xref: /openbmc/linux/fs/ntfs/attrib.c (revision 7587eb18)
1 /**
2  * attrib.c - NTFS attribute operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5  * Copyright (c) 2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/buffer_head.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 
29 #include "attrib.h"
30 #include "debug.h"
31 #include "layout.h"
32 #include "lcnalloc.h"
33 #include "malloc.h"
34 #include "mft.h"
35 #include "ntfs.h"
36 #include "types.h"
37 
38 /**
39  * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
40  * @ni:		ntfs inode for which to map (part of) a runlist
41  * @vcn:	map runlist part containing this vcn
42  * @ctx:	active attribute search context if present or NULL if not
43  *
44  * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
45  *
46  * If @ctx is specified, it is an active search context of @ni and its base mft
47  * record.  This is needed when ntfs_map_runlist_nolock() encounters unmapped
48  * runlist fragments and allows their mapping.  If you do not have the mft
49  * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
50  * will perform the necessary mapping and unmapping.
51  *
52  * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
53  * restores it before returning.  Thus, @ctx will be left pointing to the same
54  * attribute on return as on entry.  However, the actual pointers in @ctx may
55  * point to different memory locations on return, so you must remember to reset
56  * any cached pointers from the @ctx, i.e. after the call to
57  * ntfs_map_runlist_nolock(), you will probably want to do:
58  *	m = ctx->mrec;
59  *	a = ctx->attr;
60  * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
61  * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
62  *
63  * Return 0 on success and -errno on error.  There is one special error code
64  * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
65  * of bounds of the runlist.
66  *
67  * Note the runlist can be NULL after this function returns if @vcn is zero and
68  * the attribute has zero allocated size, i.e. there simply is no runlist.
69  *
70  * WARNING: If @ctx is supplied, regardless of whether success or failure is
71  *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
72  *	    is no longer valid, i.e. you need to either call
73  *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
74  *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
75  *	    why the mapping of the old inode failed.
76  *
77  * Locking: - The runlist described by @ni must be locked for writing on entry
78  *	      and is locked on return.  Note the runlist will be modified.
79  *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
80  *	      entry and it will be left unmapped on return.
81  *	    - If @ctx is not NULL, the base mft record must be mapped on entry
82  *	      and it will be left mapped on return.
83  */
84 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
85 {
86 	VCN end_vcn;
87 	unsigned long flags;
88 	ntfs_inode *base_ni;
89 	MFT_RECORD *m;
90 	ATTR_RECORD *a;
91 	runlist_element *rl;
92 	struct page *put_this_page = NULL;
93 	int err = 0;
94 	bool ctx_is_temporary, ctx_needs_reset;
95 	ntfs_attr_search_ctx old_ctx = { NULL, };
96 
97 	ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
98 			(unsigned long long)vcn);
99 	if (!NInoAttr(ni))
100 		base_ni = ni;
101 	else
102 		base_ni = ni->ext.base_ntfs_ino;
103 	if (!ctx) {
104 		ctx_is_temporary = ctx_needs_reset = true;
105 		m = map_mft_record(base_ni);
106 		if (IS_ERR(m))
107 			return PTR_ERR(m);
108 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
109 		if (unlikely(!ctx)) {
110 			err = -ENOMEM;
111 			goto err_out;
112 		}
113 	} else {
114 		VCN allocated_size_vcn;
115 
116 		BUG_ON(IS_ERR(ctx->mrec));
117 		a = ctx->attr;
118 		BUG_ON(!a->non_resident);
119 		ctx_is_temporary = false;
120 		end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
121 		read_lock_irqsave(&ni->size_lock, flags);
122 		allocated_size_vcn = ni->allocated_size >>
123 				ni->vol->cluster_size_bits;
124 		read_unlock_irqrestore(&ni->size_lock, flags);
125 		if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
126 			end_vcn = allocated_size_vcn - 1;
127 		/*
128 		 * If we already have the attribute extent containing @vcn in
129 		 * @ctx, no need to look it up again.  We slightly cheat in
130 		 * that if vcn exceeds the allocated size, we will refuse to
131 		 * map the runlist below, so there is definitely no need to get
132 		 * the right attribute extent.
133 		 */
134 		if (vcn >= allocated_size_vcn || (a->type == ni->type &&
135 				a->name_length == ni->name_len &&
136 				!memcmp((u8*)a + le16_to_cpu(a->name_offset),
137 				ni->name, ni->name_len) &&
138 				sle64_to_cpu(a->data.non_resident.lowest_vcn)
139 				<= vcn && end_vcn >= vcn))
140 			ctx_needs_reset = false;
141 		else {
142 			/* Save the old search context. */
143 			old_ctx = *ctx;
144 			/*
145 			 * If the currently mapped (extent) inode is not the
146 			 * base inode we will unmap it when we reinitialize the
147 			 * search context which means we need to get a
148 			 * reference to the page containing the mapped mft
149 			 * record so we do not accidentally drop changes to the
150 			 * mft record when it has not been marked dirty yet.
151 			 */
152 			if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
153 					old_ctx.base_ntfs_ino) {
154 				put_this_page = old_ctx.ntfs_ino->page;
155 				get_page(put_this_page);
156 			}
157 			/*
158 			 * Reinitialize the search context so we can lookup the
159 			 * needed attribute extent.
160 			 */
161 			ntfs_attr_reinit_search_ctx(ctx);
162 			ctx_needs_reset = true;
163 		}
164 	}
165 	if (ctx_needs_reset) {
166 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
167 				CASE_SENSITIVE, vcn, NULL, 0, ctx);
168 		if (unlikely(err)) {
169 			if (err == -ENOENT)
170 				err = -EIO;
171 			goto err_out;
172 		}
173 		BUG_ON(!ctx->attr->non_resident);
174 	}
175 	a = ctx->attr;
176 	/*
177 	 * Only decompress the mapping pairs if @vcn is inside it.  Otherwise
178 	 * we get into problems when we try to map an out of bounds vcn because
179 	 * we then try to map the already mapped runlist fragment and
180 	 * ntfs_mapping_pairs_decompress() fails.
181 	 */
182 	end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
183 	if (unlikely(vcn && vcn >= end_vcn)) {
184 		err = -ENOENT;
185 		goto err_out;
186 	}
187 	rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
188 	if (IS_ERR(rl))
189 		err = PTR_ERR(rl);
190 	else
191 		ni->runlist.rl = rl;
192 err_out:
193 	if (ctx_is_temporary) {
194 		if (likely(ctx))
195 			ntfs_attr_put_search_ctx(ctx);
196 		unmap_mft_record(base_ni);
197 	} else if (ctx_needs_reset) {
198 		/*
199 		 * If there is no attribute list, restoring the search context
200 		 * is accomplished simply by copying the saved context back over
201 		 * the caller supplied context.  If there is an attribute list,
202 		 * things are more complicated as we need to deal with mapping
203 		 * of mft records and resulting potential changes in pointers.
204 		 */
205 		if (NInoAttrList(base_ni)) {
206 			/*
207 			 * If the currently mapped (extent) inode is not the
208 			 * one we had before, we need to unmap it and map the
209 			 * old one.
210 			 */
211 			if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
212 				/*
213 				 * If the currently mapped inode is not the
214 				 * base inode, unmap it.
215 				 */
216 				if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
217 						ctx->base_ntfs_ino) {
218 					unmap_extent_mft_record(ctx->ntfs_ino);
219 					ctx->mrec = ctx->base_mrec;
220 					BUG_ON(!ctx->mrec);
221 				}
222 				/*
223 				 * If the old mapped inode is not the base
224 				 * inode, map it.
225 				 */
226 				if (old_ctx.base_ntfs_ino &&
227 						old_ctx.ntfs_ino !=
228 						old_ctx.base_ntfs_ino) {
229 retry_map:
230 					ctx->mrec = map_mft_record(
231 							old_ctx.ntfs_ino);
232 					/*
233 					 * Something bad has happened.  If out
234 					 * of memory retry till it succeeds.
235 					 * Any other errors are fatal and we
236 					 * return the error code in ctx->mrec.
237 					 * Let the caller deal with it...  We
238 					 * just need to fudge things so the
239 					 * caller can reinit and/or put the
240 					 * search context safely.
241 					 */
242 					if (IS_ERR(ctx->mrec)) {
243 						if (PTR_ERR(ctx->mrec) ==
244 								-ENOMEM) {
245 							schedule();
246 							goto retry_map;
247 						} else
248 							old_ctx.ntfs_ino =
249 								old_ctx.
250 								base_ntfs_ino;
251 					}
252 				}
253 			}
254 			/* Update the changed pointers in the saved context. */
255 			if (ctx->mrec != old_ctx.mrec) {
256 				if (!IS_ERR(ctx->mrec))
257 					old_ctx.attr = (ATTR_RECORD*)(
258 							(u8*)ctx->mrec +
259 							((u8*)old_ctx.attr -
260 							(u8*)old_ctx.mrec));
261 				old_ctx.mrec = ctx->mrec;
262 			}
263 		}
264 		/* Restore the search context to the saved one. */
265 		*ctx = old_ctx;
266 		/*
267 		 * We drop the reference on the page we took earlier.  In the
268 		 * case that IS_ERR(ctx->mrec) is true this means we might lose
269 		 * some changes to the mft record that had been made between
270 		 * the last time it was marked dirty/written out and now.  This
271 		 * at this stage is not a problem as the mapping error is fatal
272 		 * enough that the mft record cannot be written out anyway and
273 		 * the caller is very likely to shutdown the whole inode
274 		 * immediately and mark the volume dirty for chkdsk to pick up
275 		 * the pieces anyway.
276 		 */
277 		if (put_this_page)
278 			put_page(put_this_page);
279 	}
280 	return err;
281 }
282 
283 /**
284  * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
285  * @ni:		ntfs inode for which to map (part of) a runlist
286  * @vcn:	map runlist part containing this vcn
287  *
288  * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
289  *
290  * Return 0 on success and -errno on error.  There is one special error code
291  * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
292  * of bounds of the runlist.
293  *
294  * Locking: - The runlist must be unlocked on entry and is unlocked on return.
295  *	    - This function takes the runlist lock for writing and may modify
296  *	      the runlist.
297  */
298 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
299 {
300 	int err = 0;
301 
302 	down_write(&ni->runlist.lock);
303 	/* Make sure someone else didn't do the work while we were sleeping. */
304 	if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
305 			LCN_RL_NOT_MAPPED))
306 		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
307 	up_write(&ni->runlist.lock);
308 	return err;
309 }
310 
311 /**
312  * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
313  * @ni:			ntfs inode of the attribute whose runlist to search
314  * @vcn:		vcn to convert
315  * @write_locked:	true if the runlist is locked for writing
316  *
317  * Find the virtual cluster number @vcn in the runlist of the ntfs attribute
318  * described by the ntfs inode @ni and return the corresponding logical cluster
319  * number (lcn).
320  *
321  * If the @vcn is not mapped yet, the attempt is made to map the attribute
322  * extent containing the @vcn and the vcn to lcn conversion is retried.
323  *
324  * If @write_locked is true the caller has locked the runlist for writing and
325  * if false for reading.
326  *
327  * Since lcns must be >= 0, we use negative return codes with special meaning:
328  *
329  * Return code	Meaning / Description
330  * ==========================================
331  *  LCN_HOLE	Hole / not allocated on disk.
332  *  LCN_ENOENT	There is no such vcn in the runlist, i.e. @vcn is out of bounds.
333  *  LCN_ENOMEM	Not enough memory to map runlist.
334  *  LCN_EIO	Critical error (runlist/file is corrupt, i/o error, etc).
335  *
336  * Locking: - The runlist must be locked on entry and is left locked on return.
337  *	    - If @write_locked is 'false', i.e. the runlist is locked for reading,
338  *	      the lock may be dropped inside the function so you cannot rely on
339  *	      the runlist still being the same when this function returns.
