 1572 if (unlikely(!page)) 1573 return -ENOMEM; 1574 /* Start by allocating clusters to hold the attribute value. */ 1575 rl = ntfs_cluster_alloc(vol, 0, new_size >> 1576 vol->cluster_size_bits, -1, DATA_ZONE, true); 1577 if (IS_ERR(rl)) { 1578 err = PTR_ERR(rl); 1579 ntfs_debug("Failed to allocate cluster%s, error code " 1580 "%i.", (new_size >> 1581 vol->cluster_size_bits) > 1 ? "s" : "", 1582 err); 1583 goto page_err_out; 1584 } 1585 } else { 1586 rl = NULL; 1587 page = NULL; 1588 } 1589 /* Determine the size of the mapping pairs array. */ 1590 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1); 1591 if (unlikely(mp_size < 0)) { 1592 err = mp_size; 1593 ntfs_debug("Failed to get size for mapping pairs array, error " 1594 "code %i.", err); 1595 goto rl_err_out; 1596 } 1597 down_write(&ni->runlist.lock); 1598 if (!NInoAttr(ni)) 1599 base_ni = ni; 1600 else 1601 base_ni = ni->ext.base_ntfs_ino; 1602 m = map_mft_record(base_ni); 1603 if (IS_ERR(m)) { 1604 err = PTR_ERR(m); 1605 m = NULL; 1606 ctx = NULL; 1607 goto err_out; 1608 } 1609 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1610 if (unlikely(!ctx)) { 1611 err = -ENOMEM; 1612 goto err_out; 1613 } 1614 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1615 CASE_SENSITIVE, 0, NULL, 0, ctx); 1616 if (unlikely(err)) { 1617 if (err == -ENOENT) 1618 err = -EIO; 1619 goto err_out; 1620 } 1621 m = ctx->mrec; 1622 a = ctx->attr; 1623 BUG_ON(NInoNonResident(ni)); 1624 BUG_ON(a->non_resident); 1625 /* 1626 * Calculate new offsets for the name and the mapping pairs array. 1627 */ 1628 if (NInoSparse(ni) || NInoCompressed(ni)) 1629 name_ofs = (offsetof(ATTR_REC, 1630 data.non_resident.compressed_size) + 1631 sizeof(a->data.non_resident.compressed_size) + 1632 7) & ~7; 1633 else 1634 name_ofs = (offsetof(ATTR_REC, 1635 data.non_resident.compressed_size) + 7) & ~7; 1636 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; 1637 /* 1638 * Determine the size of the resident part of the now non-resident 1639 * attribute record. 1640 */ 1641 arec_size = (mp_ofs + mp_size + 7) & ~7; 1642 /* 1643 * If the page is not uptodate bring it uptodate by copying from the 1644 * attribute value. 1645 */ 1646 attr_size = le32_to_cpu(a->data.resident.value_length); 1647 BUG_ON(attr_size != data_size); 1648 if (page && !PageUptodate(page)) { 1649 kaddr = kmap_atomic(page); 1650 memcpy(kaddr, (u8*)a + 1651 le16_to_cpu(a->data.resident.value_offset), 1652 attr_size); 1653 memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size); 1654 kunmap_atomic(kaddr); 1655 flush_dcache_page(page); 1656 SetPageUptodate(page); 1657 } 1658 /* Backup the attribute flag. */ 1659 old_res_attr_flags = a->data.resident.flags; 1660 /* Resize the resident part of the attribute record. */ 1661 err = ntfs_attr_record_resize(m, a, arec_size); 1662 if (unlikely(err)) 1663 goto err_out; 1664 /* 1665 * Convert the resident part of the attribute record to describe a 1666 * non-resident attribute. 1667 */ 1668 a->non_resident = 1; 1669 /* Move the attribute name if it exists and update the offset. */ 1670 if (a->name_length) 1671 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), 1672 a->name_length * sizeof(ntfschar)); 1673 a->name_offset = cpu_to_le16(name_ofs); 1674 /* Setup the fields specific to non-resident attributes. */ 1675 a->data.non_resident.lowest_vcn = 0; 1676 a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >> 1677 vol->cluster_size_bits); 1678 a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs); 1679 memset(&a->data.non_resident.reserved, 0, 1680 sizeof(a->data.non_resident.reserved)); 1681 a->data.non_resident.allocated_size = cpu_to_sle64(new_size); 1682 a->data.non_resident.data_size = 1683 a->data.non_resident.initialized_size = 1684 cpu_to_sle64(attr_size); 1685 if (NInoSparse(ni) || NInoCompressed(ni)) { 1686 a->data.non_resident.compression_unit = 0; 1687 if (NInoCompressed(ni) || vol->major_ver < 3) 1688 a->data.non_resident.compression_unit = 4; 1689 a->data.non_resident.compressed_size = 1690 a->data.non_resident.allocated_size; 1691 } else 1692 a->data.non_resident.compression_unit = 0; 1693 /* Generate the mapping pairs array into the attribute record. */ 1694 err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs, 1695 arec_size - mp_ofs, rl, 0, -1, NULL); 1696 if (unlikely(err)) { 1697 ntfs_debug("Failed to build mapping pairs, error code %i.", 1698 err); 1699 goto undo_err_out; 1700 } 1701 /* Setup the in-memory attribute structure to be non-resident. */ 1702 ni->runlist.rl = rl; 1703 write_lock_irqsave(&ni->size_lock, flags); 1704 ni->allocated_size = new_size; 1705 if (NInoSparse(ni) || NInoCompressed(ni)) { 1706 ni->itype.compressed.size = ni->allocated_size; 1707 if (a->data.non_resident.compression_unit) { 1708 ni->itype.compressed.block_size = 1U << (a->data. 1709 non_resident.compression_unit + 1710 vol->cluster_size_bits); 1711 