1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2002 Richard Russon 7 */ 8 9 #include <linux/buffer_head.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 15 #include "attrib.h" 16 #include "debug.h" 17 #include "layout.h" 18 #include "lcnalloc.h" 19 #include "malloc.h" 20 #include "mft.h" 21 #include "ntfs.h" 22 #include "types.h" 23 24 /** 25 * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode 26 * @ni: ntfs inode for which to map (part of) a runlist 27 * @vcn: map runlist part containing this vcn 28 * @ctx: active attribute search context if present or NULL if not 29 * 30 * Map the part of a runlist containing the @vcn of the ntfs inode @ni. 31 * 32 * If @ctx is specified, it is an active search context of @ni and its base mft 33 * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped 34 * runlist fragments and allows their mapping. If you do not have the mft 35 * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() 36 * will perform the necessary mapping and unmapping. 37 * 38 * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and 39 * restores it before returning. Thus, @ctx will be left pointing to the same 40 * attribute on return as on entry. However, the actual pointers in @ctx may 41 * point to different memory locations on return, so you must remember to reset 42 * any cached pointers from the @ctx, i.e. after the call to 43 * ntfs_map_runlist_nolock(), you will probably want to do: 44 * m = ctx->mrec; 45 * a = ctx->attr; 46 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that 47 * you cache ctx->mrec in a variable @m of type MFT_RECORD *. 48 * 49 * Return 0 on success and -errno on error. There is one special error code 50 * which is not an error as such. This is -ENOENT. It means that @vcn is out 51 * of bounds of the runlist. 52 * 53 * Note the runlist can be NULL after this function returns if @vcn is zero and 54 * the attribute has zero allocated size, i.e. there simply is no runlist. 55 * 56 * WARNING: If @ctx is supplied, regardless of whether success or failure is 57 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx 58 * is no longer valid, i.e. you need to either call 59 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. 60 * In that case PTR_ERR(@ctx->mrec) will give you the error code for 61 * why the mapping of the old inode failed. 62 * 63 * Locking: - The runlist described by @ni must be locked for writing on entry 64 * and is locked on return. Note the runlist will be modified. 65 * - If @ctx is NULL, the base mft record of @ni must not be mapped on 66 * entry and it will be left unmapped on return. 67 * - If @ctx is not NULL, the base mft record must be mapped on entry 68 * and it will be left mapped on return. 69 */ 70 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) 71 { 72 VCN end_vcn; 73 unsigned long flags; 74 ntfs_inode *base_ni; 75 MFT_RECORD *m; 76 ATTR_RECORD *a; 77 runlist_element *rl; 78 struct page *put_this_page = NULL; 79 int err = 0; 80 bool ctx_is_temporary, ctx_needs_reset; 81 ntfs_attr_search_ctx old_ctx = { NULL, }; 82 83 ntfs_debug("Mapping runlist part containing vcn 0x%llx.", 84 (unsigned long long)vcn); 85 if (!NInoAttr(ni)) 86 base_ni = ni; 87 else 88 base_ni = ni->ext.base_ntfs_ino; 89 if (!ctx) { 90 ctx_is_temporary = ctx_needs_reset = true; 91 m = map_mft_record(base_ni); 92 if (IS_ERR(m)) 93 return PTR_ERR(m); 94 ctx = ntfs_attr_get_search_ctx(base_ni, m); 95 if (unlikely(!ctx)) { 96 err = -ENOMEM; 97 goto err_out; 98 } 99 } else { 100 VCN allocated_size_vcn; 101 102 BUG_ON(IS_ERR(ctx->mrec)); 103 a = ctx->attr; 104 BUG_ON(!a->non_resident); 105 ctx_is_temporary = false; 106 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 107 read_lock_irqsave(&ni->size_lock, flags); 108 allocated_size_vcn = ni->allocated_size >> 109 ni->vol->cluster_size_bits; 110 read_unlock_irqrestore(&ni->size_lock, flags); 111 if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) 112 end_vcn = allocated_size_vcn - 1; 113 /* 114 * If we already have the attribute extent containing @vcn in 115 * @ctx, no need to look it up again. We slightly cheat in 116 * that if vcn exceeds the allocated size, we will refuse to 117 * map the runlist below, so there is definitely no need to get 118 * the right attribute extent. 119 */ 120 if (vcn >= allocated_size_vcn || (a->type == ni->type && 121 a->name_length == ni->name_len && 122 !memcmp((u8*)a + le16_to_cpu(a->name_offset), 123 ni->name, ni->name_len) && 124 sle64_to_cpu(a->data.non_resident.lowest_vcn) 125 <= vcn && end_vcn >= vcn)) 126 ctx_needs_reset = false; 127 else { 128 /* Save the old search context. */ 129 old_ctx = *ctx; 130 /* 131 * If the currently mapped (extent) inode is not the 132 * base inode we will unmap it when we reinitialize the 133 * search context which means we need to get a 134 * reference to the page containing the mapped mft 135 * record so we do not accidentally drop changes to the 136 * mft record when it has not been marked dirty yet. 137 */ 138 if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != 139 old_ctx.base_ntfs_ino) { 140 put_this_page = old_ctx.ntfs_ino->page; 141 get_page(put_this_page); 142 } 143 /* 144 * Reinitialize the search context so we can lookup the 145 * needed attribute extent. 146 */ 147 ntfs_attr_reinit_search_ctx(ctx); 148 ctx_needs_reset = true; 149 } 150 } 151 if (ctx_needs_reset) { 152 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 153 CASE_SENSITIVE, vcn, NULL, 0, ctx); 154 if (unlikely(err)) { 155 if (err == -ENOENT) 156 err = -EIO; 157 goto err_out; 158 } 159 BUG_ON(!ctx->attr->non_resident); 160 } 161 a = ctx->attr; 162 /* 163 * Only decompress the mapping pairs if @vcn is inside it. Otherwise 164 * we get into problems when we try to map an out of bounds vcn because 165 * we then try to map the already mapped runlist fragment and 166 * ntfs_mapping_pairs_decompress() fails. 167 */ 168 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; 169 if (unlikely(vcn && vcn >= end_vcn)) { 170 err = -ENOENT; 171 goto err_out; 172 } 173 rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl); 174 if (IS_ERR(rl)) 175 err = PTR_ERR(rl); 176 else 177 ni->runlist.rl = rl; 178 err_out: 179 if (ctx_is_temporary) { 180 if (likely(ctx)) 181 ntfs_attr_put_search_ctx(ctx); 182 unmap_mft_record(base_ni); 183 } else if (ctx_needs_reset) { 184 /* 185 * If there is no attribute list, restoring the search context 186 * is accomplished simply by copying the saved context back over 187 * the caller supplied context. If there is an attribute list, 188 * things are more complicated as we need to deal with mapping 189 * of mft records and resulting potential changes in pointers. 190 */ 191 if (NInoAttrList(base_ni)) { 192 /* 193 * If the currently mapped (extent) inode is not the 194 * one we had before, we need to unmap it and map the 195 * old one. 196 */ 197 if (ctx->ntfs_ino != old_ctx.ntfs_ino) { 198 /* 199 * If the currently mapped inode is not the 200 * base inode, unmap it. 201 */ 202 if (ctx->base_ntfs_ino && ctx->ntfs_ino != 203 ctx->base_ntfs_ino) { 204 unmap_extent_mft_record(ctx->ntfs_ino); 205 ctx->mrec = ctx->base_mrec; 206 BUG_ON(!ctx->mrec); 207 } 208 /* 209 * If the old mapped inode is not the base 210 * inode, map it. 211 */ 212 if (old_ctx.base_ntfs_ino && 213 old_ctx.ntfs_ino != 214 old_ctx.base_ntfs_ino) { 215 retry_map: 216 ctx->mrec = map_mft_record( 217 old_ctx.ntfs_ino); 218 /* 219 * Something bad has happened. If out 220 * of memory retry till it succeeds. 221 * Any other errors are fatal and we 222 * return the error code in ctx->mrec. 223 * Let the caller deal with it... We 224 * just need to fudge things so the 225 * caller can reinit and/or put the 226 * search context safely. 227 */ 228 if (IS_ERR(ctx->mrec)) { 229 if (PTR_ERR(ctx->mrec) == 230 -ENOMEM) { 231 schedule(); 232 goto retry_map; 233 } else 234 old_ctx.ntfs_ino = 235 old_ctx. 236 base_ntfs_ino; 237 } 238 } 239 } 240 /* Update the changed pointers in the saved context. */ 241 if (ctx->mrec != old_ctx.mrec) { 242 if (!IS_ERR(ctx->mrec)) 243 old_ctx.attr = (ATTR_RECORD*)( 244 (u8*)ctx->mrec + 245 ((u8*)old_ctx.attr - 246 (u8*)old_ctx.mrec)); 247 old_ctx.mrec = ctx->mrec; 248 } 249 } 250 /* Restore the search context to the saved one. */ 251 *ctx = old_ctx; 252 /* 253 * We drop the reference on the page we took earlier. In the 254 * case that IS_ERR(ctx->mrec) is true this means we might lose 255 * some changes to the mft record that had been made between 256 * the last time it was marked dirty/written out and now. This 257 * at this stage is not a problem as the mapping error is fatal 258 * enough that the mft record cannot be written out anyway and 259 * the caller is very likely to shutdown the whole inode 260 * immediately and mark the volume dirty for chkdsk to pick up 261 * the pieces anyway. 262 */ 263 if (put_this_page) 264 put_page(put_this_page); 265 } 266 return err; 267 } 268 269 /** 270 * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode 271 * @ni: ntfs inode for which to map (part of) a runlist 272 * @vcn: map runlist part containing this vcn 273 * 274 * Map the part of a runlist containing the @vcn of the ntfs inode @ni. 275 * 276 * Return 0 on success and -errno on error. There is one special error code 277 * which is not an error as such. This is -ENOENT. It means that @vcn is out 278 * of bounds of the runlist. 279 * 280 * Locking: - The runlist must be unlocked on entry and is unlocked on return. 281 * - This function takes the runlist lock for writing and may modify 282 * the runlist. 283 */ 284 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) 285 { 286 int err = 0; 287 288 down_write(&ni->runlist.lock); 289 /* Make sure someone else didn't do the work while we were sleeping. */ 290 if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= 291 LCN_RL_NOT_MAPPED)) 292 err = ntfs_map_runlist_nolock(ni, vcn, NULL); 293 up_write(&ni->runlist.lock); 294 return err; 295 } 296 297 /** 298 * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode 299 * @ni: ntfs inode of the attribute whose runlist to search 300 * @vcn: vcn to convert 301 * @write_locked: true if the runlist is locked for writing 302 * 303 * Find the virtual cluster number @vcn in the runlist of the ntfs attribute 304 * described by the ntfs inode @ni and return the corresponding logical cluster 305 * number (lcn). 306 * 307 * If the @vcn is not mapped yet, the attempt is made to map the attribute 308 * extent containing the @vcn and the vcn to lcn conversion is retried. 309 * 310 * If @write_locked is true the caller has locked the runlist for writing and 311 * if false for reading. 312 * 313 * Since lcns must be >= 0, we use negative return codes with special meaning: 314 * 315 * Return code Meaning / Description 316 * ========================================== 317 * LCN_HOLE Hole / not allocated on disk. 318 * LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds. 319 * LCN_ENOMEM Not enough memory to map runlist. 320 * LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc). 321 * 322 * Locking: - The runlist must be locked on entry and is left locked on return. 323 * - If @write_locked is 'false', i.e. the runlist is locked for reading, 324 * the lock may be dropped inside the function so you cannot rely on 325 * the runlist still being the same when this function returns. 326 */ 327 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, 328 const bool write_locked) 329 { 330 LCN lcn; 331 unsigned long flags; 332 bool is_retry = false; 333 334 BUG_ON(!ni); 335 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", 336 ni->mft_no, (unsigned long long)vcn, 337 write_locked ? "write" : "read"); 338 BUG_ON(!NInoNonResident(ni)); 339 BUG_ON(vcn < 0); 340 if (!ni->runlist.rl) { 341 read_lock_irqsave(&ni->size_lock, flags); 342 if (!ni->allocated_size) { 343 read_unlock_irqrestore(&ni->size_lock, flags); 344 return LCN_ENOENT; 345 } 346 read_unlock_irqrestore(&ni->size_lock, flags); 347 } 348 retry_remap: 349 /* Convert vcn to lcn. If that fails map the runlist and retry once. */ 350 lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn); 351 if (likely(lcn >= LCN_HOLE)) { 352 ntfs_debug("Done, lcn 0x%llx.", (long long)lcn); 353 return lcn; 354 } 355 if (lcn != LCN_RL_NOT_MAPPED) { 356 if (lcn != LCN_ENOENT) 357 lcn = LCN_EIO; 358 } else if (!is_retry) { 359 int err; 360 361 if (!write_locked) { 362 up_read(&ni->runlist.lock); 363 down_write(&ni->runlist.lock); 364 if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != 365 LCN_RL_NOT_MAPPED)) { 366 up_write(&ni->runlist.lock); 367 down_read(&ni->runlist.lock); 368 goto retry_remap; 369 } 370 } 371 err = ntfs_map_runlist_nolock(ni, vcn, NULL); 372 if (!write_locked) { 373 up_write(&ni->runlist.lock); 374 down_read(&ni->runlist.lock); 375 } 376 if (likely(!err)) { 377 is_retry = true; 378 goto retry_remap; 379 } 380 if (err == -ENOENT) 381 lcn = LCN_ENOENT; 382 else if (err == -ENOMEM) 383 lcn = LCN_ENOMEM; 384 else 385 lcn = LCN_EIO; 386 } 387 if (lcn != LCN_ENOENT) 388 ntfs_error(ni->vol->sb, "Failed with error code %lli.", 389 (long long)lcn); 390 return lcn; 391 } 392 393 /** 394 * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode 395 * @ni: ntfs inode describing the runlist to search 396 * @vcn: vcn to find 397 * @ctx: active attribute search context if present or NULL if not 398 * 399 * Find the virtual cluster number @vcn in the runlist described by the ntfs 400 * inode @ni and return the address of the runlist element containing the @vcn. 401 * 402 * If the @vcn is not mapped yet, the attempt is made to map the attribute 403 * extent containing the @vcn and the vcn to lcn conversion is retried. 404 * 405 * If @ctx is specified, it is an active search context of @ni and its base mft 406 * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped 407 * runlist fragments and allows their mapping. If you do not have the mft 408 * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() 409 * will perform the necessary mapping and unmapping. 410 * 411 * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and 412 * restores it before returning. Thus, @ctx will be left pointing to the same 413 * attribute on return as on entry. However, the actual pointers in @ctx may 414 * point to different memory locations on return, so you must remember to reset 415 * any cached pointers from the @ctx, i.e. after the call to 416 * ntfs_attr_find_vcn_nolock(), you will probably want to do: 417 * m = ctx->mrec; 418 * a = ctx->attr; 419 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that 420 * you cache ctx->mrec in a variable @m of type MFT_RECORD *. 421 * Note you need to distinguish between the lcn of the returned runlist element 422 * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on 423 * read and allocate clusters on write. 424 * 425 * Return the runlist element containing the @vcn on success and 426 * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR() 427 * to decide if the return is success or failure and PTR_ERR() to get to the 428 * error code if IS_ERR() is true. 429 * 430 * The possible error return codes are: 431 * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. 432 * -ENOMEM - Not enough memory to map runlist. 433 * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). 434 * 435 * WARNING: If @ctx is supplied, regardless of whether success or failure is 436 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx 437 * is no longer valid, i.e. you need to either call 438 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. 439 * In that case PTR_ERR(@ctx->mrec) will give you the error code for 440 * why the mapping of the old inode failed. 441 * 442 * Locking: - The runlist described by @ni must be locked for writing on entry 443 * and is locked on return. Note the runlist may be modified when 444 * needed runlist fragments need to be mapped. 445 * - If @ctx is NULL, the base mft record of @ni must not be mapped on 446 * entry and it will be left unmapped on return. 447 * - If @ctx is not NULL, the base mft record must be mapped on entry 448 * and it will be left mapped on return. 449 */ 450 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, 451 ntfs_attr_search_ctx *ctx) 452 { 453 unsigned long flags; 454 runlist_element *rl; 455 int err = 0; 456 bool is_retry = false; 457 458 BUG_ON(!ni); 459 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", 460 ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); 461 BUG_ON(!NInoNonResident(ni)); 462 BUG_ON(vcn < 0); 463 if (!ni->runlist.rl) { 464 read_lock_irqsave(&ni->size_lock, flags); 465 if (!ni->allocated_size) { 466 read_unlock_irqrestore(&ni->size_lock, flags); 467 return ERR_PTR(-ENOENT); 468 } 469 read_unlock_irqrestore(&ni->size_lock, flags); 470 } 471 retry_remap: 472 rl = ni->runlist.rl; 473 if (likely(rl && vcn >= rl[0].vcn)) { 474 while (likely(rl->length)) { 475 if (unlikely(vcn < rl[1].vcn)) { 476 if (likely(rl->lcn >= LCN_HOLE)) { 477 ntfs_debug("Done."); 478 return rl; 479 } 480 break; 481 } 482 rl++; 483 } 484 if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { 485 if (likely(rl->lcn == LCN_ENOENT)) 486 err = -ENOENT; 487 else 488 err = -EIO; 489 } 490 } 491 if (!err && !is_retry) { 492 /* 493 * If the search context is invalid we cannot map the unmapped 494 * region. 495 */ 496 if (IS_ERR(ctx->mrec)) 497 err = PTR_ERR(ctx->mrec); 498 else { 499 /* 500 * The @vcn is in an unmapped region, map the runlist 501 * and retry. 502 */ 503 err = ntfs_map_runlist_nolock(ni, vcn, ctx); 504 if (likely(!err)) { 505 is_retry = true; 506 goto retry_remap; 507 } 508 } 509 if (err == -EINVAL) 510 err = -EIO; 511 } else if (!err) 512 err = -EIO; 513 if (err != -ENOENT) 514 ntfs_error(ni->vol->sb, "Failed with error code %i.", err); 515 return ERR_PTR(err); 516 } 517 518 /** 519 * ntfs_attr_find - find (next) attribute in mft record 520 * @type: attribute type to find 521 * @name: attribute name to find (optional, i.e. NULL means don't care) 522 * @name_len: attribute name length (only needed if @name present) 523 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 524 * @val: attribute value to find (optional, resident attributes only) 525 * @val_len: attribute value length 526 * @ctx: search context with mft record and attribute to search from 527 * 528 * You should not need to call this function directly. Use ntfs_attr_lookup() 529 * instead. 530 * 531 * ntfs_attr_find() takes a search context @ctx as parameter and searches the 532 * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an 533 * attribute of @type, optionally @name and @val. 534 * 535 * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will 536 * point to the found attribute. 537 * 538 * If the attribute is not found, ntfs_attr_find() returns -ENOENT and 539 * @ctx->attr will point to the attribute before which the attribute being 540 * searched for would need to be inserted if such an action were to be desired. 541 * 542 * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is 543 * undefined and in particular do not rely on it not changing. 544 * 545 * If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it 546 * is 'false', the search begins after @ctx->attr. 547 * 548 * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and 549 * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record 550 * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at 551 * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case 552 * sensitive. When @name is present, @name_len is the @name length in Unicode 553 * characters. 554 * 555 * If @name is not present (NULL), we assume that the unnamed attribute is 556 * being searched for. 557 * 558 * Finally, the resident attribute value @val is looked for, if present. If 559 * @val is not present (NULL), @val_len is ignored. 560 * 561 * ntfs_attr_find() only searches the specified mft record and it ignores the 562 * presence of an attribute list attribute (unless it is the one being searched 563 * for, obviously). If you need to take attribute lists into consideration, 564 * use ntfs_attr_lookup() instead (see below). This also means that you cannot 565 * use ntfs_attr_find() to search for extent records of non-resident 566 * attributes, as extents with lowest_vcn != 0 are usually described by the 567 * attribute list attribute only. - Note that it is possible that the first 568 * extent is only in the attribute list while the last extent is in the base 569 * mft record, so do not rely on being able to find the first extent in the 570 * base mft record. 571 * 572 * Warning: Never use @val when looking for attribute types which can be 573 * non-resident as this most likely will result in a crash! 574 */ 575 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, 576 const u32 name_len, const IGNORE_CASE_BOOL ic, 577 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) 578 { 579 ATTR_RECORD *a; 580 ntfs_volume *vol = ctx->ntfs_ino->vol; 581 ntfschar *upcase = vol->upcase; 582 u32 upcase_len = vol->upcase_len; 583 584 /* 585 * Iterate over attributes in mft record starting at @ctx->attr, or the 586 * attribute following that, if @ctx->is_first is 'true'. 587 */ 588 if (ctx->is_first) { 589 a = ctx->attr; 590 ctx->is_first = false; 591 } else 592 a = (ATTR_RECORD*)((u8*)ctx->attr + 593 le32_to_cpu(ctx->attr->length)); 594 for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { 595 u8 *mrec_end = (u8 *)ctx->mrec + 596 le32_to_cpu(ctx->mrec->bytes_allocated); 597 u8 *name_end; 598 599 /* check whether ATTR_RECORD wrap */ 600 if ((u8 *)a < (u8 *)ctx->mrec) 601 break; 602 603 /* check whether Attribute Record Header is within bounds */ 604 if ((u8 *)a > mrec_end || 605 (u8 *)a + sizeof(ATTR_RECORD) > mrec_end) 606 break; 607 608 /* check whether ATTR_RECORD's name is within bounds */ 609 name_end = (u8 *)a + le16_to_cpu(a->name_offset) + 610 a->name_length * sizeof(ntfschar); 611 if (name_end > mrec_end) 612 break; 613 614 ctx->attr = a; 615 if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || 616 a->type == AT_END)) 617 return -ENOENT; 618 if (unlikely(!a->length)) 619 break; 620 621 /* check whether ATTR_RECORD's length wrap */ 622 if ((u8 *)a + le32_to_cpu(a->length) < (u8 *)a) 623 break; 624 /* check whether ATTR_RECORD's length is within bounds */ 625 if ((u8 *)a + le32_to_cpu(a->length) > mrec_end) 626 break; 627 628 if (a->type != type) 629 continue; 630 /* 631 * If @name is present, compare the two names. If @name is 632 * missing, assume we want an unnamed attribute. 633 */ 634 if (!name) { 635 /* The search failed if the found attribute is named. */ 636 if (a->name_length) 637 return -ENOENT; 638 } else if (!ntfs_are_names_equal(name, name_len, 639 (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), 640 a->name_length, ic, upcase, upcase_len)) { 641 register int rc; 642 643 rc = ntfs_collate_names(name, name_len, 644 (ntfschar*)((u8*)a + 645 le16_to_cpu(a->name_offset)), 646 a->name_length, 1, IGNORE_CASE, 647 upcase, upcase_len); 648 /* 649 * If @name collates before a->name, there is no 650 * matching attribute. 651 */ 652 if (rc == -1) 653 return -ENOENT; 654 /* If the strings are not equal, continue search. */ 655 if (rc) 656 continue; 657 rc = ntfs_collate_names(name, name_len, 658 (ntfschar*)((u8*)a + 659 le16_to_cpu(a->name_offset)), 660 a->name_length, 1, CASE_SENSITIVE, 661 upcase, upcase_len); 662 if (rc == -1) 663 return -ENOENT; 664 if (rc) 665 continue; 666 } 667 /* 668 * The names match or @name not present and attribute is 669 * unnamed. If no @val specified, we have found the attribute 670 * and are done. 671 */ 672 if (!val) 673 return 0; 674 /* @val is present; compare values. */ 675 else { 676 register int rc; 677 678 rc = memcmp(val, (u8*)a + le16_to_cpu( 679 a->data.resident.value_offset), 680 min_t(u32, val_len, le32_to_cpu( 681 a->data.resident.value_length))); 682 /* 683 * If @val collates before the current attribute's 684 * value, there is no matching attribute. 