340  */
341 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
342 		const bool write_locked)
343 {
344 	LCN lcn;
345 	unsigned long flags;
346 	bool is_retry = false;
347 
348 	BUG_ON(!ni);
349 	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
350 			ni->mft_no, (unsigned long long)vcn,
351 			write_locked ? "write" : "read");
352 	BUG_ON(!NInoNonResident(ni));
353 	BUG_ON(vcn < 0);
354 	if (!ni->runlist.rl) {
355 		read_lock_irqsave(&ni->size_lock, flags);
356 		if (!ni->allocated_size) {
357 			read_unlock_irqrestore(&ni->size_lock, flags);
358 			return LCN_ENOENT;
359 		}
360 		read_unlock_irqrestore(&ni->size_lock, flags);
361 	}
362 retry_remap:
363 	/* Convert vcn to lcn.  If that fails map the runlist and retry once. */
364 	lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
365 	if (likely(lcn >= LCN_HOLE)) {
366 		ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
367 		return lcn;
368 	}
369 	if (lcn != LCN_RL_NOT_MAPPED) {
370 		if (lcn != LCN_ENOENT)
371 			lcn = LCN_EIO;
372 	} else if (!is_retry) {
373 		int err;
374 
375 		if (!write_locked) {
376 			up_read(&ni->runlist.lock);
377 			down_write(&ni->runlist.lock);
378 			if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
379 					LCN_RL_NOT_MAPPED)) {
380 				up_write(&ni->runlist.lock);
381 				down_read(&ni->runlist.lock);
382 				goto retry_remap;
383 			}
384 		}
385 		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
386 		if (!write_locked) {
387 			up_write(&ni->runlist.lock);
388 			down_read(&ni->runlist.lock);
389 		}
390 		if (likely(!err)) {
391 			is_retry = true;
392 			goto retry_remap;
393 		}
394 		if (err == -ENOENT)
395 			lcn = LCN_ENOENT;
396 		else if (err == -ENOMEM)
397 			lcn = LCN_ENOMEM;
398 		else
399 			lcn = LCN_EIO;
400 	}
401 	if (lcn != LCN_ENOENT)
402 		ntfs_error(ni->vol->sb, "Failed with error code %lli.",
403 				(long long)lcn);
404 	return lcn;
405 }
406 
407 /**
408  * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
409  * @ni:		ntfs inode describing the runlist to search
410  * @vcn:	vcn to find
411  * @ctx:	active attribute search context if present or NULL if not
412  *
413  * Find the virtual cluster number @vcn in the runlist described by the ntfs
414  * inode @ni and return the address of the runlist element containing the @vcn.
415  *
416  * If the @vcn is not mapped yet, the attempt is made to map the attribute
417  * extent containing the @vcn and the vcn to lcn conversion is retried.
418  *
419  * If @ctx is specified, it is an active search context of @ni and its base mft
420  * record.  This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
421  * runlist fragments and allows their mapping.  If you do not have the mft
422  * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
423  * will perform the necessary mapping and unmapping.
424  *
425  * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
426  * restores it before returning.  Thus, @ctx will be left pointing to the same
427  * attribute on return as on entry.  However, the actual pointers in @ctx may
428  * point to different memory locations on return, so you must remember to reset
429  * any cached pointers from the @ctx, i.e. after the call to
430  * ntfs_attr_find_vcn_nolock(), you will probably want to do:
431  *	m = ctx->mrec;
432  *	a = ctx->attr;
433  * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
434  * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
435  * Note you need to distinguish between the lcn of the returned runlist element
436  * being >= 0 and LCN_HOLE.  In the later case you have to return zeroes on
437  * read and allocate clusters on write.
438  *
439  * Return the runlist element containing the @vcn on success and
440  * ERR_PTR(-errno) on error.  You need to test the return value with IS_ERR()
441  * to decide if the return is success or failure and PTR_ERR() to get to the
442  * error code if IS_ERR() is true.
443  *
444  * The possible error return codes are:
445  *	-ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
446  *	-ENOMEM - Not enough memory to map runlist.
447  *	-EIO	- Critical error (runlist/file is corrupt, i/o error, etc).
448  *
449  * WARNING: If @ctx is supplied, regardless of whether success or failure is
450  *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
451  *	    is no longer valid, i.e. you need to either call
452  *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
453  *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
454  *	    why the mapping of the old inode failed.
455  *
456  * Locking: - The runlist described by @ni must be locked for writing on entry
457  *	      and is locked on return.  Note the runlist may be modified when
458  *	      needed runlist fragments need to be mapped.
459  *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
460  *	      entry and it will be left unmapped on return.
461  *	    - If @ctx is not NULL, the base mft record must be mapped on entry
462  *	      and it will be left mapped on return.
463  */
464 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
465 		ntfs_attr_search_ctx *ctx)
466 {
467 	unsigned long flags;
468 	runlist_element *rl;
469 	int err = 0;
470 	bool is_retry = false;
471 
472 	BUG_ON(!ni);
473 	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
474 			ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
475 	BUG_ON(!NInoNonResident(ni));
476 	BUG_ON(vcn < 0);
477 	if (!ni->runlist.rl) {
478 		read_lock_irqsave(&ni->size_lock, flags);
479 		if (!ni->allocated_size) {
480 			read_unlock_irqrestore(&ni->size_lock, flags);
481 			return ERR_PTR(-ENOENT);
482 		}
483 		read_unlock_irqrestore(&ni->size_lock, flags);
484 	}
485 retry_remap:
486 	rl = ni->runlist.rl;
487 	if (likely(rl && vcn >= rl[0].vcn)) {
488 		while (likely(rl->length)) {
489 			if (unlikely(vcn < rl[1].vcn)) {
490 				if (likely(rl->lcn >= LCN_HOLE)) {
491 					ntfs_debug("Done.");
492 					return rl;
493 				}
494 				break;
495 			}
496 			rl++;
497 		}
498 		if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
499 			if (likely(rl->lcn == LCN_ENOENT))
500 				err = -ENOENT;
501 			else
502 				err = -EIO;
503 		}
504 	}
505 	if (!err && !is_retry) {
506 		/*
507 		 * If the search context is invalid we cannot map the unmapped
508 		 * region.
509 		 */
510 		if (IS_ERR(ctx->mrec))
511 			err = PTR_ERR(ctx->mrec);
512 		else {
513 			/*
514 			 * The @vcn is in an unmapped region, map the runlist
515 			 * and retry.
516 			 */
517 			err = ntfs_map_runlist_nolock(ni, vcn, ctx);
518 			if (likely(!err)) {
519 				is_retry = true;
520 				goto retry_remap;
521 			}
522 		}
523 		if (err == -EINVAL)
524 			err = -EIO;
525 	} else if (!err)
526 		err = -EIO;
527 	if (err != -ENOENT)
528 		ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
529 	return ERR_PTR(err);
530 }
531 
532 /**
533  * ntfs_attr_find - find (next) attribute in mft record
534  * @type:	attribute type to find
535  * @name:	attribute name to find (optional, i.e. NULL means don't care)
536  * @name_len:	attribute name length (only needed if @name present)
537  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
538  * @val:	attribute value to find (optional, resident attributes only)
539  * @val_len:	attribute value length
540  * @ctx:	search context with mft record and attribute to search from
541  *
542  * You should not need to call this function directly.  Use ntfs_attr_lookup()
543  * instead.
544  *
545  * ntfs_attr_find() takes a search context @ctx as parameter and searches the
546  * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
547  * attribute of @type, optionally @name and @val.
548  *
549  * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
550  * point to the found attribute.
551  *
552  * If the attribute is not found, ntfs_attr_find() returns -ENOENT and
553  * @ctx->attr will point to the attribute before which the attribute being
554  * searched for would need to be inserted if such an action were to be desired.
555  *
556  * On actual error, ntfs_attr_find() returns -EIO.  In this case @ctx->attr is
557  * undefined and in particular do not rely on it not changing.
558  *
559  * If @ctx->is_first is 'true', the search begins with @ctx->attr itself.  If it
560  * is 'false', the search begins after @ctx->attr.
561  *
562  * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
563  * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
564  * @ctx->mrec belongs.  This is so we can get at the ntfs volume and hence at
565  * the upcase table.  If @ic is CASE_SENSITIVE, the comparison is case
566  * sensitive.  When @name is present, @name_len is the @name length in Unicode
567  * characters.
568  *
569  * If @name is not present (NULL), we assume that the unnamed attribute is
570  * being searched for.
571  *
572  * Finally, the resident attribute value @val is looked for, if present.  If
573  * @val is not present (NULL), @val_len is ignored.
574  *
575  * ntfs_attr_find() only searches the specified mft record and it ignores the
576  * presence of an attribute list attribute (unless it is the one being searched
577  * for, obviously).  If you need to take attribute lists into consideration,
578  * use ntfs_attr_lookup() instead (see below).  This also means that you cannot
579  * use ntfs_attr_find() to search for extent records of non-resident
580  * attributes, as extents with lowest_vcn != 0 are usually described by the
581  * attribute list attribute only. - Note that it is possible that the first
582  * extent is only in the attribute list while the last extent is in the base
583  * mft record, so do not rely on being able to find the first extent in the
584  * base mft record.
585  *
586  * Warning: Never use @val when looking for attribute types which can be
587  *	    non-resident as this most likely will result in a crash!
588  */
589 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
590 		const u32 name_len, const IGNORE_CASE_BOOL ic,
591 		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
592 {
593 	ATTR_RECORD *a;
594 	ntfs_volume *vol = ctx->ntfs_ino->vol;
595 	ntfschar *upcase = vol->upcase;
596 	u32 upcase_len = vol->upcase_len;
597 
598 	/*
599 	 * Iterate over attributes in mft record starting at @ctx->attr, or the
600 	 * attribute following that, if @ctx->is_first is 'true'.
601 	 */
602 	if (ctx->is_first) {
603 		a = ctx->attr;
604 		ctx->is_first = false;
605 	} else
606 		a = (ATTR_RECORD*)((u8*)ctx->attr +
607 				le32_to_cpu(ctx->attr->length));
608 	for (;;	a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
609 		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
610 				le32_to_cpu(ctx->mrec->bytes_allocated))
611 			break;
612 		ctx->attr = a;
613 		if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
614 				a->type == AT_END))
615 			return -ENOENT;
616 		if (unlikely(!a->length))
617 			break;
618 		if (a->type != type)
619 			continue;
620 		/*
621 		 * If @name is present, compare the two names.  If @name is
622 		 * missing, assume we want an unnamed attribute.
623 		 */
624 		if (!name) {
625 			/* The search failed if the found attribute is named. */
626 			if (a->name_length)
627 				return -ENOENT;
628 		} else if (!ntfs_are_names_equal(name, name_len,
629 			    (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
630 			    a->name_length, ic, upcase, upcase_len)) {
631 			register int rc;
632 
633 			rc = ntfs_collate_names(name, name_len,
634 					(ntfschar*)((u8*)a +
635 					le16_to_cpu(a->name_offset)),
636 					a->name_length, 1, IGNORE_CASE,
637 					upcase, upcase_len);
638 			/*
639 			 * If @name collates before a->name, there is no
640 			 * matching attribute.
641 			 */
642 			if (rc == -1)
643 				return -ENOENT;
644 			/* If the strings are not equal, continue search. */
645 			if (rc)
646 				continue;
647 			rc = ntfs_collate_names(name, name_len,
648 					(ntfschar*)((u8*)a +
649 					le16_to_cpu(a->name_offset)),
650 					a->name_length, 1, CASE_SENSITIVE,
651 					upcase, upcase_len);
652 			if (rc == -1)
653 				return -ENOENT;
654 			if (rc)
655 				continue;
656 		}
657 		/*
658 		 * The names match or @name not present and attribute is
659 		 * unnamed.  If no @val specified, we have found the attribute
660 		 * and are done.
661 		 */
662 		if (!val)
663 			return 0;
664 		/* @val is present; compare values. */
665 		else {
666 			register int rc;
667 
668 			rc = memcmp(val, (u8*)a + le16_to_cpu(
669 					a->data.resident.value_offset),
670 					min_t(u32, val_len, le32_to_cpu(
671 					a->data.resident.value_length)));
672 			/*
673 			 * If @val collates before the current attribute's
674 			 * value, there is no matching attribute.
675 			 */
676 			if (!rc) {
677 				register u32 avl;
678 
679 				avl = le32_to_cpu(
680 						a->data.resident.value_length);
681 				if (val_len == avl)
682 					return 0;
683 				if (val_len < avl)
684 					return -ENOENT;
685 			} else if (rc < 0)
686 				return -ENOENT;
687 		}
688 	}
689 	ntfs_error(vol->sb, "Inode is corrupt.  Run chkdsk.");
690 	NVolSetErrors(vol);
691 	return -EIO;
692 }
693 
694 /**
695  * load_attribute_list - load an attribute list into memory
696  * @vol:		ntfs volume from which to read
697  * @runlist:		runlist of the attribute list
698  * @al_start:		destination buffer
699  * @size:		size of the destination buffer in bytes
700  * @initialized_size:	initialized size of the attribute list
701  *
702  * Walk the runlist @runlist and load all clusters from it copying them into
703  * the linear buffer @al. The maximum number of bytes copied to @al is @size
704  * bytes. Note, @size does not need to be a multiple of the cluster size. If
705  * @initialized_size is less than @size, the region in @al between
706  * @initialized_size and @size will be zeroed and not read from disk.
707  *
708  * Return 0 on success or -errno on error.