ni->itype.compressed.block_size_bits = 1712 ffs(ni->itype.compressed.block_size) - 1713 1; 1714 ni->itype.compressed.block_clusters = 1U << 1715 a->data.non_resident.compression_unit; 1716 } else { 1717 ni->itype.compressed.block_size = 0; 1718 ni->itype.compressed.block_size_bits = 0; 1719 ni->itype.compressed.block_clusters = 0; 1720 } 1721 vi->i_blocks = ni->itype.compressed.size >> 9; 1722 } else 1723 vi->i_blocks = ni->allocated_size >> 9; 1724 write_unlock_irqrestore(&ni->size_lock, flags); 1725 /* 1726 * This needs to be last since the address space operations ->read_folio 1727 * and ->writepage can run concurrently with us as they are not 1728 * serialized on i_mutex. Note, we are not allowed to fail once we flip 1729 * this switch, which is another reason to do this last. 1730 */ 1731 NInoSetNonResident(ni); 1732 /* Mark the mft record dirty, so it gets written back. */ 1733 flush_dcache_mft_record_page(ctx->ntfs_ino); 1734 mark_mft_record_dirty(ctx->ntfs_ino); 1735 ntfs_attr_put_search_ctx(ctx); 1736 unmap_mft_record(base_ni); 1737 up_write(&ni->runlist.lock); 1738 if (page) { 1739 set_page_dirty(page); 1740 unlock_page(page); 1741 put_page(page); 1742 } 1743 ntfs_debug("Done."); 1744 return 0; 1745 undo_err_out: 1746 /* Convert the attribute back into a resident attribute. */ 1747 a->non_resident = 0; 1748 /* Move the attribute name if it exists and update the offset. */ 1749 name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) + 1750 sizeof(a->data.resident.reserved) + 7) & ~7; 1751 if (a->name_length) 1752 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), 1753 a->name_length * sizeof(ntfschar)); 1754 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; 1755 a->name_offset = cpu_to_le16(name_ofs); 1756 arec_size = (mp_ofs + attr_size + 7) & ~7; 1757 /* Resize the resident part of the attribute record. */ 1758 err2 = ntfs_attr_record_resize(m, a, arec_size); 1759 if (unlikely(err2)) { 1760 /* 1761 * This cannot happen (well if memory corruption is at work it 1762 * could happen in theory), but deal with it as well as we can. 1763 * If the old size is too small, truncate the attribute, 1764 * otherwise simply give it a larger allocated size. 1765 * FIXME: Should check whether chkdsk complains when the 1766 * allocated size is much bigger than the resident value size. 1767 */ 1768 arec_size = le32_to_cpu(a->length); 1769 if ((mp_ofs + attr_size) > arec_size) { 1770 err2 = attr_size; 1771 attr_size = arec_size - mp_ofs; 1772 ntfs_error(vol->sb, "Failed to undo partial resident " 1773 "to non-resident attribute " 1774 "conversion. Truncating inode 0x%lx, " 1775 "attribute type 0x%x from %i bytes to " 1776 "%i bytes to maintain metadata " 1777 "consistency. THIS MEANS YOU ARE " 1778 "LOSING %i BYTES DATA FROM THIS %s.", 1779 vi->i_ino, 1780 (unsigned)le32_to_cpu(ni->type), 1781 err2, attr_size, err2 - attr_size, 1782 ((ni->type == AT_DATA) && 1783 !ni->name_len) ? "FILE": "ATTRIBUTE"); 1784 write_lock_irqsave(&ni->size_lock, flags); 1785 ni->initialized_size = attr_size; 1786 i_size_write(vi, attr_size); 1787 write_unlock_irqrestore(&ni->size_lock, flags); 1788 } 1789 } 1790 /* Setup the fields specific to resident attributes. */ 1791 a->data.resident.value_length = cpu_to_le32(attr_size); 1792 a->data.resident.value_offset = cpu_to_le16(mp_ofs); 1793 a->data.resident.flags = old_res_attr_flags; 1794 memset(&a->data.resident.reserved, 0, 1795 sizeof(a->data.resident.reserved)); 1796 /* Copy the data from the page back to the attribute value. */ 1797 if (page) { 1798 kaddr = kmap_atomic(page); 1799 memcpy((u8*)a + mp_ofs, kaddr, attr_size); 1800 kunmap_atomic(kaddr); 1801 } 1802 /* Setup the allocated size in the ntfs inode in case it changed. */ 1803 write_lock_irqsave(&ni->size_lock, flags); 1804 ni->allocated_size = arec_size - mp_ofs; 1805 write_unlock_irqrestore(&ni->size_lock, flags); 1806 /* Mark the mft record dirty, so it gets written back. */ 1807 flush_dcache_mft_record_page(ctx->ntfs_ino); 1808 mark_mft_record_dirty(ctx->ntfs_ino); 1809 err_out: 1810 if (ctx) 1811 ntfs_attr_put_search_ctx(ctx); 1812 if (m) 1813 unmap_mft_record(base_ni); 1814 ni->runlist.rl = NULL; 1815 up_write(&ni->runlist.lock); 1816 rl_err_out: 1817 if (rl) { 1818 if (ntfs_cluster_free_from_rl(vol, rl) < 0) { 1819 ntfs_error(vol->sb, "Failed to release allocated " 1820 "cluster(s) in error code path. Run " 1821 "chkdsk to recover the lost " 1822 "cluster(s)."); 1823 NVolSetErrors(vol); 1824 } 1825 ntfs_free(rl); 1826 page_err_out: 1827 unlock_page(page); 1828 put_page(page); 1829 } 1830 if (err == -EINVAL) 1831 err = -EIO; 1832 return err; 1833 } 1834 1835 /** 1836 * ntfs_attr_extend_allocation - extend the allocated space of an attribute 1837 * @ni: ntfs inode of the attribute whose allocation to extend 1838 * @new_alloc_size: new size in bytes to which to extend the allocation to 1839 * @new_data_size: new size in bytes to which to extend the data to 1840 * @data_start: beginning of region which is required to be non-sparse 1841 * 1842 * Extend the allocated space of an attribute described by the ntfs inode @ni 1843 * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be 1844 * implemented as a hole in the file (as long as both the volume and the ntfs 1845 * inode @ni have sparse support enabled). If @data_start is >= 0, then the 1846 * region between the old allocated size and @data_start - 1 may be made sparse 1847 * but the regions between @data_start and @new_alloc_size must be backed by 1848 * actual clusters. 