685 */ 686 if (!rc) { 687 register u32 avl; 688 689 avl = le32_to_cpu( 690 a->data.resident.value_length); 691 if (val_len == avl) 692 return 0; 693 if (val_len < avl) 694 return -ENOENT; 695 } else if (rc < 0) 696 return -ENOENT; 697 } 698 } 699 ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk."); 700 NVolSetErrors(vol); 701 return -EIO; 702 } 703 704 /** 705 * load_attribute_list - load an attribute list into memory 706 * @vol: ntfs volume from which to read 707 * @runlist: runlist of the attribute list 708 * @al_start: destination buffer 709 * @size: size of the destination buffer in bytes 710 * @initialized_size: initialized size of the attribute list 711 * 712 * Walk the runlist @runlist and load all clusters from it copying them into 713 * the linear buffer @al. The maximum number of bytes copied to @al is @size 714 * bytes. Note, @size does not need to be a multiple of the cluster size. If 715 * @initialized_size is less than @size, the region in @al between 716 * @initialized_size and @size will be zeroed and not read from disk. 717 * 718 * Return 0 on success or -errno on error. 719 */ 720 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, 721 const s64 size, const s64 initialized_size) 722 { 723 LCN lcn; 724 u8 *al = al_start; 725 u8 *al_end = al + initialized_size; 726 runlist_element *rl; 727 struct buffer_head *bh; 728 struct super_block *sb; 729 unsigned long block_size; 730 unsigned long block, max_block; 731 int err = 0; 732 unsigned char block_size_bits; 733 734 ntfs_debug("Entering."); 735 if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || 736 initialized_size > size) 737 return -EINVAL; 738 if (!initialized_size) { 739 memset(al, 0, size); 740 return 0; 741 } 742 sb = vol->sb; 743 block_size = sb->s_blocksize; 744 block_size_bits = sb->s_blocksize_bits; 745 down_read(&runlist->lock); 746 rl = runlist->rl; 747 if (!rl) { 748 ntfs_error(sb, "Cannot read attribute list since runlist is " 749 "missing."); 750 goto err_out; 751 } 752 /* Read all clusters specified by the runlist one run at a time. */ 753 while (rl->length) { 754 lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); 755 ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", 756 (unsigned long long)rl->vcn, 757 (unsigned long long)lcn); 758 /* The attribute list cannot be sparse. */ 759 if (lcn < 0) { 760 ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot " 761 "read attribute list."); 762 goto err_out; 763 } 764 block = lcn << vol->cluster_size_bits >> block_size_bits; 765 /* Read the run from device in chunks of block_size bytes. */ 766 max_block = block + (rl->length << vol->cluster_size_bits >> 767 block_size_bits); 768 ntfs_debug("max_block = 0x%lx.", max_block); 769 do { 770 ntfs_debug("Reading block = 0x%lx.", block); 771 bh = sb_bread(sb, block); 772 if (!bh) { 773 ntfs_error(sb, "sb_bread() failed. Cannot " 774 "read attribute list."); 775 goto err_out; 776 } 777 if (al + block_size >= al_end) 778 goto do_final; 779 memcpy(al, bh->b_data, block_size); 780 brelse(bh); 781 al += block_size; 782 } while (++block < max_block); 783 rl++; 784 } 785 if (initialized_size < size) { 786 initialize: 787 memset(al_start + initialized_size, 0, size - initialized_size); 788 } 789 done: 790 up_read(&runlist->lock); 791 return err; 792 do_final: 793 if (al < al_end) { 794 /* 795 * Partial block. 796 * 797 * Note: The attribute list can be smaller than its allocation 798 * by multiple clusters. This has been encountered by at least 799 * two people running Windows XP, thus we cannot do any 800 * truncation sanity checking here. (AIA) 801 */ 802 memcpy(al, bh->b_data, al_end - al); 803 brelse(bh); 804 if (initialized_size < size) 805 goto initialize; 806 goto done; 807 } 808 brelse(bh); 809 /* Real overflow! */ 810 ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " 811 "is truncated."); 812 err_out: 813 err = -EIO; 814 goto done; 815 } 816 817 /** 818 * ntfs_external_attr_find - find an attribute in the attribute list of an inode 819 * @type: attribute type to find 820 * @name: attribute name to find (optional, i.e. NULL means don't care) 821 * @name_len: attribute name length (only needed if @name present) 822 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 823 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) 824 * @val: attribute value to find (optional, resident attributes only) 825 * @val_len: attribute value length 826 * @ctx: search context with mft record and attribute to search from 827 * 828 * You should not need to call this function directly. Use ntfs_attr_lookup() 829 * instead. 830 * 831 * Find an attribute by searching the attribute list for the corresponding 832 * attribute list entry. Having found the entry, map the mft record if the 833 * attribute is in a different mft record/inode, ntfs_attr_find() the attribute 834 * in there and return it. 835 * 836 * On first search @ctx->ntfs_ino must be the base mft record and @ctx must 837 * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent 838 * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is 839 * then the base inode). 840 * 841 * After finishing with the attribute/mft record you need to call 842 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any 843 * mapped inodes, etc). 844 * 845 * If the attribute is found, ntfs_external_attr_find() returns 0 and 846 * @ctx->attr will point to the found attribute. @ctx->mrec will point to the 847 * mft record in which @ctx->attr is located and @ctx->al_entry will point to 848 * the attribute list entry for the attribute. 849 * 850 * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and 851 * @ctx->attr will point to the attribute in the base mft record before which 852 * the attribute being searched for would need to be inserted if such an action 853 * were to be desired. @ctx->mrec will point to the mft record in which 854 * @ctx->attr is located and @ctx->al_entry will point to the attribute list 855 * entry of the attribute before which the attribute being searched for would 856 * need to be inserted if such an action were to be desired. 857 * 858 * Thus to insert the not found attribute, one wants to add the attribute to 859 * @ctx->mrec (the base mft record) and if there is not enough space, the 860 * attribute should be placed in a newly allocated extent mft record. The 861 * attribute list entry for the inserted attribute should be inserted in the 862 * attribute list attribute at @ctx->al_entry. 863 * 864 * On actual error, ntfs_external_attr_find() returns -EIO. In this case 865 * @ctx->attr is undefined and in particular do not rely on it not changing. 866 */ 867 static int ntfs_external_attr_find(const ATTR_TYPE type, 868 const ntfschar *name, const u32 name_len, 869 const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, 870 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) 871 { 872 ntfs_inode *base_ni, *ni; 873 ntfs_volume *vol; 874 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 875 u8 *al_start, *al_end; 876 ATTR_RECORD *a; 877 ntfschar *al_name; 878 u32 al_name_len; 879 int err = 0; 880 static const char *es = " Unmount and run chkdsk."; 881 882 ni = ctx->ntfs_ino; 883 base_ni = ctx->base_ntfs_ino; 884 ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); 885 if (!base_ni) { 886 /* First call happens with the base mft record. */ 887 base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; 888 ctx->base_mrec = ctx->mrec; 889 } 890 if (ni == base_ni) 891 ctx->base_attr = ctx->attr; 892 if (type == AT_END) 893 goto not_found; 894 vol = base_ni->vol; 895 al_start = base_ni->attr_list; 896 al_end = al_start + base_ni->attr_list_size; 897 if (!ctx->al_entry) 898 ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; 899 /* 900 * Iterate over entries in attribute list starting at @ctx->al_entry, 901 * or the entry following that, if @ctx->is_first is 'true'. 902 */ 903 if (ctx->is_first) { 904 al_entry = ctx->al_entry; 905 ctx->is_first = false; 906 } else 907 al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + 908 le16_to_cpu(ctx->al_entry->length)); 909 for (;; al_entry = next_al_entry) { 910 /* Out of bounds check. */ 911 if ((u8*)al_entry < base_ni->attr_list || 912 (u8*)al_entry > al_end) 913 break; /* Inode is corrupt. */ 914 ctx->al_entry = al_entry; 915 /* Catch the end of the attribute list. */ 916 if ((u8*)al_entry == al_end) 917 goto not_found; 918 if (!al_entry->length) 919 break; 920 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 921 le16_to_cpu(al_entry->length) > al_end) 922 break; 923 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 924 le16_to_cpu(al_entry->length)); 925 if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) 926 goto not_found; 927 if (type != al_entry->type) 928 continue; 929 /* 930 * If @name is present, compare the two names. If @name is 931 * missing, assume we want an unnamed attribute. 932 */ 933 al_name_len = al_entry->name_length; 934 al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); 935 if (!name) { 936 if (al_name_len) 937 goto not_found; 938 } else if (!ntfs_are_names_equal(al_name, al_name_len, name, 939 name_len, ic, vol->upcase, vol->upcase_len)) { 940 register int rc; 941 942 rc = ntfs_collate_names(name, name_len, al_name, 943 al_name_len, 1, IGNORE_CASE, 944 vol->upcase, vol->upcase_len); 945 /* 946 * If @name collates before al_name, there is no 947 * matching attribute. 948 */ 949 if (rc == -1) 950 goto not_found; 951 /* If the strings are not equal, continue search. */ 952 if (rc) 953 continue; 954 /* 955 * FIXME: Reverse engineering showed 0, IGNORE_CASE but 956 * that is inconsistent with ntfs_attr_find(). The 957 * subsequent rc checks were also different. Perhaps I 958 * made a mistake in one of the two. Need to recheck 959 * which is correct or at least see what is going on... 960 * (AIA) 961 */ 962 rc = ntfs_collate_names(name, name_len, al_name, 963 al_name_len, 1, CASE_SENSITIVE, 964 vol->upcase, vol->upcase_len); 965 if (rc == -1) 966 goto not_found; 967 if (rc) 968 continue; 969 } 970 /* 971 * The names match or @name not present and attribute is 972 * unnamed. Now check @lowest_vcn. Continue search if the 973 * next attribute list entry still fits @lowest_vcn. Otherwise 974 * we have reached the right one or the search has failed. 975 */ 976 if (lowest_vcn && (u8*)next_al_entry >= al_start && 977 (u8*)next_al_entry + 6 < al_end && 978 (u8*)next_al_entry + le16_to_cpu( 979 next_al_entry->length) <= al_end && 980 sle64_to_cpu(next_al_entry->lowest_vcn) <= 981 lowest_vcn && 982 next_al_entry->type == al_entry->type && 983 next_al_entry->name_length == al_name_len && 984 ntfs_are_names_equal((ntfschar*)((u8*) 985 next_al_entry + 986 next_al_entry->name_offset), 987 next_al_entry->name_length, 988 al_name, al_name_len, CASE_SENSITIVE, 989 vol->upcase, vol->upcase_len)) 990 continue; 991 if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { 992 if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { 993 ntfs_error(vol->sb, "Found stale mft " 994 "reference in attribute list " 995 "of base inode 0x%lx.%s", 996 base_ni->mft_no, es); 997 err = -EIO; 998 break; 999 } 1000 } else { /* Mft references do not match. */ 1001 /* If there is a mapped record unmap it first. */ 1002 if (ni != base_ni) 1003 unmap_extent_mft_record(ni); 1004 /* Do we want the base record back? */ 1005 if (MREF_LE(al_entry->mft_reference) == 1006 base_ni->mft_no) { 1007 ni = ctx->ntfs_ino = base_ni; 1008 ctx->mrec = ctx->base_mrec; 1009 } else { 1010 /* We want an extent record. */ 1011 ctx->mrec = map_extent_mft_record(base_ni, 1012 le64_to_cpu( 1013 al_entry->mft_reference), &ni); 1014 if (IS_ERR(ctx->mrec)) { 1015 ntfs_error(vol->sb, "Failed to map " 1016 "extent mft record " 1017 "0x%lx of base inode " 1018 "0x%lx.%s", 1019 MREF_LE(al_entry-> 1020 mft_reference), 1021 base_ni->mft_no, es); 1022 err = PTR_ERR(ctx->mrec); 1023 if (err == -ENOENT) 1024 err = -EIO; 1025 /* Cause @ctx to be sanitized below. */ 1026 ni = NULL; 1027 break; 1028 } 1029 ctx->ntfs_ino = ni; 1030 } 1031 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1032 le16_to_cpu(ctx->mrec->attrs_offset)); 1033 } 1034 /* 1035 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the 1036 * mft record containing the attribute represented by the 1037 * current al_entry. 