709  */
710 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
711 		const s64 size, const s64 initialized_size)
712 {
713 	LCN lcn;
714 	u8 *al = al_start;
715 	u8 *al_end = al + initialized_size;
716 	runlist_element *rl;
717 	struct buffer_head *bh;
718 	struct super_block *sb;
719 	unsigned long block_size;
720 	unsigned long block, max_block;
721 	int err = 0;
722 	unsigned char block_size_bits;
723 
724 	ntfs_debug("Entering.");
725 	if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
726 			initialized_size > size)
727 		return -EINVAL;
728 	if (!initialized_size) {
729 		memset(al, 0, size);
730 		return 0;
731 	}
732 	sb = vol->sb;
733 	block_size = sb->s_blocksize;
734 	block_size_bits = sb->s_blocksize_bits;
735 	down_read(&runlist->lock);
736 	rl = runlist->rl;
737 	if (!rl) {
738 		ntfs_error(sb, "Cannot read attribute list since runlist is "
739 				"missing.");
740 		goto err_out;
741 	}
742 	/* Read all clusters specified by the runlist one run at a time. */
743 	while (rl->length) {
744 		lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
745 		ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
746 				(unsigned long long)rl->vcn,
747 				(unsigned long long)lcn);
748 		/* The attribute list cannot be sparse. */
749 		if (lcn < 0) {
750 			ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed.  Cannot "
751 					"read attribute list.");
752 			goto err_out;
753 		}
754 		block = lcn << vol->cluster_size_bits >> block_size_bits;
755 		/* Read the run from device in chunks of block_size bytes. */
756 		max_block = block + (rl->length << vol->cluster_size_bits >>
757 				block_size_bits);
758 		ntfs_debug("max_block = 0x%lx.", max_block);
759 		do {
760 			ntfs_debug("Reading block = 0x%lx.", block);
761 			bh = sb_bread(sb, block);
762 			if (!bh) {
763 				ntfs_error(sb, "sb_bread() failed. Cannot "
764 						"read attribute list.");
765 				goto err_out;
766 			}
767 			if (al + block_size >= al_end)
768 				goto do_final;
769 			memcpy(al, bh->b_data, block_size);
770 			brelse(bh);
771 			al += block_size;
772 		} while (++block < max_block);
773 		rl++;
774 	}
775 	if (initialized_size < size) {
776 initialize:
777 		memset(al_start + initialized_size, 0, size - initialized_size);
778 	}
779 done:
780 	up_read(&runlist->lock);
781 	return err;
782 do_final:
783 	if (al < al_end) {
784 		/*
785 		 * Partial block.
786 		 *
787 		 * Note: The attribute list can be smaller than its allocation
788 		 * by multiple clusters.  This has been encountered by at least
789 		 * two people running Windows XP, thus we cannot do any
790 		 * truncation sanity checking here. (AIA)
791 		 */
792 		memcpy(al, bh->b_data, al_end - al);
793 		brelse(bh);
794 		if (initialized_size < size)
795 			goto initialize;
796 		goto done;
797 	}
798 	brelse(bh);
799 	/* Real overflow! */
800 	ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
801 			"is truncated.");
802 err_out:
803 	err = -EIO;
804 	goto done;
805 }
806 
807 /**
808  * ntfs_external_attr_find - find an attribute in the attribute list of an inode
809  * @type:	attribute type to find
810  * @name:	attribute name to find (optional, i.e. NULL means don't care)
811  * @name_len:	attribute name length (only needed if @name present)
812  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
813  * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
814  * @val:	attribute value to find (optional, resident attributes only)
815  * @val_len:	attribute value length
816  * @ctx:	search context with mft record and attribute to search from
817  *
818  * You should not need to call this function directly.  Use ntfs_attr_lookup()
819  * instead.
820  *
821  * Find an attribute by searching the attribute list for the corresponding
822  * attribute list entry.  Having found the entry, map the mft record if the
823  * attribute is in a different mft record/inode, ntfs_attr_find() the attribute
824  * in there and return it.
825  *
826  * On first search @ctx->ntfs_ino must be the base mft record and @ctx must
827  * have been obtained from a call to ntfs_attr_get_search_ctx().  On subsequent
828  * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
829  * then the base inode).
830  *
831  * After finishing with the attribute/mft record you need to call
832  * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
833  * mapped inodes, etc).
834  *
835  * If the attribute is found, ntfs_external_attr_find() returns 0 and
836  * @ctx->attr will point to the found attribute.  @ctx->mrec will point to the
837  * mft record in which @ctx->attr is located and @ctx->al_entry will point to
838  * the attribute list entry for the attribute.
839  *
840  * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
841  * @ctx->attr will point to the attribute in the base mft record before which
842  * the attribute being searched for would need to be inserted if such an action
843  * were to be desired.  @ctx->mrec will point to the mft record in which
844  * @ctx->attr is located and @ctx->al_entry will point to the attribute list
845  * entry of the attribute before which the attribute being searched for would
846  * need to be inserted if such an action were to be desired.
847  *
848  * Thus to insert the not found attribute, one wants to add the attribute to
849  * @ctx->mrec (the base mft record) and if there is not enough space, the
850  * attribute should be placed in a newly allocated extent mft record.  The
851  * attribute list entry for the inserted attribute should be inserted in the
852  * attribute list attribute at @ctx->al_entry.
853  *
854  * On actual error, ntfs_external_attr_find() returns -EIO.  In this case
855  * @ctx->attr is undefined and in particular do not rely on it not changing.
856  */
857 static int ntfs_external_attr_find(const ATTR_TYPE type,
858 		const ntfschar *name, const u32 name_len,
859 		const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
860 		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
861 {
862 	ntfs_inode *base_ni, *ni;
863 	ntfs_volume *vol;
864 	ATTR_LIST_ENTRY *al_entry, *next_al_entry;
865 	u8 *al_start, *al_end;
866 	ATTR_RECORD *a;
867 	ntfschar *al_name;
868 	u32 al_name_len;
869 	int err = 0;
870 	static const char *es = " Unmount and run chkdsk.";
871 
872 	ni = ctx->ntfs_ino;
873 	base_ni = ctx->base_ntfs_ino;
874 	ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
875 	if (!base_ni) {
876 		/* First call happens with the base mft record. */
877 		base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
878 		ctx->base_mrec = ctx->mrec;
879 	}
880 	if (ni == base_ni)
881 		ctx->base_attr = ctx->attr;
882 	if (type == AT_END)
883 		goto not_found;
884 	vol = base_ni->vol;
885 	al_start = base_ni->attr_list;
886 	al_end = al_start + base_ni->attr_list_size;
887 	if (!ctx->al_entry)
888 		ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
889 	/*
890 	 * Iterate over entries in attribute list starting at @ctx->al_entry,
891 	 * or the entry following that, if @ctx->is_first is 'true'.
892 	 */
893 	if (ctx->is_first) {
894 		al_entry = ctx->al_entry;
895 		ctx->is_first = false;
896 	} else
897 		al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
898 				le16_to_cpu(ctx->al_entry->length));
899 	for (;; al_entry = next_al_entry) {
900 		/* Out of bounds check. */
901 		if ((u8*)al_entry < base_ni->attr_list ||
902 				(u8*)al_entry > al_end)
903 			break;	/* Inode is corrupt. */
904 		ctx->al_entry = al_entry;
905 		/* Catch the end of the attribute list. */
906 		if ((u8*)al_entry == al_end)
907 			goto not_found;
908 		if (!al_entry->length)
909 			break;
910 		if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
911 				le16_to_cpu(al_entry->length) > al_end)
912 			break;
913 		next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
914 				le16_to_cpu(al_entry->length));
915 		if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
916 			goto not_found;
917 		if (type != al_entry->type)
918 			continue;
919 		/*
920 		 * If @name is present, compare the two names.  If @name is
921 		 * missing, assume we want an unnamed attribute.
922 		 */
923 		al_name_len = al_entry->name_length;
924 		al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
925 		if (!name) {
926 			if (al_name_len)
927 				goto not_found;
928 		} else if (!ntfs_are_names_equal(al_name, al_name_len, name,
929 				name_len, ic, vol->upcase, vol->upcase_len)) {
930 			register int rc;
931 
932 			rc = ntfs_collate_names(name, name_len, al_name,
933 					al_name_len, 1, IGNORE_CASE,
934 					vol->upcase, vol->upcase_len);
935 			/*
936 			 * If @name collates before al_name, there is no
937 			 * matching attribute.
938 			 */
939 			if (rc == -1)
940 				goto not_found;
941 			/* If the strings are not equal, continue search. */
942 			if (rc)
943 				continue;
944 			/*
945 			 * FIXME: Reverse engineering showed 0, IGNORE_CASE but
946 			 * that is inconsistent with ntfs_attr_find().  The
947 			 * subsequent rc checks were also different.  Perhaps I
948 			 * made a mistake in one of the two.  Need to recheck
949 			 * which is correct or at least see what is going on...
950 			 * (AIA)
951 			 */
952 			rc = ntfs_collate_names(name, name_len, al_name,
953 					al_name_len, 1, CASE_SENSITIVE,
954 					vol->upcase, vol->upcase_len);
955 			if (rc == -1)
956 				goto not_found;
957 			if (rc)
958 				continue;
959 		}
960 		/*
961 		 * The names match or @name not present and attribute is
962 		 * unnamed.  Now check @lowest_vcn.  Continue search if the
963 		 * next attribute list entry still fits @lowest_vcn.  Otherwise
964 		 * we have reached the right one or the search has failed.
965 		 */
966 		if (lowest_vcn && (u8*)next_al_entry >= al_start	    &&
967 				(u8*)next_al_entry + 6 < al_end		    &&
968 				(u8*)next_al_entry + le16_to_cpu(
969 					next_al_entry->length) <= al_end    &&
970 				sle64_to_cpu(next_al_entry->lowest_vcn) <=
971 					lowest_vcn			    &&
972 				next_al_entry->type == al_entry->type	    &&
973 				next_al_entry->name_length == al_name_len   &&
974 				ntfs_are_names_equal((ntfschar*)((u8*)
975 					next_al_entry +
976 					next_al_entry->name_offset),
977 					next_al_entry->name_length,
978 					al_name, al_name_len, CASE_SENSITIVE,
979 					vol->upcase, vol->upcase_len))
980 			continue;
981 		if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
982 			if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
983 				ntfs_error(vol->sb, "Found stale mft "
984 						"reference in attribute list "
985 						"of base inode 0x%lx.%s",
986 						base_ni->mft_no, es);
987 				err = -EIO;
988 				break;
989 			}
990 		} else { /* Mft references do not match. */
991 			/* If there is a mapped record unmap it first. */
992 			if (ni != base_ni)
993 				unmap_extent_mft_record(ni);
994 			/* Do we want the base record back? */
995 			if (MREF_LE(al_entry->mft_reference) ==
996 					base_ni->mft_no) {
997 				ni = ctx->ntfs_ino = base_ni;
998 				ctx->mrec = ctx->base_mrec;
999 			} else {
1000 				/* We want an extent record. */
1001 				ctx->mrec = map_extent_mft_record(base_ni,
1002 						le64_to_cpu(
1003 						al_entry->mft_reference), &ni);
1004 				if (IS_ERR(ctx->mrec)) {
1005 					ntfs_error(vol->sb, "Failed to map "
1006 							"extent mft record "
1007 							"0x%lx of base inode "
1008 							"0x%lx.%s",
1009 							MREF_LE(al_entry->
1010 							mft_reference),
1011 							base_ni->mft_no, es);
1012 					err = PTR_ERR(ctx->mrec);
1013 					if (err == -ENOENT)
1014 						err = -EIO;
1015 					/* Cause @ctx to be sanitized below. */
1016 					ni = NULL;
1017 					break;
1018 				}
1019 				ctx->ntfs_ino = ni;
1020 			}
1021 			ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1022 					le16_to_cpu(ctx->mrec->attrs_offset));
1023 		}
1024 		/*
1025 		 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
1026 		 * mft record containing the attribute represented by the
1027 		 * current al_entry.
1028 		 */
1029 		/*
1030 		 * We could call into ntfs_attr_find() to find the right
1031 		 * attribute in this mft record but this would be less
1032 		 * efficient and not quite accurate as ntfs_attr_find() ignores
1033 		 * the attribute instance numbers for example which become
1034 		 * important when one plays with attribute lists.  Also,
1035 		 * because a proper match has been found in the attribute list
1036 		 * entry above, the comparison can now be optimized.  So it is
1037 		 * worth re-implementing a simplified ntfs_attr_find() here.
1038 		 */
1039 		a = ctx->attr;
1040 		/*
1041 		 * Use a manual loop so we can still use break and continue
1042 		 * with the same meanings as above.
1043 		 */
1044 do_next_attr_loop:
1045 		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
1046 				le32_to_cpu(ctx->mrec->bytes_allocated))
1047 			break;
1048 		if (a->type == AT_END)
1049 			break;
1050 		if (!a->length)
1051 			break;
1052 		if (al_entry->instance != a->instance)
1053 			goto do_next_attr;
1054 		/*
1055 		 * If the type and/or the name are mismatched between the
1056 		 * attribute list entry and the attribute record, there is
1057 		 * corruption so we break and return error EIO.
1058 		 */
1059 		if (al_entry->type != a->type)
1060 			break;
1061 		if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
1062 				le16_to_cpu(a->name_offset)), a->name_length,
1063 				al_name, al_name_len, CASE_SENSITIVE,
1064 				vol->upcase, vol->upcase_len))
1065 			break;
1066 		ctx->attr = a;
1067 		/*
1068 		 * If no @val specified or @val specified and it matches, we
1069 		 * have found it!