1849 * 1850 * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size 1851 * of the attribute is extended to @new_data_size. Note that the i_size of the 1852 * vfs inode is not updated. Only the data size in the base attribute record 1853 * is updated. The caller has to update i_size separately if this is required. 1854 * WARNING: It is a BUG() for @new_data_size to be smaller than the old data 1855 * size as well as for @new_data_size to be greater than @new_alloc_size. 1856 * 1857 * For resident attributes this involves resizing the attribute record and if 1858 * necessary moving it and/or other attributes into extent mft records and/or 1859 * converting the attribute to a non-resident attribute which in turn involves 1860 * extending the allocation of a non-resident attribute as described below. 1861 * 1862 * For non-resident attributes this involves allocating clusters in the data 1863 * zone on the volume (except for regions that are being made sparse) and 1864 * extending the run list to describe the allocated clusters as well as 1865 * updating the mapping pairs array of the attribute. This in turn involves 1866 * resizing the attribute record and if necessary moving it and/or other 1867 * attributes into extent mft records and/or splitting the attribute record 1868 * into multiple extent attribute records. 1869 * 1870 * Also, the attribute list attribute is updated if present and in some of the 1871 * above cases (the ones where extent mft records/attributes come into play), 1872 * an attribute list attribute is created if not already present. 1873 * 1874 * Return the new allocated size on success and -errno on error. In the case 1875 * that an error is encountered but a partial extension at least up to 1876 * @data_start (if present) is possible, the allocation is partially extended 1877 * and this is returned. This means the caller must check the returned size to 1878 * determine if the extension was partial. If @data_start is -1 then partial 1879 * allocations are not performed. 1880 * 1881 * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. 1882 * 1883 * Locking: This function takes the runlist lock of @ni for writing as well as 1884 * locking the mft record of the base ntfs inode. These locks are maintained 1885 * throughout execution of the function. These locks are required so that the 1886 * attribute can be resized safely and so that it can for example be converted 1887 * from resident to non-resident safely. 1888 * 1889 * TODO: At present attribute list attribute handling is not implemented. 1890 * 1891 * TODO: At present it is not safe to call this function for anything other 1892 * than the $DATA attribute(s) of an uncompressed and unencrypted file. 1893 */ 1894 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, 1895 const s64 new_data_size, const s64 data_start) 1896 { 1897 VCN vcn; 1898 s64 ll, allocated_size, start = data_start; 1899 struct inode *vi = VFS_I(ni); 1900 ntfs_volume *vol = ni->vol; 1901 ntfs_inode *base_ni; 1902 MFT_RECORD *m; 1903 ATTR_RECORD *a; 1904 ntfs_attr_search_ctx *ctx; 1905 runlist_element *rl, *rl2; 1906 unsigned long flags; 1907 int err, mp_size; 1908 u32 attr_len = 0; /* Silence stupid gcc warning. */ 1909 bool mp_rebuilt; 1910 1911 #ifdef DEBUG 1912 read_lock_irqsave(&ni->size_lock, flags); 1913 allocated_size = ni->allocated_size; 1914 read_unlock_irqrestore(&ni->size_lock, flags); 1915 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1916 "old_allocated_size 0x%llx, " 1917 "new_allocated_size 0x%llx, new_data_size 0x%llx, " 1918 "data_start 0x%llx.", vi->i_ino, 1919 (unsigned)le32_to_cpu(ni->type), 1920 (unsigned long long)allocated_size, 1921 (unsigned long long)new_alloc_size, 1922 (unsigned long long)new_data_size, 1923 (unsigned long long)start); 1924 #endif 1925 retry_extend: 1926 /* 1927 * For non-resident attributes, @start and @new_size need to be aligned 1928 * to cluster boundaries for allocation purposes. 