1038 */ 1039 /* 1040 * We could call into ntfs_attr_find() to find the right 1041 * attribute in this mft record but this would be less 1042 * efficient and not quite accurate as ntfs_attr_find() ignores 1043 * the attribute instance numbers for example which become 1044 * important when one plays with attribute lists. Also, 1045 * because a proper match has been found in the attribute list 1046 * entry above, the comparison can now be optimized. So it is 1047 * worth re-implementing a simplified ntfs_attr_find() here. 1048 */ 1049 a = ctx->attr; 1050 /* 1051 * Use a manual loop so we can still use break and continue 1052 * with the same meanings as above. 1053 */ 1054 do_next_attr_loop: 1055 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + 1056 le32_to_cpu(ctx->mrec->bytes_allocated)) 1057 break; 1058 if (a->type == AT_END) 1059 break; 1060 if (!a->length) 1061 break; 1062 if (al_entry->instance != a->instance) 1063 goto do_next_attr; 1064 /* 1065 * If the type and/or the name are mismatched between the 1066 * attribute list entry and the attribute record, there is 1067 * corruption so we break and return error EIO. 1068 */ 1069 if (al_entry->type != a->type) 1070 break; 1071 if (!ntfs_are_names_equal((ntfschar*)((u8*)a + 1072 le16_to_cpu(a->name_offset)), a->name_length, 1073 al_name, al_name_len, CASE_SENSITIVE, 1074 vol->upcase, vol->upcase_len)) 1075 break; 1076 ctx->attr = a; 1077 /* 1078 * If no @val specified or @val specified and it matches, we 1079 * have found it! 1080 */ 1081 if (!val || (!a->non_resident && le32_to_cpu( 1082 a->data.resident.value_length) == val_len && 1083 !memcmp((u8*)a + 1084 le16_to_cpu(a->data.resident.value_offset), 1085 val, val_len))) { 1086 ntfs_debug("Done, found."); 1087 return 0; 1088 } 1089 do_next_attr: 1090 /* Proceed to the next attribute in the current mft record. */ 1091 a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); 1092 goto do_next_attr_loop; 1093 } 1094 if (!err) { 1095 ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " 1096 "attribute list attribute.%s", base_ni->mft_no, 1097 es); 1098 err = -EIO; 1099 } 1100 if (ni != base_ni) { 1101 if (ni) 1102 unmap_extent_mft_record(ni); 1103 ctx->ntfs_ino = base_ni; 1104 ctx->mrec = ctx->base_mrec; 1105 ctx->attr = ctx->base_attr; 1106 } 1107 if (err != -ENOMEM) 1108 NVolSetErrors(vol); 1109 return err; 1110 not_found: 1111 /* 1112 * If we were looking for AT_END, we reset the search context @ctx and 1113 * use ntfs_attr_find() to seek to the end of the base mft record. 1114 */ 1115 if (type == AT_END) { 1116 ntfs_attr_reinit_search_ctx(ctx); 1117 return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, 1118 ctx); 1119 } 1120 /* 1121 * The attribute was not found. Before we return, we want to ensure 1122 * @ctx->mrec and @ctx->attr indicate the position at which the 1123 * attribute should be inserted in the base mft record. Since we also 1124 * want to preserve @ctx->al_entry we cannot reinitialize the search 1125 * context using ntfs_attr_reinit_search_ctx() as this would set 1126 * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see 1127 * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve 1128 * @ctx->al_entry as the remaining fields (base_*) are identical to 1129 * their non base_ counterparts and we cannot set @ctx->base_attr 1130 * correctly yet as we do not know what @ctx->attr will be set to by 1131 * the call to ntfs_attr_find() below. 1132 */ 1133 if (ni != base_ni) 1134 unmap_extent_mft_record(ni); 1135 ctx->mrec = ctx->base_mrec; 1136 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1137 le16_to_cpu(ctx->mrec->attrs_offset)); 1138 ctx->is_first = true; 1139 ctx->ntfs_ino = base_ni; 1140 ctx->base_ntfs_ino = NULL; 1141 ctx->base_mrec = NULL; 1142 ctx->base_attr = NULL; 1143 /* 1144 * In case there are multiple matches in the base mft record, need to 1145 * keep enumerating until we get an attribute not found response (or 1146 * another error), otherwise we would keep returning the same attribute 1147 * over and over again and all programs using us for enumeration would 1148 * lock up in a tight loop. 1149 */ 1150 do { 1151 err = ntfs_attr_find(type, name, name_len, ic, val, val_len, 1152 ctx); 1153 } while (!err); 1154 ntfs_debug("Done, not found."); 1155 return err; 1156 } 1157 1158 /** 1159 * ntfs_attr_lookup - find an attribute in an ntfs inode 1160 * @type: attribute type to find 1161 * @name: attribute name to find (optional, i.e. NULL means don't care) 1162 * @name_len: attribute name length (only needed if @name present) 1163 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 1164 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) 1165 * @val: attribute value to find (optional, resident attributes only) 1166 * @val_len: attribute value length 1167 * @ctx: search context with mft record and attribute to search from 1168 * 1169 * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must 1170 * be the base mft record and @ctx must have been obtained from a call to 1171 * ntfs_attr_get_search_ctx(). 1172 * 1173 * This function transparently handles attribute lists and @ctx is used to 1174 * continue searches where they were left off at. 1175 * 1176 * After finishing with the attribute/mft record you need to call 1177 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any 1178 * mapped inodes, etc). 1179 * 1180 * Return 0 if the search was successful and -errno if not. 1181 * 1182 * When 0, @ctx->attr is the found attribute and it is in mft record 1183 * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is 1184 * the attribute list entry of the found attribute. 1185 * 1186 * When -ENOENT, @ctx->attr is the attribute which collates just after the 1187 * attribute being searched for, i.e. if one wants to add the attribute to the 1188 * mft record this is the correct place to insert it into. If an attribute 1189 * list attribute is present, @ctx->al_entry is the attribute list entry which 1190 * collates just after the attribute list entry of the attribute being searched 1191 * for, i.e. if one wants to add the attribute to the mft record this is the 1192 * correct place to insert its attribute list entry into. 1193 * 1194 * When -errno != -ENOENT, an error occurred during the lookup. @ctx->attr is 1195 * then undefined and in particular you should not rely on it not changing. 1196 */ 1197 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, 1198 const u32 name_len, const IGNORE_CASE_BOOL ic, 1199 const VCN lowest_vcn, const u8 *val, const u32 val_len, 1200 ntfs_attr_search_ctx *ctx) 1201 { 1202 ntfs_inode *base_ni; 1203 1204 ntfs_debug("Entering."); 1205 BUG_ON(IS_ERR(ctx->mrec)); 1206 if (ctx->base_ntfs_ino) 1207 base_ni = ctx->base_ntfs_ino; 1208 else 1209 base_ni = ctx->ntfs_ino; 1210 /* Sanity check, just for debugging really. */ 1211 BUG_ON(!base_ni); 1212 if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) 1213 return ntfs_attr_find(type, name, name_len, ic, val, val_len, 1214 ctx); 1215 return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, 1216 val, val_len, ctx); 1217 } 1218 1219 /** 1220 * ntfs_attr_init_search_ctx - initialize an attribute search context 1221 * @ctx: attribute search context to initialize 1222 * @ni: ntfs inode with which to initialize the search context 1223 * @mrec: mft record with which to initialize the search context 1224 * 1225 * Initialize the attribute search context @ctx with @ni and @mrec. 1226 */ 1227 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, 1228 ntfs_inode *ni, MFT_RECORD *mrec) 1229 { 1230 *ctx = (ntfs_attr_search_ctx) { 1231 .mrec = mrec, 1232 /* Sanity checks are performed elsewhere. */ 1233 .attr = (ATTR_RECORD*)((u8*)mrec + 1234 le16_to_cpu(mrec->attrs_offset)), 1235 .is_first = true, 1236 .ntfs_ino = ni, 1237 }; 1238 } 1239 1240 /** 1241 * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context 1242 * @ctx: attribute search context to reinitialize 1243 * 1244 * Reinitialize the attribute search context @ctx, unmapping an associated 1245 * extent mft record if present, and initialize the search context again. 1246 * 1247 * This is used when a search for a new attribute is being started to reset 1248 * the search context to the beginning. 1249 */ 1250 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) 1251 { 1252 if (likely(!ctx->base_ntfs_ino)) { 1253 /* No attribute list. */ 1254 ctx->is_first = true; 1255 /* Sanity checks are performed elsewhere. */ 1256 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1257 le16_to_cpu(ctx->mrec->attrs_offset)); 1258 /* 1259 * This needs resetting due to ntfs_external_attr_find() which 1260 * can leave it set despite having zeroed ctx->base_ntfs_ino. 1261 */ 1262 ctx->al_entry = NULL; 1263 return; 1264 } /* Attribute list. */ 1265 if (ctx->ntfs_ino != ctx->base_ntfs_ino) 1266 unmap_extent_mft_record(ctx->ntfs_ino); 1267 ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); 1268 return; 1269 } 1270 1271 /** 1272 * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context 1273 * @ni: ntfs inode with which to initialize the search context 1274 * @mrec: mft record with which to initialize the search context 1275 * 1276 * Allocate a new attribute search context, initialize it with @ni and @mrec, 1277 * and return it. Return NULL if allocation failed. 1278 */ 1279 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) 1280 { 1281 ntfs_attr_search_ctx *ctx; 1282 1283 ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS); 1284 if (ctx) 1285 ntfs_attr_init_search_ctx(ctx, ni, mrec); 1286 return ctx; 1287 } 1288 1289 /** 1290 * ntfs_attr_put_search_ctx - release an attribute search context 1291 * @ctx: attribute search context to free 1292 * 1293 * Release the attribute search context @ctx, unmapping an associated extent 1294 * mft record if present. 1295 */ 1296 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) 1297 { 1298 if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) 1299 unmap_extent_mft_record(ctx->ntfs_ino); 1300 kmem_cache_free(ntfs_attr_ctx_cache, ctx); 1301 return; 1302 } 1303 1304 #ifdef NTFS_RW 1305 1306 /** 1307 * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file 1308 * @vol: ntfs volume to which the attribute belongs 1309 * @type: attribute type which to find 1310 * 1311 * Search for the attribute definition record corresponding to the attribute 1312 * @type in the $AttrDef system file. 1313 * 1314 * Return the attribute type definition record if found and NULL if not found. 1315 */ 1316 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, 1317 const ATTR_TYPE type) 1318 { 1319 ATTR_DEF *ad; 1320 1321 BUG_ON(!vol->attrdef); 1322 BUG_ON(!type); 1323 for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < 1324 vol->attrdef_size && ad->type; ++ad) { 1325 /* We have not found it yet, carry on searching. */ 1326 if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) 1327 continue; 1328 /* We found the attribute; return it. */ 1329 if (likely(ad->type == type)) 1330 return ad; 1331 /* We have gone too far already. No point in continuing. */ 1332 break; 1333 } 1334 /* Attribute not found. */ 1335 ntfs_debug("Attribute type 0x%x not found in $AttrDef.", 1336 le32_to_cpu(type)); 1337 return NULL; 1338 } 1339 1340 /** 1341 * ntfs_attr_size_bounds_check - check a size of an attribute type for validity 1342 * @vol: ntfs volume to which the attribute belongs 1343 * @type: attribute type which to check 1344 * @size: size which to check 1345 * 1346 * Check whether the @size in bytes is valid for an attribute of @type on the 1347 * ntfs volume @vol. This information is obtained from $AttrDef system file. 1348 * 1349 * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not 1350 * listed in $AttrDef. 1351 */ 1352 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, 1353 const s64 size) 1354 { 1355 ATTR_DEF *ad; 1356 1357 BUG_ON(size < 0); 1358 /* 1359 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not 1360 * listed in $AttrDef. 