1070 		 */
1071 		if (!val || (!a->non_resident && le32_to_cpu(
1072 				a->data.resident.value_length) == val_len &&
1073 				!memcmp((u8*)a +
1074 				le16_to_cpu(a->data.resident.value_offset),
1075 				val, val_len))) {
1076 			ntfs_debug("Done, found.");
1077 			return 0;
1078 		}
1079 do_next_attr:
1080 		/* Proceed to the next attribute in the current mft record. */
1081 		a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
1082 		goto do_next_attr_loop;
1083 	}
1084 	if (!err) {
1085 		ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
1086 				"attribute list attribute.%s", base_ni->mft_no,
1087 				es);
1088 		err = -EIO;
1089 	}
1090 	if (ni != base_ni) {
1091 		if (ni)
1092 			unmap_extent_mft_record(ni);
1093 		ctx->ntfs_ino = base_ni;
1094 		ctx->mrec = ctx->base_mrec;
1095 		ctx->attr = ctx->base_attr;
1096 	}
1097 	if (err != -ENOMEM)
1098 		NVolSetErrors(vol);
1099 	return err;
1100 not_found:
1101 	/*
1102 	 * If we were looking for AT_END, we reset the search context @ctx and
1103 	 * use ntfs_attr_find() to seek to the end of the base mft record.
1104 	 */
1105 	if (type == AT_END) {
1106 		ntfs_attr_reinit_search_ctx(ctx);
1107 		return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
1108 				ctx);
1109 	}
1110 	/*
1111 	 * The attribute was not found.  Before we return, we want to ensure
1112 	 * @ctx->mrec and @ctx->attr indicate the position at which the
1113 	 * attribute should be inserted in the base mft record.  Since we also
1114 	 * want to preserve @ctx->al_entry we cannot reinitialize the search
1115 	 * context using ntfs_attr_reinit_search_ctx() as this would set
1116 	 * @ctx->al_entry to NULL.  Thus we do the necessary bits manually (see
1117 	 * ntfs_attr_init_search_ctx() below).  Note, we _only_ preserve
1118 	 * @ctx->al_entry as the remaining fields (base_*) are identical to
1119 	 * their non base_ counterparts and we cannot set @ctx->base_attr
1120 	 * correctly yet as we do not know what @ctx->attr will be set to by
1121 	 * the call to ntfs_attr_find() below.
1122 	 */
1123 	if (ni != base_ni)
1124 		unmap_extent_mft_record(ni);
1125 	ctx->mrec = ctx->base_mrec;
1126 	ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1127 			le16_to_cpu(ctx->mrec->attrs_offset));
1128 	ctx->is_first = true;
1129 	ctx->ntfs_ino = base_ni;
1130 	ctx->base_ntfs_ino = NULL;
1131 	ctx->base_mrec = NULL;
1132 	ctx->base_attr = NULL;
1133 	/*
1134 	 * In case there are multiple matches in the base mft record, need to
1135 	 * keep enumerating until we get an attribute not found response (or
1136 	 * another error), otherwise we would keep returning the same attribute
1137 	 * over and over again and all programs using us for enumeration would
1138 	 * lock up in a tight loop.
1139 	 */
1140 	do {
1141 		err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
1142 				ctx);
1143 	} while (!err);
1144 	ntfs_debug("Done, not found.");
1145 	return err;
1146 }
1147 
1148 /**
1149  * ntfs_attr_lookup - find an attribute in an ntfs inode
1150  * @type:	attribute type to find
1151  * @name:	attribute name to find (optional, i.e. NULL means don't care)
1152  * @name_len:	attribute name length (only needed if @name present)
1153  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
1154  * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
1155  * @val:	attribute value to find (optional, resident attributes only)
1156  * @val_len:	attribute value length
1157  * @ctx:	search context with mft record and attribute to search from
1158  *
1159  * Find an attribute in an ntfs inode.  On first search @ctx->ntfs_ino must
1160  * be the base mft record and @ctx must have been obtained from a call to
1161  * ntfs_attr_get_search_ctx().
1162  *
1163  * This function transparently handles attribute lists and @ctx is used to
1164  * continue searches where they were left off at.
1165  *
1166  * After finishing with the attribute/mft record you need to call
1167  * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
1168  * mapped inodes, etc).
1169  *
1170  * Return 0 if the search was successful and -errno if not.
1171  *
1172  * When 0, @ctx->attr is the found attribute and it is in mft record
1173  * @ctx->mrec.  If an attribute list attribute is present, @ctx->al_entry is
1174  * the attribute list entry of the found attribute.
1175  *
1176  * When -ENOENT, @ctx->attr is the attribute which collates just after the
1177  * attribute being searched for, i.e. if one wants to add the attribute to the
1178  * mft record this is the correct place to insert it into.  If an attribute
1179  * list attribute is present, @ctx->al_entry is the attribute list entry which
1180  * collates just after the attribute list entry of the attribute being searched
1181  * for, i.e. if one wants to add the attribute to the mft record this is the
1182  * correct place to insert its attribute list entry into.
1183  *
1184  * When -errno != -ENOENT, an error occurred during the lookup.  @ctx->attr is
1185  * then undefined and in particular you should not rely on it not changing.
1186  */
1187 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
1188 		const u32 name_len, const IGNORE_CASE_BOOL ic,
1189 		const VCN lowest_vcn, const u8 *val, const u32 val_len,
1190 		ntfs_attr_search_ctx *ctx)
1191 {
1192 	ntfs_inode *base_ni;
1193 
1194 	ntfs_debug("Entering.");
1195 	BUG_ON(IS_ERR(ctx->mrec));
1196 	if (ctx->base_ntfs_ino)
1197 		base_ni = ctx->base_ntfs_ino;
1198 	else
1199 		base_ni = ctx->ntfs_ino;
1200 	/* Sanity check, just for debugging really. */
1201 	BUG_ON(!base_ni);
1202 	if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
1203 		return ntfs_attr_find(type, name, name_len, ic, val, val_len,
1204 				ctx);
1205 	return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
1206 			val, val_len, ctx);
1207 }
1208 
1209 /**
1210  * ntfs_attr_init_search_ctx - initialize an attribute search context
1211  * @ctx:	attribute search context to initialize
1212  * @ni:		ntfs inode with which to initialize the search context
1213  * @mrec:	mft record with which to initialize the search context
1214  *
1215  * Initialize the attribute search context @ctx with @ni and @mrec.
1216  */
1217 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
1218 		ntfs_inode *ni, MFT_RECORD *mrec)
1219 {
1220 	*ctx = (ntfs_attr_search_ctx) {
1221 		.mrec = mrec,
1222 		/* Sanity checks are performed elsewhere. */
1223 		.attr = (ATTR_RECORD*)((u8*)mrec +
1224 				le16_to_cpu(mrec->attrs_offset)),
1225 		.is_first = true,
1226 		.ntfs_ino = ni,
1227 	};
1228 }
1229 
1230 /**
1231  * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
1232  * @ctx:	attribute search context to reinitialize
1233  *
1234  * Reinitialize the attribute search context @ctx, unmapping an associated
1235  * extent mft record if present, and initialize the search context again.
1236  *
1237  * This is used when a search for a new attribute is being started to reset
1238  * the search context to the beginning.
1239  */
1240 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
1241 {
1242 	if (likely(!ctx->base_ntfs_ino)) {
1243 		/* No attribute list. */
1244 		ctx->is_first = true;
1245 		/* Sanity checks are performed elsewhere. */
1246 		ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1247 				le16_to_cpu(ctx->mrec->attrs_offset));
1248 		/*
1249 		 * This needs resetting due to ntfs_external_attr_find() which
1250 		 * can leave it set despite having zeroed ctx->base_ntfs_ino.
1251 		 */
1252 		ctx->al_entry = NULL;
1253 		return;
1254 	} /* Attribute list. */
1255 	if (ctx->ntfs_ino != ctx->base_ntfs_ino)
1256 		unmap_extent_mft_record(ctx->ntfs_ino);
1257 	ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
1258 	return;
1259 }
1260 
1261 /**
1262  * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
1263  * @ni:		ntfs inode with which to initialize the search context
1264  * @mrec:	mft record with which to initialize the search context
1265  *
1266  * Allocate a new attribute search context, initialize it with @ni and @mrec,
1267  * and return it. Return NULL if allocation failed.
1268  */
1269 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
1270 {
1271 	ntfs_attr_search_ctx *ctx;
1272 
1273 	ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
1274 	if (ctx)
1275 		ntfs_attr_init_search_ctx(ctx, ni, mrec);
1276 	return ctx;
1277 }
1278 
1279 /**
1280  * ntfs_attr_put_search_ctx - release an attribute search context
1281  * @ctx:	attribute search context to free
1282  *
1283  * Release the attribute search context @ctx, unmapping an associated extent
1284  * mft record if present.
1285  */
1286 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
1287 {
1288 	if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
1289 		unmap_extent_mft_record(ctx->ntfs_ino);
1290 	kmem_cache_free(ntfs_attr_ctx_cache, ctx);
1291 	return;
1292 }
1293 
1294 #ifdef NTFS_RW
1295 
1296 /**
1297  * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
1298  * @vol:	ntfs volume to which the attribute belongs
1299  * @type:	attribute type which to find
1300  *
1301  * Search for the attribute definition record corresponding to the attribute
1302  * @type in the $AttrDef system file.
1303  *
1304  * Return the attribute type definition record if found and NULL if not found.
1305  */
1306 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
1307 		const ATTR_TYPE type)
1308 {
1309 	ATTR_DEF *ad;
1310 
1311 	BUG_ON(!vol->attrdef);
1312 	BUG_ON(!type);
1313 	for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
1314 			vol->attrdef_size && ad->type; ++ad) {
1315 		/* We have not found it yet, carry on searching. */
1316 		if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
1317 			continue;
1318 		/* We found the attribute; return it. */
1319 		if (likely(ad->type == type))
1320 			return ad;
1321 		/* We have gone too far already.  No point in continuing. */
1322 		break;
1323 	}
1324 	/* Attribute not found. */
1325 	ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
1326 			le32_to_cpu(type));
1327 	return NULL;
1328 }
1329 
1330 /**
1331  * ntfs_attr_size_bounds_check - check a size of an attribute type for validity
1332  * @vol:	ntfs volume to which the attribute belongs
1333  * @type:	attribute type which to check
1334  * @size:	size which to check
1335  *
1336  * Check whether the @size in bytes is valid for an attribute of @type on the
1337  * ntfs volume @vol.  This information is obtained from $AttrDef system file.
1338  *
1339  * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
1340  * listed in $AttrDef.
1341  */
1342 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
1343 		const s64 size)
1344 {
1345 	ATTR_DEF *ad;
1346 
1347 	BUG_ON(size < 0);
1348 	/*
1349 	 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
1350 	 * listed in $AttrDef.
1351 	 */
1352 	if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
1353 		return -ERANGE;
1354 	/* Get the $AttrDef entry for the attribute @type. */
1355 	ad = ntfs_attr_find_in_attrdef(vol, type);
1356 	if (unlikely(!ad))
1357 		return -ENOENT;
1358 	/* Do the bounds check. */
1359 	if (((sle64_to_cpu(ad->min_size) > 0) &&
1360 			size < sle64_to_cpu(ad->min_size)) ||
1361 			((sle64_to_cpu(ad->max_size) > 0) && size >
1362 			sle64_to_cpu(ad->max_size)))
1363 		return -ERANGE;
1364 	return 0;
1365 }
1366 
1367 /**
1368  * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
1369  * @vol:	ntfs volume to which the attribute belongs
1370  * @type:	attribute type which to check
1371  *
1372  * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1373  * be non-resident.  This information is obtained from $AttrDef system file.
1374  *
1375  * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
1376  * -ENOENT if the attribute is not listed in $AttrDef.
1377  */
1378 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1379 {
1380 	ATTR_DEF *ad;
1381 
1382 	/* Find the attribute definition record in $AttrDef. */
1383 	ad = ntfs_attr_find_in_attrdef(vol, type);
1384 	if (unlikely(!ad))
1385 		return -ENOENT;
1386 	/* Check the flags and return the result. */
1387 	if (ad->flags & ATTR_DEF_RESIDENT)
1388 		return -EPERM;
1389 	return 0;
1390 }
1391 
1392 /**
1393  * ntfs_attr_can_be_resident - check if an attribute can be resident
1394  * @vol:	ntfs volume to which the attribute belongs
1395  * @type:	attribute type which to check
1396  *
1397  * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1398  * be resident.  This information is derived from our ntfs knowledge and may
1399  * not be completely accurate, especially when user defined attributes are
1400  * present.  Basically we allow everything to be resident except for index
1401  * allocation and $EA attributes.
1402  *
1403  * Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
1404  *
1405  * Warning: In the system file $MFT the attribute $Bitmap must be non-resident
1406  *	    otherwise windows will not boot (blue screen of death)!  We cannot
1407  *	    check for this here as we do not know which inode's $Bitmap is
1408  *	    being asked about so the caller needs to special case this.