1929 */ 1930 if (NInoNonResident(ni)) { 1931 if (start > 0) 1932 start &= ~(s64)vol->cluster_size_mask; 1933 new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & 1934 ~(s64)vol->cluster_size_mask; 1935 } 1936 BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); 1937 /* Check if new size is allowed in $AttrDef. */ 1938 err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); 1939 if (unlikely(err)) { 1940 /* Only emit errors when the write will fail completely. */ 1941 read_lock_irqsave(&ni->size_lock, flags); 1942 allocated_size = ni->allocated_size; 1943 read_unlock_irqrestore(&ni->size_lock, flags); 1944 if (start < 0 || start >= allocated_size) { 1945 if (err == -ERANGE) { 1946 ntfs_error(vol->sb, "Cannot extend allocation " 1947 "of inode 0x%lx, attribute " 1948 "type 0x%x, because the new " 1949 "allocation would exceed the " 1950 "maximum allowed size for " 1951 "this attribute type.", 1952 vi->i_ino, (unsigned) 1953 le32_to_cpu(ni->type)); 1954 } else { 1955 ntfs_error(vol->sb, "Cannot extend allocation " 1956 "of inode 0x%lx, attribute " 1957 "type 0x%x, because this " 1958 "attribute type is not " 1959 "defined on the NTFS volume. " 1960 "Possible corruption! You " 1961 "should run chkdsk!", 1962 vi->i_ino, (unsigned) 1963 le32_to_cpu(ni->type)); 1964 } 1965 } 1966 /* Translate error code to be POSIX conformant for write(2). */ 1967 if (err == -ERANGE) 1968 err = -EFBIG; 1969 else 1970 err = -EIO; 1971 return err; 1972 } 1973 if (!NInoAttr(ni)) 1974 base_ni = ni; 1975 else 1976 base_ni = ni->ext.base_ntfs_ino; 1977 /* 1978 * We will be modifying both the runlist (if non-resident) and the mft 1979 * record so lock them both down. 1980 */ 1981 down_write(&ni->runlist.lock); 1982 m = map_mft_record(base_ni); 1983 if (IS_ERR(m)) { 1984 err = PTR_ERR(m); 1985 m = NULL; 1986 ctx = NULL; 1987 goto err_out; 1988 } 1989 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1990 if (unlikely(!ctx)) { 1991 err = -ENOMEM; 1992 goto err_out; 1993 } 1994 read_lock_irqsave(&ni->size_lock, flags); 1995 allocated_size = ni->allocated_size; 1996 read_unlock_irqrestore(&ni->size_lock, flags); 1997 /* 1998 * If non-resident, seek to the last extent. If resident, there is 1999 * only one extent, so seek to that. 2000 */ 2001 vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : 2002 0; 2003 /* 2004 * Abort if someone did the work whilst we waited for the locks. If we 2005 * just converted the attribute from resident to non-resident it is 2006 * likely that exactly this has happened already. We cannot quite 2007 * abort if we need to update the data size. 2008 */ 2009 if (unlikely(new_alloc_size <= allocated_size)) { 2010 ntfs_debug("Allocated size already exceeds requested size."); 2011 new_alloc_size = allocated_size; 2012 if (new_data_size < 0) 2013 goto done; 2014 /* 2015 * We want the first attribute extent so that we can update the 2016 * data size. 2017 */ 2018 vcn = 0; 2019 } 2020 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2021 CASE_SENSITIVE, vcn, NULL, 0, ctx); 2022 if (unlikely(err)) { 2023 if (err == -ENOENT) 2024 err = -EIO; 2025 goto err_out; 2026 } 2027 m = ctx->mrec; 2028 a = ctx->attr; 2029 /* Use goto to reduce indentation. */ 2030 if (a->non_resident) 2031 goto do_non_resident_extend; 2032 BUG_ON(NInoNonResident(ni)); 2033 /* The total length of the attribute value. */ 2034 attr_len = le32_to_cpu(a->data.resident.value_length); 2035 /* 2036 * Extend the attribute record to be able to store the new attribute 2037 * size. ntfs_attr_record_resize() will not do anything if the size is 2038 * not changing. 2039 */ 2040 if (new_alloc_size < vol->mft_record_size && 2041 !ntfs_attr_record_resize(m, a, 2042 le16_to_cpu(a->data.resident.value_offset) + 2043 new_alloc_size)) { 2044 /* The resize succeeded! */ 2045 write_lock_irqsave(&ni->size_lock, flags); 2046 ni->allocated_size = le32_to_cpu(a->length) - 2047 le16_to_cpu(a->data.resident.value_offset); 2048 write_unlock_irqrestore(&ni->size_lock, flags); 2049 if (new_data_size >= 0) { 2050 BUG_ON(new_data_size < attr_len); 2051 a->data.resident.value_length = 2052 cpu_to_le32((u32)new_data_size); 2053 } 2054 goto flush_done; 2055 } 2056 /* 2057 * We have to drop all the locks so we can call 2058 * ntfs_attr_make_non_resident(). This could be optimised by try- 2059 * locking the first page cache page and only if that fails dropping 2060 * the locks, locking the page, and redoing all the locking and 2061 * lookups. While this would be a huge optimisation, it is not worth 2062 * it as this is definitely a slow code path. 2063 */ 2064 ntfs_attr_put_search_ctx(ctx); 2065 unmap_mft_record(base_ni); 2066 up_write(&ni->runlist.lock); 2067 /* 2068 * Not enough space in the mft record, try to make the attribute 2069 * non-resident and if successful restart the extension process. 