1361 */ 1362 if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) 1363 return -ERANGE; 1364 /* Get the $AttrDef entry for the attribute @type. */ 1365 ad = ntfs_attr_find_in_attrdef(vol, type); 1366 if (unlikely(!ad)) 1367 return -ENOENT; 1368 /* Do the bounds check. */ 1369 if (((sle64_to_cpu(ad->min_size) > 0) && 1370 size < sle64_to_cpu(ad->min_size)) || 1371 ((sle64_to_cpu(ad->max_size) > 0) && size > 1372 sle64_to_cpu(ad->max_size))) 1373 return -ERANGE; 1374 return 0; 1375 } 1376 1377 /** 1378 * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident 1379 * @vol: ntfs volume to which the attribute belongs 1380 * @type: attribute type which to check 1381 * 1382 * Check whether the attribute of @type on the ntfs volume @vol is allowed to 1383 * be non-resident. This information is obtained from $AttrDef system file. 1384 * 1385 * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and 1386 * -ENOENT if the attribute is not listed in $AttrDef. 1387 */ 1388 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) 1389 { 1390 ATTR_DEF *ad; 1391 1392 /* Find the attribute definition record in $AttrDef. */ 1393 ad = ntfs_attr_find_in_attrdef(vol, type); 1394 if (unlikely(!ad)) 1395 return -ENOENT; 1396 /* Check the flags and return the result. */ 1397 if (ad->flags & ATTR_DEF_RESIDENT) 1398 return -EPERM; 1399 return 0; 1400 } 1401 1402 /** 1403 * ntfs_attr_can_be_resident - check if an attribute can be resident 1404 * @vol: ntfs volume to which the attribute belongs 1405 * @type: attribute type which to check 1406 * 1407 * Check whether the attribute of @type on the ntfs volume @vol is allowed to 1408 * be resident. This information is derived from our ntfs knowledge and may 1409 * not be completely accurate, especially when user defined attributes are 1410 * present. Basically we allow everything to be resident except for index 1411 * allocation and $EA attributes. 1412 * 1413 * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. 1414 * 1415 * Warning: In the system file $MFT the attribute $Bitmap must be non-resident 1416 * otherwise windows will not boot (blue screen of death)! We cannot 1417 * check for this here as we do not know which inode's $Bitmap is 1418 * being asked about so the caller needs to special case this. 1419 */ 1420 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) 1421 { 1422 if (type == AT_INDEX_ALLOCATION) 1423 return -EPERM; 1424 return 0; 1425 } 1426 1427 /** 1428 * ntfs_attr_record_resize - resize an attribute record 1429 * @m: mft record containing attribute record 1430 * @a: attribute record to resize 1431 * @new_size: new size in bytes to which to resize the attribute record @a 1432 * 1433 * Resize the attribute record @a, i.e. the resident part of the attribute, in 1434 * the mft record @m to @new_size bytes. 1435 * 1436 * Return 0 on success and -errno on error. The following error codes are 1437 * defined: 1438 * -ENOSPC - Not enough space in the mft record @m to perform the resize. 1439 * 1440 * Note: On error, no modifications have been performed whatsoever. 1441 * 1442 * Warning: If you make a record smaller without having copied all the data you 1443 * are interested in the data may be overwritten. 1444 */ 1445 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) 1446 { 1447 ntfs_debug("Entering for new_size %u.", new_size); 1448 /* Align to 8 bytes if it is not already done. */ 1449 if (new_size & 7) 1450 new_size = (new_size + 7) & ~7; 1451 /* If the actual attribute length has changed, move things around. */ 1452 if (new_size != le32_to_cpu(a->length)) { 1453 u32 new_muse = le32_to_cpu(m->bytes_in_use) - 1454 le32_to_cpu(a->length) + new_size; 1455 /* Not enough space in this mft record. */ 1456 if (new_muse > le32_to_cpu(m->bytes_allocated)) 1457 return -ENOSPC; 1458 /* Move attributes following @a to their new location. */ 1459 memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), 1460 le32_to_cpu(m->bytes_in_use) - ((u8*)a - 1461 (u8*)m) - le32_to_cpu(a->length)); 1462 /* Adjust @m to reflect the change in used space. */ 1463 m->bytes_in_use = cpu_to_le32(new_muse); 1464 /* Adjust @a to reflect the new size. */ 1465 if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) 1466 a->length = cpu_to_le32(new_size); 1467 } 1468 return 0; 1469 } 1470 1471 /** 1472 * ntfs_resident_attr_value_resize - resize the value of a resident attribute 1473 * @m: mft record containing attribute record 1474 * @a: attribute record whose value to resize 1475 * @new_size: new size in bytes to which to resize the attribute value of @a 1476 * 1477 * Resize the value of the attribute @a in the mft record @m to @new_size bytes. 1478 * If the value is made bigger, the newly allocated space is cleared. 1479 * 1480 * Return 0 on success and -errno on error. The following error codes are 1481 * defined: 1482 * -ENOSPC - Not enough space in the mft record @m to perform the resize. 1483 * 1484 * Note: On error, no modifications have been performed whatsoever. 1485 * 1486 * Warning: If you make a record smaller without having copied all the data you 1487 * are interested in the data may be overwritten. 1488 */ 1489 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, 1490 const u32 new_size) 1491 { 1492 u32 old_size; 1493 1494 /* Resize the resident part of the attribute record. */ 1495 if (ntfs_attr_record_resize(m, a, 1496 le16_to_cpu(a->data.resident.value_offset) + new_size)) 1497 return -ENOSPC; 1498 /* 1499 * The resize succeeded! If we made the attribute value bigger, clear 1500 * the area between the old size and @new_size. 1501 */ 1502 old_size = le32_to_cpu(a->data.resident.value_length); 1503 if (new_size > old_size) 1504 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + 1505 old_size, 0, new_size - old_size); 1506 /* Finally update the length of the attribute value. */ 1507 a->data.resident.value_length = cpu_to_le32(new_size); 1508 return 0; 1509 } 1510 1511 /** 1512 * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute 1513 * @ni: ntfs inode describing the attribute to convert 1514 * @data_size: size of the resident data to copy to the non-resident attribute 1515 * 1516 * Convert the resident ntfs attribute described by the ntfs inode @ni to a 1517 * non-resident one. 1518 * 1519 * @data_size must be equal to the attribute value size. This is needed since 1520 * we need to know the size before we can map the mft record and our callers 1521 * always know it. The reason we cannot simply read the size from the vfs 1522 * inode i_size is that this is not necessarily uptodate. This happens when 1523 * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). 1524 * 1525 * Return 0 on success and -errno on error. The following error return codes 1526 * are defined: 1527 * -EPERM - The attribute is not allowed to be non-resident. 1528 * -ENOMEM - Not enough memory. 1529 * -ENOSPC - Not enough disk space. 1530 * -EINVAL - Attribute not defined on the volume. 1531 * -EIO - I/o error or other error. 1532 * Note that -ENOSPC is also returned in the case that there is not enough 1533 * space in the mft record to do the conversion. This can happen when the mft 1534 * record is already very full. The caller is responsible for trying to make 1535 * space in the mft record and trying again. FIXME: Do we need a separate 1536 * error return code for this kind of -ENOSPC or is it always worth trying 1537 * again in case the attribute may then fit in a resident state so no need to 1538 * make it non-resident at all? Ho-hum... (AIA) 1539 * 1540 * NOTE to self: No changes in the attribute list are required to move from 1541 * a resident to a non-resident attribute. 1542 * 1543 * Locking: - The caller must hold i_mutex on the inode. 1544 */ 1545 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) 1546 { 1547 s64 new_size; 1548 struct inode *vi = VFS_I(ni); 1549 ntfs_volume *vol = ni->vol; 1550 ntfs_inode *base_ni; 1551 MFT_RECORD *m; 1552 ATTR_RECORD *a; 1553 ntfs_attr_search_ctx *ctx; 1554 struct page *page; 1555 runlist_element *rl; 1556 u8 *kaddr; 1557 unsigned long flags; 1558 int mp_size, mp_ofs, name_ofs, arec_size, err, err2; 1559 u32 attr_size; 1560 u8 old_res_attr_flags; 1561 1562 /* Check that the attribute is allowed to be non-resident. */ 1563 err = ntfs_attr_can_be_non_resident(vol, ni->type); 1564 if (unlikely(err)) { 1565 if (err == -EPERM) 1566 ntfs_debug("Attribute is not allowed to be " 1567 "non-resident."); 1568 else 1569 ntfs_debug("Attribute not defined on the NTFS " 1570 "volume!"); 1571 return err; 1572 } 1573 /* 1574 * FIXME: Compressed and encrypted attributes are not supported when 1575 * writing and we should never have gotten here for them. 1576 */ 1577 BUG_ON(NInoCompressed(ni)); 1578 BUG_ON(NInoEncrypted(ni)); 1579 /* 1580 * The size needs to be aligned to a cluster boundary for allocation 1581 * purposes. 1582 */ 1583 new_size = (data_size + vol->cluster_size - 1) & 1584 ~(vol->cluster_size - 1); 1585 if (new_size > 0) { 1586 /* 1587 * Will need the page later and since the page lock nests 1588 * outside all ntfs locks, we need to get the page now. 1589 */ 1590 page = find_or_create_page(vi->i_mapping, 0, 1591 mapping_gfp_mask(vi->i_mapping)); 1592 if (unlikely(!page)) 1593 return -ENOMEM; 1594 /* Start by allocating clusters to hold the attribute value. */ 1595 rl = ntfs_cluster_alloc(vol, 0, new_size >> 1596 vol->cluster_size_bits, -1, DATA_ZONE, true); 1597 if (IS_ERR(rl)) { 1598 err = PTR_ERR(rl); 1599 ntfs_debug("Failed to allocate cluster%s, error code " 1600 "%i.", (new_size >> 1601 vol->cluster_size_bits) > 1 ? "s" : "", 1602 err); 1603 goto page_err_out; 1604 } 1605 } else { 1606 rl = NULL; 1607 page = NULL; 1608 } 1609 /* Determine the size of the mapping pairs array. */ 1610 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1); 1611 if (unlikely(mp_size < 0)) { 1612 err = mp_size; 1613 ntfs_debug("Failed to get size for mapping pairs array, error " 1614 "code %i.", err); 1615 goto rl_err_out; 1616 } 1617 down_write(&ni->runlist.lock); 1618 if (!NInoAttr(ni)) 1619 base_ni = ni; 1620 else 1621 base_ni = ni->ext.base_ntfs_ino; 1622 m = map_mft_record(base_ni); 1623 if (IS_ERR(m)) { 1624 err = PTR_ERR(m); 1625 m = NULL; 1626 ctx = NULL; 1627 goto err_out; 1628 } 1629 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1630 if (unlikely(!ctx)) { 1631 err = -ENOMEM; 1632 goto err_out; 1633 } 1634 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1635 CASE_SENSITIVE, 0, NULL, 0, ctx); 1636 if (unlikely(err)) { 1637 if (err == -ENOENT) 1638 err = -EIO; 1639 goto err_out; 1640 } 1641 m = ctx->mrec; 1642 a = ctx->attr; 1643 BUG_ON(NInoNonResident(ni)); 1644 BUG_ON(a->non_resident); 1645 /* 1646 * Calculate new offsets for the name and the mapping pairs array. 1647 */ 1648 if (NInoSparse(ni) || NInoCompressed(ni)) 1649 name_ofs = (offsetof(ATTR_REC, 1650 data.non_resident.compressed_size) + 1651 sizeof(a->data.non_resident.compressed_size) + 1652 7) & ~7; 1653 else 1654 name_ofs = (offsetof(ATTR_REC, 1655 data.non_resident.compressed_size) + 7) & ~7; 1656 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; 1657 /* 1658 * Determine the size of the resident part of the now non-resident 1659 * attribute record. 1660 */ 1661 arec_size = (mp_ofs + mp_size + 7) & ~7; 1662 /* 1663 * If the page is not uptodate bring it uptodate by copying from the 1664 * attribute value. 1665 */ 1666 attr_size = le32_to_cpu(a->data.resident.value_length); 1667 BUG_ON(attr_size != data_size); 1668 if (page && !PageUptodate(page)) { 1669 kaddr = kmap_atomic(page); 1670 memcpy(kaddr, (u8*)a + 1671 le16_to_cpu(a->data.resident.value_offset), 1672 attr_size); 1673 memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size); 1674 kunmap_atomic(kaddr); 1675 flush_dcache_page(page); 1676 SetPageUptodate(page); 1677 } 1678 /* Backup the attribute flag. */ 1679 old_res_attr_flags = a->data.resident.flags; 1680 /* Resize the resident part of the attribute record. */ 1681 err = ntfs_attr_record_resize(m, a, arec_size); 1682 if (unlikely(err)) 1683 goto err_out; 1684 /* 1685 * Convert the resident part of the attribute record to describe a 1686 * non-resident attribute. 