1409  */
1410 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1411 {
1412 	if (type == AT_INDEX_ALLOCATION)
1413 		return -EPERM;
1414 	return 0;
1415 }
1416 
1417 /**
1418  * ntfs_attr_record_resize - resize an attribute record
1419  * @m:		mft record containing attribute record
1420  * @a:		attribute record to resize
1421  * @new_size:	new size in bytes to which to resize the attribute record @a
1422  *
1423  * Resize the attribute record @a, i.e. the resident part of the attribute, in
1424  * the mft record @m to @new_size bytes.
1425  *
1426  * Return 0 on success and -errno on error.  The following error codes are
1427  * defined:
1428  *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1429  *
1430  * Note: On error, no modifications have been performed whatsoever.
1431  *
1432  * Warning: If you make a record smaller without having copied all the data you
1433  *	    are interested in the data may be overwritten.
1434  */
1435 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
1436 {
1437 	ntfs_debug("Entering for new_size %u.", new_size);
1438 	/* Align to 8 bytes if it is not already done. */
1439 	if (new_size & 7)
1440 		new_size = (new_size + 7) & ~7;
1441 	/* If the actual attribute length has changed, move things around. */
1442 	if (new_size != le32_to_cpu(a->length)) {
1443 		u32 new_muse = le32_to_cpu(m->bytes_in_use) -
1444 				le32_to_cpu(a->length) + new_size;
1445 		/* Not enough space in this mft record. */
1446 		if (new_muse > le32_to_cpu(m->bytes_allocated))
1447 			return -ENOSPC;
1448 		/* Move attributes following @a to their new location. */
1449 		memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
1450 				le32_to_cpu(m->bytes_in_use) - ((u8*)a -
1451 				(u8*)m) - le32_to_cpu(a->length));
1452 		/* Adjust @m to reflect the change in used space. */
1453 		m->bytes_in_use = cpu_to_le32(new_muse);
1454 		/* Adjust @a to reflect the new size. */
1455 		if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
1456 			a->length = cpu_to_le32(new_size);
1457 	}
1458 	return 0;
1459 }
1460 
1461 /**
1462  * ntfs_resident_attr_value_resize - resize the value of a resident attribute
1463  * @m:		mft record containing attribute record
1464  * @a:		attribute record whose value to resize
1465  * @new_size:	new size in bytes to which to resize the attribute value of @a
1466  *
1467  * Resize the value of the attribute @a in the mft record @m to @new_size bytes.
1468  * If the value is made bigger, the newly allocated space is cleared.
1469  *
1470  * Return 0 on success and -errno on error.  The following error codes are
1471  * defined:
1472  *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1473  *
1474  * Note: On error, no modifications have been performed whatsoever.
1475  *
1476  * Warning: If you make a record smaller without having copied all the data you
1477  *	    are interested in the data may be overwritten.
1478  */
1479 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
1480 		const u32 new_size)
1481 {
1482 	u32 old_size;
1483 
1484 	/* Resize the resident part of the attribute record. */
1485 	if (ntfs_attr_record_resize(m, a,
1486 			le16_to_cpu(a->data.resident.value_offset) + new_size))
1487 		return -ENOSPC;
1488 	/*
1489 	 * The resize succeeded!  If we made the attribute value bigger, clear
1490 	 * the area between the old size and @new_size.
1491 	 */
1492 	old_size = le32_to_cpu(a->data.resident.value_length);
1493 	if (new_size > old_size)
1494 		memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1495 				old_size, 0, new_size - old_size);
1496 	/* Finally update the length of the attribute value. */
1497 	a->data.resident.value_length = cpu_to_le32(new_size);
1498 	return 0;
1499 }
1500 
1501 /**
1502  * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
1503  * @ni:		ntfs inode describing the attribute to convert
1504  * @data_size:	size of the resident data to copy to the non-resident attribute
1505  *
1506  * Convert the resident ntfs attribute described by the ntfs inode @ni to a
1507  * non-resident one.
1508  *
1509  * @data_size must be equal to the attribute value size.  This is needed since
1510  * we need to know the size before we can map the mft record and our callers
1511  * always know it.  The reason we cannot simply read the size from the vfs
1512  * inode i_size is that this is not necessarily uptodate.  This happens when
1513  * ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
1514  *
1515  * Return 0 on success and -errno on error.  The following error return codes
1516  * are defined:
1517  *	-EPERM	- The attribute is not allowed to be non-resident.
1518  *	-ENOMEM	- Not enough memory.
1519  *	-ENOSPC	- Not enough disk space.
1520  *	-EINVAL	- Attribute not defined on the volume.
1521  *	-EIO	- I/o error or other error.
1522  * Note that -ENOSPC is also returned in the case that there is not enough
1523  * space in the mft record to do the conversion.  This can happen when the mft
1524  * record is already very full.  The caller is responsible for trying to make
1525  * space in the mft record and trying again.  FIXME: Do we need a separate
1526  * error return code for this kind of -ENOSPC or is it always worth trying
1527  * again in case the attribute may then fit in a resident state so no need to
1528  * make it non-resident at all?  Ho-hum...  (AIA)
1529  *
1530  * NOTE to self: No changes in the attribute list are required to move from
1531  *		 a resident to a non-resident attribute.
1532  *
1533  * Locking: - The caller must hold i_mutex on the inode.
1534  */
1535 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
1536 {
1537 	s64 new_size;
1538 	struct inode *vi = VFS_I(ni);
1539 	ntfs_volume *vol = ni->vol;
1540 	ntfs_inode *base_ni;
1541 	MFT_RECORD *m;
1542 	ATTR_RECORD *a;
1543 	ntfs_attr_search_ctx *ctx;
1544 	struct page *page;
1545 	runlist_element *rl;
1546 	u8 *kaddr;
1547 	unsigned long flags;
1548 	int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
1549 	u32 attr_size;
1550 	u8 old_res_attr_flags;
1551 
1552 	/* Check that the attribute is allowed to be non-resident. */
1553 	err = ntfs_attr_can_be_non_resident(vol, ni->type);
1554 	if (unlikely(err)) {
1555 		if (err == -EPERM)
1556 			ntfs_debug("Attribute is not allowed to be "
1557 					"non-resident.");
1558 		else
1559 			ntfs_debug("Attribute not defined on the NTFS "
1560 					"volume!");
1561 		return err;
1562 	}
1563 	/*
1564 	 * FIXME: Compressed and encrypted attributes are not supported when
1565 	 * writing and we should never have gotten here for them.
1566 	 */
1567 	BUG_ON(NInoCompressed(ni));
1568 	BUG_ON(NInoEncrypted(ni));
1569 	/*
1570 	 * The size needs to be aligned to a cluster boundary for allocation
1571 	 * purposes.
1572 	 */
1573 	new_size = (data_size + vol->cluster_size - 1) &
1574 			~(vol->cluster_size - 1);
1575 	if (new_size > 0) {
1576 		/*
1577 		 * Will need the page later and since the page lock nests
1578 		 * outside all ntfs locks, we need to get the page now.
1579 		 */
1580 		page = find_or_create_page(vi->i_mapping, 0,
1581 				mapping_gfp_mask(vi->i_mapping));
1582 		if (unlikely(!page))
1583 			return -ENOMEM;
1584 		/* Start by allocating clusters to hold the attribute value. */
1585 		rl = ntfs_cluster_alloc(vol, 0, new_size >>
1586 				vol->cluster_size_bits, -1, DATA_ZONE, true);
1587 		if (IS_ERR(rl)) {
1588 			err = PTR_ERR(rl);
1589 			ntfs_debug("Failed to allocate cluster%s, error code "
1590 					"%i.", (new_size >>
1591 					vol->cluster_size_bits) > 1 ? "s" : "",
1592 					err);
1593 			goto page_err_out;
1594 		}
1595 	} else {
1596 		rl = NULL;
1597 		page = NULL;
1598 	}
1599 	/* Determine the size of the mapping pairs array. */
1600 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
1601 	if (unlikely(mp_size < 0)) {
1602 		err = mp_size;
1603 		ntfs_debug("Failed to get size for mapping pairs array, error "
1604 				"code %i.", err);
1605 		goto rl_err_out;
1606 	}
1607 	down_write(&ni->runlist.lock);
1608 	if (!NInoAttr(ni))
1609 		base_ni = ni;
1610 	else
1611 		base_ni = ni->ext.base_ntfs_ino;
1612 	m = map_mft_record(base_ni);
1613 	if (IS_ERR(m)) {
1614 		err = PTR_ERR(m);
1615 		m = NULL;
1616 		ctx = NULL;
1617 		goto err_out;
1618 	}
1619 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1620 	if (unlikely(!ctx)) {
1621 		err = -ENOMEM;
1622 		goto err_out;
1623 	}
1624 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1625 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1626 	if (unlikely(err)) {
1627 		if (err == -ENOENT)
1628 			err = -EIO;
1629 		goto err_out;
1630 	}
1631 	m = ctx->mrec;
1632 	a = ctx->attr;
1633 	BUG_ON(NInoNonResident(ni));
1634 	BUG_ON(a->non_resident);
1635 	/*
1636 	 * Calculate new offsets for the name and the mapping pairs array.
1637 	 */
1638 	if (NInoSparse(ni) || NInoCompressed(ni))
1639 		name_ofs = (offsetof(ATTR_REC,
1640 				data.non_resident.compressed_size) +
1641 				sizeof(a->data.non_resident.compressed_size) +
1642 				7) & ~7;
1643 	else
1644 		name_ofs = (offsetof(ATTR_REC,
1645 				data.non_resident.compressed_size) + 7) & ~7;
1646 	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1647 	/*
1648 	 * Determine the size of the resident part of the now non-resident
1649 	 * attribute record.
1650 	 */
1651 	arec_size = (mp_ofs + mp_size + 7) & ~7;
1652 	/*
1653 	 * If the page is not uptodate bring it uptodate by copying from the
1654 	 * attribute value.
1655 	 */
1656 	attr_size = le32_to_cpu(a->data.resident.value_length);
1657 	BUG_ON(attr_size != data_size);
1658 	if (page && !PageUptodate(page)) {
1659 		kaddr = kmap_atomic(page);
1660 		memcpy(kaddr, (u8*)a +
1661 				le16_to_cpu(a->data.resident.value_offset),
1662 				attr_size);
1663 		memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size);
1664 		kunmap_atomic(kaddr);
1665 		flush_dcache_page(page);
1666 		SetPageUptodate(page);
1667 	}
1668 	/* Backup the attribute flag. */
1669 	old_res_attr_flags = a->data.resident.flags;
1670 	/* Resize the resident part of the attribute record. */
1671 	err = ntfs_attr_record_resize(m, a, arec_size);
1672 	if (unlikely(err))
1673 		goto err_out;
1674 	/*
1675 	 * Convert the resident part of the attribute record to describe a
1676 	 * non-resident attribute.
1677 	 */
1678 	a->non_resident = 1;
1679 	/* Move the attribute name if it exists and update the offset. */
1680 	if (a->name_length)
1681 		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1682 				a->name_length * sizeof(ntfschar));
1683 	a->name_offset = cpu_to_le16(name_ofs);
1684 	/* Setup the fields specific to non-resident attributes. */
1685 	a->data.non_resident.lowest_vcn = 0;
1686 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
1687 			vol->cluster_size_bits);
1688 	a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
1689 	memset(&a->data.non_resident.reserved, 0,
1690 			sizeof(a->data.non_resident.reserved));
1691 	a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
1692 	a->data.non_resident.data_size =
1693 			a->data.non_resident.initialized_size =
1694 			cpu_to_sle64(attr_size);
1695 	if (NInoSparse(ni) || NInoCompressed(ni)) {
1696 		a->data.non_resident.compression_unit = 0;
1697 		if (NInoCompressed(ni) || vol->major_ver < 3)
1698 			a->data.non_resident.compression_unit = 4;
1699 		a->data.non_resident.compressed_size =
1700 				a->data.non_resident.allocated_size;
1701 	} else
1702 		a->data.non_resident.compression_unit = 0;
1703 	/* Generate the mapping pairs array into the attribute record. */
1704 	err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
1705 			arec_size - mp_ofs, rl, 0, -1, NULL);
1706 	if (unlikely(err)) {
1707 		ntfs_debug("Failed to build mapping pairs, error code %i.",
1708 				err);
1709 		goto undo_err_out;
1710 	}
1711 	/* Setup the in-memory attribute structure to be non-resident. */
1712 	ni->runlist.rl = rl;
1713 	write_lock_irqsave(&ni->size_lock, flags);
1714 	ni->allocated_size = new_size;
1715 	if (NInoSparse(ni) || NInoCompressed(ni)) {
1716 		ni->itype.compressed.size = ni->allocated_size;
1717 		if (a->data.non_resident.compression_unit) {
1718 			ni->itype.compressed.block_size = 1U << (a->data.