2070 */ 2071 err = ntfs_attr_make_non_resident(ni, attr_len); 2072 if (likely(!err)) 2073 goto retry_extend; 2074 /* 2075 * Could not make non-resident. If this is due to this not being 2076 * permitted for this attribute type or there not being enough space, 2077 * try to make other attributes non-resident. Otherwise fail. 2078 */ 2079 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2080 /* Only emit errors when the write will fail completely. */ 2081 read_lock_irqsave(&ni->size_lock, flags); 2082 allocated_size = ni->allocated_size; 2083 read_unlock_irqrestore(&ni->size_lock, flags); 2084 if (start < 0 || start >= allocated_size) 2085 ntfs_error(vol->sb, "Cannot extend allocation of " 2086 "inode 0x%lx, attribute type 0x%x, " 2087 "because the conversion from resident " 2088 "to non-resident attribute failed " 2089 "with error code %i.", vi->i_ino, 2090 (unsigned)le32_to_cpu(ni->type), err); 2091 if (err != -ENOMEM) 2092 err = -EIO; 2093 goto conv_err_out; 2094 } 2095 /* TODO: Not implemented from here, abort. */ 2096 read_lock_irqsave(&ni->size_lock, flags); 2097 allocated_size = ni->allocated_size; 2098 read_unlock_irqrestore(&ni->size_lock, flags); 2099 if (start < 0 || start >= allocated_size) { 2100 if (err == -ENOSPC) 2101 ntfs_error(vol->sb, "Not enough space in the mft " 2102 "record/on disk for the non-resident " 2103 "attribute value. This case is not " 2104 "implemented yet."); 2105 else /* if (err == -EPERM) */ 2106 ntfs_error(vol->sb, "This attribute type may not be " 2107 "non-resident. This case is not " 2108 "implemented yet."); 2109 } 2110 err = -EOPNOTSUPP; 2111 goto conv_err_out; 2112 #if 0 2113 // TODO: Attempt to make other attributes non-resident. 2114 if (!err) 2115 goto do_resident_extend; 2116 /* 2117 * Both the attribute list attribute and the standard information 2118 * attribute must remain in the base inode. Thus, if this is one of 2119 * these attributes, we have to try to move other attributes out into 2120 * extent mft records instead. 2121 */ 2122 if (ni->type == AT_ATTRIBUTE_LIST || 2123 ni->type == AT_STANDARD_INFORMATION) { 2124 // TODO: Attempt to move other attributes into extent mft 2125 // records. 2126 err = -EOPNOTSUPP; 2127 if (!err) 2128 goto do_resident_extend; 2129 goto err_out; 2130 } 2131 // TODO: Attempt to move this attribute to an extent mft record, but 2132 // only if it is not already the only attribute in an mft record in 2133 // which case there would be nothing to gain. 2134 err = -EOPNOTSUPP; 2135 if (!err) 2136 goto do_resident_extend; 2137 /* There is nothing we can do to make enough space. )-: */ 2138 goto err_out; 2139 #endif 2140 do_non_resident_extend: 2141 BUG_ON(!NInoNonResident(ni)); 2142 if (new_alloc_size == allocated_size) { 2143 BUG_ON(vcn); 2144 goto alloc_done; 2145 } 2146 /* 2147 * If the data starts after the end of the old allocation, this is a 2148 * $DATA attribute and sparse attributes are enabled on the volume and 2149 * for this inode, then create a sparse region between the old 2150 * allocated size and the start of the data. Otherwise simply proceed 2151 * with filling the whole space between the old allocated size and the 2152 * new allocated size with clusters. 2153 */ 2154 if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || 2155 !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) 2156 goto skip_sparse; 2157 // TODO: This is not implemented yet. We just fill in with real 2158 // clusters for now... 2159 ntfs_debug("Inserting holes is not-implemented yet. Falling back to " 2160 "allocating real clusters instead."); 2161 skip_sparse: 2162 rl = ni->runlist.rl; 2163 if (likely(rl)) { 2164 /* Seek to the end of the runlist. */ 2165 while (rl->length) 2166 rl++; 2167 } 2168 /* If this attribute extent is not mapped, map it now. */ 2169 if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || 2170 (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && 2171 (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { 2172 if (!rl && !allocated_size) 2173 goto first_alloc; 2174 rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2175 if (IS_ERR(rl)) { 2176 err = PTR_ERR(rl); 2177 if (start < 0 || start >= allocated_size) 2178 ntfs_error(vol->sb, "Cannot extend allocation " 2179 "of inode 0x%lx, attribute " 2180 "type 0x%x, because the " 2181 "mapping of a runlist " 2182 "fragment failed with error " 2183 "code %i.", vi->i_ino, 2184 (unsigned)le32_to_cpu(ni->type), 2185 err); 2186 if (err != -ENOMEM) 2187 err = -EIO; 2188 goto err_out; 2189 } 2190 ni->runlist.rl = rl; 2191 /* Seek to the end of the runlist. */ 2192 while (rl->length) 2193 rl++; 2194 } 2195 /* 2196 * We now know the runlist of the last extent is mapped and @rl is at 2197 * the end of the runlist. We want to begin allocating clusters 2198 * starting at the last allocated cluster to reduce fragmentation. If 2199 * there are no valid LCNs in the attribute we let the cluster 2200 * allocator choose the starting cluster. 2201 */ 2202 /* If the last LCN is a hole or simillar seek back to last real LCN. */ 2203 while (rl->lcn < 0 && rl > ni->runlist.rl) 2204 rl--; 2205 first_alloc: 2206 // FIXME: Need to implement partial allocations so at least part of the 2207 // write can be performed when start >= 0. (Needed for POSIX write(2) 2208 // conformance.) 