1687 */ 1688 a->non_resident = 1; 1689 /* Move the attribute name if it exists and update the offset. */ 1690 if (a->name_length) 1691 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), 1692 a->name_length * sizeof(ntfschar)); 1693 a->name_offset = cpu_to_le16(name_ofs); 1694 /* Setup the fields specific to non-resident attributes. */ 1695 a->data.non_resident.lowest_vcn = 0; 1696 a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >> 1697 vol->cluster_size_bits); 1698 a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs); 1699 memset(&a->data.non_resident.reserved, 0, 1700 sizeof(a->data.non_resident.reserved)); 1701 a->data.non_resident.allocated_size = cpu_to_sle64(new_size); 1702 a->data.non_resident.data_size = 1703 a->data.non_resident.initialized_size = 1704 cpu_to_sle64(attr_size); 1705 if (NInoSparse(ni) || NInoCompressed(ni)) { 1706 a->data.non_resident.compression_unit = 0; 1707 if (NInoCompressed(ni) || vol->major_ver < 3) 1708 a->data.non_resident.compression_unit = 4; 1709 a->data.non_resident.compressed_size = 1710 a->data.non_resident.allocated_size; 1711 } else 1712 a->data.non_resident.compression_unit = 0; 1713 /* Generate the mapping pairs array into the attribute record. */ 1714 err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs, 1715 arec_size - mp_ofs, rl, 0, -1, NULL); 1716 if (unlikely(err)) { 1717 ntfs_debug("Failed to build mapping pairs, error code %i.", 1718 err); 1719 goto undo_err_out; 1720 } 1721 /* Setup the in-memory attribute structure to be non-resident. */ 1722 ni->runlist.rl = rl; 1723 write_lock_irqsave(&ni->size_lock, flags); 1724 ni->allocated_size = new_size; 1725 if (NInoSparse(ni) || NInoCompressed(ni)) { 1726 ni->itype.compressed.size = ni->allocated_size; 1727 if (a->data.non_resident.compression_unit) { 1728 ni->itype.compressed.block_size = 1U << (a->data. 1729 non_resident.compression_unit + 1730 vol->cluster_size_bits); 1731 ni->itype.compressed.block_size_bits = 1732 ffs(ni->itype.compressed.block_size) - 1733 1; 1734 ni->itype.compressed.block_clusters = 1U << 1735 a->data.non_resident.compression_unit; 1736 } else { 1737 ni->itype.compressed.block_size = 0; 1738 ni->itype.compressed.block_size_bits = 0; 1739 ni->itype.compressed.block_clusters = 0; 1740 } 1741 vi->i_blocks = ni->itype.compressed.size >> 9; 1742 } else 1743 vi->i_blocks = ni->allocated_size >> 9; 1744 write_unlock_irqrestore(&ni->size_lock, flags); 1745 /* 1746 * This needs to be last since the address space operations ->read_folio 1747 * and ->writepage can run concurrently with us as they are not 1748 * serialized on i_mutex. Note, we are not allowed to fail once we flip 1749 * this switch, which is another reason to do this last. 1750 */ 1751 NInoSetNonResident(ni); 1752 /* Mark the mft record dirty, so it gets written back. */ 1753 flush_dcache_mft_record_page(ctx->ntfs_ino); 1754 mark_mft_record_dirty(ctx->ntfs_ino); 1755 ntfs_attr_put_search_ctx(ctx); 1756 unmap_mft_record(base_ni); 1757 up_write(&ni->runlist.lock); 1758 if (page) { 1759 set_page_dirty(page); 1760 unlock_page(page); 1761 put_page(page); 1762 } 1763 ntfs_debug("Done."); 1764 return 0; 1765 undo_err_out: 1766 /* Convert the attribute back into a resident attribute. */ 1767 a->non_resident = 0; 1768 /* Move the attribute name if it exists and update the offset. */ 1769 name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) + 1770 sizeof(a->data.resident.reserved) + 7) & ~7; 1771 if (a->name_length) 1772 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), 1773 a->name_length * sizeof(ntfschar)); 1774 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; 1775 a->name_offset = cpu_to_le16(name_ofs); 1776 arec_size = (mp_ofs + attr_size + 7) & ~7; 1777 /* Resize the resident part of the attribute record. */ 1778 err2 = ntfs_attr_record_resize(m, a, arec_size); 1779 if (unlikely(err2)) { 1780 /* 1781 * This cannot happen (well if memory corruption is at work it 1782 * could happen in theory), but deal with it as well as we can. 1783 * If the old size is too small, truncate the attribute, 1784 * otherwise simply give it a larger allocated size. 1785 * FIXME: Should check whether chkdsk complains when the 1786 * allocated size is much bigger than the resident value size. 1787 */ 1788 arec_size = le32_to_cpu(a->length); 1789 if ((mp_ofs + attr_size) > arec_size) { 1790 err2 = attr_size; 1791 attr_size = arec_size - mp_ofs; 1792 ntfs_error(vol->sb, "Failed to undo partial resident " 1793 "to non-resident attribute " 1794 "conversion. Truncating inode 0x%lx, " 1795 "attribute type 0x%x from %i bytes to " 1796 "%i bytes to maintain metadata " 1797 "consistency. THIS MEANS YOU ARE " 1798 "LOSING %i BYTES DATA FROM THIS %s.", 1799 vi->i_ino, 1800 (unsigned)le32_to_cpu(ni->type), 1801 err2, attr_size, err2 - attr_size, 1802 ((ni->type == AT_DATA) && 1803 !ni->name_len) ? "FILE": "ATTRIBUTE"); 1804 write_lock_irqsave(&ni->size_lock, flags); 1805 ni->initialized_size = attr_size; 1806 i_size_write(vi, attr_size); 1807 write_unlock_irqrestore(&ni->size_lock, flags); 1808 } 1809 } 1810 /* Setup the fields specific to resident attributes. */ 1811 a->data.resident.value_length = cpu_to_le32(attr_size); 1812 a->data.resident.value_offset = cpu_to_le16(mp_ofs); 1813 a->data.resident.flags = old_res_attr_flags; 1814 memset(&a->data.resident.reserved, 0, 1815 sizeof(a->data.resident.reserved)); 1816 /* Copy the data from the page back to the attribute value. */ 1817 if (page) { 1818 kaddr = kmap_atomic(page); 1819 memcpy((u8*)a + mp_ofs, kaddr, attr_size); 1820 kunmap_atomic(kaddr); 1821 } 1822 /* Setup the allocated size in the ntfs inode in case it changed. */ 1823 write_lock_irqsave(&ni->size_lock, flags); 1824 ni->allocated_size = arec_size - mp_ofs; 1825 write_unlock_irqrestore(&ni->size_lock, flags); 1826 /* Mark the mft record dirty, so it gets written back. */ 1827 flush_dcache_mft_record_page(ctx->ntfs_ino); 1828 mark_mft_record_dirty(ctx->ntfs_ino); 1829 err_out: 1830 if (ctx) 1831 ntfs_attr_put_search_ctx(ctx); 1832 if (m) 1833 unmap_mft_record(base_ni); 1834 ni->runlist.rl = NULL; 1835 up_write(&ni->runlist.lock); 1836 rl_err_out: 1837 if (rl) { 1838 if (ntfs_cluster_free_from_rl(vol, rl) < 0) { 1839 ntfs_error(vol->sb, "Failed to release allocated " 1840 "cluster(s) in error code path. Run " 1841 "chkdsk to recover the lost " 1842 "cluster(s)."); 1843 NVolSetErrors(vol); 1844 } 1845 ntfs_free(rl); 1846 page_err_out: 1847 unlock_page(page); 1848 put_page(page); 1849 } 1850 if (err == -EINVAL) 1851 err = -EIO; 1852 return err; 1853 } 1854 1855 /** 1856 * ntfs_attr_extend_allocation - extend the allocated space of an attribute 1857 * @ni: ntfs inode of the attribute whose allocation to extend 1858 * @new_alloc_size: new size in bytes to which to extend the allocation to 1859 * @new_data_size: new size in bytes to which to extend the data to 1860 * @data_start: beginning of region which is required to be non-sparse 1861 * 1862 * Extend the allocated space of an attribute described by the ntfs inode @ni 1863 * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be 1864 * implemented as a hole in the file (as long as both the volume and the ntfs 1865 * inode @ni have sparse support enabled). If @data_start is >= 0, then the 1866 * region between the old allocated size and @data_start - 1 may be made sparse 1867 * but the regions between @data_start and @new_alloc_size must be backed by 1868 * actual clusters. 1869 * 1870 * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size 1871 * of the attribute is extended to @new_data_size. Note that the i_size of the 1872 * vfs inode is not updated. Only the data size in the base attribute record 1873 * is updated. The caller has to update i_size separately if this is required. 1874 * WARNING: It is a BUG() for @new_data_size to be smaller than the old data 1875 * size as well as for @new_data_size to be greater than @new_alloc_size. 1876 * 1877 * For resident attributes this involves resizing the attribute record and if 1878 * necessary moving it and/or other attributes into extent mft records and/or 1879 * converting the attribute to a non-resident attribute which in turn involves 1880 * extending the allocation of a non-resident attribute as described below. 1881 * 1882 * For non-resident attributes this involves allocating clusters in the data 1883 * zone on the volume (except for regions that are being made sparse) and 1884 * extending the run list to describe the allocated clusters as well as 1885 * updating the mapping pairs array of the attribute. This in turn involves 1886 * resizing the attribute record and if necessary moving it and/or other 1887 * attributes into extent mft records and/or splitting the attribute record 1888 * into multiple extent attribute records. 1889 * 1890 * Also, the attribute list attribute is updated if present and in some of the 1891 * above cases (the ones where extent mft records/attributes come into play), 1892 * an attribute list attribute is created if not already present. 1893 * 1894 * Return the new allocated size on success and -errno on error. In the case 1895 * that an error is encountered but a partial extension at least up to 1896 * @data_start (if present) is possible, the allocation is partially extended 1897 * and this is returned. This means the caller must check the returned size to 1898 * determine if the extension was partial. If @data_start is -1 then partial 1899 * allocations are not performed. 1900 * 1901 * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. 1902 * 1903 * Locking: This function takes the runlist lock of @ni for writing as well as 1904 * locking the mft record of the base ntfs inode. These locks are maintained 1905 * throughout execution of the function. These locks are required so that the 1906 * attribute can be resized safely and so that it can for example be converted 1907 * from resident to non-resident safely. 1908 * 1909 * TODO: At present attribute list attribute handling is not implemented. 1910 * 1911 * TODO: At present it is not safe to call this function for anything other 1912 * than the $DATA attribute(s) of an uncompressed and unencrypted file. 1913 */ 1914 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, 1915 const s64 new_data_size, const s64 data_start) 1916 { 1917 VCN vcn; 1918 s64 ll, allocated_size, start = data_start; 1919 struct inode *vi = VFS_I(ni); 1920 ntfs_volume *vol = ni->vol; 1921 ntfs_inode *base_ni; 1922 MFT_RECORD *m; 1923 ATTR_RECORD *a; 1924 ntfs_attr_search_ctx *ctx; 1925 runlist_element *rl, *rl2; 1926 unsigned long flags; 1927 int err, mp_size; 1928 u32 attr_len = 0; /* Silence stupid gcc warning. */ 1929 bool mp_rebuilt; 1930 1931 #ifdef DEBUG 1932 read_lock_irqsave(&ni->size_lock, flags); 1933 allocated_size = ni->allocated_size; 1934 read_unlock_irqrestore(&ni->size_lock, flags); 1935 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1936 "old_allocated_size 0x%llx, " 1937 "new_allocated_size 0x%llx, new_data_size 0x%llx, " 1938 "data_start 0x%llx.", vi->i_ino, 1939 (unsigned)le32_to_cpu(ni->type), 1940 (unsigned long long)allocated_size, 1941 (unsigned long long)new_alloc_size, 1942 (unsigned long long)new_data_size, 1943 (unsigned long long)start); 1944 #endif 1945 retry_extend: 1946 /* 1947 * For non-resident attributes, @start and @new_size need to be aligned 1948 * to cluster boundaries for allocation purposes. 