1719 					non_resident.compression_unit +
1720 					vol->cluster_size_bits);
1721 			ni->itype.compressed.block_size_bits =
1722 					ffs(ni->itype.compressed.block_size) -
1723 					1;
1724 			ni->itype.compressed.block_clusters = 1U <<
1725 					a->data.non_resident.compression_unit;
1726 		} else {
1727 			ni->itype.compressed.block_size = 0;
1728 			ni->itype.compressed.block_size_bits = 0;
1729 			ni->itype.compressed.block_clusters = 0;
1730 		}
1731 		vi->i_blocks = ni->itype.compressed.size >> 9;
1732 	} else
1733 		vi->i_blocks = ni->allocated_size >> 9;
1734 	write_unlock_irqrestore(&ni->size_lock, flags);
1735 	/*
1736 	 * This needs to be last since the address space operations ->readpage
1737 	 * and ->writepage can run concurrently with us as they are not
1738 	 * serialized on i_mutex.  Note, we are not allowed to fail once we flip
1739 	 * this switch, which is another reason to do this last.
1740 	 */
1741 	NInoSetNonResident(ni);
1742 	/* Mark the mft record dirty, so it gets written back. */
1743 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1744 	mark_mft_record_dirty(ctx->ntfs_ino);
1745 	ntfs_attr_put_search_ctx(ctx);
1746 	unmap_mft_record(base_ni);
1747 	up_write(&ni->runlist.lock);
1748 	if (page) {
1749 		set_page_dirty(page);
1750 		unlock_page(page);
1751 		put_page(page);
1752 	}
1753 	ntfs_debug("Done.");
1754 	return 0;
1755 undo_err_out:
1756 	/* Convert the attribute back into a resident attribute. */
1757 	a->non_resident = 0;
1758 	/* Move the attribute name if it exists and update the offset. */
1759 	name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
1760 			sizeof(a->data.resident.reserved) + 7) & ~7;
1761 	if (a->name_length)
1762 		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1763 				a->name_length * sizeof(ntfschar));
1764 	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1765 	a->name_offset = cpu_to_le16(name_ofs);
1766 	arec_size = (mp_ofs + attr_size + 7) & ~7;
1767 	/* Resize the resident part of the attribute record. */
1768 	err2 = ntfs_attr_record_resize(m, a, arec_size);
1769 	if (unlikely(err2)) {
1770 		/*
1771 		 * This cannot happen (well if memory corruption is at work it
1772 		 * could happen in theory), but deal with it as well as we can.
1773 		 * If the old size is too small, truncate the attribute,
1774 		 * otherwise simply give it a larger allocated size.
1775 		 * FIXME: Should check whether chkdsk complains when the
1776 		 * allocated size is much bigger than the resident value size.
1777 		 */
1778 		arec_size = le32_to_cpu(a->length);
1779 		if ((mp_ofs + attr_size) > arec_size) {
1780 			err2 = attr_size;
1781 			attr_size = arec_size - mp_ofs;
1782 			ntfs_error(vol->sb, "Failed to undo partial resident "
1783 					"to non-resident attribute "
1784 					"conversion.  Truncating inode 0x%lx, "
1785 					"attribute type 0x%x from %i bytes to "
1786 					"%i bytes to maintain metadata "
1787 					"consistency.  THIS MEANS YOU ARE "
1788 					"LOSING %i BYTES DATA FROM THIS %s.",
1789 					vi->i_ino,
1790 					(unsigned)le32_to_cpu(ni->type),
1791 					err2, attr_size, err2 - attr_size,
1792 					((ni->type == AT_DATA) &&
1793 					!ni->name_len) ? "FILE": "ATTRIBUTE");
1794 			write_lock_irqsave(&ni->size_lock, flags);
1795 			ni->initialized_size = attr_size;
1796 			i_size_write(vi, attr_size);
1797 			write_unlock_irqrestore(&ni->size_lock, flags);
1798 		}
1799 	}
1800 	/* Setup the fields specific to resident attributes. */
1801 	a->data.resident.value_length = cpu_to_le32(attr_size);
1802 	a->data.resident.value_offset = cpu_to_le16(mp_ofs);
1803 	a->data.resident.flags = old_res_attr_flags;
1804 	memset(&a->data.resident.reserved, 0,
1805 			sizeof(a->data.resident.reserved));
1806 	/* Copy the data from the page back to the attribute value. */
1807 	if (page) {
1808 		kaddr = kmap_atomic(page);
1809 		memcpy((u8*)a + mp_ofs, kaddr, attr_size);
1810 		kunmap_atomic(kaddr);
1811 	}
1812 	/* Setup the allocated size in the ntfs inode in case it changed. */
1813 	write_lock_irqsave(&ni->size_lock, flags);
1814 	ni->allocated_size = arec_size - mp_ofs;
1815 	write_unlock_irqrestore(&ni->size_lock, flags);
1816 	/* Mark the mft record dirty, so it gets written back. */
1817 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1818 	mark_mft_record_dirty(ctx->ntfs_ino);
1819 err_out:
1820 	if (ctx)
1821 		ntfs_attr_put_search_ctx(ctx);
1822 	if (m)
1823 		unmap_mft_record(base_ni);
1824 	ni->runlist.rl = NULL;
1825 	up_write(&ni->runlist.lock);
1826 rl_err_out:
1827 	if (rl) {
1828 		if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
1829 			ntfs_error(vol->sb, "Failed to release allocated "
1830 					"cluster(s) in error code path.  Run "
1831 					"chkdsk to recover the lost "
1832 					"cluster(s).");
1833 			NVolSetErrors(vol);
1834 		}
1835 		ntfs_free(rl);
1836 page_err_out:
1837 		unlock_page(page);
1838 		put_page(page);
1839 	}
1840 	if (err == -EINVAL)
1841 		err = -EIO;
1842 	return err;
1843 }
1844 
1845 /**
1846  * ntfs_attr_extend_allocation - extend the allocated space of an attribute
1847  * @ni:			ntfs inode of the attribute whose allocation to extend
1848  * @new_alloc_size:	new size in bytes to which to extend the allocation to
1849  * @new_data_size:	new size in bytes to which to extend the data to
1850  * @data_start:		beginning of region which is required to be non-sparse
1851  *
1852  * Extend the allocated space of an attribute described by the ntfs inode @ni
1853  * to @new_alloc_size bytes.  If @data_start is -1, the whole extension may be
1854  * implemented as a hole in the file (as long as both the volume and the ntfs
1855  * inode @ni have sparse support enabled).  If @data_start is >= 0, then the
1856  * region between the old allocated size and @data_start - 1 may be made sparse
1857  * but the regions between @data_start and @new_alloc_size must be backed by
1858  * actual clusters.
1859  *
1860  * If @new_data_size is -1, it is ignored.  If it is >= 0, then the data size
1861  * of the attribute is extended to @new_data_size.  Note that the i_size of the
1862  * vfs inode is not updated.  Only the data size in the base attribute record
1863  * is updated.  The caller has to update i_size separately if this is required.
1864  * WARNING: It is a BUG() for @new_data_size to be smaller than the old data
1865  * size as well as for @new_data_size to be greater than @new_alloc_size.
1866  *
1867  * For resident attributes this involves resizing the attribute record and if
1868  * necessary moving it and/or other attributes into extent mft records and/or
1869  * converting the attribute to a non-resident attribute which in turn involves
1870  * extending the allocation of a non-resident attribute as described below.
1871  *
1872  * For non-resident attributes this involves allocating clusters in the data
1873  * zone on the volume (except for regions that are being made sparse) and
1874  * extending the run list to describe the allocated clusters as well as
1875  * updating the mapping pairs array of the attribute.  This in turn involves
1876  * resizing the attribute record and if necessary moving it and/or other
1877  * attributes into extent mft records and/or splitting the attribute record
1878  * into multiple extent attribute records.
1879  *
1880  * Also, the attribute list attribute is updated if present and in some of the
1881  * above cases (the ones where extent mft records/attributes come into play),
1882  * an attribute list attribute is created if not already present.
1883  *
1884  * Return the new allocated size on success and -errno on error.  In the case
1885  * that an error is encountered but a partial extension at least up to
1886  * @data_start (if present) is possible, the allocation is partially extended
1887  * and this is returned.  This means the caller must check the returned size to
1888  * determine if the extension was partial.  If @data_start is -1 then partial
1889  * allocations are not performed.
1890  *
1891  * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
1892  *
1893  * Locking: This function takes the runlist lock of @ni for writing as well as
1894  * locking the mft record of the base ntfs inode.  These locks are maintained
1895  * throughout execution of the function.  These locks are required so that the
1896  * attribute can be resized safely and so that it can for example be converted
1897  * from resident to non-resident safely.
1898  *
1899  * TODO: At present attribute list attribute handling is not implemented.
1900  *
1901  * TODO: At present it is not safe to call this function for anything other
1902  * than the $DATA attribute(s) of an uncompressed and unencrypted file.
1903  */
1904 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
1905 		const s64 new_data_size, const s64 data_start)
1906 {
1907 	VCN vcn;
1908 	s64 ll, allocated_size, start = data_start;
1909 	struct inode *vi = VFS_I(ni);
1910 	ntfs_volume *vol = ni->vol;
1911 	ntfs_inode *base_ni;
1912 	MFT_RECORD *m;
1913 	ATTR_RECORD *a;
1914 	ntfs_attr_search_ctx *ctx;
1915 	runlist_element *rl, *rl2;
1916 	unsigned long flags;
1917 	int err, mp_size;
1918 	u32 attr_len = 0; /* Silence stupid gcc warning. */
1919 	bool mp_rebuilt;
1920 
1921 #ifdef DEBUG
1922 	read_lock_irqsave(&ni->size_lock, flags);
1923 	allocated_size = ni->allocated_size;
1924 	read_unlock_irqrestore(&ni->size_lock, flags);
1925 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1926 			"old_allocated_size 0x%llx, "
1927 			"new_allocated_size 0x%llx, new_data_size 0x%llx, "
1928 			"data_start 0x%llx.", vi->i_ino,
1929 			(unsigned)le32_to_cpu(ni->type),
1930 			(unsigned long long)allocated_size,
1931 			(unsigned long long)new_alloc_size,
1932 			(unsigned long long)new_data_size,
1933 			(unsigned long long)start);
1934 #endif
1935 retry_extend:
1936 	/*
1937 	 * For non-resident attributes, @start and @new_size need to be aligned
1938 	 * to cluster boundaries for allocation purposes.
1939 	 */
1940 	if (NInoNonResident(ni)) {
1941 		if (start > 0)
1942 			start &= ~(s64)vol->cluster_size_mask;
1943 		new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
1944 				~(s64)vol->cluster_size_mask;
1945 	}
1946 	BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
1947 	/* Check if new size is allowed in $AttrDef. */
1948 	err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
1949 	if (unlikely(err)) {
1950 		/* Only emit errors when the write will fail completely. */
1951 		read_lock_irqsave(&ni->size_lock, flags);
1952 		allocated_size = ni->allocated_size;
1953 		read_unlock_irqrestore(&ni->size_lock, flags);
1954 		if (start < 0 || start >= allocated_size) {
1955 			if (err == -ERANGE) {
1956 				ntfs_error(vol->sb, "Cannot extend allocation "
1957 						"of inode 0x%lx, attribute "
1958 						"type 0x%x, because the new "
1959 						"allocation would exceed the "
1960 						"maximum allowed size for "
1961 						"this attribute type.",
1962 						vi->i_ino, (unsigned)
1963 						le32_to_cpu(ni->type));
1964 			} else {
1965 				ntfs_error(vol->sb, "Cannot extend allocation "
1966 						"of inode 0x%lx, attribute "
1967 						"type 0x%x, because this "
1968 						"attribute type is not "
1969 						"defined on the NTFS volume.  "
1970 						"Possible corruption!  You "
1971 						"should run chkdsk!",
1972 						vi->i_ino, (unsigned)
1973 						le32_to_cpu(ni->type));
1974 			}
1975 		}
1976 		/* Translate error code to be POSIX conformant for write(2). */
1977 		if (err == -ERANGE)
1978 			err = -EFBIG;
1979 		else
1980 			err = -EIO;
1981 		return err;
1982 	}
1983 	if (!NInoAttr(ni))
1984 		base_ni = ni;
1985 	else
1986 		base_ni = ni->ext.base_ntfs_ino;
1987 	/*
1988 	 * We will be modifying both the runlist (if non-resident) and the mft
1989 	 * record so lock them both down.
1990 	 */
1991 	down_write(&ni->runlist.lock);
1992 	m = map_mft_record(base_ni);
1993 	if (IS_ERR(m)) {
1994 		err = PTR_ERR(m);
1995 		m = NULL;
1996 		ctx = NULL;
1997 		goto err_out;
1998 	}
1999 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2000 	if (unlikely(!ctx)) {
2001 		err = -ENOMEM;
2002 		goto err_out;
2003 	}
2004 	read_lock_irqsave(&ni->size_lock, flags);
2005 	allocated_size = ni->allocated_size;
2006 	read_unlock_irqrestore(&ni->size_lock, flags);
2007 	/*
2008 	 * If non-resident, seek to the last extent.  If resident, there is
2009 	 * only one extent, so seek to that.