2209 rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, 2210 (new_alloc_size - allocated_size) >> 2211 vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? 2212 rl->lcn + rl->length : -1, DATA_ZONE, true); 2213 if (IS_ERR(rl2)) { 2214 err = PTR_ERR(rl2); 2215 if (start < 0 || start >= allocated_size) 2216 ntfs_error(vol->sb, "Cannot extend allocation of " 2217 "inode 0x%lx, attribute type 0x%x, " 2218 "because the allocation of clusters " 2219 "failed with error code %i.", vi->i_ino, 2220 (unsigned)le32_to_cpu(ni->type), err); 2221 if (err != -ENOMEM && err != -ENOSPC) 2222 err = -EIO; 2223 goto err_out; 2224 } 2225 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 2226 if (IS_ERR(rl)) { 2227 err = PTR_ERR(rl); 2228 if (start < 0 || start >= allocated_size) 2229 ntfs_error(vol->sb, "Cannot extend allocation of " 2230 "inode 0x%lx, attribute type 0x%x, " 2231 "because the runlist merge failed " 2232 "with error code %i.", vi->i_ino, 2233 (unsigned)le32_to_cpu(ni->type), err); 2234 if (err != -ENOMEM) 2235 err = -EIO; 2236 if (ntfs_cluster_free_from_rl(vol, rl2)) { 2237 ntfs_error(vol->sb, "Failed to release allocated " 2238 "cluster(s) in error code path. Run " 2239 "chkdsk to recover the lost " 2240 "cluster(s)."); 2241 NVolSetErrors(vol); 2242 } 2243 ntfs_free(rl2); 2244 goto err_out; 2245 } 2246 ni->runlist.rl = rl; 2247 ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - 2248 allocated_size) >> vol->cluster_size_bits); 2249 /* Find the runlist element with which the attribute extent starts. */ 2250 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 2251 rl2 = ntfs_rl_find_vcn_nolock(rl, ll); 2252 BUG_ON(!rl2); 2253 BUG_ON(!rl2->length); 2254 BUG_ON(rl2->lcn < LCN_HOLE); 2255 mp_rebuilt = false; 2256 /* Get the size for the new mapping pairs array for this extent. */ 2257 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 2258 if (unlikely(mp_size <= 0)) { 2259 err = mp_size; 2260 if (start < 0 || start >= allocated_size) 2261 ntfs_error(vol->sb, "Cannot extend allocation of " 2262 "inode 0x%lx, attribute type 0x%x, " 2263 "because determining the size for the " 2264 "mapping pairs failed with error code " 2265 "%i.", vi->i_ino, 2266 (unsigned)le32_to_cpu(ni->type), err); 2267 err = -EIO; 2268 goto undo_alloc; 2269 } 2270 /* Extend the attribute record to fit the bigger mapping pairs array. */ 2271 attr_len = le32_to_cpu(a->length); 2272 err = ntfs_attr_record_resize(m, a, mp_size + 2273 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2274 if (unlikely(err)) { 2275 BUG_ON(err != -ENOSPC); 2276 // TODO: Deal with this by moving this extent to a new mft 2277 // record or by starting a new extent in a new mft record, 2278 // possibly by extending this extent partially and filling it 2279 // and creating a new extent for the remainder, or by making 2280 // other attributes non-resident and/or by moving other 2281 // attributes out of this mft record. 2282 if (start < 0 || start >= allocated_size) 2283 ntfs_error(vol->sb, "Not enough space in the mft " 2284 "record for the extended attribute " 2285 "record. This case is not " 2286 "implemented yet."); 2287 err = -EOPNOTSUPP; 2288 goto undo_alloc; 2289 } 2290 mp_rebuilt = true; 2291 /* Generate the mapping pairs array directly into the attr record. */ 2292 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2293 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2294 mp_size, rl2, ll, -1, NULL); 2295 if (unlikely(err)) { 2296 if (start < 0 || start >= allocated_size) 2297 ntfs_error(vol->sb, "Cannot extend allocation of " 2298 "inode 0x%lx, attribute type 0x%x, " 2299 "because building the mapping pairs " 2300 "failed with error code %i.", vi->i_ino, 2301 (unsigned)le32_to_cpu(ni->type), err); 2302 err = -EIO; 2303 goto undo_alloc; 2304 } 2305 /* Update the highest_vcn. */ 2306 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2307 vol->cluster_size_bits) - 1); 2308 /* 2309 * We now have extended the allocated size of the attribute. Reflect 2310 * this in the ntfs_inode structure and the attribute record. 2311 */ 2312 if (a->data.non_resident.lowest_vcn) { 2313 /* 2314 * We are not in the first attribute extent, switch to it, but 2315 * first ensure the changes will make it to disk later. 2316 */ 2317 flush_dcache_mft_record_page(ctx->ntfs_ino); 2318 mark_mft_record_dirty(ctx->ntfs_ino); 2319 ntfs_attr_reinit_search_ctx(ctx); 2320 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2321 CASE_SENSITIVE, 0, NULL, 0, ctx); 2322 if (unlikely(err)) 2323 goto restore_undo_alloc; 2324 /* @m is not used any more so no need to set it. */ 2325 a = ctx->attr; 2326 } 2327 write_lock_irqsave(&ni->size_lock, flags); 2328 ni->allocated_size = new_alloc_size; 2329 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2330 /* 2331 * FIXME: This would fail if @ni is a directory, $MFT, or an index, 2332 * since those can have sparse/compressed set. For example can be 2333 * set compressed even though it is not compressed itself and in that 2334 * case the bit means that files are to be created compressed in the 2335 * directory... At present this is ok as this code is only called for 2336 * regular files, and only for their $DATA attribute(s). 