1949 */ 1950 if (NInoNonResident(ni)) { 1951 if (start > 0) 1952 start &= ~(s64)vol->cluster_size_mask; 1953 new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & 1954 ~(s64)vol->cluster_size_mask; 1955 } 1956 BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); 1957 /* Check if new size is allowed in $AttrDef. */ 1958 err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); 1959 if (unlikely(err)) { 1960 /* Only emit errors when the write will fail completely. */ 1961 read_lock_irqsave(&ni->size_lock, flags); 1962 allocated_size = ni->allocated_size; 1963 read_unlock_irqrestore(&ni->size_lock, flags); 1964 if (start < 0 || start >= allocated_size) { 1965 if (err == -ERANGE) { 1966 ntfs_error(vol->sb, "Cannot extend allocation " 1967 "of inode 0x%lx, attribute " 1968 "type 0x%x, because the new " 1969 "allocation would exceed the " 1970 "maximum allowed size for " 1971 "this attribute type.", 1972 vi->i_ino, (unsigned) 1973 le32_to_cpu(ni->type)); 1974 } else { 1975 ntfs_error(vol->sb, "Cannot extend allocation " 1976 "of inode 0x%lx, attribute " 1977 "type 0x%x, because this " 1978 "attribute type is not " 1979 "defined on the NTFS volume. " 1980 "Possible corruption! You " 1981 "should run chkdsk!", 1982 vi->i_ino, (unsigned) 1983 le32_to_cpu(ni->type)); 1984 } 1985 } 1986 /* Translate error code to be POSIX conformant for write(2). */ 1987 if (err == -ERANGE) 1988 err = -EFBIG; 1989 else 1990 err = -EIO; 1991 return err; 1992 } 1993 if (!NInoAttr(ni)) 1994 base_ni = ni; 1995 else 1996 base_ni = ni->ext.base_ntfs_ino; 1997 /* 1998 * We will be modifying both the runlist (if non-resident) and the mft 1999 * record so lock them both down. 2000 */ 2001 down_write(&ni->runlist.lock); 2002 m = map_mft_record(base_ni); 2003 if (IS_ERR(m)) { 2004 err = PTR_ERR(m); 2005 m = NULL; 2006 ctx = NULL; 2007 goto err_out; 2008 } 2009 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2010 if (unlikely(!ctx)) { 2011 err = -ENOMEM; 2012 goto err_out; 2013 } 2014 read_lock_irqsave(&ni->size_lock, flags); 2015 allocated_size = ni->allocated_size; 2016 read_unlock_irqrestore(&ni->size_lock, flags); 2017 /* 2018 * If non-resident, seek to the last extent. If resident, there is 2019 * only one extent, so seek to that. 2020 */ 2021 vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : 2022 0; 2023 /* 2024 * Abort if someone did the work whilst we waited for the locks. If we 2025 * just converted the attribute from resident to non-resident it is 2026 * likely that exactly this has happened already. We cannot quite 2027 * abort if we need to update the data size. 2028 */ 2029 if (unlikely(new_alloc_size <= allocated_size)) { 2030 ntfs_debug("Allocated size already exceeds requested size."); 2031 new_alloc_size = allocated_size; 2032 if (new_data_size < 0) 2033 goto done; 2034 /* 2035 * We want the first attribute extent so that we can update the 2036 * data size. 2037 */ 2038 vcn = 0; 2039 } 2040 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2041 CASE_SENSITIVE, vcn, NULL, 0, ctx); 2042 if (unlikely(err)) { 2043 if (err == -ENOENT) 2044 err = -EIO; 2045 goto err_out; 2046 } 2047 m = ctx->mrec; 2048 a = ctx->attr; 2049 /* Use goto to reduce indentation. */ 2050 if (a->non_resident) 2051 goto do_non_resident_extend; 2052 BUG_ON(NInoNonResident(ni)); 2053 /* The total length of the attribute value. */ 2054 attr_len = le32_to_cpu(a->data.resident.value_length); 2055 /* 2056 * Extend the attribute record to be able to store the new attribute 2057 * size. ntfs_attr_record_resize() will not do anything if the size is 2058 * not changing. 2059 */ 2060 if (new_alloc_size < vol->mft_record_size && 2061 !ntfs_attr_record_resize(m, a, 2062 le16_to_cpu(a->data.resident.value_offset) + 2063 new_alloc_size)) { 2064 /* The resize succeeded! */ 2065 write_lock_irqsave(&ni->size_lock, flags); 2066 ni->allocated_size = le32_to_cpu(a->length) - 2067 le16_to_cpu(a->data.resident.value_offset); 2068 write_unlock_irqrestore(&ni->size_lock, flags); 2069 if (new_data_size >= 0) { 2070 BUG_ON(new_data_size < attr_len); 2071 a->data.resident.value_length = 2072 cpu_to_le32((u32)new_data_size); 2073 } 2074 goto flush_done; 2075 } 2076 /* 2077 * We have to drop all the locks so we can call 2078 * ntfs_attr_make_non_resident(). This could be optimised by try- 2079 * locking the first page cache page and only if that fails dropping 2080 * the locks, locking the page, and redoing all the locking and 2081 * lookups. While this would be a huge optimisation, it is not worth 2082 * it as this is definitely a slow code path. 2083 */ 2084 ntfs_attr_put_search_ctx(ctx); 2085 unmap_mft_record(base_ni); 2086 up_write(&ni->runlist.lock); 2087 /* 2088 * Not enough space in the mft record, try to make the attribute 2089 * non-resident and if successful restart the extension process. 2090 */ 2091 err = ntfs_attr_make_non_resident(ni, attr_len); 2092 if (likely(!err)) 2093 goto retry_extend; 2094 /* 2095 * Could not make non-resident. If this is due to this not being 2096 * permitted for this attribute type or there not being enough space, 2097 * try to make other attributes non-resident. Otherwise fail. 2098 */ 2099 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2100 /* Only emit errors when the write will fail completely. */ 2101 read_lock_irqsave(&ni->size_lock, flags); 2102 allocated_size = ni->allocated_size; 2103 read_unlock_irqrestore(&ni->size_lock, flags); 2104 if (start < 0 || start >= allocated_size) 2105 ntfs_error(vol->sb, "Cannot extend allocation of " 2106 "inode 0x%lx, attribute type 0x%x, " 2107 "because the conversion from resident " 2108 "to non-resident attribute failed " 2109 "with error code %i.", vi->i_ino, 2110 (unsigned)le32_to_cpu(ni->type), err); 2111 if (err != -ENOMEM) 2112 err = -EIO; 2113 goto conv_err_out; 2114 } 2115 /* TODO: Not implemented from here, abort. */ 2116 read_lock_irqsave(&ni->size_lock, flags); 2117 allocated_size = ni->allocated_size; 2118 read_unlock_irqrestore(&ni->size_lock, flags); 2119 if (start < 0 || start >= allocated_size) { 2120 if (err == -ENOSPC) 2121 ntfs_error(vol->sb, "Not enough space in the mft " 2122 "record/on disk for the non-resident " 2123 "attribute value. This case is not " 2124 "implemented yet."); 2125 else /* if (err == -EPERM) */ 2126 ntfs_error(vol->sb, "This attribute type may not be " 2127 "non-resident. This case is not " 2128 "implemented yet."); 2129 } 2130 err = -EOPNOTSUPP; 2131 goto conv_err_out; 2132 #if 0 2133 // TODO: Attempt to make other attributes non-resident. 2134 if (!err) 2135 goto do_resident_extend; 2136 /* 2137 * Both the attribute list attribute and the standard information 2138 * attribute must remain in the base inode. Thus, if this is one of 2139 * these attributes, we have to try to move other attributes out into 2140 * extent mft records instead. 2141 */ 2142 if (ni->type == AT_ATTRIBUTE_LIST || 2143 ni->type == AT_STANDARD_INFORMATION) { 2144 // TODO: Attempt to move other attributes into extent mft 2145 // records. 2146 err = -EOPNOTSUPP; 2147 if (!err) 2148 goto do_resident_extend; 2149 goto err_out; 2150 } 2151 // TODO: Attempt to move this attribute to an extent mft record, but 2152 // only if it is not already the only attribute in an mft record in 2153 // which case there would be nothing to gain. 2154 err = -EOPNOTSUPP; 2155 if (!err) 2156 goto do_resident_extend; 2157 /* There is nothing we can do to make enough space. )-: */ 2158 goto err_out; 2159 #endif 2160 do_non_resident_extend: 2161 BUG_ON(!NInoNonResident(ni)); 2162 if (new_alloc_size == allocated_size) { 2163 BUG_ON(vcn); 2164 goto alloc_done; 2165 } 2166 /* 2167 * If the data starts after the end of the old allocation, this is a 2168 * $DATA attribute and sparse attributes are enabled on the volume and 2169 * for this inode, then create a sparse region between the old 2170 * allocated size and the start of the data. Otherwise simply proceed 2171 * with filling the whole space between the old allocated size and the 2172 * new allocated size with clusters. 2173 */ 2174 if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || 2175 !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) 2176 goto skip_sparse; 2177 // TODO: This is not implemented yet. We just fill in with real 2178 // clusters for now... 2179 ntfs_debug("Inserting holes is not-implemented yet. Falling back to " 2180 "allocating real clusters instead."); 2181 skip_sparse: 2182 rl = ni->runlist.rl; 2183 if (likely(rl)) { 2184 /* Seek to the end of the runlist. */ 2185 while (rl->length) 2186 rl++; 2187 } 2188 /* If this attribute extent is not mapped, map it now. */ 2189 if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || 2190 (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && 2191 (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { 2192 if (!rl && !allocated_size) 2193 goto first_alloc; 2194 rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2195 if (IS_ERR(rl)) { 2196 err = PTR_ERR(rl); 2197 if (start < 0 || start >= allocated_size) 2198 ntfs_error(vol->sb, "Cannot extend allocation " 2199 "of inode 0x%lx, attribute " 2200 "type 0x%x, because the " 2201 "mapping of a runlist " 2202 "fragment failed with error " 2203 "code %i.", vi->i_ino, 2204 (unsigned)le32_to_cpu(ni->type), 2205 err); 2206 if (err != -ENOMEM) 2207 err = -EIO; 2208 goto err_out; 2209 } 2210 ni->runlist.rl = rl; 2211 /* Seek to the end of the runlist. */ 2212 while (rl->length) 2213 rl++; 2214 } 2215 /* 2216 * We now know the runlist of the last extent is mapped and @rl is at 2217 * the end of the runlist. We want to begin allocating clusters 2218 * starting at the last allocated cluster to reduce fragmentation. If 2219 * there are no valid LCNs in the attribute we let the cluster 2220 * allocator choose the starting cluster. 2221 */ 2222 /* If the last LCN is a hole or simillar seek back to last real LCN. */ 2223 while (rl->lcn < 0 && rl > ni->runlist.rl) 2224 rl--; 2225 first_alloc: 2226 // FIXME: Need to implement partial allocations so at least part of the 2227 // write can be performed when start >= 0. (Needed for POSIX write(2) 2228 // conformance.) 2229 rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, 2230 (new_alloc_size - allocated_size) >> 2231 vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? 2232 rl->lcn + rl->length : -1, DATA_ZONE, true); 2233 if (IS_ERR(rl2)) { 2234 err = PTR_ERR(rl2); 2235 if (start < 0 || start >= allocated_size) 2236 ntfs_error(vol->sb, "Cannot extend allocation of " 2237 "inode 0x%lx, attribute type 0x%x, " 2238 "because the allocation of clusters " 2239 "failed with error code %i.", vi->i_ino, 2240 (unsigned)le32_to_cpu(ni->type), err); 2241 if (err != -ENOMEM && err != -ENOSPC) 2242 err = -EIO; 2243 goto err_out; 2244 } 2245 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 2246 if (IS_ERR(rl)) { 2247 err = PTR_ERR(rl); 2248 if (start < 0 || start >= allocated_size) 2249 ntfs_error(vol->sb, "Cannot extend allocation of " 2250 "inode 0x%lx, attribute type 0x%x, " 2251 "because the runlist merge failed " 2252 "with error code %i.", vi->i_ino, 2253 (unsigned)le32_to_cpu(ni->type), err); 2254 if (err != -ENOMEM) 2255 err = -EIO; 2256 if (ntfs_cluster_free_from_rl(vol, rl2)) { 2257 ntfs_error(vol->sb, "Failed to release allocated " 2258 "cluster(s) in error code path. Run " 2259 "chkdsk to recover the lost " 2260 "cluster(s)."); 2261 NVolSetErrors(vol); 2262 } 2263 ntfs_free(rl2); 2264 goto err_out; 2265 } 2266 ni->runlist.rl = rl; 2267 ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - 2268 allocated_size) >> vol->cluster_size_bits); 2269 /* Find the runlist element with which the attribute extent starts. */ 2270 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 2271 rl2 = ntfs_rl_find_vcn_nolock(rl, ll); 2272 BUG_ON(!rl2); 2273 BUG_ON(!rl2->length); 2274 BUG_ON(rl2->lcn < LCN_HOLE); 2275 mp_rebuilt = false; 2276 /* Get the size for the new mapping pairs array for this extent. */ 2277 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 2278 if (unlikely(mp_size <= 0)) { 2279 err = mp_size; 2280 if (start < 0 || start >= allocated_size) 2281 ntfs_error(vol->sb, "Cannot extend allocation of " 2282 "inode 0x%lx, attribute type 0x%x, " 2283 "because determining the size for the " 2284 "mapping pairs failed with error code " 2285 "%i.", vi->i_ino, 2286 (unsigned)le32_to_cpu(ni->type), err); 2287 err = -EIO; 2288 goto undo_alloc; 2289 } 2290 /* Extend the attribute record to fit the bigger mapping pairs array. */ 2291 attr_len = le32_to_cpu(a->length); 2292 err = ntfs_attr_record_resize(m, a, mp_size + 2293 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2294 if (unlikely(err)) { 2295 BUG_ON(err != -ENOSPC); 2296 // TODO: Deal with this by moving this extent to a new mft 2297 // record or by starting a new extent in a new mft record, 2298 // possibly by extending this extent partially and filling it 2299 // and creating a new extent for the remainder, or by making 2300 // other attributes non-resident and/or by moving other 2301 // attributes out of this mft record. 