2010 	 */
2011 	vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
2012 			0;
2013 	/*
2014 	 * Abort if someone did the work whilst we waited for the locks.  If we
2015 	 * just converted the attribute from resident to non-resident it is
2016 	 * likely that exactly this has happened already.  We cannot quite
2017 	 * abort if we need to update the data size.
2018 	 */
2019 	if (unlikely(new_alloc_size <= allocated_size)) {
2020 		ntfs_debug("Allocated size already exceeds requested size.");
2021 		new_alloc_size = allocated_size;
2022 		if (new_data_size < 0)
2023 			goto done;
2024 		/*
2025 		 * We want the first attribute extent so that we can update the
2026 		 * data size.
2027 		 */
2028 		vcn = 0;
2029 	}
2030 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2031 			CASE_SENSITIVE, vcn, NULL, 0, ctx);
2032 	if (unlikely(err)) {
2033 		if (err == -ENOENT)
2034 			err = -EIO;
2035 		goto err_out;
2036 	}
2037 	m = ctx->mrec;
2038 	a = ctx->attr;
2039 	/* Use goto to reduce indentation. */
2040 	if (a->non_resident)
2041 		goto do_non_resident_extend;
2042 	BUG_ON(NInoNonResident(ni));
2043 	/* The total length of the attribute value. */
2044 	attr_len = le32_to_cpu(a->data.resident.value_length);
2045 	/*
2046 	 * Extend the attribute record to be able to store the new attribute
2047 	 * size.  ntfs_attr_record_resize() will not do anything if the size is
2048 	 * not changing.
2049 	 */
2050 	if (new_alloc_size < vol->mft_record_size &&
2051 			!ntfs_attr_record_resize(m, a,
2052 			le16_to_cpu(a->data.resident.value_offset) +
2053 			new_alloc_size)) {
2054 		/* The resize succeeded! */
2055 		write_lock_irqsave(&ni->size_lock, flags);
2056 		ni->allocated_size = le32_to_cpu(a->length) -
2057 				le16_to_cpu(a->data.resident.value_offset);
2058 		write_unlock_irqrestore(&ni->size_lock, flags);
2059 		if (new_data_size >= 0) {
2060 			BUG_ON(new_data_size < attr_len);
2061 			a->data.resident.value_length =
2062 					cpu_to_le32((u32)new_data_size);
2063 		}
2064 		goto flush_done;
2065 	}
2066 	/*
2067 	 * We have to drop all the locks so we can call
2068 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2069 	 * locking the first page cache page and only if that fails dropping
2070 	 * the locks, locking the page, and redoing all the locking and
2071 	 * lookups.  While this would be a huge optimisation, it is not worth
2072 	 * it as this is definitely a slow code path.
2073 	 */
2074 	ntfs_attr_put_search_ctx(ctx);
2075 	unmap_mft_record(base_ni);
2076 	up_write(&ni->runlist.lock);
2077 	/*
2078 	 * Not enough space in the mft record, try to make the attribute
2079 	 * non-resident and if successful restart the extension process.
2080 	 */
2081 	err = ntfs_attr_make_non_resident(ni, attr_len);
2082 	if (likely(!err))
2083 		goto retry_extend;
2084 	/*
2085 	 * Could not make non-resident.  If this is due to this not being
2086 	 * permitted for this attribute type or there not being enough space,
2087 	 * try to make other attributes non-resident.  Otherwise fail.
2088 	 */
2089 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2090 		/* Only emit errors when the write will fail completely. */
2091 		read_lock_irqsave(&ni->size_lock, flags);
2092 		allocated_size = ni->allocated_size;
2093 		read_unlock_irqrestore(&ni->size_lock, flags);
2094 		if (start < 0 || start >= allocated_size)
2095 			ntfs_error(vol->sb, "Cannot extend allocation of "
2096 					"inode 0x%lx, attribute type 0x%x, "
2097 					"because the conversion from resident "
2098 					"to non-resident attribute failed "
2099 					"with error code %i.", vi->i_ino,
2100 					(unsigned)le32_to_cpu(ni->type), err);
2101 		if (err != -ENOMEM)
2102 			err = -EIO;
2103 		goto conv_err_out;
2104 	}
2105 	/* TODO: Not implemented from here, abort. */
2106 	read_lock_irqsave(&ni->size_lock, flags);
2107 	allocated_size = ni->allocated_size;
2108 	read_unlock_irqrestore(&ni->size_lock, flags);
2109 	if (start < 0 || start >= allocated_size) {
2110 		if (err == -ENOSPC)
2111 			ntfs_error(vol->sb, "Not enough space in the mft "
2112 					"record/on disk for the non-resident "
2113 					"attribute value.  This case is not "
2114 					"implemented yet.");
2115 		else /* if (err == -EPERM) */
2116 			ntfs_error(vol->sb, "This attribute type may not be "
2117 					"non-resident.  This case is not "
2118 					"implemented yet.");
2119 	}
2120 	err = -EOPNOTSUPP;
2121 	goto conv_err_out;
2122 #if 0
2123 	// TODO: Attempt to make other attributes non-resident.
2124 	if (!err)
2125 		goto do_resident_extend;
2126 	/*
2127 	 * Both the attribute list attribute and the standard information
2128 	 * attribute must remain in the base inode.  Thus, if this is one of
2129 	 * these attributes, we have to try to move other attributes out into
2130 	 * extent mft records instead.
2131 	 */
2132 	if (ni->type == AT_ATTRIBUTE_LIST ||
2133 			ni->type == AT_STANDARD_INFORMATION) {
2134 		// TODO: Attempt to move other attributes into extent mft
2135 		// records.
2136 		err = -EOPNOTSUPP;
2137 		if (!err)
2138 			goto do_resident_extend;
2139 		goto err_out;
2140 	}
2141 	// TODO: Attempt to move this attribute to an extent mft record, but
2142 	// only if it is not already the only attribute in an mft record in
2143 	// which case there would be nothing to gain.
2144 	err = -EOPNOTSUPP;
2145 	if (!err)
2146 		goto do_resident_extend;
2147 	/* There is nothing we can do to make enough space. )-: */
2148 	goto err_out;
2149 #endif
2150 do_non_resident_extend:
2151 	BUG_ON(!NInoNonResident(ni));
2152 	if (new_alloc_size == allocated_size) {
2153 		BUG_ON(vcn);
2154 		goto alloc_done;
2155 	}
2156 	/*
2157 	 * If the data starts after the end of the old allocation, this is a
2158 	 * $DATA attribute and sparse attributes are enabled on the volume and
2159 	 * for this inode, then create a sparse region between the old
2160 	 * allocated size and the start of the data.  Otherwise simply proceed
2161 	 * with filling the whole space between the old allocated size and the
2162 	 * new allocated size with clusters.
2163 	 */
2164 	if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
2165 			!NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
2166 		goto skip_sparse;
2167 	// TODO: This is not implemented yet.  We just fill in with real
2168 	// clusters for now...
2169 	ntfs_debug("Inserting holes is not-implemented yet.  Falling back to "
2170 			"allocating real clusters instead.");
2171 skip_sparse:
2172 	rl = ni->runlist.rl;
2173 	if (likely(rl)) {
2174 		/* Seek to the end of the runlist. */
2175 		while (rl->length)
2176 			rl++;
2177 	}
2178 	/* If this attribute extent is not mapped, map it now. */
2179 	if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
2180 			(rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
2181 			(rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
2182 		if (!rl && !allocated_size)
2183 			goto first_alloc;
2184 		rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2185 		if (IS_ERR(rl)) {
2186 			err = PTR_ERR(rl);
2187 			if (start < 0 || start >= allocated_size)
2188 				ntfs_error(vol->sb, "Cannot extend allocation "
2189 						"of inode 0x%lx, attribute "
2190 						"type 0x%x, because the "
2191 						"mapping of a runlist "
2192 						"fragment failed with error "
2193 						"code %i.", vi->i_ino,
2194 						(unsigned)le32_to_cpu(ni->type),
2195 						err);
2196 			if (err != -ENOMEM)
2197 				err = -EIO;
2198 			goto err_out;
2199 		}
2200 		ni->runlist.rl = rl;
2201 		/* Seek to the end of the runlist. */
2202 		while (rl->length)
2203 			rl++;
2204 	}
2205 	/*
2206 	 * We now know the runlist of the last extent is mapped and @rl is at
2207 	 * the end of the runlist.  We want to begin allocating clusters
2208 	 * starting at the last allocated cluster to reduce fragmentation.  If
2209 	 * there are no valid LCNs in the attribute we let the cluster
2210 	 * allocator choose the starting cluster.
2211 	 */
2212 	/* If the last LCN is a hole or simillar seek back to last real LCN. */
2213 	while (rl->lcn < 0 && rl > ni->runlist.rl)
2214 		rl--;
2215 first_alloc:
2216 	// FIXME: Need to implement partial allocations so at least part of the
2217 	// write can be performed when start >= 0.  (Needed for POSIX write(2)
2218 	// conformance.)
2219 	rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
2220 			(new_alloc_size - allocated_size) >>
2221 			vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
2222 			rl->lcn + rl->length : -1, DATA_ZONE, true);
2223 	if (IS_ERR(rl2)) {
2224 		err = PTR_ERR(rl2);
2225 		if (start < 0 || start >= allocated_size)
2226 			ntfs_error(vol->sb, "Cannot extend allocation of "
2227 					"inode 0x%lx, attribute type 0x%x, "
2228 					"because the allocation of clusters "
2229 					"failed with error code %i.", vi->i_ino,
2230 					(unsigned)le32_to_cpu(ni->type), err);
2231 		if (err != -ENOMEM && err != -ENOSPC)
2232 			err = -EIO;
2233 		goto err_out;
2234 	}
2235 	rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
2236 	if (IS_ERR(rl)) {
2237 		err = PTR_ERR(rl);
2238 		if (start < 0 || start >= allocated_size)
2239 			ntfs_error(vol->sb, "Cannot extend allocation of "
2240 					"inode 0x%lx, attribute type 0x%x, "
2241 					"because the runlist merge failed "
2242 					"with error code %i.", vi->i_ino,
2243 					(unsigned)le32_to_cpu(ni->type), err);
2244 		if (err != -ENOMEM)
2245 			err = -EIO;
2246 		if (ntfs_cluster_free_from_rl(vol, rl2)) {
2247 			ntfs_error(vol->sb, "Failed to release allocated "
2248 					"cluster(s) in error code path.  Run "
2249 					"chkdsk to recover the lost "
2250 					"cluster(s).");
2251 			NVolSetErrors(vol);
2252 		}
2253 		ntfs_free(rl2);
2254 		goto err_out;
2255 	}
2256 	ni->runlist.rl = rl;
2257 	ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
2258 			allocated_size) >> vol->cluster_size_bits);
2259 	/* Find the runlist element with which the attribute extent starts. */
2260 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
2261 	rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
2262 	BUG_ON(!rl2);
2263 	BUG_ON(!rl2->length);
2264 	BUG_ON(rl2->lcn < LCN_HOLE);
2265 	mp_rebuilt = false;
2266 	/* Get the size for the new mapping pairs array for this extent. */
2267 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
2268 	if (unlikely(mp_size <= 0)) {
2269 		err = mp_size;
2270 		if (start < 0 || start >= allocated_size)
2271 			ntfs_error(vol->sb, "Cannot extend allocation of "
2272 					"inode 0x%lx, attribute type 0x%x, "
2273 					"because determining the size for the "
2274 					"mapping pairs failed with error code "
2275 					"%i.", vi->i_ino,
2276 					(unsigned)le32_to_cpu(ni->type), err);
2277 		err = -EIO;
2278 		goto undo_alloc;
2279 	}
2280 	/* Extend the attribute record to fit the bigger mapping pairs array. */
2281 	attr_len = le32_to_cpu(a->length);
2282 	err = ntfs_attr_record_resize(m, a, mp_size +
2283 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2284 	if (unlikely(err)) {
2285 		BUG_ON(err != -ENOSPC);
2286 		// TODO: Deal with this by moving this extent to a new mft
2287 		// record or by starting a new extent in a new mft record,
2288 		// possibly by extending this extent partially and filling it
2289 		// and creating a new extent for the remainder, or by making
2290 		// other attributes non-resident and/or by moving other
2291 		// attributes out of this mft record.
2292 		if (start < 0 || start >= allocated_size)
2293 			ntfs_error(vol->sb, "Not enough space in the mft "
2294 					"record for the extended attribute "
2295 					"record.  This case is not "
2296 					"implemented yet.");
2297 		err = -EOPNOTSUPP;
2298 		goto undo_alloc;
2299 	}
2300 	mp_rebuilt = true;
2301 	/* Generate the mapping pairs array directly into the attr record. */
2302 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2303 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2304 			mp_size, rl2, ll, -1, NULL);
2305 	if (unlikely(err)) {
2306 		if (start < 0 || start >= allocated_size)
2307 			ntfs_error(vol->sb, "Cannot extend allocation of "
2308 					"inode 0x%lx, attribute type 0x%x, "
2309 					"because building the mapping pairs "
2310 					"failed with error code %i.", vi->i_ino,
2311 					(unsigned)le32_to_cpu(ni->type), err);
2312 		err = -EIO;
2313 		goto undo_alloc;
2314 	}
2315 	/* Update the highest_vcn. */
2316 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2317 			vol->cluster_size_bits) - 1);
2318 	/*
2319 	 * We now have extended the allocated size of the attribute.  Reflect
2320 	 * this in the ntfs_inode structure and the attribute record.