2337 * FIXME: The calculation is wrong if we created a hole above. For now 2338 * it does not matter as we never create holes. 2339 */ 2340 if (NInoSparse(ni) || NInoCompressed(ni)) { 2341 ni->itype.compressed.size += new_alloc_size - allocated_size; 2342 a->data.non_resident.compressed_size = 2343 cpu_to_sle64(ni->itype.compressed.size); 2344 vi->i_blocks = ni->itype.compressed.size >> 9; 2345 } else 2346 vi->i_blocks = new_alloc_size >> 9; 2347 write_unlock_irqrestore(&ni->size_lock, flags); 2348 alloc_done: 2349 if (new_data_size >= 0) { 2350 BUG_ON(new_data_size < 2351 sle64_to_cpu(a->data.non_resident.data_size)); 2352 a->data.non_resident.data_size = cpu_to_sle64(new_data_size); 2353 } 2354 flush_done: 2355 /* Ensure the changes make it to disk. */ 2356 flush_dcache_mft_record_page(ctx->ntfs_ino); 2357 mark_mft_record_dirty(ctx->ntfs_ino); 2358 done: 2359 ntfs_attr_put_search_ctx(ctx); 2360 unmap_mft_record(base_ni); 2361 up_write(&ni->runlist.lock); 2362 ntfs_debug("Done, new_allocated_size 0x%llx.", 2363 (unsigned long long)new_alloc_size); 2364 return new_alloc_size; 2365 restore_undo_alloc: 2366 if (start < 0 || start >= allocated_size) 2367 ntfs_error(vol->sb, "Cannot complete extension of allocation " 2368 "of inode 0x%lx, attribute type 0x%x, because " 2369 "lookup of first attribute extent failed with " 2370 "error code %i.", vi->i_ino, 2371 (unsigned)le32_to_cpu(ni->type), err); 2372 if (err == -ENOENT) 2373 err = -EIO; 2374 ntfs_attr_reinit_search_ctx(ctx); 2375 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 2376 allocated_size >> vol->cluster_size_bits, NULL, 0, 2377 ctx)) { 2378 ntfs_error(vol->sb, "Failed to find last attribute extent of " 2379 "attribute in error code path. Run chkdsk to " 2380 "recover."); 2381 write_lock_irqsave(&ni->size_lock, flags); 2382 ni->allocated_size = new_alloc_size; 2383 /* 2384 * FIXME: This would fail if @ni is a directory... See above. 2385 * FIXME: The calculation is wrong if we created a hole above. 2386 * For now it does not matter as we never create holes. 2387 */ 2388 if (NInoSparse(ni) || NInoCompressed(ni)) { 2389 ni->itype.compressed.size += new_alloc_size - 2390 allocated_size; 2391 vi->i_blocks = ni->itype.compressed.size >> 9; 2392 } else 2393 vi->i_blocks = new_alloc_size >> 9; 2394 write_unlock_irqrestore(&ni->size_lock, flags); 2395 ntfs_attr_put_search_ctx(ctx); 2396 unmap_mft_record(base_ni); 2397 up_write(&ni->runlist.lock); 2398 /* 2399 * The only thing that is now wrong is the allocated size of the 2400 * base attribute extent which chkdsk should be able to fix. 2401 */ 2402 NVolSetErrors(vol); 2403 return err; 2404 } 2405 ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( 2406 (allocated_size >> vol->cluster_size_bits) - 1); 2407 undo_alloc: 2408 ll = allocated_size >> vol->cluster_size_bits; 2409 if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { 2410 ntfs_error(vol->sb, "Failed to release allocated cluster(s) " 2411 "in error code path. Run chkdsk to recover " 2412 "the lost cluster(s)."); 2413 NVolSetErrors(vol); 2414 } 2415 m = ctx->mrec; 2416 a = ctx->attr; 2417 /* 2418 * If the runlist truncation fails and/or the search context is no 2419 * longer valid, we cannot resize the attribute record or build the 2420 * mapping pairs array thus we mark the inode bad so that no access to 2421 * the freed clusters can happen. 2422 */ 2423 if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { 2424 ntfs_error(vol->sb, "Failed to %s in error code path. Run " 2425 "chkdsk to recover.", IS_ERR(m) ? 2426 "restore attribute search context" : 2427 "truncate attribute runlist"); 2428 NVolSetErrors(vol); 2429 } else if (mp_rebuilt) { 2430 if (ntfs_attr_record_resize(m, a, attr_len)) { 2431 ntfs_error(vol->sb, "Failed to restore attribute " 2432 "record in error code path. Run " 2433 "chkdsk to recover."); 2434 NVolSetErrors(vol); 2435 } else /* if (success) */ { 2436 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 2437 a->data.non_resident. 2438 mapping_pairs_offset), attr_len - 2439 le16_to_cpu(a->data.non_resident. 