2302 if (start < 0 || start >= allocated_size) 2303 ntfs_error(vol->sb, "Not enough space in the mft " 2304 "record for the extended attribute " 2305 "record. This case is not " 2306 "implemented yet."); 2307 err = -EOPNOTSUPP; 2308 goto undo_alloc; 2309 } 2310 mp_rebuilt = true; 2311 /* Generate the mapping pairs array directly into the attr record. */ 2312 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2313 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2314 mp_size, rl2, ll, -1, NULL); 2315 if (unlikely(err)) { 2316 if (start < 0 || start >= allocated_size) 2317 ntfs_error(vol->sb, "Cannot extend allocation of " 2318 "inode 0x%lx, attribute type 0x%x, " 2319 "because building the mapping pairs " 2320 "failed with error code %i.", vi->i_ino, 2321 (unsigned)le32_to_cpu(ni->type), err); 2322 err = -EIO; 2323 goto undo_alloc; 2324 } 2325 /* Update the highest_vcn. */ 2326 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2327 vol->cluster_size_bits) - 1); 2328 /* 2329 * We now have extended the allocated size of the attribute. Reflect 2330 * this in the ntfs_inode structure and the attribute record. 2331 */ 2332 if (a->data.non_resident.lowest_vcn) { 2333 /* 2334 * We are not in the first attribute extent, switch to it, but 2335 * first ensure the changes will make it to disk later. 2336 */ 2337 flush_dcache_mft_record_page(ctx->ntfs_ino); 2338 mark_mft_record_dirty(ctx->ntfs_ino); 2339 ntfs_attr_reinit_search_ctx(ctx); 2340 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2341 CASE_SENSITIVE, 0, NULL, 0, ctx); 2342 if (unlikely(err)) 2343 goto restore_undo_alloc; 2344 /* @m is not used any more so no need to set it. */ 2345 a = ctx->attr; 2346 } 2347 write_lock_irqsave(&ni->size_lock, flags); 2348 ni->allocated_size = new_alloc_size; 2349 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2350 /* 2351 * FIXME: This would fail if @ni is a directory, $MFT, or an index, 2352 * since those can have sparse/compressed set. For example can be 2353 * set compressed even though it is not compressed itself and in that 2354 * case the bit means that files are to be created compressed in the 2355 * directory... At present this is ok as this code is only called for 2356 * regular files, and only for their $DATA attribute(s). 2357 * FIXME: The calculation is wrong if we created a hole above. For now 2358 * it does not matter as we never create holes. 2359 */ 2360 if (NInoSparse(ni) || NInoCompressed(ni)) { 2361 ni->itype.compressed.size += new_alloc_size - allocated_size; 2362 a->data.non_resident.compressed_size = 2363 cpu_to_sle64(ni->itype.compressed.size); 2364 vi->i_blocks = ni->itype.compressed.size >> 9; 2365 } else 2366 vi->i_blocks = new_alloc_size >> 9; 2367 write_unlock_irqrestore(&ni->size_lock, flags); 2368 alloc_done: 2369 if (new_data_size >= 0) { 2370 BUG_ON(new_data_size < 2371 sle64_to_cpu(a->data.non_resident.data_size)); 2372 a->data.non_resident.data_size = cpu_to_sle64(new_data_size); 2373 } 2374 flush_done: 2375 /* Ensure the changes make it to disk. */ 2376 flush_dcache_mft_record_page(ctx->ntfs_ino); 2377 mark_mft_record_dirty(ctx->ntfs_ino); 2378 done: 2379 ntfs_attr_put_search_ctx(ctx); 2380 unmap_mft_record(base_ni); 2381 up_write(&ni->runlist.lock); 2382 ntfs_debug("Done, new_allocated_size 0x%llx.", 2383 (unsigned long long)new_alloc_size); 2384 return new_alloc_size; 2385 restore_undo_alloc: 2386 if (start < 0 || start >= allocated_size) 2387 ntfs_error(vol->sb, "Cannot complete extension of allocation " 2388 "of inode 0x%lx, attribute type 0x%x, because " 2389 "lookup of first attribute extent failed with " 2390 "error code %i.", vi->i_ino, 2391 (unsigned)le32_to_cpu(ni->type), err); 2392 if (err == -ENOENT) 2393 err = -EIO; 2394 ntfs_attr_reinit_search_ctx(ctx); 2395 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 2396 allocated_size >> vol->cluster_size_bits, NULL, 0, 2397 ctx)) { 2398 ntfs_error(vol->sb, "Failed to find last attribute extent of " 2399 "attribute in error code path. Run chkdsk to " 2400 "recover."); 2401 write_lock_irqsave(&ni->size_lock, flags); 2402 ni->allocated_size = new_alloc_size; 2403 /* 2404 * FIXME: This would fail if @ni is a directory... See above. 2405 * FIXME: The calculation is wrong if we created a hole above. 2406 * For now it does not matter as we never create holes. 2407 */ 2408 if (NInoSparse(ni) || NInoCompressed(ni)) { 2409 ni->itype.compressed.size += new_alloc_size - 2410 allocated_size; 2411 vi->i_blocks = ni->itype.compressed.size >> 9; 2412 } else 2413 vi->i_blocks = new_alloc_size >> 9; 2414 write_unlock_irqrestore(&ni->size_lock, flags); 2415 ntfs_attr_put_search_ctx(ctx); 2416 unmap_mft_record(base_ni); 2417 up_write(&ni->runlist.lock); 2418 /* 2419 * The only thing that is now wrong is the allocated size of the 2420 * base attribute extent which chkdsk should be able to fix. 2421 */ 2422 NVolSetErrors(vol); 2423 return err; 2424 } 2425 ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( 2426 (allocated_size >> vol->cluster_size_bits) - 1); 2427 undo_alloc: 2428 ll = allocated_size >> vol->cluster_size_bits; 2429 if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { 2430 ntfs_error(vol->sb, "Failed to release allocated cluster(s) " 2431 "in error code path. Run chkdsk to recover " 2432 "the lost cluster(s)."); 2433 NVolSetErrors(vol); 2434 } 2435 m = ctx->mrec; 2436 a = ctx->attr; 2437 /* 2438 * If the runlist truncation fails and/or the search context is no 2439 * longer valid, we cannot resize the attribute record or build the 2440 * mapping pairs array thus we mark the inode bad so that no access to 2441 * the freed clusters can happen. 2442 */ 2443 if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { 2444 ntfs_error(vol->sb, "Failed to %s in error code path. Run " 2445 "chkdsk to recover.", IS_ERR(m) ? 2446 "restore attribute search context" : 2447 "truncate attribute runlist"); 2448 NVolSetErrors(vol); 2449 } else if (mp_rebuilt) { 2450 if (ntfs_attr_record_resize(m, a, attr_len)) { 2451 ntfs_error(vol->sb, "Failed to restore attribute " 2452 "record in error code path. Run " 2453 "chkdsk to recover."); 2454 NVolSetErrors(vol); 2455 } else /* if (success) */ { 2456 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 2457 a->data.non_resident. 2458 mapping_pairs_offset), attr_len - 2459 le16_to_cpu(a->data.non_resident. 2460 mapping_pairs_offset), rl2, ll, -1, 2461 NULL)) { 2462 ntfs_error(vol->sb, "Failed to restore " 2463 "mapping pairs array in error " 2464 "code path. Run chkdsk to " 2465 "recover."); 2466 NVolSetErrors(vol); 2467 } 2468 flush_dcache_mft_record_page(ctx->ntfs_ino); 2469 mark_mft_record_dirty(ctx->ntfs_ino); 2470 } 2471 } 2472 err_out: 2473 if (ctx) 2474 ntfs_attr_put_search_ctx(ctx); 2475 if (m) 2476 unmap_mft_record(base_ni); 2477 up_write(&ni->runlist.lock); 2478 conv_err_out: 2479 ntfs_debug("Failed. Returning error code %i.", err); 2480 return err; 2481 } 2482 2483 /** 2484 * ntfs_attr_set - fill (a part of) an attribute with a byte 2485 * @ni: ntfs inode describing the attribute to fill 2486 * @ofs: offset inside the attribute at which to start to fill 2487 * @cnt: number of bytes to fill 2488 * @val: the unsigned 8-bit value with which to fill the attribute 2489 * 2490 * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at 2491 * byte offset @ofs inside the attribute with the constant byte @val. 2492 * 2493 * This function is effectively like memset() applied to an ntfs attribute. 2494 * Note this function actually only operates on the page cache pages belonging 2495 * to the ntfs attribute and it marks them dirty after doing the memset(). 2496 * Thus it relies on the vm dirty page write code paths to cause the modified 2497 * pages to be written to the mft record/disk. 2498 * 2499 * Return 0 on success and -errno on error. An error code of -ESPIPE means 2500 * that @ofs + @cnt were outside the end of the attribute and no write was 2501 * performed. 2502 */ 2503 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) 2504 { 2505 ntfs_volume *vol = ni->vol; 2506 struct address_space *mapping; 2507 struct page *page; 2508 u8 *kaddr; 2509 pgoff_t idx, end; 2510 unsigned start_ofs, end_ofs, size; 2511 2512 ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", 2513 (long long)ofs, (long long)cnt, val); 2514 BUG_ON(ofs < 0); 2515 BUG_ON(cnt < 0); 2516 if (!cnt) 2517 goto done; 2518 /* 2519 * FIXME: Compressed and encrypted attributes are not supported when 2520 * writing and we should never have gotten here for them. 2521 */ 2522 BUG_ON(NInoCompressed(ni)); 2523 BUG_ON(NInoEncrypted(ni)); 2524 mapping = VFS_I(ni)->i_mapping; 2525 /* Work out the starting index and page offset. */ 2526 idx = ofs >> PAGE_SHIFT; 2527 start_ofs = ofs & ~PAGE_MASK; 2528 /* Work out the ending index and page offset. */ 2529 end = ofs + cnt; 2530 end_ofs = end & ~PAGE_MASK; 2531 /* If the end is outside the inode size return -ESPIPE. */ 2532 if (unlikely(end > i_size_read(VFS_I(ni)))) { 2533 ntfs_error(vol->sb, "Request exceeds end of attribute."); 2534 return -ESPIPE; 2535 } 2536 end >>= PAGE_SHIFT; 2537 /* If there is a first partial page, need to do it the slow way. */ 2538 if (start_ofs) { 2539 page = read_mapping_page(mapping, idx, NULL); 2540 if (IS_ERR(page)) { 2541 ntfs_error(vol->sb, "Failed to read first partial " 2542 "page (error, index 0x%lx).", idx); 2543 return PTR_ERR(page); 2544 } 2545 /* 2546 * If the last page is the same as the first page, need to 2547 * limit the write to the end offset. 2548 */ 2549 size = PAGE_SIZE; 2550 if (idx == end) 2551 size = end_ofs; 2552 kaddr = kmap_atomic(page); 2553 memset(kaddr + start_ofs, val, size - start_ofs); 2554 flush_dcache_page(page); 2555 kunmap_atomic(kaddr); 2556 set_page_dirty(page); 2557 put_page(page); 2558 balance_dirty_pages_ratelimited(mapping); 2559 cond_resched(); 2560 if (idx == end) 2561 goto done; 2562 idx++; 2563 } 2564 /* Do the whole pages the fast way. */ 2565 for (; idx < end; idx++) { 2566 /* Find or create the current page. (The page is locked.) */ 2567 page = grab_cache_page(mapping, idx); 2568 if (unlikely(!page)) { 2569 ntfs_error(vol->sb, "Insufficient memory to grab " 2570 "page (index 0x%lx).", idx); 2571 return -ENOMEM; 2572 } 2573 kaddr = kmap_atomic(page); 2574 memset(kaddr, val, PAGE_SIZE); 2575 flush_dcache_page(page); 2576 kunmap_atomic(kaddr); 2577 /* 2578 * If the page has buffers, mark them uptodate since buffer 2579 * state and not page state is definitive in 2.6 kernels. 2580 */ 2581 if (page_has_buffers(page)) { 2582 struct buffer_head *bh, *head; 2583 2584 bh = head = page_buffers(page); 2585 do { 2586 set_buffer_uptodate(bh); 2587 } while ((bh = bh->b_this_page) != head); 2588 } 2589 /* Now that buffers are uptodate, set the page uptodate, too. */ 2590 SetPageUptodate(page); 2591 /* 2592 * Set the page and all its buffers dirty and mark the inode 2593 * dirty, too. The VM will write the page later on. 2594 */ 2595 set_page_dirty(page); 2596 /* Finally unlock and release the page. */ 2597 unlock_page(page); 2598 put_page(page); 2599 balance_dirty_pages_ratelimited(mapping); 2600 cond_resched(); 2601 } 2602 /* If there is a last partial page, need to do it the slow way. */ 2603 if (end_ofs) { 2604 page = read_mapping_page(mapping, idx, NULL); 2605 if (IS_ERR(page)) { 2606 ntfs_error(vol->sb, "Failed to read last partial page " 2607 "(error, index 0x%lx).", idx); 2608 return PTR_ERR(page); 2609 } 2610 kaddr = kmap_atomic(page); 2611 memset(kaddr, val, end_ofs); 2612 flush_dcache_page(page); 2613 kunmap_atomic(kaddr); 2614 set_page_dirty(page); 2615 put_page(page); 2616 balance_dirty_pages_ratelimited(mapping); 2617 cond_resched(); 2618 } 2619 done: 2620 ntfs_debug("Done."); 2621 return 0; 2622 } 2623 2624 #endif /* NTFS_RW */ 2625