2321 	 */
2322 	if (a->data.non_resident.lowest_vcn) {
2323 		/*
2324 		 * We are not in the first attribute extent, switch to it, but
2325 		 * first ensure the changes will make it to disk later.
2326 		 */
2327 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2328 		mark_mft_record_dirty(ctx->ntfs_ino);
2329 		ntfs_attr_reinit_search_ctx(ctx);
2330 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2331 				CASE_SENSITIVE, 0, NULL, 0, ctx);
2332 		if (unlikely(err))
2333 			goto restore_undo_alloc;
2334 		/* @m is not used any more so no need to set it. */
2335 		a = ctx->attr;
2336 	}
2337 	write_lock_irqsave(&ni->size_lock, flags);
2338 	ni->allocated_size = new_alloc_size;
2339 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2340 	/*
2341 	 * FIXME: This would fail if @ni is a directory, $MFT, or an index,
2342 	 * since those can have sparse/compressed set.  For example can be
2343 	 * set compressed even though it is not compressed itself and in that
2344 	 * case the bit means that files are to be created compressed in the
2345 	 * directory...  At present this is ok as this code is only called for
2346 	 * regular files, and only for their $DATA attribute(s).
2347 	 * FIXME: The calculation is wrong if we created a hole above.  For now
2348 	 * it does not matter as we never create holes.
2349 	 */
2350 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2351 		ni->itype.compressed.size += new_alloc_size - allocated_size;
2352 		a->data.non_resident.compressed_size =
2353 				cpu_to_sle64(ni->itype.compressed.size);
2354 		vi->i_blocks = ni->itype.compressed.size >> 9;
2355 	} else
2356 		vi->i_blocks = new_alloc_size >> 9;
2357 	write_unlock_irqrestore(&ni->size_lock, flags);
2358 alloc_done:
2359 	if (new_data_size >= 0) {
2360 		BUG_ON(new_data_size <
2361 				sle64_to_cpu(a->data.non_resident.data_size));
2362 		a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
2363 	}
2364 flush_done:
2365 	/* Ensure the changes make it to disk. */
2366 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2367 	mark_mft_record_dirty(ctx->ntfs_ino);
2368 done:
2369 	ntfs_attr_put_search_ctx(ctx);
2370 	unmap_mft_record(base_ni);
2371 	up_write(&ni->runlist.lock);
2372 	ntfs_debug("Done, new_allocated_size 0x%llx.",
2373 			(unsigned long long)new_alloc_size);
2374 	return new_alloc_size;
2375 restore_undo_alloc:
2376 	if (start < 0 || start >= allocated_size)
2377 		ntfs_error(vol->sb, "Cannot complete extension of allocation "
2378 				"of inode 0x%lx, attribute type 0x%x, because "
2379 				"lookup of first attribute extent failed with "
2380 				"error code %i.", vi->i_ino,
2381 				(unsigned)le32_to_cpu(ni->type), err);
2382 	if (err == -ENOENT)
2383 		err = -EIO;
2384 	ntfs_attr_reinit_search_ctx(ctx);
2385 	if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
2386 			allocated_size >> vol->cluster_size_bits, NULL, 0,
2387 			ctx)) {
2388 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
2389 				"attribute in error code path.  Run chkdsk to "
2390 				"recover.");
2391 		write_lock_irqsave(&ni->size_lock, flags);
2392 		ni->allocated_size = new_alloc_size;
2393 		/*
2394 		 * FIXME: This would fail if @ni is a directory...  See above.
2395 		 * FIXME: The calculation is wrong if we created a hole above.
2396 		 * For now it does not matter as we never create holes.
2397 		 */
2398 		if (NInoSparse(ni) || NInoCompressed(ni)) {
2399 			ni->itype.compressed.size += new_alloc_size -
2400 					allocated_size;
2401 			vi->i_blocks = ni->itype.compressed.size >> 9;
2402 		} else
2403 			vi->i_blocks = new_alloc_size >> 9;
2404 		write_unlock_irqrestore(&ni->size_lock, flags);
2405 		ntfs_attr_put_search_ctx(ctx);
2406 		unmap_mft_record(base_ni);
2407 		up_write(&ni->runlist.lock);
2408 		/*
2409 		 * The only thing that is now wrong is the allocated size of the
2410 		 * base attribute extent which chkdsk should be able to fix.
2411 		 */
2412 		NVolSetErrors(vol);
2413 		return err;
2414 	}
2415 	ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
2416 			(allocated_size >> vol->cluster_size_bits) - 1);
2417 undo_alloc:
2418 	ll = allocated_size >> vol->cluster_size_bits;
2419 	if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
2420 		ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
2421 				"in error code path.  Run chkdsk to recover "
2422 				"the lost cluster(s).");
2423 		NVolSetErrors(vol);
2424 	}
2425 	m = ctx->mrec;
2426 	a = ctx->attr;
2427 	/*
2428 	 * If the runlist truncation fails and/or the search context is no
2429 	 * longer valid, we cannot resize the attribute record or build the
2430 	 * mapping pairs array thus we mark the inode bad so that no access to
2431 	 * the freed clusters can happen.
2432 	 */
2433 	if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
2434 		ntfs_error(vol->sb, "Failed to %s in error code path.  Run "
2435 				"chkdsk to recover.", IS_ERR(m) ?
2436 				"restore attribute search context" :
2437 				"truncate attribute runlist");
2438 		NVolSetErrors(vol);
2439 	} else if (mp_rebuilt) {
2440 		if (ntfs_attr_record_resize(m, a, attr_len)) {
2441 			ntfs_error(vol->sb, "Failed to restore attribute "
2442 					"record in error code path.  Run "
2443 					"chkdsk to recover.");
2444 			NVolSetErrors(vol);
2445 		} else /* if (success) */ {
2446 			if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
2447 					a->data.non_resident.
2448 					mapping_pairs_offset), attr_len -
2449 					le16_to_cpu(a->data.non_resident.
2450 					mapping_pairs_offset), rl2, ll, -1,
2451 					NULL)) {
2452 				ntfs_error(vol->sb, "Failed to restore "
2453 						"mapping pairs array in error "
2454 						"code path.  Run chkdsk to "
2455 						"recover.");
2456 				NVolSetErrors(vol);
2457 			}
2458 			flush_dcache_mft_record_page(ctx->ntfs_ino);
2459 			mark_mft_record_dirty(ctx->ntfs_ino);
2460 		}
2461 	}
2462 err_out:
2463 	if (ctx)
2464 		ntfs_attr_put_search_ctx(ctx);
2465 	if (m)
2466 		unmap_mft_record(base_ni);
2467 	up_write(&ni->runlist.lock);
2468 conv_err_out:
2469 	ntfs_debug("Failed.  Returning error code %i.", err);
2470 	return err;
2471 }
2472 
2473 /**
2474  * ntfs_attr_set - fill (a part of) an attribute with a byte
2475  * @ni:		ntfs inode describing the attribute to fill
2476  * @ofs:	offset inside the attribute at which to start to fill
2477  * @cnt:	number of bytes to fill
2478  * @val:	the unsigned 8-bit value with which to fill the attribute
2479  *
2480  * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
2481  * byte offset @ofs inside the attribute with the constant byte @val.
2482  *
2483  * This function is effectively like memset() applied to an ntfs attribute.
2484  * Note thie function actually only operates on the page cache pages belonging
2485  * to the ntfs attribute and it marks them dirty after doing the memset().
2486  * Thus it relies on the vm dirty page write code paths to cause the modified
2487  * pages to be written to the mft record/disk.
2488  *
2489  * Return 0 on success and -errno on error.  An error code of -ESPIPE means
2490  * that @ofs + @cnt were outside the end of the attribute and no write was
2491  * performed.
2492  */
2493 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
2494 {
2495 	ntfs_volume *vol = ni->vol;
2496 	struct address_space *mapping;
2497 	struct page *page;
2498 	u8 *kaddr;
2499 	pgoff_t idx, end;
2500 	unsigned start_ofs, end_ofs, size;
2501 
2502 	ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
2503 			(long long)ofs, (long long)cnt, val);
2504 	BUG_ON(ofs < 0);
2505 	BUG_ON(cnt < 0);
2506 	if (!cnt)
2507 		goto done;
2508 	/*
2509 	 * FIXME: Compressed and encrypted attributes are not supported when
2510 	 * writing and we should never have gotten here for them.
2511 	 */
2512 	BUG_ON(NInoCompressed(ni));
2513 	BUG_ON(NInoEncrypted(ni));
2514 	mapping = VFS_I(ni)->i_mapping;
2515 	/* Work out the starting index and page offset. */
2516 	idx = ofs >> PAGE_SHIFT;
2517 	start_ofs = ofs & ~PAGE_MASK;
2518 	/* Work out the ending index and page offset. */
2519 	end = ofs + cnt;
2520 	end_ofs = end & ~PAGE_MASK;
2521 	/* If the end is outside the inode size return -ESPIPE. */
2522 	if (unlikely(end > i_size_read(VFS_I(ni)))) {
2523 		ntfs_error(vol->sb, "Request exceeds end of attribute.");
2524 		return -ESPIPE;
2525 	}
2526 	end >>= PAGE_SHIFT;
2527 	/* If there is a first partial page, need to do it the slow way. */
2528 	if (start_ofs) {
2529 		page = read_mapping_page(mapping, idx, NULL);
2530 		if (IS_ERR(page)) {
2531 			ntfs_error(vol->sb, "Failed to read first partial "
2532 					"page (error, index 0x%lx).", idx);
2533 			return PTR_ERR(page);
2534 		}
2535 		/*
2536 		 * If the last page is the same as the first page, need to
2537 		 * limit the write to the end offset.
2538 		 */
2539 		size = PAGE_SIZE;
2540 		if (idx == end)
2541 			size = end_ofs;
2542 		kaddr = kmap_atomic(page);
2543 		memset(kaddr + start_ofs, val, size - start_ofs);
2544 		flush_dcache_page(page);
2545 		kunmap_atomic(kaddr);
2546 		set_page_dirty(page);
2547 		put_page(page);
2548 		balance_dirty_pages_ratelimited(mapping);
2549 		cond_resched();
2550 		if (idx == end)
2551 			goto done;
2552 		idx++;
2553 	}
2554 	/* Do the whole pages the fast way. */
2555 	for (; idx < end; idx++) {
2556 		/* Find or create the current page.  (The page is locked.) */
2557 		page = grab_cache_page(mapping, idx);
2558 		if (unlikely(!page)) {
2559 			ntfs_error(vol->sb, "Insufficient memory to grab "
2560 					"page (index 0x%lx).", idx);
2561 			return -ENOMEM;
2562 		}
2563 		kaddr = kmap_atomic(page);
2564 		memset(kaddr, val, PAGE_SIZE);
2565 		flush_dcache_page(page);
2566 		kunmap_atomic(kaddr);
2567 		/*
2568 		 * If the page has buffers, mark them uptodate since buffer
2569 		 * state and not page state is definitive in 2.6 kernels.
2570 		 */
2571 		if (page_has_buffers(page)) {
2572 			struct buffer_head *bh, *head;
2573 
2574 			bh = head = page_buffers(page);
2575 			do {
2576 				set_buffer_uptodate(bh);
2577 			} while ((bh = bh->b_this_page) != head);
2578 		}
2579 		/* Now that buffers are uptodate, set the page uptodate, too. */
2580 		SetPageUptodate(page);
2581 		/*
2582 		 * Set the page and all its buffers dirty and mark the inode
2583 		 * dirty, too.  The VM will write the page later on.
2584 		 */
2585 		set_page_dirty(page);
2586 		/* Finally unlock and release the page. */
2587 		unlock_page(page);
2588 		put_page(page);
2589 		balance_dirty_pages_ratelimited(mapping);
2590 		cond_resched();
2591 	}
2592 	/* If there is a last partial page, need to do it the slow way. */
2593 	if (end_ofs) {
2594 		page = read_mapping_page(mapping, idx, NULL);
2595 		if (IS_ERR(page)) {
2596 			ntfs_error(vol->sb, "Failed to read last partial page "
2597 					"(error, index 0x%lx).", idx);
2598 			return PTR_ERR(page);
2599 		}
2600 		kaddr = kmap_atomic(page);
2601 		memset(kaddr, val, end_ofs);
2602 		flush_dcache_page(page);
2603 		kunmap_atomic(kaddr);
2604 		set_page_dirty(page);
2605 		put_page(page);
2606 		balance_dirty_pages_ratelimited(mapping);
2607 		cond_resched();
2608 	}
2609 done:
2610 	ntfs_debug("Done.");
2611 	return 0;
2612 }
2613 
2614 #endif /* NTFS_RW */
2615