2440 mapping_pairs_offset), rl2, ll, -1, 2441 NULL)) { 2442 ntfs_error(vol->sb, "Failed to restore " 2443 "mapping pairs array in error " 2444 "code path. Run chkdsk to " 2445 "recover."); 2446 NVolSetErrors(vol); 2447 } 2448 flush_dcache_mft_record_page(ctx->ntfs_ino); 2449 mark_mft_record_dirty(ctx->ntfs_ino); 2450 } 2451 } 2452 err_out: 2453 if (ctx) 2454 ntfs_attr_put_search_ctx(ctx); 2455 if (m) 2456 unmap_mft_record(base_ni); 2457 up_write(&ni->runlist.lock); 2458 conv_err_out: 2459 ntfs_debug("Failed. Returning error code %i.", err); 2460 return err; 2461 } 2462 2463 /** 2464 * ntfs_attr_set - fill (a part of) an attribute with a byte 2465 * @ni: ntfs inode describing the attribute to fill 2466 * @ofs: offset inside the attribute at which to start to fill 2467 * @cnt: number of bytes to fill 2468 * @val: the unsigned 8-bit value with which to fill the attribute 2469 * 2470 * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at 2471 * byte offset @ofs inside the attribute with the constant byte @val. 2472 * 2473 * This function is effectively like memset() applied to an ntfs attribute. 2474 * Note thie function actually only operates on the page cache pages belonging 2475 * to the ntfs attribute and it marks them dirty after doing the memset(). 2476 * Thus it relies on the vm dirty page write code paths to cause the modified 2477 * pages to be written to the mft record/disk. 2478 * 2479 * Return 0 on success and -errno on error. An error code of -ESPIPE means 2480 * that @ofs + @cnt were outside the end of the attribute and no write was 2481 * performed. 2482 */ 2483 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) 2484 { 2485 ntfs_volume *vol = ni->vol; 2486 struct address_space *mapping; 2487 struct page *page; 2488 u8 *kaddr; 2489 pgoff_t idx, end; 2490 unsigned start_ofs, end_ofs, size; 2491 2492 ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", 2493 (long long)ofs, (long long)cnt, val); 2494 BUG_ON(ofs < 0); 2495 BUG_ON(cnt < 0); 2496 if (!cnt) 2497 goto done; 2498 /* 2499 * FIXME: Compressed and encrypted attributes are not supported when 2500 * writing and we should never have gotten here for them. 2501 */ 2502 BUG_ON(NInoCompressed(ni)); 2503 BUG_ON(NInoEncrypted(ni)); 2504 mapping = VFS_I(ni)->i_mapping; 2505 /* Work out the starting index and page offset. */ 2506 idx = ofs >> PAGE_SHIFT; 2507 start_ofs = ofs & ~PAGE_MASK; 2508 /* Work out the ending index and page offset. */ 2509 end = ofs + cnt; 2510 end_ofs = end & ~PAGE_MASK; 2511 /* If the end is outside the inode size return -ESPIPE. */ 2512 if (unlikely(end > i_size_read(VFS_I(ni)))) { 2513 ntfs_error(vol->sb, "Request exceeds end of attribute."); 2514 return -ESPIPE; 2515 } 2516 end >>= PAGE_SHIFT; 2517 /* If there is a first partial page, need to do it the slow way. */ 2518 if (start_ofs) { 2519 page = read_mapping_page(mapping, idx, NULL); 2520 if (IS_ERR(page)) { 2521 ntfs_error(vol->sb, "Failed to read first partial " 2522 "page (error, index 0x%lx).", idx); 2523 return PTR_ERR(page); 2524 } 2525 /* 2526 * If the last page is the same as the first page, need to 2527 * limit the write to the end offset. 2528 */ 2529 size = PAGE_SIZE; 2530 if (idx == end) 2531 size = end_ofs; 2532 kaddr = kmap_atomic(page); 2533 memset(kaddr + start_ofs, val, size - start_ofs); 2534 flush_dcache_page(page); 2535 kunmap_atomic(kaddr); 2536 set_page_dirty(page); 2537 put_page(page); 2538 balance_dirty_pages_ratelimited(mapping); 2539 cond_resched(); 2540 if (idx == end) 2541 goto done; 2542 idx++; 2543 } 2544 /* Do the whole pages the fast way. */ 2545 for (; idx < end; idx++) { 2546 /* Find or create the current page. (The page is locked.) */ 2547 page = grab_cache_page(mapping, idx); 2548 if (unlikely(!page)) { 2549 ntfs_error(vol->sb, "Insufficient memory to grab " 2550 "page (index 0x%lx).", idx); 2551 return -ENOMEM; 2552 } 2553 kaddr = kmap_atomic(page); 2554 memset(kaddr, val, PAGE_SIZE); 2555 flush_dcache_page(page); 2556 kunmap_atomic(kaddr); 2557 /* 2558 * If the page has buffers, mark them uptodate since buffer 2559 * state and not page state is definitive in 2.6 kernels. 2560 */ 2561 if (page_has_buffers(page)) { 2562 struct buffer_head *bh, *head; 2563 2564 bh = head = page_buffers(page); 2565 do { 2566 set_buffer_uptodate(bh); 2567 } while ((bh = bh->b_this_page) != head); 2568 } 2569 /* Now that buffers are uptodate, set the page uptodate, too. */ 2570 SetPageUptodate(page); 2571 /* 2572 * Set the page and all its buffers dirty and mark the inode 2573 * dirty, too. The VM will write the page later on. 2574 */ 2575 set_page_dirty(page); 2576 /* Finally unlock and release the page. */ 2577 unlock_page(page); 2578 put_page(page); 2579 balance_dirty_pages_ratelimited(mapping); 2580 cond_resched(); 2581 } 2582 /* If there is a last partial page, need to do it the slow way. */ 2583 if (end_ofs) { 2584 page = read_mapping_page(mapping, idx, NULL); 2585 if (IS_ERR(page)) { 2586 ntfs_error(vol->sb, "Failed to read last partial page " 2587 "(error, index 0x%lx).", idx); 2588 return PTR_ERR(page); 2589 } 2590 kaddr = kmap_atomic(page); 2591 memset(kaddr, val, end_ofs); 2592 flush_dcache_page(page); 2593 kunmap_atomic(kaddr); 2594 set_page_dirty(page); 2595 put_page(page); 2596 balance_dirty_pages_ratelimited(mapping); 2597 cond_resched(); 2598 } 2599 done: 2600 ntfs_debug("Done."); 2601 return 0; 2602 } 2603 2604 #endif /* NTFS_RW */ 2605